Sample records for factor rgf1p signals

  1. Two-Component System RgfA/C Activates the fbsB Gene Encoding Major Fibrinogen-Binding Protein in Highly Virulent CC17 Clone Group B Streptococcus

    PubMed Central

    Safadi, Rim Al; Mereghetti, Laurent; Salloum, Mazen; Lartigue, Marie-Frédérique; Virlogeux-Payant, Isabelle; Quentin, Roland; Rosenau, Agnès

    2011-01-01

    Group B streptococcus (GBS) strains with the highest ability to bind to human fibrinogen belong to the highly invasive clonal complex (CC) 17. To investigate the fibrinogen-binding mechanisms of CC17 strains, we determined the prevalence of fibrinogen-binding genes (fbsA and fbsB), and fbs regulator genes (rogB encoding an fbsA activator, rovS encoding an fbsA repressor and rgf encoding a two-component system [TCS] whose role on fbs genes was not determined yet) in a collection of 134 strains representing the major CCs of the species. We showed that specific gene combinations were related to particular CCs; only CC17 strains contained the fbsA, fbsB, and rgf genes combination. Non polar rgfAC deletion mutants of three CC17 serotype III strains were constructed. They showed a 3.2- to 5.1-fold increase of fbsA transcripts, a 4.8- to 6.7-fold decrease of fbsB transcripts, and a 52% to 68% decreased fibrinogen-binding ability, demonstrating that the RgfA/RgfC TCS inhibits the fbsA gene and activates the fbsB gene. The relative contribution of the two fbs genes in fibrinogen-binding ability was determined by constructing isogenic fbsA, fbsB, deletion mutants of the three CC17 strains. The ability to bind to fibrinogen was reduced by 49% to 57% in ΔfbsA mutants, and by 78% to 80% in ΔfbsB mutants, suggesting that FbsB protein plays a greater role in the fibrinogen-binding ability of CC17 strains. Moreover, the relative transcription level of fbsB gene was 9.2- to 12.7-fold higher than that of fbsA gene for the three wild type strains. Fibrinogen-binding ability could be restored by plasmid-mediated expression of rgfAC, fbsA, and fbsB genes in the corresponding deletion mutants. Thus, our results demonstrate that a specific combination of fbs genes and fbs regulator genes account for the high fibrinogen-binding ability of CC17 strains that may participate to their enhanced invasiveness for neonates as compared to strains of other CCs. PMID:21326613

  2. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth.

    PubMed

    Song, Wen; Liu, Li; Wang, Jizong; Wu, Zhen; Zhang, Heqiao; Tang, Jiao; Lin, Guangzhong; Wang, Yichuan; Wen, Xing; Li, Wenyang; Han, Zhifu; Guo, Hongwei; Chai, Jijie

    2016-06-01

    Peptide-mediated cell-to-cell signaling has crucial roles in coordination and definition of cellular functions in plants. Peptide-receptor matching is important for understanding the mechanisms underlying peptide-mediated signaling. Here we report the structure-guided identification of root meristem growth factor (RGF) receptors important for plant development. An assay based on a signature ligand recognition motif (Arg-x-Arg) conserved in a subfamily of leucine-rich repeat receptor kinases (LRR-RKs) identified the functionally uncharacterized LRR-RK At4g26540 as a receptor of RGF1 (RGFR1). We further solved the crystal structure of RGF1 in complex with the LRR domain of RGFR1 at a resolution of 2.6 Å, which reveals that the Arg-x-Gly-Gly (RxGG) motif is responsible for specific recognition of the sulfate group of RGF1 by RGFR1. Based on the RxGG motif, we identified additional four RGFRs. Participation of the five RGFRs in RGF-induced signaling is supported by biochemical and genetic data. We also offer evidence showing that SERKs function as co-receptors for RGFs. Taken together, our study identifies RGF receptors and co-receptors that can link RGF signals with their downstream components and provides a proof of principle for structure-based matching of LRR-RKs with their peptide ligands.

  3. Sphingosine 1-Phosphate (S1P) Signaling in Glioblastoma Multiforme—A Systematic Review

    PubMed Central

    Mahajan-Thakur, Shailaja; Bien-Möller, Sandra; Marx, Sascha; Schroeder, Henry

    2017-01-01

    The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis. PMID:29149079

  4. Analysis of Two-Component Systems in Group B Streptococcus Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness

    PubMed Central

    Faralla, Cristina; Metruccio, Matteo M.; De Chiara, Matteo; Mu, Rong; Patras, Kathryn A.; Muzzi, Alessandro; Grandi, Guido; Margarit, Immaculada; Doran, Kelly S.

    2014-01-01

    ABSTRACT Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence. PMID:24846378

  5. Hypoxia inducible factor-1α regulates autophagy via the p27-E2F1 signaling pathway

    PubMed Central

    Wang, Pan; Long, Meijing; Zhang, Shijie; Cheng, Zhenyun; Zhao, Xin; He, Fucheng; Liu, Hongchun; Ming, Liang

    2017-01-01

    Autophagy is a highly conserved process by which the cell contents are delivered to lysosomes for degradation, or are used to provide macromolecules for energy generation under conditions of nutritional starvation. It has previously been demonstrated that cancer cells in hypoxic regions, with an oxygen concentration below the normal physiological level, express hypoxia inducible factor (HIF)-1α, in order to adapt and survive. HIF-1α is important in the regulation of oxygen homeostasis and the transcription of hundreds of genes in response to conditions of hypoxia, hence maintaining energy and redox homeostasis. To determine if HIF-1α modulates autophagy and the underlying molecular mechanisms regulating this process, the human esophageal cancer EC109 and IMR90 human diploid fibroblast cell lines were exposed to normoxic or hypoxic conditions and the expression levels of various proteins subsequently examined. Small interfering RNA was used to silence p27, in order to investigate its role in the process of HIF-1α regulated autophagy. Hypoxia induced autophagy in IMR90 cells and it was revealed that immature IMR90 cells demonstrated an increased rate of autophagy compared with mature cells. HIF-1α promoted EC109 cell autophagy via positively modulating p27, whereas silencing of p27 abolished the autophagy induced by hypoxia. The present study identified the primary components of the p27-E2F1 signaling pathway by which HIF-1α regulates autophagy. A previously unidentified mechanism is here presented, via which cancer cells may generate energy, or obtain macromolecules for survival. PMID:28627618

  6. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    PubMed Central

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  7. Transcription factor specificity protein 1 modulates TGFβ1/Smad signaling to negatively regulate SIGIRR expression by human M1 macrophages stimulated with substance P.

    PubMed

    Yamaguchi, Rui; Sakamoto, Arisa; Yamaguchi, Reona; Haraguchi, Misa; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2018-08-01

    The stimuli inducing expression of single immunoglobulin IL-1-related receptor (SIGIRR) and the relevant regulatory mechanisms are not well defined. Transforming growth factor β1 (TGFβ1) delays internalization of neurokinin-1 receptor (NK1R) and subsequently enhances cellular signaling. This study investigated the effect of TGFβ1 on SIGIRR protein production by human M1 macrophages in response to stimulation with substance P (SP). SP caused upregulation of SIGIRR expression in a concentration-dependent manner, whereas aprepitant (an NK1R inhibitor) blunted this response. Silencing p38γMAPK or TAK-1 partially attenuated the response to SP stimulation, while TGFβ1/2/3 siRNA dramatically diminished it. SP induced much greater SIGIRR protein production than either lipopolysaccharide (a TLR4 agonist) or resiquimod (a TLR7/8 agonist). Unexpectedly, silencing of transcription factor specificity protein 1 (Sp1) led to significant upregulation of SIGIRR expression after SP stimulation, while KLF2 siRNA only partially enhanced it and Fli-1 siRNA reduced it. SP also upregulated TGFβ1 expression, along with a corresponding increase of SIGIRR protein, whereas silencing TGFβ1/2/3 blunted these responses. Sp1 siRNA or mithramycin (a gene-selective Sp1 inhibitor) significantly enhanced the expression of TGFβ1 and SIGIRR by macrophages after SP stimulation. Importantly, this effect of Sp1 siRNA on TGFβ1 and SIGIRR was blunted by siRNA for Smad2, Smad3, or Smad4, but not by TAK-1 siRNA. Next, we investigated the influence of transcription factor cross-talk on SIGIRR expression in response to SP. Co-transfection of macrophages with Sp1 siRNA and C/EBPβ or TIF1β siRNA attenuated the upregulation of SIGIRR by SP, while a combination of Sp1 siRNA and Fli-1 siRNA dramatically diminished it. In conclusion, TGFβ1 may be an intermediary between SP/NK1R activation and SIGIRR expression in Sp1 siRNA-transfected macrophages. In addition, Sp1 modulates TGFβ1/Smad signaling and

  8. p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing.

    PubMed

    Deng, Wenbo; Cha, Jeeyeon; Yuan, Jia; Haraguchi, Hirofumi; Bartos, Amanda; Leishman, Emma; Viollet, Benoit; Bradshaw, Heather B; Hirota, Yasushi; Dey, Sudhansu K

    2016-08-01

    Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB.

  9. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook

    2009-01-09

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1.more » These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.« less

  10. Notch1 Signaling Sensitizes Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis in Human Hepatocellular Carcinoma Cells by Inhibiting Akt/Hdm2-mediated p53 Degradation and Up-regulating p53-dependent DR5 Expression*

    PubMed Central

    Wang, Chunmei; Qi, Runzi; Li, Nan; Wang, Zhengxin; An, Huazhang; Zhang, Qinghua; Yu, Yizhi; Cao, Xuetao

    2009-01-01

    Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC. PMID:19376776

  11. p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing

    PubMed Central

    Cha, Jeeyeon; Yuan, Jia; Haraguchi, Hirofumi; Bartos, Amanda; Bradshaw, Heather B.; Hirota, Yasushi; Dey, Sudhansu K.

    2016-01-01

    Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB. PMID:27454290

  12. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletalmore » myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.« less

  13. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Harunori; Kitano, Masayasu, E-mail: mkitano6@hyo-med.ac.jp; Iwasaki, Tsuyoshi

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7Amore » cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.« less

  14. The Acetylase/Deacetylase Couple CREB-binding Protein/Sirtuin 1 Controls Hypoxia-inducible Factor 2 Signaling*

    PubMed Central

    Chen, Rui; Xu, Min; Hogg, Richard T.; Li, Jiwen; Little, Bertis; Gerard, Robert D.; Garcia, Joseph A.

    2012-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors. HIF-1α plays a prominent role in hypoxic gene induction. HIF-2α target genes are more restricted but include erythropoietin (Epo), one of the most highly hypoxia-inducible genes in mammals. We previously reported that HIF-2α is acetylated during hypoxia but is rapidly deacetylated by the stress-responsive deacetylase Sirtuin 1. We now demonstrate that the lysine acetyltransferases cAMP-response element-binding protein-binding protein (CBP) and p300 are required for efficient Epo induction during hypoxia. However, despite close structural similarity, the roles of CBP and p300 differ in HIF signaling. CBP acetylates HIF-2α, is a major coactivator for HIF-2-mediated Epo induction, and is required for Sirt1 augmentation of HIF-2 signaling during hypoxia in Hep3B cells. In comparison, p300 is a major contributor for HIF-1 signaling as indicated by induction of Pgk1. Whereas CBP can bind with HIF-2α independent of the HIF-2α C-terminal activation domain via enzyme/substrate interactions, p300 only complexes with HIF-2α through the C-terminal activation domain. Maximal CBP/HIF-2 signaling requires intact CBP acetyltransferase activity in both Hep3B cells as well as in mice. PMID:22807441

  15. Increased Sensitivity of HIV-1 p24 ELISA Using a Photochemical Signal Amplification System.

    PubMed

    Bystryak, Simon; Santockyte, Rasa

    2015-10-01

    In this study we describe a photochemical signal amplification method (PSAM) for increasing of the sensitivity of enzyme-linked immunosorbent assay (ELISA) for determination of HIV-1 p24 antigen. The photochemical signal amplification method is based on an autocatalytic photochemical reaction of a horseradish peroxidase (HRP) substrate, orthophenylenediamine (OPD). To compare the performance of PSAM-boosted ELISA with a conventional colorimetric ELISA for determination of HIV-1 p24 antigen we employed a PerkinElmer HIV-1 p24 ELISA kit, using conventional ELISA alongside ELISA + PSAM. In the present study, we show that PSAM technology allows one to increase the analytical sensitivity and dynamic range of a commercial HIV-1 p24 ELISA kit, with and without immune-complex disruption, by a factor of approximately 40-fold. ELISA + PSAM is compatible with commercially available microtiter plate readers, requires only an inexpensive illumination device, and the PSAM amplification step takes no longer than 15 min. This method can be used for both commercially available and in-house ELISA tests, and has the advantage of being considerably simpler and less costly than alternative signal amplification methods. This method can be used for both commercially available and in-house ELISA tests, and has the advantage of being considerably simpler and less costly than alternative signal amplification methods.

  16. Suppressor of cytokine signaling 1 (SOCS1) limits NFkappaB signaling by decreasing p65 stability within the cell nucleus.

    PubMed

    Strebovsky, Julia; Walker, Patrick; Lang, Roland; Dalpke, Alexander H

    2011-03-01

    Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytoplasmic Janus kinases (Jak) and signal transducer and activator of transcription (STAT) signaling pathways. Previously the authors surprisingly observed that SOCS1 translocated into the nucleus, which was because of the presence of a nuclear localization sequence. This report now hypothesizes that SOCS1 mediates specific functions within the nuclear compartment because it is instantly transported into the nucleus, as shown by photoactivation and live cell imaging in human HEK293 cells. The NFκB component p65 is identified as an interaction partner for SOCS1 but not for other members of the SOCS family. SOCS1 bound to p65 only within the nucleus. By means of its SOCS box domain, SOCS1 operated as a ubiquitin ligase, leading to polyubiquitination and proteasomal degradation of nuclear p65. Thus, SOCS1 limited prolonged p65 signaling and terminated expression of NFκB inducible genes. Using mutants that lack either nuclear translocation or a functional SOCS box, this report identifies genes that are regulated in a manner dependent on the nuclear availability of SOCS1. Data show that beyond its receptor-proximal function in Jak/STAT signaling, SOCS1 also regulates the duration of NFκB signaling within the cell nucleus, thus exerting a heretofore unrecognized function.

  17. Loss of Dlg-1 in the Mouse Lens Impairs Fibroblast Growth Factor Receptor Signaling

    PubMed Central

    Lee, SungKyoung; Griep, Anne E.

    2014-01-01

    Coordination of cell proliferation, differentiation and survival is essential for normal development and maintenance of tissues in the adult organism. Growth factor receptor tyrosine kinase signaling pathways and planar cell polarity pathways are two regulators of many developmental processes. We have previously shown through analysis of mice conditionally null in the lens for the planar cell polarity gene (PCP), Dlg-1, that Dlg-1 is required for fiber differentiation. Herein, we asked if Dlg-1 is a regulator of the Fibroblast growth factor receptor (Fgfr) signaling pathway, which is known to be required for fiber cell differentiation. Western blot analysis of whole fiber cell extracts from control and Dlg-1 deficient lenses showed that levels of the Fgfr signaling intermediates pErk, pAkt, and pFrs2α, the Fgfr target, Erm, and the fiber cell specific protein, Mip26, were reduced in the Dlg-1 deficient fiber cells. The levels of Fgfr2 were decreased in Dlg-1 deficient lenses compared to controls. Conversely, levels of Fgfr1 in Dlg-1 deficient lenses were increased compared to controls. The changes in Fgfr levels were found to be specifically in the triton insoluble, cytoskeletal associated fraction of Dlg-1 deficient lenses. Immunofluorescent staining of lenses from E13.5 embryos showed that expression levels of pErk were reduced in the transition zone, a region of the lens that exhibits PCP, in the Dlg-1 deficient lenses as compared to controls. In control lenses, immunofluorescent staining for Fgfr2 was observed in the epithelium, transition zone and fibers. By E13.5, the intensity of staining for Fgfr2 was reduced in these regions of the Dlg-1 deficient lenses. Thus, loss of Dlg-1 in the lens impairs Fgfr signaling and leads to altered levels of Fgfrs, suggesting that Dlg-1 is a modulator of Fgfr signaling pathway at the level of the receptors and that Dlg-1 regulates fiber cell differentiation through its role in PCP. PMID:24824078

  18. Regulation of Hippo signalling by p38 signalling

    PubMed Central

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-01-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts. We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. PMID:27402810

  19. Regulation of Hippo signalling by p38 signalling.

    PubMed

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-08-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  20. Anti-apoptotic Role of Caspase-cleaved GAB1 Adaptor Protein in Hepatocyte Growth Factor/Scatter Factor-MET Receptor Protein Signaling*

    PubMed Central

    Le Goff, Arnaud; Ji, Zongling; Leclercq, Bérénice; Bourette, Roland P.; Mougel, Alexandra; Guerardel, Cateline; de Launoit, Yvan; Vicogne, Jérôme; Goormachtigh, Gautier; Fafeur, Véronique

    2012-01-01

    The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling. PMID:22915589

  1. Insulin-like growth factor-1 signaling in renal cell carcinoma.

    PubMed

    Tracz, Adam F; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2016-07-12

    Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells.

  2. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2more » and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.« less

  3. [The role of transforming growth factor1/connective tissue growth factor signaling pathway in paraquat-induced pulmonary fibrosis].

    PubMed

    Li, H H; Cai, Q; Wang, Y P; Liu, H R; Huang, M

    2016-07-20

    Objective: To investigate the effects of Paraquat on human embryonic lung fibroblasts (MRC5) and explore the role of transforming growth factor1 /connective tissue growth factor signaling pathway in paraquat-induced pulmonary fibrosis. Methods: MRC5 cells were cultured with different concentration of PQ (0, 12.5, 25, 50, 100, 200, 400 μmol/L) for 24 h. The viability of cells was measured by MTT. The protein level of TGF-β 1 were analyzed by ELISA after PQ treatment (0, 25, 50, 100 μmol/L) . To examine whether TGF-β 1 /CTGF signaling pathway was involved in paraquat-induced cytotoxicity, cells was divided into 6 groups: (1) control; (2) 25 μmol/L PQ group; (3) 50 μmol/L PQ group; (4) 100 μmol/L PQ group; (5) TGF-β 1 positive control group (50 μmol/L rhTGF-β 1 ) ; (6) stimulate group (100 μmol/L PQ+50 μmol/L TGF-β 1 ) . The protein levels of p-Smad2, p-Smad3 and CTGF were assayed by western blot. The mRNA level of CTGF was assayed by real time RT-PCR. Results: MTT showed that cell viability decreased with increasing PQ concentration ( P <0.05) . The protein expression of TGF-β 1 treated with PQ (25, 50, 100 μmol/L) significantly increased compared with control in a dose-independent manner ( P <0.05) . Exposure to PQ (25, 50, 100 μmol/L) induced increase of protein levels of p-Smad2 and p-Smad3. Noteworthy, the expression of p-Smad2 and p-Smad3 were dramatically increased following PQ plus TGF-β 1 stimulation ( P <0.05) . Exposure to PQ (50, 100μmol/L) induced increase of CTGF protein expression and similar greatly increase following PQ plus TGF-β 1 stimulation ( P <0.05) . Real time RT-PCR showed CTGF mRNA in all groups also significantly up-regulated compared with control ( P <0.05) . Conclusion: TGF-β 1 regulates the expression of target gene CTGF to exhibit its pro-fibrogenic effects by activating TGF-β 1 /Smad signaling pathway in PQ-induced pulmonary fibrosis.

  4. Quercetin ameliorates pulmonary fibrosis by inhibiting SphK1/S1P signaling.

    PubMed

    Zhang, Xingcai; Cai, Yuli; Zhang, Wei; Chen, Xianhai

    2018-06-25

    Idiopathic pulmonary fibrosis (IPF) is an agnogenic chronic disorder with high morbidity and low survival rate. Quercetin is a flavonoid found in a variety of herbs with anti-fibrosis function. In this study, bleomycin was employed to induce a pulmonary fibrosis mouse model. The quercetin administration ameliorated bleomycin-induced pulmonary fibrosis, evidenced by the expression level changes of hydroxyproline, fibronectin, α-smooth muscle actin, Collagen I and Collagen III. The similar results were observed in transforming growth factor (TGF)-β-treated human embryonic lung fibroblast (HELF). The bleomycin or TGF-β administration caused the increase of sphingosine-1-phosphate (S1P) level in pulmonary tissue and HELF cells, as well as its activation-required kinase, sphingosine kinase 1 (SphK1), and its degradation enzyme, sphinogosine-1-phosphate lyase (S1PL). However, the increase of S1P, SphK1 and S1PL was attenuated by application of quercetin. In addition, the effect of quercetin on fibrosis was abolished by the ectopic expression of SphK1. The colocalization of SphK1/S1PL and fibroblast specific protein 1 (FSP1) suggested the roles of fibroblasts in pulmonary fibrosis. In summary, we demonstrated that quercetin ameliorated pulmonary fibrosis in vivo and in vitro by inhibiting SphK1/S1P signaling.

  5. IGF-1 and pAKT signaling promote hippocampal CA1 neuronal survival following injury to dentate granule cells.

    PubMed

    Wine, Robert N; McPherson, Christopher A; Harry, G Jean

    2009-10-01

    Insulin-like growth factor-1 (IGF-1) protects neurons from apoptosis and in vivo offers neuroprotective support to hippocampal CA1 pyramidal neurons following ischemia or seizure. IGF-1 signals through IGF-1 receptors activating phosphytidylinositol 3-kinase (PI3K)/Akt or pMAPK pathways. IGF-1 can be induced with injury and microglia and astrocytes may serve as a source of this neurotrophic factor to promote neuronal survival. An acute systemic injection of trimethyltin (TMT; 2 mg/kg, ip) to mice induces apoptosis of dentate granule neurons within 24 h and a differential response of microglia with ramified microglia present in the CA-1 region. Using this model, we studied the role of IGF-1 in the survival of CA-1 pyramidal neurons under conditions of altered synaptic input due to changes in the dentate gyrus. Within 24 h of injection, IGF-1 mRNA levels were elevated in the hippocampus and IGF-1 protein detected in both astrocytes and microglia. IGF-1 was redistributed within the CA-1 neurons corresponding with an increase in cytoplasmic pAkt, elevated PKBalpha/Akt protein levels, and a decrease in the antagonist, Rho. pMAPK was not detected in CA-1 neurons and ERK2 showed a transient decrease followed by a significant increase, suggesting a lack of recruitment of the pMAPK signaling pathway for neuronal survival. In mice deficient for IGF-1, a similar level of apoptosis was observed in dentate granule neurons as compared to wildtype; however, TMT induced a significant level CA-1 neuronal death, further supporting a role for IGF-1 in the survival of CA-1 neurons.

  6. Synaptic P-Rex1 signaling regulates hippocampal long-term depression and autism-like social behavior

    PubMed Central

    Li, Jun; Chai, Anping; Wang, Lifang; Ma, Yuanlin; Wu, Zhiliu; Yu, Hao; Mei, Liwei; Lu, Lin; Zhang, Chen; Yue, Weihua; Xu, Lin; Rao, Yi; Zhang, Dai

    2015-01-01

    Autism spectrum disorders (ASDs) are a group of highly inheritable mental disorders associated with synaptic dysfunction, but the underlying cellular and molecular mechanisms remain to be clarified. Here we report that autism in Chinese Han population is associated with genetic variations and copy number deletion of P-Rex1 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1). Genetic deletion or knockdown of P-Rex1 in the CA1 region of the hippocampus in mice resulted in autism-like social behavior that was specifically linked to the defect of long-term depression (LTD) in the CA1 region through alteration of AMPA receptor endocytosis mediated by the postsynaptic PP1α (protein phosphase 1α)–P-Rex1–Rac1 (Ras-related C3 botulinum toxin substrate 1) signaling pathway. Rescue of the LTD in the CA1 region markedly alleviated autism-like social behavior. Together, our findings suggest a vital role of P-Rex1 signaling in CA1 LTD that is critical for social behavior and cognitive function and offer new insight into the etiology of ASDs. PMID:26621702

  7. Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis

    PubMed Central

    Kim, Hyo Jung; Cha, Jiyoung Y.; Seok, Jo Woon; Choi, Yoonjeong; Yoon, Bo Kyung; Choi, Hyeonjin; Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Lee, Hyemin; Kim, Daeun; Han, Ji Yoon; Kim, Jae-woo

    2016-01-01

    Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223–276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis. PMID:27345868

  8. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    PubMed

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway.

    PubMed

    Bu, Shizhong; Kapanadze, Bagrat; Hsu, Tien; Trojanowska, Maria

    2008-07-11

    Transforming growth factor-beta (TGF-beta) is an important regulator of physiological connective tissue biosynthesis and plays a central role in pathological tissue fibrosis. Previous studies have established that a biologically active lipid mediator, sphingosine 1-phosphate (S1P), mimics some of the profibrotic functions of TGF-beta through cross-activation of Smad signaling. Here we report that another product of sphingosine kinase, dihydrosphingosine 1-phosphate (dhS1P), has an opposite role in the regulation of TGF-beta signaling. In contrast to S1P, dhS1P inhibits TGF-beta-induced Smad2/3 phosphorylation and up-regulation of collagen synthesis. The effects of dhS1P require a lipid phosphatase, PTEN, a key modulator of cell growth and survival. dhS1P stimulates phosphorylation of the C-terminal domain of PTEN and its subsequent translocation into the nucleus. We demonstrate a novel function of nuclear PTEN as a co-factor of the Smad2/3 phosphatase, PPM1A. Complex formation of PTEN with PPM1A does not require the lipid phosphatase activity but depends on phosphorylation of the serine/threonine residues located in the C-terminal domain of PTEN. Upon complex formation with PTEN, PPM1A is protected from degradation induced by the TGF-beta signaling. Consequently, overexpression of PTEN abrogates TGF-beta-induced Smad2/3 phosphorylation. This study establishes a novel role for nuclear PTEN in the stabilization of PPM1A. PTEN-mediated cross-talk between the sphingolipid and TGF-beta signaling pathways may play an important role in physiological and pathological TGF-beta signaling.

  10. Opposite Effects of Dihydrosphingosine 1-Phosphate and Sphingosine 1-Phosphate on Transforming Growth Factor-β/Smad Signaling Are Mediated through the PTEN/PPM1A-dependent Pathway*S⃞

    PubMed Central

    Bu, Shizhong; Kapanadze, Bagrat; Hsu, Tien; Trojanowska, Maria

    2008-01-01

    Transforming growth factor-β (TGF-β) is an important regulator of physiological connective tissue biosynthesis and plays a central role in pathological tissue fibrosis. Previous studies have established that a biologically active lipid mediator, sphingosine 1-phosphate (S1P), mimics some of the profibrotic functions of TGF-β through cross-activation of Smad signaling. Here we report that another product of sphingosine kinase, dihydrosphingosine 1-phosphate (dhS1P), has an opposite role in the regulation of TGF-β signaling. In contrast to S1P, dhS1P inhibits TGF-β-induced Smad2/3 phosphorylation and up-regulation of collagen synthesis. The effects of dhS1P require a lipid phosphatase, PTEN, a key modulator of cell growth and survival. dhS1P stimulates phosphorylation of the C-terminal domain of PTEN and its subsequent translocation into the nucleus. We demonstrate a novel function of nuclear PTEN as a co-factor of the Smad2/3 phosphatase, PPM1A. Complex formation of PTEN with PPM1A does not require the lipid phosphatase activity but depends on phosphorylation of the serine/threonine residues located in the C-terminal domain of PTEN. Upon complex formation with PTEN, PPM1A is protected from degradation induced by the TGF-β signaling. Consequently, overexpression of PTEN abrogates TGF-β-induced Smad2/3 phosphorylation. This study establishes a novel role for nuclear PTEN in the stabilization of PPM1A. PTEN-mediated cross-talk between the sphingolipid and TGF-β signaling pathways may play an important role in physiological and pathological TGF-β signaling. PMID:18482992

  11. Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development

    PubMed Central

    Lenti, Elisa; Farinello, Diego; Penkov, Dmitry; Castagnaro, Laura; Lavorgna, Giovanni; Wuputra, Kenly; Tjaden, Naomi E. Butler; Bernassola, Francesca; Caridi, Nicoletta; Wagner, Michael; Kozinc, Katja; Niederreither, Karen; Blasi, Francesco; Pasini, Diego; Trainor, Paul A.

    2016-01-01

    The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome P450 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insights into the molecular determinants of human congenital asplenia. PMID:27214556

  12. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    PubMed Central

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  13. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-inducedmore » MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.« less

  14. Cardiotrophin-like cytokine factor 1 (CLCF1) and neuropoietin (NP) signalling and their roles in development, adulthood, cancer and degenerative disorders.

    PubMed

    Sims, Natalie A

    2015-10-01

    Mutations in cardiotrophin-like cytokine factor (CLCF1) and the related cytokine to which it binds, cytokine receptor-like factor 1 (CRLF1), are associated with Crisponi/cold induced sweating syndromes, and lead to early neonatal death in mice due to a suckling defect. These cytokines are members of the IL-6 superfamily, and form a range of composite cytokines that signal through gp130 bound either to the ciliary neurotrophic factor receptor (CNTFR) or a complex that involves the IL-27 p28 subunit. This review describes current knowledge of the signalling complexes formed by these cytokines, and explores their described and suggested roles in the neural, haematopoietic, skeletal, renal, immune and respiratory systems during development and adulthood, and in degenerative diseases and cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.

  16. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling.

    PubMed

    Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F

    2001-08-10

    Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.

  17. Early interleukin-6 enhances hepatic ketogenesis in APPSWE/PSEN1dE9 mice via 3-hydroxy-3-methylglutary-CoA synthase 2 signaling activation by p38/nuclear factor κB p65.

    PubMed

    Shi, Le; Zhao, Daina; Hou, Chen; Peng, Yunhua; Liu, Jing; Zhang, Shuangxi; Liu, Jiankang; Long, Jiangang

    2017-08-01

    Alzheimer's disease (AD) is considered a multifactorial disease that affects the central nervous system and periphery. A decline in brain glucose metabolism is an early feature of AD and is accompanied by a phenotypic shift from aerobic glycolysis to ketogenesis. The liver is responsible for the generation of the ketone body. However, the mechanism that underlies hepatic ketogenesis in AD remains unclear. Here, we investigated hepatic ketogenesis during the early stage of AD pathogenesis in amyloid precursor protein (APP SWE ) and presenilin (PSEN1dE9) (APP/PS1) mice. We observed that β-hydroxybutyric acid was increased in the brain of the postmortem mild cognitive impairment and AD subjects and in 3-month-old APP/PS1 AD mice. A rise in 3-hydroxy-3-methylglutary-CoA synthase 2 (HMGCS2), a key enzyme for catalyzing β-hydroxybutyric acid production, was observed in early AD mice. We further showed that proinflammatory cytokines were activated in the liver prior to their activation in the brain of 3-month-old APP/PS1 mice. Among the cytokines, interleukin-6 significantly activated HMGCS2 through the binding of nuclear factor κB (NF-κB) p65 to the HMGCS2 promoter. Additionally, interleukin-6 stimulated phosphorylation of p38 mitogen activated protein kinases, an upstream molecule for NF-κB p65 signaling. We have demonstrated that a hepatic inflammatory factor enhances ketogenesis through HMGCS2 signaling activation by p38/NF-κB p65. These results provide a novel peripheral metabolic mechanism for enhanced ketone production and suggest a plausible early AD phenotype to diagnose AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  19. A Novel Positive Feedback Loop Mediated by the Docking Protein Gab1 and Phosphatidylinositol 3-Kinase in Epidermal Growth Factor Receptor Signaling

    PubMed Central

    Rodrigues, Gerard A.; Falasca, Marco; Zhang, Zhongtao; Ong, Siew Hwa; Schlessinger, Joseph

    2000-01-01

    The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4,5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR. PMID:10648629

  20. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiyuan; An, Byoung Ha; Kim, Min Jung

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1more » (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.« less

  1. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae.

    PubMed

    Zyrina, Anna N; Smirnova, Ekaterina A; Markova, Olga V; Severin, Fedor F; Knorre, Dmitry A

    2017-02-01

    There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria. Copyright © 2017 American Society for Microbiology.

  2. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Zyrina, Anna N.; Smirnova, Ekaterina A.; Markova, Olga V.; Severin, Fedor F.

    2016-01-01

    ABSTRACT There are two superoxide dismutases in the yeast Saccharomyces cerevisiae—cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2. Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria. PMID:27864171

  3. Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis.

    PubMed

    Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen

    2015-02-15

    Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Toll-Like Receptor Signaling Induces Nrf2 Pathway Activation through p62-Triggered Keap1 Degradation.

    PubMed

    Yin, Shasha; Cao, Wangsen

    2015-08-01

    Toll-like receptors (TLRs) induce inflammation and tissue repair through multiple signaling pathways. The Nrf2 pathway plays a key role in defending against the tissue damage incurred by microbial infection or inflammation-associated diseases. The critical event that mediates TLR-induced Nrf2 activation is still poorly understood. In this study, we found that lipopolysaccharide (LPS) and other Toll-like receptor (TLR) agonists activate Nrf2 signaling and the activation is due to the reduction of Keap1, the key Nrf2 inhibitor. TLR signaling-induced Keap1 reduction promoted Nrf2 translocation from the cytoplasm to the nucleus, where it activated transcription of its target genes. TLR agonists modulated Keap1 at the protein posttranslation level through autophagy. TLR signaling increased the expression of autophagy protein p62 and LC3-II and induced their association with Keap1 in the autophagosome-like structures. We also characterized the interaction between p62 and Keap1 and found that p62 is indispensable for TLR-mediated Keap1 reduction: TLR signaling had no effect on Keap1 if cells lacked p62 or if cells expressed a mutant Keap1 that could not interact with p62. Our study indicates that p62-mediated Keap1 degradation through autophagy represents a critical linkage for TLR signaling regulation of the major defense network, the Nrf2 signaling pathway. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Retrograde Signaling as a Mechanism of Yeast Adaptation to Unfavorable Factors.

    PubMed

    Trendeleva, T A; Zvyagilskaya, R A

    2018-02-01

    Mitochondria perform many essential functions in eukaryotic cells. Being the main producers of ATP and the site of many catabolic and anabolic reactions, they participate in intracellular signaling, proliferation, aging, and formation of reactive oxygen species. Mitochondrial dysfunction is the cause of many diseases and even cell death. The functioning of mitochondria in vivo is impossible without interaction with other cellular compartments. Mitochondrial retrograde signaling is a signaling pathway connecting mitochondria and the nucleus. The major signal transducers in the yeast retrograde response are Rtg1p, Rtg2p, and Rtg3p proteins, as well as four additional negative regulatory factors - Mks1p, Lst8p, and two 14-3-3 proteins (Bmh1/2p). In this review, we analyze current information on the retrograde signaling in yeast that is regarded as a stress or homeostatic response mechanism to changes in various metabolic and biosynthetic activities that occur upon mitochondrial dysfunction. We also discuss relations between retrograde signaling and other signaling pathways in the cell.

  6. Role of thrombospondin-1 and nuclear factor-kappa B signaling pathways in anti-angiogenesis of infantile hemangioma.

    PubMed

    Xu, Weili; Li, Suolin; Yu, Fengxue; Zhang, Yongting; Yang, Xiaofeng; An, Wenting; Wang, Wenbo; Sun, Chi

    2018-06-12

    Propranolol (PRO) is the first-line drug for infantile hemangioma treatment. However, its mechanism of action remains unclear. Nuclear factor-kappa B (NF-κB) is highly expressed in tumors, directly or indirectly promoting angiogenesis. Thrombospondin-1 (TSP-1) is the most important anti-angiogenesis protein in vivo. These proteins mediate signaling pathways, probably playing an important role in hemangioma treatment. This study explored the synergistic regulation of TSP-1 and NF-κB signaling pathways in the treatment of hemangioma with PRO. The hemangioma-derived endothelial cells (HemECs) were sorted out from the specimens of proliferative hemangioma by flow cytometry. Furthermore, a BALB/c nude mice hemangioma model was established. Viability and proliferation of HemECs, and the role of TSP-1 and NF-κB signaling pathways were observed after PRO administration in vitro and in vivo. The expressions of TSP-1 and its receptor cluster of differentiation 36 (CD36) in HemECs gradually increased with the increase in PRO concentration, while the expressions of NF-κBp65, phosphorylated inhibitor of kappa B alpha (p-IκBα), and phosphorylated inhibitor of NF-κB kinase beta (p-IκKβ) weakened gradually (p < 0.05). In vivo, the tumors shrank gradually after PRO treatment, with increase in TSP-1 and CD36, and decrease in NF-κBp65, p-IκBα, and p-IκKβ (p < 0.05). Glucocorticoid improved the anti-angiogenesis mediated by TSP-1/CD36 and inhibited the angiogenesis mediated by NF-κB/IκB (p < 0.05). Negative regulation occurred between the two signaling pathways. The treatment of infantile hemangioma with PRO is promising to promote TSP-1-mediated anti-angiogenesis and block NF-κB-mediated angiogenesis.

  7. The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway.

    PubMed

    Chen, Hui-Jye; Lin, Chung-Ming; Lin, Chyuan-Sheng; Perez-Olle, Raul; Leung, Conrad L; Liem, Ronald K H

    2006-07-15

    MACF1 (microtubule actin cross-linking factor 1) is a multidomain protein that can associate with microfilaments and microtubules. We found that MACF1 was highly expressed in neuronal tissues and the foregut of embryonic day 8.5 (E8.5) embryos and the head fold and primitive streak of E7.5 embryos. MACF1(-/-) mice died at the gastrulation stage and displayed developmental retardation at E7.5 with defects in the formation of the primitive streak, node, and mesoderm. This phenotype was similar to Wnt-3(-/-) and LRP5/6 double-knockout embryos. In the absence of Wnt, MACF1 associated with a complex that contained Axin, beta-catenin, GSK3beta, and APC. Upon Wnt stimulation, MACF1 appeared to be involved in the translocation and subsequent binding of the Axin complex to LRP6 at the cell membrane. Reduction of MACF1 with small interfering RNA decreased the amount of beta-catenin in the nucleus, and led to an inhibition of Wnt-induced TCF/beta-catenin-dependent transcriptional activation. Similar results were obtained with a dominant-negative MACF1 construct that contained the Axin-binding region. Reduction of MACF1 in Wnt-1-expressing P19 cells resulted in decreased T (Brachyury) gene expression, a DNA-binding transcription factor that is a direct target of Wnt/beta-catenin signaling and required for mesoderm formation. These results suggest a new role of MACF1 in the Wnt signaling pathway.

  8. Coxiella burnetii Subverts p62/Sequestosome 1 and Activates Nrf2 Signaling in Human Macrophages.

    PubMed

    Winchell, Caylin G; Dragan, Amanda L; Brann, Katelynn R; Onyilagha, Frances I; Kurten, Richard C; Voth, Daniel E

    2018-05-01

    Coxiella burnetii is the causative agent of human Q fever, a debilitating flu-like illness that can progress to chronic disease presenting as endocarditis. Following inhalation, C. burnetii is phagocytosed by alveolar macrophages and generates a lysosome-like replication compartment termed the parasitophorous vacuole (PV). A type IV secretion system (T4SS) is required for PV generation and is one of the pathogen's few known virulence factors. We previously showed that C. burnetii actively recruits autophagosomes to the PV using the T4SS but does not alter macroautophagy. In the current study, we confirmed that the cargo receptor p62/sequestosome 1 (SQSTM-1) localizes near the PV in primary human alveolar macrophages infected with virulent C. burnetii p62 and LC3 typically interact to select cargo for autophagy-mediated degradation, resulting in p62 degradation and LC3 recycling. However, in C. burnetii -infected macrophages, p62 was not degraded when cells were starved, suggesting that the pathogen stabilizes the protein. In addition, phosphorylated p62 levels increased, indicative of activation, during infection. Small interfering RNA experiments indicated that p62 is not absolutely required for intracellular growth, suggesting that the protein serves a signaling role during infection. Indeed, the Nrf2-Keap1 cytoprotective pathway was activated during infection, as evidenced by sustained maintenance of Nrf2 levels and translocation of the protein to the nucleus in C. burnetii -infected cells. Collectively, our studies identify a new p62-regulated host signaling pathway exploited by C. burnetii during intramacrophage growth. Copyright © 2018 American Society for Microbiology.

  9. WNK1 Promotes PIP2 Synthesis to Coordinate Growth Factor and GPCR-Gq Signaling

    PubMed Central

    An, Sung-Wan; Cha, Seung-Kuy; Yoon, Joonho; Chang, Seungwoo; Ross, Elliott M.; Huang, Chou-Long

    2011-01-01

    Summary Background PLC-β signaling is generally thought to be mediated by allosteric activation by G proteins and Ca2+. While availability of the PIP2 substrate is limiting in some cases, its production has not been shown to be independently regulated as a signaling mechanism. WNK1 protein kinase is known to regulate ion homeostasis and cause hypertension when expression is increased by gene mutations. However, its signaling functions remain largely elusive. Results Using diacylglycerol-stimulated TRPC6 and inositol trisphosphate-mediated Ca2+ transients as cellular biosensors, we show that WNK1 stimulates PLC-β signaling in cells by promoting the synthesis of PIP2 via stimulation of phosphatidylinositol 4-kinase IIIα. WNK1 kinase activity is not required. Stimulation of PLC-β by WNK1 and by Gαq are synergistic; WNK1 activity is essential for regulation of PLC-β signaling by Gq-coupled receptors and basal input from Gq is necessary for WNK1 signaling via PLC-β. WNK1 further amplifies PLC-β signaling when it is phosphorylated by Akt kinase in response to insulin-like growth factor. Conclusions WNK1 is a novel regulator of PLC-β that acts by controlling substrate availability. WNK1 thereby coordinates signaling between G protein and Akt kinase pathways. Because PIP2 is itself a signaling molecule, regulation of PIP2 synthesis by WNK1 also allows the cell to initiate PLC signaling while independently controlling the effects of PIP2 on other targets. These findings describe a new signaling pathway for Akt-activating growth factors, a mechanism for G protein-growth factor crosstalk and a means to independently control PLC signaling and PIP2 availability. PMID:22119528

  10. Differential roles of MAPK-Erk1/2 and MAPK-p38 in insulin or insulin-like growth factor-I (IGF-I) signaling pathways for progesterone production in human ovarian cells.

    PubMed

    Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L

    2011-06-01

    Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (p<0.001). Similarly, LY294002 alone stimulated progesterone production by 13-18% (p<0.005). However, when used together, PD98059 and LY294002 inhibited progesterone production by 17-20% (p<0.001). SB203580 alone inhibited progesterone production by 20-30% (p<0.001). Insulin or IGF-I alone stimulated progesterone production by 40-60% (p<0.001). In insulin studies, PD98059 had no significant effect on progesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  11. p38 Mitogen-Activated Protein Kinase/Signal Transducer and Activator of Transcription-3 Pathway Signaling Regulates Expression of Inhibitory Molecules in T Cells Activated by HIV-1–Exposed Dendritic Cells

    PubMed Central

    Che, Karlhans Fru; Shankar, Esaki Muthu; Muthu, Sundaram; Zandi, Sasan; Sigvardsson, Mikael; Hinkula, Jorma; Messmer, Davorka; Larsson, Marie

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection enhances the expression of inhibitory molecules on T cells, leading to T-cell impairment. The signaling pathways underlying the regulation of inhibitory molecules and subsequent onset of T-cell impairment remain elusive. We showed that both autologous and allogeneic T cells exposed to HIV-pulsed dendritic cells (DCs) upregulated cytotoxic T-lymphocyte antigen (CTLA-4), tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), lymphocyte-activation gene-3 (LAG3), T-cell immunoglobulin mucin-3 (TIM-3), CD160 and certain suppression-associated transcription factors, such as B-lymphocyte induced maturation protein-1 (BLIMP-1), deltex homolog 1 protein (DTX1) and forkhead box P3 (FOXP3), leading to T-cell suppression. This induction was regulated by p38 mitogen-activated protein kinase/signal transducer and activator of transcription-3 (P38MAPK/STAT3) pathways, because their blockade significantly abrogated expression of all the inhibitory molecules studied and a subsequent recovery in T-cell proliferation. Neither interleukin-6 (IL-6) nor IL-10 nor growth factors known to activate STAT3 signaling events were responsible for STAT3 activation. Involvement of the P38MAPK/STAT3 pathways was evident because these proteins had a higher level of phosphorylation in the HIV-1–primed cells. Furthermore, blockade of viral CD4 binding and fusion significantly reduced the negative effects DCs imposed on primed T cells. In conclusion, HIV-1 interaction with DCs modulated their functionality, causing them to trigger the activation of the P38MAPK/STAT3 pathway in T cells, which was responsible for the upregulation of inhibitory molecules. PMID:22777388

  12. Curcumin suppresses transforming growth factor1-induced cardiac fibroblast differentiation via inhibition of Smad-2 and p38 MAPK signaling pathways

    PubMed Central

    LIU, HUZI; LIU, AIJUN; SHI, CHUNLI; LI, BAO

    2016-01-01

    The differentiation of cardiac fibroblasts (CFs) into myofibroblasts and the subsequent deposition of the extracellular matrix is associated with myocardial fibrosis following various types of myocardial injury. In the present study, the effect of curcumin, which is a pharmacologically-safe natural compound from the Curcuma longa herb, on transforming growth factor (TGF)-β1-induced CFs was investigated, and the underlying molecular mechanisms were examined. The expression levels of α-smooth muscle actin (SMA) stress fibers were investigated using western blotting and immunofluorescence in cultured neonatal rat CFs. Protein and mRNA expression levels of α-SMA and collagen type I (ColI) were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. In addition, the activation of Smad2 and p38 was examined using western blotting. Curcumin, SB431542 (a TGF-βR-Smad2 inhibitor) and SB203580 (a p38 inhibitor) were used to inhibit the stimulation by TGF-β1. The results demonstrated that the TGF-β1-induced expression of α-SMA and ColI was suppressed by curcumin at the mRNA and protein levels, while SB431542 and SB203580 induced similar effects. Furthermore, phosphorylated Smad-2 and p38 were upregulated in TGF-β1-induced CFs, and these effects were substantially inhibited by curcumin administration. In conclusion, the results of the present study demonstrated that treatment with curcumin effectively suppresses TGF-β1-induced CF differentiation via Smad-2 and p38 signaling pathways. Thus, curcumin may be a potential therapeutic agent for the treatment of cardiac fibrosis. PMID:26998027

  13. Nucleocytoplasmic shuttling of the rabies virus P protein requires a nuclear localization signal and a CRM1-dependent nuclear export signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasdeloup, David; Poisson, Nicolas; Raux, Helene

    2005-04-10

    Rabies virus P protein is a co-factor of the viral RNA polymerase. It has been shown previously that P mRNA directs the synthesis of four N-terminally truncated P products P2, P3, P4, and P5 due to translational initiation by a leaky scanning mechanism at internal Met codons. Whereas P and P2 are located in the cytoplasm, P3, P4, and P5 are found in the nucleus. Here, we have analyzed the molecular basis of the subcellular localization of these proteins. Using deletion mutants fused to GFP protein, we show the presence of a nuclear localization signal (NLS) in the C-terminal partmore » of P (172-297). This domain contains a short lysine-rich stretch ({sup 211}KKYK{sup 214}) located in close proximity with arginine 260 as revealed by the crystal structure of P. We demonstrate the critical role of lysine 214 and arginine 260 in NLS activity. In the presence of Leptomycin B, P is retained in the nucleus indicating that it contains a CRM1-dependent nuclear export signal (NES). The subcellular distribution of P deletion mutants indicates that the domain responsible for export is the amino-terminal part of the protein. The use of fusion proteins that have amino terminal fragments of P fused to {beta}-galactosidase containing the NLS of SV40 T antigen allows us to identify a NES between residues 49 and 58. The localization of NLS and NES determines the cellular distribution of the P gene products.« less

  14. Interactions between Kar2p and Its Nucleotide Exchange Factors Sil1p and Lhs1p Are Mechanistically Distinct*

    PubMed Central

    Hale, Sarah J.; Lovell, Simon C.; de Keyzer, Jeanine; Stirling, Colin J.

    2010-01-01

    Kar2p, an essential Hsp70 chaperone in the endoplasmic reticulum of Saccharomyces cerevisiae, facilitates the transport and folding of nascent polypeptides within the endoplasmic reticulum lumen. The chaperone activity of Kar2p is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, namely Sil1p and Lhs1p. Here, we demonstrate that the binding requirements for Lhs1p are complex, requiring both the nucleotide binding domain plus the linker domain of Kar2p. In contrast, the IIB domain of Kar2p is sufficient for binding of Sil1p, and point mutations within IIB specifically blocked Sil1p-dependent activation while remaining competent for activation by Lhs1p. Taken together, these results demonstrate that the interactions between Kar2p and its two nucleotide exchange factors can be functionally resolved and are thus mechanistically distinct. PMID:20430899

  15. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    PubMed

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  16. The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway

    PubMed Central

    Chen, Hui-Jye; Lin, Chung-Ming; Lin, Chyuan-Sheng; Perez-Olle, Raul; Leung, Conrad L.; Liem, Ronald K.H.

    2006-01-01

    MACF1 (microtubule actin cross-linking factor 1) is a multidomain protein that can associate with microfilaments and microtubules. We found that MACF1 was highly expressed in neuronal tissues and the foregut of embryonic day 8.5 (E8.5) embryos and the head fold and primitive streak of E7.5 embryos. MACF1−/− mice died at the gastrulation stage and displayed developmental retardation at E7.5 with defects in the formation of the primitive streak, node, and mesoderm. This phenotype was similar to Wnt-3−/− and LRP5/6 double-knockout embryos. In the absence of Wnt, MACF1 associated with a complex that contained Axin, β-catenin, GSK3β, and APC. Upon Wnt stimulation, MACF1 appeared to be involved in the translocation and subsequent binding of the Axin complex to LRP6 at the cell membrane. Reduction of MACF1 with small interfering RNA decreased the amount of β-catenin in the nucleus, and led to an inhibition of Wnt-induced TCF/β-catenin-dependent transcriptional activation. Similar results were obtained with a dominant-negative MACF1 construct that contained the Axin-binding region. Reduction of MACF1 in Wnt-1-expressing P19 cells resulted in decreased T (Brachyury) gene expression, a DNA-binding transcription factor that is a direct target of Wnt/β-catenin signaling and required for mesoderm formation. These results suggest a new role of MACF1 in the Wnt signaling pathway. PMID:16815997

  17. Gravity Persistent Signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism.

    PubMed

    Withers, John C; Shipp, Matthew J; Rupasinghe, Sanjeewa G; Sukumar, Poornima; Schuler, Mary A; Muday, Gloria K; Wyatt, Sarah E

    2013-01-01

    Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions. Thermal asymmetric interlaced (TAIL) PCR was used to identify the gene defective in gps1. Gene expression data, molecular modeling and computational substrate dockings, quantitative RT-PCR analyses, reporter gene fusions, and physiological analyses of knockout mutants were used to characterize the genes identified. Cloning of the gene defective in gps1 and genetic complementation revealed that GPS1 encodes CYP705A22, a cytochrome P450 monooxygenase (P450). CYP705A5, a closely related family member, was identified as expressed specifically in roots in response to gravistimulation, and a mutation affecting its expression resulted in a delayed gravity response, increased flavonol levels, and decreased basipetal auxin transport. Molecular modeling coupled with in silico substrate docking and diphenylboric acid 2-aminoethyl ester (DBPA) staining indicated that these P450s are involved in biosynthesis of flavonoids potentially involved in auxin transport. The characterization of two novel P450s (CYP705A22 and CYP705A5) and their role in the gravity response has offered new insights into the regulation of the genetic and physiological controls of plant gravitropism.

  18. The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Akiko; Kamei, Yuka; Mukai, Yukio

    In eukaryotes, numerous genetic factors contribute to the lifespan including metabolic enzymes, signal transducers, and transcription factors. As previously reported, the forkhead-like transcription factor (FHL1) gene was required for yeast replicative lifespan and cell proliferation. To determine how Fhl1p regulates the lifespan, we performed a DNA microarray analysis of a heterozygous diploid strain deleted for FHL1. We discovered numerous Fhl1p-target genes, which were then screened for lifespan-regulating activity. We identified the ribonucleotide reductase (RNR) 1 gene (RNR1) as a regulator of replicative lifespan. RNR1 encodes a large subunit of the RNR complex, which consists of two large (Rnr1p/Rnr3p) and twomore » small (Rnr2p/Rnr4p) subunits. Heterozygous deletion of FHL1 reduced transcription of RNR1 and RNR3, but not RNR2 and RNR4. Chromatin immunoprecipitation showed that Fhl1p binds to the promoter regions of RNR1 and RNR3. Cells harboring an RNR1 deletion or an rnr1-C428A mutation, which abolishes RNR catalytic activity, exhibited a short lifespan. In contrast, cells with a deletion of the other RNR genes had a normal lifespan. Overexpression of RNR1, but not RNR3, restored the lifespan of the heterozygous FHL1 mutant to the wild-type (WT) level. The Δfhl1/FHL1 mutant conferred a decrease in dNTP levels and an increase in hydroxyurea (HU) sensitivity. These findings reveal that Fhl1p regulates RNR1 gene transcription to maintain dNTP levels, thus modulating longevity by protection against replication stress. - Highlights: • Fhl1p regulates replicative lifespan and transcription of RNR large subunit genes. • Rnr1p uniquely acts as a lifespan regulator independent of the RNR complex. • dNTP levels modulate longevity by protection against replication stress.« less

  19. High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways.

    PubMed

    Shen, Haitao; Zhou, Enchen; Wei, Xiujing; Fu, Zhiwei; Niu, Chenguang; Li, Yang; Pan, Bing; Mathew, Anna V; Wang, Xu; Pennathur, Subramaniam; Zheng, Lemin; Wang, Yongyu

    2015-05-15

    Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models. Survival of these cells after transplant remains a key limiting factor for the success of ADSC transplantation. Circulating factors like High Density Lipoprotein (HDL) has been known to promote survival of other stems cells like bone marrow derived stem cells and endothelial progenitor cells, both by proliferation and by inhibiting cell apoptosis. The effect of HDL on transplanted adipose-derived stem cells in vivo is largely unknown. This study focused on exploring the effects of plasma HDL on ADSC and delineating the mechanisms involved in their proliferation after entering the bloodstream. Using the MTT and BrdU assays, we tested the effects of HDL on ADSC proliferation. We probed the downstream intracellular Akt and ERK1/2 signaling pathways and expression of cyclin proteins in ADSC using western blot. Our study found that HDL promotes proliferation of ADSC, by binding to sphingosine-1- phosphate receptor-1(S1P1) on the cell membrane. This interaction led to activation of intracellular Akt and ERK1/2 signaling pathways, resulting in increased expression of cyclin D1 and cyclin E, and simultaneous reduction in expression of cyclin-dependent kinase inhibitors p21 and p27, therefore promoting cell cycle progression and cell proliferation. These studies raise the possibility that HDL may be a physiologic regulator of stem cells and increasing HDL concentrations may be valuable strategy to promote ADSC transplantation.

  20. Growth factor independence-1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia

    PubMed Central

    Khandanpour, Cyrus; Phelan, James D.; Vassen, Lothar; Schütte, Judith; Chen, Riyan; Horman, Shane R.; Gaudreau, Marie-Claude; Krongold, Joseph; Zhu, Jinfang; Paul, William E.; Dührsen, Ulrich; Göttgens, Bertie; Grimes, H. Leighton; Möröy, Tarik

    2013-01-01

    Summary Most patients with acute lymphoblastic leukemia (ALL) fail current treatments highlighting the need for better therapies. Since oncogenic signaling activates a p53-dependent DNA-damage response and apoptosis, leukemic cells must devise appropriate countermeasures. We show here that growth factor independence 1 (Gfi1) can serve such a function, since Gfi1 ablation exacerbates p53 responses, and lowers the threshold for p53-induced cell death. Specifically, Gfi1 restricts p53 activity and expression of pro-apoptotic p53 targets such as Bax, Noxa (Pmaip1) and Puma (Bbc3). Subsequently, Gfi1 ablation cures mice from leukemia and limits the expansion of primary human T-ALL xenografts in mice. This suggests that targeting Gfi1 could improve the prognosis of patients with T-ALL or other lymphoid leukemias. PMID:23410974

  1. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Li, Wei; Zheng, Qichang

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negativemore » effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.« less

  2. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer--opportunities, challenges, and limitations.

    PubMed

    Eswaran, Jeyanthy; Li, Da-Qiang; Shah, Anil; Kumar, Rakesh

    2012-07-15

    The evolution of cancer cells involves deregulation of highly regulated fundamental pathways that are central to normal cellular architecture and functions. p21-activated kinase 1 (PAK1) was initially identified as a downstream effector of the GTPases Rac and Cdc42. Subsequent studies uncovered a variety of new functions for this kinase in growth factor and steroid receptor signaling, cytoskeleton remodeling, cell survival, oncogenic transformation, and gene transcription, largely through systematic discovery of its direct, physiologically relevant substrates. PAK1 is widely upregulated in several human cancers, such as hormone-dependent cancer, and is intimately linked to tumor progression and therapeutic resistance. These exciting developments combined with the kinase-independent role of PAK1-centered phenotypic signaling in cancer cells elevated PAK1 as an attractive drug target. Structural and biochemical studies revealed the precise mechanism of PAK1 activation, offering the possibility to develop PAK1-targeted cancer therapeutic approaches. In addition, emerging reports suggest the potential of PAK1 and its specific phosphorylated substrates as cancer prognostic markers. Here, we summarize recent findings about the PAK1 molecular pathways in human cancer and discuss the current status of PAK1-targeted anticancer therapies.

  3. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors.

    PubMed

    Limoge, Michelle; Safina, Alfiya; Truskinovsky, Alexander M; Aljahdali, Ieman; Zonneville, Justin; Gruevski, Aleksandar; Arteaga, Carlos L; Bakin, Andrei V

    2017-09-22

    The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease.

  4. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors

    PubMed Central

    Limoge, Michelle; Safina, Alfiya; Truskinovsky, Alexander M.; Aljahdali, Ieman; Zonneville, Justin; Gruevski, Aleksandar; Arteaga, Carlos L.; Bakin, Andrei V.

    2017-01-01

    The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease. PMID:28977919

  5. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway.

    PubMed

    Yacoub, Daniel; Hachem, Ahmed; Théorêt, Jean-François; Gillis, Marc-Antoine; Mourad, Walid; Merhi, Yahye

    2010-12-01

    CD40 ligand is a thromboinflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40 ligand (sCD40L), which has been shown to influence platelet activation, although its exact functional impact on platelets and the underlying mechanisms remain undefined. We aimed to determine the impact and the signaling mechanisms of sCD40L on platelets. sCD40L strongly enhances platelet activation and aggregation. Human platelets treated with a mutated form of sCD40L that does not bind CD40, and CD40(-/-) mouse platelets failed to elicit such responses. Furthermore, sCD40L stimulation induces the association of the tumor necrosis factor receptor-associated factor-2 with platelet CD40. Notably, sCD40L primes platelets through activation of the small GTPase Rac1 and its downstream target p38 mitogen-activated protein kinase, which leads to platelet shape change and actin polymerization. Moreover, sCD40L exacerbates thrombus formation and leukocyte infiltration in wild-type mice but not in CD40(-/-) mice. sCD40L enhances agonist-induced platelet activation and aggregation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Thus, sCD40L is an important platelet primer predisposing platelets to enhanced thrombus formation in response to vascular injury. This may explain the link between circulating levels of sCD40L and cardiovascular diseases.

  6. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway

    PubMed Central

    Xie, Yuan; Yu, Nian; Chen, Yan; Zhang, Kang; Ma, Hai-Yan; Di, Qing

    2017-01-01

    Overexpression of P-glycoprotein (P-gp) in the brain is an important mechanism involved in drug-resistant epilepsy (DRE). High-mobility group box 1 (HMGB1), an inflammatory cytokine, significantly increases following seizures and may be involved in upregulation of P-gp. However, the underlying mechanisms remain elusive. The aim of the present study was to evaluate the role of HMGB1 and its downstream signaling components, receptor for advanced glycation end-product (RAGE) and nuclear factor-κB (NF-κB), on P-gp expression in rat brains during status epilepticus (SE). Small interfering RNA (siRNA) was administered to rats prior to induction of SE by pilocarpine, to block transcription of the genes encoding HMGB1 and RAGE, respectively. An inhibitor of NF-κB, pyrrolidinedithiocarbamic acid (PDTC), was utilized to inhibit activation of NF-κB. The expression levels of HMGB1, RAGE, phosphorylated-NF-κB p65 (p-p65) and P-gp were detected by western blotting. The relative mRNA expression levels of the genes encoding these proteins were measured using reverse transcription-quantitative polymerase chain reaction and the cellular localization of the proteins was determined by immunofluorescence. Pre-treatment with HMGB1 siRNA reduced the expression levels of RAGE, p-p65 and P-gp. PDTC reduced the expression levels of P-gp. These findings suggested that overexpression of P-gp during seizures may be regulated by HMGB1 via the RAGE/NF-κB signaling pathway, and may be a novel target for treating DRE. PMID:28627626

  7. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression.

    PubMed

    Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R

    2014-09-18

    Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia.

    PubMed

    Kinsella, Sinéad; König, Hans-Georg; Prehn, Jochen H M

    2016-01-01

    Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 (G93A) expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia.

  9. p35 Regulates the CRM1-Dependent Nucleocytoplasmic Shuttling of Nuclear Hormone Receptor Coregulator-Interacting Factor 1 (NIF-1)

    PubMed Central

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W. Y.; Li, Zhen; Fu, Amy K. Y.; Ip, Nancy Y.

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators. PMID:25329792

  10. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    PubMed

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  11. p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB.

    PubMed

    Jain, Ashish; Rusten, Tor Erik; Katheder, Nadja; Elvenes, Julianne; Bruun, Jack-Ansgar; Sjøttem, Eva; Lamark, Trond; Johansen, Terje

    2015-06-12

    The selective autophagy receptor p62/sequestosome 1 (SQSTM1) interacts directly with LC3 and is involved in oxidative stress signaling in two ways in mammals. First, p62 is transcriptionally induced upon oxidative stress by the NF-E2-related factor 2 (NRF2) by direct binding to an antioxidant response element in the p62 promoter. Second, p62 accumulation, occurring when autophagy is impaired, leads to increased p62 binding to the NRF2 inhibitor KEAP1, resulting in reduced proteasomal turnover of NRF2. This gives chronic oxidative stress signaling through a feed forward loop. Here, we show that the Drosophila p62/SQSTM1 orthologue, Ref(2)P, interacts directly with DmAtg8a via an LC3-interacting region motif, supporting a role for Ref(2)P in selective autophagy. The ref(2)P promoter also contains a functional antioxidant response element that is directly bound by the NRF2 orthologue, CncC, which can induce ref(2)P expression along with the oxidative stress-associated gene gstD1. However, distinct from the situation in mammals, Ref(2)P does not interact directly with DmKeap1 via a KEAP1-interacting region motif; nor does ectopically expressed Ref(2)P or autophagy deficiency activate the oxidative stress response. Instead, DmAtg8a interacts directly with DmKeap1, and DmKeap1 is removed upon programmed autophagy in Drosophila gut cells. Strikingly, CncC induced increased Atg8a levels and autophagy independent of TFEB/MitF in fat body and larval gut tissues. Thus, these results extend the intimate relationship between oxidative stress-sensing NRF2/CncC transcription factors and autophagy and suggest that NRF2/CncC may regulate autophagic activity in other organisms too. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Epidermal Growth Factor and Interleukin-1β Utilize Divergent Signaling Pathways to Synergistically Upregulate Cyclooxygenase-2 Gene Expression in Human Amnion-Derived WISH Cells1

    PubMed Central

    Ackerman, William E.; Rovin, Brad H.; Kniss, Douglas A.

    2006-01-01

    In human parturition, uterotonic prostaglandins (PGs) arise predominantly via increased expression of cyclooxygenase-2 (COX-2 [also known as prostaglandin synthase 2]) within intra-uterine tissues. Interleukin-1 (IL-1) and epidermal growth factor (EGF), both inducers of COX-2 transcription, are among numerous factors that accumulate within amniotic fluid with advancing gestation. It was previously demonstrated that EGF could potentiate IL-1β-driven PGE2 production in amnion and amnion-derived (WISH) cells. To define the mechanism for this observation, we hypothesized that EGF and IL-1β might exhibit synergism in regulating COX-2 gene expression. In WISH cells, combined treatment with EGF and IL-1β resulted in a greater-than-additive increase in COX-2 mRNA relative to challenge with either agent independently. Augmentation of IL-1β-induced transactivation by EGF was not observed in cells harboring reporter plasmids bearing nuclear factor-kappa B (NFκB) regulatory elements alone, but was evident when a fragment (−891/+9) of the COX-2 gene 5′-promoter was present. Both agents transiently activated intermediates of multiple signaling pathways potentially involved in the regulation of COX-2 gene expression. The 26 S proteasome inhibitor, MG-132, selectively abrogated IL-1β-driven NFκB activation and COX-2 mRNA expression. Only pharmacologic blockade of the p38 mitogen-activated protein kinase eliminated COX-2 expression following EGF stimulation. We conclude that EGF and IL-1β appear to signal through different signaling cascades leading to COX-2 gene expression. IL-1β employs the NFκB pathway predominantly, while the spectrum of EGF signaling is broader and includes p38 kinase. The synergism observed between IL-1β and EGF does not rely on augmented NFκB function, but rather, occurs through differential use of independent response elements within the COX-2 promoter. PMID:15329330

  13. Aberrant hypertrophy in Smad3-deficient murine chondrocytes is rescued by restoring transforming growth factor beta-activated kinase 1/activating transcription factor 2 signaling: a potential clinical implication for osteoarthritis.

    PubMed

    Li, Tian-Fang; Gao, Lin; Sheu, Tzong-Jen; Sampson, Erik R; Flick, Lisa M; Konttinen, Yrjö T; Chen, Di; Schwarz, Edward M; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2010-08-01

    To investigate the biologic significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and activating transcription factor 2 (ATF-2) in the transforming growth factor beta (TGFbeta) signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Joint disease in Smad3-knockout (Smad3(-/-)) mice was examined by microfocal computed tomography and histologic analysis. Numerous in vitro methods including immunostaining, real-time polymerase chain reaction, Western blotting, an ATF-2 DNA-binding assay, and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3(-/-) mice. In Smad3(-/-) mice, an end-stage OA phenotype gradually developed. TGFbeta-activated kinase 1 (TAK1)/ATF-2 signaling was disrupted in Smad3(-/-) mouse chondrocytes at the level of p38 MAP kinase (MAPK) activation, resulting in reduced ATF-2 phosphorylation and transcriptional activity. Reintroduction of Smad3 into Smad3(-/-) cells restored the normal p38 response to TGFbeta. Phosphorylated p38 formed a complex with Smad3 by binding to a portion of Smad3 containing both the MAD homology 1 and linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAPK phosphatase 1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild-type and Smad3(-/-) chondrocytes. P38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms alpha, beta, and gamma, but not delta. Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1/ATF-2 signaling, most likely by disrupting the Smad3-phosphorylated p38 complex, thereby promoting p38 dephosphorylation and inactivation by MKP-1. ATF-2 and p38 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic

  14. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    PubMed

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  16. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia123

    PubMed Central

    Kinsella, Sinéad

    2016-01-01

    Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 G93A expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia. PMID:27257617

  17. Degradation Signals Recognized by the Ubc6p-Ubc7p Ubiquitin-Conjugating Enzyme Pair

    PubMed Central

    Gilon, Tamar; Chomsky, Orna; Kulka, Richard G.

    2000-01-01

    Proteolysis by the ubiquitin-proteasome system is highly selective. Specificity is achieved by the cooperation of diverse ubiquitin-conjugating enzymes (Ubcs or E2s) with a variety of ubiquitin ligases (E3s) and other ancillary factors. These recognize degradation signals characteristic of their target proteins. In a previous investigation, we identified signals directing the degradation of β-galactosidase and Ura3p fusion proteins via a subsidiary pathway of the ubiquitin-proteasome system involving Ubc6p and Ubc7p. This pathway has recently been shown to be essential for the degradation of misfolded and regulated proteins in the endoplasmic reticulum (ER) lumen and membrane, which are transported to the cytoplasm via the Sec61p translocon. Mutant backgrounds which prevent retrograde transport of ER proteins (hrd1/der3Δ and sec61-2) did not inhibit the degradation of the β-galactosidase and Ura3p fusions carrying Ubc6p/Ubc7p pathway signals. We therefore conclude that the ubiquitination of these fusion proteins takes place on the cytosolic face of the ER without prior transfer to the ER lumen. The contributions of different sequence elements to a 16-amino-acid-residue Ubc6p-Ubc7p-specific signal were analyzed by mutation. A patch of bulky hydrophobic residues was an essential element. In addition, positively charged residues were found to be essential. Unexpectedly, certain substitutions of bulky hydrophobic or positively charged residues with alanine created novel degradation signals, channeling the degradation of fusion proteins to an unidentified proteasomal pathway not involving Ubc6p and Ubc7p. PMID:10982838

  18. The Multisubstrate Adapter Gab1 Regulates Hepatocyte Growth Factor (Scatter Factor)–c-Met Signaling for Cell Survival and DNA Repair

    PubMed Central

    Fan, Saijun; Ma, Yong Xian; Gao, Min; Yuan, Ren-Qi; Meng, Qinghui; Goldberg, Itzhak D.; Rosen, Eliot M.

    2001-01-01

    Hepatocyte growth factor (scatter factor) (HGF/SF) is a pleiotrophic mediator of epithelial cell motility, morphogenesis, angiogenesis, and tumorigenesis. HGF/SF protects cells against DNA damage by a pathway from its receptor c-Met to phosphatidylinositol 3-kinase (PI3K) to c-Akt, resulting in enhanced DNA repair and decreased apoptosis. We now show that protection against the DNA-damaging agent adriamycin (ADR; topoisomerase IIα inhibitor) requires the Grb2-binding site of c-Met, and overexpression of the Grb2-associated binder Gab1 (a multisubstrate adapter required for epithelial morphogenesis) inhibits the ability of HGF/SF to protect MDCK epithelial cells against ADR. In contrast to Gab1 and its homolog Gab2, overexpression of c-Cb1, another multisubstrate adapter that associates with c-Met, did not affect protection. Gab1 blocked the ability of HGF/SF to cause the sustained activation of c-Akt and c-Akt signaling (FKHR phosphorylation). The Gab1 inhibition of sustained c-Akt activation and of cell protection did not require the Gab1 pleckstrin homology or SHP2 phosphatase-binding domain but did require the PI3K-binding domain. HGF/SF protection of parental MDCK cells was blocked by wortmannin, expression of PTEN, and dominant negative mutants of p85 (regulatory subunit of PI3K), Akt, and Pak1; the protection of cells overexpressing Gab1 was restored by wild-type or activated mutants of p85, Akt, and Pak1. These findings suggest that the adapter Gab1 may redirect c-Met signaling through PI3K away from a c-Akt/Pak1 cell survival pathway. PMID:11438654

  19. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma.

    PubMed

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-06-17

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

  20. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ

    PubMed Central

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J. H.; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-01-01

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110α, p110β, and p110δ) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110α and p110δ to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110γ class IB PI3K lack SH2 domains and instead couple p110γ to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110β and cells derived from a p110β-deficient mouse line, that p110β is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110β and p110γ contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110β but not p110γ, p110β mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110γ in these cells reduced the contribution of p110β to GPCR signaling. Taken together, these data show that p110β and p110γ can couple redundantly to the same GPCR agonists. p110β, which shows a much broader tissue distribution than the leukocyte-restricted p110γ, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110γ expression is low or absent. PMID:18544649

  1. p27{sup Kip1} inhibits tissue factor expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitenstein, Alexander, E-mail: alexander.breitenstein@usz.ch; Cardiovascular Research, Physiology Institute, University of Zurich; Center for Integrative Human Physiology

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells wasmore » achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.« less

  2. Fumaric acid attenuates the eotaxin-1 expression in TNF-α-stimulated fibroblasts by suppressing p38 MAPK-dependent NF-κB signaling.

    PubMed

    Roh, Kyung-Baeg; Jung, Eunsun; Park, Deokhoon; Lee, Jongsung

    2013-08-01

    Eotaxin-1 is a potent chemoattractant for eosinophils and a critical mediator during the development of eosinophilic inflammation. Fumaric acid is an intermediate product of the citric acid cycle, which is source of intracellular energy. Although fumaric acid ameliorates psoriasis and multiple sclerosis, its involvement in eotaxin-1-mediated effects has not been assessed. In this study, we investigated the effects of fumaric acid on eotaxin-1 expression in a mouse fibroblast cell line. We found that fumaric acid significantly inhibited tumor necrosis factor-α (TNF-α-induced eotaxin-1 expression. This fumaric acid effect was mediated through the inhibition of p38 mitogen-activated protein kinase (MAPK)-dependent nuclear factor (NF)-κB signaling. We also found that fumaric acid operates downstream of MEKK3 during TNF-α-induced NF-κB signaling, which upregulated eotaxin-1 expression. In addition, fumaric acid attenuated expression of CC-chemokine receptor 3 (CCR3), an eotaxin-1 receptor, and adhesion molecules that play important roles in eosinophil binding to induce allergic inflammation. Taken together, these findings indicate that inhibiting TNF-α-induced eotaxin-1 expression by fumaric acid occurs primarily through suppression of NF-κB signaling, which is mediated by inhibiting p38 MAPK and suggest that fumaric acid may be used as a complementary treatment option for eotaxin-1-mediated diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1

    PubMed Central

    Ebi, Hiromichi; Costa, Carlotta; Faber, Anthony C.; Nishtala, Madhuri; Kotani, Hiroshi; Juric, Dejan; Della Pelle, Patricia; Song, Youngchul; Yano, Seiji; Mino-Kenudson, Mari; Benes, Cyril H.; Engelman, Jeffrey A.

    2013-01-01

    The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers. PMID:24327733

  4. Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways

    PubMed Central

    Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170

  5. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

    PubMed

    Martins, Telma S; Pereira, Clara; Canadell, David; Vilaça, Rita; Teixeira, Vítor; Moradas-Ferreira, Pedro; de Nadal, Eulàlia; Posas, Francesc; Costa, Vítor

    2018-01-01

    Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low‑iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Unique catalytic activities and scaffolding of p21 activated kinase-1 in cardiovascular signaling.

    PubMed

    Ke, Yunbo; Lei, Ming; Wang, Xin; Solaro, R John

    2013-09-27

    P21 activated kinase-1 (Pak1) has diverse functions in mammalian cells. Although a large number of phosphoproteins have been designated as Pak1 substrates from in vitro studies, emerging evidence has indicated that Pak1 may function as a signaling molecule through a unique molecular mechanism - scaffolding. By scaffolding, Pak1 delivers signals through an auto-phosphorylation-induced conformational change without transfer of a phosphate group to its immediate downstream effector(s). Here we review evidence for this regulatory mechanism based on structural and functional studies of Pak1 in different cell types and research models as well as in vitro biochemical assays. We also discuss the implications of Pak1 scaffolding in disease-related signaling processes and the potential in cardiovascular drug development.

  7. Epigenetic Changes and Suppression of the Nuclear Factor of Activated T Cell 1 (NFATC1) Promoter in Human Lymphomas with Defects in Immunoreceptor Signaling

    PubMed Central

    Akimzhanov, Askar; Krenacs, Laszlo; Schlegel, Timm; Klein-Hessling, Stefan; Bagdi, Enikö; Stelkovics, Eva; Kondo, Eisaku; Chuvpilo, Sergei; Wilke, Philipp; Avots, Andris; Gattenlöhner, Stefan; Müller-Hermelink, Hans-Konrad; Palmetshofer, Alois; Serfling, Edgar

    2008-01-01

    The nuclear factor of activated T cell 1 (Nfatc1) locus is a common insertion site for murine tumorigenic retroviruses, suggesting a role of transcription factor NFATc1 in lymphomagenesis. Although NFATc1 is expressed in most human primary lymphocytes and mature human T- and B-cell neoplasms, we show by histochemical stainings that NFATc1 expression is suppressed in anaplastic large cell lymphomas and classical Hodgkin’s lymphomas (HLs). In HL cell lines, NFATc1 silencing correlated with a decrease in histone H3 acetylation, H3-K4 trimethylation, and Sp1 factor binding but with an increase in HP1 binding to the NFATC1 P1 promoter. Together with DNA hypermethylation of the NFATC1 P1 promoter, which we detected in all anaplastic large cell lymphoma and many HL lines, these observations reflect typical signs of transcriptional silencing. In several lymphoma lines, methylation of NFATC1 promoter DNA resulted in a “window of hypomethylation,” which is flanked by Sp1-binding sites. Together with the under-representation of Sp1 at the NFATC1 P1 promoter in HL cells, this suggests that Sp1 factors can protect P1 DNA methylation in a directional manner. Blocking immunoreceptor signaling led to NFATC1 P1 promoter silencing and to a decrease in H3 acetylation and H3-K4 methylation but not DNA methylation. This shows that histone modifications precede the DNA methylation in NFATC1 promoter silencing. PMID:18156209

  8. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo.

    PubMed

    Rajagopal, Ramya; Ishii, Shunsuke; Beebe, David C

    2007-06-25

    Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Proteins that are downstream of the transforming growth factor-beta superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFbeta superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-beta superfamily to endosomes is important for the regulation of growth factor signaling.

  9. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Shao, Dan; Wang, Juan; Yuan, Hongyan; Chen, Tanxiu; Zhai, Ruiping; Ni, Weihua; Tai, Guixiang

    2015-02-01

    In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF-β1 expression at the mRNA and protein levels but also luciferase activity driven by a TGF-β promoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF-β1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF-β1 gene in HCC cells. The high correlation between MUC1 and TGF-β1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less

  11. MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma

    PubMed Central

    Ranjan, Atul; Iyer, Swathi V.; Ward, Christopher; Link, Tim; Diaz, Francisco J.; Dhar, Animesh; Tawfik, Ossama W.; Weinman, Steven A.; Azuma, Yoshiaki; Izumi, Tadahide; Iwakuma, Tomoo

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk. PMID:29765550

  12. Phospholipase C-mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor beta 1 inhibitory signals.

    PubMed Central

    Diaz-Meco, M T; Dominguez, I; Sanz, L; Municio, M M; Berra, E; Cornet, M E; Garcia de Herreros, A; Johansen, T; Moscat, J

    1992-01-01

    Cell growth and tumor transformation can be restrained in certain cell systems by the action of transforming growth factor beta (TGF-beta). It has been established that the mechanism whereby TGF-beta 1 inhibits cell growth does not interfere with the triggering of early mitogenic signal transduction mechanisms. Phospholipase C-catalyzed hydrolysis of phosphatidylcholine (PC) is a relatively late step in the cascade activated by growth factors. Therefore, conceivably activation of phospholipase C-catalyzed hydrolysis of PC could be the target of TGF-beta 1 action. In the study reported here, we demonstrate that TGF-beta 1 inhibits the coupling of ras p21 to the activation of PC hydrolysis, which appears to be critical for the antiproliferative effects of TGF-beta 1. Images PMID:1309592

  13. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest.

    PubMed

    Zalc, Antoine; Hayashi, Shinichiro; Auradé, Frédéric; Bröhl, Dominique; Chang, Ted; Mademtzoglou, Despoina; Mourikis, Philippos; Yao, Zizhen; Cao, Yi; Birchmeier, Carmen; Relaix, Frédéric

    2014-07-01

    A central question in development is to define how the equilibrium between cell proliferation and differentiation is temporally and spatially regulated during tissue formation. Here, we address how interactions between cyclin-dependent kinase inhibitors essential for myogenic growth arrest (p21(cip1) and p57(kip2)), the Notch pathway and myogenic regulatory factors (MRFs) orchestrate the proliferation, specification and differentiation of muscle progenitor cells. We first show that cell cycle exit and myogenic differentiation can be uncoupled. In addition, we establish that skeletal muscle progenitor cells require Notch signaling to maintain their cycling status. Using several mouse models combined with ex vivo studies, we demonstrate that Notch signaling is required to repress p21(cip1) and p57(kip2) expression in muscle progenitor cells. Finally, we identify a muscle-specific regulatory element of p57(kip2) directly activated by MRFs in myoblasts but repressed by the Notch targets Hes1/Hey1 in progenitor cells. We propose a molecular mechanism whereby information provided by Hes/Hey downstream of Notch as well as MRF activities are integrated at the level of the p57(kip2) enhancer to regulate the decision between progenitor cell maintenance and muscle differentiation. © 2014. Published by The Company of Biologists Ltd.

  14. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, Sarah

    Understanding gene expression that occurs during gravitopism is important for studying the processes that link the perception of gravity to the growth response. Arabidopsis plants with a mutation in the GRAVITY PERSISTENT SIGNAL (GPS)1 locus show a "no response" phenotype during gravistimulation experiments. Basepital auxin transport in gps1 mutant was unaffected by the mutation, but auxin was not laterally redistributed after gravistimulation. GPS1 encodes CYP705A22, a cytochrome P450 protein (P450) of unknown function. The wild type CYP705A22 gene was transformed into the gps1 mutant background and successfully rescued the mutant phenotype. Data mining of microarray data collected from gravistimulated root tips of Arabidopsis indicated that although CYP705A22 was not expressed in roots, a family member CYP705A5 was up-regulated within 3 minutes after gravistimulation. Expression profiling of CYP705A5, using real-time quantitative PCR, showed that CYP705A5 was up-regulated nearly five fold within minutes of gravity stimulation. And reporter gene fusions that link the CYP705A5 gene to the green fluorescent protein showed that CYP705A5 was expressed in the root zones of elongation and maturation. Computer modeling of the catalytic domain of CYP705A22 and CYP705A5 and in silico substrate docking simulations generated a list of 130 compounds that are potential substrates of the P450s. Many of the compounds are phenylpropanoid derivatives. Heterologous expression of CYP705A5 in baculovirus and Type 1 binding studies indicate the substrate of the P450 may be quercitin or myricetin. A mutation affecting CYP705A5 expression resulted in a delayed gravity response in roots. The mutant phenotype could be chemically complemented, and DPBA staining in the CYP705A5 mutant indicated a 1.5 fold accumulation of quercetin in mutant roots as compared to WT. These data, taken together, may indicate that we have identified a flavonoid pathway that regulates auxin distribution and thus

  15. Gene expression of the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in the regulation of hematopoietic stem cell aging by ginsenoside Rg1.

    PubMed

    Yue, Z; Rong, J; Ping, W; Bing, Y; Xin, Y; Feng, L D; Yaping, W

    2014-12-04

    The elucidation of the molecular mechanisms underlying the effects of traditional Chinese medicines in clinical practice is a key step toward their worldwide application, and this topic is currently a subject of intense research interest. Rg1, a component of ginsenoside, has recently been shown to perform several pharmacological functions; however, the underlying mechanisms of these effects remain unclear. In the present study, we investigated whether Rg1 has an anti-senescence effect on hematopoietic stem cells (HSCs) and the possible molecular mechanisms driving any effects. The results showed that Rg1 could effectively delay tert-butyl hydroperoxide (t-BHP)-induced senescence and inhibit gene expression in the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in HSCs. Our study suggested that these two signaling pathways might be potential targets for elucidating the molecular mechanisms of the Rg1 anti-senescence effect.

  16. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium

    PubMed Central

    Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S

    2018-01-01

    Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221

  17. Microtubule actin crosslinking factor 1 promotes osteoblast differentiation by promoting β-catenin/TCF1/Runx2 signaling axis.

    PubMed

    Hu, Lifang; Su, Peihong; Yin, Chong; Zhang, Yan; Li, Runzhi; Yan, Kun; Chen, Zhihao; Li, Dijie; Zhang, Ge; Wang, Liping; Miao, Zhiping; Qian, Airong; Xian, Cory J

    2018-02-01

    Osteoblast differentiation is a multistep process delicately regulated by many factors, including cytoskeletal dynamics and signaling pathways. Microtubule actin crosslinking factor 1 (MACF1), a key cytoskeletal linker, has been shown to play key roles in signal transduction and in diverse cellular processes; however, its role in regulating osteoblast differentiation is still needed to be elucidated. To further uncover the functions and mechanisms of action of MACF1 in osteoblast differentiation, we examined effects of MACF1 knockdown (MACF1-KD) in MC3T3-E1 osteoblastic cells on their osteoblast differentiation and associated molecular mechanisms. The results showed that knockdown of MACF1 significantly suppressed mineralization of MC3T3-E1 cells, down-regulated the expression of key osteogenic genes alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and type I collagen α1 (Col Iα1). Knockdown of MACF1 dramatically reduced the nuclear translocation of β-catenin, decreased the transcriptional activation of T cell factor 1 (TCF1), and down-regulated the expression of TCF1, lymphoid enhancer-binding factor 1 (LEF1), and Runx2, a target gene of β-catenin/TCF1. In addition, MACF1-KD increased the active level of glycogen synthase kinase-3β (GSK-3β), which is a key regulator for β-catenin signal transduction. Moreover, the reduction of nuclear β-catenin amount and decreased expression of TCF1 and Runx2 were significantly reversed in MACF1-KD cells when treated with lithium chloride, an agonist for β-catenin by inhibiting GSK-3β activity. Taken together, these findings suggest that knockdown of MACF1 in osteoblastic cells inhibits osteoblast differentiation through suppressing the β-catenin/TCF1-Runx2 axis. Thus, a novel role of MACF1 in and a new mechanistic insight of osteoblast differentiation are uncovered. © 2017 Wiley Periodicals, Inc.

  18. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    PubMed Central

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  19. E2F1 transcription factor and its impact on growth factor and cytokine signaling.

    PubMed

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes

    2016-10-01

    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthesis and P1' SAR exploration of potent macrocyclic tissue factor-factor VIIa inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladziata, Vladimir; Glunz, Peter W.; Zou, Yan

    Selective tissue factor-factor VIIa complex (TF-FVIIa) inhibitors are viewed as promising compounds for treating thrombotic disease. In this contribution, we describe multifaceted exploratory SAR studies of S1'-binding moieties within a macrocyclic chemotype aimed at replacing cyclopropyl sulfone P1' group. Over the course of the optimization efforts, the 1-(1H-tetrazol-5-yl)cyclopropane P1' substituent emerged as an improved alternative, offering increased metabolic stability and lower clearance, while maintaining excellent potency and selectivity.

  1. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4.

    PubMed

    Wu, Kongming; Yang, Ying; Wang, Chenguang; Davoli, Maria A; D'Amico, Mark; Li, Anping; Cveklova, Kveta; Kozmik, Zbynek; Lisanti, Michael P; Russell, Robert G; Cvekl, Ales; Pestell, Richard G

    2003-12-19

    The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.

  2. Alterations of p75 neurotrophin receptor and Myelin transcription factor 1 in the hippocampus of perinatal phencyclidine treated rats.

    PubMed

    Andrews, Jessica L; Newell, Kelly A; Matosin, Natalie; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2015-12-03

    Postnatal administration of phencyclidine (PCP) in rodents causes major disturbances to neurological processes resulting in severe modifications to normal behavioral traits into adulthood. It is routinely used to model psychiatric disorders such as schizophrenia, producing many of the dysfunctional processes in the brain that are present in this devastating disorder, including elevated levels of apoptosis during neurodevelopment and disruptions to myelin and plasticity processes. Lingo-1 (or Leucine-rich repeat and immunoglobulin domain-containing protein) is responsible for negatively regulating neurite outgrowth and the myelination of axons. Recent findings using a postmortem human brain cohort showed that Lingo-1 signaling partners in the Nogo receptor (NgR)/p75/TNF receptor orphan Y (TROY) signaling complex, and downstream signaling partners With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1), play a significant part in schizophrenia pathophysiology. Here we have examined the implication of Lingo-1 and its signaling partners in a neurodevelopmental model of schizophrenia using PCP to determine if these pathways are altered in the hippocampus throughout different stages of neurodevelopment. Male Sprague-Dawley rats were injected subcutaneously with PCP (10mg/kg) or saline solution on postnatal days (PN) 7, 9, and 11. Rats (n=6/group) were sacrificed at PN12, 5weeks, or 14weeks. Relative expression levels of Lingo-1 signaling proteins were examined in the hippocampus of the treated rats. p75 and Myt1 were decreased (0.001≤p≤0.011) in the PCP treated rats at PN12. There were no significant changes in any of the tested proteins at 5weeks (p>0.05). At 14weeks, p75, TROY, and Myt1 were increased in the PCP treated rats (0.014≤p≤0.022). This is the first report of an alteration in Lingo-1 signaling proteins in the rat hippocampus, both directly after PCP treatment in early development and in adulthood. Based on our results, we propose that

  3. P-cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor-β2.

    PubMed

    Samuelov, Liat; Sprecher, Eli; Tsuruta, Daisuke; Bíró, Tamás; Kloepper, Jennifer E; Paus, Ralf

    2012-10-01

    P-cadherin is a key component of epithelial adherens junctions, and it is prominently expressed in the hair follicle (HF) matrix. Loss-of-function mutations in CDH3, which encodes P-cadherin, result in hypotrichosis with juvenile macular dystrophy (HJMD), an autosomal recessive disorder featuring sparse and short hair. Here, we attempted to recapitulate some aspects of HJMD in vitro by transfecting normal, organ-cultured human scalp HFs with lipofectamine and CDH3-specific or scrambled control siRNAs. As in HJMD patients, P-cadherin silencing inhibited hair shaft growth, prematurely induced HF regression (catagen), and inhibited hair matrix keratinocyte proliferation. In situ, membrane β-catenin expression and transcription of the β-catenin target gene, axin2, were significantly reduced, whereas glycogen synthase kinase 3 β (GSK3β) and phospho-β-catenin immunoreactivity were increased. These effects were partially reversed by inhibiting GSK3β. P-cadherin silencing reduced the expression of the anagen-promoting growth factor, IGF-1, whereas that of transforming growth factor β 2 (TGFβ2; catagen promoter) was enhanced. Neutralizing TGFβ antagonized the catagen-promoting effects of P-cadherin silencing. In summary, we introduce human HFs as an attractive preclinical model for studying the functions of P-cadherin in human epithelial biology and pathology. This model demonstrates that cadherins can be successfully knocked down in an intact human organ in vitro, and shows that P-cadherin is needed for anagen maintenance by regulating canonical Wnt signaling and suppressing TGFβ2.

  4. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  5. Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1

    PubMed Central

    Blagoveshchenskaya, Anastasia; Cheong, Fei Ying; Rohde, Holger M.; Glover, Greta; Knödler, Andreas; Nicolson, Teresa; Boehmelt, Guido; Mayinger, Peter

    2008-01-01

    When a growing cell expands, lipids and proteins must be delivered to its periphery. Although this phenomenon has been observed for decades, it remains unknown how the secretory pathway responds to growth signaling. We demonstrate that control of Golgi phosphatidylinositol-4-phosphate (PI(4)P) is required for growth-dependent secretion. The phosphoinositide phosphatase SAC1 accumulates at the Golgi in quiescent cells and down-regulates anterograde trafficking by depleting Golgi PI(4)P. Golgi localization requires oligomerization of SAC1 and recruitment of the coat protein (COP) II complex. When quiescent cells are stimulated by mitogens, SAC1 rapidly shuttles back to the endoplasmic reticulum (ER), thus releasing the brake on Golgi secretion. The p38 mitogen-activated kinase (MAPK) pathway induces dissociation of SAC1 oligomers after mitogen stimulation, which triggers COP-I–mediated retrieval of SAC1 to the ER. Inhibition of p38 MAPK abolishes growth factor–induced Golgi-to-ER shuttling of SAC1 and slows secretion. These results suggest direct roles for p38 MAPK and SAC1 in transmitting growth signals to the secretory machinery. PMID:18299350

  6. Cell Attachment to the Extracellular Matrix Induces Proteasomal Degradation of p21CIP1 via Cdc42/Rac1 Signaling

    PubMed Central

    Bao, Wenjie; Thullberg, Minna; Zhang, Hongquan; Onischenko, Anatoli; Strömblad, Staffan

    2002-01-01

    The cyclin-dependent kinase 2 (Cdk2) inhibitors p21CIP1 and p27KIP1 are negatively regulated by anchorage during cell proliferation, but it is unclear how integrin signaling may affect these Cdk2 inhibitors. Here, we demonstrate that integrin ligation led to rapid reduction of p21CIP1 and p27KIP1 protein levels in three distinct cell types upon attachment to various extracellular matrix (ECM) proteins, including fibronectin (FN), or to immobilized agonistic anti-integrin monoclonal antibodies. Cell attachment to FN did not rapidly influence p21CIP1 mRNA levels, while the protein stability of p21CIP1 was decreased. Importantly, the down-regulation of p21CIP1 and p27KIP1 was completely blocked by three distinct proteasome inhibitors, demonstrating that integrin ligation induced proteasomal degradation of these Cdk2 inhibitors. Interestingly, ECM-induced proteasomal proteolysis of a ubiquitination-deficient p21CIP1 mutant (p21K6R) also occurred, showing that the proteasomal degradation of p21CIP1 was ubiquitin independent. Concomitant with our finding that the small GTPases Cdc42 and Rac1 were activated by attachment to FN, constitutively active (ca) Cdc42 and ca Rac1 promoted down-regulation of p21CIP1. However, dominant negative (dn) Cdc42 and dn Rac1 mutants blocked the anchorage-induced degradation of p21CIP1, suggesting that an integrin-induced Cdc42/Rac1 signaling pathway activates proteasomal degradation of p21CIP1. Our results indicate that integrin-regulated proteasomal proteolysis might contribute to anchorage-dependent cell cycle control. PMID:12052868

  7. Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation.

    PubMed

    Wu, Zhidi; Ou, Ling; Wang, Chaopeng; Yang, Li; Wang, Panpan; Liu, Hengrui; Xiong, Yingquan; Sun, Kehuan; Zhang, Ronghua; Zhu, Xiaofeng

    2017-10-01

    Icaritin (ICT), a hydrolytic product of icariin from the genus Epimedium, has many indicated pharmacological and biological activities. Several studies have shown that ICT has potential osteoprotective effects, including stimulation of osteoblast differentiation and inhibition of osteoclast differentiation. However, the molecular mechanism for this anabolic action of ICT remains largely unknown. Here, we found that ICT could enhance MC3T3-E1 subclone 14 preosteoblastic cell differentiation associated with increased mRNA levels and protein expression of the differentiation markers alkaline phosphatase (ALP), type 1 collagen (COL1), osteocalcin (OC), osteoponin (OPN) and runt-related transcription factor 2 (RUNX2), and improved mineralization, confirmed by bone nodule formation and collagen synthesis. To characterize the underlying mechanisms, we examined the effect of ICT on estrogen receptor (ER) and mitogen-activated protein kinase (MAPK) signaling. ICT treatment induced p38 kinase and extracellular signal-regulated kinase 1/2 (ERK1/2) activation, but it demonstrated at the same time point no effect on activation of c-Jun N-terminal kinase (JNK). ER antagonist ICI182780, p38 antagonist SB203580 and ERK1/2 antagonist PD98059 markedly inhibited the ICT-induced the mRNA expression of ALP, COL1, OC and OPN. ICI182780 attenuated the ICT-induced phosphorylation of p38 and ERK1/2. These observations indicate a potential mechanism of osteogenic effects of ICT involving the ERK1/2 and p38 pathway activation through the ER. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling

    PubMed Central

    Vasileiou, Georgia; Ekici, Arif B.; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V.

    2015-01-01

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. PMID:26340334

  9. Caveolae are negative regulators of transforming growth factor-beta1 signaling in ureteral smooth muscle cells.

    PubMed

    Stehr, Maximilian; Estrada, Carlos R; Khoury, Joseph; Danciu, Theodora E; Sullivan, Maryrose P; Peters, Craig A; Solomon, Keith R; Freeman, Michael R; Adam, Rosalyn M

    2004-12-01

    The mechanisms underlying ureteral cell regulation are largely unknown. Previous studies have identified lipid rafts/caveolae as regulators of growth stimulatory signals in ureteral smooth muscle cells (USMCs). In this study we determined whether growth inhibitory signaling by transforming growth factor-beta1 (TGF-beta1) is also regulated by caveolae in USMC. Expression of components of the TGF-beta1 signaling axis in USMCs was determined by immunoblot and mRNA analyses. Growth regulatory activity of TGF-beta1 was assessed by H-thymidine incorporation. In select experiments caveolae were disrupted reversibly by cholesterol depletion and replenishment prior to TGF-beta1 treatment. TGF-beta1-responsive gene expression was evaluated using the TGF-beta1 responsive promoter-reporter construct 3TP-Lux. USMCs expressed TGF-beta1, types I and II TGF-beta1 receptors, and the effector Smad-2. TGF-beta1 potently inhibited DNA synthesis in USMCs (IC50 60 pM). TGF-beta1 mediated DNA synthesis inhibition was potentiated following the disruption of caveolae by cholesterol depletion. This effect was reversible with membrane cholesterol restoration. TGF-beta1 stimulated gene activity was augmented by caveolae disruption, while caveolae reformation returned promoter activity to baseline levels. TGF-beta1 is a potent growth inhibitor of USMCs and its activity can be enhanced by caveolae ablation. These findings suggest a role for TGF-beta1 in the growth regulation of normal ureteral cells and implicate caveolar membrane domains in the negative regulation of TGF-beta1 signaling. These studies may be relevant to ureteral pathologies that are characterized by smooth muscle dysplasia.

  10. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling.

    PubMed

    Li, Yulin; Li, Zhenya; Zhang, Congcong; Li, Ping; Wu, Yina; Wang, Chunxiao; Bond Lau, Wayne; Ma, Xin-Liang; Du, Jie

    2017-05-23

    Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factorsignaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factorsignaling. These results suggest that positive modulation of cardiac fibroblast ATF3

  11. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells*

    PubMed Central

    Okamura, Tatsunori; Antoun, Gamil; Keir, Stephen T.; Friedman, Henry; Bigner, Darell D.; Ali-Osman, Francis

    2015-01-01

    Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs. PMID:26429914

  12. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells.

    PubMed

    Okamura, Tatsunori; Antoun, Gamil; Keir, Stephen T; Friedman, Henry; Bigner, Darell D; Ali-Osman, Francis

    2015-12-25

    Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The α-Arrestin Bul1p Mediates Lactate Transporter Endocytosis in Response to Alkalinization and Distinct Physiological Signals.

    PubMed

    Talaia, Gabriel; Gournas, Christos; Saliba, Elie; Barata-Antunes, Cláudia; Casal, Margarida; André, Bruno; Diallinas, George; Paiva, Sandra

    2017-11-24

    Eukaryotic α-arrestins connect environmental or stress signaling pathways to the endocytosis of plasma membrane transporters or receptors. The Saccharomyces cerevisiae lactate transporter Jen1p has been used as a model cargo for elucidating the mechanisms underlying endocytic turnover in response to carbon sources. Here, we discover a novel pathway of Jen1p endocytosis mediated by the α-arrestin Bul1p in response to the presence of cycloheximide or rapamycin, or prolonged growth in lactate. While cycloheximide or rapamycin modify cells pleiotropically, the major effect of prolonged growth in lactate was shown to be external pH alkalinization. Importantly, employment of specific inactive Jen1p versions showed that Bul1p-dependent endocytosis requires lactate transport, according to the signal imposed. Our results support a model where conformational changes of Jen1p, associated with substrate/H + symport, are critical for the efficiency of Bul1p-dependent Jen1p turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Role of TonB1 in pyoverdine-mediated signaling in Pseudomonas aeruginosa.

    PubMed

    Shirley, Matt; Lamont, Iain L

    2009-09-01

    Pyoverdines are siderophores secreted by Pseudomonas aeruginosa. Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs via the FpvA receptor protein and requires the energy-transducing protein TonB1. Interaction of (ferri)pyoverdine with FpvA activates pyoverdine gene expression in a signaling process involving the cytoplasmic-membrane-spanning anti-sigma factor FpvR and the sigma factor PvdS. Here, we show that mutation of a region of FpvA that interacts with TonB1 (the TonB box) prevents this signaling process, as well as inhibiting bacterial growth in the presence of the iron-chelating compound ethylenediamine-di(o-hydroxy-phenylacetic acid). Signaling via wild-type FpvA was also eliminated in strains lacking TonB1 but was unaffected in strains lacking either (or both) of two other TonB proteins in P. aeruginosa, TonB2 and TonB3. An absence of pyoverdine-mediated signaling corresponded with proteolysis of PvdS. These data show that interactions between FpvA and TonB1 are required for (ferri)pyoverdine signal transduction, as well as for ferripyoverdine transport, consistent with a mechanistic link between the signaling and transport functions of FpvA.

  15. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

    PubMed

    Sasseville, Maxime; Ritter, Lesley J; Nguyen, Thao M; Liu, Fang; Mottershead, David G; Russell, Darryl L; Gilchrist, Robert B

    2010-09-15

    Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR-ERK1/2 pathway. Importantly, EGFR-ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFbeta1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR-SFKs-ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFbeta-like ligands and EGFR-ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation.

  16. Cervical cancer screening among homeless women in the Greater Paris Area (France): results of the ENFAMS survey.

    PubMed

    Vuillermoz, Cécile; Vandentorren, Stéphanie; Roze, Mathilde; Rondet, Claire; Chauvin, Pierre

    2017-05-01

    Little is known about the prevalence of cervical cancer screening (CCS) and its correlates among homeless women in France. The objectives of this study were to determine the prevalence of women who had never been screened for cervical cancer and to identify the associated factors. This cross-sectional study was based on data collected in the ENFAMS survey, which was conducted in 2013 among 764 sheltered homeless mothers in the Greater Paris Area. Robust Poisson regression models were used to estimate the association between no lifetime CCS and certain sociodemographic and health-related factors (selected from the behavioral model of vulnerable populations). Analyses were carried out separately for women with and without a regular gynaecological follow-up (RGF). The proportion of never-screeners was 33% among the women with an RGF versus 64% among those without an RGF (P<0.001). Among the latter, never having been screened for CCS was associated mainly with socioeconomic conditions, the length of time lived in France, a history of delivery in France and the duration of homelessness. In those with an RGF, the factors were mainly poor health service utilization and language difficulties. This first quantitative study of CCS among homeless women in the Greater Paris Area points to the need for it to be proposed and performed more systematically in primary care. Every contact between this hard-to-reach population and health services should be an opportunity to check their screening status and to ensure that those in need actually undergo a Pap test.

  17. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    PubMed

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  18. Transcription factors CEP-1/p53 and CEH-23 collaborate with AAK-2/AMPK to modulate longevity in Caenorhabditis elegans.

    PubMed

    Chang, Hsin-Wen; Pisano, Steve; Chaturbedi, Amaresh; Chen, Jennifer; Gordon, Sarah; Baruah, Aiswarya; Lee, Siu Sylvia

    2017-08-01

    A decline in mitochondrial electron transport chain (ETC) function has long been implicated in aging and various diseases. Recently, moderate mitochondrial ETC dysfunction has been found to prolong lifespan in diverse organisms, suggesting a conserved and complex role of mitochondria in longevity determination. Several nuclear transcription factors have been demonstrated to mediate the lifespan extension effect associated with partial impairment of the ETC, suggesting that compensatory transcriptional response to be crucial. In this study, we showed that the transcription factors CEP-1/p53 and CEH-23 act through a similar mechanism to modulate longevity in response to defective ETC in Caenorhabditis elegans. Genomewide gene expression profiling comparison revealed a new link between these two transcription factors and AAK-2/AMP kinase (AMPK) signaling. Further functional analyses suggested that CEP-1/p53 and CEH-23 act downstream of AAK-2/AMPK signaling and CRTC-1 transcriptional coactivator to promote stress resistance and lifespan. As AAK-2, CEP-1, and CEH-23 are all highly conserved, our findings likely provide important insights for understanding the organismal adaptive response to mitochondrial dysfunction in diverse organisms and will be relevant to aging and pathologies with a mitochondrial etiology in human. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling.

    PubMed

    Nayak, G; Cooper, G M

    2012-10-11

    The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.

  20. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling.

    PubMed

    Vasileiou, Georgia; Ekici, Arif B; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V

    2015-09-03

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. PP2B and PP1α cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling

    PubMed Central

    Chen, Ruichuan; Liu, Min; Li, Huan; Xue, Yuhua; Ramey, Wanichaya N.; He, Nanhai; Ai, Nanping; Luo, Haohong; Zhu, Ying; Zhou, Nan; Zhou, Qiang

    2008-01-01

    The positive transcription elongation factor b (P-TEFb), consisting of Cdk9 and cyclin T, stimulates RNA polymerase II elongation and cotranscriptional pre-mRNA processing. To accommodate different growth conditions and transcriptional demands, a reservoir of P-TEFb is kept in an inactive state in the multisubunit 7SK snRNP. Under certain stress or disease conditions, P-TEFb is released to activate transcription, although the signaling pathway(s) that controls this is largely unknown. Here, through analyzing the UV- or hexamethylene bisacetamide (HMBA)-induced release of P-TEFb from 7SK snRNP, an essential role for the calcium ion (Ca2+)–calmodulin–protein phosphatase 2B (PP2B) signaling pathway is revealed. However, Ca2+ signaling alone is insufficient, and PP2B must act sequentially and cooperatively with protein phosphatase 1α (PP1α) to disrupt 7SK snRNP. Activated by UV/HMBA and facilitated by a PP2B-induced conformational change in 7SK snRNP, PP1α releases P-TEFb through dephosphorylating phospho-Thr186 in the Cdk9 T-loop. This event is also necessary for the subsequent recruitment of P-TEFb by the bromodomain protein Brd4 to the preinitiation complex, where Cdk9 remains unphosphorylated and inactive until after the synthesis of a short RNA. Thus, through cooperatively dephosphorylating Cdk9 in response to Ca2+ signaling, PP2B and PP1α alter the P-TEFb functional equilibrium through releasing P-TEFb from 7SK snRNP for transcription. PMID:18483222

  2. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    PubMed

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  3. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer.

    PubMed

    Castellvi, Josep; Garcia, Angel; Rojo, Federico; Ruiz-Marcellan, Carmen; Gil, Antonio; Baselga, Jose; Ramon y Cajal, Santiago

    2006-10-15

    Growth factor receptors and cell signaling factors play a crucial role in human carcinomas and have been studied in ovarian tumors with varying results. Cell signaling involves multiple pathways and a myriad of factors that can be mutated or amplified. Cell signaling is driven through the mammalian target of rapamycin (mTOR) and extracellular regulated kinase (ERK) pathways and by some downstream molecules, such as 4E binding protein 1 (4EBP1), eukaryotic initiation factor 4E, and p70 ribosomal protein S6 kinase (p70S6K). The objectives of this study were to analyze the real role that these pathways play in ovarian cancer, to correlate them with clinicopathologic characteristics, and to identify the factors that transmit individual proliferation signals and are associated with pathologic grade and prognosis, regardless specific oncogenic alterations upstream. One hundred twenty-nine ovarian epithelial tumors were studied, including 20 serous cystadenomas, 7 mucinous cystadenomas, 11 serous borderline tumors, 16 mucinous borderline tumors, 29 serous carcinomas, 16 endometrioid carcinomas, 15 clear cell carcinomas, and 15 mucinous carcinomas. Tissue microarrays were constructed, and immunohistochemistry for the receptors epidermal growth factor receptor (EGFR) and c-erb-B2 was performed and with phosphorylated antibodies for protein kinase B (AKT), 4EBP1, p70S6K, S6, and ERK. Among 129 ovarian neoplasms, 17.8% were positive for c-erb-B2, 9.3% were positive for EGFR, 47.3% were positive for phosphorylated AKT (p-AKT), 58.9% were positive for p-ERK, 41.1% were positive for p-4EBP1, 26.4% were positive for p70S6K, and 15.5% were positive for p-S6. Although EGFR, p-AKT, and p-ERK expression did not differ between benign, borderline, or malignant tumors, c-erb-B2, p-4EBP1, p-p70S6K, and p-S6 were expressed significantly more often in malignant tumors. Only p-4EBP1 expression demonstrated prognostic significance (P = .005), and only surgical stage and p-4EBP1 expression

  4. p21-activated kinase 1: PAK'ed with potential.

    PubMed

    Ong, Christy C; Jubb, Adrian M; Zhou, Wei; Haverty, Peter M; Harris, Adrian L; Belvin, Marcia; Friedman, Lori S; Koeppen, Hartmut; Hoeflich, Klaus P

    2011-06-01

    The p21-activated kinases (PAKs) are central players in growth factor signaling networks and morphogenetic processes that control proliferation, cell polarity, invasion and actin cytoskeleton organization. This raises the possibility that interfering with PAK activity may produce significant anti-tumor activity. In this perspective, we summarize recent data concerning the contribution of the PAK family member, PAK1, in growth factor signaling and tumorigenesis. We further discuss mechanisms by which inhibition of PAK1 can arrest tumor growth and promote cell apoptosis, and the types of cancers in which PAK1 inhibition may hold promise.

  5. Role of TonB1 in Pyoverdine-Mediated Signaling in Pseudomonas aeruginosa▿

    PubMed Central

    Shirley, Matt; Lamont, Iain L.

    2009-01-01

    Pyoverdines are siderophores secreted by Pseudomonas aeruginosa. Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs via the FpvA receptor protein and requires the energy-transducing protein TonB1. Interaction of (ferri)pyoverdine with FpvA activates pyoverdine gene expression in a signaling process involving the cytoplasmic-membrane-spanning anti-sigma factor FpvR and the sigma factor PvdS. Here, we show that mutation of a region of FpvA that interacts with TonB1 (the TonB box) prevents this signaling process, as well as inhibiting bacterial growth in the presence of the iron-chelating compound ethylenediamine-di(o-hydroxy-phenylacetic acid). Signaling via wild-type FpvA was also eliminated in strains lacking TonB1 but was unaffected in strains lacking either (or both) of two other TonB proteins in P. aeruginosa, TonB2 and TonB3. An absence of pyoverdine-mediated signaling corresponded with proteolysis of PvdS. These data show that interactions between FpvA and TonB1 are required for (ferri)pyoverdine signal transduction, as well as for ferripyoverdine transport, consistent with a mechanistic link between the signaling and transport functions of FpvA. PMID:19592589

  6. Tyrosine Phosphorylation of the Pioneer Transcription Factor FoxA1 Promotes Activation of Estrogen Signaling.

    PubMed

    Yamaguchi, Noritaka; Shibazaki, Misato; Yamada, Chiaki; Anzai, Erina; Morii, Mariko; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2017-06-01

    The pioneer transcription factor FoxA1 plays an important role in estrogen signaling by opening closed chromatin and promoting recruitment of the estrogen receptor to its target regions in DNA. In this study, we analyzed tyrosine phosphorylation of FoxA1 by the non-receptor-type tyrosine kinase c-Abl. c-Abl was shown to phosphorylate FoxA1 at multiple sites, especially in the N- and C-terminal regions. Tyr429 and Tyr464 were identified as the major phosphorylation sites in the FoxA1 C-terminal region. The phosphomimetic and nonphosphorylatable FoxA1 mutants were generated by glutamic acid and phenylalanine substitutions at these tyrosine residues, respectively. The phosphomimetic FoxA1 promoted the activation of estrogen signaling, whereas the nonphosphorylatable FoxA1 suppressed its activation. Stimulation with the epidermal growth factor, which activates c-Abl, enhanced the activation of estrogen signaling. In contrast, the c-Abl inhibitor imatinib reduced its activation. The phosphomimetic FoxA1 mutant showed a higher affinity toward histone H3 than the wild-type. These results suggest that c-Abl-mediated phosphorylation of FoxA1 promotes the activation of estrogen signaling by inducing its binding to histones. J. Cell. Biochem. 118: 1453-1461, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Both internalization and AIP1 association are required for tumor necrosis factor receptor 2-mediated JNK signaling.

    PubMed

    Ji, Weidong; Li, Yonghao; Wan, Ting; Wang, Jing; Zhang, Haifeng; Chen, Hong; Min, Wang

    2012-09-01

    The proinflammtory cytokine tumor necrosis factor (TNF), primarily via TNF receptor 1 (TNFR1), induces nuclear factor-κB (NF-κB)-dependent cell survival, and c-Jun N-terminal kinase (JNK) and caspase-dependent cell death, regulating vascular endothelial cell (EC) activation and apoptosis. However, signaling by the second receptor, TNFR2, is poorly understood. The goal of this study was to dissect how TNFR2 mediates NF-κB and JNK signaling in vascular EC, and its relevance to in vivo EC function. We show that TNFR2 contributes to TNF-induced NF-κB and JNK signaling in EC as TNFR2 deletion or knockdown reduces the TNF responses. To dissect the critical domains of TNFR2 that mediate the TNF responses, we examine the activity of TNFR2 mutant with a specific deletion of the TNFR2 intracellular region, which contains conserved domain I, domain II, domain III, and 2 TNFR-associated factor-2-binding sites. Deletion analyses indicate that different sequences on TNFR2 have distinct roles in NF-κB and JNK activation. Specifically, deletion of the TNFR-associated factor-2-binding sites (TNFR2-59) diminishes the TNFR2-mediated NF-κB, but not JNK activation; whereas, deletion of domain II or domain III blunts TNFR2-mediated JNK but not NF-κB activation. Interestingly, we find that the TNFR-associated factor-2-binding sites ensure TNFR2 on the plasma membrane, but the di-leucine LL motif within the domain II and aa338-355 within the domain III are required for TNFR2 internalization as well as TNFR2-dependent JNK signaling. Moreover, domain III of TNFR2 is responsible for association with ASK1-interacting protein-1, a signaling adaptor critical for TNF-induced JNK signaling. While TNFR2 containing the TNFR-associated factor-2-binding sites prevents EC cell death, a specific activation of JNK without NF-κB activation by TNFR2-59 strongly induces caspase activation and EC apoptosis. Our data reveal that both internalization and ASK1-interacting protein-1 association are

  8. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2.

    PubMed

    Yu, Tao; Yang, Yanyan; Kwak, Yi-Seong; Song, Gwan Gyu; Kim, Mi-Yeon; Rhee, Man Hee; Cho, Jae Youl

    2017-04-01

    Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng , a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.

  9. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75.

    PubMed

    He, Xiao-Lin; Garcia, K Christopher

    2004-05-07

    Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.

  10. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance.

    PubMed

    Walia, Mannu K; Ho, Patricia Mw; Taylor, Scott; Ng, Alvin Jm; Gupte, Ankita; Chalk, Alistair M; Zannettino, Andrew Cw; Martin, T John; Walkley, Carl R

    2016-04-12

    Mutations in the P53 pathway are a hallmark of human cancer. The identification of pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone. The consequences of p53 loss for osteoblastic cells and OS development are poorly understood. Here we use murine OS models to demonstrate that elevated Pthlh (Pthrp), cAMP levels and signalling via CREB1 are characteristic of both p53-deficient osteoblasts and OS. Normal osteoblasts survive depletion of both PTHrP and CREB1. In contrast, p53-deficient osteoblasts and OS depend upon continuous activation of this pathway and undergo proliferation arrest and apoptosis in the absence of PTHrP or CREB1. Our results identify the PTHrP-cAMP-CREB1 axis as an attractive pathway for therapeutic inhibition in OS.

  11. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance

    PubMed Central

    Walia, Mannu K; Ho, Patricia MW; Taylor, Scott; Ng, Alvin JM; Gupte, Ankita; Chalk, Alistair M; Zannettino, Andrew CW; Martin, T John; Walkley, Carl R

    2016-01-01

    Mutations in the P53 pathway are a hallmark of human cancer. The identification of pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone. The consequences of p53 loss for osteoblastic cells and OS development are poorly understood. Here we use murine OS models to demonstrate that elevated Pthlh (Pthrp), cAMP levels and signalling via CREB1 are characteristic of both p53-deficient osteoblasts and OS. Normal osteoblasts survive depletion of both PTHrP and CREB1. In contrast, p53-deficient osteoblasts and OS depend upon continuous activation of this pathway and undergo proliferation arrest and apoptosis in the absence of PTHrP or CREB1. Our results identify the PTHrP-cAMP-CREB1 axis as an attractive pathway for therapeutic inhibition in OS. DOI: http://dx.doi.org/10.7554/eLife.13446.001 PMID:27070462

  12. Resveratrol Modulates Interleukin-1β-induced Phosphatidylinositol 3-Kinase and Nuclear Factor κB Signaling Pathways in Human Tenocytes

    PubMed Central

    Busch, Franziska; Mobasheri, Ali; Shayan, Parviz; Lueders, Cora; Stahlmann, Ralf; Shakibaei, Mehdi

    2012-01-01

    Resveratrol, an activator of histone deacetylase Sirt-1, has been proposed to have beneficial health effects due to its antioxidant and anti-inflammatory properties. However, the mechanisms underlying the anti-inflammatory effects of resveratrol and the intracellular signaling pathways involved are poorly understood. An in vitro model of human tenocytes was used to examine the mechanism of resveratrol action on IL-1β-mediated inflammatory signaling. Resveratrol suppressed IL-1β-induced activation of NF-κB and PI3K in a dose- and time-dependent manner. Treatment with resveratrol enhanced the production of matrix components collagen types I and III, tenomodulin, and tenogenic transcription factor scleraxis, whereas it inhibited gene products involved in inflammation and apoptosis. IL-1β-induced NF-κB and PI3K activation was inhibited by resveratrol or the inhibitors of PI3K (wortmannin), c-Src (PP1), and Akt (SH-5) through inhibition of IκB kinase, IκBα phosphorylation, and inhibition of nuclear translocation of NF-κB, suggesting that PI3K signaling pathway may be one of the signaling pathways inhibited by resveratrol to abrogate NF-κB activation. Inhibition of PI3K by wortmannin attenuated IL-1β-induced Akt and p65 acetylation, suggesting that p65 is a downstream component of PI3K/Akt in these responses. The modulatory effects of resveratrol on IL-1β-induced activation of NF-κB and PI3K were found to be mediated at least in part by the association between Sirt-1 and scleraxis and deacetylation of NF-κB and PI3K. Overall, these results demonstrate that activated Sirt-1 plays an essential role in the anti-inflammatory effects of resveratrol and this may be mediated at least in part through inhibition/deacetylation of PI3K and NF-κB. PMID:22936809

  13. Emodin regulating excision repair cross-complementation group 1 through fibroblast growth factor receptor 2 signaling

    PubMed Central

    Chen, Gang; Qiu, Hong; Ke, Shan-Dong; Hu, Shao-Ming; Yu, Shi-Ying; Zou, Sheng-Quan

    2013-01-01

    AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cells, the inhibition rate (IR), 50% inhibitory concentration (IC50) and reversal index (IC50 in experimental group/IC50 in control group) were calculated. For HepG2, HepG2/OXA, HepG2/OXA/T, each cell line was divided into a control group, OXA group, OXA + fibroblast growth factor 7 (FGF7) group and OXA + emodin group, and the final concentrations of FGF7, emodin and OXA in each group were 5 ng/mL, 10 μg/mL and 10 μmol/L, respectively. Single-cell gel electrophoresis was conducted to detect DNA damage, and the fibroblast growth factor receptor 2 (FGFR2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and excision repair cross-complementing gene 1 (ERCC1) protein expression levels in each group were examined by Western blotting. RESULTS: Compared with the IC50 of 120.78 μmol/L in HepG2/OXA cells, the IC50 decreased to 39.65 μmol/L after treatment with 10 μmol/L emodin; thus, the reversal index was 3.05. Compared with the control group, the tail length and Olive tail length in the OXA group, OXA + FGF7 group and OXA + emodin group were significantly increased, and the differences were statistically significant (P < 0.01). The tail length and Olive tail length were lower in the OXA + FGF7 group than in the OXA group, and this difference was also statistically significant. Compared with the OXA + FGF7 group, the tail extent, the Olive tail moment and the percentage of tail DNA were significantly increased in the OXA + emodin group, and these differences were statistically significant (P < 0.01). In comparison with its parental cell line HepG2, the HepG2/OXA cells demonstrated significantly increased FGFR2, p-ERK1/2 and ERCC1 expression levels, whereas the expression of all three molecules was significantly inhibited in HepG2/OXA

  14. The proinflammatory LTB4/BLT1 signal axis confers resistance to TGF-β1-induced growth inhibition by targeting Smad3 linker region.

    PubMed

    Jeon, Woo-Kwang; Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Young K; Lim, Seunghwan; Kim, Jae-Hong; Letterio, John J; Liu, Fang; Kim, Seong-Jin; Kim, Byung-Chul

    2015-12-08

    Leukotriene B4 (LTB4) is a potent pro-inflammatory eicosanoid that is derived from arachidonic acid, and its signaling is known to have a tumor-promoting role in several cancer types. In this study, we investigated whether enhanced LTB4 signaling confers resistance to the cytostatic transforming growth factor1 (TGF-β1) response. We found that LTB4 pretreatment or ectopic expression of BLT1, a high affinity LTB4 receptor, fully abrogated TGF-β1-induced cell cycle arrest and expression of p15INK4B and p27KIP1. Mechanism study revealed that LTB4-mediated suppression of TGF-β1-induced Smad3 activation and growth inhibition was due to enhanced phosphorylation of Smad3 linker region (pSmad3L) through activation of BLT1-NAD(P)H oxidase (NOX)-reactive oxygen species (ROS)-epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3-K)-extracellular signal-activated kinase1/2 (ERK1/2)-linked signaling cascade. Furthermore, the LTB4/BLT1 signaling pathway leading to pSmad3L was constitutively activated in breast cancer cells and was correlated with TGF-β1-resistant growth of the cells in vitro and in vivo. In human breast cancer tissues, the expression level of pSmad3L (Thr179) had a positive correlation with BLT1 expression. Collectively, our data demonstrate for the first time that the induction of pSmad3L through BLT1-NOX-ROS-EGFR-PI3K-ERK1/2 signaling pathway is a key mechanism by which LTB4 blocks the anti-proliferative responses of TGF-β1, providing a novel mechanistic insight into the connection between enhanced inflammatory signal and cancer cell growth.

  15. The proinflammatory LTB4/BLT1 signal axis confers resistance to TGF-β1-induced growth inhibition by targeting Smad3 linker region

    PubMed Central

    Park, Seong Ji; Jo, Eun Ji; Lee, Young K.; Lim, Seunghwan; Kim, Jae-Hong; Letterio, John J.; Liu, Fang; Kim, Seong-Jin; Kim, Byung-Chul

    2015-01-01

    Leukotriene B4 (LTB4) is a potent pro-inflammatory eicosanoid that is derived from arachidonic acid, and its signaling is known to have a tumor-promoting role in several cancer types. In this study, we investigated whether enhanced LTB4 signaling confers resistance to the cytostatic transforming growth factor1 (TGF-β1) response. We found that LTB4 pretreatment or ectopic expression of BLT1, a high affinity LTB4 receptor, fully abrogated TGF-β1-induced cell cycle arrest and expression of p15INK4B and p27KIP1. Mechanism study revealed that LTB4-mediated suppression of TGF-β1-induced Smad3 activation and growth inhibition was due to enhanced phosphorylation of Smad3 linker region (pSmad3L) through activation of BLT1-NAD(P)H oxidase (NOX)-reactive oxygen species (ROS)-epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3-K)-extracellular signal-activated kinase1/2 (ERK1/2)-linked signaling cascade. Furthermore, the LTB4/BLT1 signaling pathway leading to pSmad3L was constitutively activated in breast cancer cells and was correlated with TGF-β1-resistant growth of the cells in vitro and in vivo. In human breast cancer tissues, the expression level of pSmad3L (Thr179) had a positive correlation with BLT1 expression. Collectively, our data demonstrate for the first time that the induction of pSmad3L through BLT1-NOX-ROS-EGFR-PI3K-ERK1/2 signaling pathway is a key mechanism by which LTB4 blocks the anti-proliferative responses of TGF-β1, providing a novel mechanistic insight into the connection between enhanced inflammatory signal and cancer cell growth. PMID:26497676

  16. Endothelin-converting Enzyme 1 and β-Arrestins Exert Spatiotemporal Control of Substance P-induced Inflammatory Signals*

    PubMed Central

    Jensen, Dane D.; Halls, Michelle L.; Murphy, Jane E.; Canals, Meritxell; Cattaruzza, Fiore; Poole, Daniel P.; Lieu, TinaMarie; Koon, Hon-Wai; Pothoulakis, Charalabos; Bunnett, Nigel W.

    2014-01-01

    Although the intracellular trafficking of G protein-coupled receptors controls specific signaling events, it is unclear how the spatiotemporal control of signaling contributes to complex pathophysiological processes such as inflammation. By using bioluminescence resonance energy transfer and superresolution microscopy, we found that substance P (SP) induces the association of the neurokinin 1 receptor (NK1R) with two classes of proteins that regulate SP signaling from plasma and endosomal membranes: the scaffolding proteins β-arrestin (βARRs) 1 and 2 and the transmembrane metallopeptidases ECE-1c and ECE-1d. In HEK293 cells and non-transformed human colonocytes, we observed that G protein-coupled receptor kinase 2 and βARR1/2 terminate plasma membrane Ca2+ signaling and initiate receptor trafficking to endosomes that is necessary for sustained activation of ERKs in the nucleus. βARRs deliver the SP-NK1R endosomes, where ECE-1 associates with the complex, degrades SP, and allows the NK1R, freed from βARRs, to recycle. Thus, both ECE-1 and βARRs mediate the resensitization of NK1R Ca2+ signaling at the plasma membrane. Sustained exposure of colonocytes to SP activates NF-κB and stimulates IL-8 secretion. This proinflammatory signaling is unaffected by inhibition of the endosomal ERK pathway but is suppressed by ECE-1 inhibition or βARR2 knockdown. Inhibition of protein phosphatase 2A, which also contributes to sustained NK1R signaling at the plasma membrane, similarly attenuates IL-8 secretion. Thus, the primary function of βARRs and ECE-1 in SP-dependent inflammatory signaling is to promote resensitization, which allows the sustained NK1R signaling from the plasma membrane that drives inflammation. PMID:24898255

  17. Endothelin-converting enzyme 1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals.

    PubMed

    Jensen, Dane D; Halls, Michelle L; Murphy, Jane E; Canals, Meritxell; Cattaruzza, Fiore; Poole, Daniel P; Lieu, TinaMarie; Koon, Hon-Wai; Pothoulakis, Charalabos; Bunnett, Nigel W

    2014-07-18

    Although the intracellular trafficking of G protein-coupled receptors controls specific signaling events, it is unclear how the spatiotemporal control of signaling contributes to complex pathophysiological processes such as inflammation. By using bioluminescence resonance energy transfer and superresolution microscopy, we found that substance P (SP) induces the association of the neurokinin 1 receptor (NK1R) with two classes of proteins that regulate SP signaling from plasma and endosomal membranes: the scaffolding proteins β-arrestin (βARRs) 1 and 2 and the transmembrane metallopeptidases ECE-1c and ECE-1d. In HEK293 cells and non-transformed human colonocytes, we observed that G protein-coupled receptor kinase 2 and βARR1/2 terminate plasma membrane Ca(2+) signaling and initiate receptor trafficking to endosomes that is necessary for sustained activation of ERKs in the nucleus. βARRs deliver the SP-NK1R endosomes, where ECE-1 associates with the complex, degrades SP, and allows the NK1R, freed from βARRs, to recycle. Thus, both ECE-1 and βARRs mediate the resensitization of NK1R Ca(2+) signaling at the plasma membrane. Sustained exposure of colonocytes to SP activates NF-κB and stimulates IL-8 secretion. This proinflammatory signaling is unaffected by inhibition of the endosomal ERK pathway but is suppressed by ECE-1 inhibition or βARR2 knockdown. Inhibition of protein phosphatase 2A, which also contributes to sustained NK1R signaling at the plasma membrane, similarly attenuates IL-8 secretion. Thus, the primary function of βARRs and ECE-1 in SP-dependent inflammatory signaling is to promote resensitization, which allows the sustained NK1R signaling from the plasma membrane that drives inflammation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging.

    PubMed

    Barna, János; Princz, Andrea; Kosztelnik, Mónika; Hargitai, Balázs; Takács-Vellai, Krisztina; Vellai, Tibor

    2012-11-01

    Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.

  19. mTOR signaling promotes foam cell formation and inhibits foam cell egress through suppressing the SIRT1 signaling pathway.

    PubMed

    Zheng, Haixiang; Fu, Yucai; Huang, Yusheng; Zheng, Xinde; Yu, Wei; Wang, Wei

    2017-09-01

    Atherosclerosis (AS) is a chronic immuno‑inflammatory disease accompanied by dyslipidemia. The authors previously demonstrated that sirtuin 1 (SIRT1) may prevent atherogenesis through influencing the liver X receptor/C‑C chemokine receptor type 7/nuclear factor‑κB (LXR‑CCR7/NF‑κB) signaling pathway. Previous studies have suggested a role for mammalian target of rapamycin (mTOR) signaling in the pathogenesis of cardiovascular diseases. The present study investigated the potential association between mTOR signaling and SIRT1‑LXR‑CCR7/NF‑κB signaling (SIRT1 signaling) in AS pathogenesis. To induce foam cell formation, U937 cells were differentiated into macrophages by exposure to phorbol 12‑myristate 13‑acetate (PMA) for 24 h, followed by treatment with palmitate and oxidized low density lipoprotein for a further 24 h. Oil red O staining revealed a large accumulation of lipid droplets present in foam cells. Western blot analysis demonstrated increased protein levels of phosphorylated (p)‑mTOR and its downstream factor p‑ribosomal protein S6 kinase (p70S6K). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses additionally revealed decreased expression of SIRT1, LXRα and CCR7 and increased expression of NF‑κB and its downstream factor tumor necrosis factor‑α (TNF‑α) in an atherogenetic condition induced by lysophosphatidic acid (LPA). In addition, abundant lipid droplets accumulated in U937‑LPA‑treated foam cells. Rapamycin, an mTOR inhibitor, suppressed the expression and activity of mTOR and p70S6K, however enhanced expression of SIRT1, LXRα, and CCR7. Conversely, rapamycin deceased TNF‑α and NF‑κB activity, the latter of which was further confirmed by immunofluorescence analysis demonstrating increased levels of NF‑κB present in the cytoplasm compared with the nucleus. The findings of the present study suggest that mTOR signaling promotes foam cell formation and inhibits foam

  20. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.

    PubMed

    Oliveira, Edna Maria Morais; Mansure, José João; Bon, Elba Pinto da Silva

    2005-04-01

    In Saccharomyces cerevisiae, sensing and signalling pathways regulate gene expression in response to quality of carbon and nitrogen sources. One such system, the target of rapamycin (Tor) proteins, senses nutrients and uses the GATA activators Gln3p and Nil1p to regulate translation in response to low-quality carbon and nitrogen. The signal transduction, triggered in response to nitrogen nutrition that is sensed by the Tor proteins, operates via a regulatory pathway involving the cytoplasmic factor Ure2p. When carbon and nitrogen are abundant, the phosphorylated Ure2p anchors the also phosphorylated Gln3p and Nil1p in the cytoplasm. Upon a shift from high- to low-quality nitrogen or treatment with rapamycin all three proteins are dephosphorylated, causing Gln3p and Nil1p to enter the nucleus and promote transcription. The genes that code for yeast periplasmic enzymes with nutritional roles would be obvious targets for regulation by the sensing and signalling pathways that respond to quality of carbon and nitrogen sources. Indeed, previous results from our laboratory had shown that the GATA factors Gln3p, Nil1p, Dal80p, Nil2p and also the protein Ure2 regulate the expression of asparaginase II, coded by ASP3. We also had observed that the activity levels of the also periplasmic invertase, coded by SUC2, were 6-fold lower in ure2 mutant cells in comparison to wild-type cells collected at stationary phase. These results suggested similarities between the signalling pathways regulating the expression of ASP3 and SUC2. In the present work we showed that invertase levels displayed by the single nil1 and gln3 and by the double gln3nil1 mutant cells, cultivated in a sucrose-ammonium medium and collected at the exponential phase, were 6-, 10- and 60-fold higher, respectively, in comparison to their wild-type counterparts. RT-PCR data of SUC2 expression in the double-mutant cells indicated a 10-fold increase in the mRNA(SUC2) levels.

  1. Stimulation of EphB2/ephrin-B1 signalling by tumour necrosis factor alpha in human dental pulp stem cells.

    PubMed

    Zhu, Lifang; Dissanayaka, Waruna Lakmal; Green, David William; Zhang, Chengfei

    2015-04-01

    The aim of this study was to investigate whether in vitro stimulation of dental pulp stem cells (DPSCs) by tumour necrosis factor alpha (TNF-α) would induce secretion of EphB2/ephrin-B1 signalling. Dental pulp stem cells isolated from human dental pulp were treated with TNF-α (5-100 ng/ml) over 2-48 h. EphB2/ephrin-B1 mRNA and protein levels were measured by real-time polymerase chain reaction (RT-PCR) and western blot analysis respectively. Additionally, DPSCs were pre-incubated with TNF-α receptor neutralizing antibodies or infected with nuclear factor-kappa B (NF-ĸB) inhibitor, p38 MAPK inhibitor, Jun N-terminal kinase (JNK) inhibitor and MEK inhibitor before TNF-α treatment. Results were analysed by one-way ANOVA. Tumour necrosis factor alpha increased EphB2 mRNA expression in DPSCs at concentrations up to 20 ng/ml and ephrin-B1 at concentrations up to 40 ng/ml (P < 0.05). Its mRNA expression reached maximum at 24 h when treated with TNF-α at 20 ng/ml (P < 0.05). EphB2/ephrin-B1 protein expression levels were high at 16 and 24 h as shown by western blotting. Neutralizing antibodies for TNFR1/2 receptors down-regulated EphB2/ephrin-B1 mRNA expression (P < 0.05) and ephrin-B1 protein expression, but not EphB2 protein expression. JNK-inhibitor inhibited EphB2 mRNA expression only (P < 0.05). EphB2/ephrin-B1 were invoked in DPSCs with TNF-α treatment via the JNK-dependent pathway, but not NF-ĸB, p38 MAPK or MEK signalling. © 2015 John Wiley & Sons Ltd.

  2. Aspirin Reduces Cardiac Interstitial Fibrosis by Inhibiting Erk1/2-Serpine2 and P-Akt Signalling Pathways.

    PubMed

    Li, Xuelian; Wang, GuoYuan; QiLi, MuGe; Liang, HaiHai; Li, TianShi; E, XiaoQiang; Feng, Ying; Zhang, Ying; Liu, Xiao; Qian, Ming; Xu, BoZhi; Shen, ZhiHang; Gitau, Samuel Chege; Zhao, DanDan; Shan, HongLi

    2018-01-01

    Cardiac interstitial fibrosis is an abnormality of various cardiovascular diseases, including myocardial infarction, hypertrophy, and atrial fibrillation, and it can ultimately lead to heart failure. However, there is a lack of practical therapeutic approaches to treat fibrosis and reverse the damage to the heart. The purpose of this study was to investigate the effect of long-term aspirin administration on pressure overload-induced cardiac fibrosis in mice and reveal the underlying mechanisms of aspirin treatment. C57BL/6 mice were subjected to transverse aortic constriction (TAC), and treated with 10 mg·kg-1·day-1 of aspirin for 4 weeks. Masson staining and a collagen content assay were used to detect the effects of aspirin on cardiac fibrosis in vivo and in vitro. Western blot and qRT-PCR were applied to examine the impact of aspirin on extracellular signal-regulated kinases (Erks), p-Akt/β-catenin, SerpinE2, collagen I, and collagen III levels in the mice heart. Aspirin significantly suppressed the expression of α-smooth muscle actin (α-SMA; 1.19±0.19-fold) and collagen I (0.95±0.09-fold) in TAC mice. Aspirin, at doses of 100 and 1000 µM, also significantly suppressed angiotensin II-induced α-SMA and collagen I in cultured CFs. The enhanced phosphorylation of Erk1/2 caused by TAC (p-Erk1, 1.49±0.19-fold; p-Erk2, 1.96±0.68-fold) was suppressed by aspirin (p-Erk1, 1.04±0.15-fold; p-Erk2, 0.87±0.06-fold). SerpinE2 levels were suppressed via the Erk1/2 signalling pathway following treatment with aspirin (1.36±0.12-fold for TAC; 1.06±0.07-fold for aspirin+TAC). The p-Akt and β-catenin levels were also significantly inhibited in vivo and in vitro. Our study reveals a novel mechanism by which aspirin alleviates pressure overload-induced cardiac interstitial fibrosis in TAC mice by suppressing the p-Erk1/2 and p-Akt/β-catenin signalling pathways. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    PubMed

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  4. PalC, One of Two Bro1 Domain Proteins in the Fungal pH Signalling Pathway, Localizes to Cortical Structures and Binds Vps32

    PubMed Central

    Galindo, Antonio; Hervás-Aguilar, América; Rodríguez-Galán, Olga; Vincent, Olivier; Arst, Herbert N; Tilburn, Joan; Peñalva, Miguel A

    2007-01-01

    PalC, distantly related to Saccharomyces cerevisiaeperipheral endosomal sorting complexes required for transport III (ESCRT-III) component Bro1p and one of six Aspergillus nidulanspH signalling proteins, contains a Bro1 domain. Green fluorescent protein (GFP)-tagged PalC is recruited to plasma membrane-associated punctate structures upon alkalinization, when pH signalling is active. PalC recruitment to these structures is dependent on the seven transmembrane domain (7-TMD) receptor and likely pH sensor PalH. PalC is a two-hybrid interactor of the ESCRT-III Vps20/Vps32 subcomplex and binds Vps32 directly. This binding is largely impaired by Pro439Phe, Arg442Ala and Arg442His substitutions in a conserved region mediating interaction of Bro1p with Vps32p, but these substitutions do not prevent cortical punctate localization, indicating Vps32 independence. In contrast, Arg442Δ impairs Vps32 binding and prevents PalC-GFP recruitment to cortical structures. pH signalling involves a plasma membrane complex including the 7-TMD receptor PalH and the arrestin-like PalF and an endosomal membrane complex involving the PalB protease, the transcription factor PacC and the Vps32 binding, Bro1-domain-containing protein PalA. PalC, which localizes to cortical structures and can additionally bind a component of ESCRT-III, has the features required to bridge these two entities. A likely S. cerevisiaeorthologue of PalC has been identified, providing the basis for a unifying hypothesis of gene regulation by ambient pH in ascomycetes. PMID:17696968

  5. Involvement of nuclear factor κB in platelet CD40 signaling.

    PubMed

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Association of Sphingosine-1-phosphate (S1P)/S1P Receptor-1 Pathway with Cell Proliferation and Survival in Canine Hemangiosarcoma.

    PubMed

    Rodriguez, A M; Graef, A J; LeVine, D N; Cohen, I R; Modiano, J F; Kim, J-H

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a key biolipid signaling molecule that regulates cell growth and survival, but it has not been studied in tumors from dogs. S1P/S1P1 signaling will contribute to the progression of hemangiosarcoma (HSA). Thirteen spontaneous HSA tissues, 9 HSA cell lines, 8 nonmalignant tissues, including 6 splenic hematomas and 2 livers with vacuolar degeneration, and 1 endothelial cell line derived from a dog with splenic hematoma were used. This was a retrospective case series and in vitro study. Samples were obtained as part of medically necessary diagnostic procedures. Microarray, qRT-PCR, immunohistochemistry, and immunoblotting were performed to examine S1P1 expression. S1P concentrations were measured by high-performance liquid chromatography/mass spectrometry. S1P signaling was evaluated by intracellular Ca(2+) mobilization; proliferation and survival were evaluated using the MTS assay and Annexin V staining. Canine HSA cells expressed higher levels of S1P1 mRNA than nonmalignant endothelial cells. S1P1 protein was present in HSA tissues and cell lines. HSA cells appeared to produce low levels of S1P, but they selectively consumed S1P from the culture media. Exogenous S1P induced an increase in intracellular calcium as well as increased proliferation and viability of HSA cells. Prolonged treatment with FTY720, an inhibitor of S1P1 , decreased S1P1 protein expression and induced apoptosis of HSA cells. S1P/S1P1 signaling pathway functions to maintain HSA cell viability and proliferation. The data suggest that S1P1 or the S1P pathway in general could be targets for therapeutic intervention for dogs with HSA. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  7. The IRS-1 signaling system.

    PubMed

    White, M F

    1994-02-01

    IRS-1 is a principal substrate of the insulin receptor tyrosine kinase. It undergoes multi-site tyrosine phosphorylation and mediates the insulin signal by associating with various signaling molecules containing Src homology 2 domains. Interleukin-4 also stimulates IRS-1 phosphorylation, and it is suspected that a few more growth factors or cytokines will be added to form a select group of receptors that utilize the IRS-1 signaling pathway. More IRS-1-like adapter molecules, such as 4PS (IRS-2), may remain to be found.

  8. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling.

    PubMed

    Izutsu, K; Kurokawa, M; Imai, Y; Maki, K; Mitani, K; Hirai, H

    2001-05-01

    Evi-1 is a zinc finger nuclear protein whose inappropriate expression leads to leukemic transformation of hematopoietic cells in mice and humans. This was previously shown to block the antiproliferative effect of transforming growth factor beta (TGF-beta). Evi-1 represses TGF-beta signaling by direct interaction with Smad3 through its first zinc finger motif. Here, it is demonstrated that Evi-1 represses Smad-induced transcription by recruiting C-terminal binding protein (CtBP) as a corepressor. Evi-1 associates with CtBP1 through one of the consensus binding motifs, and this association is required for efficient inhibition of TGF-beta signaling. A specific inhibitor for histone deacetylase (HDAc) alleviates Evi-1-mediated repression of TGF-beta signaling, suggesting that HDAc is involved in the transcriptional repression by Evi-1. This identifies a novel function of Evi-1 as a member of corepressor complexes and suggests that aberrant recruitment of corepressors is one of the mechanisms for Evi-1-induced leukemogenesis.

  9. Adaptive and Innate Transforming Growth Factor β Signaling Impact Herpes Simplex Virus 1 Latency and Reactivation▿

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Wechsler, Steven L.; Flavell, Richard A.; Town, Terrence; Ghiasi, Homayon

    2011-01-01

    Innate and adaptive immunity play important protective roles by combating herpes simplex virus 1 (HSV-1) infection. Transforming growth factor β (TGF-β) is a key negative cytokine regulator of both innate and adaptive immune responses. Yet, it is unknown whether TGF-β signaling in either immune compartment impacts HSV-1 replication and latency. We undertook genetic approaches to address these issues by infecting two different dominant negative TGF-β receptor type II transgenic mouse lines. These mice have specific TGF-β signaling blockades in either T cells or innate cells. Mice were ocularly infected with HSV-1 to evaluate the effects of restricted innate or adaptive TGF-β signaling during acute and latent infections. Limiting innate cell but not T cell TGF-β signaling reduced virus replication in the eyes of infected mice. On the other hand, blocking TGF-β signaling in either innate cells or T cells resulted in decreased latency in the trigeminal ganglia of infected mice. Furthermore, inhibiting TGF-β signaling in T cells reduced cell lysis and leukocyte infiltration in corneas and trigeminal ganglia during primary HSV-1 infection of mice. These findings strongly suggest that TGF-β signaling, which generally functions to dampen immune responses, results in increased HSV-1 latency. PMID:21880769

  10. ZEB1 Mediates Drug Resistance and EMT in p300-Deficient CRC.

    PubMed

    Lazarova, Darina; Bordonaro, Michael

    2017-01-01

    We discuss the hypothesis that ZEB1-Wnt-p300 signaling integrates epithelial to mesenchymal transition (EMT) and resistance to histone deacetylase inhibitors (HDACis) in colorectal cancer (CRC) cells. The HDACi butyrate, derived from dietary fiber, has been linked to CRC prevention, and other HDACis have been proposed as therapeutic agents against CRC. We have previously discussed that resistance to butyrate likely contributes to colonic carcinogenesis, and we have demonstrated that butyrate resistance leads to cross-resistance to cancer therapeutic HDACis. Deregulated Wnt signaling is the major initiating event in most CRC cases. One mechanism whereby butyrate and other HDACis exert their anti-CRC effects is via Wnt signaling hyperactivation, which promotes CRC cell apoptosis. The histone acetylases (HATs) CBP and p300 are mediators of Wnt transcriptional activity, and play divergent roles in the downstream consequences of Wnt signaling. CBP-mediated Wnt signaling is associated with cell proliferation and stem cell maintenance; whereas, p300-mediated Wnt activity is associated with differentiation. We have found that CBP and p300 differentially affect the ability of butyrate to influence Wnt signaling, apoptosis, and proliferation. ZEB 1 is a Wnt signaling-targeted gene, whose product is a transcription factor expressed at the invasive front of carcinomas where it promotes malignant progression and EMT. ZEB1 is typically a transcriptional repressor; however, when associated with p300, ZEB1 enhances transcription. These changes in ZEB1 activity likely affect the cancer cell phenotype. ZEB1 has been shown to promote resistance to chemotherapeutic agents, and expression of ZEB1 is upregulated in butyrate-resistant CRC cells that lack p300 expression. Since the expression of ZEB1 correlates with poor outcomes in cancer, ZEB represents a relevant therapeutic target. Here we propose that targeting the signaling network established by ZEB1, Wnt signaling, and p300

  11. Citrullus colocynthis NAC transcription factors CcNAC1 and CcNAC2 are involved in light and auxin signaling.

    PubMed

    Wang, Zhuoyu; Rashotte, Aaron M; Dane, Fenny

    2014-10-01

    Two novel NAC transcription factors from C itrullus colocynthis implicated in light and auxin signaling pathway. NAC transcription factors (NAM, ATAF1, 2, CUC2) have multiple functions in plant growth and development. Two NACs, CcNAC1 and CcNAC2, were recently identified in the highly drought-tolerant cucurbit species, Citrullus colocynthis. This study examines the functional role of these genes under different qualities of light based on the in silico analysis of the CcNAC1 and CcNAC2 promoters that revealed the presence of several light-associated motifs. The impact of both light and auxin on CcNAC1 and CcNAC2 expression was examined in C. colocynthis leaves, and using reporter (pCcNAC1, 2::GUS) lines in Arabidopsis. Furthermore, the effects of constitutive overexpression (OE-CcNAC1, 2) in Arabidopsis were also examined under a range of conditions to confirm reporter line linkages. White, blue, red, and far-red light treatments resulted in similar patterns of quantitative changes in CcNAC1and CcNAC2 expression in both species, with the highest transcript increases following red light. Photomorphogenic changes in Arabidopsis hypocotyls were correlated with gene transcript levels. In the absence of light, hypocotyls of OE-CcNAC1/CcNAC2 lines were significantly longer as compared to WT. The addition of exogenous auxin (+IAA) to growth medium also resulted in changes to the hypocotyl lengths of overexpression lines and spatiotemporal reporter line changes in seedlings. Our data suggest that CcNAC1, 2 might be functionally important in the light signaling pathway, and appear connected to the hormone auxin. This is the first study to indicate that NAC genes might play a role in both light and auxin signaling pathways.

  12. Semen Brassicae ameliorates hepatic fibrosis by regulating transforming growth factor1/Smad, nuclear factor-κB, and AKT signaling pathways in rats.

    PubMed

    Cao, Si; Zheng, Baoping; Chen, Tao; Chang, Xinfeng; Yin, Bao; Huang, Zhihua; Shuai, Ping; Han, Limin

    2018-01-01

    There is no effective treatment for liver fibrosis, which is a common phase during the progression of many chronic liver diseases to cirrhosis. Previous studies found that Semen Brassicae therapy can effectively improve the clinical symptoms of patients with asthma, allergic rhinitis, and chronic lung diseases; however, its effects on liver fibrosis in rats and its possible mechanisms of action remain unclear. Rats were injected intraperitoneally with 4% thioacetamide aqueous solution (5 mL·kg -1 ) at a dose of 200 mg·kg -1 twice a week for 8 consecutive weeks to establish the liver fibrosis model and were then treated with different concentrations of Semen Brassicae extract. After Semen Brassicae treatment, the morphology of the liver tissue was analyzed using hematoxylin and eosin and Masson's trichrome staining, and liver index and liver fibrosis grade were calculated. Thereafter, the levels of collagen-I, collagen-III, α-SMA, transforming growth factor (TGF)-β1, p-Smad 2/3, Smad 2/3, Smad4, NF-κB-p65, p-NF-κB-p65, IL-1β, IL-6, AKT, and p-AKT were determined using Western blotting. Compared with the untreated model group, the Semen Brassicae-treated group showed significantly decreased liver function indices; expression levels of collagen-I, collagen-III, and α-SMA; and hepatic fibrosis. Further studies also showed that the expression of TGF-β1, Smad4, p-Smad 2/3/Smad 2/3, p-NF-κB-p65/NF-κB-p65, IL-1β, IL-6, and p-AKT/AKT significantly decreased after the treatment. These results indicate that Semen Brassicae exhibits an anti-hepatic fibrosis effect, and the underlying mechanism of action may be related to the regulation of TGF-β1/Smad, NF-κB, and AKT signaling pathways and the reduction of extracellular matrix deposition.

  13. Hydrogen peroxide inhibits transforming growth factor1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Formononetin accelerates wound repair by the regulation of early growth response factor-1 transcription factor through the phosphorylation of the ERK and p38 MAPK pathways.

    PubMed

    Huh, Jeong-Eun; Nam, Dong-Woo; Baek, Young-Hyun; Kang, Jung Won; Park, Dong-Suk; Choi, Do-Young; Lee, Jae-Dong

    2011-01-01

    Formononetin, a phytoestrogen from the root of Astragalus membranaceus, is used as a blood enhancer and to improve blood microcirculation in complementary and alternative medicine. The present study investigated the influence of formononetin on the expression of early growth response factor-1 (Egr-1) and growth factors contributing to wound healing. Formononetin significantly increased growth factors such as transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) in human umbilical vein endothelial cells (HUVECs). Formononetin also increased the expression of Egr-1 transcription factor by 3.2- and 10.5-fold, compared with recombinant VEGF(125) in HUVECs. The formononetin-mediated 12%-43% increase induced endothelial cell proliferation and recovered the migration of wounded HUVECs. In an ex vivo angiogenesis assay, formononetin produced a larger capillary sprouting area than produced using recombinant VEGF(125). Cell proliferation and migration of HUVECs were also greater in the presence of formonectin than VEGF(125). Western blot analysis of scratch-wounded confluent HUVECs showed that formononetin induced the phosphorylation of extracellular signal-regulated kinase (ERK) and slightly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The formononetin-mediated sustained activation of Egr-1 was suppressed by the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PD98059 inhibited the formononetin-induced endothelial proliferation and repair in scratch-wounded HUVECs, SB203580 increased the cell proliferation and wound healing. Formononetin accelerate wound closure rate as early as day 3 after surgery and consistently observed until day 10 after in wound animal model. These data suggest that formononetin promotes endothelial repair and wound healing in a process involving the over-expression of Egr-1 transcription factor

  15. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jui Tung; Bain, Lisa J., E-mail: lbain@clemson.edu; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mousemore » embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  16. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    PubMed

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Preferential Targeting of a Signal Recognition Particle-dependent Precursor to the Ssh1p Translocon in Yeast♦

    PubMed Central

    Spiller, Michael P.; Stirling, Colin J.

    2011-01-01

    Protein translocation across the endoplasmic reticulum membrane occurs via a “translocon” channel formed by the Sec61p complex. In yeast, two channels exist: the canonical Sec61p channel and a homolog called Ssh1p. Here, we used trapped translocation intermediates to demonstrate that a specific signal recognition particle-dependent substrate, Sec71p, is targeted exclusively to Ssh1p. Strikingly, we found that, in the absence of Ssh1p, precursor could be successfully redirected to canonical Sec61p, demonstrating that the normal targeting reaction must involve preferential sorting to Ssh1p. Our data therefore demonstrate that Ssh1p is the primary translocon for Sec71p and reveal a novel sorting mechanism at the level of the endoplasmic reticulum membrane enabling precursors to be directed to distinct translocons. Interestingly, the Ssh1p-dependent translocation of Sec71p was found to be dependent upon Sec63p, demonstrating a previously unappreciated functional interaction between Sec63p and the Ssh1p translocon. PMID:21454595

  18. WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors.

    PubMed

    Motamedi, Fariba Jian; Badro, Danielle A; Clarkson, Michael; Lecca, M Rita; Bradford, Stephen T; Buske, Fabian A; Saar, Kathrin; Hübner, Norbert; Brändli, André W; Schedl, Andreas

    2014-07-17

    Kidney organogenesis requires the tight control of proliferation, differentiation and apoptosis of renal progenitor cells. How the balance between these cellular decisions is achieved remains elusive. The Wilms' tumour suppressor Wt1 is required for progenitor survival, but the molecular cause for renal agenesis in mutants is poorly understood. Here we demonstrate that lack of Wt1 abolishes fibroblast growth factor (FGF) and induces BMP/pSMAD signalling within the metanephric mesenchyme. Addition of recombinant FGFs or inhibition of pSMAD signalling rescues progenitor cell apoptosis induced by the loss of Wt1. We further show that recombinant BMP4, but not BMP7, induces an apoptotic response within the early kidney that can be suppressed by simultaneous addition of FGFs. These data reveal a hitherto unknown sensitivity of early renal progenitors to pSMAD signalling, establishes FGF and pSMAD signalling as antagonistic forces in early kidney development and places WT1 as a key regulator of pro-survival FGF signalling pathway genes.

  19. Lysosomes shape Ins(1,4,5)P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum

    PubMed Central

    López-Sanjurjo, Cristina I.; Tovey, Stephen C.; Prole, David L.; Taylor, Colin W.

    2013-01-01

    Summary Most intracellular Ca2+ signals result from opening of Ca2+ channels in the plasma membrane or endoplasmic reticulum (ER), and they are reversed by active transport across these membranes or by shuttling Ca2+ into mitochondria. Ca2+ channels in lysosomes contribute to endo-lysosomal trafficking and Ca2+ signalling, but the role of lysosomal Ca2+ uptake in Ca2+ signalling is unexplored. Inhibition of lysosomal Ca2+ uptake by dissipating the H+ gradient (using bafilomycin A1), perforating lysosomal membranes (using glycyl-L-phenylalanine 2-naphthylamide) or lysosome fusion (using vacuolin) increased the Ca2+ signals evoked by receptors that stimulate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] formation. Bafilomycin A1 amplified the Ca2+ signals evoked by photolysis of caged Ins(1,4,5)P3 or by inhibition of ER Ca2+ pumps, and it slowed recovery from them. Ca2+ signals evoked by store-operated Ca2+ entry were unaffected by bafilomycin A1. Video-imaging with total internal reflection fluorescence microscopy revealed that lysosomes were motile and remained intimately associated with the ER. Close association of lysosomes with the ER allows them selectively to accumulate Ca2+ released by Ins(1,4,5)P3 receptors. PMID:23097044

  20. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against

  1. Involvement of suppressor of cytokine signaling-1 in globular adiponectin-induced granulocyte colony-stimulating factor in RAW 264 cell.

    PubMed

    Fujimoto, Akie; Akifusa, Sumio; Hirofuji, Takao; Yamashita, Yoshihisa

    2011-09-01

    We previously demonstrated that treatment with a globular type of adiponectin (gAd) induced expression of granulocyte colony-stimulating factor (G-CSF) via the MEK/ERK signaling pathway in a murine macrophage cell line, RAW 264. In the present study, we investigated whether suppressor of cytokine signaling-1 (SOCS1) has roles in the regulation of gAd-induced G-CSF generation. Intracellular G-CSF generation induced by gAd treatment peaked after 10h and then attenuated. SOCS1 mRNA and protein were expressed at 1h and 4h after gAd treatment, respectively. Overexpression of SOCS1 reduced G-CSF generation and phosphorylation of ERK, JNK, and p38 MAPK in gAd-treated cells. While gAd treatment induced the translocation of STAT3 to the nucleus under control conditions, STAT3 stayed in the cytosol when SOCS1 was overexpressed. Additionally, knockdown of SOCS1 by interfering RNA caused levels of G-CSF to continue to rise beyond 10h after gAd treatment. These results suggest that SOCS1 is involved in providing negative feedback for gAd-induced production of G-CSF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    PubMed

    Trivigno, Catherine; Haerry, Theodor E

    2011-02-25

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  3. The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    PubMed Central

    Trivigno, Catherine; Haerry, Theodor E.

    2011-01-01

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low. PMID:21364917

  4. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

    PubMed

    Higashi, Kiyoshi; Inagaki, Yutaka; Fujimori, Ko; Nakao, Atsuhito; Kaneko, Hideo; Nakatsuka, Iwao

    2003-10-31

    Transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) exert antagonistic effects on collagen synthesis in human dermal fibroblasts. We have recently shown that Y box-binding protein YB-1 mediates the inhibitory effects of IFN-gamma on alpha2(I) procollagen gene (COL1A2) transcription through the IFN-gamma response element located between -161 and -150. Here we report that YB-1 counter-represses TGF-beta-stimulated COL1A2 transcription by interfering with Smad3 bound to the upstream sequence around -265 and subsequently by interrupting the Smad3-p300 interaction. Western blot and immunofluorescence analyses using inhibitors for Janus kinases or casein kinase II suggested that the casein kinase II-dependent signaling pathway mediates IFN-gamma-induced nuclear translocation of YB-1. Down-regulation of endogenous YB-1 expression by double-stranded YB-1-specific RNA abrogated the transcriptional repression of COL1A2 by IFN-gamma in the absence and presence of TGF-beta. In transient transfection assays, overexpression of YB-1 in human dermal fibroblasts exhibited antagonistic actions against TGF-beta and Smad3. Physical interaction between Smad3 and YB-1 was demonstrated by immunoprecipitation-Western blot analyses, and electrophoretic mobility shift assays using the recombinant Smad3 and YB-1 proteins indicated that YB-1 forms a complex with Smad3 bound to the Smad-binding element. Glutathione S-transferase pull-down assays showed that YB-1 binds to the MH1 domain of Smad3, whereas the central and carboxyl-terminal regions of YB-1 were required for its interaction with Smad3. YB-1 also interferes with the Smad3-p300 interaction by its preferential binding to p300. Altogether, the results provide a novel insight into the mechanism by which IFN-gamma/YB-1 counteracts TGF-beta/Smad3. They also indicate that IFN-gamma/YB-1 inhibits COL1A2 transcription by dual actions: via the IFN-gamma response element and through a cross-talk with the TGF

  5. Tumor necrosis factor receptor-1 can function through a G alpha q/11-beta-arrestin-1 signaling complex.

    PubMed

    Kawamata, Yuji; Imamura, Takeshi; Babendure, Jennie L; Lu, Juu-Chin; Yoshizaki, Takeshi; Olefsky, Jerrold M

    2007-09-28

    Tumor necrosis factor-alpha (TNFalpha) is a proinflammatory cytokine secreted from macrophages and adipocytes. It is well known that chronic TNFalpha exposure can lead to insulin resistance both in vitro and in vivo and that elevated blood levels of TNFalpha are observed in obese and/or diabetic individuals. TNFalpha has many acute biologic effects, mediated by a complex intracellular signaling pathway. In these studies we have identified new G-protein signaling components to this pathway in 3T3-L1 adipocytes. We found that beta-arrestin-1 is associated with TRAF2 (TNF receptor-associated factor 2), an adaptor protein of TNF receptors, and that TNFalpha acutely stimulates tyrosine phosphorylation of G alpha(q/11) with an increase in G alpha(q/11) activity. Small interfering RNA-mediated knockdown of beta-arrestin-1 inhibits TNFalpha-induced tyrosine phosphorylation of G alpha(q/11) by interruption of Src kinase activation. TNFalpha stimulates lipolysis in 3T3-L1 adipocytes, and beta-arrestin-1 knockdown blocks the effects of TNFalpha to stimulate ERK activation and glycerol release. TNFalpha also led to activation of JNK with increased expression of the proinflammatory gene, monocyte chemoattractant protein-1 and matrix metalloproteinase 3, and beta-arrestin-1 knockdown inhibited both of these effects. Taken together these results reveal novel elements of TNFalpha action; 1) the trimeric G-protein component G alpha(q/11) and the adapter protein beta-arrestin-1 can function as signaling molecules in the TNFalpha action cascade; 2) beta-arrestin-1 can couple TNFalpha stimulation to ERK activation and lipolysis; 3) beta-arrestin-1 and G alpha(q/11) can mediate TNFalpha-induced phosphatidylinositol 3-kinase activation and inflammatory gene expression.

  6. Differential expression of steroidogenic factors 1 and 2, cytochrome p450scc, and steroidogenic acute regulatory protein in human pancreas.

    PubMed

    Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Morimoto, Sumiko; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente

    2008-08-01

    The aim of this study was to investigate the expression of the 4 gene transcripts, steroidogenic factors 1 (SF-1) and 2 (SF-2), steroidogenic acute regulatory (StAR), and cytochrome P450 11A1, involved in the synthesis of steroid hormones in normal human pancreas. Total RNA was extracted from normal male (n = 5) and female (n = 5) samples, obtained from the organ donor program. The expression levels of SF-1, SF-2, StAR protein, and P450scc were assessed by reverse transcription-polymerase chain reaction and complemented with immunohistochemistry analysis. Polymerase chain reaction products amplification for all genes was present in both male and female samples, although differential expression was observed. The signals detected were much more evident in male than in female messenger RNA isolates for SF-1, SF-2, and StAR protein. The expression for P450scc was more intense in female samples. A similar pattern was observed in the immunohistochemical studies. Normal human pancreas expresses 4 gene transcripts involved in steroid synthesis similarly to steroidogenic organs. A distinctive characteristic is the sexually dimorphic expression of these factors. These data provide further evidence to support that the pancreas is a truly steroidogenic tissue, highlighting the presence of sex- and location-related differences in the expression of steroidogenic factors.

  7. Apoptosis Signal-Regulating Kinase 1 Is Involved in Brain-Derived Neurotrophic Factor (BDNF)-Enhanced Cell Motility and Matrix Metalloproteinase 1 Expression in Human Chondrosarcoma Cells

    PubMed Central

    Lin, Chih-Yang; Chang, Sunny Li-Yun; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23892595

  8. Application of homomorphic signal processing to stress wave factor analysis

    NASA Technical Reports Server (NTRS)

    Karagulle, H.; Williams, J. H., Jr.; Lee, S. S.

    1985-01-01

    The stress wave factor (SWF) signal, which is the output of an ultrasonic testing system where the transmitting and receiving transducers are coupled to the same face of the test structure, is analyzed in the frequency domain. The SWF signal generated in an isotropic elastic plate is modelled as the superposition of successive reflections. The reflection which is generated by the stress waves which travel p times as a longitudinal (P) wave and s times as a shear (S) wave through the plate while reflecting back and forth between the bottom and top faces of the plate is designated as the reflection with p, s. Short-time portions of the SWF signal are considered for obtaining spectral information on individual reflections. If the significant reflections are not overlapped, the short-time Fourier analysis is used. A summary of the elevant points of homomorphic signal processing, which is also called cepstrum analysis, is given. Homomorphic signal processing is applied to short-time SWF signals to obtain estimates of the log spectra of individual reflections for cases in which the reflections are overlapped. Two typical SWF signals generated in aluminum plates (overlapping and non-overlapping reflections) are analyzed.

  9. Cell Proliferation and Epidermal Growth Factor Signaling in Non-small Cell Lung Adenocarcinoma Cell Lines Are Dependent on Rin1

    PubMed Central

    Tomshine, Jin C.; Severson, Sandra R.; Wigle, Dennis A.; Sun, Zhifu; Beleford, Daniah A. T.; Shridhar, Vijayalakshmi; Horazdovsky, Bruce F.

    2009-01-01

    Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Δ) complemented the Rin1 depletion effects, and overexpression of Rin1Δ had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature. PMID:19570984

  10. Exogenous DKK-3/REIC inhibits Wnt/β-catenin signaling and cell proliferation in human kidney cancer KPK1.

    PubMed

    Xu, Jiaqi; Sadahira, Takuya; Kinoshita, Rie; Li, Shun-Ai; Huang, Peng; Wada, Koichiro; Araki, Motoo; Ochiai, Kazuhiko; Noguchi, Hirofumi; Sakaguchi, Masakiyo; Nasu, Yasutomo; Watanabe, Masami

    2017-11-01

    The third member of the Dickkopf family (DKK-3), also known as reduced expression in immortalized cells (REIC), is a tumor suppressor present in a variety of tumor cells. Regarding the regulation of the Wnt/β-catenin signaling pathway, exogenous DKK-1 and DKK-2 are reported to inhibit Wnt signaling by binding the associated effectors. However, whether exogenous DKK-3 inhibits Wnt signaling remains unclear. A recombinant protein of human full-length DKK-3 was used to investigate the exogenous effects of the protein in vitro in KPK1 human renal cell carcinoma cells. It was demonstrated that the expression of phosphorylated (p-)β-catenin (inactive form as the transcriptional factor) was increased in KPK1 cells treated with the exogenous DKK-3 protein. The levels of non-p-β-catenin (activated form of β-catenin) were consistently decreased. It was revealed that the expression of transcription factor (TCF) 1 and c-Myc, the downstream transcription factors of the Wnt/β-catenin signaling pathway, was inhibited following treatment with DKK-3. A cancer cell viability assay confirmed the anti-proliferative effects of exogenous DKK-3 protein, which was consistent with a suppressed Wnt/β-catenin signaling cascade. In addition, as low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor of DKK-1 and DKK-2 and their interaction on the cell surface inhibits Wnt/β-catenin signaling, it was examined whether the exogenous DKK-3 protein affects LRP6-mediated Wnt/β-catenin signaling. The LRP6 gene was silenced and the effects of DKK-3 on the time course of the upregulation of p-β-catenin expression were subsequently analyzed. Notably, LRP6 depletion elevated the base level of p-β-catenin; however, there was no significant effect on its upregulation course or expression pattern. These findings indicate that exogenous DKK-3 upregulates p-β-catenin and inhibits Wnt/β-catenin signaling in an LRP6-independent manner. Therefore, exogenous DKK-3 protein may inhibit

  11. Multipronged attenuation of macrophage-colony stimulating factor signaling by Epstein-Barr virus BARF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Ann Hye-Ryong; Chang, Rhoda Ahn; Chen, Xiaoyan

    The ubiquitous EBV causes infectious mononucleosis and is associated with several types of cancers. The EBV genome encodes an early gene product, BARF1, which contributes to pathogenesis, potentially through growth-altering and immune-modulating activities, but the mechanisms for such activities are poorly understood. We have determined the crystal structure of BARF1 in complex with human macrophage-colony stimulating factor (M-CSF), a hematopoietic cytokine with pleiotropic functions in development and immune response. BARF1 and M-CSF form a high-affinity, stable, ring-like complex in both solution and the crystal, with a BARF1 hexameric ring surrounded by three M-CSF dimers in triangular array. The binding ofmore » BARF1 to M-CSF dramatically reduces but does not completely abolish M-CSF binding and signaling through its cognate receptor FMS. A three-pronged down-regulation mechanism is proposed to explain the biological effect of BARF1 on M-CSF:FMS signaling. These prongs entail control of the circulating and effective local M-CSF concentration, perturbation of the receptor-binding surface of M-CSF, and imposition of an unfavorable global orientation of the M-CSF dimer. Each prong may reduce M-CSF:FMS signaling to a limited extent but in combination may alter M-CSF:FMS signaling dramatically. The downregulating mechanism of BARF1 underlines a viral modulation strategy, and provides a basis for understanding EBV pathogenesis.« less

  12. aPKC-ι/P-Sp1/Snail signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma.

    PubMed

    Qian, Yawei; Yao, Wei; Yang, Tao; Yang, Yan; Liu, Yan; Shen, Qi; Zhang, Jian; Qi, Weipeng; Wang, Jianming

    2017-10-01

    Cholangiocarcinoma (CCA) is a highly malignant bile duct cancer that tends to invade and metastasize early. The epithelial-mesenchymal transition (EMT) has been implicated in cancer cell invasion and metastasis, as well as in cancer cell evasion of host immunity. In this study, we investigated the interaction between atypical protein kinase C-iota (aPKC-ι) and Snail in the regulation of EMT and its relationship to CCA immunosuppression. Our results demonstrated that aPKC-ι, Snail, and infiltrated immunosuppressive cells were significantly up-regulated in CCA tumor tissues and linked to poor prognosis. aPKC-ι induced EMT and immunosuppression by regulating Snail in vitro and in vivo, although aPKC-ι did not directly interact with Snail in coimmunoprecipitation experiments. To further clarify the molecular interaction between aPKC-ι and Snail in relation to EMT, quantitative iTRAQ-based phosphoproteomic analysis and liquid chromatography-tandem mass spectrometry were conducted to identify the substrates of aPKC-ι-dependent phosphorylation. Combined with coimmunoprecipitation, we showed that specificity protein 1 (Sp1) was directly phosphorylated by aPKC-ι on Ser59 (P-Sp1). Both Sp1 and P-Sp1 were up-regulated in CCA tumor tissues and associated with clinicopathological features and poor prognosis in CCA patients. Moreover, using chromatin immunoprecipitation assays, we found that P-Sp1 regulated Snail expression by increasing Sp1 binding to the Snail promoter. P-Sp1 also regulated aPKC-ι/Snail-induced EMT-like changes and immunosuppression in CCA cells. Our findings further indicated that CCA cells with EMT-like features appear to generate immunosuppressive natural T regulatory-like cluster of differentiation 4-positive (CD4 + )CD25 - cells rather than to increase CD4 + CD25 + natural T regulatory cells, in part by mediating T regulatory-inducible cytokines such as transforming growth factor β1 and interleukin 2. These results demonstrate that a

  13. MiR-9-5p promotes MSC migration by activating β-catenin signaling pathway.

    PubMed

    Li, Xianyang; He, Lihong; Yue, Qing; Lu, Junhou; Kang, Naixin; Xu, Xiaojing; Wang, Huihui; Zhang, Huanxiang

    2017-07-01

    Mesenchymal stem cells (MSCs) have the potential to treat various tissue damages, but the very limited number of cells that migrate to the damaged region strongly restricts their therapeutic applications. Full understanding of mechanisms regulating MSC migration will help to improve their migration ability and therapeutic effects. Increasing evidence shows that microRNAs play important roles in the regulation of MSC migration. In the present study, we reported that miR-9-5p was upregulated in hepatocyte growth factor -treated MSCs and in MSCs with high migration ability. Overexpression of miR-9-5p promoted MSC migration, whereas inhibition of endogenous miR-9-5p decreased MSC migration. To elucidate the underlying mechanism, we screened the target genes of miR-9-5p and report for the first time that CK1α and GSK3β, two inhibitors of β-catenin signaling pathway, were direct targets of miR-9-5p in MSCs and that overexpression of miR-9-5p upregulated β-catenin signaling pathway. In line with these data, inhibition of β-catenin signaling pathway by FH535 decreased the miR-9-5p-promoted migration of MSCs, while activation of β-catenin signaling pathway by LiCl rescued the impaired migration of MSCs triggered by miR-9-5p inhibitor. Furthermore, the formation and distribution of focal adhesions as well as the reorganization of F-actin were affected by the expression of miR-9-5p. Collectively, these results demonstrate that miR-9-5p promotes MSC migration by upregulating β-catenin signaling pathway, shedding light on the optimization of MSCs for cell replacement therapy through manipulating the expression level of miR-9-5p. Copyright © 2017 the American Physiological Society.

  14. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression

    PubMed Central

    Suzuki, Tomoyuki; Dai, Ping; Hatakeyama, Tomoya; Harada, Yoshinori; Tanaka, Hideo; Yoshimura, Norio; Takamatsu, Tetsuro

    2013-01-01

    Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells. PMID:23720603

  15. miR-4725-3p targeting Stim1 signaling is involved in xanthohumol inhibition of glioma cell invasion.

    PubMed

    Ho, Kuo-Hao; Chang, Cheng-Kuei; Chen, Peng-Hsu; Wang, Yu-Jia; Chang, Wei-Chiao; Chen, Ku-Chung

    2018-05-10

    Glioblastoma multiforme (GBM) is the most common brain tumor in adults. Due to its highly invasive nature, it is not easy to treat, resulting in high mortality rates. Stromal interacting molecule 1 (Stim1) plays important roles in regulating store-operated Ca 2+ entry (SOCE), and controls invasion by cancer cells. However, the mechanisms and functions of Stim1 in glioma progression are still unclear. In this study, we investigated the effects of targeting Stim1 expression on glioma cell invasion. By analyzing profiles of GBM patients from RNA-sequencing data in The Cancer Genome Atlas (TCGA), higher expression levels of STIM1 were correlated with the poor survival. Furthermore, signaling pathways associated with tumor malignancy, including the epithelial-to-mesenchymal transition (EMT), were activated in patients with high STIM1 expression according to gene set enrichment analyses. Higher Stim1 levels were found in glioma cells compared to human astrocytes, and these higher levels enhanced glioma cell invasion. Xanthohumol (XN), a prenylated flavonoid extracted from the hop plant Humulus lupulus L. (Cannabaceae), significantly reduced cell invasion through inhibiting Stim1 expression. From an micro(mi)RNA array analysis, miR-4725-3p was upregulated by XN treatment. Overexpression of miR-4725-3p inhibited glioma cell invasion via directly targeting the 3'-untranslated region of STIM1. The extracellular signal-regulated kinase/c-Fos pathway was also validated to participate in XN-upregulated miR-4725-3p expression according to promoter and chromatin immunoprecipitation assays. These results emphasize that miR-4725-3p-inhibited STIM1 signaling is involved in XN-attenuated glioma cell invasion. These findings may provide insights into novel therapeutic strategies for future glioblastoma therapy and drug development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. p300 Regulates Liver Functions by Controlling p53 and C/EBP Family Proteins through Multiple Signaling Pathways.

    PubMed

    Breaux, Meghan; Lewis, Kyle; Valanejad, Leila; Iakova, Polina; Chen, Fengju; Mo, Qianxing; Medrano, Estela; Timchenko, Lubov; Timchenko, Nikolai

    2015-09-01

    The histone acetyltransferase p300 has been implicated in the regulation of liver biology; however, molecular mechanisms of this regulation are not known. In this paper, we examined these mechanisms using transgenic mice expressing a dominant negative p300 molecule (dnp300). While dnp300 mice did not show abnormal growth within 1 year, these mice have many alterations in liver biology and liver functions. We found that the inhibition of p300 leads to the accumulation of heterochromatin foci in the liver of 2-month-old mice. Transcriptome sequencing (RNA-Seq) analysis showed that this inhibition of p300 also causes alterations of gene expression in many signaling pathways, including chromatin remodeling, apoptosis, DNA damage, translation, and activation of the cell cycle. Livers of dnp300 mice have a high rate of proliferation and a much higher rate of proliferation after partial hepatectomy. We found that livers of dnp300 mice are resistant to CCl4-mediated injury and have reduced apoptosis but have increased proliferation after injury. Underlying mechanisms of resistance to liver injury and increased proliferation in dnp300 mice include ubiquitin-proteasome-mediated degradation of C/EBPα and translational repression of the p53 protein by the CUGBP1-eukaryotic initiation factor 2 (eIF2) repressor complex. Our data demonstrate that p300 regulates a number of critical signaling pathways that control liver functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation.

    PubMed

    Riemenschneider, Markus J; Mueller, Wolf; Betensky, Rebecca A; Mohapatra, Gayatry; Louis, David N

    2005-11-01

    Deregulated integrin signaling is common in cancers, including glioblastoma. Integrin binding and growth factor receptor signaling activate focal adhesion kinase (FAK) and subsequently up-regulate extracellular regulated kinases (ERK-1/2), leading to cell-cycle progression and cell migration. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We examined these pathways primarily in situ using a panel of 30 glioblastomas and gene expression arrays, immunohistochemistry, and fluorescence in situ hybridization, emphasizing the histological distribution of molecular changes. Within individual tumors, increased expression of FAK, p-FAK, paxillin, ERK-1/2, and p-ERK-1/2 occurred in regions of elevated EGFR and/or PDGFRA expression. Moreover, FAK activation levels correlated with EGFR and PDGFRA expression, and p-FAK and EGFR expression co-localized at the single-cell level. In addition, integrin expression was enriched in EGFR/PDGFRA-overexpressing areas but was more regionally confined than FAK, p-FAK, and paxillin. Integrins beta8 and alpha5beta1 were most commonly expressed, often in a perinecrotic or perivascular pattern. Taken together, our data suggest that growth factor receptor overexpression facilitates alterations in the integrin signaling pathway. Thus, FAK may act in glioblastoma as a downstream target of growth factor signaling, with integrins enhancing the impact of such signaling in the tumor microenvironment.

  18. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation.

    PubMed

    Girnita, Leonard; Worrall, Claire; Takahashi, Shin-Ichiro; Seregard, Stefan; Girnita, Ada

    2014-07-01

    The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R "borrows" components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.

  19. Nuclear Import of the Retrotransposon Tf1 Is Governed by a Nuclear Localization Signal That Possesses a Unique Requirement for the FXFG Nuclear Pore Factor Nup124p

    PubMed Central

    Dang, Van-Dinh; Levin, Henry L.

    2000-01-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674

  20. Nuclear import of the retrotransposon Tf1 is governed by a nuclear localization signal that possesses a unique requirement for the FXFG nuclear pore factor Nup124p.

    PubMed

    Dang, V D; Levin, H L

    2000-10-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.

  1. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma

    PubMed Central

    Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong

    2007-01-01

    Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted

  2. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4

    PubMed Central

    Sun, Zhenfei; Li, Min; Zhou, Ying; Guo, Tongtong; Liu, Yin; Zhang, Hui

    2018-01-01

    Light and microRNAs (miRNAs) are key external and internal signals for plant development, respectively. However, the relationship between the light signaling and miRNA biogenesis pathways remains unknown. Here we found that miRNA processer proteins DCL1 and HYL1 interact with a basic helix-loop-helix (bHLH) transcription factor, phytochrome-interacting factor 4 (PIF4), which mediates the destabilization of DCL1 during dark-to-red-light transition. PIF4 acts as a transcription factor for some miRNA genes and is necessary for the proper accumulation of miRNAs. DCL1, HYL1, and mature miRNAs play roles in the regulation of plant hypocotyl growth. These results uncovered a previously unknown crosstalk between miRNA biogenesis and red light signaling through the PIF4-dependent regulation of miRNA transcription and processing to affect red-light-directed plant photomorphogenesis. PMID:29522510

  3. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.

    PubMed

    Miraoui, Hichem; Marie, Pierre J

    2010-11-02

    Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.

  4. EphrinA1 Inhibits Vascular Endothelial Growth Factor-Induced Intracellular Signaling and Suppresses Retinal Neovascularization and Blood-Retinal Barrier Breakdown

    PubMed Central

    Ojima, Tomonari; Takagi, Hitoshi; Suzuma, Kiyoshi; Oh, Hideyasu; Suzuma, Izumi; Ohashi, Hirokazu; Watanabe, Daisuke; Suganami, Eri; Murakami, Tomoaki; Kurimoto, Masafumi; Honda, Yoshihito; Yoshimura, Nagahisa

    2006-01-01

    The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 ± 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 ± 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy. PMID:16400034

  5. Icariin inhibits TNF-α/IFN-γ induced inflammatory response via inhibition of the substance P and p38-MAPK signaling pathway in human keratinocytes.

    PubMed

    Kong, Lingwen; Liu, Jiaqi; Wang, Jia; Luo, Qingli; Zhang, Hongying; Liu, Baojun; Xu, Fei; Pang, Qi; Liu, Yingchao; Dong, Jingcheng

    2015-12-01

    Pro-inflammatory cytokines play a crucial role in the etiology of atopic dermatitis. We demonstrated that Herba Epimedii has anti-inflammatory potential in an atopic dermatitis mouse model; however, limited research has been conducted on the anti-inflammatory effects and mechanism of icariin, the major active ingredient in Herba Epimedii, in human keratinocytes. In this study, we evaluated the anti-inflammatory potential and mechanisms of icariin in the tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-induced inflammatory response in human keratinocytes (HaCaT cells) by observing these cells in the presence or absence of icariin. We measured IL-6, IL-8, IL-1β, MCP-1 and GRO-α production by ELISA; IL-6, IL-8, IL-1β, intercellular adhesion molecule-1 (ICAM-1) and tachykinin receptor 1 (TACR1) mRNA expression by real-time PCR; and P38-MAPK, P-ERK and P-JNK signaling expression by western blot in TNF-α/IFN-γ-stimulated HaCaT cells before and after icariin treatment. The expression of TNF-α-R1 and IFN-γ-R1 during the stimulation of the cell models was also evaluated before and after icariin treatment. We investigated the effect of icariin on these pro-inflammatory cytokines and detected whether this effect occurred via the mitogen-activated protein kinase (MAPK) signal transduction pathways. We further specifically inhibited the activity of two kinases with 20μM SB203580 (a p38 kinase inhibitor) and 50μM PD98059 (an ERK1/2 kinase inhibitor) to determine the roles of the two signal pathways involved in the inflammatory response. We found that icariin inhibited TNF-α/IFN-γ-induced IL-6, IL-8, IL-1β, and MCP-1 production in a dose-dependent manner; meanwhile, the icariin treatment inhibited the gene expression of IL-8, IL-1β, ICAM-1 and TACR1 in HaCaT cells in a time- and dose-dependent manner. Icariin treatment resulted in a reduced expression of p-P38 and p-ERK signal activation induced by TNF-α/IFN-γ; however, only SB203580, the p38 alpha

  6. P120-Catenin Protects Endplate Chondrocytes From Intermittent Cyclic Mechanical Tension Induced Degeneration by Inhibiting the Expression of RhoA/ROCK-1 Signaling Pathway.

    PubMed

    Xu, Hong-Guang; Ma, Ming-Ming; Zheng, Quan; Shen, Xiang; Wang, Hong; Zhang, Shu-Feng; Xu, Jia-Jia; Wang, Chuan-Dong; Zhang, Xiao-Ling

    2016-08-15

    The changes of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT) were observed by realtime reverse transcription-polymerase chain reaction, immunofluorescence, and Western blot analysis. To investigate the role of RhoA/ROCK-1 signaling pathway and E-cadherin/P120-catenin complex in endplate chondrocytes degeneration induced by ICMT. ICMT can induce the endplate chondrocyte degeneration. However, the relationship between P120-catenin or RhoA/ROCK-1 signaling pathway and endplate chondrocytes degeneration induced by ICMT is not clear. ICMT (strain at 0.5 Hz sinusoidal curve at 8% elongation) was applied to rat endplate chondrocytes for 6 days, 16 hours a day. The cell viability and apoptosis were examined by the LIVE/DEAD assay and flow cytometry. Histological staining was used to examine the lumbar disc tissue morphology and extracellular matrix. To regulate RhoA/ROCK-1 signaling pathway and the expression of E-cadherin and P120-catenin, RhoA/ROCK-1 pathway-specific inhibitors, E-cadherin, and p120-catenin plasmid were applied. Coimmunoprecipitation was employed to examine the interaction between E-cadherin and P120-catenin, P120-catenin, and RhoA. The related gene expression and protein location was examined by realtime reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence. There was no change of viability verified by LIVE/DEAD assay and flow cytometry after ICMT loading. ICMT loading led to RhoA/ROCK-1 signaling activation and the loss of the chondrogenic phenotype of endplate chondrocytes. Inhibition of RhoA/ROCK-1 signaling pathway significantly ameliorated the degeneration induced by ICMT. The expression of P120-catenin and E-cadherin were inhibited by ICMT. ICMT reduced the interaction between P120-catenin and E-cadherin. Furthermore, over-expression of P120-catenin and E-cadherin can suppress the expression of chondrogenic gene, over-expression of P120-catenin can suppress the RhoA/ROCK-1

  7. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models.

    PubMed

    Wang, Zhiyong; Shah, O Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes.

  8. The Transcriptional Coactivators p/CIP and SRC-1 Control Insulin Resistance through IRS1 in Obesity Models

    PubMed Central

    Wang, Zhiyong; Shah, O. Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes. PMID:22859932

  9. High glucose increases Cdk5 activity in podocytes via transforming growth factor1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yue; Li, Hongbo; Hao, Jun

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have notmore » yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr

  10. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Kyung-A; Park, Min-Ah; Kang, Nam-Hee

    The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylationmore » of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2.« less

  11. P44/WDR77 restricts the sensitivity of proliferating cells to TGFβ signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Pengfei; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030; Gao, Shen

    2014-07-18

    Highlights: • P44/WDR77 causes proliferating cells to become non-responsive to TGFβ signaling. • P44/WDR77 down-regulates TβRII and TβR2 expression. • P44/WDR77 down-regulated TGFβ signaling correlates with lung tumorigenesis. - Abstract: We previously reported that a novel WD-40 domain-containing protein, p44/WDR77, drives quiescent epithelial cells to re-enter the cell cycle and plays an essential role for growth of lung and prostate cancer cells. Transforming growth factor beta (TGFβ) signaling is important in the maintenance of non-transformed cells in the quiescent or slowly cycling stage. However, both non-transformed proliferating cells and human cancer cells are non-responsive to endogenous TGFβ signaling. The mechanismmore » by which proliferating cells become refractory to TGFβ inhibition is not well established. Here, we found that silencing p44/WDR77 increased cellular sensitivity to TGFβ signaling and that this was inversely correlated with decreased cell proliferation. Smad2 or 3 phosphorylation, TGFβ-mediated transcription, and TGFβ2 and TGFβ receptor type II (TβRII) expression were dramatically induced by silencing of p44/WDR77. These data support the hypothesis that p44/WDR77 down-regulates the expression of the TGFβ ligand and its receptor, thereby leading to a cellular non-response to TGFβ signaling. Finally, we found that p44/WDR77 expression was correlated with cell proliferation and decreased TGFβ signaling during lung tumorigenesis. Together, these results suggest that p44/WDR77 expression causes the non-sensitivity of proliferating cells to TGFβ signaling, thereby contributing to cellular proliferation during lung tumorigenesis.« less

  12. Identification of the functional domain in the transcription factor RTEF-1 that mediates alpha 1-adrenergic signaling in hypertrophied cardiac myocytes.

    PubMed

    Ueyama, T; Zhu, C; Valenzuela, Y M; Suzow, J G; Stewart, A F

    2000-06-09

    Cardiac myocytes respond to alpha(1)-adrenergic receptor stimulation by a progressive hypertrophy accompanied by the activation of many fetal genes, including skeletal muscle alpha-actin. The skeletal muscle alpha-actin gene is activated by signaling through an MCAT element, the binding site of the transcription enhancer factor-1 (TEF-1) family of transcription factors. Previously, we showed that overexpression of the TEF-1-related factor (RTEF-1) increased the alpha(1)-adrenergic response of the skeletal muscle alpha-actin promoter, whereas TEF-1 overexpression did not. Here, we identified the functional domains and specific sequences in RTEF-1 that mediate the alpha(1)-adrenergic response. Chimeric TEF-1 and RTEF-1 expression constructs localized the region responsible for the alpha(1)-adrenergic response to the carboxyl-terminal domain of RTEF-1. Site-directed mutagenesis was used to inactivate eight serine residues of RTEF-1, not present in TEF-1, that are putative targets of alpha(1)-adrenergic-dependent kinases. Mutation of a single serine residue, Ser-322, reduced the alpha(1)-adrenergic activation of RTEF-1 by 70% without affecting protein stability, suggesting that phosphorylation at this serine residue accounts for most of the alpha(1)-adrenergic response. Thus, these results demonstrate that RTEF-1 is a direct target of alpha(1)-adrenergic signaling in hypertrophied cardiac myocytes.

  13. Effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro.

    PubMed

    Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H

    2009-02-01

    A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the

  14. RhoA influences the nuclear localization of extracellular signal-regulated kinases to modulate p21Waf/Cip1 expression.

    PubMed

    Zuckerbraun, Brian S; Shapiro, Richard A; Billiar, Timothy R; Tzeng, Edith

    2003-08-19

    The 42/44-kD mitogen-activated protein kinases (extracellular signal-regulated kinases, ERKs) regulate smooth muscle cell (SMC) cell-cycle progression and can either promote or inhibit proliferation depending on the activation status of the small GTPase RhoA. RhoA is involved in the regulation of the actin cytoskeleton and converges on multiple signaling pathways. However, the mechanism by which RhoA modulates ERK signaling is not well defined. The purpose of this investigation was to examine whether RhoA regulates ERK downstream signaling and cellular proliferation through its effects on the cytoskeleton and the nuclear localization of ERK. Treatment of SMCs with Clostridia botulinum C3 exoenzyme, which inhibits RhoA activation, decreased SMC proliferation to 24+/-7% of that of controls and increased p21Waf1/Cip1 transcription and protein levels. These effects of RhoA were reversed by inhibition of ERK phosphorylation. However, inactivation of RhoA did not alter levels of ERK phosphorylation but did increase nuclear localization of phosphorylated ERK. In addition, immunostaining demonstrated that phosphorylated ERK associated with the actin cytoskeleton, which was disrupted by C3 exoenzyme. Leptomycin B, an inhibitor of Crm1 that results in ERK nuclear accumulation, similarly increased p21Waf1/Cip1. RhoA inhibition increased levels of phosphorylated ERK in the cell nucleus. Inhibition of RhoA or pharmacological inhibition of nuclear export resulted in increased p21Waf1/Cip1 expression and decreased SMC proliferation, effects that were partially dependent on ERK. RhoA regulation of the actin cytoskeleton may determine ERK subcellular localization and its subsequent effects on SMC proliferation.

  15. Attenuation of p38-mediated miR-1/133 expression facilitates myoblast proliferation during the early stage of muscle regeneration.

    PubMed

    Zhang, Duo; Li, Xihua; Chen, Chuchu; Li, Yuyin; Zhao, Lei; Jing, Yanyan; Liu, Wei; Wang, Xiaoyun; Zhang, Ying; Xia, Hongfeng; Chang, Yaning; Gao, Xiang; Yan, Jun; Ying, Hao

    2012-01-01

    Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration.

  16. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor.

    PubMed

    Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J

    1999-09-15

    We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.

  17. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors.

    PubMed Central

    Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E

    1994-01-01

    Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828

  18. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling.

    PubMed

    Abbott, Jason R; Hodges, Timothy R; Daniels, R Nathan; Patel, Pratiq A; Kennedy, Jack Phillip; Howes, Jennifer E; Akan, Denis T; Burns, Michael C; Sai, Jiqing; Sobolik, Tammy; Beesetty, Yugandhar; Lee, Taekyu; Rossanese, Olivia W; Phan, Jason; Waterson, Alex G; Fesik, Stephen W

    2018-06-01

    Deregulated RAS activity, often the result of mutation, is implicated in approximately 30% of all human cancers. Despite this statistic, no clinically successful treatment for RAS-driven tumors has yet been developed. One approach for modulating RAS activity is to target and affect the activity of proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report on structure-activity relationships (SAR) in an indole series of compounds. Using structure-based design, we systematically explored substitution patterns on the indole nucleus, the pendant amino acid moiety, and the linker unit that connects these two fragments. Best-in-class compounds activate the nucleotide exchange process at sub-micromolar concentrations in vitro, increase levels of active RAS-GTP in HeLa cells, and elicit signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway, resulting in a decrease in pERK1/2 T202/Y204 protein levels at higher compound concentrations.

  19. IL-1β-induced and p38MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification

    PubMed Central

    Kulawik, Andreas; Engesser, Raphael; Ehlting, Christian; Raue, Andreas; Albrecht, Ute; Hahn, Bettina; Lehmann, Wolf-Dieter; Gaestel, Matthias; Klingmüller, Ursula; Häussinger, Dieter; Timmer, Jens; Bode, Johannes G.

    2017-01-01

    The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 11.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation. PMID:28223354

  20. Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53

    NASA Technical Reports Server (NTRS)

    Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.

    1997-01-01

    The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.

  1. Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system.

    PubMed

    Parker, E; Newby, L J; Sharpe, C C; Rossetti, S; Streets, A J; Harris, P C; O'Hare, M J; Ong, A C M

    2007-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) largely results from mutations in the PKD1 gene leading to hyperproliferation of renal tubular epithelial cells and consequent cyst formation. Rodent models of PKD suggest that the multifunctional hormone insulin-like growth factor-1 (IGF-1) could play a pathogenic role in renal cyst formation. In order to test this possibility, conditionally immortalized renal epithelial cells were prepared from normal individuals and from ADPKD patients with known germline mutations in PKD1. All patient cell lines had a decreased or absence of polycystin-1 but not polycystin-2. These cells had an increased sensitivity to IGF-1 and to cyclic AMP, which required phosphatidylinositol-3 (PI3)-kinase and the mitogen-activated protein kinase, extracellular signal-regulated protein kinase (ERK) for enhanced growth. Inhibition of Ras or Raf abolished the stimulated cell proliferation. Our results suggest that haploinsufficiency of polycystin-1 lowers the activation threshold of the Ras/Raf signalling system leading to growth factor-induced hyperproliferation. Inhibition of Ras or Raf activity may be a therapeutic option for decreasing tubular cell proliferation in ADPKD.

  2. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interruptsmore » the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.« less

  3. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.

    PubMed

    Baltensperger, K; Kozma, L M; Cherniack, A D; Klarlund, J K; Chawla, A; Banerjee, U; Czech, M P

    1993-06-25

    Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.

  4. The fast track to canonical Wnt signaling in MC3T3-E1 cells protected by substance P against serum deprivation-induced apoptosis.

    PubMed

    Yang, Jianguo; Nie, Jiping; Fu, Su; Liu, Song; Wu, Jianqun; Cui, Liang; Zhang, Yongtao; Yu, Bin

    2017-01-01

    The canonical Wnt pathway is vital to bone physiology by increasing bone mass through elevated osteoblast survival. Although investigated extensively in stem cells, its role in osteoblastic MC3T3-E1 cells has not been completely determined. To explore how this pathway is regulated by different conditions, we assessed the anti-apoptotic effects of substance P on the canonical Wnt pathway in MC3T3-E1 cells by treating cells with serum deprivation or serum starving with "substance P," a neuropeptide demonstrated to promote bone growth and stimulate Wnt signaling. The results showed that serum deprivation both induced apoptosis and activated Wnt signal transduction while substance P further stimulated the Wnt pathway via the NK-1 receptor but protected the cells from apoptotic death. Fast-tracking of Wnt signaling by substance P was also noted. These results indicate that nutritional deprivation and substance P synergistically activated the canonical Wnt pathway, a finding that helps to reveal the role of Wnt signaling in bone physiology affected by nutritional deprivation and neuropeptide substance P. © 2016 International Federation for Cell Biology.

  5. Defects in subventricular zone pigmented epithelium-derived factor niche signaling in the senescence-accelerated mouse prone-8.

    PubMed

    Castro-Garcia, Paola; Díaz-Moreno, María; Gil-Gas, Carmen; Fernández-Gómez, Francisco J; Honrubia-Gómez, Paloma; Álvarez-Simón, Carmen Belén; Sánchez-Sánchez, Francisco; Cano, Juan Carlos Castillo; Almeida, Francisco; Blanco, Vicente; Jordán, Joaquín; Mira, Helena; Ramírez-Castillejo, Carmen

    2015-04-01

    We studied potential changes in the subventricular zone (SVZ) stem cell niche of the senescence-accelerated mouse prone-8 (SAM-P8) aging model. Bromodeoxyuridine (BrdU) assays with longtime survival revealed a lower number of label-retaining stem cells in the SAM-P8 SVZ compared with the SAM-Resistant 1 (SAM-R1) control strain. We also found that in SAM-P8 niche signaling is attenuated and the stem cell pool is less responsive to the self-renewal niche factor pigmented epithelium-derived factor (PEDF). Protein analysis demonstrated stable amounts of the PEDF ligand in the SAM-P8 SVZ niche; however, SAM-P8 stem cells present a significant expression decrease of patatin-like phospholipase domain containing 2, a receptor for PEDF (PNPLA2-PEDF) receptor, but not of laminin receptor (LR), a receptor for PEDF (LR-PEDF) receptor. We observed changes in self-renewal related genes (hairy and enhancer of split 1 (Hes1), hairy and enhancer of split 1 (Hes5), Sox2] and report that although these genes are down-regulated in SAM-P8, differentiation genes (Pax6) are up-regulated and neurogenesis is increased. Finally, sheltering mammalian telomere complexes might be also involved given a down-regulation of telomeric repeat binding factor 1 (Terf1) expression was observed in SAM-P8 at young age periods. Differences between these 2 models, SAM-P8 and SAM-R1 controls, have been previously detected at more advanced ages. We now describe alterations in the PEDF signaling pathway and stem cell self-renewal at a very young age, which could be involved in the premature senescence observed in the SAM-P8 model. © FASEB.

  6. Putting the pH into phosphatidic acid signaling

    PubMed Central

    2011-01-01

    The lipid phosphatidic acid (PA) has important roles in cell signaling and metabolic regulation in all organisms. New evidence indicates that PA also has an unprecedented role as a pH biosensor, coupling changes in pH to intracellular signaling pathways. pH sensing is a property of the phosphomonoester headgroup of PA. A number of other potent signaling lipids also contain headgroups with phosphomonoesters, implying that pH sensing by lipids may be widespread in biology. PMID:22136116

  7. The ubiquitin-homology protein, DAP-1, associates with tumor necrosis factor receptor (p60) death domain and induces apoptosis.

    PubMed

    Liou, M L; Liou, H C

    1999-04-09

    The tumor necrosis factor receptor, p60 (TNF-R1), transduces death signals via the association of its cytoplasmic domain with several intracellular proteins. By screening a mammalian cDNA library using the yeast two-hybrid cloning technique, we isolated a ubiquitin-homology protein, DAP-1, which specifically interacts with the cytoplasmic death domain of TNF-R1. Sequence analysis reveals that DAP-1 shares striking sequence homology with the yeast SMT3 protein that is essential for the maintenance of chromosome integrity during mitosis (Meluh, P. B., and Koshland, D. (1995) Mol. Biol. Cell 6, 793-807). DAP-1 is nearly identical to PIC1, a protein that interacts with the PML tumor suppressor implicated in acute promyelocytic leukemia (Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) Oncogene 13, 971-982), and the sentrin protein, which associates with the Fas death receptor (Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh, E. T. (1996) J. Immunol. 157, 4277-4281). The in vivo interaction between DAP-1 and TNF-R1 was further confirmed in mammalian cells. In transient transfection assays, overexpression of DAP-1 suppresses NF-kappaB/Rel activity in 293T cells, a human kidney embryonic carcinoma cell line. Overexpression of either DAP-1 or sentrin causes apoptosis of TNF-sensitive L929 fibroblast cell line, as well as TNF-resistant osteosarcoma cell line, U2OS. Furthermore, the dominant negative Fas-associated death domain protein (FADD) protein blocks the cell death induced by either DAP-1 or FADD. Collectively, these observations highly suggest a role for DAP-1 in mediating TNF-induced cell death signaling pathways, presumably through the recruitment of FADD death effector.

  8. An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP

    PubMed Central

    Siegenthaler, Kevin D; Pareja, Kristeen A; Wang, Jie; Sevier, Carolyn S

    2017-01-01

    Unfavorable redox conditions in the endoplasmic reticulum (ER) can decrease the capacity for protein secretion, altering vital cell functions. While systems to manage reductive stress are well-established, how cells cope with an overly oxidizing ER remains largely undefined. In previous work (Wang et al., 2014), we demonstrated that the chaperone BiP is a sensor of overly oxidizing ER conditions. We showed that modification of a conserved BiP cysteine during stress beneficially alters BiP chaperone activity to cope with suboptimal folding conditions. How this cysteine is reduced to reestablish 'normal' BiP activity post-oxidative stress has remained unknown. Here we demonstrate that BiP's nucleotide exchange factor – Sil1 – can reverse BiP cysteine oxidation. This previously unexpected reductant capacity for yeast Sil1 has potential implications for the human ataxia Marinesco-Sjögren syndrome, where it is interesting to speculate that a disruption in ER redox-signaling (due to genetic defects in SIL1) may influence disease pathology. DOI: http://dx.doi.org/10.7554/eLife.24141.001 PMID:28257000

  9. Fas/S1P1 crosstalk via NF-κB activation in osteoclasts controls subchondral bone remodeling in murine TMJ arthritis.

    PubMed

    Hutami, Islamy Rahma; Izawa, Takashi; Mino-Oka, Akiko; Shinohara, Takehiro; Mori, Hiroki; Iwasa, Akihiko; Tanaka, Eiji

    2017-09-02

    Enhanced turnover of subchondral trabecular bone is a hallmark of rheumatoid arthritis (RA) and it results from an imbalance between bone resorption and bone formation activities. To investigate the formation and activation of osteoclasts which mediate bone resorption, a Fas-deficient MRL/lpr mouse model which spontaneously develops autoimmune arthritis and exhibits decreased bone mass was studied. Various assays were performed on subchondral trabecular bone of the temporomandibular joint (TMJ) from MRL/lpr mice and MRL+/+ mice. Initially, greater osteoclast production was observed in vitro from bone marrow macrophages obtained from MRL/lpr mice due to enhanced phosphorylation of NF-κB, as well as Akt and MAPK, to receptor activator of nuclear factor-κB ligand (RANKL). Expression of sphingosine 1-phosphate receptor 1 (S1P 1 ) was also significantly upregulated in the condylar cartilage. S1P 1 was found to be required for S1P-induced migration of osteoclast precursor cells and downstream signaling via Rac1. When SN50, a synthetic NF-κB-inhibitory peptide, was applied to the MRL/lpr mice, subchondral trabecular bone loss was reduced and both production of osteoclastogenesis markers and sphingosine kinase (Sphk) 1/S1P 1 signaling were reduced. Thus, the present results suggest that Fas/S1P 1 signaling via activation of NF-κB in osteoclast precursor cells is a key factor in the pathogenesis of RA in the TMJ. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling.

    PubMed

    Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony

    2017-03-01

    During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches.

  11. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling

    PubMed Central

    Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony

    2017-01-01

    During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches. PMID:28248965

  12. Hydrogen peroxide inhibits transforming growth factor1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effectsmore » of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus

  13. The Extracellular Domain of p75NTR Is Necessary to Inhibit Neurotrophin-3 Signaling through TrkA*

    PubMed Central

    Mischel, Paul S.; Smith, Shane G.; Vining, Ella R.; Valletta, Janice S.; Mobley, William C.; Reichardt, Louis F.

    2009-01-01

    The TrkA receptor is activated primarily by nerve growth factor (NGF), but it can also be activated by high concentrations of neurotrophin 3 (NT-3). The pan-neurotrophin receptor p75NTR strongly inhibits activation of TrkA by NT-3 but not by NGF. To examine the role of p75NTR in regulating the specificity of TrkA signaling, we expressed both receptors in Xenopus oocytes. Application of NGF or NT-3 to oocytes expressing TrkA alone resulted in efflux of 45Ca2+ by a phospholipase C-γ-dependent pathway. Coexpression of p75NTR with TrkA inhibited 45Ca2+ efflux in response to NT-3 but not NGF. The inhibitory effect on NT-3 activation of TrkA increased with increasing expression of p75NTR. Coexpression of a truncated p75NTR receptor lacking all but the first 9 amino acids of the cytoplasmic domain inhibited NT-3 stimulation of 45Ca2+ efflux, whereas coexpression of an epidermal growth factor receptor/p75NTR chimera (extracellular domain of epidermal growth factor receptor with transmembrane and cytoplasmic domains of p75NTR) did not inhibit NT-3 signaling through TrkA. These studies demonstrated that the extracellular domain of p75NTR was necessary to inhibit NT-3 signaling through TrkA. Remarkably, p75NTR binding to NT-3 was not required to prevent signaling through TrkA, since occupying p75NTR with brain-derived neurotrophic factor or anti-p75 antibody (REX) did not rescue the ability of NT-3 to activate 45Ca2+ efflux. These data suggested a physical association between TrkA and p75NTR. Documenting this physical interaction, we showed that p75NTR and TrkA could be coimmunoprecipitated from Xenopus oocytes. Our results suggest that the interaction of these two receptors on the cell surface mediated the inhibition of NT-3-activated signaling through TrkA. PMID:11150291

  14. Substance P Activates the Wnt Signal Transduction Pathway and Enhances the Differentiation of Mouse Preosteoblastic MC3T3-E1 Cells

    PubMed Central

    Mei, Gang; Zou, Zhenlv; Fu, Su; Xia, Liheng; Zhou, Jian; Zhang, Yongtao; Tuo, Yonghua; Wang, Zhao; Jin, Dan

    2014-01-01

    Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M) significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway. PMID:24733069

  15. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    PubMed Central

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  16. Shikonin induces apoptosis of lung cancer cells via activation of FOXO3a/EGR1/SIRT1 signaling antagonized by p300.

    PubMed

    Jeung, Yun-Ji; Kim, Han-Gyeul; Ahn, Jiwon; Lee, Ho-Joon; Lee, Sae-Bhom; Won, Misun; Jung, Cho-Rock; Im, Joo-Young; Kim, Bo-Kyung; Park, Seung-Kiel; Son, Myung Jin; Chung, Kyung-Sook

    2016-11-01

    Shikonin derivatives exert powerful cytotoxic effects including induction of apoptosis. Here, we demonstrate the cytotoxic efficacy of shikonin in vivo in xenograft models, which did not affect body weight as well as its reduction of cell viability in vitro using several non-small cell lung cancer (NSCLC) cell lines. We found that inhibition of AKT by shikonin activated the forkhead box (FOX)O3a/early growth response protein (EGR)1 signaling cascade and enhanced the expression of the target gene Bim, leading to apoptosis in lung cancer cells. Overexpression of wild-type or a constitutively active mutant of FOXO3a enhanced shikonin-induced Bim expression. The NAD + -dependent histone deacetylase sirtuin (SIRT)1 amplified the pro-apoptotic effect by deacetylating FOXO3a, which induced EGR1 binding to the Bim promoter and activated Bim expression. Meanwhile, PI3K/AKT activity was enhanced, whereas that of FOXO3a was reduced and p300 was upregulated by treatment with a sublethal dose of shikonin. FOXO3a acetylation was enhanced by p300 overexpression, while shikonin-induced Bim expression was suppressed by p300 overexpression, which promoted cell survival. FOXO3a acetylation was increased by p300 overexpression and treatment with SIRT1 inhibitor, improving cell survival. In addition, shikonin-induced FOXO3a nuclear localization was blocked by AKT activation and SIRT1 inhibition, which blocked Bim expression and conferred resistance to the cytotoxic effects of shikonin. The EGR1 increase induced by shikonin was restored by pretreatment with SIRT1 inhibitor. These results suggest that shikonin induces apoptosis in some lung cancer cells via activation of FOXO3a/EGR1/SIRT1 signaling, and that AKT and p300 negatively regulate this process via Bim upregulation. Copyright © 2016. Published by Elsevier B.V.

  17. Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain.

    PubMed

    Chen, Wei-Nan; Chen, Chih-Cheng

    2014-05-21

    Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. Here we show that acid could induce antinociceptive signaling via substance P release in muscle. We prevented the intramuscular acid-induced hyperalgesia by pharmacological inhibition of ASIC3 and transient receptor potential V1 (TRPV1). The antinociceptive effect of non-ASIC3, non-TRPV1 acid signaling lasted for 2 days. The non-ASIC3, non-TRPV1 acid antinociception was largely abolished in mice lacking substance P. Moreover, pretreatment with substance P in muscle mimicked the acid antinociceptive effect and prevented the hyperalgesia induced by next-day acid injection. Acid could mediate a prolonged antinociceptive signaling via the release of substance P from muscle afferent neurons in a non-ASIC3, non-TRPV1 manner.

  18. WRKY Transcription Factors: Key Components in Abscisic Acid Signaling

    DTIC Science & Technology

    2011-01-01

    Review article WRKY transcription factors : key components in abscisic acid signalling Deena L. Rushton1, Prateek Tripathi1, Roel C. Rabara1, Jun Lin1...May 2011. *Correspondence (Tel +605 688 5749; fax +605 688 5624; email paul.rushton@sdstate.edu) Keywords: abscisic acid, WRKY transcription factor ...seed germination, drought, abiotic stress. Summary WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses

  19. Attenuation of p38-Mediated miR-1/133 Expression Facilitates Myoblast Proliferation during the Early Stage of Muscle Regeneration

    PubMed Central

    Zhang, Duo; Li, Xihua; Chen, Chuchu; Li, Yuyin; Zhao, Lei; Jing, Yanyan; Liu, Wei; Wang, Xiaoyun; Zhang, Ying; Xia, Hongfeng; Chang, Yaning; Gao, Xiang; Yan, Jun; Ying, Hao

    2012-01-01

    Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration. PMID:22911796

  20. Linking TGF-beta-mediated Cdc25A inhibition and cytoskeletal regulation through RhoA/p160(ROCK) signaling.

    PubMed

    Brown, Kimberly; Bhowmick, Neil A

    2004-04-01

    Transforming growth factor-beta (TGF-beta) can mediate G(1)/S cell-cycle inhibition and changes in the cytoskeletal organization through multiple parallel downstream signaling pathways. Recent findings regarding TGF-beta-mediated cell-cycle checkpoint control and epithelial to mesenchymal transition have converged to the RhoA/p160(ROCK) signaling pathway. The activation of TGF-beta-mediated p160(ROCK)rapidly inhibits the Cdc25A phosphatase as a component of the G(1)/S checkpoint control at the time cytoskeletal re-organization occurs. This can be likened to the ability to preserve genomic integrity in circumstances of genotoxic stress. The inactivation of the RhoA/p160(ROCK) pathway may be a mechanism by which cancer cells bypass growth inhibition even in the presence of TGF-beta.

  1. Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling

    PubMed Central

    Davis, Robert T.; Simon, Jillian N.; Utter, Megan; Mungai, Paul; Alvarez, Manuel G.; Chowdhury, Shamim A.K.; Heydemann, Ahlke; Ke, Yunbo; Wolska, Beata M.; Solaro, R. John

    2015-01-01

    Aims Despite its known cardiovascular benefits, the intracellular signalling mechanisms underlying physiological cardiac growth remain poorly understood. Therefore, the purpose of this study was to investigate a novel role of p21-activated kinase-1 (Pak1) in the regulation of exercise-induced cardiac hypertrophy. Methods and results Wild-type (WT) and Pak1 KO mice were subjected to 6 weeks of treadmill endurance exercise training (ex-training). Cardiac function was assessed via echocardiography, in situ haemodynamics, and the pCa–force relations in skinned fibre preparations at baseline and at the end of the training regimen. Post-translational modifications to the sarcomeric proteins and expression levels of calcium-regulating proteins were also assessed following ex-training. Heart weight/tibia length and echocardiography data revealed that there was marked hypertrophy following ex-training in the WT mice, which was not evident in the KO mice. Additionally, following ex-training, WT mice demonstrated an increase in cardiac contractility, myofilament calcium sensitivity, and phosphorylation of cardiac myosin-binding protein C, cardiac TnT, and tropomyosin compared with KO mice. With ex-training in WT mice, there were also increased protein levels of calcineurin and increased phosphorylation of phospholamban. Conclusions Our data suggest that Pak1 is essential for adaptive physiological cardiac remodelling and support previous evidence that demonstrates Pak1 signalling is important for cardiac growth and survival. PMID:26464331

  2. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway.

    PubMed

    Huh, Jeong-Eun; Lee, Wong In; Kang, Jung Won; Nam, Dongwoo; Choi, Do-Young; Park, Dong-Suk; Lee, Sang Hoon; Lee, Jae-Dong

    2014-11-26

    Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.

  3. GIV/Girdin Links Vascular Endothelial Growth Factor Signaling to Akt Survival Signaling in Podocytes Independent of Nephrin

    PubMed Central

    Wang, Honghui; Misaki, Taro; Taupin, Vanessa; Eguchi, Akiko; Ghosh, Pradipta

    2015-01-01

    Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα–interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases. PMID:25012178

  4. Dexamethasone Protects Neonatal Hypoxic-Ischemic Brain Injury via L-PGDS-Dependent PGD2-DP1-pERK Signaling Pathway

    PubMed Central

    Gonzalez-Rodriguez, Pablo J.; Li, Yong; Martinez, Fabian; Zhang, Lubo

    2014-01-01

    Background and Purpose Glucocorticoids pretreatment confers protection against neonatal hypoxic-ischemic (HI) brain injury. However, the molecular mechanism remains poorly elucidated. We tested the hypothesis that glucocorticoids protect against HI brain injury in neonatal rat by stimulation of lipocalin-type prostaglandin D synthase (L-PGDS)-induced prostaglandin D2 (PGD2)-DP1-pERK mediated signaling pathway. Methods Dexamethasone and inhibitors were administered via intracerebroventricular (i.c.v) injections into 10-day-old rat brains. Levels of L-PGD2, D prostanoid (DP1) receptor, pERK1/2 and PGD2 were determined by Western immunoblotting and ELISA, respectively. Brain injury was evaluated 48 hours after conduction of HI in 10-day-old rat pups. Results Dexamethasone pretreatment significantly upregulated L-PGDS expression and the biosynthesis of PGD2. Dexamethasone also selectively increased isoform pERK-44 level in the neonatal rat brains. Inhibitors of L-PGDS (SeCl4), DP1 (MK-0524) and MAPK (PD98059) abrogated dexamethasone-induced increases in pERK-44 level, respectively. Of importance, these inhibitors also blocked dexamethasone-mediated neuroprotective effects against HI brain injury in neonatal rat brains. Conclusion Interaction of glucocorticoids-GR signaling and L-PGDS-PGD2-DP1-pERK mediated pathway underlies the neuroprotective effects of dexamethasone pretreatment in neonatal HI brain injury. PMID:25474649

  5. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors

    PubMed Central

    Terenzio, Marco; Golding, Matthew; Russell, Matthew R G; Wicher, Krzysztof B; Rosewell, Ian; Spencer-Dene, Bradley; Ish-Horowicz, David; Schiavo, Giampietro

    2014-01-01

    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75NTR) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75NTR available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors. PMID:24920579

  6. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors.

    PubMed

    Terenzio, Marco; Golding, Matthew; Russell, Matthew R G; Wicher, Krzysztof B; Rosewell, Ian; Spencer-Dene, Bradley; Ish-Horowicz, David; Schiavo, Giampietro

    2014-07-17

    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75(NTR) available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors. © 2014 The Authors.

  7. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.

  8. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.

    PubMed

    Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko

    2012-02-01

    Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.

  9. GPER-1 agonist G1 induces vasorelaxation through activation of epidermal growth factor receptor-dependent signalling pathway.

    PubMed

    Jang, Eun Jin; Seok, Young Mi; Arterburn, Jeffrey B; Olatunji, Lawrence A; Kim, In Kyeom

    2013-10-01

    The G protein-coupled oestrogen receptor-1 (GPER-1) agonist G1 induces endothelium-dependent relaxation. Activation of the epidermal growth factor (EGF) receptor leads to transduction of signals from the plasma membrane for the release of nitric oxide. We tested the hypothesis that G1 induces endothelium-dependent vasorelaxation through activation of the EGF receptor. Rat aortic rings were mounted in organ baths. After pretreatment with various inhibitors, aortic rings contracted with 11,9-epoxymethano-prostaglandin F2α or KCl were subjected to relaxation by G1. G1 induced endothelium-dependent vasorelaxation, which was attenuated by pretreatment with either L -N(ω) -nitroarginine methyl ester (L -NAME), an inhibitor of nitric oxide synthase, or (3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline HB-EGF, heparin-binding EGF-like growth factor, a GPER-1 antagonist. Neither a general oestrogen receptor antagonist, ICI 182 780, nor a selective oestrogen receptor-α antagonist, methyl-piperidino-pyrazole dihydrochloride (MPP), had an effect on G1-induced vasorelaxation. However, pretreatment with EGF receptor blockers, AG1478 or DAPH, resulted in attenuated G1-induced vasorelaxation. In addition, pretreatment with Src inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or Akt inhibitor VIII also resulted in attenuated vascular relaxation induced by the cumulative addition of G1. However, neither phosphatidylinositol-3 kinase inhibitors LY294002 and wortmannin nor an extracellular signal-regulated kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene monoethanolate had effect on vascular relaxation induced by the cumulative addition of G1. G1 induces endothelium-dependent vasorelaxation through Src-mediated activation of the EGF receptor and the Akt pathway in rat aorta. © 2013 Royal Pharmaceutical Society.

  10. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720.

    PubMed

    Tran, Hai B; Barnawi, Jameel; Ween, Miranda; Hamon, Rhys; Roscioli, Eugene; Hodge, Greg; Reynolds, Paul N; Pitson, Stuart M; Davies, Lorena T; Haberberger, Rainer; Hodge, Sandra

    2016-07-01

    Alveolar macrophages from chronic obstructive pulmonary disease patients and cigarette smokers are deficient in their ability to phagocytose apoptotic bronchial epithelial cells (efferocytosis). We hypothesized that the defect is mediated via inhibition of sphingosine kinases and/or their subcellular mislocalization in response to cigarette smoke and can be normalized with exogenous sphingosine-1-phosphate or FTY720 (fingolimod), a modulator of sphingosine-1-phosphate signaling, which has been shown to be clinically useful in multiple sclerosis. Measurement of sphingosine kinase 1/2 activities by [(32)P]-labeled sphingosine-1-phosphate revealed a 30% reduction of sphingosine kinase 1 (P < 0.05) and a nonsignificant decrease of sphingosine kinase 2 in THP-1 macrophages after 1 h cigarette smoke extract exposure. By confocal analysis macrophage sphingosine kinase 1 protein was normally localized to the plasma membrane and cytoplasm and sphingosine kinase 2 to the nucleus and cytoplasm but absent at the cell surface. Cigarette smoke extract exposure (24 h) led to a retraction of sphingosine kinase 1 from the plasma membrane and sphingosine kinase 1/2 clumping in the Golgi domain. Selective inhibition of sphingosine kinase 2 with 25 µM ABC294640 led to 36% inhibition of efferocytosis (P < 0.05); 10 µM sphingosine kinase inhibitor/5C (sphingosine kinase 1-selective inhibitor) induced a nonsignificant inhibition of efferocytosis, but its combination with ABC294640 led to 56% inhibition (P < 0.01 vs. control and < 0.05 vs. single inhibitors). Cigarette smoke-inhibited efferocytosis was significantly (P < 0.05) reversed to near-control levels in the presence of 10-100 nM exogenous sphingosine-1-phosphate or FTY720, and FTY720 reduced cigarette smoke-induced clumping of sphingosine kinase 1/2 in the Golgi domain. These data strongly support a role of sphingosine kinase 1/2 in efferocytosis and as novel therapeutic targets in chronic obstructive pulmonary disease.

  11. Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production

    PubMed Central

    Dean, Scott N.; Chung, Myung-Chul

    2015-01-01

    In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation. PMID:26231649

  12. Redox-regulated growth factor survival signaling.

    PubMed

    Woolley, John F; Corcoran, Aoife; Groeger, Gillian; Landry, William D; Cotter, Thomas G

    2013-11-20

    Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light. Indeed, recent evidence points to control of signal propagation by ROS at multiple levels in the typical cascade. Growth factor stimulation activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) at the membrane, producing superoxide in the extracellular matrix, which is catalyzed to the membrane-permeable hydrogen peroxide (H2O2) that mediates intracellular signaling events. The potential for H2O2, however, to disrupt cellular functions by damaging proteins and nucleic acids demands that its levels are kept in check by receptor-associated peroxiredoxins. This interplay of Nox and peroxiredoxin activity moderates levels of H2O2 sufficiently to modify signaling partners locally. Among the best studied of these partners are redox-controlled phosphatases that are inactivated by H2O2. Phosphatases regulate signal propagation downstream of receptors, and thus their inactivation allows a further level of control. Transmission of information further downstream to targets such as transcription factors, themselves regulated by ROS, completes this pathway. Thus, signal propagation or attenuation can be dictated by ROS at multiple points. Given the complex nature of these processes, we envisage the emerging trends in the field of redox signaling in the context of growth factor stimulation.

  13. Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway.

    PubMed

    Zheng, Xin; Zhao, Feng-Chao; Pang, Yong; Li, Dong-Ya; Yao, Sheng-Cheng; Sun, Shao-Song; Guo, Kai-Jin

    2017-06-01

    Osteoarthritis (OA) is characterized by degradation of chondrocyte extracellular matrix (ECM). Accumulating evidence suggests that microRNAs (miRNAs) are associated with OA, but little is known of their function in chondrocyte ECM degradation. The objective of this study was to investigate the expression and function of miRNAs in OA. miRNA expression profile was determined in OA cartilage tissues and controls, employing Solexa sequencing and reverse transcription quantitative PCR (RT-qPCR). According to a modified Mankin scale, cartilage degradation was evaluated. Functional analysis of the miRNAs on chondrocyte ECM degradation was performed after miRNA transfection and IL-1β treatment. Luciferase reporter assays and western blotting were employed to determine miRNA targets. Expression of miR-221-3p was downregulated in OA cartilage tissues, which was significantly correlated with a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-221-3p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28I2 cells, SDF1 was identified as a target of miR-221-3p. SDF1 overexpression resulted in increased expression of catabolic genes such as MMP-13 and ADAMTS-5 in response to IL-1β, but these effects were moderated by miR-221-3p. SDF1 treatment antagonized this effect, while knockdown of SDF1 by shSDF1 induced inhibitory effects on the expression of CXCR4 and its main target genes, similar to miR-221-3p. The results indicate that upregulation of miR-221-3p could prevent IL-1β-induced ECM degradation in chondrocytes. Targeting the SDF1/CXCR4 signaling pathway may be used as a therapeutic approach for OA. miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4

  14. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase.

    PubMed

    Van Raemdonck, Katrien; Gouwy, Mieke; Lepers, Stefanie Antoinette; Van Damme, Jo; Struyf, Sofie

    2014-07-01

    CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.

  15. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells.

    PubMed

    Mahaut-Smith, Martyn P; Taylor, Kirk A; Evans, Richard J

    2016-01-01

    Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.

  16. T-cell receptor signaling enhances transcriptional elongation from latent HIV proviruses by activating P-TEFb through an ERK-dependent pathway.

    PubMed

    Kim, Young Kyeung; Mbonye, Uri; Hokello, Joseph; Karn, Jonathan

    2011-07-29

    Latent human immunodeficiency virus (HIV) proviruses are thought to be primarily reactivated in vivo through stimulation of the T-cell receptor (TCR). Activation of the TCR induces multiple signal transduction pathways, leading to the ordered nuclear migration of the HIV transcription initiation factors NF-κB (nuclear factor κB) and NFAT (nuclear factor of activated T-cells), as well as potential effects on HIV transcriptional elongation. We have monitored the kinetics of proviral reactivation using chromatin immunoprecipitation assays to measure changes in the distribution of RNA polymerase II in the HIV provirus. Surprisingly, in contrast to TNF-α (tumor necrosis factor α) activation, where early transcription elongation is highly restricted due to rate-limiting concentrations of Tat, efficient and sustained HIV elongation and positive transcription elongation factor b (P-TEFb) recruitment are detected immediately after the activation of latent proviruses through the TCR. Inhibition of NFAT activation by cyclosporine had no effect on either HIV transcription initiation or elongation. However, examination of P-TEFb complexes by gel-filtration chromatography showed that TCR signaling led to the rapid dissociation of the large inactive P-TEFb:7SK RNP (small nuclear RNA 7SK ribonucleoprotein) complex and the release of active low-molecular-weight P-TEFb complexes. Both P-TEFb recruitment to the HIV long terminal repeat and enhanced HIV processivity were blocked by the ERK (extracellular-signal-regulated kinase) inhibitor U0126, but not by AKT (serine/threonine protein kinase Akt) and PI3K (phosphatidylinositol 3-kinase) inhibitors. In contrast to treatment with HMBA (hexamethylene bisacetamide) and DRB (5,6-dichlorobenzimidazole 1-β-ribofuranoside), which disrupt the large 7SK RNP complex but do not stimulate early HIV elongation, TCR signaling provides the first example of a physiological pathway that can shift the balance between the inactive P-TEFb pool and

  17. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  18. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK.

    PubMed

    Rawashdeh, Oliver; Jilg, Antje; Maronde, Erik; Fahrenkrug, Jan; Stehle, Jörg H

    2016-09-01

    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~ 24 h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1(-/-) ) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6 kinase) into the nucleus. In hippocampal neurons from Per1(-/-) mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus

  19. Synergistic apoptosis in head and neck squamous cell carcinoma cells by co-inhibition of insulin-like growth factor-1 receptor signaling and compensatory signaling pathways.

    PubMed

    Axelrod, Mark J; Mendez, Rolando E; Khalil, Ashraf; Leimgruber, Stephanie S; Sharlow, Elizabeth R; Capaldo, Brian; Conaway, Mark; Gioeli, Daniel G; Weber, Michael J; Jameson, Mark J

    2015-12-01

    In head and neck squamous cell carcinoma (HNSCC), resistance to single-agent targeted therapy may be overcome by co-targeting of compensatory signaling pathways. A targeted drug screen with 120 combinations was used on 9 HNSCC cell lines. Multiple novel drug combinations demonstrated synergistic growth inhibition. Combining the insulin-like growth factor-1 receptor (IGF-1R) inhibitor, BMS754807, with either the human epidermal growth factor receptor (HER)-family inhibitor, BMS599626, or the Src-family kinase inhibitor, dasatinib, resulted in substantial synergy and growth inhibition. Depending on the cell line, these combinations induced synergistic or additive apoptosis; when synergistic apoptosis was observed, AKT phosphorylation was inhibited to a greater extent than either drug alone. Conversely, when additive apoptosis occurred, AKT phosphorylation was not reduced by the drug combination. Combined IGF-1R/HER family and IGF-1R/Src family inhibition may have therapeutic potential in HNSCC. AKT may be a node of convergence between IGF-1R signaling and pathways that compensate for IGF-1R inhibition. © 2015 Wiley Periodicals, Inc.

  20. Role of Gab1 in Heart, Placenta, and Skin Development and Growth Factor- and Cytokine-Induced Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation

    PubMed Central

    Itoh, Motoyuki; Yoshida, Yuichi; Nishida, Keigo; Narimatsu, Masahiro; Hibi, Masahiko; Hirano, Toshio

    2000-01-01

    Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation. PMID:10779359

  1. β-Estradiol-dependent activation of the JAK/STAT pathway requires p/CIP and CARM1.

    PubMed

    Coughlan, N; Thillainadesan, G; Andrews, J; Isovic, M; Torchia, J

    2013-06-01

    The steroid receptor coactivator p/CIP, also known as SRC-3, is an oncogene commonly amplified in breast and ovarian cancers. p/CIP is known to associate with coactivator arginine methyltransferase 1 (CARM1) on select estrogen responsive genes. We have shown, using a ChIP-on-chip approach, that in response to stimulation with 17β-estradiol (E2), the p/CIP/CARM1 complex is recruited to 204 proximal promoters in MCF-7 cells. Many of the complex target genes have been previously implicated in signaling pathways related to oncogenesis. Jak2, a member of the Jak/Stat signaling cascade, is one of the direct E2-dependent targets of the p/CIP/CARM1 complex. Following E2-treatment, histone modifications at the Jak2 promoter are reflective of a transcriptionally permissive gene, and modest changes in RNA and protein expression lead us to suggest that an additional factor(s) may be required for a more notable transcriptional and functional response. Bioinformatic examination of the 204 proximal promoter sequences of p/CIP/CARM1 targets supports the idea that transcription factor crosstalk is likely the favored mechanism of E2-dependent p/CIP/CARM1 complex recruitment. This data may have implications towards understanding the oncogenic role of p/CIP in breast cancer and ultimately allow for the identification of new prognostic indicators and/or viable therapeutic targets. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  2. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    PubMed Central

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-01-01

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis. Images PMID:1408831

  3. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    PubMed

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-10-11

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis.

  4. Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells.

    PubMed

    Lyons, Amy; Coleman, Michael; Riis, Sarah; Favre, Cedric; O'Flanagan, Ciara H; Zhdanov, Alexander V; Papkovsky, Dmitri B; Hursting, Stephen D; O'Connor, Rosemary

    2017-10-13

    Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) and PGC-1α-related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Noncanonical transforming growth factor β signaling in scleroderma fibrosis

    PubMed Central

    Trojanowska, Maria

    2014-01-01

    Purpose of review Persistent transforming growth factor β (TGF-β) signaling is the major factor contributing to scleroderma (SSc) fibrosis. This review will summarize recent progress on the noncanonical TGF-β signaling pathways and their role in SSc fibrosis. Recent findings Canonical TGF-β signaling involves activation of the TGF-β receptors and downstream signal transducers Smad2/3. The term noncanonical TGF-β signaling includes a variety of intracellular signaling pathways activated by TGF-β independently of Smad2/3 activation. There is evidence that these pathways play important role in SSc fibrosis. In a subset of SSc fibroblasts, a multiligand receptor complex consisting of TGF-β and CCN2 receptors drives constitutive activation of the Smad1 pathway. CCN2 is also a primary effector of this pathway, thus establishing an autocrine loop that amplifies TGF-β signaling. SSc fibroblasts also demonstrate reduced expression of endogenous antagonists of TGF-β signaling including transcriptional repressors, Friend leukemia integration-1 and perixosome proliferator-activated receptor-γ, as well as inhibitor of Smad3 phosphorylation, PTEN. PTEN is a key mediator of the cross-talk between the sphingosine kinase and the TGF-β pathways. Summary Discovery of the role of noncanonical TGF-β signaling in fibrosis offers new molecular targets for the antifibrotic therapies. Due to the heterogeneous nature of SSc, knowledge of these pathways could help to tailor the therapy to the individual patient depending on the activation status of a specific profibrotic pathway. PMID:19713852

  6. The matrix peptide exporter HAF-1 signals a mitochondrial unfolded protein response by activating the transcription factor ZC376.7 in C. elegans

    PubMed Central

    Haynes, Cole M.; Yang, Yun; Blais, Steven P.; Neubert, Thomas A.; Ron, David

    2010-01-01

    Summary Genetic analyses previously implicated the matrix-localized protease ClpP in signaling the stress of protein misfolding in the mitochondrial matrix to activate nuclear encoded mitochondrial chaperone genes in C. elegans (UPRmt). Here we report that haf-1, a gene encoding a mitochondria-localized ATP-binding cassette protein, is required for signaling within the UPRmt and for coping with misfolded protein stress. Peptide efflux from isolated mitochondria was ATP-dependent and required HAF-1 and the protease ClpP. Defective UPRmt signaling in the haf-1 deleted worms was associated with failure of the bZIP protein, ZC376.7, to localize to nuclei in worms with perturbed mitochondrial protein folding, whereas zc376.7(RNAi) strongly inhibited the UPRmt. These observations suggest a simple model whereby perturbation of the protein-folding environment in the mitochondrial matrix promotes ClpP-mediated generation of peptides whose haf-1-dependent export from the matrix contributes to UPRmt signaling across the mitochondrial inner membrane. PMID:20188671

  7. Growth factors, nutrient signaling, and cardiovascular aging.

    PubMed

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D

    2012-04-13

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.

  8. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yunguang; Zheng Siyuan; Torossian, Artour

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133more » and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.« less

  9. Substance P promotes hepatic stellate cell proliferation and activation via the TGF-β1/Smad-3 signaling pathway.

    PubMed

    Peng, Lei; Jia, Xiaoqing; Zhao, Jianjian; Cui, Ruibing; Yan, Ming

    2017-08-15

    Prolonged activation and proliferation of hepatic stellate cells (HSCs) usually results in the initiation and progression of liver fibrosis following injury. Recent studies have shown that Substance P (SP) participates in the development of fibrosis. However, whether SP is involved in liver fibrosis, especially in the activation and proliferation of HSCs, is largely unknown. In the present study, we measured the effects of a series of concentrations of SP on the cell viability and activation of HSC-T6 cells and LX2 cells. The underlying mechanism was also investigated. We found that SP effectively increased cell viability, both in an MTT assay (p<0.05) and in a lactate dehydrogenase activity assay (LDH) (p<0.05). Moreover, SP upregulated the protein expression of α-SMA and Collagen I (both p<0.05) and decreased the release of lipid droplets (LDs) (p<0.05), all of which are associated with HSC activation. Apoptosis analysis revealed that SP can attenuate the increase of cell apoptosis induced by serum withdrawal (p<0.05). Furthermore, these effects were all blocked by an SP receptor antagonist, L732138. More importantly, L732138 decreased the activation of the TGF-β1/Smad3 signaling pathway, which is highly associated with liver fibrosis. Taken together, our results demonstrate that SP can promote HSC proliferation and induce HSC activation via the TGF-β1/Smad3 signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Procarcinogenic effects of cyclosporine A are mediated through the activation of TAK1/TAB1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jianmin; Walsh, Stephanie B.; Verney, Zoe M.

    Research highlights: {yields} Organ transplant recipients are highly susceptible to early skin cancer development. {yields} CsA-mediated TGFB1-dependent TAK1/TAB1 signaling augments invasive tumor growth. {yields} CsA enhances accumulation of upstream kinases, ZMP, AMPK and IRAK to activate TAK1. {yields} TAK1 mediates enhanced proliferation and reduced apoptosis via CsA-dependent NF{kappa}B. -- Abstract: Cyclosporine A (CsA) is an immunosuppressive drug commonly used for maintaining chronic immune suppression in organ transplant recipients. It is known that patients receiving CsA manifest increased growth of aggressive non-melanoma skin cancers. However, the underlying mechanism by which CsA augments tumor growth is not fully understood. Here, we showmore » that CsA augments the growth of A431 epidermoid carcinoma xenograft tumors by activating tumor growth factor {beta}-activated kinase1 (TAK1). The activation of TAK1 by CsA occurs at multiple levels by kinases ZMP, AMPK and IRAK. TAK1 forms heterodimeric complexes with TAK binding protein 1 and 2 (TAB1/TAB2) which in term activate nuclear factor {kappa}B (NF{kappa}B) and p38 MAP kinase. Transcriptional activation of NF{kappa}B is evidenced by IKK{beta}-mediated phosphorylation-dependent degradation of I{kappa}B and consequent nuclear translocation of p65. This also leads to enhancement in the expression of its transcriptional target genes cyclin D1, Bcl2 and COX-2. Similarly, activation of p38 leads to enhanced inflammation-related signaling shown by increased phosphorylation of MAPKAPK2 and which in turn phosphorylates its substrate HSP27. Activation of both NF{kappa}B and p38 MAP kinase provide mitogenic stimuli to augment the growth of SCCs.« less

  11. Open Reading Frame 3 of Genotype 1 Hepatitis E Virus Inhibits Nuclear Factor-κappa B Signaling Induced by Tumor Necrosis Factor-α in Human A549 Lung Epithelial Cells

    PubMed Central

    Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao

    2014-01-01

    Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment. PMID:24959724

  12. Calcineurin-Crz1 Signaling in Lower Eukaryotes

    PubMed Central

    2014-01-01

    Calcium ions are ubiquitous intracellular messengers. An increase in the cytosolic Ca2+ concentration activates many proteins, including calmodulin and the Ca2+/calmodulin-dependent protein phosphatase calcineurin. The phosphatase is conserved from yeast to humans (except in plants), and many target proteins of calcineurin have been identified. The most prominent and best-investigated targets, however, are the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeast. In recent years, many orthologues of Crz1 have been identified and characterized in various species of fungi, amoebae, and other lower eukaryotes. It has been shown that the functions of calcineurin-Crz1 signaling, ranging from ion homeostasis through cell wall biogenesis to the building of filamentous structures, are conserved in the different organisms. Furthermore, frequency-modulated gene expression through Crz1 has been discovered as a striking new mechanism by which cells can coordinate their response to a signal. In this review, I focus on the latest findings concerning calcineurin-Crz1 signaling in fungi, amoebae and other lower eukaryotes. I discuss the potential of Crz1 and its orthologues as putative drug targets, and I also discuss possible parallels with calcineurin-NFAT signaling in mammals. PMID:24681686

  13. Ecm33 is a novel factor involved in efficient glucose uptake for nutrition-responsive TORC1 signaling in yeast.

    PubMed

    Umekawa, Midori; Ujihara, Masato; Nakai, Daiki; Takematsu, Hiromu; Wakayama, Mamoru

    2017-11-01

    Glucose uptake is crucial for providing both an energy source and a signal that regulates cell proliferation. Therefore, it is important to clarify the mechanisms underlying glucose uptake and its transmission to intracellular signaling pathways. In this study, we searched for a novel regulatory factor involved in glucose-induced signaling by using Saccharomyces cerevisiae as a eukaryotic model. Requirement of the extracellular protein Ecm33 in efficient glucose uptake and full activation of the nutrient-responsive TOR kinase complex 1 (TORC1) signaling pathway is shown. Cells lacking Ecm33 elicit a series of starvation-induced pathways even in the presence of extracellular high glucose concentration. This results in delayed cell proliferation, reduced ATP, induction of autophagy, and dephosphorylation of the TORC1 substrates Atg13 and Sch9. © 2017 Federation of European Biochemical Societies.

  14. Non-Smad signaling pathways.

    PubMed

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  15. Hypothalamic S1P/S1PR1 axis controls energy homeostasis.

    PubMed

    Silva, Vagner R R; Micheletti, Thayana O; Pimentel, Gustavo D; Katashima, Carlos K; Lenhare, Luciene; Morari, Joseane; Mendes, Maria Carolina S; Razolli, Daniela S; Rocha, Guilherme Z; de Souza, Claudio T; Ryu, Dongryeol; Prada, Patrícia O; Velloso, Lício A; Carvalheira, José B C; Pauli, José Rodrigo; Cintra, Dennys E; Ropelle, Eduardo R

    2014-09-25

    Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.

  16. SPSB1, a Novel Negative Regulator of the Transforming Growth FactorSignaling Pathway Targeting the Type II Receptor.

    PubMed

    Liu, Sheng; Nheu, Thao; Luwor, Rodney; Nicholson, Sandra E; Zhu, Hong-Jian

    2015-07-17

    Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways*

    PubMed Central

    Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2013-01-01

    Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082

  18. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  19. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1α interaction with co-factors p300/CBP

    PubMed Central

    Yin, Shaoman; Kaluz, Stefan; Devi, Narra S.; Jabbar, Adnan A.; de Noronha, Rita G.; Mun, Jiyoung; Zhang, Zhaobin; Boreddy, Purushotham R.; Wang, Wei; Wang, Zhibo; Abbruscato, Thomas; Chen, Zhengjia; Olson, Jeffrey J.; Zhang, Ruiwen; Goodman, Mark M.; Nicolaou, K.C.; Van Meir, Erwin G.

    2012-01-01

    Purpose The hypoxia inducible factor-1 (HIF-1) plays a critical role in tumor adaptation to hypoxia, and its elevated expression correlates with poor prognosis and treatment failure in cancer patients. In this study, we determined whether 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1, the lead inhibitor in a novel class of arylsulfonamide inhibitors of the HIF-1 pathway, had anti-tumorigenic properties in vivo and further defined its mechanism of action. Experimental Design We studied the inhibitory effect of systemic KCN1 delivery on the growth of human brain tumors in mice. To define mechanisms of KCN1 anti-HIF activities, we examined its influence on the assembly of a functional HIF1α/HIF1β/p300 transcription complex. Results KCN1 specifically inhibited HIF reporter gene activity in several glioma cell lines at the nanomolar level. KCN1 also downregulated transcription of endogenous HIF-1 target genes, such as VEGF, Glut-1 and carbonic anhydrase 9, in an HRE-dependent manner. KCN1 potently inhibited the growth of subcutaneous malignant glioma tumor xenografts with minimal adverse effects on the host. It also induced a temporary survival benefit in an intracranial model of glioma but had no effect in a model of melanoma metastasis to the brain. Mechanistically, KCN1 did not down-regulate levels of HIF-1α or other components of the HIF transcriptional complex; rather, it antagonized hypoxia-inducible transcription by disrupting the interaction of HIF-1α with transcriptional co-activators p300/CBP. Conclusions Our results suggest that the new HIF pathway inhibitor KCN1 has antitumor activity in mouse models, supporting its further translation for the treatment of human tumors displaying hypoxia or HIF overexpression. PMID:22923450

  20. Signaling induced by hop/STI-1 depends on endocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael

    The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP{sup C}), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP{sup C} and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling inducedmore » by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP{sup C} by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.« less

  1. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia

    PubMed Central

    Cohen, Taylor S.; Prince, Alice S.

    2013-01-01

    The respiratory tract is exceptionally well defended against infection from inhaled bacteria, with multiple proinflammatory signaling cascades recruiting phagocytes to clear airway pathogens. However, organisms that efficiently activate damaging innate immune responses, such as those mediated by the inflammasome and caspase-1, may cause pulmonary damage and interfere with bacterial clearance. The extracellular, opportunistic pathogen Pseudomonas aeruginosa expresses not only pathogen-associated molecular patterns that activate NF-κB signaling in epithelial and immune cells, but also flagella that activate the NLRC4 inflammasome. We demonstrate that induction of inflammasome signaling, ascribed primarily to the alveolar macrophage, impaired P. aeruginosa clearance and was associated with increased apoptosis/pyroptosis and mortality in a murine model of acute pneumonia. Strategies that limited inflammasome activation, including infection by fliC mutants, depletion of macrophages, deletion of NLRC4, reduction of IL-1β and IL-18 production, inhibition of caspase-1, and inhibition of downstream signaling in IL-1R– or IL-18R–null mice, all resulted in enhanced bacterial clearance and diminished pathology. These results demonstrate that the inflammasome provides a potential target to limit the pathological consequences of acute P. aeruginosa pulmonary infection. PMID:23478406

  2. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB and MAPK signaling pathways in human lung epithelial cells.

    PubMed

    Chunlian, Wu; Heyong, Wang; Jia, Xu; Jie, Huang; Xi, Chen; Gentao, Liu

    2014-12-01

    Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.

  3. cAMP signalling decreases p300 protein levels by promoting its ubiquitin/proteasome dependent degradation via Epac and p38 MAPK in lung cancer cells.

    PubMed

    Jeong, Min-Jae; Kim, Eui-Jun; Cho, Eun-Ah; Ye, Sang-Kyu; Kang, Gyeong Hoon; Juhnn, Yong-Sung

    2013-05-02

    The transcriptional coactivator p300 functions as a histone acetyltransferase and a scaffold for transcription factors. We investigated the effect of cAMP signalling on p300 expression. The activation of cAMP signalling by the expression of constitutively active Gαs or by treatment with isoproterenol decreased the p300 protein expression in lung cancer cells. Isoproterenol promoted the ubiquitination and subsequent proteasomal degradation of p300 in an Epac-dependent manner. Epac promoted p300 degradation by inhibiting the activity of p38 MAPK. It is concluded that cAMP signalling decreases the level of the p300 protein by promoting its ubiquitin-proteasome dependent degradation, which is mediated by Epac and p38 MAPK, in lung cancer cells. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. The acetylation of transcription factor HBP1 by p300/CBP enhances p16INK4A expression

    PubMed Central

    Wang, Weibin; Pan, Kewu; Chen, Yifan; Huang, Chunyin; Zhang, Xiaowei

    2012-01-01

    HBP1 is a sequence-specific DNA-binding transcription factor with many important biological roles. It activates or represses the expression of some specific genes during cell growth and differentiation. Previous studies have exhibited that HBP1 binds to p16INK4A promoter and activates p16INK4A expression. We found that trichostatin A (TSA), an inhibitor of HDAC (histone deacetylase), induces p16INK4A expression in an HBP1-dependent manner. This result was drawn from a transactivation experiment by measuring relative luciferase activities of p16INK4A promoter with HBP1-binding site in comparison with that of the wild-type p16INK4A promoter by transient cotransfection with HBP1 into HEK293T cells and 2BS cells. HBP1 acetylation after TSA treatment was confirmed by immunoprecipitation assay. Our data showed that HBP1 interacted with histone acetyltransferase p300 and CREB-binding protein (CBP) and also recruited p300/CBP to p16INK4A promoter. HBP1 was acetylated by p300/CBP in two regions: repression domain (K297/305/307) and P domain (K171/419). Acetylation of Repression domain was not required for HBP1 transactivation on p16INK4A. However, luciferase assay and western blotting results indicate that acetylation of P domain, especially K419 acetylation is essential for HBP1 transactivation on p16INK4A. As assayed by SA-beta-gal staining, the acetylation of HBP1 at K419 enhanced HBP1-induced premature senescence in 2BS cells. In addition, HDAC4 repressed HBP1-induced premature senescence through permanently deacetylating HBP1. We conclude that our data suggest that HBP1 acetylation at K419 plays an important role in HBP1-induced p16INK4A expression. PMID:21967847

  5. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  6. Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth

    PubMed Central

    Kopechek, Jonathan A.; Carson, Andrew R.; McTiernan, Charles F.; Chen, Xucai; Hasjim, Bima; Lavery, Linda; Sen, Malabika; Grandis, Jennifer R.; Villanueva, Flordeliza S.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site. The objective of this study was to deliver STAT3 decoy to squamous cell carcinoma (SCC) tumors using UTMD to disrupt STAT3 signaling and inhibit tumor growth. Studies performed demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles inhibited STAT3 signaling in SCC cells in vitro. Studies performed in vivo demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles induced significant tumor growth inhibition (31-51% reduced tumor volume vs. controls, p < 0.05) in mice bearing SCC tumors. Furthermore, expression of STAT3 downstream target genes (Bcl-xL and cyclin D1) was significantly reduced (34-39%, p < 0.05) in tumors receiving UTMD treatment with STAT3 decoy-loaded microbubbles compared to controls. In addition, the quantity of radiolabeled STAT3 decoy detected in tumors eight hours after treatment was significantly higher with UTMD treatment compared to controls (70-150%, p < 0.05). This study demonstrates that UTMD can increase delivery of a transcription factor decoy to tumors in vivo and that the decoy can inhibit STAT3 signaling and tumor growth. These results suggest that UTMD treatment holds potential for clinical use to increase the concentration of a transcription factor signaling inhibitor in the tumor. PMID:26681983

  7. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes.

    PubMed

    Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun

    2009-07-01

    Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in

  8. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells.

    PubMed

    Gekle, Michael; Freudinger, Ruth; Mildenberger, Sigrid; Silbernagl, Stefan

    2002-04-01

    Epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport by using extracellular signal-regulated kinase (ERK)1/2 as a downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G protein-coupled receptors, growth hormone, and cytokines by means of transactivation. It has been suggested that steroids interact with peptide hormones, in part, by rapid, potentially nongenomic, mechanisms. Previously, we have shown that aldosterone modulates Na(+)/H(+) exchange in Madin-Darby canine kidney (MDCK) cells by means of ERK1/2 in a way similar to growth factors. Here, we tested the hypothesis that aldosterone uses the EGF-R as a heterologous signal transducer in MDCK cells. Nanomolar concentrations of aldosterone induce a rapid increase in ERK1/2 phosphorylation, cellular Ca(2+) concentration, and Na(+)/H(+) exchange activity similar to increases induced by EGF. Furthermore, aldosterone induced a rapid increase in EGF-R-Tyr phosphorylation, and inhibition of EGF-R kinase abolished aldosterone-induced signaling. Inhibition of ERK1/2 phosphorylation reduced the Ca(2+) response, whereas prevention of Ca(2+) influx did not abolish ERK1/2 phosphorylation. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.

  9. Interference by 2,3,7,8-tetrachlorodibenzo-p-dioxin with cultured mouse submandibular gland branching morphogenesis involves reduced epidermal growth factor receptor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiukkonen, Anu; Sahlberg, Carin; Partanen, Anna-Maija

    2006-05-01

    Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis. Explants were examined stereomicroscopically and processed to paraffin sections. TCDD exposuremore » impaired epithelial branching and cleft formation, resulting in enlarged buds. The glands were smaller than normal. EGF and FN alone concentration-dependently stimulated or inhibited branching morphogenesis but when co-administered with TCDD, failed to compensate for its effect. TCDD induced cytochrome P4501A1 expression in the glandular epithelium, indicating activation of the aryl hydrocarbon receptor. TCDD somewhat increased epithelial apoptosis as observed by terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method but the increase could not be correlated with morphological changes. The frequency of proliferating cells was not altered. Corresponding to the reduced cleft sites in TCDD-exposed explants, FN immunoreactivity in the epithelium was reduced. The results show that TCDD, comparably with EGF and FN at morphogenesis-inhibiting concentrations, impaired salivary gland branching morphogenesis in vitro. Together with the failure of EGF and FN at morphogenesis-stimulating concentrations to compensate for the effect of TCDD this implies that TCDD toxicity to developing salivary gland involves reduced EGF receptor signaling.« less

  10. Modulation of Insulin-Like Growth Factor-1 Receptor and its Signaling Network for the Treatment of Cancer: Current Status and Future Perspectives

    PubMed Central

    Jin, Meizhong; Buck, Elizabeth; Mulvihill, Mark J.

    2013-01-01

    Based on over three decades of pre-clinical data, insulin-like growth factor-1 receptor (IGF-1R) signaling has gained recognition as a promoter of tumorogenesis, driving cell survival and proliferation in multiple human cancers. As a result, IGF-1R has been pursued as a target for cancer treatment. Early pioneering efforts targeting IGF-1R focused on highly selective monoclonal antibodies, with multiple agents advancing to clinical trials. However, despite some initial promising results, recent clinical disclosures have been less encouraging. Moreover, recent studies have revealed that IGF-1R participates in a dynamic and complex signaling network, interacting with additional targets and pathways thereof through various crosstalk and compensatory signaling mechanisms. Such mechanisms of bypass signaling help to shed some light on the decreased effectiveness of selective IGF-1R targeted therapies (e.g. monoclonal antibodies) and suggest that targeting multiple nodes within this signaling network might be necessary to produce a more effective therapeutic response. Additionally, such findings have led to the development of small molecule IGF-1R inhibitors which also co-inhibit additional targets such as insulin receptor and epidermal growth factor receptor. Such findings have helped to guide the design rationale of numerous drug combinations that are currently being evaluated in clinical trials. PMID:25992224

  11. Vascular endothelial growth factor receptor 1 (VEGFR1) tyrosine kinase signaling facilitates granulation tissue formation with recruitment of VEGFR1+ cells from bone marrow.

    PubMed

    Park, Keiichi; Amano, Hideki; Ito, Yoshiya; Mastui, Yoshio; Kamata, Mariko; Yamazaki, Yasuharu; Takeda, Akira; Shibuya, Masabumi; Majima, Masataka

    2018-06-01

    Vascular endothelial growth factor (VEGF)-A facilitates wound healing. VEGF-A binds to VEGF receptor 1 (VEGFR1) and VEGFR2 and induces wound healing through the receptor's tyrosine kinase (TK) domain. During blood flow recovery and lung regeneration, expression of VEGFR1 is elevated. However, the precise mechanism of wound healing, especially granulation formation on VEGFR1, is not well understood. We hypothesized that VEGFR1-TK signaling induces wound healing by promoting granulation tissue formation. A surgical sponge implantation model was made by implanting a sponge disk into dorsal subcutaneous tissue of mice. Granulation formation was estimated from the weight of the sponge and the granulation area from the immunohistochemical analysis of collagen I. The expression of fibroblast markers was estimated from the expression of transforming growth factor-beta (TGF-β) and cellular fibroblast growth factor-2 (FGF-2) using real-time PCR (polymerase chain reaction) and from the immunohistochemical analysis of S100A4. VEGFR1 TK knockout (TK -/- ) mice exhibited suppressed granulation tissue formation compared to that in wild-type (WT) mice. Expression of FGF-2, TGF-β, and VEGF-A was significantly suppressed in VEGFR1 TK -/- mice, and the accumulation of VEGFR1 + cells in granulation tissue was reduced in VEGFR1 TK -/- mice compared to that in WT mice. The numbers of VEGFR1 + cells and S100A4 + cells derived from bone marrow (BM) were higher in WT mice transplanted with green fluorescent protein (GFP) transgenic WT BM than in VEGFR1 TK -/- mice transplanted with GFP transgenic VEGFR1 TK -/- BM. These results indicated that VEGFR1-TK signaling induced the accumulation of BM-derived VEGFR1 + cells expressing F4/80 and S100A4 and contributed to granulation formation around the surgically implanted sponge area in a mouse model.

  12. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells.

    PubMed

    Babeu, Jean-Philippe; Jones, Christine; Geha, Sameh; Carrier, Julie C; Boudreau, François

    2018-06-13

    HNF4α is a key nuclear receptor for regulating gene expression in the gut. While both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms may regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism while P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms are rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome thereby promoting colorectal cancer progression. © 2018. Published by The Company of Biologists Ltd.

  13. AIP1 recruits phosphatase PP2A to ASK1 in tumor necrosis factor-induced ASK1-JNK activation.

    PubMed

    Min, Wang; Lin, Yan; Tang, Shibo; Yu, Luyang; Zhang, Haifeng; Wan, Ting; Luhn, Tricia; Fu, Haian; Chen, Hong

    2008-04-11

    Previously we have shown that AIP1 (apoptosis signal-regulating kinase [ASK]1-interacting protein 1), a novel member of the Ras-GAP protein family, facilitates dephosphorylation of ASK1 at pSer967 and subsequently 14-3-3 release from ASK1, leading to enhanced ASK1-JNK signaling. However, the phosphatase(s) responsible for ASK1 dephosphorylation at pSer967 has not been identified. In the present study, we identified protein phosphatase (PP)2A as a potential phosphatase in vascular endothelial cells (ECs). Tumor necrosis factor (TNF)-induced dephosphorylation of ASK1 pSer967 in ECs was blocked by PP2A inhibitor okadaic acid. Overexpression of PP2A catalytic subunit induced dephosphorylation of ASK1 pSer967 and activation of c-Jun N-terminal kinase (JNK). In contrast, a catalytic inactive form of PP2A or PP2A small interfering RNA blunted TNF-induced dephosphorylation of ASK1 pSer967 and activation of JNK without effects on NF-kappaB activation. Whereas AIP1, via its C2 domain, binds to ASK1, PP2A binds to the GAP domain of AIP1. Endogenous AIP1-PP2A complex can be detected in the resting state, and TNF induces a complex formation of AIP1-PP2A with ASK1. Furthermore, TNF-induced association of PP2A with ASK1 was diminished in AIP1-knockdown ECs, suggesting a critical role of AIP1 in recruiting PP2A to ASK1. TNF-signaling molecules TRAF2 and RIP1, known to be in complex with AIP1 and activate AIP1 by phosphorylating AIP1 at Ser604, are critical for TNF-induced ASK1 dephosphorylation. Finally, PP2A and AIP1 cooperatively induce activation of ASK1-JNK signaling and EC apoptosis, as demonstrated by both overexpression and small interfering RNA knockdown approaches. Taken together, our data support a critical role of PP2A-AIP1 complex in TNF-induced activation of ASK1-JNK apoptotic signaling.

  14. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans.

    PubMed

    Hollomon, Jeffrey M; Grahl, Nora; Willger, Sven D; Koeppen, Katja; Hogan, Deborah A

    2016-01-01

    Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an

  15. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans

    PubMed Central

    Hollomon, Jeffrey M.; Grahl, Nora; Willger, Sven D.; Koeppen, Katja

    2016-01-01

    ABSTRACT Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an

  16. Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status.

    PubMed

    Michaelis, Martin; Rothweiler, Florian; Löschmann, Nadine; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2015-07-10

    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.

  17. Neuropeptide Trefoil Factor 3 Reverses Depressive-Like Behaviors by Activation of BDNF-ERK-CREB Signaling in Olfactory Bulbectomized Rats.

    PubMed

    Li, Jiali; Luo, Yixiao; Zhang, Ruoxi; Shi, Haishui; Zhu, Weili; Shi, Jie

    2015-11-30

    The trefoil factors (TFFs) are a family of three polypeptides, among which TFF1 and TFF3 are widely distributed in the central nervous system. Our previous study indicated that TFF3 was a potential rapid-onset antidepressant as it reversed the depressive-like behaviors induced by acute or chronic mild stress. In order to further identify the antidepressant-like effect of TFF3, we applied an olfactory bulbectomy (OB), a classic animal model of depression, in the present study. To elucidate the mechanism underlying the antidepressant-like activity of TFF3, we tested the role of brain-derived neurotrophic factor (BDNF)-extracellular signal-related kinase (ERK)-cyclic adenosine monophosphate response element binding protein (CREB) signaling in the hippocampus in the process. Chronic systemic administration of TFF3 (0.1 mg/kg, i.p.) for seven days not only produced a significant antidepressant-like efficacy in the OB paradigm, but also restored the expression of BDNF, pERK, and pCREB in the hippocampal CA3. Inhibition of BDNF or extracellular signal-related kinase (ERK) signaling in CA3 blocked the antidepressant-like activity of TFF3 in OB rats. Our findings further confirmed the therapeutic effect of TFF3 against depression and suggested that the normalization of the BDNF-ERK-CREB pathway was involved in the behavioral response of TFF3 for the treatment of depression.

  18. Navy Recruit Optimization, Post-1980: Separation Process.

    DTIC Science & Technology

    1981-04-01

    3850260 RGC Death 5030420 RGD Pregnancy 3850220.2 RGE Enuresis 3850220.1m RGF Sleepwalking 3850220.1m F. OTHER RXA Miscellaneous Reasons not covered by...codes--Erroneous Enlistment (RGA), Minority (RGB), Death (RGC), Pregnancy (RGD), Enuresis (RGE), Sleepwalking (RGF)--exhibit a high degree of...difficult to diagnose precisely as medical or mental; e.g., enuresis, sleepwalking . TABLE 6. COMPARISON OF MEDICAL/PSYCHOLOGICAL SEPARATIONS ACROSS RTCs

  19. Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Wolfe, G. M.; Min, K. E.; Brown, S. S.; Miller, C. C.; Jacob, D. J.; deGouw, J. A.; Graus, M.; Hanisco, T. F.; Holloway, J.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Washenfelder, R. A.; Keutsch, F. N.

    2015-07-01

    The yield of formaldehyde (HCHO) and glyoxal (CHOCHO) from oxidation of volatile organic compounds (VOCs) depends on precursor VOC structure and the concentration of NOx (NOx = NO + NO2). Previous work has proposed that the ratio of CHOCHO to HCHO (RGF) can be used as an indicator of precursor VOC speciation, and absolute concentrations of the CHOCHO and HCHO as indicators of NOx. Because this metric is measurable by satellite, it is potentially useful on a global scale; however, absolute values and trends in RGF have differed between satellite and ground-based observations. To investigate potential causes of previous discrepancies and the usefulness of this ratio, we present measurements of CHOCHO and HCHO over the southeastern United States (SE US) from the 2013 SENEX (Southeast Nexus) flight campaign, and compare these measurements with OMI (Ozone Monitoring Instrument) satellite retrievals. High time-resolution flight measurements show that high RGF is associated with monoterpene emissions, low RGF is associated with isoprene oxidation, and emissions associated with oil and gas production can lead to small-scale variation in regional RGF. During the summertime in the SE US, RGF is not a reliable diagnostic of anthropogenic VOC emissions, as HCHO and CHOCHO production are dominated by isoprene oxidation. Our results show that the new CHOCHO retrieval algorithm reduces the previous disagreement between satellite and in situ RGF observations. As the absolute values and trends in RGF observed during SENEX are largely reproduced by OMI observations, we conclude that satellite-based observations of RGF can be used alongside knowledge of land use as a global diagnostic of dominant hydrocarbon speciation.

  20. Epithelial transformation by KLF4 requires Notch1 but not canonical Notch1 signaling

    PubMed Central

    Liu, Zhaoli; Teng, Lihong; Bailey, Sarah K.; Frost, Andra R.; Bland, Kirby I.; LoBuglio, Albert F.; Ruppert, J. Michael; Lobo-Ruppert, Susan M.

    2009-01-01

    The transcription factors Notch1 and KLF4 specify epithelial cell fates and confer stem cell properties. suggesting a functional relationship, each gene can act to promote or suppress tumorigenesis in a context-dependent manner, and alteration of KLF4 or Notch pathway genes in mice gives rise to similar phenotypes. Activation of a conditional allele of KLF4 in RK3E epithelial cells rapidly induces expression of Notch1 mRNA and the active, intracellular form of Notch1. KLF4-induced transformation was suppressed by knockdown of endogenous Notch1 using siRNA or an inhibitor of γ-secretase. Chromatin immunoprecipitation assay shows that KLF4 binds to the proximal Notch1 promoter in human mammary epithelial cells, and siRNA-mediated suppression of KLF4 in human mammary cancer cells results in reduced expression of Notch1. Furthermore, KLF4 and Notch1 expression are correlated in primary human breast tumors (N = 89; pearson analysis, r > 0.5, p < 0.0001). Like KLF4, Notch1 was previously shown to induce transformation of rat cells immortalized with adenovirus E1A, similar to RK3E cells. We therefore compared the signaling requirements for Notch1- or KLF4-induced malignant transformation of RK3E. As expected, transformation by Notch1 was suppressed by dominant-negative CSL or MaML1, inhibitors of canonical Notch1 signaling. However, these inhibitors did not suppress transformation by KLF4. Therefore, while KLF4-induced transformation requires Notch1, canonical Notch1 signaling is not required, and Notch1 may signal through a distinct pathway in cells with increased KLF4 activity. These results suggest that KLF4 could contribute to breast tumor progression by activating synthesis of Notch1 and by promoting signaling through a non-canonical Notch1 pathway. PMID:19717984

  1. Sika pilose antler type I collagen promotes BMSC differentiation via the ERK1/2 and p38-MAPK signal pathways.

    PubMed

    Wang, Yanshuang; Luo, Su; Zhang, Dafang; Qu, Xiaobo; Tan, Yinfeng

    2017-12-01

    Sika pilose antler type I collagen (SPC-I) have been reported to promote bone marrow mesenchymal stem cell (BMSC) proliferation and differentiation. However, the underlying mechanism is still unclear. This study investigates the molecular mechanisms of SPC-I on the BMSC proliferation and differentiation of osteoblast (OB) in vitro. The primary rat BMSC was cultured and exposed to SPC-I at different concentrations (2.5, 5.0 and 10.0 mg/mL) for 20 days. The effect of SPC-I on the differentiation of BMSCs was evaluated through detecting the activity of alkaline phosphatase (ALP), ALP staining, collagen I (Col-I) content, and calcified nodules. The markers of osteoblastic differentiation were evaluated using RT-PCR and Western-blot analysis. SPC-I treatment (2.5 mg/mL) significantly increased the proliferation of BMSCs (p < 0.01), whereas, SPC-I (5.0 and 10.0 mg/mL) significantly inhibited the proliferation of BMSCs (p < 0.01). SPC-I (2.5 mg/mL) significantly increased ALP activity and Col-I content (p < 0.01), and increased positive cells in ALP staining and the formation of calcified nodules. Additionally, the gene expression of ALP, Col-I, Osteocalcin (OC), Runx2, Osterix (Osx), ERK1/2, BMP2 and p38-MAPK, along with the protein expression of ERK1/2, p-ERK1/2, p-p38 MAPK were markedly increased in the SPC-I (5.0 mg/mL) treatment group (p < 0.01) compared to the control group. SPC-I can induce BMSC differentiation into OBs and enhance the function of osteogenesis through ERK1/2 and p38-MAPK signal transduction pathways and regulating the gene expression of osteogenesis-specific transcription factors.

  2. Arrestin-related proteins mediate pH signaling in fungi.

    PubMed

    Herranz, Silvia; Rodríguez, José M; Bussink, Henk-Jan; Sánchez-Ferrero, Juan C; Arst, Herbert N; Peñalva, Miguel A; Vincent, Olivier

    2005-08-23

    Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian beta-arrestins, ubiquitinated in a signal-dependent and 7TM protein-dependent manner. Substitution in PalF of a highly conserved arrestin N-terminal domain Ser residue prevents PalF-PalH interaction and pH signaling in vivo. Thus, PalF is the first experimentally documented fungal arrestin-related protein, dispelling the notion that arrestins are restricted to animal proteomes. Epistasis analyses demonstrate that PalF posttranslational modification is partially dependent on the 4TM protein PalI but independent of the remaining pH signal transduction pathway proteins PalA, PalB, and PalC, yielding experimental evidence bearing on the order of participation of the six components of the pH signal transduction pathway. Our data strongly implicate PalH as an ambient pH sensor, possibly with the cooperation of PalI.

  3. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells.

    PubMed

    Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V

    2014-09-26

    Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and

  4. Transcriptional inhibition of p21{sup WAF1/CIP1} gene (CDKN1) expression by survivin is at least partially p53-dependent: Evidence for survivin acting as a transcription factor or co-factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lei; Pre-Doctoral Chinese Fellowship Student, Second West China Hospital, Sichuan University, Sichuan; Ling, Xiang

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role inmore » p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1

  5. AT1 receptor signaling pathways in the cardiovascular system.

    PubMed

    Kawai, Tatsuo; Forrester, Steven J; O'Brien, Shannon; Baggett, Ariele; Rizzo, Victor; Eguchi, Satoru

    2017-11-01

    The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. P-MAPA immunotherapy potentiates the effect of cisplatin on serous ovarian carcinoma through targeting TLR4 signaling.

    PubMed

    de Almeida Chuffa, Luiz Gustavo; de Moura Ferreira, Grazielle; Lupi, Luiz Antonio; da Silva Nunes, Iseu; Fávaro, Wagner José

    2018-01-17

    Toll-like receptors (TLRs) are transmembrane proteins expressed on the surface of ovarian cancer (OC) and immune cells. Identifying the specific roles of the TLR-mediated signaling pathways in OC cells is important to guide new treatments. Because immunotherapies have emerged as the adjuvant treatment for patients with OC, we investigated the effect of a promising immunotherapeutic strategy based on protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) combined with cisplatin (CIS) on the TLR2 and TLR4 signaling pathways via myeloid differentiation factor 88 (MyD88) and TLR-associated activator of interferon (TRIF) in an in vivo model of OC. Tumors were chemically induced by a single injection of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) directly under the left ovarian bursa in Fischer 344 rats. After the rats developed serous papillary OC, they were given P-MAPA, CIS or the combination P-MAPA+CIS as therapies. To understand the effects of the treatments, we assessed the tumor size, histopathology, and the TLR2- and TLR4-mediated inflammatory responses. Although CIS therapy was more effective than P-MAPA in reducing the tumor size, P-MAPA immunotherapy significantly increased the expressions of TLR2 and TLR4. More importantly, the combination of P-MAPA with CIS showed a greater survival rate compared to CIS alone, and exhibited a significant reduction in tumor volume compared to P-MAPA alone. The combination therapy also promoted the increase in the levels of the following OC-related proteins: TLR4, MyD88, TRIF, inhibitor of phosphorylated NF-kB alpha (p-IkBα), and nuclear factor kappa B (NF-kB p65) in both cytoplasmic and nuclear sites. While P-MAPA had no apparent effect on tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6, it seems to increase interferon-γ (IFN-γ), which may induce the Thelper (Th1)-mediated immune response. Collectively, our results suggest that P-MAPA immunotherapy combined with cisplatin

  7. Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    NASA Astrophysics Data System (ADS)

    Digangi, J. P.; Henry, S. B.; Kammrath, A.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Graus, M.; Turnipseed, A.; Park, J.-H.; Weber, R. J.; Hornbrook, R. S.; Cantrell, C. A.; Maudlin, R. L., III; Kim, S.; Nakashima, Y.; Wolfe, G. M.; Kajii, Y.; Apel, E. C.; Goldstein, A. H.; Guenther, A.; Karl, T.; Hansel, A.; Keutsch, F. N.

    2012-02-01

    We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs). Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, RGF, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in RGF were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on RGF and could reflect transitions between low and high NO regimes. The trend of increased RGF from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in RGF occurred. Satellite retrievals, which suggest higher RGF for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in-situ measurements for model comparison. In addition, we propose that RGF, together with the absolute concentrations of glyoxal and formaldehyde, represents a useful metric for biogenic or anthropogenic reactive VOC mixtures. In particular, RGF yields information about not simply the VOCs in an airmass, but the VOC processing that directly couples ozone and secondary organic aerosol production.

  8. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal.

    PubMed

    Fuentealba, Luis C; Eivers, Edward; Ikeda, Atsushi; Hurtado, Cecilia; Kuroda, Hiroki; Pera, Edgar M; De Robertis, Edward M

    2007-11-30

    BMP receptors determine the intensity of BMP signals via Smad1 C-terminal phosphorylations. Here we show that a finely controlled cell biological pathway terminates this activity. The duration of the activated pSmad1(Cter) signal was regulated by sequential Smad1 linker region phosphorylations at conserved MAPK and GSK3 sites required for its polyubiquitinylation and transport to the centrosome. Proteasomal degradation of activated Smad1 and total polyubiquitinated proteins took place in the centrosome. Inhibitors of the Erk, p38, and JNK MAPKs, as well as GSK3 inhibitors, prolonged the duration of a pulse of BMP7. Wnt signaling decreased pSmad1(GSK3) antigen levels and redistributed it from the centrosome to cytoplasmic LRP6 signalosomes. In Xenopus embryos, it was found that Wnts induce epidermis and that this required an active BMP-Smad pathway. Epistatic experiments suggested that the dorsoventral (BMP) and anteroposterior (Wnt/GSK3) patterning gradients are integrated at the level of Smad1 phosphorylations during embryonic pattern formation.

  9. The {sup 2}P{sub 1/2} {yields} {sup 2}P{sub 3/2} laser transition in atomic iodine and the problem of search for signals from extraterrestrial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutaev, Yu F; Mankevich, S K; Nosach, O Yu

    2007-07-31

    It is proposed to search for signals from extraterrestrial intelligence (ETI) at a wavelength of 1.315 {mu}m of the laser {sup 2}P{sub 1/2} {yields} {sup 2}P{sub 3/2} transition in the atomic iodine, which can be used for this purpose as the natural frequency reference. The search at this wavelength is promising because active quantum filters (AQFs) with the quantum sensitivity limit have been developed for this wavelength, which are capable of receiving laser signals, consisting of only a few photons, against the background of emission from a star under study. In addition, high-power iodine lasers emitting diffraction-limited radiation at 1.315more » {mu}m have been created, which highly developed ETI also can have. If a ETI sends in our direction a diffraction-limited 10-ns, 1-kJ laser pulse with the beam diameter of 10 m, a receiver with an AQF mounted on a ten-meter extra-atmospheric optical telescope can detect this signal at a distance of up to 300 light years, irrespective of the ETI position on the celestial sphere. The realisation of the projects for manufacturing optical telescopes of diameter 30 m will increase the research range up to 2700 light years. A weak absorption of the 1.315-{mu}m radiation in the Earth atmosphere (the signal is attenuated by less than 20%) allows the search for ETI signals by using ground telescopes equipped with adaptive optical systems. (laser applications and other topics in quantum electronics)« less

  10. Substance P - Neurokinin-1 Receptor Interaction Upregulates Monocyte Tissue Factor

    PubMed Central

    Khan, Mohammad M; Douglas, Steven D; Benton, Tami D

    2011-01-01

    Monocytes play an important role in hemostasis. In this study, the prothrombotic effects of the neuropeptide substance P (SP) on human monocytes through neurokinin-1 receptor (NK1-R) were characterized. SP upregulated monocyte tissue factor (TF), the major coagulation cascade stimulator, in a concentration and time dependent manner. Specific inhibition of NK1-R completely blocked TF expression. Monocytes stimulated by SP released cytokines and chemokines. When monocytes were stimulated with cytokines or chemokines, TF was expressed by the cytokines (GM-CSF, IFN-γ and TNF-α). Cytokines may play a major role in the mechanism of SP induced monocyte TF expression. NK1-R antagonists (NK1-RA) may have a role in developing novel therapeutic approaches to patients vulnerable to vaso-occlusive disorders. PMID:22115773

  11. TIF1γ interferes with TGFβ1/SMAD4 signaling to promote poor outcome in operable breast cancer patients.

    PubMed

    Kassem, Loay; Deygas, Mathieu; Fattet, Laurent; Lopez, Jonathan; Goulvent, Thibaut; Lavergne, Emilie; Chabaud, Sylvie; Carrabin, Nicolas; Chopin, Nicolas; Bachelot, Thomas; Gillet, Germain; Treilleux, Isabelle; Rimokh, Ruth

    2015-06-04

    The Transforming growth factor β (TGFβ) signaling has a paradoxical role in cancer development and outcome. Besides, the prognostic significance of the TGFβ1, SMAD4 in breast cancer patients is an area of many contradictions. The transcriptional intermediary factor 1γ (TIF1γ) is thought to interact with the TGFβ/SMAD signaling through different mechanisms. Our study aims to define the prognostic significance of TGFβ1, SMAD4 and TIF1γ expression in breast cancer patients and to detect possible interactions among those markers that might affect the outcome. Immunohistochemistry was performed on tissue microarray (TMA) blocks prepared from samples of 248 operable breast cancer patients who presented at Centre Léon Bérard (CLB) between 1998 and 2001. The intensity and the percentage of stained tumor cells were integrated into a single score (0-6) and a cutoff was defined for high or low expression for each marker. Correlation was done between TGFβ1, SMAD4 and TIF1γ expression with the clinico-pathologic parameters using Pearson's chi-square test. Kaplan-Meier method was used to estimate distant metastasis free survival (DMFS), disease free survival (DFS) and overall survival (OS) and the difference between the groups was evaluated with log-rank test. 223 cases were assessable for TIF1γ, 204 for TGFβ1 and 173 for SMAD4. Median age at diagnosis was 55.8 years (range: 27 to 89 years). Tumors were larger than 20 mm in 49.2% and 45.2% had axillary lymph node (LN) metastasis (N1a to N3). 19.4% of the patients had SBR grade I tumors, 46.8% grade II tumors and 33.9% grade III tumors. ER was positive in 85.4%, PR in 75.5% and Her2-neu was over-expressed in 10% of the cases. Nuclear TIF1γ, cytoplasmic TGFβ1, nuclear and cytoplasmic SMAD4 stainings were high in 35.9%, 30.4%, 27.7% and 52.6% respectively. TIF1γ expression was associated with younger age (p=0.006), higher SBR grade (p<0.001), more ER negativity (p=0.035), and tumors larger than 2 cm (p=0

  12. No-flow ischemia inhibits insulin signaling in heart by decreasing intracellular pH.

    PubMed

    Beauloye, C; Bertrand, L; Krause, U; Marsin, A S; Dresselaers, T; Vanstapel, F; Vanoverschelde, J L; Hue, L

    2001-03-16

    Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pH(i)) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pH(i) and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pH(i) and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pH(i), being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pH(i).

  13. The IRS-1 signaling system.

    PubMed

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  14. Role of fibroblast growth factor receptor signaling in kidney development

    PubMed Central

    2011-01-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling “decoy” receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development. PMID:21613421

  15. Activation of the miR-34a/SIRT1/p53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs.

    PubMed

    Tian, Xiao-Feng; Ji, Fu-Jian; Zang, Hong-Liang; Cao, Hong

    2016-01-01

    Liver fibrosis results from a sustained wound healing response to chronic liver injury, and the activation of nonparenchymal hepatic stellate cells (HSCs) is the pivotal process. MicroRNA-34a (miR-34a) is the direct target gene of p53 and activates p53 through sirtuin 1 (SIRT1) simultaneously. The miR-34a/SIRT1/p53 signaling pathway thus forms a positive feedback loop wherein p53 induces miR-34a and miR-34a activates p53 by inhibiting SIRT1, playing an important role in cell proliferation and apoptosis. miR-34a expression has been found to be increased in animal models or in human patients with different liver diseases, including liver fibrosis. However, the exact role of this classical miR-34a/SIRT1/p53 signaling pathway in liver fibrosis remains unclear. In the present study, using a CCl4-induced rat liver fibrosis model, we found that the miR-34a/SIRT1/p53 signaling pathway was activated and could be inhibited by SIRT1 activator SRT1720. Further studies showed that the miR-34a/SIRT1/p53 signaling pathway was activated in hepatocytes but not in HSCs. The activation of this pathway in hepatocytes resulted in the apoptosis of hepatocytes and thus activated HSCs. Our data indicate that the miR-34a/SIRT1/p53 signaling pathway might be a promising therapeutic target for liver fibrosis.

  16. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  17. Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-{alpha}/{beta} signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caignard, Gregory; Guerbois, Mathilde; Labernardiere, Jean-Louis

    2007-11-25

    Viruses have evolved various strategies to escape the antiviral activity of type I interferons (IFN-{alpha}/{beta}). For measles virus, this function is carried by the polycistronic gene P that encodes, by an unusual editing strategy, for the phosphoprotein P and the virulence factor V (MV-V). MV-V prevents STAT1 nuclear translocation by either sequestration or phosphorylation inhibition, thereby blocking IFN-{alpha}/{beta} pathway. We show that both the N- and C-terminal domains of MV-V (PNT and VCT) contribute to the inhibition of IFN-{alpha}/{beta} signaling. Using the two-hybrid system and co-affinity purification experiments, we identified STAT1 and Jak1 as interactors of MV-V and demonstrate thatmore » MV-V can block the direct phosphorylation of STAT1 by Jak1. A deleterious mutation within the PNT domain of MV-V (Y110H) impaired its ability to interact and block STAT1 phosphorylation. Thus, MV-V interacts with at least two components of IFN-{alpha}/{beta} receptor complex to block downstream signaling.« less

  18. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway.

    PubMed

    Chen, Hongbo; Duo, Yanhong; Hu, Bo; Wang, Zhiwei; Zhang, Fang; Tsai, Hsiangi; Zhang, Jianping; Zhou, Lanzhen; Wang, Lijun; Wang, Xinyu; Huang, Laiqiang

    2016-11-29

    PICT-1 was originally identified as a tumor suppressor. Here, we found that PICT-1 overexpression triggered pro-death autophagy without nucleolar disruption or p53 accumulation in U251 and MCF7 cells. Truncated PICT-1 fragments 181-346 and 1-346, which partly or totally lack nucleolar localization, showed weaker autophagy-inducing effects than full-length PICT-1 and a well-defined nucleolar mutant (181-479). Furthermore, PICT-1 partly localizes to the nucleolar fibrillar center (FC) and directly binds to ribosomal DNA (rDNA) gene loci, where it interacts with upstream binding factor (UBF). Overexpression of PICT-1 or the 181-479 mutant, but not the 1-346 or 181-346 mutants, markedly inhibited the phosphorylation of UBF and the recruitment of rRNA polymerase I (Pol I) to the rDNA promoter in response to serum stimulation, thereby suppressing rRNA transcription, suggesting that rRNA transcription inhibition might be an important contributor to PICT-1-induced autophagy. This is supported by the finding that CX-5461, a specific Pol I inhibitor, also induced autophagy. In addition, both CX-5461 and PICT-1, but not the 1-346 or 181-346 mutants, significantly suppressed the activation of the Akt/mTOR/p70S6K signaling pathway. Our data show that PICT-1 triggers pro-death autophagy through inhibition of rRNA transcription and the inactivation of AKT/mTOR/p70S6K pathway, independent of nucleolar disruption and p53 activation.

  19. Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated.

    PubMed

    Ramautar, J R; Kok, A; Ridderinkhof, K R

    2004-11-01

    The aim of this study was to examine the effects of frequency of occurrence of stop signals in the stop-signal paradigm. Presenting stop signals less frequently resulted in faster reaction times to the go stimulus and a lower probability of inhibition. Also, go stimuli elicited larger and somewhat earlier P3 responses when stop signals occurred less frequently. Since the amplitude effect was more pronounced on trials when go signals were followed by fast than slow reactions, it probably reflected a stronger set to produce fast responses. N2 and P3 components to stop signals were observed to be larger and of longer latency when stop signals occurred less frequently. The amplitude enhancement of these N2 and P3 components were more pronounced for unsuccessful than for successful stop-signal trials. Moreover, the successfully inhibited stop trials elicited a frontocentral P3 whereas unsuccessfully inhibited stop trials elicited a more posterior P3 that resembled the classical P3b. P3 amplitude in the unsuccessfully inhibited condition also differed between waveforms synchronized with the stop signal and waveforms synchronized with response onset whereas N2 amplitude did not. Taken together these findings suggest that N2 reflected a greater significance of failed inhibitions after low probability stop signals while P3 reflected continued processing of the erroneous response after response execution.

  20. L-2-Oxothiazolidine-4-Carboxylic Acid or α-Lipoic Acid Attenuates Airway Remodeling: Involvement of Nuclear Factor-κB (NF-κB), Nuclear Factor Erythroid 2p45-Related Factor-2 (Nrf2), and Hypoxia-Inducible Factor (HIF)

    PubMed Central

    Park, Seoung Ju; Lee, Kyung Sun; Lee, Su Jeong; Kim, So Ri; Park, Seung Yong; Jeon, Myoung Shin; Lee, Heung Bum; Lee, Yong Chul

    2012-01-01

    Reactive oxygen species (ROS) play a crucial role in the pathogenesis of acute and chronic respiratory diseases. Antioxidants have been found to ameliorate airway inflammation and hyperresponsiveness in animal models employing short-term exposure to allergen. However, little data are available on the effect of antioxidants on airway remodeling and signaling pathways in chronic asthma. In the present study, we used a long-term exposure murine model of allergic airway disease to evaluate the effects of an antioxidant, L-2-oxothiazolidine-4-carboxylic acid (OTC) or α-lipoic acid (LA) on airway remodeling, focusing on the ROS-related hypoxia-inducible signaling. Long-term challenge of ovalbumin (OVA) increased ROS production, airway inflammation, and airway hyperresponsiveness, and developed features of airway remodeling such as excessive mucus secretion, subepithelial fibrosis, and thickening of the peribronchial smooth muscle layer. Administration of OTC or LA reduced these features of asthma, including airway remodeling, which was accompanied by suppression of transforming growth factor1, vascular endothelial growth factor, and T-helper 2 cytokines. In addition, OVA-induced activation of nuclear factor-κB (NF-κB), nuclear factor erythroid 2p45-related factor-2 (Nrf2), hypoxia-inducible factor (HIF)-1α, and HIF-2α was reduced by OTC or LA. Our results also showed that OTC or LA down-regulated phosphoinositide 3-kinase activity and decreased phosphorylation of p38 mitogen-activated protein kinase but not extracellular signal-regulated kinase 1/2 or c-Jun N-terminal kinase. These findings demonstrate that OTC and LA can inhibit activation of NF-κB, Nrf2, and HIF, leading to attenuate allergen-induced airway remodeling. PMID:22942681

  1. The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease

    PubMed Central

    Gan-Or, Ziv; Ozelius, Laurie J.; Bar-Shira, Anat; Saunders-Pullman, Rachel; Mirelman, Anat; Kornreich, Ruth; Gana-Weisz, Mali; Raymond, Deborah; Rozenkrantz, Liron; Deik, Andres; Gurevich, Tanya; Gross, Susan J.; Schreiber-Agus, Nicole; Giladi, Nir; Bressman, Susan B.

    2013-01-01

    Objective: To study the possible association of founder mutations in the lysosomal storage disorder genes HEXA, SMPD1, and MCOLN1 (causing Tay-Sachs, Niemann-Pick A, and mucolipidosis type IV diseases, respectively) with Parkinson disease (PD). Methods: Two PD patient cohorts of Ashkenazi Jewish (AJ) ancestry, that included a total of 938 patients, were studied: a cohort of 654 patients from Tel Aviv, and a replication cohort of 284 patients from New York. Eight AJ founder mutations in the HEXA, SMPD1, and MCOLN1 genes were analyzed. The frequencies of these mutations were compared to AJ control groups that included large published groups undergoing prenatal screening and 282 individuals matched for age and sex. Results: Mutation frequencies were similar in the 2 groups of patients with PD. The SMPD1 p.L302P was strongly associated with a highly increased risk for PD (odds ratio 9.4, 95% confidence interval 3.9–22.8, p < 0.0001), as 9/938 patients with PD were carriers of this mutation compared to only 11/10,709 controls. Conclusions: The SMPD1 p.L302P mutation is a novel risk factor for PD. Although it is rare on a population level, the identification of this mutation as a strong risk factor for PD may further elucidate PD pathogenesis and the role of lysosomal pathways in disease development. PMID:23535491

  2. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals.

    PubMed

    Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang

    2017-05-28

    Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Transforming growth factor1 promotes breast cancer metastasis by downregulating miR-196a-3p expression.

    PubMed

    Chen, Yan; Huang, Shai; Wu, Bo; Fang, Jiankai; Zhu, Minsheng; Sun, Li; Zhang, Lifeng; Zhang, Yongsheng; Sun, Maomin; Guo, Lingling; Wang, Shouli

    2017-07-25

    Transforming growth factor1 is considered a key contributor to the progression of breast cancer. MicroRNAs are important factors in the development and progression of many malignancies. In the present study, upon studies of breast cancer cell lines and tissues, we showed that microRNA -196a-3p is decreased by transforming growth factor1 in breast cancer cells and associated with breast cancer progression. We identified neuropilin-2 as a target gene of microRNA -196a-3p and showed that it is regulated by transforming growth factor1. Moreover, transforming growth factor1-mediated inhibition of microRNA -196a-3p and activation of neuropilin-2were required for transforming growth factor1-induced migration and invasion of breast cancer cells. In addition, neuropilin-2 expression was suppressed in breast tumors, particularly in triple-negative breast cancers. Collectively, our findings strongly indicate that microRNA -196a-3p is a predictive biomarker of breast cancer metastasis and patient survival and a potential therapeutic target in metastatic breast cancer.

  4. Myeloid Leukemia Factor 1 inhibits erythropoietin-induced differentiation, cell cycle exit and p27Kip1 accumulation.

    PubMed

    Winteringham, Louise Natalie; Kobelke, Simon; Williams, James Howard; Ingley, Evan; Klinken, Svend Peter

    2004-06-24

    Myeloid leukemia factor 1 (MLF1) is a novel oncoprotein involved in translocations associated with acute myeloid leukemia (AML), especially erythroleukemias. In this study, we demonstrate that ectopic expression of Mlf1 prevented J2E erythroleukemic cells from undergoing biological and morphological maturation in response to erythropoietin (Epo). We show that Mlf1 inhibited Epo-induced cell cycle exit and suppressed a rise in the cell cycle inhibitor p27(Kip1). Unlike differentiating J2E cells, Mlf1-expressing cells did not downregulate Cul1 and Skp2, components of the ubiquitin E3 ligase complex SCF(Skp2) involved in the proteasomal degradation of p27(Kip1). In contrast, Mlf1 did not interfere with increases in p27(Kip1) and terminal differentiation initiated by thyroid hormone withdrawal from erythroid cells, or cytokine-stimulated maturation of myeloid cells. These data demonstrate that Mlf1 interferes with an Epo-responsive pathway involving p27(Kip1) accumulation, which inhibits cell cycle arrest essential for erythroid terminal differentiation.

  5. Reduced expression of the epidermal growth factor signaling system in preeclampsia.

    PubMed

    Armant, D R; Fritz, R; Kilburn, B A; Kim, Y M; Nien, J K; Maihle, N J; Romero, R; Leach, R E

    2015-03-01

    The epidermal growth factor (EGF) signaling system regulates trophoblast differentiation, and its disruption could contribute to perinatal disease. We hypothesized that this pathway is altered in preeclampsia, a disorder associated with trophoblast apoptosis and failure to invade and remodel the uterine spiral arteries. Six EGF family peptides and a truncated EGF receptor splice variant (p110/EGFR) were examined using immunohistochemistry in the trophoblast of placentas (N = 76) from women with preeclampsia, and compared to placentas from women of similar gestational age (GA) with preterm labor (PTL) or small for gestational age (SGA) fetuses, as well as normal term placentas. EGF, transforming growth factor-α (TGFA), and heparin-binding EGF-like growth factor (HBEGF) were evaluated using ELISA in maternal plasma from another 20 pregnancies with or without preeclampsia. Cell death was evaluated in the HTR-8/SVneo human cytotrophoblast cell line using TUNEL to evaluate the protective effects of EGF peptides. Trophoblast HBEGF, TGFA, and EGF were significantly reduced in preeclampsia compared to PTL and SGA, while p110/EGFR accumulated significantly on the surface of the chorionic villi (p < 0.05). Plasma EGF levels were significantly decreased in preeclamptic patients, compared to non-preeclamptic patients (p < 0.05). HBEGF, EGF, TGFA, epiregulin, and betacellulin each blocked cytotrophoblast cell death in vitro (p < 0.05). Three members of the EGF family are dysregulated in placentas with preeclampsia, whereas p110/EGFR, a potential EGF receptor antagonist, is overexpressed. These findings are consistent with the concept that disruption of the EGF signaling system contributes to aberrant trophoblast development associated with preeclampsia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Reduced Expression of the Epidermal Growth Factor Signaling System in Preeclampsia

    PubMed Central

    Armant, D. Randall; FRITZ, Rani; KILBURN, Brian A.; KIM, Yeon Mee; NIEN, Jyh Kae; MAIHLE, Nita J.; ROMERO, Roberto; LEACH, Richard E.

    2014-01-01

    Introduction The epidermal growth factor (EGF) signaling system regulates trophoblast differentiation, and its disruption could contribute to perinatal disease. We hypothesized that this pathway is altered in preeclampsia, a disorder associated with trophoblast apoptosis and failure to invade and remodel the uterine spiral arteries. Methods Six EGF family peptides and a truncated EGF receptor splice variant (p110/EGFR) were examined using immunocytochemistry in the trophoblast of placentas (N=76) from women with preeclampsia, and compared to placentas from women of similar gestational age (GA) with preterm labor (PTL) or small for gestational age (SGA) fetuses, as well as normal term placentas. EGF, transforming growth factor-α (TGFA), and heparin-binding EGF-like growth factor (HBEGF) were evaluated using ELISA in maternal plasma from another 20 pregnancies with or without preeclampsia. Cell death was evaluated in the HTR-8/SVneo human cytotrophoblast cell line using TUNEL to evaluate the protective effects of EGF peptides. Results Trophoblast HBEGF, TGFA, and EGF were significantly reduced in preeclampsia compared to PTL and SGA, while p110/EGFR accumulated significantly on the surface of the chorionic villi (p<0.05). Plasma EGF levels were significantly decreased in preeclamptic patients, compared to non-preeclamptic patients (p<0.05). HBEGF, EGF, TGFA, epiregulin, and betacellulin each blocked cytotrophoblast cell death in vitro (p< 0.05). Discussion Three members of the EGF family are dysregulated in placentas with preeclampsia, whereas p110/EGFR, a potential EGF receptor antagonist, is overexpressed. These findings are consistent with the concept that disruption of the EGF signaling system contributes to aberrant trophoblast development associated with preeclampsia. PMID:25589361

  7. The NHERF1 PDZ2 Domain Regulates PKA–RhoA–p38-mediated NHE1 Activation and Invasion in Breast Tumor Cells

    PubMed Central

    Cardone, Rosa A.; Bellizzi, Antonia; Busco, Giovanni; Weinman, Edward J.; Dell'Aquila, Maria E.; Casavola, Valeria; Azzariti, Amalia; Mangia, Anita; Paradiso, Angelo

    2007-01-01

    Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na+/H+ exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1α expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na+/H+ exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling. PMID:17332506

  8. TEAD1 mediates the oncogenic activities of Hippo-YAP1 signaling in osteosarcoma.

    PubMed

    Chai, Jiwei; Xu, Shijie; Guo, Fengbo

    2017-06-24

    Hippo signaling pathway is an evolutionarily conserved developmental network that governs the downstream transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs that responsible for cell proliferation, apoptosis, and stem cell self renewal. Emerging evidence has shown the tumor suppressor properties of Hippo signaling. However, limited knowledge is available concerning the downstream transcription factors of Hippo pathway in osteosarcoma (OS). In this study, we demonstrated that TEAD1 was the major transcription factor of Hippo signaling pathway in OS. Genetic silencing of TEAD1 suppressed multiple malignant phenotypes of OS cells including cell proliferation, apoptosis resistance, and invasive potential. Mechanistically, we showed that TEAD1 largely exerted its transcriptional control of its functional targets, PTGS2 and CYR61. Collectively, this work identifies the YAP1/TEAD1 complex as the representative dysregulated profile of Hippo signaling in OS and provides proof-of-principle that targeting TEAD1 may be a therapeutic strategy of osteosarcoma. Copyright © 2017. Published by Elsevier Inc.

  9. SKN-1-independent transcriptional activation of glutathione S-transferase 4 (GST-4) by EGF signaling

    PubMed Central

    Van de Walle, Pieter; Schoofs, Liliane

    2016-01-01

    ABSTRACT In C. elegans research, transcriptional activation of glutathione S-transferase 4 (gst-4) is often used as a read-out for SKN-1 activity. While many heed an assumed non-exclusivity of the GFP reporter signal driven by the gst-4 promoter to SKN-1, this is also often ignored. We here show that gst-4 can also be transcriptionally activated by EOR-1, a transcription factor mediating effects of the epidermal growth factor (EGF) pathway. Along with enhancing exogenous oxidative stress tolerance, EOR-1 inde-pendently of SKN-1 increases gst-4 transcription in response to augmented EGF signaling. Our findings caution researchers within the C. elegans community to always rely on sufficient experimental controls when assaying SKN-1 transcriptional activity with a gst-4p::gfp reporter, such as SKN-1 loss-of-function mutants and/or additional target genes next to gst-4. PMID:28090393

  10. PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65

    PubMed Central

    Zhang, Tiejun; Park, Kyeong Ah; Li, Yuwen; Byun, Hee Sun; Jeon, Juhee; Lee, Yoonjung; Hong, Jang Hee; Kim, Jin Man; Huang, Song-Mei; Choi, Seung-Won; Kim, Sun-Hwan; Sohn, Kyung-Cheol; Ro, Hyunju; Lee, Ji Hoon; Lu, Tao; Stark, George R.; Shen, Han-Ming; Liu, Zheng-gang; Park, Jongsun; Hur, Gang Min

    2014-01-01

    Constitutive NF-κB activation in cancer cells is caused by defects in the signalling network responsible for terminating the NF-κB response. Here we report that plant homeodomain finger protein 20 maintains NF-κB in an active state in the nucleus by inhibiting the interaction between PP2A and p65. We show that plant homeodomain finger protein 20 induces canonical NF-κB signalling by increasing the DNA-binding activity of NF-κB subunit p65. In plant homeodomain finger protein 20-overexpressing cells, the termination of tumour necrosis factor-induced p65 phosphorylation is impaired whereas upstream signalling events triggered by tumour necrosis factor are unaffected. This effect strictly depends on the interaction between plant homeodomain finger protein 20 and methylated lysine residues of p65, which hinders recruitment of PP2A to p65, thereby maintaining p65 in a phosphorylated state. We further show that plant homeodomain finger protein 20 levels correlate with p65 phosphorylation levels in human glioma specimens. Our work identifies plant homeodomain finger protein 20 as a novel regulator of NF-κB activation and suggests that elevated expression of plant homeodomain finger protein 20 may drive constitutive NF-κB activation in some cancers. PMID:23797602

  11. Overexpression of SIRT1 Protects Pancreatic β-Cells Against Cytokine Toxicity by Suppressing the Nuclear Factor-κB Signaling Pathway

    PubMed Central

    Lee, Ji-Hyun; Song, Mi-Young; Song, Eun-Kyung; Kim, Eun-Kyung; Moon, Woo Sung; Han, Myung-Kwan; Park, Jin-Woo; Kwon, Kang-Beom; Park, Byung-Hyun

    2009-01-01

    OBJECTIVE—SIRT1, a class III histone/protein deacetylase, is known to interfere with the nuclear factor-κB (NF-κB) signaling pathway and thereby has an anti-inflammatory function. Because of the central role of NF-κB in cytokine-mediated pancreatic β-cell damage, we postulated that SIRT1 might work in pancreatic β-cell damage models. RESEARCH DESIGN AND METHODS—RINm5F (RIN) cells or isolated rat islets were treated with interleukin-1β and interferon-γ. SIRT1 was activated by resveratrol, a pharmacological activator, or ectopic overexpression. The underlying mechanisms of SIRT1 against cytokine toxicity were further explored. RESULTS—Treatment of RIN cells with cytokines induced cell damage, and this damage was well correlated with the expression of the inducible form of nitric oxide (NO) synthase (iNOS) and NO production. However, SIRT1 overexpression completely prevented cytokine-mediated cytotoxicity, NO production, and iNOS expression. The molecular mechanism by which SIRT1 inhibits iNOS expression appeared to involve the inhibition of the NF-κB signaling pathway through deacetylation of p65. In addition, SIRT1 activation by either resveratrol or adenoviral-directed overexpression of SIRT1 could prevent cytokine toxicity and maintain normal insulin-secreting responses to glucose in isolated rat islets. CONCLUSIONS—This study will provide valuable information not only into the mechanisms underlying β-cell destruction but also into the regulation of SIRT1 as a possible target to attenuate cytokine-induced β-cell damage. PMID:19008341

  12. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3.

    PubMed

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-05-04

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3-COP1 pathway.

  13. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    PubMed

    Liu, Jinyi; Rice, J Hollis; Chen, Nana; Baum, Thomas J; Hewezi, Tarek

    2014-01-01

    Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  14. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genethliou, Nicholas; Panayiotou, Elena; Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss ofmore » Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.« less

  15. Apical P2XR contribute to [Ca2+]i signaling and Isc in mouse renal MCD.

    PubMed

    Li, Liuzhe; Lynch, I Jeanette; Zheng, Wencui; Cash, Melanie N; Teng, Xueling; Wingo, Charles S; Verlander, Jill W; Xia, Shen-Ling

    2007-08-03

    We examined P2X receptor expression and distribution in the mouse collecting duct (CD) and their functional role in Ca(2+) signaling. Both P2X(1) and P2X(4) were detected by RT-PCR and Western blot. Immunohistochemistry demonstrated apical P2X(1) and P2X(4) immunoreactivity in principal cells in the outer medullary CD (OMCD) and inner medullary CD (IMCD). Luminal ATP induced an increase in Ca(2+) signaling in native medullary CD (MCD) as measured by fluorescence imaging. ATP also induced an increase in Ca(2+) signaling in MCD cells grown in primary culture but not in the presence of P2XR antagonist PPNDS. Short circuit current (I(sc)) measurement with mouse IMCD cells showed that P2XR agonist BzATP induced a larger I(sc) than did P2YR agonist UTP in the apical membrane. Our data reveal for the first time that P2X(1) and P2X(4) are cell-specific with prominent immunoreactivity in the apical area of MCD cells. The finding that P2XR blockade inhibits ATP-induced Ca(2+) signaling suggests that activation of P2XR is a key step in Ca(2+)-dependent purinergic signaling. The result that activation of P2XR produces large I(sc) indicates the necessity of P2XR in renal CD ion transport.

  16. S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells

    PubMed Central

    Vrzalikova, K; Ibrahim, M; Vockerodt, M; Perry, T; Margielewska, S; Lupino, L; Nagy, E; Soilleux, E; Liebelt, D; Hollows, R; Last, A; Reynolds, G; Abdullah, M; Curley, H; Care, M; Krappmann, D; Tooze, R; Allegood, J; Spiegel, S; Wei, W; Woodman, C B J; Murray, P G

    2018-01-01

    The Hodgkin/Reed–Sternberg cells of classical Hodgkin lymphoma (HL) are characterised by the aberrant activation of multiple signalling pathways. Here we show that a subset of HL displays altered expression of sphingosine-1-phosphate (S1P) receptors (S1PR)s. S1P activates phosphatidylinositide 3-kinase (PI3-K) in these cells that is mediated by the increased expression of S1PR1 and the decreased expression of S1PR2. We also showed that genes regulated by the PI3-K signalling pathway in HL cell lines significantly overlap with the transcriptional programme of primary HRS cells. Genes upregulated by the PI3-K pathway included the basic leucine zipper transcription factor, ATF-like 3 (BATF3), which is normally associated with the development of dendritic cells. Immunohistochemistry confirmed that BATF3 was expressed in HRS cells of most HL cases. In contrast, in normal lymphoid tissues, BATF3 expression was confined to a small fraction of CD30-positive immunoblasts. Knockdown of BATF3 in HL cell lines revealed that BATF3 contributed to the transcriptional programme of primary HRS cells, including the upregulation of S1PR1. Our data suggest that disruption of this potentially oncogenic feedforward S1P signalling loop could provide novel therapeutic opportunities for patients with HL. PMID:28878352

  17. SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling

    PubMed Central

    Bai, Xiaozhi; Fan, Lei; He, Ting; Jia, Wenbin; Yang, Longlong; Zhang, Jun; Liu, Yang; Shi, Jihong; Su, Linlin; Hu, Dahai

    2015-01-01

    Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after burn injury appeared an increasing trend after a short period of suppression. The upregulation of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes, reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat pulmonary tissues suffering from severe burn. We next used primary pulmonary microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate in vivo rat lung tissue after burn injury, and found that BS significantly suppressed SIRT1 expression, increased cell apoptosis, and activated p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and activation of p38 MAPK. Taken together, these results indicate that SIRT1 might protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis via p38 MAPK signaling, suggesting its potential therapeutic effects on the treatment of ALI. PMID:25992481

  18. Long noncoding RNA AFAP1‑AS1 enhances cell proliferation and invasion in osteosarcoma through regulating miR‑4695‑5p/TCF4‑β‑catenin signaling.

    PubMed

    Li, Rongrui; Liu, Shichen; Li, Yao; Tang, Qingxi; Xie, Yunchuan; Zhai, Raosheng

    2018-06-05

    Long noncoding RNA AFAP1‑AS1 has been shown to promote tumor progression in several human cancer types, such as thyroid cancer, tongue squamous cell carcinoma and lung cancer. However, the role of AFAP1‑AS1 in osteosarcoma (OS) has not been investigated. In the present study, the expression of AFAP1‑AS1 was significantly upregulated in OS tissues and cell lines. Moreover, AFAP1‑AS1 expression was negatively correlated with OS patient prognosis. Besides, AFAP1‑AS1 knockdown significantly inhibited the proliferation and invasion of OS cells in vitro. Furthermore, in vivo xenograft experiments indicated that AFAP1‑AS1 depletion delayed tumor growth. Regarding the underlying mechanism, AFAP1‑AS1 served as a sponge to repress the level of microRNA (miR)‑4695‑5p, which targeted transcription factor (TCF)4, a pivot effector of Wnt/β‑catenin signaling pathway. It was demonstrated that overexpression of AFAP1‑AS1 inhibited the expression of miR‑4695‑5p, while miR‑4695‑5p overexpression decreased TCF4 expression and reduced activation of Wnt/β‑catenin pathway. Through rescue assays, it was demonstrated that restoration of TCF4 expression reversed the effects of AFAP1‑AS1 knockdown or miR‑4695‑5p overexpression on OS cells. Taken together, these findings demonstrated that the AFAP1‑AS1/miR‑4695‑5p/TCF4‑β‑catenin axis played an important role in OS progression.

  19. p21-activated kinase 1 restricts tonic endocannabinoid signaling in the hippocampus

    PubMed Central

    Xia, Shuting; Zhou, Zikai; Leung, Celeste; Zhu, Yuehua; Pan, Xingxiu; Qi, Junxia; Morena, Maria; Hill, Matthew N; Xie, Wei; Jia, Zhengping

    2016-01-01

    PAK1 inhibitors are known to markedly improve social and cognitive function in several animal models of brain disorders, including autism, but the underlying mechanisms remain elusive. We show here that disruption of PAK1 in mice suppresses inhibitory neurotransmission through an increase in tonic, but not phasic, secretion of endocannabinoids (eCB). Consistently, we found elevated levels of anandamide (AEA), but not 2-arachidonoylglycerol (2-AG) following PAK1 disruption. This increased tonic AEA signaling is mediated by reduced cyclooxygenase-2 (COX-2), and COX-2 inhibitors recapitulate the effect of PAK1 deletion on GABAergic transmission in a CB1 receptor-dependent manner. These results establish a novel signaling process whereby PAK1 upregulates COX-2, reduces AEA and restricts tonic eCB-mediated processes. Because PAK1 and eCB are both critically involved in many other organ systems in addition to the brain, our findings may provide a unified mechanism by which PAK1 regulates these systems and their dysfunctions including cancers, inflammations and allergies. DOI: http://dx.doi.org/10.7554/eLife.14653.001 PMID:27296803

  20. High-frequency electrical stimulation reveals a p38-mTOR signaling module correlated with force-time integral.

    PubMed

    Rahnert, Jill A; Burkholder, Thomas J

    2013-07-15

    High-frequency electrical stimulation (HFES) leads to muscle hypertrophy, and attention has been drawn to the high forces involved. However, both mechanical and metabolic stresses occur simultaneously, and both stimuli influence signaling cascades related to protein synthesis. This study aimed to identify the immediate signaling correlates of contraction-induced force and metabolic stresses under the hypothesis that HFES induces growth-related signaling through mechanical stimulation. Force-time integral (FTI) signaling in mouse tibialis anterior muscle was examined by separately manipulating the time of contraction to emphasize the metabolic aspect or the force of contraction to emphasize the mechanical aspect. When FTI was manipulated by changing the total time of activation, phosphorylation of p54 JNK, ERK and p70S6k(T421/S424) was independent of FTI, while phosphorylation of acetyl-CoA carboxylase and p38 correlated with FTI. When FTI was manipulated by changing the force of contraction, p54 JNK, ERK and p70S6k(T421/S424) were again independent of FTI, while phosphorylation of p38 and FAK correlated with FTI. Factor analysis identified a p38-mTOR signaling module that correlated with FTI in both experiments. The consistent link among p38, mTOR and FTI suggests that they form a connected signaling module sensitive to the mechanical aspects of FTI, separate from markers of metabolic load.

  1. Signal-averaged P wave in patients with paroxysmal atrial fibrillation.

    PubMed

    Rosenheck, S

    1997-10-01

    The theoretical and experimental rational of atrial signal-averaged ECG in patients with AF is delay in the intra-atrial and interatrial conduction. Similar to the ventricular signal-averaged ECG, the atrial signal-averaged ECG is an averaging of a high number of consecutive P waves that match the template created earlier P wave triggering is preferred over QRS triggering because of more accurate aligning. However, the small amplitude of the atrial ECG and its gradual increase from the isoelectric line may create difficulties in defining the start point if P wave triggering is used. Studies using P wave triggering and those using QRS triggering demonstrate a prolonged P wave duration in patients with paroxysmal AF. The negative predictive value of this test is relatively high at 60%-80%. The positive predictive value of atrial signal-averaged ECGs in predicting the risk of AF is considerably lower than the negative predictive value. All the data accumulated prospectively on the predictive value of P wave signal-averaging was determined only in patients undergoing coronary bypass surgery or following MI; its value in other patients with paroxysmal AF is still not determined. The clinical role of frequency-domain analysis (alone or added to time-domain analysis) remains undefined. Because of this limited knowledge on the predictive value of P wave signal-averaging, it is still not clinical medicine, and further research is needed before atrial signal-averaged ECG will be part of clinical testing.

  2. myo-Inositol 1,4,5-trisphosphate and Ca(2+)/calmodulin-dependent factors mediate transduction of compression-induced signals in bovine articular chondrocytes.

    PubMed Central

    Valhmu, Wilmot B; Raia, Frank J

    2002-01-01

    Although the effects of mechanical loading on chondrocyte metabolic activities have been extensively characterized, the sequence of events through which extracellular mechanical signals are transduced into chondrocytes and ultimately modulate cell activities is not well understood. Here, studies were performed to map out the sequential intracellular signalling pathways through which compression-induced signals modulate aggrecan mRNA levels in bovine articular chondrocytes. Bovine articular cartilage explants were subjected to a compressive stress of 0.1 MPa for 1 h in the presence or absence of inhibitors or antagonists of the phosphoinositol and Ca(2+)/calmodulin signalling pathways in order to determine the roles of second messengers and effector molecules of these pathways in transducing the compression-induced signals. In the absence of the inhibitors, aggrecan mRNA levels were stimulated by compression 2-4-fold relative to levels in tare-loaded (see below) explants. Treatment of the explants with graded levels of the protein kinase C inhibitor chelerythrine or bisindolylmaleimide I, followed by 1 h compressive loading, did not significantly alter the load-induced elevation of aggrecan mRNA levels. In contrast, thapsigargin, which depletes the Ins(1,4,5)P3-sensitive intracellular Ca(2+) stores, completely blocked the load response without significantly altering aggrecan mRNA levels in tare-loaded explants. Similarly, antagonists of the Ca(2+)/calmodulin signalling pathway dose-dependently or completely blocked the load-response. The results obtained demonstrate that transduction of the compression-induced aggrecan mRNA-regulating signals requires Ins(1,4,5)P3- and Ca(2+)/calmodulin-dependent signalling processes in bovine articular chondrocytes. PMID:11802800

  3. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1{alpha}-mediated signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su

    2011-09-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrialmore » membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts

  4. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1.

    PubMed

    Dasen, Jeremy S; De Camilli, Alessandro; Wang, Bin; Tucker, Philip W; Jessell, Thomas M

    2008-07-25

    The precision with which motor neurons innervate target muscles depends on a regulatory network of Hox transcription factors that translates neuronal identity into patterns of connectivity. We show that a single transcription factor, FoxP1, coordinates motor neuron subtype identity and connectivity through its activity as a Hox accessory factor. FoxP1 is expressed in Hox-sensitive motor columns and acts as a dose-dependent determinant of columnar fate. Inactivation of Foxp1 abolishes the output of the motor neuron Hox network, reverting the spinal motor system to an ancestral state. The loss of FoxP1 also changes the pattern of motor neuron connectivity, and in the limb motor axons appear to select their trajectories and muscle targets at random. Our findings show that FoxP1 is a crucial determinant of motor neuron diversification and connectivity, and clarify how this Hox regulatory network controls the formation of a topographic neural map.

  5. Role of IGF1 and EFN-EPH signaling in skeletal metabolism.

    PubMed

    Lindsey, Richard C; Rundle, Charles H; Mohan, Subburaman

    2018-07-01

    Insulin-like growth factor 1(IGF1) and ephrin ligand (EFN)-receptor (EPH) signaling are both crucial for bone cell function and skeletal development and maintenance. IGF1 signaling is the major mediator of growth hormone-induced bone growth, but a host of different signals and factors regulate IGF1 signaling at the systemic and local levels. Disruption of the Igf1 gene results in reduced peak bone mass in both experimental animal models and humans. Additionally, EFN-EPH signaling is a complex system which, particularly through cell-cell interactions, contributes to the development and differentiation of many bone cell types. Recent evidence has demonstrated several ways in which the IGF1 and EFN-EPH signaling pathways interact with and depend upon each other to regulate bone cell function. While much remains to be elucidated, the interaction between these two signaling pathways opens a vast array of new opportunities for investigation into the mechanisms of and potential therapies for skeletal conditions such as osteoporosis and fracture repair. © 2018 Society for Endocrinology.

  6. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a)

    PubMed Central

    Emerling, Brooke M.; Weinberg, Frank; Liu, Juinn-Lin; Mak, Tak W.; Chandel, Navdeep S.

    2008-01-01

    The tumor suppressor PTEN is mutated or deleted in many tumors, causing the activation of the PI3K pathway. Here, we show that the loss of PTEN increases the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) through the inactivation of Forkhead transcription factors (FOXO) in PTEN-null cells. Reintroduction of PTEN into the nucleus, overexpression of a nonphosphorylatable FOXO3a, which accumulates in the nucleus, or inhibition of nuclear export of FOXO3a by leptomycin B represses HIF-1 transcriptional activity in PTEN-null cells. HIF-1 transcriptional activity increases in PTEN-positive cells depleted of FOXO3a with siRNA. PTEN and FOXO3a regulate the transactivation domain of HIF-1α. Chromatin immunoprecipitation indicates that FOXO3a complexes with HIF-1α and p300 on the Glut-1 promoter, a HIF-1 target gene. Overexpression of p300 reverses FOXO3a-mediated repression of HIF-1 transcriptional activity. Coimmunoprecipitation and GAL4-HIF-1α transactivation assays reveal that FOXO3a interferes with p300-dependent HIF-1 transcriptional activity. Thus, FOXO3a negatively regulates HIF-1 transcriptional activity. PMID:18268343

  7. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2

    PubMed Central

    Walker, Lauren J; Summers, Daniel W; Sasaki, Yo; Brace, EJ; Milbrandt, Jeffrey; DiAntonio, Aaron

    2017-01-01

    Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI: http://dx.doi.org/10.7554/eLife.22540.001 PMID:28095293

  8. The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelhauer, D.; Schuffenhauer, S.; Meitinger, T.

    1995-08-10

    The gene coding for glial cell line derived neurotrophic factor (GDNF) has biological properties that may have potential as a treatment for Parkinson`s and motoneuron diseases. Using the NIGMS Mapping Panel 2, we have localized the GDNF gene to human chromosome 5p12-p13.1. Large NruI and NotI fragments on chromosome 5 will facilitate the construction of a long-range map of the region. 26 refs., 1 fig., 1 tab.

  9. Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling

    PubMed Central

    Gan, Yujun; Buckels, Ashiya; Liu, Ying; Zhang, Yue; Paterson, Andrew J.; Jiang, Jing; Zinn, Kurt R.

    2014-01-01

    GH signaling yields multiple anabolic and metabolic effects. GH binds the transmembrane GH receptor (GHR) to activate the intracellular GHR-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signals, including signal transducer and activator of transcription 5 (STAT5) activation and IGF-1 gene expression. Some GH effects are partly mediated by GH-induced IGF-1 via IGF-1 receptor (IGF-1R), a tyrosine kinase receptor. We previously demonstrated in non-human cells that GH causes formation of a GHR-JAK2-IGF-1R complex and that presence of IGF-1R (even without IGF-1 binding) augments proximal GH signaling. In this study, we use human LNCaP prostate cancer cells as a model system to further study the IGF-1R's role in GH signaling. GH promoted JAK2 and GHR tyrosine phosphorylation and STAT5 activation in LNCaP cells. By coimmunoprecipitation and a new split luciferase complementation assay, we find that GH augments GHR/IGF-1R complex formation, which is inhibited by a Fab of an antagonistic anti-GHR monoclonal antibody. Short hairpin RNA-mediated IGF-1R silencing in LNCaP cells reduced GH-induced GHR, JAK2, and STAT5 phosphorylation. Similarly, a soluble IGF-1R extracellular domain fragment (sol IGF-1R) interacts with GHR in response to GH and blunts GH signaling. Sol IGF-1R also markedly inhibits GH-induced IGF-1 gene expression in both LNCaP cells and mouse primary osteoblast cells. On the basis of these and other findings, we propose a model in which IGF-1R augments GH signaling by allowing a putative IGF-1R-associated molecule that regulates GH signaling to access the activated GHR/JAK2 complex and envision sol IGF-1R as a dominant-negative inhibitor of this IGF-1R-mediated augmentation. Physiological implications of this new model are discussed. PMID:25211187

  10. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3

    PubMed Central

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-01-01

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3–COP1 pathway. PMID:15861129

  11. CD28 co-stimulation restores T cell responsiveness in NOD mice by overcoming deficiencies in Rac-1/p38 mitogen-activated protein kinase signaling and IL-2 and IL-4 gene transcription.

    PubMed

    Zhang, J; Salojin, K V; Delovitch, T L

    2001-03-01

    Previously, we reported that T cell hyporesponsiveness induced by TCR ligation is causal to autoimmune diabetes in NOD mice. Neonatal CD28 co-stimulation reverses T cell hyporesponsiveness and protects NOD mice from diabetes by an IL-4-mediated mechanism, indicating that a deficiency in TCR signaling may be overcome by CD28/B7-2 co-stimulation in NOD T cells. To investigate which co-stimulation-induced signaling events mediate this protection, we analyzed the activity of Ras, Rac-1, mitogen-activated protein kinases (MAPK) and several transcription factors in TCR-activated NOD T cells in the presence or absence of CD28 co-stimulation. We show that CD28 co-stimulation restores normal TCR-induced activation of Rac-1 and p38 MAPK in NOD T cells. Deficiencies in TCR-induced nuclear expression of activating protein (AP)-1 binding proteins as well as activation of AP-1 and NF-AT in the IL-2 and IL-4 P1 promoters are also corrected by CD28 co-stimulation. Thus, CD28 co-stimulation reverses NOD T cell hyporesponsiveness by restoring TCR signaling leading to the activation of AP-1 and NF-AT during IL-2 and IL-4 gene transcription. Our findings provide additional evidence that CD28 co-stimulation amplifies signals delivered by the TCR and further explain the mechanism by which CD28 co-stimulation may protect against autoimmune diabetes.

  12. Spatially defined InsP3-mediated signaling in embryonic stem cell-derived cardiomyocytes.

    PubMed

    Kapoor, Nidhi; Maxwell, Joshua T; Mignery, Gregory A; Will, David; Blatter, Lothar A; Banach, Kathrin

    2014-01-01

    The functional role of inositol 1,4,5-trisphosphate (InsP3) signaling in cardiomyocytes is not entirely understood but it was linked to an increased propensity for triggered activity. The aim of this study was to determine how InsP3 receptors can translate Ca(2+) release into a depolarization of the plasma membrane and consequently arrhythmic activity. We used embryonic stem cell-derived cardiomyocytes (ESdCs) as a model system since their spontaneous electrical activity depends on InsP3-mediated Ca(2+) release. [InsP3]i was monitored with the FRET-based InsP3-biosensor FIRE-1 (Fluorescent InsP3 Responsive Element) and heterogeneity in sub-cellular [InsP3]i was achieved by targeted expression of FIRE-1 in the nucleus (FIRE-1nuc) or expression of InsP3 5-phosphatase (m43) localized to the plasma membrane. Spontaneous activity of ESdCs was monitored simultaneously as cytosolic Ca(2+) transients (Fluo-4/AM) and action potentials (current clamp). During diastole, the diastolic depolarization was paralleled by an increase of [Ca(2+)]i and spontaneous activity was modulated by [InsP3]i. A 3.7% and 1.7% increase of FIRE-1 FRET ratio and 3.0 and 1.5 fold increase in beating frequency was recorded upon stimulation with endothelin-1 (ET-1, 100 nmol/L) or phenylephrine (PE, 10 µmol/L), respectively. Buffering of InsP3 by FIRE-1nuc had no effect on the basal frequency while attenuation of InsP3 signaling throughout the cell (FIRE-1), or at the plasma membrane (m43) resulted in a 53.7% and 54.0% decrease in beating frequency. In m43 expressing cells the response to ET-1 was completely suppressed. Ca(2+) released from InsP3Rs is more effective than Ca(2+) released from RyRs to enhance INCX. The results support the hypothesis that in ESdCs InsP3Rs form a functional signaling domain with NCX that translates Ca(2+) release efficiently into a depolarization of the membrane potential.

  13. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    PubMed Central

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  14. The DAF-16 FOXO Transcription Factor Regulates natc-1 to Modulate Stress Resistance in Caenorhabditis elegans, Linking Insulin/IGF-1 Signaling to Protein N-Terminal Acetylation

    PubMed Central

    Warnhoff, Kurt; Murphy, John T.; Kumar, Sandeep; Schneider, Daniel L.; Peterson, Michelle; Hsu, Simon; Guthrie, James; Robertson, J. David; Kornfeld, Kerry

    2014-01-01

    The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance. PMID:25330323

  15. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells.

    PubMed

    Vaziri-Gohar, Ali; Houston, Kevin D

    2016-02-15

    Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. The Role of the Pleckstrin Homology Domain-containing Protein CKIP-1 in Activation of p21-activated Kinase 1 (PAK1)*

    PubMed Central

    Kim, Yong-Bae; Shin, Yong Jae; Roy, Adhiraj; Kim, Jeong-Ho

    2015-01-01

    Upon growth factor stimulation, PAK1 is recruited to the plasma membrane and activated by a mechanism that requires its phosphorylation at Ser-223 by the protein kinase CK2. However, the upstream signaling molecules that regulate this phosphorylation event are not clearly defined. Here, we demonstrate a major role of the CK2α-interacting protein CKIP-1 in activation of PAK1. CK2α, CKIP-1, and PAK1 are translocated to membrane ruffles in response to the epidermal growth factor (EGF), where CKIP-1 mediates the interaction between CK2α and PAK1 in a PI3K-dependent manner. Consistently, PAK1 mediates phosphorylation and modulation of the activity of p41-Arc, one of its plasma membrane substrate, in a fashion that requires PI3K and CKIP-1. Moreover, CKIP-1 knockdown or PI3K inhibition suppresses PAK1-mediated cell migration and invasion, demonstrating the physiological significance of the PI3K-CKIP-1-CK2-PAK1 signaling pathway. Taken together, these findings identify a novel mechanism for the activation of PAK1 at the plasma membrane, which is critical for cell migration and invasion. PMID:26160174

  17. Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss.

    PubMed

    Xiong, Hao; Pang, Jiaqi; Yang, Haidi; Dai, Min; Liu, Yimin; Ou, Yongkang; Huang, Qiuhong; Chen, Suijun; Zhang, Zhigang; Xu, Yaodong; Lai, Lan; Zheng, Yiqing

    2015-04-01

    The molecular mechanisms underlying age-related hearing loss are not fully understood, and currently, there is no treatment for this disorder. MicroRNAs have recently been reported to be increasingly associated with age-related diseases and are emerging as promising therapeutic targets. In this study, miR-34a/Sirtuin 1 (SIRT1)/p53 signaling was examined in cochlear hair cells during aging. MiR-34a, p53 acetylation, and apoptosis increased in the cochlea of C57BL/6 mice with aging, whereas an age-related decrease in SIRT1 was observed. In the inner ear HEI-OC1 cell line, miR-34a overexpression inhibited SIRT1, leading to an increase in p53 acetylation and apoptosis. Moreover, miR-34a knockdown increased SIRT1 expression and diminished p53 acetylation, and apoptosis. Additionally, resveratrol, an activator of SIRT1, significantly rescued miR-34a overexpression-induced HEI-OC1 cell death and significantly reduced hearing threshold shifts and hair cell loss in C57BL/6 mice after a 2-month administration. Our results support a link between age-related cochlear hair cell apoptosis and miR-34a/SIRT1/p53 signaling, which may serve as a potential target for age-related hearing loss treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max

    PubMed Central

    Zhang, Yu; Zhang, Yan-Jie; Yang, Bao-Jun; Yu, Xian-Xian; Wang, Dun; Zu, Song-Hao; Xue, Hong-Wei; Lin, Wen-Hui

    2016-01-01

    Brassinosteroids (BRs) play key roles in plant growth and development, and regulate various agricultural traits. Enhanced BR signaling leads to increased seed number and yield in Arabidopsis bzr1-1D (AtBZR1P234L, gain-of-function mutant of the important transcription factor in BR signaling/effects). BR signal transduction pathway is well elucidated in Arabidopsis but less known in other species. Soybean is an important dicot crop producing edible oil and protein. Phylogenetic analysis reveals AtBZR1-like genes are highly conserved in angiosperm and there are 4 orthologues in soybean (GmBZL1-4). We here report the functional characterization of GmBZL2 (relatively highly expresses in flowers). The P234 site in AtBZR1 is conserved in GmBZL2 (P216) and mutation of GmBZL2P216L leads to GmBZL2 accumulation. GmBZL2P216L (GmBZL2*) in Arabidopsis results in enhanced BR signaling; including increased seed number per silique. GmBZL2* partially rescued the defects of bri1-5, further demonstrating the conserved function of GmBZL2 with AtBZR1. BR treatment promotes the accumulation, nuclear localization and dephosphorylation/phosphorylation ratio of GmBZL2, revealing that GmBZL2 activity is regulated conservatively by BR signaling. Our studies not only indicate the conserved regulatory mechanism of GmBZL2 and BR signaling pathway in soybean, but also suggest the potential application of GmBZL2 in soybean seed yield. PMID:27498784

  19. Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max.

    PubMed

    Zhang, Yu; Zhang, Yan-Jie; Yang, Bao-Jun; Yu, Xian-Xian; Wang, Dun; Zu, Song-Hao; Xue, Hong-Wei; Lin, Wen-Hui

    2016-08-08

    Brassinosteroids (BRs) play key roles in plant growth and development, and regulate various agricultural traits. Enhanced BR signaling leads to increased seed number and yield in Arabidopsis bzr1-1D (AtBZR1(P234L), gain-of-function mutant of the important transcription factor in BR signaling/effects). BR signal transduction pathway is well elucidated in Arabidopsis but less known in other species. Soybean is an important dicot crop producing edible oil and protein. Phylogenetic analysis reveals AtBZR1-like genes are highly conserved in angiosperm and there are 4 orthologues in soybean (GmBZL1-4). We here report the functional characterization of GmBZL2 (relatively highly expresses in flowers). The P234 site in AtBZR1 is conserved in GmBZL2 (P216) and mutation of GmBZL2(P216L) leads to GmBZL2 accumulation. GmBZL2(P216L) (GmBZL2*) in Arabidopsis results in enhanced BR signaling; including increased seed number per silique. GmBZL2* partially rescued the defects of bri1-5, further demonstrating the conserved function of GmBZL2 with AtBZR1. BR treatment promotes the accumulation, nuclear localization and dephosphorylation/phosphorylation ratio of GmBZL2, revealing that GmBZL2 activity is regulated conservatively by BR signaling. Our studies not only indicate the conserved regulatory mechanism of GmBZL2 and BR signaling pathway in soybean, but also suggest the potential application of GmBZL2 in soybean seed yield.

  20. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans.

    PubMed

    Fan, Yan; He, Hong; Dong, Yan; Pan, Hengbiao

    2013-12-01

    Fungal virulence mechanisms include adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotype switching, all of which contribute to the process of pathogenesis. A striking feature of the biology of Candida albicans is its ability to grow in yeast, pseudohyphal, and hyphal forms. The hyphal form plays an important role in causing disease, by invading epithelial cells and causing tissue damage. In this review, we illustrate some of the main hyphae-specific genes, namely HGC1, UME6, ALS3, HWP1, and ECE1, and their relevant and reversed signal transduction pathways in reactions stimulated by environmental factors, including pH, CO2, and serum.

  1. Factorization in Hard γ - p, γ* - p and p - p Scattering

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2006-04-01

    Starting from the idea that the diffractive collisions reflect the absorption of the incident particle wave, it is argued that one should expect a strong factorization breaking between γ - p and p - p diffractive cross-sections, as well as between two-gap, one-gap and no-gap cross-sections in p - p collisions. One the other hand, there are no "absorptive" corrections which would destroy factorization of γ - p and γ* - p diffractive cross-sections.

  2. Significance of expression of suppressor of cytokine signaling proteins: Suppressor of cytokine signaling-1, suppressor of cytokine signaling-2, and suppressor of cytokine signaling-3 in papillary thyroid cancer.

    PubMed

    Kobawala, Toral Pundrik; Trivedi, Trupti I; Gajjar, Kinjal Kevin; Patel, Girish H; Ghosh, Nandita R

    2017-01-01

    Uncontrolled cytokine signal transduction largely associated with oncogene activation, can have disastrous biological consequences. The suppressor of cytokine signaling (SOCS) proteins represent one of the mechanisms by which this rampant signaling can be dissipated. Thus, we aimed to study the expression of SOCS-1, SOCS-2, and SOCS-3 in patients having benign thyroid disease and papillary thyroid cancer. SOCS protein expression was studied in 45 patients with benign thyroid disease and in 83 papillary thyroid cancer patients by immunohistochemistry and their association with clinicopathological characteristics and overall survival in cancer patients were analyzed using SPSS software. Expressions of SOCS proteins were significantly higher in papillary thyroid cancer than in patients having benign disease. SOCS-1 expression was predominantly higher in males (P = 0.004), unilateral tumors (P = 0.030), and noninflammatory conditions (P = 0.028). SOCS-1 expression was also able to predict poor overall survival in subgroup of papillary thyroid cancer patients having larger tumor size (P = 0.013) and advanced stage disease (P = 0.033). Expression of SOCS-2 significantly correlated with tumor size (P = 0.017), extrathyroidal extension (P = 0.000), residual disease (P = 0.043), and treatment (P = 0.007), while preponderance of SOCS-3 expression was observed in males (P = 0.030) and in patients having extrathyroidal extension (P = 0.011) and absence of metastasis (P = 0.032). Expression of the studied SOCS proteins may be a consequence of activation of Janus kinase-signal transducers and activators of transcription and other pathways supporting growth and survival of cancer cells that are sustained by several cytokines. Thus, SOCS-1, SOCS-2, and SOCS-3 proteins may directly or indirectly, have important roles in development and pathogenesis of papillary thyroid cancer.

  3. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice.

    PubMed

    Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa

    2013-12-02

    ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.

  4. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice

    PubMed Central

    2013-01-01

    Background ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. Results KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. Conclusions We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine. PMID:24294842

  5. β-Adrenergic Receptor Stimulated Ncx1 Upregulation is Mediated via a CaMKII/AP-1 Signaling Pathway in Adult Cardiomyocytes

    PubMed Central

    Mani, Santhosh K.; Egan, Erin A.; Addy, Benjamin K.; Grimm, Michael; Kasiganesan, Harinath; Thiyagarajan, Thirumagal; Renaud, Ludivine; Brown, Joan Heller; Kern, Christine B.; Menick, Donald R.

    2013-01-01

    The Na+-Ca2+ exchanger gene (Ncx1) is upregulated in hypertrophy and is often found elevated in end-stage heart failure. Studies have shown that the change in its expression contributes to contractile dysfunction. β-adrenergic receptor (β-AR) signaling plays an important role in the regulation of calcium homeostasis in the cardiomyocyte but chronic activation in periods of cardiac stress contribute to heart failure by mechanisms which include Ncx1 upregulation. Here, using a Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKIIδc) null mouse, we demonstrate that β-AR-stimulated Ncx1 upregulation is dependent on CaMKII. β-AR-stimulated Ncx1 expression is mediated by activator protein 1 (AP-1) factors and is independent of cAMP-response element-binding protein (CREB) activation. The MAP kinases (ERK1/2, JNK and p38) are not required for AP-1 factor activation. Chromatin immunoprecipitation demonstrates that β-AR stimulation activates the ordered recruitment of JunB homodimers which then are replaced by c-Jun homodimers binding to the proximal AP-1 elements of the endogenous Ncx1 promoter. In conclusion, this work has provided insight into the intracellular signaling pathways and transcription factors regulating Ncx1 gene expression in a chronically β-AR-stimulated heart. PMID:19945464

  6. Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway.

    PubMed

    Wang, Zhiyao; Liu, Fan; Wei, Min; Qiu, Yue; Ma, Chao; Shen, Le; Huang, Yuguang

    2018-06-09

    microRNA-146a-5p (miRNA-146a-5p) is a key molecule in the negative regulation pathway of TLRs and IL-1 receptor (TIR) signaling. Our recent study demonstrated that MyD88-dependent signaling pathway of TIR in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) plays a role in peripheral nerve injury-induced neuropathic pain. However, it was not clear whether and how miRNA-146a-5p regulates the TIR pathway of DRG and SDH in the development of neuropathic pain. The sciatic nerve chronic constriction injury (CCI) model of rat was used to induce chronic neuropathic pain. The levels and cellular distribution of miRNA-146a-5p were detected with quantitative real-time PCR (qPCR) and fluorescent in situ hybridization (FISH). The RNA level, protein level, and cellular distribution of IRAK1 and TRAF6 that is targeted by miRNA-146a-5p were detected with qPCR, western blot, and immunofluorescent. The pain-related behavioral effect of miRNA-146a-5p was accessed after intrathecal administration. Mechanical stimuli and radiant heat were used to evaluate mechanical allodynia and thermal hyperalgesia. We found that the level of miRNA-146a-5p significantly increased in L4-L6 DRGs and SDH after CCI surgery; meanwhile, the protein level of IRAK1 and TRAF6 in DRGs was significantly increased after CCI. Intrathecal injection of miR146a-5p agomir or miRNA-146a-5p antagomir regulates miRNA-146a-5p level of L4-L6 DRGs and SDH. We found that intrathecal injection of miR146a-5p agomir can alleviate mechanical and thermal hyperalgesia in CCI rats and reverse the upregulation of IRAK1 and TRAF6 of L4-L6 DRGs and SDH induced by CCI. We furthermore found that intrathecal injection of miRNA-146a-5p antagomir can exacerbate the mechanical and thermal pain-related behavior of CCI rats and meanwhile increase IRAK1 and TRAF6 of L4-L6 DRGs and SDH expression even further. miRNA-146a-5p of DRG and SDH can modulate the development of CCI-induced neuropathic pain through inhibition of IRAK1 and

  7. Hepatocyte growth factor acts as a mitogen for equine satellite cells via protein kinase C δ directed signaling.

    PubMed

    Brandt, Amanda M; Kania, Joanna M; Gonzalez, Madison L; Johnson, Sally E

    2018-06-16

    Hepatocyte growth factor (HGF) signals mediate mouse skeletal muscle stem cell, or satellite cell (SC), reentry into the cell cycle and myoblast proliferation. Because the athletic horse experiences exercise-induced muscle damage, the objective of the experiment was to determine the effect of HGF on equine SC (eqSC) bioactivity. Fresh isolates of adult eqSC were incubated with increasing concentrations of HGF and the initial time to DNA synthesis was measured. Media supplementation with HGF did not shorten (P > 0.05) the duration of G0/G1 transition suggesting the growth factor does not affect activation. Treatment with 25 ng/mL HGF increased (P < 0.05) eqSC proliferation that was coincident with phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and AKT serine/threonine kinase 1 (AKT1). Chemical inhibition of the upstream effectors of ERK1/2 or AKT1 elicited no effect (P > 0.05) on HGF-mediated EdU incorporation. By contrast, treatment of eqSC with 2 µm Gö6983, a pan-protein kinase C (PKC) inhibitor, blocked (P < 0.05) HGF-initiated mitotic activity. Gene expression analysis revealed that eqSC express PKCα, -δ and -ε isoforms. Knockdown of PKCδ with a small interfering RNA (siRNA) prevented (P > 0.05) HGF-mediated EdU incorporation. The siPKCδ was specific to the kinase and did not affect (P > 0.05) expression of either PKCα or PKCε. Treatment of confluent eqSCs with 25 ng/mL HGF suppressed (P < 0.05) nuclear myogenin expression during the early stages of differentiation. These results demonstrate that HGF may not affect activation but can act as a mitogen and modest suppressor of differentiation.

  8. Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    NASA Astrophysics Data System (ADS)

    DiGangi, J. P.; Henry, S. B.; Kammrath, A.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Graus, M.; Turnipseed, A.; Park, J.-H.; Weber, R. J.; Hornbrook, R. S.; Cantrell, C. A.; Maudlin, R. L., III; Kim, S.; Nakashima, Y.; Wolfe, G. M.; Kajii, Y.; Apel, E. C.; Goldstein, A. H.; Guenther, A.; Karl, T.; Hansel, A.; Keutsch, F. N.

    2012-10-01

    We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs). Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, RGF, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in RGF were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on RGF and could reflect transitions between low and high NO regimes. The trend of increased RGF from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in RGF occurred. Satellite retrievals, which suggest higher RGF for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that RGF represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NOx. In particular, RGF yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production.

  9. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    PubMed

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. MEMBRANE-TYPE 1 MATRIX METALLOPROTEINASE DOWNREGULATES FIBROBLAST GROWTH FACTOR-2 BINDING TO THE CELL SURFACE AND INTRACELLULAR SIGNALING

    PubMed Central

    Tassone, Evelyne; Valacca, Cristina; Mignatti, Paolo

    2014-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1-MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell’s biological response to FGF-2. PMID:24986796

  11. Functional Impairment of Myeloid Dendritic Cells during Advanced Stage of HIV-1 Infection: Role of Factors Regulating Cytokine Signaling.

    PubMed

    Sachdeva, Meenakshi; Sharma, Aman; Arora, Sunil K

    2015-01-01

    Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART). Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR. The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase (SHP)-1 and a reduced expression of positive regulators like Janus kinase (JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells. Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral replication at this stage of disease, needs

  12. Activin-A, transforming growth factor-beta, and myostatin signaling pathway in experimental dilated cardiomyopathy.

    PubMed

    Mahmoudabady, Maryam; Mathieu, Myrielle; Dewachter, Laurence; Hadad, Ielham; Ray, Lynn; Jespers, Pascale; Brimioulle, Serge; Naeije, Robert; McEntee, Kathleen

    2008-10-01

    The pathogenic mechanisms of dilated cardiomyopathy are still uncertain. A number of cytokines and growth factors participate in the remodeling process of the disease. We investigated the cardiac myostatin, transforming growth factor (TGF)beta, and activin-A/Smad growth inhibitory signaling pathway in experimental dilated cardiomyopathy. Transvenous endomyocardial biopsies of the interventricular septum were taken weekly in 15 beagle dogs during the development of heart failure (HF) induced by rapid pacing over a period of 7 weeks. Genes involved in the myostatin-TGFbeta-activin-A/Smad signaling pathway and the cardiac hypertrophic process were quantified by real-time quantitative polymerase chain reaction. Left ventricular volume, function, and mass were evaluated by echocardiography. Overpacing was associated with increased left ventricular volumes and decreased ejection fraction, whereas the left ventricular mass remained unchanged. TGFbeta was increased in moderate HF. Activin-A mRNA expression was 4-fold higher in overt congestive HF than at baseline. A 2-fold decrease of activin type II receptors and activin receptor interacting protein 2 gene expressions were observed, as well as a transient decrease of follistatin. Activin type I receptors, activin receptor interacting protein 1, follistatin-related gene, and myostatin remained unchanged. The inhibitory Smad 7, a negative feedback loop regulator of the Smad pathway, was overexpressed in severe HF. Gene expression of the cyclin-dependent kinase inhibitor p21, a direct target gene of the Smad pathway, was 8-fold up-regulated in HF, whereas cyclin D1 was down-regulated. We conclude that tachycardia-induced dilated cardiomyopathy is characterized by gene overexpression of the TGFbeta-activin-A/Smad signaling pathway and their target gene p21 and by the absence of ventricular hypertrophy.

  13. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling. © 2014 Elsevier Inc. All rights reserved.

  14. Function-Specific Intracellular Signaling Pathways Downstream of Heparin-Binding EGF-Like Growth Factor Utilized by Human Trophoblasts1

    PubMed Central

    Jessmon, Philip; Kilburn, Brian A.; Romero, Roberto; Leach, Richard E.; Armant, D. Randall

    2010-01-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1–2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation. PMID:20130271

  15. Simultaneous stimulation with tumor necrosis factor-α and transforming growth factor1 induces epithelial-mesenchymal transition in colon cancer cells via the NF-κB pathway.

    PubMed

    Li, Yuanfei; Zhu, Guoqiang; Zhai, Huihong; Jia, Junmei; Yang, Wenhui; Li, Xiaoqing; Liu, Lixin

    2018-05-01

    Epithelial-mesenchymal transition (EMT) is critical in the progression of numerous types of carcinoma, and endows invasive and metastatic properties upon cancer cells. The tumor microenvironment facilitates tumor metastasis to distant organs. Various signaling pathways contribute to this process. In the present study, SW480 colon adenocarcinoma cells were treated with transforming growth factor1 (TGF-β1; 10 ng/ml) and tumor necrosis factor-α (TNF-α; 20 ng/ml), alone or in combination, for 72 h, and EMT was assessed using immunofluorescence, western blot analysis and migration assays. The functions of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) pathways in EMT were examined. It was demonstrated that the cooperation of TGF-β1 and TNF-α signaling promoted the morphological conversion of the SW480 cells from an epithelial to a mesenchymal phenotype. Furthermore, simultaneous exposure to TNF-α and TGF-β1 downregulated the expression of E-cadherin (an epithelial marker) and increased the expression of N-cadherin and vimentin (mesenchymal markers). Additionally, the migratory capacity of the SW480 cells increased. The inhibition of p38 and ERK signaling exhibited no effect on EMT, whereas the inhibition of inhibitor of NF-κB kinase subunit β blocked the EMT induced by TGF-β1 and TNF-α. In conclusion, the results of the present study demonstrated that TNF-α and TGF-β1 synergistically promoted EMT in SW480 cells via the NF-κB pathway, independent of p38 activation and ERK1/2 signaling. These results suggest a novel function of TGF-β1 and TNF-α during EMT in colon carcinoma and, thus, provide insights into potential therapeutic interventions.

  16. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma.

    PubMed

    Huang, Jin-Lan; Cao, Shun-Wang; Ou, Qi-Shui; Yang, Bin; Zheng, Shi-Hao; Tang, Jing; Chen, Jing; Hu, Yan-Wei; Zheng, Lei; Wang, Qian

    2018-05-26

    Dysfunctions of long non-coding RNA (lncRNAs) have been associated with the initiation and progression of hepatocellular carcinoma (HCC), but the clinicopathologic significance and potential role of lncRNA PTTG3P (pituitary tumor-transforming 3, pseudogene) in HCC remains largely unknown. We compared the expression profiles of lncRNAs in 3 HCC tumor tissues and adjacent non-tumor tissues by microarrays. In situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to assess the level of PTTG3P and prognostic values of PTTG3P were assayed in two HCC cohorts (n = 46 and 90). Artificial modulation of PTTG3P (down- and over-expression) was performed to explore the role of PTTG3P in tumor growth and metastasis in vitro and in vivo. Involvement of PTTG1 (pituitary tumor-transforming 1), PI3K/AKT signaling and its downstream signals were validated by qRT-PCR and western blot. We found that PTTG3P was frequently up-regulated in HCC and its level was positively correlated to tumor size, TNM stage and poor survival of patients with HCC. Enforced expression of PTTG3P significantly promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, PTTG3P knockdown had opposite effects. Mechanistically, over-expression of PTTG3P up-regulated PTTG1, activated PI3K/AKT signaling and its downstream signals including cell cycle progression, cell apoptosis and epithelial-mesenchymal transition (EMT)-associated genes. Our findings suggest that PTTG3P, a valuable marker of HCC prognosis, promotes tumor growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in HCC and might represent a potential target for gene-based therapy.

  17. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

    PubMed Central

    Logan, Ian R.; McNeill, Hesta V.; Cook, Susan; Lu, Xiaohong; Meek, David W.; Fuller-Pace, Frances V.; Lunec, John; Robson, Craig N.

    2009-01-01

    Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents. PMID:19295133

  18. Growth factors FGF8 and FGF2 and their receptor FGFR1, transcriptional factors Msx-1 and MSX-2, and apoptotic factors p19 and RIP5 participate in the early human limb development.

    PubMed

    Becic, Tina; Kero, Darko; Vukojevic, Katarina; Mardesic, Snjezana; Saraga-Babic, Mirna

    2018-04-01

    The expression pattern of fibroblast growth factors FGF8 and FGF2 and their receptor FGFR1, transcription factors MSX-1 and MSX-2, as well as cell proliferation (Ki-67) and cell death associated caspase-3, p19 and RIP5 factors were analyzed in histological sections of eight 4th-9th-weeks developing human limbs by immunohistochemistry and semi-thin sectioning. Increasing expression of all analyzed factors (except FGF8) characterized both the multilayered human apical ectodermal ridge (AER), sub-ridge mesenchyme (progress zone) and chondrocytes in developing human limbs. While cytoplasmic co-expression of MSX-1 and MSX-2 was observed in both limb epithelium and mesenchyme, p19 displayed strong cytoplasmic expression in non-proliferating cells. Nuclear expression of Ki-67 proliferating cells, and partly of MSX-1 and MSX-2 was detected in the whole limb primordium. Strong expression of factors p19 and RIP5, both in the AER and mesenchyme of human developing limbs indicates their possible involvement in control of cell senescence and cell death. In contrast to animal studies, expression of FGFR1 in the surface ectoderm and p19 in the whole limb primordium might reflect interspecies differences in limb morphology. Expression of FGF2 and downstream RIP5 gene, and transcription factors Msx-1 and MSX-2 did not show human-specific changes in expression pattern. Based on their spatio-temporal expression during human limb development, our study indicates role of FGFs and Msx genes in stimulation of cell proliferation, limb outgrowth, digit elongation and separation, and additionally MSX-2 in control of vasculogenesis. The cascade of orchestrated gene expressions, including the analyzed developmental factors, jointly contribute to the complex human limb development. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Protein Kinase A Regulates Constitutive Expression of Small Heat-Shock Genes in an Msn2/4p-Independent and Hsf1p-Dependent Manner in Saccharomyces cerevisiae

    PubMed Central

    Ferguson, Scott B.; Anderson, Erik S.; Harshaw, Robyn B.; Thate, Tim; Craig, Nancy L.; Nelson, Hillary C. M.

    2005-01-01

    Hsf1p, the heat-shock transcription factor from Saccharomyces cerevisiae, has a low level of constitutive transcriptional activity and is kept in this state through negative regulation. In an effort to understand this negative regulation, we developed a novel genetic selection that detects altered expression from the HSP26 promoter. Using this reporter strain, we identified mutations and dosage compensators in the Ras/cAMP signaling pathway that decrease cAMP levels and increase expression from the HSP26 promoter. In yeast, low cAMP levels reduce the catalytic activity of the cAMP-dependent kinase PKA. Previous studies had proposed that the stress response transcription factors Msn2p/4p, but not Hsf1p, are repressed by PKA. However, we found that reduction or elimination of PKA activity strongly derepresses transcription of the small heat-shock genes HSP26 and HSP12, even in the absence of MSN2/4. In a strain deleted for MSN2/4 and the PKA catalytic subunits, expression of HSP12 and HSP26 depends on HSF1 expression. Our findings indicate that Hsf1p functions downstream of PKA and suggest that PKA might be involved in negative regulation of Hsf1p activity. These results represent a major change in our understanding of how PKA signaling influences the heat-shock response and heat-shock protein expression. PMID:15545649

  20. Integration of growth factor signals at the c-fos serum response element.

    PubMed

    Price, M A; Hill, C; Treisman, R

    1996-04-29

    A transcription factor ternary complex composed of serum response factor (SRF) and a second factor, ternary complex factor (TCF), mediates the response of the c-fos Serum Response Element to growth factors and mitogens. In NIH3T3 fibroblasts, TCF binding is required for transcriptional activation by the SRE in response to activation of the Ras-Raf-ERK pathway. We compared the properties of three members of the TCF family, Elk-1, SAP-1 and SAP-2 (ERP/NET). Although all the proteins contain sequences required for ternary complex formation with SRF, only Elk-1 and SAP-1 appear to interact with the c-fos SRE efficiently in vivo. Each TCF contains a C-terminal activation domain capable of transcriptional activation in response to activation of the Ras-Raf-ERK pathway, and this is dependent on the integrity of S/T-P motifs conserved between all the TCF family members. In contrast, activation of the SRE by whole serum and the mitogenic phospholipid LPA requires SRF binding alone. Constitutively activated members of the Rho subfamily of Ras-like GTPases are also capable of inducing activation of the SRE in the absence of TCF; unlike activated Ras itself, these proteins do not activate the TCFs in NIH3T3 cells. At the SRE, SRF- and TCF-linked signalling pathways act synergistically to potentiate transcription.

  1. p27Kip1 localizes to detergent-insoluble microdomains within lymphocyte membranes.

    PubMed Central

    Yaroslavskiy, B. B.; Stolz, D. B.; Watkins, S. C.; Alber, S. M.; Bradbury, N. A.; Steinman, R. A.

    2001-01-01

    BACKGROUND: Low levels of the cyclin-dependent kinase inhibitor p27Kip1 are associated with poor prognosis in cancer. It is unclear whether this is related strictly to p27Kip1-mediated cell cycle inhibition or to other, possibly extranuclear, roles of this protein. In this study, we examined p27Kip1 expression in quiescent and activated lymphocytes. T-cell membranes have been shown to possess sphingolipid and cholesterol-rich microdomains that are insoluble in non-ionic detergents. These "rafts" provide a scaffold for signaling proteins. Signal transduction coincides with coalescence of these microdomains into larger complexes. METHODS: Localization of p27Kip1 was studied by electron and confocal microscopy. Association of p27Kip1 with membrane microdomains in unstimulated and stimulated lymphocytes was determined using Western blots analysis of isolated membranes variably treated with detergents. RESULTS: We demonstrated that p27Kip1 was present in clusters associated with the plasma membrane in normal lymphocytes. The solubility profile of p27Kip1 in isolated membranes indicated that it was localized to raft structures. When lymphocytes were stimulated, however, p27Kip1 was excluded from aggregated raft complexes. CONCLUSIONS: This study identifies, for the first time, the localization of p27 within a membrane microdomain associated with signaling. Because some cell surface signaling complexes lose p27Kip1 upon cellular activation, p27Kip1 may play a functional role in modulating membrane signaling. PMID:11474127

  2. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling.

    PubMed

    Zeng, Huijun; Yang, Zhao; Xu, Ningbo; Liu, Boyang; Fu, Zhao; Lian, Changlin; Guo, Hongbo

    2017-06-15

    Limited benefits and clinical utility of temozolomide (TMZ) for glioblastoma (GB) are frequently compromised by the development of acquired drug resistance. Overcoming TMZ resistance and uncovering the underlying mechanisms are challenges faced during GB chemotherapy. In this study, we reported that connective tissue growth factor (CTGF) was associated with GB chemoresistance and significantly upregulated in TMZ-treated GB cells. CTGF knockdown promoted TMZ-induced cell apoptosis and enhanced chemosensitivity, whereas its overexpression markedly conferred TMZ resistance in vitro and in vivo. Moreover, CTGF promoted TMZ resistance through stem-like properties acquisition and CD44 interference reversed the CTGF-induced TMZ resistance. Mechanistically, further investigation revealed that the TMZ-induced CTGF upregulation was tissue growth factor (TGF-β) dependent, and regulated by TGF-β1 activation through Smad and ERK1/2 signaling. Together, our results suggest a pivotal role of CTGF-mediated TMZ resistance through TGF-β1-dependent activation of Smad/ERK signaling pathways. These data provide us insights for identifying potential targets that are beneficial for overcoming TMZ resistance in GB.

  3. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis1[OPEN

    PubMed Central

    Shine, M.B.; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-01-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other’s nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection. PMID:27356973

  4. The Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Transforming Growth FactorSignaling by Destabilizing Ski and Inducing Smad7*

    PubMed Central

    Band, Arja M.; Björklund, Mia; Laiho, Marikki

    2009-01-01

    Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-β signaling. It acts as a transcriptional co-repressor by binding to TGF-β signaling molecules, Smads. Efficient TGF-β signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-β. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-β, Smad7. Induction of Smad7 levels leads to inactivation of TGF-β receptors and TGF-β signaling cascade, as indicated by reduced induction of TGF-β target p15. Therefore, Akt modulates TGF-β signaling by temporarily adjusting the levels of two TGF-β pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-β pathway. PMID:19875456

  5. Heat shock factor-1 knockout induces multidrug resistance gene, MDR1b, and enhances P-glycoprotein (ABCB1)-based drug extrusion in the heart

    PubMed Central

    Krishnamurthy, Karthikeyan; Vedam, Kaushik; Kanagasabai, Ragu; Druhan, Lawrence J.; Ilangovan, Govindasamy

    2012-01-01

    Heat-shock factor 1 (HSF-1), a transcription factor for heat-shock proteins (HSPs), is known to interfere with the transcriptional activity of many oncogenic factors. In the present work, we have discovered that HSF-1 ablation induced the multidrug resistance gene, MDR1b, in the heart and increased the expression of P-glycoprotein (P-gp, ABCB1), an ATP binding cassette that is usually associated with multidrug-resistant cancer cells. The increase in P-gp enhanced the extrusion of doxorubicin (Dox) to alleviate Dox-induced heart failure and reduce mortality in mice. Dox-induced left ventricular (LV) dysfunction was significantly reduced in HSF-1−/− mice. DNA-binding activity of NF-κB was higher in HSF-1−/− mice. IκB, the NF-κB inhibitor, was depleted due to enhanced IκB kinase (IKK)-α activity. In parallel, MDR1b gene expression and a large increase in P-gp and lowering Dox loading were observed in HSF-1−/− mouse hearts. Moreover, application of the P-gp antagonist, verapamil, increased Dox loading in HSF-1−/− cardiomyocytes, deteriorated cardiac function in HSF-1−/− mice, and decreased survival. MDR1 promoter activity was higher in HSF-1−/− cardiomyocytes, whereas a mutant MDR1 promoter with heat-shock element (HSE) mutation showed increased activity only in HSF-1+/+ cardiomyocytes. However, deletion of HSE and NF-κB binding sites diminished luminescence in both HSF-1+/+ and HSF-1−/− cardiomyocytes, suggesting that HSF-1 inhibits MDR1 activity in the heart. Thus, because high levels of HSF-1 are attributed to poor prognosis of cancer, systemic down-regulation of HSF-1 before chemotherapy is a potential therapeutic approach to ameliorate the chemotherapy-induced cardiotoxicity and enhance cancer prognosis. PMID:22615365

  6. Differential Regulation of Hippocampal IGF-1-Associated Signaling Proteins by Dietary Restriction in Aging Mouse.

    PubMed

    Hadem, Ibanylla Kynjai Hynniewta; Sharma, Ramesh

    2017-08-01

    Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective

  7. Feasibility studies of time-like proton electromagnetic form factors at $$\\overline{\\rm P}$$ANDA at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, B.; Erni, W.; Krusche, B.

    Simulation results for future measurements of electromagnetic proton form factors atmore » $$\\overline{\\rm P}$$ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p → e +e – is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p → π +π –, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. Furthermore, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.« less

  8. Feasibility studies of time-like proton electromagnetic form factors at $$\\overline{\\rm P}$$ANDA at FAIR

    DOE PAGES

    Singh, B.; Erni, W.; Krusche, B.; ...

    2016-10-28

    Simulation results for future measurements of electromagnetic proton form factors atmore » $$\\overline{\\rm P}$$ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p → e +e – is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p → π +π –, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. Furthermore, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.« less

  9. Smad Ubiquitylation Regulatory Factor 1/2 (Smurf1/2) Promotes p53 Degradation by Stabilizing the E3 Ligase MDM2*

    PubMed Central

    Nie, Jing; Xie, Ping; Liu, Lin; Xing, Guichun; Chang, Zhijie; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2010-01-01

    The tumor suppressor p53 protein is tightly regulated by a ubiquitin-proteasomal degradation mechanism. Several E3 ubiquitin ligases, including MDM2 (mouse double minute 2), have been reported to play an essential role in the regulation of p53 stability. However, it remains unclear how the activity of these E3 ligases is regulated. Here, we show that the HECT-type E3 ligase Smurf1/2 (Smad ubiquitylation regulatory factor 1/2) promotes p53 degradation by enhancing the activity of the E3 ligase MDM2. We provide evidence that the role of Smurf1/2 on the p53 stability is not dependent on the E3 activity of Smurf1/2 but rather is dependent on the activity of MDM2. We find that Smurf1/2 stabilizes MDM2 by enhancing the heterodimerization of MDM2 with MDMX, during which Smurf1/2 interacts with MDM2 and MDMX. We finally provide evidence that Smurf1/2 regulates apoptosis through p53. To our knowledge, this is the first report to demonstrate that Smurf1/2 functions as a factor to stabilize MDM2 protein rather than as a direct E3 ligase in regulation of p53 degradation. PMID:20484049

  10. Targeting p35/Cdk5 signalling via CIP-peptide promotes angiogenesis in hypoxia.

    PubMed

    Bosutti, Alessandra; Qi, Jie; Pennucci, Roberta; Bolton, David; Matou, Sabine; Ali, Kamela; Tsai, Li-Huei; Krupinski, Jerzy; Petcu, Eugene B; Montaner, Joan; Al Baradie, Raid; Caccuri, Francesca; Caruso, Arnaldo; Alessandri, Giulio; Kumar, Shant; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Slevin, Mark

    2013-01-01

    Cyclin-dependent kinase-5 (Cdk5) is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cells co-localising with p(Tyr15)Cdk5, talin/integrin beta-1 at the lamellipodia in polarising cells. Cdk5 inhibition (roscovitine) resulted in actin-cytoskeleton disorganisation, prevention of protein co-localization and inhibition of movement. Cells expressing Cdk5 (D144N) kinase mutant, were unable to spread, migrate and form tube-like structures or sprouts, while Cdk5 wild-type over-expression showed enhanced motility and angiogenesis in vitro, which was maintained during hypoxia. Gene microarray studies demonstrated myocyte enhancer factor (MEF2C) as a substrate for Cdk5-mediated angiogenesis in vitro. MEF2C showed nuclear co-immunoprecipitation with Cdk5 and almost complete inhibition of differentiation and sprout formation following siRNA knock-down. In hypoxia, insertion of Cdk5/p25-inhibitory peptide (CIP) vector preserved and enhanced in vitro angiogenesis. These results demonstrate the existence of critical and complementary signalling pathways through Cdk5 and p35, and through which coordination is a required factor for successful angiogenesis in sustained hypoxic condition.

  11. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling.

    PubMed

    Maity, Gargi; Haque, Inamul; Ghosh, Arnab; Dhar, Gopal; Gupta, Vijayalaxmi; Sarkar, Sandipto; Azeem, Imaan; McGregor, Douglas; Choudhary, Abhishek; Campbell, Donald R; Kambhampati, Suman; Banerjee, Sushanta K; Banerjee, Snigdha

    2018-03-23

    Myc-associated zinc-finger protein (MAZ) is a transcription factor with dual roles in transcription initiation and termination. Deregulation of MAZ expression is associated with the progression of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of action of MAZ in PDAC progression is largely unknown. Here, we present evidence that MAZ mRNA expression and protein levels are increased in human PDAC cell lines, tissue samples, a subcutaneous tumor xenograft in a nude mouse model, and spontaneous cancer in the genetically engineered PDAC mouse model. We also found that MAZ is predominantly expressed in pancreatic cancer stem cells. Functional analysis indicated that MAZ depletion in PDAC cells inhibits invasive phenotypes such as the epithelial-to-mesenchymal transition, migration, invasion, and the sphere-forming ability of PDAC cells. Mechanistically, we detected no direct effects of MAZ on the expression of K-Ras mutants, but MAZ increased the activity of CRAF-ERK signaling, a downstream signaling target of K-Ras. The MAZ-induced activation of CRAF-ERK signaling was mediated via p21-activated protein kinase (PAK) and protein kinase B (AKT/PKB) signaling cascades and promoted PDAC cell invasiveness. Moreover, we found that the matricellular oncoprotein cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) regulates MAZ expression via Notch-1-sonic hedgehog signaling in PDAC cells. We propose that Cyr61/CCN1-induced expression of MAZ promotes invasive phenotypes of PDAC cells not through direct K-Ras activation but instead through the activation of CRAF-ERK signaling. Collectively, these results highlight key molecular players in PDAC invasiveness and may help inform therapeutic strategies to improve clinical management and outcomes of PDAC.

  12. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    PubMed

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  13. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability

    PubMed Central

    Barbosa, Inês C.R.

    2016-01-01

    The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana. Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. PMID:27436712

  14. miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling

    PubMed Central

    Kim, Woori; Lee, Yenarae; McKenna, Noah D.; Yi, Ming; Simunovic, Filip; Wang, Yulei; Kong, Benjamin; Rooney, Robert J.; Seo, Hyemyung; Stephens, Robert; Sonntag, Kai C.

    2014-01-01

    Dopamine (DA) neurons in sporadic Parkinson disease (PD) display dysregulated gene expression networks and signaling pathways that are implicated in PD pathogenesis. Micro (mi)RNAs are regulators of gene expression, which could be involved in neurodegenerative diseases. We determined the miRNA profiles in laser microdissected DA neurons from postmortem sporadic PD patients’ brains and age-matched controls. DA neurons had a distinctive miRNA signature and a set of miRNAs was dysregulated in PD. Bioinformatics analysis provided evidence for correlations of miRNAs with signaling pathways relevant to PD, including an association of miR-126 with insulin/IGF-1/PI3K signaling. In DA neuronal cell systems, enhanced expression of miR-126 impaired IGF-1 signaling and increased vulnerability to the neurotoxin 6-OHDA by downregulating factors in IGF-1/PI3K signaling, including its targets p85β, IRS-1, and SPRED1. Blocking of miR-126 function increased IGF-1 trophism and neuroprotection to 6-OHDA. Our data imply that elevated levels of miR-126 may play a functional role in DA neurons and in PD pathogenesis by downregulating IGF-1/PI3K/AKT signaling and that its inhibition could be a mechanism of neuroprotection. PMID:24559646

  15. The proximal pathway of metabolism of the chlorinated signal molecule differentiation-inducing factor-1 (DIF-1) in the cellular slime mould Dictyostelium.

    PubMed Central

    Morandini, P; Offer, J; Traynor, D; Nayler, O; Neuhaus, D; Taylor, G W; Kay, R R

    1995-01-01

    Stalk cell differentiation during development of the slime mould Dictyostelium is induced by a chlorinated alkyl phenone called differentiation-inducing factor-1 (DIF-1). Inactivation of DIF-1 is likely to be a key element in the DIF-1 signalling system, and we have shown previously that this is accomplished by a dedicated metabolic pathway involving up to 12 unidentified metabolites. We report here the structure of the first four metabolites produced from DIF-1, as deduced by m.s., n.m.r. and chemical synthesis. The structures of these compounds show that the first step in metabolism is a dechlorination of the phenolic ring, producing DIF metabolite 1 (DM1). DM1 is identical with the previously known minor DIF activity, DIF-3. DIF-3 is then metabolized by three successive oxidations of its aliphatic side chain: a hydroxylation at omega-2 to produce DM2, oxidation of the hydroxy group to a ketone group to produce DM3 and a further hydroxylation at omega-1 to produce DM4, a hydroxyketone of DIF-3. We have investigated the enzymology of DIF-1 metabolism. It is already known that the first step, to produce DIF-3, is catalysed by a novel dechlorinase. The enzyme activity responsible for the first side-chain oxidation (DIF-3 hydroxylase) was detected by incubating [3H]DIF-3 with cell-free extracts and resolving the reaction products by t.l.c. DIF-3 hydroxylase has many of the properties of a cytochrome P-450. It is membrane-bound and uses NADPH as co-substrate. It is also inhibited by CO, the classic cytochrome P-450 inhibitor, and by several other cytochrome P-450 inhibitors, as well as by diphenyliodonium chloride, an inhibitor of cytochrome P-450 reductase. DIF-3 hydroxylase is highly specific for DIF-3: other closely related compounds do not compete for the activity at 100-fold molar excess, with the exception of the DIF-3 analogue lacking the chlorine atom. The Km for DIF-3 of 47 nM is consistent with this enzyme being responsible for DIF-3 metabolism in vivo. The

  16. ADP-Ribosylation Factor 6 and a Functional PIX/p95-APP1 Complex Are Required for Rac1B-mediated Neurite Outgrowth

    PubMed Central

    Albertinazzi, Chiara; Za, Lorena; Paris, Simona; de Curtis, Ivan

    2003-01-01

    The mechanisms coordinating adhesion, actin organization, and membrane traffic during growth cone migration are poorly understood. Neuritogenesis and branching from retinal neurons are regulated by the Rac1B/Rac3 GTPase. We have identified a functional connection between ADP-ribosylation factor (Arf) 6 and p95-APP1 during the regulation of Rac1B-mediated neuritogenesis. P95-APP1 is an ADP-ribosylation factor GTPase-activating protein (ArfGAP) of the GIT family expressed in the developing nervous system. We show that Arf6 has a predominant role in neurite extension compared with Arf1 and Arf5. Cotransfection experiments indicate a specific and cooperative potentiation of neurite extension by Arf6 and the carboxy-terminal portion of p95-APP1. Localization studies in neurons expressing different p95-derived constructs show a codistribution of p95-APP1 with Arf6, but not Arf1. Moreover, p95-APP1–derived proteins with a mutated or deleted ArfGAP domain prevent Rac1B-induced neuritogenesis, leading to PIX-mediated accumulation at large Rab11-positive endocytic vesicles. Our data support a role of p95-APP1 as a specific regulator of Arf6 in the control of membrane trafficking during neuritogenesis. PMID:12686588

  17. Hepatic Deletion of SIRT1 Decreases Hepatocyte Nuclear Factor 1α/Farnesoid X Receptor Signaling and Induces Formation of Cholesterol Gallstones in Mice

    PubMed Central

    Purushotham, Aparna; Xu, Qing; Lu, Jing; Foley, Julie F.; Yan, Xingjian; Kim, Dong-Hyun; Kemper, Jongsook Kim

    2012-01-01

    SIRT1, a highly conserved NAD+-dependent protein deacetylase, is a key metabolic sensor that directly links nutrient signals to animal metabolic homeostasis. Although SIRT1 has been implicated in a number of hepatic metabolic processes, the mechanisms by which hepatic SIRT1 modulates bile acid metabolism are still not well understood. Here we report that deletion of hepatic SIRT1 reduces the expression of farnesoid X receptor (FXR), a nuclear receptor that regulates bile acid homeostasis. We provide evidence that SIRT1 regulates the expression of FXR through hepatocyte nuclear factor 1α (HNF1α). SIRT1 deficiency in hepatocytes leads to decreased binding of HNF1α to the FXR promoter. Furthermore, we show that hepatocyte-specific deletion of SIRT1 leads to derangements in bile acid metabolism, predisposing the mice to development of cholesterol gallstones on a lithogenic diet. Taken together, our findings indicate that SIRT1 plays a vital role in the regulation of hepatic bile acid homeostasis through the HNF1α/FXR signaling pathway. PMID:22290433

  18. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300.

    PubMed

    Mori, N; Morishita, M; Tsukazaki, T; Giam, C Z; Kumatori, A; Tanaka, Y; Yamamoto, N

    2001-04-01

    Human T-cell leukemia virus type I (HTLV-I) Tax is a potent transcriptional regulator that can activate or repress specific cellular genes and that has been proposed to contribute to leukemogenesis in adult T-cell leukemia. Previously, HTLV-I- infected T-cell clones were found to be resistant to growth inhibition by transforming growth factor (TGF)-beta. Here it is shown that Tax can perturb Smad-dependent TGF-beta signaling even though no direct interaction of Tax and Smad proteins could be detected. Importantly, a mutant Tax of CREB-binding protein (CBP)/p300 binding site, could not repress the Smad transactivation function, suggesting that the CBP/p300 binding domain of Tax is essential for the suppression of Smad function. Because both Tax and Smad are known to interact with CBP/p300 for the potentiation of their transcriptional activities, the effect of CBP/p300 on suppression of Smad-mediated transactivation by Tax was examined. Overexpression of CBP/p300 reversed Tax-mediated inhibition of Smad transactivation. Furthermore, Smad could repress Tax transcriptional activation, indicating reciprocal repression between Tax and Smad. These results suggest that Tax interferes with the recruitment of CBP/p300 into transcription initiation complexes on TGF-beta-responsive elements through its binding to CBP/p300. The novel function of Tax as a repressor of TGF-beta signaling may contribute to HTLV-I leukemogenesis. (Blood. 2001;97:2137-2144)

  19. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation.

    PubMed

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L

    2008-06-15

    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.

  20. MD-2 is required for disulfide HMGB1–dependent TLR4 signaling

    PubMed Central

    Wang, Haichao; Ju, Zhongliang; Ragab, Ahmed A.; Lundbäck, Peter; Long, Wei; Valdes-Ferrer, Sergio I.; He, Mingzhu; Pribis, John P.; Li, Jianhua; Lu, Ben; Gero, Domokos; Szabo, Csaba; Antoine, Daniel J.; Harris, Helena E.; Golenbock, Doug T.; Meng, Jianmin; Roth, Jesse; Chavan, Sangeeta S.; Andersson, Ulf; Billiar, Timothy R.; Al-Abed, Yousef

    2015-01-01

    Innate immune receptors for pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) orchestrate inflammatory responses to infection and injury. Secreted by activated immune cells or passively released by damaged cells, HMGB1 is subjected to redox modification that distinctly influences its extracellular functions. Previously, it was unknown how the TLR4 signalosome distinguished between HMGB1 isoforms. Here we demonstrate that the extracellular TLR4 adaptor, myeloid differentiation factor 2 (MD-2), binds specifically to the cytokine-inducing disulfide isoform of HMGB1, to the exclusion of other isoforms. Using MD-2–deficient mice, as well as MD-2 silencing in macrophages, we show a requirement for HMGB1-dependent TLR4 signaling. By screening HMGB1 peptide libraries, we identified a tetramer (FSSE, designated P5779) as a specific MD-2 antagonist preventing MD-2–HMGB1 interaction and TLR4 signaling. P5779 does not interfere with lipopolysaccharide-induced cytokine/chemokine production, thus preserving PAMP-mediated TLR4–MD-2 responses. Furthermore, P5779 can protect mice against hepatic ischemia/reperfusion injury, chemical toxicity, and sepsis. These findings reveal a novel mechanism by which innate systems selectively recognize specific HMGB1 isoforms. The results may direct toward strategies aimed at attenuating DAMP-mediated inflammation while preserving antimicrobial immune responsiveness. PMID:25559892

  1. Histone Deacetylase-1 Is Enriched at the Platelet-derived Growth Factor-D Promoter in Response to Interleukin-1β and Forms a Cytokine-inducible Gene-silencing Complex with NF-κB p65 and Interferon Regulatory Factor-1*

    PubMed Central

    Liu, Mary Y.; Khachigian, Levon M.

    2009-01-01

    Understanding the mechanisms governing cytokine control of growth factor expression in smooth muscle cells would provide invaluable insight into the molecular regulation of vascular phenotypes and create future opportunities for therapeutic intervention. Here, we report that the proinflammatory cytokine interleukin (IL)-1β suppresses platelet-derived growth factor (PDGF)-D promoter activity and mRNA and protein expression in smooth muscle cells. NF-κB p65, induced by IL-1β, interacts with a novel element in the PDGF-D promoter and inhibits PDGF-D transcription. Interferon regulatory factor-1 (IRF-1) is also induced by IL-1β and binds to a different element upstream in the promoter. Immunoprecipitation and chromatin immunoprecipitation experiments showed that IL-1β stimulates p65 interaction with IRF-1 and the accumulation of both factors at the PDGF-D promoter. Mutation of the IRF-1 and p65 DNA-binding elements relieved the promoter from IL-1β-mediated repression. PDGF-D repression by IL-1β involves histone deacetylation and interaction of HDAC-1 with IRF-1 and p65. HDAC-1 small interfering RNA ablates complex formation with IRF-1 and p65 and abrogates IRF-1 and p65 occupancy of the PDGF-D promoter. Thus, HDAC-1 is enriched at the PDGF-D promoter in cells exposed to IL-1β and forms a cytokine-inducible gene-silencing complex with p65 and IRF-1. PMID:19843519

  2. Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis.

    PubMed

    Hayano, Satoru; Komatsu, Yoshihiro; Pan, Haichun; Mishina, Yuji

    2015-04-01

    Bone morphogenetic protein (BMP) signaling plays many roles in skull morphogenesis. We have previously reported that enhanced BMP signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells causes craniosynostosis during postnatal development. Additionally, we observed that 55% of Bmpr1a mutant mice show neonatal lethality characterized by a distended gastrointestinal tract. Here, we show that severely affected mutants exhibit defective nasal cartilage, failure of fusion between the nasal septum and the secondary palate, and higher levels of phosphorylated SMAD1 and SMAD5 in the nasal tissue. TUNEL demonstrated an increase in apoptosis in both condensing mesenchymal tissues and cartilage of the nasal region in mutants. The levels of p53 (TRP53) tumor suppressor protein were also increased in the same tissue. Injection of pifithrin-α, a chemical inhibitor of p53, into pregnant mice prevented neonatal lethality while concomitantly reducing apoptosis in nasal cartilage primordia, suggesting that enhanced BMP signaling induces p53-mediated apoptosis in the nasal cartilage. The expression of Bax and caspase 3, downstream targets of p53, was increased in the mutants; however, the p53 expression level was unchanged. It has been reported that MDM2 interacts with p53 to promote degradation. We found that the amount of MDM2-p53 complex was decreased in all mutants, and the most severely affected mutants had the largest decrease. Our previous finding that the BMP signaling component SMAD1 prevents MDM2-mediated p53 degradation coupled with our new data indicate that augmented BMP signaling induces p53-mediated apoptosis by prevention of p53 degradation in developing nasal cartilage. Thus, an appropriate level of BMP signaling is required for proper craniofacial morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  3. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells.

    PubMed

    van den Akker, Guus G; van Beuningen, Henk M; Vitters, Elly L; Koenders, Marije I; van de Loo, Fons A; van Lent, Peter L; Blaney Davidson, Esmeralda N; van der Kraan, Peter M

    2017-12-01

    Chondrogenic differentiation of mesenchymal stem cells (MSC) requires transforming growth factor beta (TGFβ) signaling. TGFβ binds to the type I receptor activin-like kinase (ALK)5 and results in C-terminal SMAD2/3 phosphorylation (pSMAD2/3C). In turn pSMAD2/3C translocates to the nucleus and regulates target gene expression. Inflammatory mediators are known to exert an inhibitory effect on MSC differentiation. In this study we investigated the effect of interleukin 1 β (IL1β) on SMAD2/3 signaling dynamics and post-translational modifications. Co-stimulation of MSC with TGFβ and IL1β did not affect peak pSMAD2C levels at 1h post-stimulation. Surprisingly, SMAD3 transcriptional activity, as determined by the CAGA 12 -luciferase reporter construct, was enhanced by co-stimulation of TGFβ and IL1β compared to TGFβ alone. Furthermore, IL1β stimulation induced CAGA 12 -luciferase activity in a SMAD dependent way. As SMAD function can be modulated independent of canonical TGFβ signaling through the SMAD linker domain, we studied SMAD2 linker phosphorylation at specific threonine and serine residues. SMAD2 linker threonine and serine modifications were observed within 1h following TGFβ, IL1β or TGFβ and IL1β stimulation. Upon co-stimulation linker modified SMAD2 accumulated in the cytoplasm and SMAD2/3 target gene transcription (ID1, JUNB) at 2-4h was inhibited. A detailed time course analysis of IL1β-induced SMAD2 linker modifications revealed a distinct temperospatial pattern compared to TGFβ. Co-stimulation with both factors resulted in a similar kinetic profile as TGFβ alone. Nevertheless, IL1β did subtly alter TGFβ-induced pSMAD2C levels between 8 and 24h post-stimulation, which was reflected by TGFβ target gene expression (PAI1, JUNB). Direct evidence for the importance of SMAD3 linker modifications for the effect of IL1β on TGFβ signaling was obtained by over-expression of SMAD3 or a SMAD3 linker phospho-mutant. Finally, an inhibitor screening

  4. Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters.

    PubMed

    Breckwoldt, Michael O; Armoundas, Antonis A; Aon, Miguel A; Bendszus, Martin; O'Rourke, Brian; Schwarzländer, Markus; Dick, Tobias P; Kurz, Felix T

    2016-03-22

    Redox switches are important mediators in neoplastic, cardiovascular and neurological disorders. We recently identified spontaneous redox signals in neurons at the single mitochondrion level where transients of glutathione oxidation go along with shortening and re-elongation of the organelle. We now have developed advanced image and signal-processing methods to re-assess and extend previously obtained data. Here we analyze redox and pH signals of entire mitochondrial populations. In total, we quantified the effects of 628 redox and pH events in 1797 mitochondria from intercostal axons and neuromuscular synapses using optical sensors (mito-Grx1-roGFP2; mito-SypHer). We show that neuronal mitochondria can undergo multiple redox cycles exhibiting markedly different signal characteristics compared to single redox events. Redox and pH events occur more often in mitochondrial clusters (medium cluster size: 34.1 ± 4.8 μm(2)). Local clusters possess higher mitochondrial densities than the rest of the axon, suggesting morphological and functional inter-mitochondrial coupling. We find that cluster formation is redox sensitive and can be blocked by the antioxidant MitoQ. In a nerve crush paradigm, mitochondrial clusters form sequentially adjacent to the lesion site and oxidation spreads between mitochondria. Our methodology combines optical bioenergetics and advanced signal processing and allows quantitative assessment of entire mitochondrial populations.

  5. NtWRKY-R1, a Novel Transcription Factor, Integrates IAA and JA Signal Pathway under Topping Damage Stress in Nicotiana tabacum

    PubMed Central

    Jin, Weihuan; Zhou, Qi; Wei, Yuanfang; Yang, Jinmiao; Hao, Fengsheng; Cheng, Zhipeng; Guo, Hongxiang; Liu, Weiqun

    2018-01-01

    Topping damage can induce the nicotine synthesis in tobacco roots, which involves the activation of JA and auxin signal transduction. It remains unclear how these hormone signals are integrated to regulate nicotine synthesis. Here we isolated a transcription factor NtWRKY-R1 from the group IIe of WRKY family and it had strong negative correlation with the expression of putrescine N-methyltransferase, the key enzyme of nicotine synthesis pathway. NtWRKY-R1 was specifically and highly expressed in tobacco roots, and it contains two transcriptional activity domains in the N- and C-terminal. The promoter region of NtWRKY-R1 contains two cis-elements which are responding to JA and auxin signals, respectively. Deletion of NtWRKY-R1 promoter showed that JA and auxin signals were subdued by NtWRKY-R1, and the expression of NtWRKY-R1 was more sensitive to auxin than JA. Furthermore, Yeast two-hybrid experiment demonstrated that NtWRKY-R1 can interact with the actin-binding protein. Our data showed that the intensity of JA and auxin signals can be translated into the expression of NtWRKY-R1, which regulates the balance of actin polymerization and depolymerization through binding actin-binding protein, and then regulates the expression of genes related to nicotine synthesis. The results will help us better understand the function of the WRKY-IIe family in the signaling crosstalk of JA and auxin under damage stress. PMID:29379516

  6. Asymptomatic Carotid T1-High-Intense Plaque as a Risk Factor for a Subsequent Cerebrovascular Ischemic Event.

    PubMed

    Kurosaki, Yoshitaka; Yoshida, Kazumichi; Fukuda, Hitoshi; Handa, Akira; Chin, Masaki; Yamagata, Sen

    2017-01-01

    Intraplaque hemorrhage, detected as a high-signal intensity on carotid MRI, is also strongly associated with ischemic events in symptomatic patients. However, in asymptomatic patients, the relationship of the T1-high intense plaque and the subsequent stroke is not clear. The aim of this study is to test the hypothesis that asymptomatic carotid T1-high intense plaque is a risk factor for a subsequent cerebrovascular ischemic event. Of the 1,353 consecutive patients, who underwent head and carotid MRI as part of their annual medical check-up, the imaging quality of 13 was poor and 150 did not present for follow-up examination, thus leaving 1,190 subjects for evaluation. Of the 1,190 patients, 96 patients had findings of high-signal intensity on carotid MRI and 1,094 patients did not. Cerebrovascular events were retrospectively evaluated. During a mean follow-up period of 53 months, 4 patients with high-signal intensities on carotid MRI (4%) and 3 with no findings (0.3%) had a cerebrovascular ischemic event, with the occurrences significantly higher in the high-signal-intensity group. (p < 0.01) Cox regression analysis indicated that the presence of the high-intense plaque on carotid MRI (hazard ratio [HR] 4.2; 95% CI 1.0-17.1; p = 0.04), age (HR 1.1; 95% CI 1.0-1.2; p = 0.003), and diabetes mellitus (HR 7.2; 95% CI 1.8-27.4; p = 0.004) were associated with the occurrence of subsequent ischemic cerebrovascular events. Asymptomatic carotid T1-high-intense plaque might be a potential high-risk factor for a subsequent cerebrovascular ischemic event. © 2017 S. Karger AG, Basel.

  7. Signal sequence-independent targeting of MID2 mRNA to the endoplasmic reticulum by the yeast RNA-binding protein Khd1p.

    PubMed

    Syed, Muhammad Ibrahim; Moorthy, Balaji T; Jenner, Andreas; Fetka, Ingrid; Jansen, Ralf-Peter

    2018-05-17

    Localization of mRNAs depends on specific RNA-binding proteins (RBPs) and critically contributes not only to cell polarization but also to basal cell function. The yeast RBP Khd1p binds to several hundred mRNAs, the majority of which encodes secreted or membrane proteins. We demonstrate that a subfraction of Khd1p associates with artificial liposomes and endoplasmic reticulum (ER), and that Khd1p endomembrane association is partially dependent on its binding to RNA. ER targeting of at least two mRNAs, MID2 and SLG1/WSC1, requires KHD1 but is independent of their translation. Together, our results suggest interdependence of Khd1p and mRNA for their targeting to the ER and presents additional evidence for signal sequence-independent, RBP-mediated mRNA targeting. © 2018 Federation of European Biochemical Societies.

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: The 2P1/2 → 2P3/2 laser transition in atomic iodine and the problem of search for signals from extraterrestrial intelligence

    NASA Astrophysics Data System (ADS)

    Kutaev, Yu F.; Mankevich, S. K.; Nosach, O. Yu; Orlov, E. P.

    2007-07-01

    It is proposed to search for signals from extraterrestrial intelligence (ETI) at a wavelength of 1.315 μm of the laser 2P1/2 → 2P3/2 transition in the atomic iodine, which can be used for this purpose as the natural frequency reference. The search at this wavelength is promising because active quantum filters (AQFs) with the quantum sensitivity limit have been developed for this wavelength, which are capable of receiving laser signals, consisting of only a few photons, against the background of emission from a star under study. In addition, high-power iodine lasers emitting diffraction-limited radiation at 1.315 μm have been created, which highly developed ETI also can have. If a ETI sends in our direction a diffraction-limited 10-ns, 1-kJ laser pulse with the beam diameter of 10 m, a receiver with an AQF mounted on a ten-meter extra-atmospheric optical telescope can detect this signal at a distance of up to 300 light years, irrespective of the ETI position on the celestial sphere. The realisation of the projects for manufacturing optical telescopes of diameter 30 m will increase the research range up to 2700 light years. A weak absorption of the 1.315-μm radiation in the Earth atmosphere (the signal is attenuated by less than 20%) allows the search for ETI signals by using ground telescopes equipped with adaptive optical systems.

  9. High-frequency electrical stimulation reveals a p38–mTOR signaling module correlated with force–time integral

    PubMed Central

    Rahnert, Jill A.; Burkholder, Thomas J.

    2013-01-01

    SUMMARY High-frequency electrical stimulation (HFES) leads to muscle hypertrophy, and attention has been drawn to the high forces involved. However, both mechanical and metabolic stresses occur simultaneously, and both stimuli influence signaling cascades related to protein synthesis. This study aimed to identify the immediate signaling correlates of contraction-induced force and metabolic stresses under the hypothesis that HFES induces growth-related signaling through mechanical stimulation. Force–time integral (FTI) signaling in mouse tibialis anterior muscle was examined by separately manipulating the time of contraction to emphasize the metabolic aspect or the force of contraction to emphasize the mechanical aspect. When FTI was manipulated by changing the total time of activation, phosphorylation of p54 JNK, ERK and p70S6kT421/S424 was independent of FTI, while phosphorylation of acetyl-CoA carboxylase and p38 correlated with FTI. When FTI was manipulated by changing the force of contraction, p54 JNK, ERK and p70S6kT421/S424 were again independent of FTI, while phosphorylation of p38 and FAK correlated with FTI. Factor analysis identified a p38–mTOR signaling module that correlated with FTI in both experiments. The consistent link among p38, mTOR and FTI suggests that they form a connected signaling module sensitive to the mechanical aspects of FTI, separate from markers of metabolic load. PMID:23531822

  10. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

    PubMed

    Goedhart, Joachim; van Unen, Jakobus; Adjobo-Hermans, Merel J W; Gadella, Theodorus W J

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCβ.

  11. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis.

    PubMed

    Wang, Wanqing; Tang, Weijiang; Ma, Tingting; Niu, De; Jin, Jing Bo; Wang, Haiyang; Lin, Rongcheng

    2016-01-01

    Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. © The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  12. S1P1 inhibits sprouting angiogenesis during vascular development.

    PubMed

    Ben Shoham, Adi; Malkinson, Guy; Krief, Sharon; Shwartz, Yulia; Ely, Yona; Ferrara, Napoleone; Yaniv, Karina; Zelzer, Elazar

    2012-10-01

    Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.

  13. Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor

    PubMed Central

    2014-01-01

    Background Signaling pathways outside dopamine D2 receptor antagonism may govern the variable clinical profile of antipsychotic drugs (APD) in schizophrenia. One postulated mechanism causal to APD action may regulate synaptic plasticity and neuronal connectivity via the extracellular signal-regulated kinase (ERK) cascade that links G-protein coupled receptors (GPCR) and ErbB growth factor signaling, systems disturbed in schizophrenia. This was based upon our finding that the low D2 receptor affinity APD clozapine induced initial down-regulation and delayed epidermal growth factor receptor (EGFR or ErbB1) mediated activation of the cortical and striatal ERK response in vivo distinct from olanzapine or haloperidol. Here we map whether the second generation atypical APDs aripiprazole and quetiapine affect the EGFR-ERK pathway and its substrates p90RSK and c-Fos in mouse brain, given their divergent agonist and antagonist properties on dopaminergic transmission, respectively. Results In prefrontal cortex, aripiprazole triggered triphasic ERK phosphorylation that was EGFR-independent but had no significant effect in striatum. Conversely quetiapine did not alter cortical ERK signaling but elevated striatal ERK levels in an EGFR-dependent manner. Induction of ERK by aripiprazole did not affect p90RSK signaling but quetiapine decreased RSK phosphorylation within 1-hour of administration. The transcription factor c-Fos by comparison was a direct target of ERK phosphorylation induced by aripiprazole in cortex and quetiapine in striatum with protein levels in temporal alignment with that of ERK. Conclusions These data indicate that aripiprazole and quetiapine signal to specific nuclear targets of ERK, which for quetiapine occurs via an EGFR-linked mechanism, possibly indicating involvement of this system in its action. PMID:24552586

  14. GDSL LIPASE1 Modulates Plant Immunity through Feedback Regulation of Ethylene Signaling1[W

    PubMed Central

    Kim, Hye Gi; Kwon, Sun Jae; Jang, Young Jin; Nam, Myung Hee; Chung, Joo Hee; Na, Yun-Cheol; Guo, Hongwei; Park, Ohkmae K.

    2013-01-01

    Ethylene is a key signal in the regulation of plant defense responses. It is required for the expression and function of GDSL LIPASE1 (GLIP1) in Arabidopsis (Arabidopsis thaliana), which plays an important role in plant immunity. Here, we explore molecular mechanisms underlying the relationship between GLIP1 and ethylene signaling by an epistatic analysis of ethylene response mutants and GLIP1-overexpressing (35S:GLIP1) plants. We show that GLIP1 expression is regulated by ethylene signaling components and, further, that GLIP1 expression or application of petiole exudates from 35S:GLIP1 plants affects ethylene signaling both positively and negatively, leading to ETHYLENE RESPONSE FACTOR1 activation and ETHYLENE INSENSITIVE3 (EIN3) down-regulation, respectively. Additionally, 35S:GLIP1 plants or their exudates increase the expression of the salicylic acid biosynthesis gene SALICYLIC ACID INDUCTION-DEFICIENT2, known to be inhibited by EIN3 and EIN3-LIKE1. These results suggest that GLIP1 regulates plant immunity through positive and negative feedback regulation of ethylene signaling, and this is mediated by its activity to accumulate a systemic signal(s) in the phloem. We propose a model explaining how GLIP1 regulates the fine-tuning of ethylene signaling and ethylene-salicylic acid cross talk. PMID:24170202

  15. Inhibition of Gluconeogenesis in Primary Hepatocytes by Stromal Cell-derived Factor-1 (SDF-1) through a c-Src/Akt-dependent Signaling Pathway*

    PubMed Central

    Liu, Hui-Yu; Wen, Ge-Bo; Han, Jianmin; Hong, Tao; Zhuo, Degen; Liu, Zhenqi; Cao, Wenhong

    2008-01-01

    Hepatic gluconeogenesis is elevated in diabetes and a major contributor to hyperglycemia. Stromal cell-derived factor-1 (SDF-1) is a chemokine and an activator of Akt. In this study, we tested the hypothesis that SDF-1 suppresses hepatic gluconeogenesis through Akt. Our results from isolated primary hepatocytes show that SDF-1α and SDF-1β inhibited glucose production via gluconeogenesis and reduced transcript levels of key gluconeogenic genes glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Additionally, SDF-1α and SDF-1β both inhibited activation of the PEPCK promoter. In examining the mechanism by which SDF-1 inhibits gluconeogenesis, we found that SDF-1 promoted phosphorylation of Akt, FoxO1, and c-Src, but did not activate insulin receptor substrate-1-like insulin. Blockade of Akt activation by LY294002, FoxO1 translocation by constitutively nuclear FoxO1 mutant, or c-Src activation by the chemical inhibitor PP2, respectively, blunted SDF-1 suppression of gluconeogenesis. Finally, our results show that knocking down the level of SDF-1 receptor CXCR4 mRNA blocked SDF-1 suppression of gluconeogenesis. Together, our results demonstrate that SDF-1 is capable of inhibiting gluconeogenesis in primary hepatocytes through a signaling pathway distinct from the insulin signaling. PMID:18786922

  16. Homeostatic Regulation of the PI(4,5)P2-Ca2+ Signaling System at ER-PM Junctions

    PubMed Central

    Chang, Chi-Lun; Liou, Jen

    2016-01-01

    The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-Ca2+ signaling system is important for cell activation in response to various extracellular stimuli. This signaling system is initiated by receptor-induced hydrolysis of PI(4,5)P2 in the plasma membrane (PM) to generate the soluble second messenger inositol 1,4,5-trisphosphate (IP3). IP3 subsequently triggers the release of Ca2+ from the endoplasmic reticulum (ER) store to the cytosol to activate Ca2+-mediated responses, such as secretion and proliferation. The consumed PM PI(4,5)P2 and ER Ca2+ must be quickly restored to sustain signaling responses, and to maintain the homeostasis of PI(4,5)P2 and Ca2+. Since phosphatidylinositol (PI), the precursor lipid for PM PI(4,5)P2, is synthesized in the ER membrane, and a Ca2+ influx across the PM is required to refill the ER Ca2+ store, efficient communications between the ER and the PM are critical for the homeostatic regulation of the PI(4,5)P2-Ca2+ signaling system. This review describes the major findings that established the framework of the PI(4,5)P2-Ca2+ signaling system, and recent discoveries on feedback control mechanisms at ER-PM junctions that sustain the PI(4,5)P2-Ca2+ signaling system. Particular emphasis is placed on the characterization of ER-PM junctions where efficient communications between the ER and the PM occurs, and the activation mechanisms of proteins that dynamically localize to ER-PM junctions to provide the feedback control during PI(4,5)P2-Ca2+ signaling, including the ER Ca2+ sensor STIM1, the extended synaptotagmin E-Syt1, and the PI transfer protein Nir2. This review is part of a Special Issue entitled The Cellular Lipid Landscape. PMID:26924250

  17. Cyclin A recruits p33cdk2 to the cellular transcription factor DRTF1.

    PubMed

    Bandara, L R; Adamczewski, J P; Zamanian, M; Poon, R Y; Hunt, T; Thangue, N B

    1992-01-01

    Cyclins are regulatory molecules that undergo periodic accumulation and destruction during each cell cycle. By activating p34cdc2 and related kinase subunits they control important events required for normal cell cycle progression. Cyclin A, for example, regulates at least two distinct kinase subunits, the mitotic kinase subunit p34cdc2 and related subunit p33cdk2, and is widely believed to be necessary for progression through S phase. However, cyclin A also forms a stable complex with the cellular transcription factor DRTF1 and thus may perform other functions during S phase. DRTF1, in addition, associates with the tumour suppressor retinoblastoma (Rb) gene product and the Rb-related protein p107. We now show, using biologically active fusion proteins, that cyclin A can direct the binding of the cdc2-like kinase subunit, p33cdk2, to complexed DRTF1, containing either Rb or p107, as well as activate its histone H1 kinase activity. Cyclin A cannot, however, direct p34cdc2 to the DRTF1 complex and we present evidence suggesting that the stability of the cyclin A-p33cdk2 complex is influenced by DRTF1 or an associated protein. Cyclin A, therefore, serves as an activating and targeting subunit of p33cdk2. The ability of cyclin A to activate and recruit p33cdk2 to DRTF1 may play an important role in regulating cell cycle progression and moreover defines a mechanism for coupling cell-cycle events to transcriptional initiation.

  18. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1.

    PubMed

    Heeren, Gino; Rinnerthaler, Mark; Laun, Peter; von Seyerl, Phyllis; Kössler, Sonja; Klinger, Harald; Hager, Matthias; Bogengruber, Edith; Jarolim, Stefanie; Simon-Nobbe, Birgit; Schüller, Christoph; Carmona-Gutierrez, Didac; Breitenbach-Koller, Lore; Mück, Christoph; Jansen-Dürr, Pidder; Criollo, Alfredo; Kroemer, Guido; Madeo, Frank; Breitenbach, Michael

    2009-07-13

    Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.

  19. Yeast Los1p Has Properties of an Exportin-Like Nucleocytoplasmic Transport Factor for tRNA

    PubMed Central

    Hellmuth, Klaus; Lau, Denise M.; Bischoff, F. Ralf; Künzler, Markus; Hurt, Ed; Simos, George

    1998-01-01

    Saccharomyces cerevisiae Los1p, which is genetically linked to the nuclear pore protein Nsp1p and several tRNA biogenesis factors, was recently grouped into the family of importin/karyopherin-β-like proteins on the basis of its sequence similarity. In a two-hybrid screen, we identified Nup2p as a nucleoporin interacting with Los1p. Subsequent purification of Los1p from yeast demonstrates its physical association not only with Nup2p but also with Nsp1p. By the use of the Gsp1p-G21V mutant, Los1p was shown to preferentially bind to the GTP-bound form of yeast Ran. Furthermore, overexpression of full-length or N-terminally truncated Los1p was shown to have dominant-negative effects on cell growth and different nuclear export pathways. Finally, Los1p could interact with Gsp1p-GTP, but only in the presence of tRNA, as revealed in an indirect in vitro binding assay. These data confirm the homology between Los1p and the recently identified human exportin for tRNA and reinforce the possibility of a role for Los1p in nuclear export of tRNA in yeast. PMID:9774653

  20. P2X1 Receptor-Mediated Ca2+ Influx Triggered by DA-9801 Potentiates Nerve Growth Factor-Induced Neurite Outgrowth.

    PubMed

    Back, Moon Jung; Lee, Hae Kyung; Lee, Joo Hyun; Fu, Zhicheng; Son, Mi Won; Choi, Sang Zin; Go, Hyo Sang; Yoo, Sungjae; Hwang, Sun Wook; Kim, Dae Kyong

    2016-11-16

    Nerve growth factor (NGF)-induced neuronal regeneration has emerged as a strategy to treat neuronal degeneration-associated disorders. However, direct NGF administration is limited by the occurrence of adverse effects at high doses of NGF. Therefore, development of a therapeutic strategy to promote the NGF trophic effect is required. In view of the lack of understanding of the mechanism for potentiating the NGF effect, this study investigated molecular targets of DA-9801, a well-standardized Dioscorea rhizome extract, which has a promoting effect on NGF. An increase in intracellular calcium ion level was induced by DA-9801, and chelation of extracellular calcium ions with ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA) suppressed the potentiating effect of DA-9801 on NGF-induced neurite outgrowth. In addition, EGTA treatment reduced the DA-9801-induced phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), the major mediators of neurite outgrowth. To find which calcium ion-permeable channel contributes to the calcium ion influx induced by DA-9801, we treated PC12 cells with various inhibitors of calcium ion-permeable channels. NF449, a P2X1 receptor selective antagonist, significantly abolished the potentiating effect of DA-9801 on NGF-induced neurite outgrowth and abrogated the DA-9801-induced ERK1/2 phosphorylation. In addition, transfection with siRNA of P2X1 receptor significantly reduced the DA-9801-enhanced neurite outgrowth. In conclusion, calcium ion influx through P2X1 receptor mediated the promoting effect of DA-9801 on NGF-induced neurite outgrowth via ERK1/2 phosphorylation.

  1. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin?

    PubMed

    Singh, Paramjeet; Dar, Mohd Saleem; Dar, Mohd Jamal

    2016-09-01

    Class-1 phosphatidylinositol-3-kinases (PI3Ks) are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes. p110α and p110β are the two most studied isoforms of the class-1A PI3K signaling pathway. Although these two isoforms are ubiquitously expressed and play multiple redundant roles, they also have distinct functions within the cell. More recently, p110α and p110β isoforms have been shown to translocate into the nucleus and play a role in DNA replication and repair, and in cell cycle progression. In the following Review article, we discuss the overlapping and unique roles of p110α and p110β isoforms with a particular focus on their structure, expression analysis, subcellular localization, and signaling contributions in various cell types and model organisms. © 2016 Federation of European Biochemical Societies.

  2. MiR-344b-1-3p targets TLR2 and negatively regulates TLR2 signaling pathway

    PubMed Central

    Xu, Hong; Wu, Yuting; Li, Li; Yuan, Weifeng; Zhang, Deming; Yan, Qitao; Guo, Zhenhui; Huang, Wenjie

    2017-01-01

    Objectives COPD is an abnormal inflammatory response characterized by decreased expression of TLR2 in patients, which is suggested to induce invasive pulmonary aspergillosis (IPA). MicroRNAs (miRNAs) have been shown to play important roles in the pathogenesis of human respiratory system disorders. Therefore, the aim of this study was to identify the miRNAs involved in the regulation of TLR2 signaling in COPD. Materials and methods miRNA microarray analysis was performed to screen for the dysregulated miRNAs in alveolar macrophages (AMs) isolated from COPD rats. The interaction between these miRNAs and TLR2 gene was predicted using miRBase and validated using dual luciferase assay. Based on the analysis, a novel miR-344b-1-3p was identified as a novel modulator of TLR2 gene. Then, the mechanism through which miR-344b-1-3p regulated TLR2 expression was explored using cigarette smoke extract (CSE)-pretreated NR8383 cells. Moreover, by subjecting CSE-pretreated NR8383 cells to Pam3CSK4, the effect of miR-344b-1-3p on NF-κB activity and other important mediators of COPD, including IRAK-1, ERK, TNF-α, IL-1β, and MIP-2, was also assessed. Results COPD rat model was successfully induced by smoke inhalation. Among the 11 upregulated miRNAs in AMs from COPD rats, miR-344b-1-3p was predicted to be a novel miRNA targeting TLR2 gene. In the CSE pretreated NR8383 cells exposed to Pam3CSK4, miR-344b-1-3p inhibition increased the expression levels of TLR2, TNF-α, and IL-1β and decreased the expression levels of MIP-2. In addition, the phosphorylation of IRAK-1, IκBα, and IRK was augmented by miR-344b-1-3p inhibition. Conclusion Findings outlined in this study suggest that miR-344b-1-3p was an effective modulator of TLR2 gene, which can be employed as a promising therapeutic and preventive target of IPA in COPD patients. PMID:28243080

  3. Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression.

    PubMed

    Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng

    2017-03-01

    Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo , further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

  4. SOX14 activates the p53 signaling pathway and induces apoptosis in a cervical carcinoma cell line

    PubMed Central

    Stanisavljevic, Danijela; Petrovic, Isidora; Vukovic, Vladanka; Schwirtlich, Marija; Gredic, Marija; Stevanovic, Milena

    2017-01-01

    SOX14 is a member of the SOX family of transcription factors mainly involved in the regulation of neural development. Recently, it became evident that SOX14 is one of four hypermethylated genes in cervical carcinoma, considered as a tumor suppressor candidate in this type of malignancy. In this paper we elucidated the role of SOX14 in the regulation of malignant properties of cervical carcinoma cells in vitro. Functional analysis performed in HeLa cells revealed that SOX14 overexpression decreased viability and promoted apoptosis through altering the expression of apoptosis related genes. Our results demonstrated that overexpression of SOX14 initiated accumulation of p53, demonstrating potential cross-talk between SOX14 and the p53 signaling pathway. Further analysis unambiguously showed that SOX14 triggered posttranslational modification of p53 protein, as detected by the significantly increased level of phospho-p53 (Ser-15) in SOX14-overexpressing HeLa cells. Moreover, the obtained results revealed that SOX14 activated p53 protein, which was confirmed by elevated p21Waf1/Cip1, a well known target gene of p53. This study advances our understanding about the role of SOX14 and might explain the molecular mechanism by which this transcription factor could exert tumor suppressor properties in cervical carcinoma. PMID:28926586

  5. Effects of aspirin on intra-platelet vascular endothelial growth factor, angiopoietin-1, and p-selectin levels in hypertensive patients.

    PubMed

    Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H

    2006-09-01

    Although aspirin is useful in reducing platelet activation and cardiovascular events, its effects on platelet levels of angiogenic factors, such as vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1), and markers of platelet activation in hypertension are unknown. The aim of this study was to study the effects of aspirin on the platelet morphology, plasma and platelet levels of VEGF (sVEGF and pVEGF respectively), Ang-1 (sAng-1 and pAng-1 respectively), and P-selectin (sPsel and pPsel respectively) in patients with well controlled hypertension. A total of 35 aspirin-naive, hypertensive patients (29 male and six female; mean age 64 years) were compared with 30 (23 male, seven female, mean age 59 years) normotensive control subjects. Blood was collected for plasma VEGF, P-selectin, and Ang-1 (enzyme-linked immunoassay), intra-platelet levels of VEGF, Ang-1, and P-selectin, and platelet volume and mass. Research indices in hypertensive patients were studied before and after 3 months treatment with aspirin 75 mg daily. Hypertensive patients had significantly higher plasma levels of VEGF (P=.04), Ang-1 (P<.001), as well as pVEGF (P=.008), pAng-1(P=.001), sPsel (P=.02), pPsel (P<.001), and mean platelet mass (P=.01) when compared with control subjects. After treatment with aspirin for 3 months, there were significant reductions in plasma VEGF (P=.01), pAng-1 (P=.04), sPsel (P=.001), and pPsel (P<.001) levels, but not levels of platelet VEGF and plasma Ang-1. Neither pVEGF nor pAng-1 correlated with blood pressure or with their respective plasma levels. The use of aspirin in high-risk hypertensive patients leads to a reduction in intra-platelet angiogenic growth factors and platelet activation. This may have implications for the use of aspirin in conditions (such as vascular disease) that have been associated with an increase in angiogenesis and platelet activation.

  6. TGF-β1/Smad3 Signaling Pathway Suppresses Cell Apoptosis in Cerebral Ischemic Stroke Rats

    PubMed Central

    Zhu, Haiping; Gui, Qunfeng; Hui, Xiaobo; Wang, Xiaodong; Jiang, Jian; Ding, Lianshu; Sun, Xiaoyang; Wang, Yanping; Chen, Huaqun

    2017-01-01

    Background We desired to observe the changes of transforming growth factor1/drosophila mothers against decapentaplegic protein (TGF-β1/Smad3) signaling pathway in the hippocampus region of cerebral ischemic stroke rats so that the effects of this pathway on nerve cells can be investigated. Material/Methods The ischemic stroke models were built by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. TGF-β1 and TGF-β1 inhibitors were injected into rat models while TGF-β1, TGF-β1 siRNA, Smad3, and Smad3 siRNA were transfected into cells. Infarct sizes were measured using triphenyltetrazolium chloride (TTC) staining, while the apoptosis rate of cells were calculated by Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining. Levels of TGF-β1, Smad3, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR), immunohistochemical, and Western blot analysis. Results The expressions of TGF-β1/Smad3 signal pathway were significantly increased in both model rats and BV2 cells, whereas the expression of Bcl-2 was down-regulated (P<0.05). The TGF-β1/Smad3 signal pathway exhibited protective effects, including the down-regulation of infarction size in cerebral tissues and the down-regulation of apoptosis rate of BV2 cells by increasing the expression of Bcl-2 (P<0.05). In addition, these effects could be antagonized by the corresponding inhibitors and siRNA (P<0.05). Conclusions The TGF-β1/Smad3 signaling pathway was up-regulated once cerebral ischemic stroke was simulated. TGF-β1 may activate the expression of Bcl-2 via Smad3 to suppress the apoptosis of neurons. PMID:28110342

  7. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    PubMed

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  8. Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/β-catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression

    PubMed Central

    Cui, Nan; Yang, Wen-Ting; Zheng, Peng-Sheng

    2016-01-01

    Slug (Snai2) has been demonstrated to act as an oncogene or tumor suppressor in different human cancers, but the function of Slug in cervical cancer remains poorly understood. In this study, we demonstrated that Slug could suppress the proliferation of cervical cancer cells in vitro and tumor formation in vivo. Further experiments found that Slug could trans-suppress the expression of Akt1/p-Akt1 by binding to E-box motifs in the promoter of the Akt1 gene and then inhibit the cell proliferation and tumor formation of cervical cancer cells by up-regulating p21/p27 and/or down-regulating the activity of the Wnt/β-catenin signaling pathway. Therefore, Slug acts as a tumor suppressor during cervical carcinogenesis. PMID:27036045

  9. Norrin mediates angiogenic properties via the induction of insulin-like growth factor-1.

    PubMed

    Zeilbeck, Ludwig F; Müller, Birgit B; Leopold, Stephanie A; Senturk, Berna; Langmann, Thomas; Tamm, Ernst R; Ohlmann, Andreas

    2016-04-01

    Norrin is an angiogenic signaling molecule that activates canonical Wnt/β-catenin signaling, and is involved in capillary formation in retina and brain. Moreover, Norrin induces vascular repair following an oxygen-induced retinopathy (OIR), the model of retinopathy of prematurity in mice. Since insulin-like growth factor (IGF)-1 is a very potent angiogenic molecule, we investigated if IGF-1 is a downstream mediator of Norrin's angiogenic properties. In retinae of transgenic mice with an ocular overexpression of Norrin (βB1-Norrin), we found at postnatal day (P)11 a significant increase of IGF-1 mRNA compared to wild-type littermates. In addition, after treatment of cultured Müller cells or dermal microvascular endothelial cells with Norrin we observed an increase of IGF-1 and its mRNA, an effect that could be blocked with DKK-1, an inhibitor of Wnt/β-catenin signaling. When OIR was induced, the expression of IGF-1 was significantly suppressed in both transgenic βB1-Norrin mice and wild-type littermates when compared to wild-type animals that were housed in room air. Furthermore, at P13, one day after the mice had returned to normoxic conditions, IGF-1 levels were significantly higher in transgenic mice compared to wild-type littermates. Finally, after intravitreal injections of inhibitory α-IGF-1 antibodies at P12 or at P12 and P14, the Norrin-mediated vascular repair was significantly attenuated. We conclude that Norrin induces the expression of IGF-1 via an activation of the Wnt/β-catenin signaling pathway, an effect that significantly contributes to the protective effects of Norrin against an OIR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability.

    PubMed

    Carvalho, Raquel F; Szakonyi, Dóra; Simpson, Craig G; Barbosa, Inês C R; Brown, John W S; Baena-González, Elena; Duque, Paula

    2016-08-01

    The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. © 2016 American Society of Plant Biologists. All rights reserved.

  11. Receptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible Elements.

    PubMed

    Cockerill, Peter N

    2016-12-01

    Gene expression programs are largely regulated by the tissue-specific expression of lineage-defining transcription factors or by the inducible expression of transcription factors in response to specific stimuli. Here I will review our own work over the last 20 years to show how specific activation signals also lead to the wide-spread re-distribution of pre-existing constitutive transcription factors to sites undergoing chromatin reorganization. I will summarize studies showing that activation of kinase signaling pathways creates open chromatin regions that recruit pre-existing factors which were previously unable to bind to closed chromatin. As models I will draw upon genes activated or primed by receptor signaling in memory T cells, and genes activated by cytokine receptor mutations in acute myeloid leukemia. I also summarize a hit-and-run model of stable epigenetic reprograming in memory T cells, mediated by transient Activator Protein 1 (AP-1) binding, which enables the accelerated activation of inducible enhancers.

  12. Multi-year MAX-DOAS observations of formaldehyde and glyoxal in Phimai, Thailand

    NASA Astrophysics Data System (ADS)

    Hoque, H. M. S.; Irie, H.; Shimizu, A.; Damiani, A.

    2017-12-01

    The first long-term Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations were performed in Phimai, Thailand (15.18 °N, 102.56 °E), a site in Southeast Asia, where ground-based remote sensing observations of trace gases and aerosols are very limited. Vertical profile information of eight components was retrieved independently using the Japanese MAX-DOAS profile retrieval algorithm, version 2 (JM2). Here we focus on the two organic compounds, formaldehyde (HCHO) and glyoxal (CHOCHO), and study their volume mixing ratio data in the lowest layer (0-1 km) of our retrieved vertical profiles. In addition to the systematic climatological analysis of HCHO and CHOCHO, we also report the ratio of CHOCHO to HCHO, RGF, which is suggested to be an important tracer of changes of the volatile organic compound (VOC) emission sources. Higher concentration of HCHO and CHOCHO was observed during the dry season (January-April), whereas the concentration level was close to the background level during the wet season (June-September). Such enhancements correspond well the influence of the pronounced seasonal variation of biomass burning activity. The RGF for the Phimai site was estimated to be 0.030±0.010. Our estimated RGF during the dry season ( 0.025±0.008) was lower than that in the wet season ( 0.033±0.012). This change in the RGF is consistent with the satellite retrievals, suggesting a higher RGF for strong biogenic emission sources. While the site can be characterized as environment with a low nitrogen dioxide (NO2) concentration level ( 1 ppbv), the impact of biomass burning on the lower RGF during the dry season was confirmed by occasional enhancement of the NO2 level as an anthropogenic tracer. The results are further supported by additional error analyses for the cloud influence. Our findings are expected to be used to reduce model uncertainties related to VOC chemistry and secondary organic aerosol (SOA) formation

  13. A signal-arrest-release sequence mediates export and control of the phage P1 endolysin

    PubMed Central

    Xu, Min; Struck, Douglas K.; Deaton, John; Wang, Ing-Nang; Young, Ry

    2004-01-01

    The Lyz endolysin of bacteriophage P1 was found to cause lysis of the host without a holin. Induction of a plasmid-cloned lyz resulted in lysis, and the lytic event could be triggered prematurely by treatments that dissipate the proton-motive force. Instead of requiring a holin, export was mediated by an N-terminal transmembrane domain (TMD) and required host sec function. Exported Lyz of identical SDS/PAGE mobility was found in both the membrane and periplasmic compartments, indicating that periplasmic Lyz was not generated by the proteolytic cleavage of the membrane-associated form. In gene fusion experiments, the Lyz TMD directed PhoA to both the membrane and periplasmic compartments, whereas the TMD of the integral membrane protein FtsI restricts Lyz to the membrane. Thus, the N-terminal domain of Lyz is both necessary and sufficient not only for export of this endolysin to the membrane but also for its release into the periplasm. The unusual N-terminal domain, rich in residues that are weakly hydrophobic, thus functions as a signal-arrest-release sequence, which first acts as a normal signal-arrest domain to direct the endolysin to the periplasm in membrane-tethered form and then allows it to be released as a soluble active enzyme in the periplasm. Examination of the protein sequences of related bacteriophage endolysins suggests that the presence of an N-terminal signal-arrest-release sequence is not unique to Lyz. These observations are discussed in relation to the role of holins in the control of host lysis by bacteriophage encoding a secretory endolysin. PMID:15090650

  14. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors.

    PubMed

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-03-15

    Transcription factors (TFs) bind to specific double-stranded DNA (dsDNA) sequences in the regulatory regions of genes to regulate the process of gene transcription. Their expression levels sensitively reflect cell developmental situation and disease state. TFs have become potential diagnostic markers and therapeutic targets of cancers and some other diseases. Hence, high sensitive detection of TFs is of vital importance for early diagnosis of diseases and drugs development. The traditional exonucleases-assisted signal amplification methods suffered from the false positives caused by incomplete digestion of excess recognition probes. Herein, based on a new recognition way-colocalization recognition (CR)-activated dual signal amplification, an ultrasensitive fluorescent detection strategy for TFs was developed. TFs-induced the colocalization of three split recognition components resulted in noticeable increases of local effective concentrations and hybridization of three split components, which activated the subsequent cascade signal amplification including strand displacement amplification (SDA) and exponential rolling circle amplification (ERCA). This strategy eliminated the false positive influence and achieved ultra-high sensitivity towards the purified NF-κB p50 with detection limit of 2.0×10 -13 M. Moreover, NF-κB p50 can be detected in as low as 0.21ngμL -1 HeLa cell nuclear extracts. In addition, this proposed strategy could be used for the screening of NF-κB p50 activity inhibitors and potential anti-NF-κB p50 drugs. Finally, our proposed strategy offered a potential method for reliable detection of TFs in medical diagnosis and treatment research of cancers and other related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Hormone treatment enhances WT1 activation of Renilla luciferase constructs in LNCaP cells.

    PubMed

    Hanson, Julie; Reese, Jennifer; Gorman, Jacquelyn; Cash, Jennifer; Fraizer, Gail

    2007-01-01

    The zinc finger transcription factor, WT1, regulates many growth control genes, repressing or activating transcription depending on the gene and cell type. Based on earlier analyses of the effect of WT1 on androgen responsive genes, we hypothesized that there may be an interaction between the androgen signaling pathway and WT1, such that the commonly used Renilla luciferase control vectors were activated in LNCaP prostate cancer cells. Using cotransfection assays we tested the effects of WT1 and/or the androgen analog, R1881, on two Renilla luciferase vectors, pRL-SV40 and the promoter-less pRL-null. To determine whether the zinc finger DNA binding domain was required, the zinc finger mutant DDS-WT1 (R394W) was tested; but it had no significant effect on the Renilla luciferase vectors. To determine whether the androgen signaling pathway was required, WT1 was co-transfected with Renilla vectors in cells with varied hormone responsiveness. The WT1 effect on pRL-null varied from no significant effect in 293 and PC3 cells to very strong enhancement in LNCaP cells treated with 5 nM R1881. Overall, these results suggest that hormone enhanced WT1 mediated activation of Renilla luciferase and that these interactions require an intact WT1 zinc finger DNA binding domain.

  16. Role of MAPK/MNK1 signaling in virus replication.

    PubMed

    Kumar, Ram; Khandelwal, Nitin; Thachamvally, Riyesh; Tripathi, Bhupendra Nath; Barua, Sanjay; Kashyap, Sudhir Kumar; Maherchandani, Sunil; Kumar, Naveen

    2018-06-01

    Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Growth factors, nutrient signaling, and cardiovascular aging

    PubMed Central

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D.

    2012-01-01

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the great majority of the organisms studied. In particular, the enzymes activated by growth hormone (GH), insulin and insulin-like growth factor 1 (IGF-I) in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction (DR), which reduces the level of IGF-I and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases and deficiencies in GH signaling and IGF-I are strongly associated with protection from cancer and diabetes in both mice and humans, but their role in cardiac function and cardiovascular diseases is controversial. Here we review the link between growth factors, cardiac function and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans. PMID:22499903

  18. Loss of P53 regresses cardiac remodeling induced by pressure overload partially through inhibiting HIF1α signaling in mice.

    PubMed

    Li, Jiming; Zeng, Jingjing; Wu, Lianpin; Tao, Luyuan; Liao, Zhiyong; Chu, Maoping; Li, Lei

    2018-06-22

    The tumor suppressor p53 is recognized as the guardian of the genome in cell cycle and cell death. P53 expression increases as cardiac hypertrophy worsens to heart failure, suggesting that p53 may play important role in cardiac remodeling. In the present study, deletion of p53 in the mice heart would ameliorate cardiac hypertrophy induced by pressure overload. The role of p53 on heart was investigated using in vivo models. Cardiac hypertrophy in mice was induced by transverse aortic banding surgery. The extent of cardiac hypertrophy was examined by echocardiography, as well as pathological and molecular analyses of heart tissue. Global knockout of p53 in the mice reduced the hypertrophic response and markedly reduced cardiac apoptosis, and fibrosis. Ejection fraction of heart was also improved in hearts without p53 in response to pressure overload. Protein determination further suggested loss of p53 expression markedly increased Hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) expression. The study indicated p53 deteriorated cardiac functions and cardiac hypertrophy, apoptosis, and fibrosis by partially inhibition of HIF1α and VEGF. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  20. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    PubMed

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  1. Modulation of substance P signaling by dipeptidyl peptidase-IV enzymatic activity in human glioma cell lines.

    PubMed

    Busek, P; Stremenová, J; Krepela, E; Sedo, A

    2008-01-01

    Dipeptidyl peptidase-IV (DPP-IV, CD26) is a serine protease almost ubiquitously expressed on cell surface and present in body fluids. DPP-IV has been suggested to proteolytically modify a number of biologically active peptides including substance P (SP) and the chemokine stromal cell derived factor-1alpha (SDF-1alpha, CXCL12). SP and SDF-1alpha have been implicated in the regulation of multiple biological processes and also induce responses that may be relevant for glioma progression. Both SP and SDF-1alpha are signaling through cell surface receptors and use intracellular calcium as a second messenger. The effect of DPP-IV on intracellular calcium mobilization mediated by SP and SDF-1alpha was monitored in suspension of wild type U373 and DPP-IV transfected U373DPPIV glioma cells using indicator FURA-2. Nanomolar concentrations of SP triggered a transient dose dependent increase in intracellular calcium rendering the cells refractory to repeated stimulation, while SDF-1 had no measurable effect. SP signaling in DPP-IV overexpressing U373DPPIV cells was not substantially different from that in wild type cells. However, preincubation of SP with the DPP-IV overexpressing cells lead to the loss of its signaling potential, which could be prevented with DPP-IV inhibitors. Taken together, DPP-IV may proteolytically inactivate local mediators involved in gliomagenesis.

  2. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    PubMed

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  3. Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.

    PubMed

    Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi

    2016-03-01

    Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.

  4. PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling

    PubMed Central

    Xu, Suowen; Ha, Chang Hoon; Wang, Weiye; Xu, Xiangbin; Yin, Meimei; Jin, Felix Q.; Mastrangelo, Michael; Koroleva, Marina; Fujiwara, Keigi; Jin, Zheng Gen

    2016-01-01

    Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs. PMID:26706435

  5. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways.

    PubMed

    Farnie, Gillian; Clarke, Robert B; Spence, Katherine; Pinnock, Natasha; Brennan, Keith; Anderson, Neil G; Bundred, Nigel J

    2007-04-18

    The epidermal growth factor receptor (EGFR) and Notch signaling pathways have been implicated in self-renewal of normal breast stem cells. We investigated the involvement of these signaling pathways in ductal carcinoma in situ (DCIS) of the breast. Samples of normal breast tissue (n = 15), pure DCIS tissue of varying grades (n = 35), and DCIS tissue surrounding an invasive cancer (n = 7) were used for nonadherent (i.e., mammosphere) culture. Mammosphere cultures were treated at day 0 with gefitinib (an EGFR inhibitor), DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester) (a gamma-secretase inhibitor), or Notch 4-neutralizing antibody. Mammosphere-forming efficiency (MFE) was calculated by dividing the number of mammospheres of 60 microm or more formed by the number of single cells seeded and is expressed as a percentage. The Notch 1 intracellular domain (NICD) was detected immunohistochemically in paraffin-embedded DCIS tissue from 50 patients with at least 60 months of follow-up. All statistical tests were two-sided. DCIS had a greater MFE than normal breast tissue (1.5% versus 0.5%, difference = 1%, 95% confidence interval [CI] = 0.62% to 1.25%, P<.001). High-grade DCIS had a greater MFE than low-grade DCIS (1.6% versus 1.09%, difference = 0.51%, 95% CI = 0.07% to 0.94%, P = .01). The MFE of high-grade DCIS treated with gefitinib in the absence of exogenous EGF was lower than that of high-grade DCIS treated with mammosphere medium lacking gefitinib and exogenous EGF (0.56% versus 1.36%, difference 0.8%, 95% CI = 0.33% to 1.4%, P = .004). Increased Notch signaling as detected by NICD staining was associated with recurrence at 5 years (P = .012). DCIS MFE was reduced when Notch signaling was inhibited using either DAPT (0.89% versus 0.51%, difference = 0.38%, 95% CI = 0.2% to 0.6%, P<.001) or a Notch 4-neutralizing antibody (0.97% versus 0.2%, difference = 0.77%, 95% CI = 0.52% to 1.0%, P<.001). We describe a novel primary culture technique

  6. The Effects of Aronia melanocarpa 'Viking' Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling.

    PubMed

    Ghosh, Mithun; Kim, In Sook; Lee, Young Min; Hong, Seong Min; Lee, Taek Hwan; Lim, Ji Hong; Debnath, Trishna; Lim, Beong Ou

    2018-03-08

    This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun- N -terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β₃. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.

  7. Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis.

    PubMed

    Evans, Ian M; Kennedy, Susan A; Paliashvili, Ketevan; Santra, Tapesh; Yamaji, Maiko; Lovering, Ruth C; Britton, Gary; Frankel, Paul; Kolch, Walter; Zachary, Ian C

    2017-02-01

    p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. SDN-1/syndecan regulates growth factor signaling in distal tip cell migrations in C. elegans.

    PubMed

    Schwabiuk, Megan; Coudiere, Ludivine; Merz, David C

    2009-10-01

    Mutations in the sdn-1/syndecan gene act as genetic enhancers of the ventral-to-dorsal distal tip cell (DTC) migration defects caused by a weak allele of the netrin receptor gene unc-5. The sdn-1(ev697) allele was identified in a genetic screen for enhancers of unc-5 DTC migration defects, and carried a nonsense mutation predicted to truncate the SDN-1 protein prior to the transmembrane domain. The enhancement of unc-5 caused by an sdn-1 mutation was rescued by expression of wild-type sdn-1 in the hypodermis or nervous system rather than the DTCs, indicating a cell non-autonomous function of sdn-1. The enhancement was also partially reversed by mutations in the egl-17/FGF or egl-20/Wnt genes, suggesting that sdn-1 affects UNC-5 function through a mis-regulation of signaling in growth factor pathways. egl-20 reporter constructs exhibited increased and mis-localized EGL-20 distribution in sdn-1 mutants compared to wild-type animals. Finally, using loss of function mutations, we show that egl-17/Fgf and egl-20/Wnt are partially redundant in regulating the migration pattern of the posterior DTC, as double mutants exhibit significant frequencies of defects in migration phases along both the anteroposterior and dorsoventral axes. Together these results suggest that SDN-1 affects UNC-5 function by regulating the proper extracellular distribution of growth factors.

  9. Epidermal Growth Factor Receptor-PI3K Signaling Controls Cofilin Activity To Facilitate Herpes Simplex Virus 1 Entry into Neuronal Cells

    PubMed Central

    Zheng, Kai; Xiang, Yangfei; Wang, Xiao; Wang, Qiaoli; Zhong, Meigong; Wang, Shaoxiang; Wang, Xiaoyan; Fan, Jianglin; Kitazato, Kaio; Wang, Yifei

    2014-01-01

    ABSTRACT Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. PMID:24425731

  10. Isorhamnetin inhibits Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages via anti-inflammatory heme oxygenase-1 induction and inhibition of nuclear factor-κB and signal transducer and activator of transcription 1 activation.

    PubMed

    Jin, J Y; Choi, E Y; Park, H R; Choi, J I; Choi, I S; Kim, S J

    2013-12-01

    Interleukin-6 (IL-6) is a key proinflammatory cytokine that has been considered to be important in the pathogenesis of periodontal disease. Therefore, host-modulatory agents directed at inhibiting IL-6 appear to be beneficial in terms of attenuating periodontal disease progression and potentially improving disease susceptibility. In the current study, we investigated the effect of the flavonoid isorhamnetin on the production of IL-6 in murine macrophages stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. Lipopolysaccharide from P. intermedia ATCC 25611 was isolated using the standard hot phenol-water method. Culture supernatants were collected and assayed for IL-6. We used real-time PCR to quantify IL-6 and heme oxygenase-1 (HO-1) mRNA expression. The expression of HO-1 protein and the levels of signaling proteins were monitored using immunoblot analyses. The DNA-binding activity of nuclear factor-κB (NF-κB) was analyzed using ELISA-based assay kits. Isorhamnetin significantly down-regulated P. intermedia LPS-induced production of IL-6 as well as its mRNA expression in RAW264.7 cells. Isorhamnetin up-regulated the expression of HO-1 at both gene transcription and translation levels in cells stimulated with P. intermedia LPS. In addition, inhibition of HO-1 activity by tin protoporphyrin IX blocked the inhibitory effect of isorhamnetin on IL-6 production. Isorhamnetin failed to prevent LPS from activating either c-Jun N-terminal kinase or p38 pathways. Isorhamnetin did not inhibit NF-κB transcriptional activity at the level of inhibitory κB-α degradation. Isorhamnetin suppressed NF-κB signaling through inhibition of nuclear translocation and DNA binding activity of NF-κB p50 subunit and attenuated signal transducer and activator of transcription 1 signaling. Although further research is required to clarify the detailed mechanism of action, we propose

  11. Regulation of mTORC1 by PI3K signaling.

    PubMed

    Dibble, Christian C; Cantley, Lewis C

    2015-09-01

    The class I phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling network directs cellular metabolism and growth. Activation of mTORC1 [composed of mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8(mLST8), 40-kDa proline-rich Akt substrate (PRAS40), and DEP domain-containing mTOR-interacting protein (DEPTOR)] depends on the Ras-related GTPases (Rags) and Ras homolog enriched in brain (Rheb) GTPase and requires signals from amino acids, glucose, oxygen, energy (ATP), and growth factors (including cytokines and hormones such as insulin). Here we discuss the signal transduction mechanisms through which growth factor-responsive PI3K signaling activates mTORC1. We focus on how PI3K-dependent activation of Akt and spatial regulation of the tuberous sclerosis complex (TSC) complex (TSC complex) [composed of TSC1, TSC2, and Tre2-Bub2-Cdc16-1 domain family member 7 (TBC1D7)] switches on Rheb at the lysosome, where mTORC1 is activated. Integration of PI3K- and amino acid-dependent signals upstream of mTORC1 at the lysosome is detailed in a working model. A coherent understanding of the PI3K-mTORC1 network is imperative as its dysregulation has been implicated in diverse pathologies including cancer, diabetes, autism, and aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Leptin accelerates the pathogenesis of heterotopic ossification in rat tendon tissues via mTORC1 signaling.

    PubMed

    Jiang, Huaji; Chen, Yuhui; Chen, Guorong; Tian, Xinggui; Tang, Jiajun; Luo, Lei; Huang, Minjun; Yan, Bin; Ao, Xiang; Zhou, Wen; Wang, Liping; Bai, Xiaochun; Zhang, Zhongmin; Wang, Liang; Xian, Cory J

    2018-02-01

    Leptin, an adipocyte-derived cytokine associated with bone metabolism, is believed to play a critical role in the pathogenesis of heterotopic ossification (HO). The effect and underlying action mechanism of leptin were investigated on osteogenic differentiation of tendon-derived stem cells (TDSCs) in vitro and the HO formation in rat tendons. Isolated rat TDSCs were treated with various concentrations of leptin in the presence or absence of mTORC1 signaling specific inhibitor rapamycin in vitro. A rat model with Achilles tenotomy was employed to evaluate the effect of leptin on HO formation together with or without rapamycin treatment. In vitro studies with TDSCs showed that leptin increased the expression of osteogenic biomarkers (alkaline phosphatase, runt-related transcription factor 2, osterix, osteocalcin) and enhanced mineralization of TDSCs via activating the mTORC1 signal pathway (as indicated by phosphorylation of p70 ribosomal S6 kinase 1 and p70 ribosomal S6). However, mTORC1 signaling blockade with rapamycin treatment suppressed leptin-induced osteogenic differentiation and mineralization. In vivo studies showed that leptin promoted HO formation in the Achilles tendon after tenotomy, and rapamycin treatment blocked leptin-induced HO formation. In conclusion, leptin can promote TDSC osteogenic differentiation and heterotopic bone formation via mTORC1 signaling in both vitro and vivo model, which provides a new potential therapeutic target for HO prevention. © 2017 Wiley Periodicals, Inc.

  13. Signaling pathways coordinating the alkaline pH response confer resistance to the hevein-type plant antimicrobial peptide Pn-AMP1 in Saccharomyces cerevisiae.

    PubMed

    Kwon, Youngho; Chiang, Jennifer; Tran, Grant; Giaever, Guri; Nislow, Corey; Hahn, Bum-Soo; Kwak, Youn-Sig; Koo, Ja-Choon

    2016-12-01

    Genome-wide screening of Saccharomyces cerevisiae revealed that signaling pathways related to the alkaline pH stress contribute to resistance to plant antimicrobial peptide, Pn-AMP1. Plant antimicrobial peptides (AMPs) are considered to be promising candidates for controlling phytopathogens. Pn-AMP1 is a hevein-type plant AMP that shows potent and broad-spectrum antifungal activity. Genome-wide chemogenomic screening was performed using heterozygous and homozygous diploid deletion pools of Saccharomyces cerevisiae as a chemogenetic model system to identify genes whose deletion conferred enhanced sensitivity to Pn-AMP1. This assay identified 44 deletion strains with fitness defects in the presence of Pn-AMP1. Strong fitness defects were observed in strains with deletions of genes encoding components of several pathways and complex known to participate in the adaptive response to alkaline pH stress, including the cell wall integrity (CWI), calcineurin/Crz1, Rim101, SNF1 pathways and endosomal sorting complex required for transport (ESCRT complex). Gene ontology (GO) enrichment analysis of these genes revealed that the most highly overrepresented GO term was "cellular response to alkaline pH". We found that 32 of the 44 deletion strains tested (72 %) showed significant growth defects compared with their wild type at alkaline pH. Furthermore, 9 deletion strains (20 %) exhibited enhanced sensitivity to Pn-AMP1 at ambient pH compared to acidic pH. Although several hundred plant AMPs have been reported, their modes of action remain largely uncharacterized. This study demonstrates that the signaling pathways that coordinate the adaptive response to alkaline pH also confer resistance to a hevein-type plant AMP in S. cerevisiae. Our findings have broad implications for the design of novel and potent antifungal agents.

  14. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells.

    PubMed

    Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas

    2004-09-24

    Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in

  15. Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

    PubMed Central

    Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng

    2017-01-01

    Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise. PMID:28359146

  16. IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    PubMed Central

    Sebina, Ismail; James, Kylie R.; Soon, Megan S. F.; Best, Shannon E.; Montes de Oca, Marcela; Amante, Fiona H.; Thomas, Bryce S.; Beattie, Lynette; Souza-Fonseca-Guimaraes, Fernando; Smyth, Mark J.; Hertzog, Paul J.; Hill, Geoffrey R.; Engwerda, Christian R.

    2016-01-01

    Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria. PMID:27812214

  17. HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB.

    PubMed

    Ma, Yunyun; Zhang, Bo; Wang, Dong; Qian, Lili; Song, Xianmei; Wang, Xueyin; Yang, Chaokuan; Zhao, Guoqiang

    2017-03-01

    Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.

  18. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway.

    PubMed

    Ou, Xiao-Ming; Chen, Kevin; Shih, Jean C

    2006-07-18

    Monoamine oxidase A (MAO A) degrades serotonin, norepinephrine, and dopamine and produces reactive oxygen that may cause neuronal cell death. We have previously reported that a novel transcription factor R1 (RAM2/CDCA7L/JPO2) inhibits the MAO A promoter and enzymatic activities. This study reports the roles of MAO A and R1 in apoptosis and proliferation. We have found that in serum starvation-induced apoptosis, p38 kinase, MAO A, and caspase-3 were increased, whereas Bcl-2 and R1 were reduced. Using a p38 kinase inhibitor, R1 overexpression, and MAO A inhibitor, we have shown that MAO A and R1 are downstream of p38 kinase and Bcl-2, but upstream of caspase-3. Inhibition of MAO A prevents cell apoptosis. This notion was further supported by the finding that serum starvation-induced apoptosis is reduced in cortical brain cells from MAO A-deficient mice compared with WT. In addition, we found that MAO A and R1 are involved in the c-Myc-induced proliferative signaling pathway in the presence of serum. Immunoprecipitation and immunohistochemistry experiments indicate that the oncogene c-Myc colocalizes with R1 and induces R1 gene expression. Using R1 overexpression, R1 small interfering RNA, and a MAO A inhibitor, we found that R1 and MAO A act upstream of cyclin D1 and E2F1. In summary, this study demonstrates the functions of MAO A and its repressor R1 in apoptotic signaling pathways.

  19. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling.

    PubMed

    Feng, Guijuan; Zheng, Ke; Cao, Tong; Zhang, Jinlong; Lian, Min; Huang, Dan; Wei, Changbo; Gu, Zhifeng; Feng, Xingmei

    2018-02-26

    Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.

  20. Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways.

    PubMed

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Ambrosio, Daniela Luz; Bertolini, Maria Célia

    2017-06-09

    Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the

  1. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  2. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration.

    PubMed

    Wang, Yanwen; Wang, Shunyao; Lei, Ming; Boyett, Mark; Tsui, Hoyee; Liu, Wei; Wang, Xin

    2018-04-01

    p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca 2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  3. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes

    PubMed Central

    Singh, Parmit Kumar; Plumb, Matthew R.; Ferris, Andrea L.; Iben, James R.; Wu, Xiaolin; Fadel, Hind J.; Luke, Brian T.; Esnault, Caroline; Poeschla, Eric M.; Hughes, Stephen H.; Kvaratskhelia, Mamuka; Levin, Henry L.

    2015-01-01

    The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced. PMID:26545813

  4. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21

    PubMed Central

    Zhang, Mingfeng; Wang, Zhaoming; Obazee, Ofure; Jia, Jinping; Childs, Erica J.; Hoskins, Jason; Figlioli, Gisella; Mocci, Evelina; Collins, Irene; Chung, Charles C.; Hautman, Christopher; Arslan, Alan A.; Beane-Freeman, Laura; Bracci, Paige M.; Buring, Julie; Duell, Eric J.; Gallinger, Steven; Giles, Graham G.; Goodman, Gary E.; Goodman, Phyllis J.; Kamineni, Aruna; Kolonel, Laurence N.; Kulke, Matthew H.; Malats, Núria; Olson, Sara H.; Sesso, Howard D.; Visvanathan, Kala; White, Emily; Zheng, Wei; Abnet, Christian C.; Albanes, Demetrius; Andreotti, Gabriella; Brais, Lauren; Bueno-de-Mesquita, H. Bas; Basso, Daniela; Berndt, Sonja I.; Boutron-Ruault, Marie-Christine; Bijlsma, Maarten F.; Brenner, Hermann; Burdette, Laurie; Campa, Daniele; Caporaso, Neil E.; Capurso, Gabriele; Cavestro, Giulia Martina; Cotterchio, Michelle; Costello, Eithne; Elena, Joanne; Boggi, Ugo; Gaziano, J. Michael; Gazouli, Maria; Giovannucci, Edward L.; Goggins, Michael; Gross, Myron; Haiman, Christopher A.; Hassan, Manal; Helzlsouer, Kathy J.; Hu, Nan; Hunter, David J.; Iskierka-Jazdzewska, Elzbieta; Jenab, Mazda; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay-Tee; Klein, Eric A.; Kogevinas, Manolis; Krogh, Vittorio; Kupcinskas, Juozas; Kurtz, Robert C.; Landi, Maria T.; Landi, Stefano; Marchand, Le Loic; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L.; Neale, Rachel E.; Oberg, Ann L.; Panico, Salvatore; Patel, Alpa V.; Peeters, Petra H. M.; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Purdue, Mark; Quiros, J. Ramón; Riboli, Elio; Rothman, Nathaniel; Scarpa, Aldo; Scelo, Ghislaine; Shu, Xiao-Ou; Silverman, Debra T.; Soucek, Pavel; Strobel, Oliver; Sund, Malin; Małecka-Panas, Ewa; Taylor, Philip R.; Tavano, Francesca; Travis, Ruth C.; Thornquist, Mark; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Vashist, Yogesh; Vodicka, Pavel; Wactawski-Wende, Jean; Wentzensen, Nicolas; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Kooperberg, Charles; Risch, Harvey A.; Jacobs, Eric J.; Li, Donghui; Fuchs, Charles; Hoover, Robert; Hartge, Patricia; Chanock, Stephen J.; Petersen, Gloria M.; Stolzenberg-Solomon, Rachael S.; Wolpin, Brian M.; Kraft, Peter; Klein, Alison P.; Canzian, Federico; Amundadottir, Laufey T.

    2016-01-01

    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88×10−15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22×10−9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70×10−8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 (NR5A2), chr8q24.21 (MYC) and chr5p15.33 (CLPTM1L-TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal (n = 10) and tumor (n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7×10−8). This finding was validated in a second set of paired (n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5×10−4-2.0×10−3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology. PMID:27579533

  5. miR-24 and miR-122 Negatively Regulate the Transforming Growth Factor-β/Smad Signaling Pathway in Skeletal Muscle Fibrosis.

    PubMed

    Sun, Yaying; Wang, Hui; Li, Yan; Liu, Shaohua; Chen, Jiwu; Ying, Hao

    2018-06-01

    Fibrosis is common after skeletal muscle injury, undermining tissue regeneration and function. The mechanism underlying skeletal muscle fibrosis remains unveiled. Transforming growth factor-β/Smad signaling pathway is supposed to play a pivotal role. However, how microRNAs interact with transforming growth factor-β/Smad-related muscle fibrosis remains unclear. We showed that microRNA (miR)-24-3p and miR-122-5p declined in skeletal muscle fibrosis, which was a consequence of transforming growth factor-β. Upregulating Smad4 suppressed two microRNAs, whereas inhibiting Smad4 elevated microRNAs. Luciferase reporter assay and chromatin immunoprecipitation confirmed that Smad4 directly inhibited two microRNAs. On the other hand, overexpression of these two miRs retarded fibrotic process. We further identified that Smad2 was a direct target of miR-24-3p, whereas miR-122-5p targeted transforming growth factor-β receptor-II. Both targets were important participants in transforming growth factor-β/Smad signaling. Taken together, a positive feedback loop in transforming growth factor-β/Smad4 signaling pathway in skeletal muscle fibrosis was identified. Transforming growth factor-β/Smad axis could be downregulated by microRNAs. This effect, however, was suppressed by Smad4, the downstream of transforming growth factor-β. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Transforming Growth Factor β Signaling Upregulates the Expression of Human GDP-Fucose Transporter by Activating Transcription Factor Sp1

    PubMed Central

    Xu, Yu-Xin; Ma, Anna; Liu, Li

    2013-01-01

    GDP-fucose transporter plays a crucial role in fucosylation of glycoproteins by providing activated fucose donor, GDP-fucose, for fucosyltransferases in the lumen of the Golgi apparatus. Fucose-containing glycans are involved in many biological processes, which are essential for growth and development. Mutations in the GDP-fucose transporter gene cause leukocyte adhesion deficiency syndrome II, a disease characterized by slow growth, mental retardation and immunodeficiency. However, no information is available regarding its transcriptional regulation. Here, by using human cells, we show that TGF-β1 specifically induces the GDP-fucose transporter expression, but not other transporters tested such as CMP-sialic acid transporter, suggesting a diversity of regulatory pathways for the expression of these transporters. The regulatory elements that are responsive to the TGF-β1 stimulation are present in the region between bp −330 and −268 in the GDP-fucose transporter promoter. We found that this region contains two identical octamer GC-rich motifs (GGGGCGTG) that were demonstrated to be essential for the transporter expression. We also show that the transcription factor Sp1 specifically binds to the GC-rich motifs in vitro and Sp1 coupled with phospho-Smad2 is associated with the promoter region covering the Sp1-binding motifs in vivo using chromatin immunoprecipitation (ChIP) assays. In addition, we further confirmed that Sp1 is essential for the GDP-fucose transporter expression stimulated by TGF-β1 using a luciferase reporter system. These results highlight the role of TGF-β signaling in regulation of the GDP-fucose transporter expression via activating Sp1. This is the first transcriptional study for any nucleotide sugar transporters that have been identified so far. Notably, TGF-β1 receptor itself is known to be modified by fucosylation. Given the essential role of GDP-fucose transporter in fucosylation, the finding that TGF-β1 stimulates the expression of

  7. Transforming growth factor β signaling upregulates the expression of human GDP-fucose transporter by activating transcription factor Sp1.

    PubMed

    Xu, Yu-Xin; Ma, Anna; Liu, Li

    2013-01-01

    GDP-fucose transporter plays a crucial role in fucosylation of glycoproteins by providing activated fucose donor, GDP-fucose, for fucosyltransferases in the lumen of the Golgi apparatus. Fucose-containing glycans are involved in many biological processes, which are essential for growth and development. Mutations in the GDP-fucose transporter gene cause leukocyte adhesion deficiency syndrome II, a disease characterized by slow growth, mental retardation and immunodeficiency. However, no information is available regarding its transcriptional regulation. Here, by using human cells, we show that TGF-β1 specifically induces the GDP-fucose transporter expression, but not other transporters tested such as CMP-sialic acid transporter, suggesting a diversity of regulatory pathways for the expression of these transporters. The regulatory elements that are responsive to the TGF-β1 stimulation are present in the region between bp -330 and -268 in the GDP-fucose transporter promoter. We found that this region contains two identical octamer GC-rich motifs (GGGGCGTG) that were demonstrated to be essential for the transporter expression. We also show that the transcription factor Sp1 specifically binds to the GC-rich motifs in vitro and Sp1 coupled with phospho-Smad2 is associated with the promoter region covering the Sp1-binding motifs in vivo using chromatin immunoprecipitation (ChIP) assays. In addition, we further confirmed that Sp1 is essential for the GDP-fucose transporter expression stimulated by TGF-β1 using a luciferase reporter system. These results highlight the role of TGF-β signaling in regulation of the GDP-fucose transporter expression via activating Sp1. This is the first transcriptional study for any nucleotide sugar transporters that have been identified so far. Notably, TGF-β1 receptor itself is known to be modified by fucosylation. Given the essential role of GDP-fucose transporter in fucosylation, the finding that TGF-β1 stimulates the expression of

  8. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  9. Transcriptional Activation of Mina by Sp1/3 Factors

    PubMed Central

    Lian, Shangli; Potula, Hari Hara S. K.; Pillai, Meenu R.; Van Stry, Melanie; Koyanagi, Madoka; Chung, Linda; Watanabe, Makiko; Bix, Mark

    2013-01-01

    Mina is an epigenetic gene regulatory protein known to function in multiple physiological and pathological contexts, including pulmonary inflammation, cell proliferation, cancer and immunity. We showed previously that the level of Mina gene expression is subject to natural genetic variation linked to 21 SNPs occurring in the Mina 5′ region [1]. In order to explore the mechanisms regulating Mina gene expression, we set out to molecularly characterize the Mina promoter in the region encompassing these SNPs. We used three kinds of assays – reporter, gel shift and chromatin immunoprecipitation – to analyze a 2 kb genomic fragment spanning the upstream and intron 1 regions flanking exon 1. Here we discovered a pair of Mina promoters (P1 and P2) and a P1-specific enhancer element (E1). Pharmacologic inhibition and siRNA knockdown experiments suggested that Sp1/3 transcription factors trigger Mina expression through additive activity targeted to a cluster of four Sp1/3 binding sites forming the P1 promoter. These results set the stage for comprehensive analysis of Mina gene regulation from the context of tissue specificity, the impact of inherited genetic variation and the nature of upstream signaling pathways. PMID:24324617

  10. Cucurbitacin E Induces G2/M Phase Arrest through STAT3/p53/p21 Signaling and Provokes Apoptosis via Fas/CD95 and Mitochondria-Dependent Pathways in Human Bladder Cancer T24 Cells

    PubMed Central

    Huang, Wen-Wen; Yang, Jai-Sing; Lin, Meng-Wei; Chen, Po-Yuan; Chiou, Shang-Ming; Chueh, Fu-Shin; Lan, Yu-Hsuan; Pai, Shu-Jen; Tsuzuki, Minoru; Ho, Wai-Jane; Chung, Jing-Gung

    2012-01-01

    Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss of ΔΨm, resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells. PMID:22272214

  11. 1, 25-dihydroxy-vitamin D3 with tumor necrosis factor-alpha protects against rheumatoid arthritis by promoting p53 acetylation-mediated apoptosis via Sirt1 in synoviocytes

    PubMed Central

    Gu, Xin; Gu, Bingjie; Lv, Xianhui; Yu, Zhenzhen; Wang, Rong; Zhou, Xiaoli; Qiao, Wanxin; Mao, Zhiyuan; Zuo, Guoping; Li, Qing; Miao, Dengshun; Jin, Jianliang

    2016-01-01

    Impaired apoptosis of fibroblast-like synoviocytes (FLSs) causes synovial hyperplasia, facilitating destruction of cartilage and bone in rheumatoid arthritis (RA). Tumor necrosis factor (TNF)-α, a dominant inflammatory mediator in RA pathogenesis, promotes progression of RA symptoms. Prevalence of 1, 25-dihydroxy-vitamin D3 (hereafter termed VD) deficiency is 30–63% in patients with RA. Whether VD leads to apoptosis or enhances TNF-α-mediated apoptosis in FLSs to ameliorate RA is unclear. To determine this, 10-week-old CYP27B1-deficient (CYP27B1−/−) mice with collagen-induced arthritis (CIA) were intraperitoneally treated with 1 μg/kg VD every other day for 9 weeks. RA phenotypes were compared between vehicle-treated CYP27B1−/− and wild-type CIA mice. Human rheumatoid FLS-MH7A cells were treated with Dulbecco's modified Eagle's medium (DMEM) without fetal bovine serum (FBS) for 24 h, then with different concentrations of VD and TNF-α, human vitamin D receptor (VDR) siRNA or the p53 pro-apoptotic inhibitor pifithrin-α. Apoptosis and p53 pro-apoptotic signaling were analyzed. The 19-week-old vehicle-treated CYP27B1−/− CIA mice had increased cumulative arthritis scores and levels of serous rheumatoid factors and C-reactive protein. They had exacerbated articular cartilage and bone destruction, joint space narrowing, joint stiffness, deformity and dysfunction, synovitis and TNF-α secretion, FLS hyperplasia with increased proliferation and decreased apoptosis compared to CIA mice. These RA phenotypes that were aggravated in CIA mice by CYP27B1 deficiency were largely rescued by VD treatment. In vitro, VD with TNF-α treatment upregulated p53 acetylation-mediated apoptosis in MH7A cells by promoting Sirt1 translocation from the nucleus to the cytoplasm. These findings indicated that VD with TNF-α protected against RA by promoting apoptosis of FLSs. The results indicated that clinical administration of VD could be a specific therapy to promote FLS

  12. Retinoic acid induces signal transducer and activator of transcription (STAT) 1, STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons.

    PubMed

    Matikainen, S; Ronni, T; Lehtonen, A; Sareneva, T; Melén, K; Nordling, S; Levy, D E; Julkunen, I

    1997-06-01

    IFNs are antiproliferative cytokines that have growth-inhibitory effects on various normal and malignant cells. Therefore, they have been used in the treatment of certain forms of cancer, such as chronic myelogenous leukemia and hairy cell leukemia. However, there is little evidence that IFNs would be effective in the treatment of acute myelogenous leukemia, and molecular mechanisms underlying IFN unresponsiveness have not been clarified. Here we have studied the activation and induction of IFN-specific transcription factors signal transducer and activator of transcription (STAT) 1, STAT2, and p48 in all-trans-retinoic acid (ATRA)-differentiated myeloid leukemia cells using promyelocytic NB4, myeloblastic HL-60, and monoblastic U937 cells as model systems. These cells respond to ATRA by growth inhibition and differentiation. We show that in undifferentiated NB4 cells, 2',5'-oligoadenylate synthetase and MxB gene expression is not activated by IFN-alpha, possibly due to a relative lack of signaling molecules, especially p48 protein. However, during ATRA-induced differentiation, steady-state STAT1, STAT2, and especially p48 mRNA and corresponding protein levels were elevated both in NB4 and U937 cells, apparently correlating to an enhanced responsiveness of these cells to IFNs. ATRA treatment of NB4 cells sensitized them to IFN action as seen by increased IFN-gamma activation site DNA-binding activity or by efficient formation of IFN-alpha-specific ISGF3 complex and subsequent oligoadenylate synthetase and MxB gene expression. Lack of p48 expression could be one of the mechanisms of promyelocytic leukemia cell escape from growth-inhibitory effects of IFN-alpha.

  13. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways *

    PubMed Central

    Erdem, Cemal; Nagle, Alison M.; Casa, Angelo J.; Litzenburger, Beate C.; Wang, Yu-fen; Taylor, D. Lansing; Lee, Adrian V.; Lezon, Timothy R.

    2016-01-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358

  14. Dynamic Regulation of Tgf-B Signaling by Tif1γ: A Computational Approach

    PubMed Central

    Andrieux, Geoffroy; Fattet, Laurent; Le Borgne, Michel; Rimokh, Ruth; Théret, Nathalie

    2012-01-01

    TIF1γ (Transcriptional Intermediary Factor 1 γ) has been implicated in Smad-dependent signaling by Transforming Growth Factor beta (TGF-β). Paradoxically, TIF1γ functions both as a transcriptional repressor or as an alternative transcription factor that promotes TGF-β signaling. Using ordinary differential-equation models, we have investigated the effect of TIF1γ on the dynamics of TGF-β signaling. An integrative model that includes the formation of transient TIF1γ-Smad2-Smad4 ternary complexes is the only one that can account for TGF-β signaling compatible with the different observations reported for TIF1γ. In addition, our model predicts that varying TIF1γ/Smad4 ratios play a critical role in the modulation of the transcriptional signal induced by TGF-β, especially for short stimulation times that mediate higher threshold responses. Chromatin immunoprecipitation analyses and quantification of the expression of TGF-β target genes as a function TIF1γ/Smad4 ratios fully validate this hypothesis. Our integrative model, which successfully unifies the seemingly opposite roles of TIF1γ, also reveals how changing TIF1γ/Smad4 ratios affect the cellular response to stimulation by TGF-β, accounting for a highly graded determination of cell fate. PMID:22461896

  15. Factor X/Xa elicits protective signaling responses in endothelial cells directly via PAR-2 and indirectly via endothelial protein C receptor-dependent recruitment of PAR-1.

    PubMed

    Bae, Jong-Sup; Yang, Likui; Rezaie, Alireza R

    2010-11-05

    We recently demonstrated that the Gla domain-dependent interaction of protein C with endothelial protein C receptor (EPCR) leads to dissociation of the receptor from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway. Thus, the activation of PAR-1 by either thrombin or PAR-1 agonist peptide elicited a barrier-protective response if endothelial cells were preincubated with protein C. In this study, we examined whether other vitamin K-dependent coagulation protease zymogens can modulate PAR-dependent signaling responses in endothelial cells. We discovered that the activation of both PAR-1 and PAR-2 in endothelial cells pretreated with factor FX (FX)-S195A, but not other procoagulant protease zymogens, also results in initiation of protective intracellular responses. Interestingly, similar to protein C, FX interaction with endothelial cells leads to dissociation of EPCR from caveolin-1 and recruitment of PAR-1 to a protective pathway. Further studies revealed that, FX activated by factor VIIa on tissue factor bearing endothelial cells also initiates protective signaling responses through the activation of PAR-2 independent of EPCR mobilization. All results could be recapitulated by the receptor agonist peptides to both PAR-1 and PAR-2. These results suggest that a cross-talk between EPCR and an unknown FX/FXa receptor, which does not require interaction with the Gla domain of FX, recruits PAR-1 to protective signaling pathways in endothelial cells.

  16. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hwa-Ryeon; Roe, Jae-Seok; Lee, Ji-Eun

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer p53 downregulates IMPDH. Black-Right-Pointing-Pointer p53-dependent miR-34a transactivation inhibits IMPDH transcription. Black-Right-Pointing-Pointer miR-34a-mediated inhibition of IMPDH downregulates GTP-dependent Ras signal. -- Abstract: p53 is a well-known transcription factor that controls cell cycle arrest and cell death in response to a wide range of stresses. Moreover, p53 regulates glucose metabolism and its mutation results in the metabolic switch to the Warburg effect found in cancer cells. Nucleotide biosynthesis is also critical for cell proliferation and the cell division cycle. Nonetheless, little is known about whether p53 regulates nucleotide biosynthesis. Here we demonstrated that p53-inducible microRNA-34a (miR-34a) repressed inosine 5 Primemore » -monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme of de novo GTP biosynthesis. Treatment with anti-miR-34a inhibitor relieved the expression of IMPDH upon DNA damage. Ultimately, miR-34a-mediated inhibition of IMPDH resulted in repressed activation of the GTP-dependent Ras signaling pathway. In summary, we suggest that p53 has a novel function in regulating purine biosynthesis, aided by miR-34a-dependent IMPDH repression.« less

  17. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-Chang; School of Life Science and Biotechnology, Korea University, Seoul; Kim, Hyeon Guk

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also asmore » the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  18. Activation of Dll4/Notch Signaling and Hypoxia-Inducible Factor-1 Alpha Facilitates Lymphangiogenesis in Lacrimal Glands in Dry Eye.

    PubMed

    Min, Ji Hwan; Lee, Chul Hee; Ji, Yong Woo; Yeo, Areum; Noh, Hyemi; Song, Insil; Kim, Eung Kweon; Lee, Hyung Keun

    2016-01-01

    By using hypoxia-inducible factor-1 alpha conditional knockout (HIF-1α CKO) mice and a dry eye (DE) mouse model, we aimed to determine the role played by delta-like ligand 4 (Dll4)/Notch signaling and HIF-1α in the lymphangiogenesis of lacrimal glands (LGs). C57BL/6 mice were housed in a controlled-environment chamber for DE induction. During DE induction, the expression level of Dll4/Notch signaling and lymphangiogenesis in LGs was measured by quantitative RT-PCR, immunoblot, and immunofluorescence staining. Next, lymphangiogenesis was measured after Dll4/Notch signal inhibition by anti-Dll4 antibody or γ-secretase inhibitor. Using HIF-1α CKO mice, the expression of Dll4/Notch signaling and lymphangiogenesis in LGs of DE-induced HIF-1α CKO mice were assessed. Additionally, the infiltration of CD45+ cells in LGs was assessed by immunohistochemical (IHC) staining and flow cytometry for each condition. DE significantly upregulated Dll4/Notch and lymphangiogenesis in LGs. Inhibition of Dll4/Notch significantly suppressed lymphangiogenesis in LGs. Compared to wild-type (WT) mice, DE induced HIF-1α CKO mice showed markedly low levels of Dll4/Notch and lymphangiogenesis. Inhibition of lymphangiogenesis by Dll4/Notch suppression resulted in increased CD45+ cell infiltration in LGs. Likewise, CD45+ cells infiltrated more in the LGs of HIF-1α CKO DE mice than in non-DE HIF-1α CKO mice. Dll4/Notch signaling and HIF-1α are closely related to lymphangiogenesis in DE-induced LGs. Lymphangiogenesis stimulated by Dll4/Notch and HIF-1α may play a role in protecting LGs from DE-induced inflammation by aiding the clearance of immune cells from LGs.

  19. Transcriptional activation of Mina by Sp1/3 factors.

    PubMed

    Lian, Shangli; Potula, Hari Hara S K; Pillai, Meenu R; Van Stry, Melanie; Koyanagi, Madoka; Chung, Linda; Watanabe, Makiko; Bix, Mark

    2013-01-01

    Mina is an epigenetic gene regulatory protein known to function in multiple physiological and pathological contexts, including pulmonary inflammation, cell proliferation, cancer and immunity. We showed previously that the level of Mina gene expression is subject to natural genetic variation linked to 21 SNPs occurring in the Mina 5' region. In order to explore the mechanisms regulating Mina gene expression, we set out to molecularly characterize the Mina promoter in the region encompassing these SNPs. We used three kinds of assays--reporter, gel shift and chromatin immunoprecipitation--to analyze a 2 kb genomic fragment spanning the upstream and intron 1 regions flanking exon 1. Here we discovered a pair of Mina promoters (P1 and P2) and a P1-specific enhancer element (E1). Pharmacologic inhibition and siRNA knockdown experiments suggested that Sp1/3 transcription factors trigger Mina expression through additive activity targeted to a cluster of four Sp1/3 binding sites forming the P1 promoter. These results set the stage for comprehensive analysis of Mina gene regulation from the context of tissue specificity, the impact of inherited genetic variation and the nature of upstream signaling pathways.

  20. RITA enhances irradiation-induced apoptosis in p53-defective cervical cancer cells via upregulation of IRE1α/XBP1 signaling.

    PubMed

    Zhu, Hong; Abulimiti, Muyasha; Liu, Huan; Su, Xiang-Jiang; Liu, Cai-Hong; Pei, Hai-Ping

    2015-09-01

    Radiation therapy is the most widely used treatment for patients with cervical cancer. Recent studies have shown that endoplasmic reticulum (ER) stress induces apoptosis and sensitizes tumor cells to radiotherapy, which reportedly induces ER stress in cells. Classical key tumor suppressor p53 is involved in the response to a variety of cellular stresses, including those incurred by ionizing irradiation. A recent study demonstrated that small-molecule RITA (reactivation of p53 and induction of tumor cell apoptosis) increased the radiosensitivity of tumor cells expressing mutant p53 (mtp53). In the present study, we explored the effects and the underlying mechanisms of RITA in regards to the radiosensitivity and ER stress in mtp53-expressing human cervix cancer cells. Treatment with 1 µM of RITA for 24 h before irradiation markedly decreased survival and increased apoptosis in C-33A and HT-3 cells; the effects were not significantly altered by knockdown of p53. In the irradiated C-33A and HT-3 cells, RITA significantly increased the expression of IRE1α, the spliced XBP1 mRNA level, as well as apoptosis; the effects were abolished by knockdown of IRE1α. Transcriptional pulse-chase assays revealed that RITA significantly increased the stability of IRE1α mRNA in the irradiated C-33A and HT-3 cells. In contrast, the same RITA treatment did not show any significant effect on sham-irradiated cells. In conclusion, the present study provides initial evidence that RITA upregulates the expression level of IRE1α by increasing the stability of IRE1α mRNA in irradiated mtp53-expressing cervical cancer cells; the effect leads to enhanced IRE1α/XBP1 ER stress signaling and increased apoptosis in the cells. The present study offers novel insight into the pharmacological potential of RITA in the radiotherapy for cervical cancer.

  1. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway

    PubMed Central

    Drosten, Matthias; Sum, Eleanor Y. M.; Lechuga, Carmen G.; Simón-Carrasco, Lucía; Jacob, Harrys K. C.; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L.; Bernards, Rene; Barbacid, Mariano

    2014-01-01

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism. PMID:25288756

  2. TLR-2 Recognizes Propionibacterium acnes CAMP Factor 1 from Highly Inflammatory Strains

    PubMed Central

    Ollagnier, Guillaume; Désiré, Nathalie; Sayon, Sophie; Raingeaud, Jöel; Marcelin, Anne-Geneviève; Calvez, Vincent; Khammari, Amir; Batteux, Frédéric; Dréno, Brigitte; Dupin, Nicolas

    2016-01-01

    Background Propionibacterium acnes (P. acnes) is an anaerobic, Gram-positive bacteria encountered in inflammatory acne lesions, particularly in the pilosebaceous follicle. P. acnes triggers a strong immune response involving keratinocytes, sebocytes and monocytes, the target cells during acne development. Lipoteicoic acid and peptidoglycan induce the inflammatory reaction, but no P. acnes surface protein interacting with Toll-like receptors has been identified. P. acnes surface proteins have been extracted by lithium stripping and shown to induce CXCL8 production by keratinocytes. Methodology and principal findings Far-western blotting identified two surface proteins, of 24.5- and 27.5-kDa in size, specifically recognized by TLR2. These proteins were characterized, by LC-MS/MS, as CAMP factor 1 devoid of its signal peptide sequence, as shown by N-terminal sequencing. Purified CAMP factor 1 induces CXCL8 production by activating the CXCL8 gene promoter, triggering the synthesis of CXCL8 mRNA. Antibodies against TLR2 significantly decreased the CXCL8 response. For the 27 P. acnes strains used in this study, CAMP1-TLR2 binding intensity was modulated and appeared to be strong in type IB and II strains, which produced large amounts of CXCL8, whereas most of the type IA1 and IA2 strains presented little or no CAMP1-TLR2 binding and low levels of CXCL8 production. The nucleotide sequence of CAMP factor displays a major polymorphism, defining two distinct genetic groups corresponding to CAMP factor 1 with 14 amino-acid changes from strains phylotyped II with moderate and high levels of CAMP1-TLR2 binding activity, and CAMP factor 1 containing 0, 1 or 2 amino-acid changes from strains phylotyped IA1, IA2, or IB presenting no, weak or moderate CAMP1-TLR2 binding. Conclusions Our findings indicate that CAMP factor 1 may contribute to P. acnes virulence, by amplifying the inflammation reaction through direct interaction with TLR2. PMID:27902761

  3. TLR-2 Recognizes Propionibacterium acnes CAMP Factor 1 from Highly Inflammatory Strains.

    PubMed

    Lheure, Coralie; Grange, Philippe Alain; Ollagnier, Guillaume; Morand, Philippe; Désiré, Nathalie; Sayon, Sophie; Corvec, Stéphane; Raingeaud, Jöel; Marcelin, Anne-Geneviève; Calvez, Vincent; Khammari, Amir; Batteux, Frédéric; Dréno, Brigitte; Dupin, Nicolas

    2016-01-01

    Propionibacterium acnes (P. acnes) is an anaerobic, Gram-positive bacteria encountered in inflammatory acne lesions, particularly in the pilosebaceous follicle. P. acnes triggers a strong immune response involving keratinocytes, sebocytes and monocytes, the target cells during acne development. Lipoteicoic acid and peptidoglycan induce the inflammatory reaction, but no P. acnes surface protein interacting with Toll-like receptors has been identified. P. acnes surface proteins have been extracted by lithium stripping and shown to induce CXCL8 production by keratinocytes. Far-western blotting identified two surface proteins, of 24.5- and 27.5-kDa in size, specifically recognized by TLR2. These proteins were characterized, by LC-MS/MS, as CAMP factor 1 devoid of its signal peptide sequence, as shown by N-terminal sequencing. Purified CAMP factor 1 induces CXCL8 production by activating the CXCL8 gene promoter, triggering the synthesis of CXCL8 mRNA. Antibodies against TLR2 significantly decreased the CXCL8 response. For the 27 P. acnes strains used in this study, CAMP1-TLR2 binding intensity was modulated and appeared to be strong in type IB and II strains, which produced large amounts of CXCL8, whereas most of the type IA1 and IA2 strains presented little or no CAMP1-TLR2 binding and low levels of CXCL8 production. The nucleotide sequence of CAMP factor displays a major polymorphism, defining two distinct genetic groups corresponding to CAMP factor 1 with 14 amino-acid changes from strains phylotyped II with moderate and high levels of CAMP1-TLR2 binding activity, and CAMP factor 1 containing 0, 1 or 2 amino-acid changes from strains phylotyped IA1, IA2, or IB presenting no, weak or moderate CAMP1-TLR2 binding. Our findings indicate that CAMP factor 1 may contribute to P. acnes virulence, by amplifying the inflammation reaction through direct interaction with TLR2.

  4. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines.

    PubMed

    Pera, Tonio; Deshpande, Deepak A; Ippolito, Michael; Wang, Bin; Gavrila, Adelina; Michael, James V; Nayak, Ajay P; Tompkins, Eric; Farrell, Eleni; Kroeze, Wesley K; Roth, Bryan L; Panettieri, Reynold A; Benovic, Jeffrey L; An, Steven S; Dulin, Nickolai O; Penn, Raymond B

    2018-02-01

    GPCRs have diverse signaling capabilities, based on their ability to assume various conformations. Moreover, it is now appreciated that certain ligands can promote distinct receptor conformations and thereby bias signaling toward a specific pathway to differentially affect cell function. The recently deorphanized G protein-coupled receptor OGR1 [ovarian cancer G protein-coupled receptor 1 ( GPR68)] exhibits diverse signaling events when stimulated by reductions in extracellular pH. We recently demonstrated airway smooth muscle cells transduce multiple signaling events, reflecting a diverse capacity to couple to multiple G proteins. Moreover, we recently discovered that the benzodiazepine lorazepam, more commonly recognized as an agonist of the γ-aminobutyric acid A (GABA A ) receptor, can function as an allosteric modulator of OGR1 and, similarly, can promote multiple signaling events. In this study, we demonstrated that different benzodiazepines exhibit a range of biases for OGR1, with sulazepam selectively activating the canonical Gs of the G protein signaling pathway, in heterologous expression systems, as well as in several primary cell types. These findings highlight the potential power of biased ligand pharmacology for manipulating receptor signaling qualitatively, to preferentially activate pathways that are therapeutically beneficial.-Pera, T., Deshpande, D. A., Ippolito, M., Wang, B., Gavrila, A., Michael, J. V., Nayak, A. P., Tompkins, E., Farrell, E., Kroeze, W. K., Roth, B. L., Panettieri, R. A. Jr Benovic, J. L., An, S. S., Dulin, N. O., Penn, R. B. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines.

  5. Krüppel-like factors are effectors of nuclear receptor signaling

    PubMed Central

    Knoedler, Joseph R.; Denver, Robert J.

    2015-01-01

    Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs 1) act as accessory transcription factors for NR actions, 2) regulate expression of NR genes, and 3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action. PMID:24642391

  6. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling.

    PubMed

    Cao, Qiong; Karthikeyan, Aparna; Dheen, S Thameem; Kaur, Charanjit; Ling, Eng-Ang

    2017-01-01

    Microglia activation and associated inflammatory response are involved in the pathogenesis of different neurodegenerative diseases. We have reported that Notch-1 and NF-κB/p65 signalling pathways operate in synergy in regulating the production of proinflammatory mediators in activated microglia. In the latter, there is also evidence by others that glycogen synthase kinase 3β (GSK-3β) mediates the release of proinflammatory cytokines but the interrelationships between the three signalling pathways have not been fully clarified. This is an important issue as activated microglia are potential therapeutic target for amelioration of microglia mediated neuroinflammation. Here we show that blocking of Notch-1 with N-[(3,5-Difluorophenyl) acetyl]-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT) in LPS activated BV-2 microglia not only suppressed Notch intracellular domain (NICD) and Hes-1 protein expression, but also that of GSK-3β. Conversely, blocking of the latter with lithium chloride (LiCl) decreased NICD expression in a dose-dependent manner; moreover, Hes-1 immunofluorescence was attenuated. Along with this, the protein expression level of p-GSK-3β and p-AKT protein expression was significantly increased. Furthermore, DAPT and LiCl decreased production of IL-1β, TNF-α, IL-6, iNOS, Cox2 and MCP-1; however, IL-10 expression was increased notably in LiCl treated cells. The effects of DAPT and LiCl on changes of the above-mentioned biomarkers were confirmed by immunofluorescence in both BV-2 and primary microglia. Additionally, NF-κB/p65 immunofluorescence was attenuated by DAPT and LiCl; as opposed to this, IκBα protein expression was increased. Taken together, it is suggested that Notch-1, NF-κB/p65 and GSK-3β operate in synergy to inhibit microglia activation. This may be effected via increased expression of phospho-GSK-3β (p-GSK-3β), phospho-protein kinase B (PKB) (p-AKT) and IκBα. It is concluded that the three signalling pathways are

  7. [Effect of microRNA-34a/SIRT1/p53 signal pathway on notoginsenoside R₁ delaying vascular endothelial cell senescence].

    PubMed

    Lai, Xiao-Hua; Lei, Yan; Yang, Jing; Xiu, Cheng-Kui

    2018-02-01

    This study aimed to investigate the effect of notoginsenoside R₁ in delaying H₂O₂-induced vascular endothelial cell senescence through microRNA-34a/SIRT1/p53 signal pathway. In this study, human umbilical vein endothelial cells(HUVECs) were selected as the study object; the aging model induced by hydrogen peroxide(H₂O₂) was established, with resveratrol as the positive drug. HUVECs were randomly divided into four groups, youth group, senescence model group, notoginsenoside R₁ group and resveratrol group. Notoginsenoside R₁ group and resveratrol group were modeled with 100 μmoL·L⁻¹ H₂O₂ for 4 h after 24 h treatment with notoginsenoside R₁(30 μmoL·L⁻¹) and resveratrol(10 μmoL·L⁻¹) respectively. At the end, each group was cultured with complete medium for 24 h. The degree of cellular senescence was detected by senescence-associated β-galactosidase(SA-β-Gal) staining kit, the cell viability was detected by cell counting kit-8, the cell cycle distribution was analyzed by flow cytometry, and the cellular SOD activity was detected by WST-1 method in each group. The expressions of SIRT1p53, p21 and p16 proteins in HUVECs were detected by Western blot. In addition, the mRNA expressions of miRNA-34a, SIRT1 and p53 in HUVECs were assayed by Real-time PCR. These results indicated that notoginsenoside R₁ significantly reduced the positive staining rate of senescent cells, enhanced the cell proliferation capacity and intracellular SOD activity, decreased the proportion of cells in G₀/G₁ phase, and increased the percentage of cells in S phase simultaneously compared with the senescence model group. Moreover, notoginsenoside R₁ decreased the mRNA expressions of miRNA-34a and p53 and the protein expression of p53, p21 and p16.At the same time, notoginsenoside R₁ increased the protein and mRNA expressions of SIRT1. The differences in these results between the senescence model group and the

  8. Common variants upstream of MLF1 at 3q25 and within CPZ at 4p16 associated with neuroblastoma.

    PubMed

    McDaniel, Lee D; Conkrite, Karina L; Chang, Xiao; Capasso, Mario; Vaksman, Zalman; Oldridge, Derek A; Zachariou, Anna; Horn, Millicent; Diamond, Maura; Hou, Cuiping; Iolascon, Achille; Hakonarson, Hakon; Rahman, Nazneen; Devoto, Marcella; Diskin, Sharon J

    2017-05-01

    Neuroblastoma is a cancer of the developing sympathetic nervous system that most commonly presents in young children and accounts for approximately 12% of pediatric oncology deaths. Here, we report on a genome-wide association study (GWAS) in a discovery cohort or 2,101 cases and 4,202 controls of European ancestry. We identify two new association signals at 3q25 and 4p16 that replicated robustly in multiple independent cohorts comprising 1,163 cases and 4,396 controls (3q25: rs6441201 combined P = 1.2x10-11, Odds Ratio 1.23, 95% CI:1.16-1.31; 4p16: rs3796727 combined P = 1.26x10-12, Odds Ratio 1.30, 95% CI: 1.21-1.40). The 4p16 signal maps within the carboxypeptidase Z (CPZ) gene. The 3q25 signal resides within the arginine/serine-rich coiled-coil 1 (RSRC1) gene and upstream of the myeloid leukemia factor 1 (MLF1) gene. Increased expression of MLF1 was observed in neuroblastoma cells homozygous for the rs6441201 risk allele (P = 0.02), and significant growth inhibition was observed upon depletion of MLF1 (P < 0.0001) in neuroblastoma cells. Taken together, we show that common DNA variants within CPZ at 4p16 and upstream of MLF1 at 3q25 influence neuroblastoma susceptibility and MLF1 likely plays an important role in neuroblastoma tumorigenesis.

  9. Common variants upstream of MLF1 at 3q25 and within CPZ at 4p16 associated with neuroblastoma

    PubMed Central

    Capasso, Mario; Vaksman, Zalman; Zachariou, Anna; Horn, Millicent; Diamond, Maura; Hou, Cuiping; Iolascon, Achille; Hakonarson, Hakon; Rahman, Nazneen

    2017-01-01

    Neuroblastoma is a cancer of the developing sympathetic nervous system that most commonly presents in young children and accounts for approximately 12% of pediatric oncology deaths. Here, we report on a genome-wide association study (GWAS) in a discovery cohort or 2,101 cases and 4,202 controls of European ancestry. We identify two new association signals at 3q25 and 4p16 that replicated robustly in multiple independent cohorts comprising 1,163 cases and 4,396 controls (3q25: rs6441201 combined P = 1.2x10-11, Odds Ratio 1.23, 95% CI:1.16–1.31; 4p16: rs3796727 combined P = 1.26x10-12, Odds Ratio 1.30, 95% CI: 1.21–1.40). The 4p16 signal maps within the carboxypeptidase Z (CPZ) gene. The 3q25 signal resides within the arginine/serine-rich coiled-coil 1 (RSRC1) gene and upstream of the myeloid leukemia factor 1 (MLF1) gene. Increased expression of MLF1 was observed in neuroblastoma cells homozygous for the rs6441201 risk allele (P = 0.02), and significant growth inhibition was observed upon depletion of MLF1 (P < 0.0001) in neuroblastoma cells. Taken together, we show that common DNA variants within CPZ at 4p16 and upstream of MLF1 at 3q25 influence neuroblastoma susceptibility and MLF1 likely plays an important role in neuroblastoma tumorigenesis. PMID:28545128

  10. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  11. Leptin attenuates BACE1 expression and Amyloid-β genesis via the activation of SIRT1 signaling pathway

    PubMed Central

    Marwarha, Gurdeep; Raza, Shaneabbas; Meiers, Craig; Ghribi, Othman

    2014-01-01

    The aspartyl protease β-site AβPP-cleaving enzyme 1 (BACE1) catalyzes the rate-limiting step in Aβ production, a peptide at the nexus of neurodegenerative cascades in Alzheimer Disease (AD). The adipocytokine leptin has been demonstrated to reduce Aβ production and decrease BACE1 activity and expression levels. However, the signaling cascades involved in the leptin-induced mitigation in Aβ levels and BACE1 expression levels have not been elucidated. We have demonstrated that the transcription factor nuclear factor – kappa B (NF-κB) positively regulates BACE1 transcription. NF-κB activity is tightly regulated by the mammalian sirtuin SIRT1. Multiple studies have cogently evinced that leptin activates the metabolic master regulator SIRT1. In this study, we determined the extent to which SIRT1 expression and activity regulate the leptin-induced attenuation in BACE1 expression and Aβ levels in cultured human neuroblastoma SH-SY5Y cells. This study also elucidated and delineated the signal transduction pathways involved in the leptin induced mitigation in BACE1 expression. Our results demonstrate for the first time that leptin attenuates the activation and transcriptional activity of NF-κB by reducing the acetylation of the p65 subunit in a SIRT1-dependent manner. Furthermore, our data shows that leptin reduces the NF-κB – mediated transcription of BACE1 and consequently reduces Amyloid-β genesis. Our study provides a valuable insight and a novel mechanism by which leptin reduces BACE1 expression and Amyloid-β production and may help design potential therapeutic interventions. PMID:24874077

  12. HER1 signaling mediates extravillous trophoblast differentiation in humans.

    PubMed

    Wright, J K; Dunk, C E; Amsalem, H; Maxwell, C; Keating, S; Lye, S J

    2010-12-01

    This study examines the role of HER1 signaling in the differentiation of proliferative extravillous trophoblast (EVT) into invasive EVT. Using the JAR choriocarcinoma cell line and placental villous explants as experimental models and immunohistochemical assessment of protein markers of EVT differentiation (downregulation of HER1 and Cx40 and upregulation of HER2 and alpha1 integrin), we show that the ability of decidual conditioned medium (DCM) to induce HER1/2 switching was abrogated in the presence of the HER1 antagonist, AG1478. Similarly, epidermal growth factor (EGF) treatment resulted in the downregulation of HER1 and an upregulation of HER2 expression, whereas co-incubation of EGF with AG1478 inhibited this response. However, EGF did not downregulate Cx40 or induce migration of EVT. In contrast, heparin-binding epidermal-like growth factor (HBEGF) stimulated dose-dependent JAR cell migration, which was inhibited by both AG1478 and AG825 (HER2 antagonist). Western blot analysis of HER1 activation demonstrated that HBEGF-mediated phosphorylation of the HER1 Tyr992 and Tyr1068 sites, while EGF activated the Tyr1045 site. Moreover, HBEGF induced a stronger and more sustained activation of both the mitogen-activated protein kinase and phosphoinositol 3 kinase (PIK3) signaling pathways. Migration assays using a panel of signaling pathway inhibitors demonstrated that the HBEGF-mediated migration was dependent on the PIK3 pathway. These results demonstrate that HBEGF-mediated HER1 signaling through PIK3 is an important component of EVT invasion.

  13. Transcription factor FOXO1 promotes cell migration toward exogenous ATP via controlling P2Y1 receptor expression in lymphatic endothelial cells.

    PubMed

    Niimi, Kenta; Ueda, Mizuha; Fukumoto, Moe; Kohara, Misaki; Sawano, Toshinori; Tsuchihashi, Ryo; Shibata, Satoshi; Inagaki, Shinobu; Furuyama, Tatsuo

    2017-08-05

    Sprouting migration of lymphatic endothelial cell (LEC) is a pivotal step in lymphangiogenic process. However, its molecular mechanism remains unclear including effective migratory attractants. Meanwhile, forkhead transcription factor FOXO1 highly expresses in LEC nuclei, but its significance in LEC migratory activity has not been researched. In this study, we investigated function of FOXO1 transcription factor associated with LEC migration toward exogenous ATP which has recently gathered attentions as a cell migratory attractant. The transwell membrane assay indicated that LECs migrated toward exogenous ATP, which was impaired by FOXO1 knockdown. RT-PCR analysis showed that P2Y1, a purinergic receptor, expression was markedly reduced by FOXO1 knockdown in LECs. Moreover, P2Y1 blockage impaired LEC migration toward exogenous ATP. Western blot analysis revealed that Akt phosphorylation contributed to FOXO1-dependent LEC migration toward exogenous ATP and its blockage affected LEC migratory activity. Furthermore, luciferase reporter assay and ChIP assay suggested that FOXO1 directly bound to a conserved binding site in P2RY1 promoter and regulated its activity. These results indicated that FOXO1 serves a pivotal role in LEC migration toward exogenous ATP via direct transcriptional regulation of P2Y1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. G2013 modulates TLR4 signaling pathway in IRAK-1 and TARF-6 dependent and miR-146a independent manner.

    PubMed

    Hajivalili, M; Pourgholi, F; Majidi, J; Aghebati-Maleki, L; Movassaghpour, A A; Samadi Kafil, H; Mirshafiey, A; Yousefi, M

    2016-04-30

    Inflammation is inseparable part of different diseases especially cancer and autoimmunity. During inflammation process toll like receptor 4(TLR4) responds to lipopolysaccharide (LPS), one of the bacterial components, and TLR4 signaling leads to interleukine-1 receptor associated kinase-1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor6 (TRAF6) activation which ultimately results in nuclear factor- ĸB (NF-ĸB) activation as the main transcription factor of inflammatory cytokines. Conversely, NF-ĸB over activation induces miR-146a in innate immune cells which can consequently reduce TRAF6, IRAK1, and NF-ĸB activation in a negative feedback. G2013 is a novel designed non-steroidal anti-inflammatory drug (NSAID) which was recently shown to be effective in experimental autoimmune encephalomyelitis (EAE) mouse model. The aim of this study was to evaluate G2013 effects on inflammatory (IRAK1 and TRAF6) and anti-inflammatory (miR-146a) factors of TLR4 signaling pathway. For this purpose, cytotoxicity of G2013 has been evaluated by MTT assay. Expression level of miR-146a in PBMCs and IRAK1 along with TRAF6 in HEK-293 TLR4 cells have been determined using real time PCR. Our results showed that IC50 of G2013 was 25μg/ml, thus 5 and 25 μg/ml concentrations used for further treatments as low dose and high dose concentrations. Our results showed that IRAK1 expression reduced between 5 to 8 fold after treatment by G2013 in a dose dependent manner (p<0.001). In parallel TRAF6 expression declined between 3 to 10 fold dose dependently (p<0.05). However, miR-146a expression was not affected after treatment with low dose and high dose of G2013. In conclusion our data showed that G2013 can regulate TLR4 signaling pathway during inflammation by reducing downstream signaling molecules, IRAK1 and TRAF6 without altering miR-146a expression.

  15. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P{sub 2} on cell migration and invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Nicholas; Van Brocklyn, James R.

    2007-05-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P{sub 1-5}. S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P{sub 1}, S1P{sub 2} and S1P{sub 3} all contribute positively to S1P-stimulated glioma cell proliferation, with S1P{sub 1} being the major contributor. Stimulationmore » of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P{sub 5} blocks glioma cell proliferation, and inhibits ERK activation. S1P{sub 1} and S1P{sub 3} enhance glioma cell migration and invasion. S1P{sub 2} inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P{sub 2} also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P{sub 2}-stimulated glioma invasion. Thus, while S1P{sub 2} decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.« less

  16. Effects of histone acetylation and DNA methylation on p21( WAF1) regulation.

    PubMed

    Fang, Jing-Yuan; Lu, You-Yong

    2002-06-01

    Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.

  17. P21 activated kinase signaling in cancer.

    PubMed

    Rane, Chetan K; Minden, Audrey

    2018-01-09

    The p21 Activated Kinases (PAKs) are a family of serine threonine kinases, that consist of 6 members, PAKs 1-6, which are positioned at an intersection of multiple signaling pathways implicated in oncogenesis. The PAKs were originally identified as protein kinases that function downstream of the Ras related Rho GTPases Cdc42 and Rac. PAK1 and PAK4, which belong to Group I and Group II PAKs, respectively, are most often associated with tumorigenesis. On account of their well characterized roles in cancer, several small molecule inhibitors are being developed to inhibit the PAKs, and there is interest in investigating their efficacy as either first line or adjuvant treatments for cancer. Studies to delineate PAK regulated signaling pathways as well as the long term effects of PAK overexpression on gene expression are beginning to shed light on the mechanism by which PAK proteins may lead to cancer when they are overexpressed or activated. This review will describe the association between PAK expression in cancer, with a focus on PAK1 and PAK4, which are most often associated with the disease. The current understanding of the molecular mechanisms by which the PAKs operate in cancer will be discussed. We will also review some of the potential drug candidates, and discuss which of them are currently being tested for their efficacy in cancer treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  19. Nup124p Is a Nuclear Pore Factor of Schizosaccharomyces pombe That Is Important for Nuclear Import and Activity of Retrotransposon Tf1

    PubMed Central

    Balasundaram, David; Benedik, Michael J.; Morphew, Mary; Dang, Van-Dinh; Levin, Henry L.

    1999-01-01

    The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag. PMID:10409764

  20. Nup124p is a nuclear pore factor of Schizosaccharomyces pombe that is important for nuclear import and activity of retrotransposon Tf1.

    PubMed

    Balasundaram, D; Benedik, M J; Morphew, M; Dang, V D; Levin, H L

    1999-08-01

    The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.

  1. Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Department of Geriatrics, Zhu Jiang Hospital, Southern Medical University, Guangzhou, Guangdong; Hu, Fang

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions tomore » mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by

  2. Ambient pH Controls Glycogen Levels by Regulating Glycogen Synthase Gene Expression in Neurospora crassa. New Insights into the pH Signaling Pathway

    PubMed Central

    Cupertino, Fernanda Barbosa; Freitas, Fernanda Zanolli; de Paula, Renato Magalhães; Bertolini, Maria Célia

    2012-01-01

    Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacCKO strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa. PMID:22952943

  3. Antidepressive effects of targeting ELK-1 signal transduction.

    PubMed

    Apazoglou, Kallia; Farley, Séverine; Gorgievski, Victor; Belzeaux, Raoul; Lopez, Juan Pablo; Grenier, Julien; Ibrahim, El Chérif; El Khoury, Marie-Anne; Tse, Yiu C; Mongredien, Raphaele; Barbé, Alexandre; de Macedo, Carlos E A; Jaworski, Wojciech; Bochereau, Ariane; Orrico, Alejandro; Isingrini, Elsa; Guinaudie, Chloé; Mikasova, Lenka; Louis, Franck; Gautron, Sophie; Groc, Laurent; Massaad, Charbel; Yildirim, Ferah; Vialou, Vincent; Dumas, Sylvie; Marti, Fabio; Mechawar, Naguib; Morice, Elise; Wong, Tak P; Caboche, Jocelyne; Turecki, Gustavo; Giros, Bruno; Tzavara, Eleni T

    2018-05-07

    Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted 2-4 . The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation 5-7 , but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.

  4. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA.

    PubMed

    Zhao, Bryan M; Hoffmann, F Michael

    2006-09-01

    Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.

  5. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation

    PubMed Central

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta

    2014-01-01

    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  6. Age and sex differences in human skeletal muscle fibrosis markers and transforming growth factorsignaling.

    PubMed

    Parker, Lewan; Caldow, Marissa K; Watts, Rani; Levinger, Pazit; Cameron-Smith, David; Levinger, Itamar

    2017-07-01

    The aim of the study was to determine whether higher fibrosis markers in skeletal muscle of older adults are accompanied by increased expression of components of the canonical TGF-β signal transduction pathway. Fourteen healthy young (21-35 years; 9 males and 5 females) and seventeen older (55-75 years; 9 males and 8 females) participants underwent vastus lateralis biopsies to determine intramuscular mRNA and protein expression of fibrogenic markers and TGF-β signaling molecules related to TGF-β1 and myostatin. Expression of mRNA encoding the pro-fibrotic factors; axin 2, collagen III, β-catenin and fibronectin, were all significantly higher (all p < 0.05) in the older participants (350, 170, 298, and 641%, respectively). Furthermore, axin 2 and β-catenin mRNA were significantly higher in older females than older males (p < 0.05). Gene expression of ActRIIB, myostatin, and TGF-β1 were higher in older adults compared to younger adults (all p < 0.05). There was, however, no difference in the total protein content of myostatin, myoD or myogenin (all p > 0.05), whereas Smad3 protein phosphorylation was 48% lower (p < 0.05) in muscle from older adults. Increased abundance of mRNA of fibrotic markers was observed in muscle from older adults and was partly accompanied by altered abundance of pro-fibrotic ligands in a sex specific manner.

  7. The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae.

    PubMed Central

    Abdel-Sater, Fadi; Iraqui, Ismaïl; Urrestarazu, Antonio; André, Bruno

    2004-01-01

    Yeast cells respond to the presence of amino acids in their environment by inducing transcription of several amino acid permease genes including AGP1, BAP2, and BAP3. The signaling pathway responsible for this induction involves Ssy1, a permease-like sensor of external amino acids, and culminates with proteolytic cleavage and translocation to the nucleus of the zinc-finger proteins Stp1 and Stp2, the lack of which abolishes induction of BAP2 and BAP3. Here we show that Stp1-but not Stp2-plays an important role in AGP1 induction, although significant induction of AGP1 by amino acids persists in stp1 and stp1 stp2 mutants. This residual induction depends on the Uga35/Dal81 transcription factor, indicating that the external amino acid signaling pathway activates not only Stp1 and Stp2, but also another Uga35/Dal81-dependent transcriptional circuit. Analysis of the AGP1 gene's upstream region revealed that Stp1 and Uga35/Dal81 act synergistically through a 21-bp cis-acting sequence similar to the UAS(AA) element previously found in the BAP2 and BAP3 upstream regions. Although cells growing under poor nitrogen-supply conditions display much higher induction of AGP1 expression than cells growing under good nitrogen-supply conditions, the UAS(AA) itself is totally insensitive to nitrogen availability. Nitrogen-source control of AGP1 induction is mediated by the GATA factor Gln3, likely acting through adjacent 5'-GATA-3' sequences, to amplify the positive effect of UAS(AA). Our data indicate that Stp1 may act in combination with distinct sets of transcription factors, according to the gene context, to promote induction of transcription in response to external amino acids. The data also suggest that Uga35/Dal81 is yet another transcription factor under the control of the external amino acid sensing pathway. Finally, the data show that the TOR pathway mediating global nitrogen control of transcription does not interfere with the external amino acid signaling pathway. PMID

  8. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1.

    PubMed

    Wen, Bi-Qing; Xing, Mei-Qing; Zhang, Hua; Dai, Cheng; Xue, Hong-Wei

    2011-11-01

    Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling. © 2011 Institute of Botany, Chinese Academy of Sciences.

  9. New insights into IGF-1 signaling in the heart.

    PubMed

    Troncoso, Rodrigo; Ibarra, Cristián; Vicencio, Jose Miguel; Jaimovich, Enrique; Lavandero, Sergio

    2014-03-01

    Insulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein. These pathways involve classic second messengers, phosphorylation cascades, lipid signaling, Ca(2+) transients, and gene expression. In addition, IGF-1R triggers signaling in different subcellular locations including the plasma membrane, perinuclear T tubules, and also in internalized vesicles. In this review, we provide a fresh and updated view of the complex IGF-1 scenario in the heart, including a critical focus on therapeutic strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. pH-Signaling Transcription Factor AopacC Regulates Ochratoxin A Biosynthesis in Aspergillus ochraceus.

    PubMed

    Wang, Yan; Liu, Fei; Wang, Liuqing; Wang, Qi; Selvaraj, Jonathan Nimal; Zhao, Yueju; Wang, Yun; Xing, Fuguo; Liu, Yang

    2018-05-02

    In Aspergillus and Penicillium species, an essential pH-response transcription factor pacC is involved in growth, pathogenicity, and toxigenicity. To investigate the connection between ochratoxin A (OTA) biosynthesis and ambient pH, the AopacC in Aspergillus ochraceus was functionally characterized using a loss-of-function mutant. The mycelium growth was inhibited under pH 4.5 and 10.0, while the sporulation increased under alkaline condition. A reduction of mycelium growth and an elevation of sporulation was observed in Δ AopacC mutant. Compared to neutral condition, OTA contents were respectively reduced by 71.6 and 79.8% under acidic and alkaline conditions. The expression of AopacC increased with the elevated pH, and deleting AopacC dramatically decreased OTA production and biosynthetic genes Aopks expression. Additionally, the Δ AopacC mutant exhibited attenuated infection ability toward pear fruits. These results suggest that AopacC is an alkaline-induced regulator responsible for growth and OTA biosynthesis in A. ochraceus and this regulatory mechanism might be pH-dependent.

  11. Inhibitory effect of ginsenoside Rg1 on extracellular matrix production via extracellular signal-regulated protein kinase/activator protein 1 pathway in nasal polyp-derived fibroblasts.

    PubMed

    Cho, Jung-Sun; Moon, You-Mi; Um, Ji-Young; Moon, Jun-Hyeok; Park, Il-Ho; Lee, Heung-Man

    2012-06-01

    Nasal polyps are associated with chronic inflammation of the sinonasal mucosa and are involved in myofibroblast differentiation and extracellular matrix (ECM) accumulation. Ginsenoside Rg1, a compound derived from Panax ginseng, shows antifibrotic and anticancer effects. However, the molecular effects of Rg1 on myofibroblast differentiation and ECM production remain unknown. The aims of this study were to investigate the effect of Rg1 on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and ECM production and to determine the molecular mechanism of Rg1 in nasal polyp-derived fibroblasts (NPDFs). NPDFs were isolated from nasal polyps of seven patients who had chronic rhinosinusitis with nasal polyp. NPDFs were exposed to TGF-β1 with or without Rg1. Expression levels of α-smooth muscle actin (SMA), fibronectin and collagen type Iα1 were determined by reverse transcription polymerase chain reaction, Western blot and immunofluorescent staining. TGF-β1 signaling molecules, including Smad2/3, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were analyzed by Western blotting. Transcription factors involved with TGF-β1 signaling, nuclear factor (NF)-κB and activator protein 1 (AP-1) were also assessed by Western blot. The cytotoxic effect of Rg1 was measured by an established viability assay. The mRNA and protein expression levels of α-SMA, fibronectin and collagen type Iα1 were increased in TGF-β1-induced NPDFs. Rg1 inhibited these effects. The inhibitory molecular mechanism of Rg1 was involved in the ERK pathway. Rg1 inhibited the transcription factor activation of AP-1. Rg1 itself was not cytotoxic. The ginsenoside Rg1 has inhibitory effects on myofibroblast differentiation and ECM production. The inhibitory mechanism of Rg1 is involved with the ERK and AP-1 signaling pathways. Rg1 may be useful as an inhibitor of ECM deposition, and has potential to be used as a novel treatment option for nasal

  12. [Rbf1 (RPG-box binding factor), a transcription factor involved in yeast-hyphal transition of Candida albicans].

    PubMed

    Aoki, Y; Ishii, N; Watanabe, M; Yoshihara, F; Arisawa, M

    1998-01-01

    The major fungal pathogen for fungal diseases which have become a major medical problem in the last few years is Candida albicans, which can grow both in yeast and hyphae forms. This ability of C. albicans is thought to contribute to its colonization and dissemination within host tissues. In a recent few years, accompanying the introduction of molecular biological tools into C. albicans organism, several factors involved in the signal transduction pathway for yeast-hyphal transition have been identified. One MAP kinase pathway in C. albicans, similar to that leading to STE12 activation in Saccharomyces cerevisiae, has been reported. C. albicans strains mutant in these genes show retarded filamentous growth on a solid media but no impairment of filamentous growth in mice. These results suggest two scenarios that a kinase signaling cascade plays a part in stimulating the morphological transition in C. albicans, and that there would be another signaling pathway effective in animals. In this latter true hyphal pathway, although some candidate proteins, such as Efg1 (transcription factor), Int1 (integrin-like membrane protein), or Phr1 (pH-regulated membrane protein), have been identified, it is still too early to say that we understand the whole picture of that cascade. We have cloned a C. albicans gene encoding a novel DNA binding protein, Rbf1, that predominantly localizes in the nucleus, and shows transcriptional activation capability. Disruption of the functional RBF1 genes of C. albicans induced the filamentous growth on all solid and liquid media tested, suggesting that Rbf1 might be another candidate for the true hyphal pathway. Relationships with other factors described above, and the target (regulated) genes of Rbf1 is under investigation.

  13. TNF{alpha} acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-{kappa}B-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas, Martin A.; Carnevale, Romina P.; Proietti, Cecilia J.

    2008-02-01

    Tumor necrosis factor {alpha} (TNF{alpha}) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF{alpha}, the participation of TNF{alpha} receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNF{alpha} induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappaB (NF-{kappa}B) transcriptional activation. A TNF{alpha}-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-{kappa}B transcriptional activation and cell proliferation,more » just like wild-type TNF{alpha}, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF{alpha} signaling and biological effect. Moreover, in vivo TNF{alpha} administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-{kappa}B activity, Bay 11-7082, resulted in regression of TNF{alpha}-promoted tumor. Bay 11-7082 blocked TNF{alpha} capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-x{sub L}in vivo and in vitro. Our results reveal evidence for TNF{alpha} as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF{alpha} antagonists and NF-{kappa}B pharmacological inhibitors in established breast cancer treatment.« less

  14. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi-Feng; Yu, Hong-Wei; Sun, Li-Li

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involvedmore » in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased

  15. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    PubMed Central

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  16. TGFβ signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1.

    PubMed

    Palazuelos, Javier; Klingener, Michael; Aguirre, Adan

    2014-06-04

    Research on myelination has focused on identifying molecules capable of inducing oligodendrocyte (OL) differentiation in an effort to develop strategies that promote functional myelin regeneration in demyelinating disorders. Here, we show that transforming growth factor β (TGFβ) signaling is crucial for allowing oligodendrocyte progenitor (OP) cell cycle withdrawal, and therefore, for oligodendrogenesis and postnatal CNS myelination. Enhanced oligodendrogenesis and subcortical white matter (SCWM) myelination was detected after TGFβ gain of function, while TGFβ receptor II (TGFβ-RII) deletion in OPs prevents their development into mature myelinating OLs, leading to SCWM hypomyelination in mice. TGFβ signaling modulates OP cell cycle withdrawal and differentiation through the transcriptional modulation of c-myc and p21 gene expression, mediated by the interaction of SMAD3/4 with Sp1 and FoxO1 transcription factors. Our study is the first to demonstrate an autonomous and crucial role of TGFβ signaling in OL development and CNS myelination, and may provide new avenues in the treatment of demyelinating diseases. Copyright © 2014 the authors 0270-6474/14/347917-14$15.00/0.

  17. P66Shc signals to age

    PubMed Central

    Trinei, Mirella; Berniakovich, Ina; Beltrami, Elena; Migliaccio, Enrica; Fassina, Ambrogio; Pelicci, PierGiuseppe; Giorgio, Marco

    2009-01-01

    Oxygen metabolism is thought to impact on aging through the formation of reactive oxygen species (ROS) that are supposed to damage biological molecules. The study of p66Shc, a crucial regulator of ROS level involved in aging dysfunction, suggests that the incidence of degenerative disease and longevity are determined by a specific signaling function of ROS other than their unspecific damaging property. PMID:20157533

  18. Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis.

    PubMed

    Cutler, J A; Tahir, R; Sreenivasamurthy, S K; Mitchell, C; Renuse, S; Nirujogi, R S; Patil, A H; Heydarian, M; Wong, X; Wu, X; Huang, T-C; Kim, M-S; Reddy, K L; Pandey, A

    2017-07-01

    Two major types of leukemogenic BCR-ABL fusion proteins are p190 BCR-ABL and p210 BCR-ABL . Although the two fusion proteins are closely related, they can lead to different clinical outcomes. A thorough understanding of the signaling programs employed by these two fusion proteins is necessary to explain these clinical differences. We took an integrated approach by coupling protein-protein interaction analysis using biotinylation identification with global phosphorylation analysis to investigate the differences in signaling between these two fusion proteins. Our findings suggest that p190 BCR-ABL and p210 BCR-ABL differentially activate important signaling pathways, such as JAK-STAT, and engage with molecules that indicate interaction with different subcellular compartments. In the case of p210 BCR-ABL , we observed an increased engagement of molecules active proximal to the membrane and in the case of p190 BCR-ABL , an engagement of molecules of the cytoskeleton. These differences in signaling could underlie the distinct leukemogenic process induced by these two protein variants.

  19. Activation of Neuregulin 1/ErbB Signaling Is Involved in the Development of TOCP-Induced Delayed Neuropathy.

    PubMed

    Xu, Hai-Yang; Wang, Pan; Sun, Ying-Jian; Xu, Ming-Yuan; Zhu, Li; Wu, Yi-Jun

    2018-01-01

    Organophosphate-induced delayed neuropathy (OPIDN) is characterized by progressive axonal degeneration and demyelination of the spinal cord and sciatic nerves. The neuregulin 1/epidermal growth factor receptor (ErbB) signaling pathway is crucial for axonal myelination. In this study, we investigated whether the neuregulin 1/ErbB signaling pathway mediated the progression of OPIDN. Adult hens were given tri- o -cresyl phosphate (TOCP), a typical neuropathic organophosphorus compound, to induce OPIDN. The ErbB inhibitor lapatinib was administered to hens 4 h prior to and 4 days after TOCP exposure. The neuregulin 1/ErbB signaling pathway was examined for their role in maintaining spinal cord and sciatic nerve fiber integrity. Schwann cell line sNF96.2 was used as the in vitro cell model. The in vivo results showed that TOCP (750 mg/kg body weight, p.o .) induced prominent ataxia and significant axon degeneration in the spinal cord and sciatic nerves. Lapatinib (25 mg/kg body weight, p.o .) treatment attenuated OPIDN clinically and histopathlogically and partially prevented the TOCP-induced activation of neuregulin 1/ErbB signaling pathway. Lapatinib also prevented the TOCP-induced inhibition of neuropathy target esterase (NTE), a key enzyme during the development of OPIDN, and the disturbed metabolism of phosphatidylcholine in sciatic nerves. In addition, lapatinib was shown, in vitro , to protect sNF96.2 cells from TOCP-induced dedifferentiation through neuregulin 1/ErbB signaling. Our results suggest that neuregulin 1/ErbB, through regulation of NTE activity in the peripheral nervous system, mediates the progression of OPIDN. Thus, this signal may serve as a potential target for the treatment of OPIDN.

  20. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.