Sample records for factor stimulated phosphoinositide

  1. Possible mechanism for preterm labor associated with bacterial infection. I. Stimulation of phosphoinositide metabolism by endotoxin in endometrial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.A.; Imai, A.; Tamaya, T.

    Growing evidence suggests an association between intra-amniotic infection and premature initiation of parturition. We recently demonstrated that some factor(s) including endotoxin produced by the organism stimulates endogenous phospholipase A2 resulting in liberation of arachidonic acid and prostaglandin formation. The studies presented in this report were designated to evaluate the mechanism for endotoxin to stimulate phospholipase A2 using human endometrial fibroblasts. Exposure of the fibroblasts to endotoxin from Escherichia coli in the presence of ({sup 32}P) phosphate increased {sup 32}P-labeling of phosphatidic acid (PA) and phosphatidyl-inositol (PI) in a dose-dependent and a time-dependent manners. The PA labeling occurred without a measurablemore » lag time. These findings demonstrate that the endotoxin stimulates phosphoinositide metabolism in human endometrial fibroblasts by a receptor-mediated mechanism. Membrane phosphoinositide turnover stimulated by endotoxin results in cytosolic Ca{sup 2+} increment, liberation of arachidonic acid, which may be involved in the initiation of parturition.« less

  2. Odorant-stimulated phosphoinositide signaling in mammalian olfactory receptor neurons

    PubMed Central

    Klasen, K.; Corey, E.A.; Kuck, F.; Wetzel, C.H.; Hatt, H.; Ache, B.W.

    2009-01-01

    Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase Cδ1 (PLCδ1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P2/IP3 and PI(3,4,5)P3, the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2 sec of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction. PMID:19781634

  3. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balduini, W.; Murphy, S.D.; Costa, L.G.

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of (3H) inositol phosphates in (3H)inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats.more » Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of (3H)QNB (r2 = 0.627) and, particularly, with (3H)pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%.« less

  4. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF ormore » thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).« less

  5. Adenosine receptor activation potentiates phosphoinositide hydrolysis and arachidonic acid release in DDT1-MF2 cells: putative interrelations.

    PubMed

    Schachter, J B; Yasuda, R P; Wolfe, B B

    1995-09-01

    Studies were undertaken in an effort to discern possible mechanisms by which the A1 adenosine receptor agonist cyclopentyladenosine (CPA) enhances the norepinephrine-stimulated (NE-stimulated) hydrolysis of phosphoinositides in DDT1-MF2 cells. Measurements of arachidonic acid release revealed similar behaviours to those observed in measurements of phosphoinositide hydrolysis. In the presence of NE, both second messenger responses were potentiated by the addition of CPA, whereas in the absence of NE, CPA had little or no effect on either second messenger. The stimulation and potentiation of both second messenger responses were enhanced in the presence of extracellular calcium, and in each case these effects were persistent over time. For either second messenger system the stimulation by NE and the potentiation by CPA appeared to utilize separate mechanisms as evidenced by the fact that the potentiations by CPA were selectively antagonized by a cAMP analogue or by pertussis toxin, whereas the stimulations by NE were essentially unaffected by these agents. Inhibition of phospholipase A2 (PLA2) also blocked the potentiation of PLC by CPA, without affecting NE-stimulated phosphoinositide hydrolysis. Furthermore, in the presence of CPA, the exogenous administration of PLA2 was found to stimulate phosphoinositide hydrolysis in these cells. These data are consistent with a hypothesis whereby the apparent potentiation of NE-stimulated phosphoinositide hydrolysis by CPA is actually due to the stimulation by CPA of a second pathway of phospholipase C activity which is additive to that of NE. The activation of PLC and PLA2 by NE produces phospholipid products which may play a permissive role in the pathway coupling adenosine A1 receptors to these phospholipases. The formation of lysophosphatidic acid is suggested as one possible mediator of this permissive effect.

  6. Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons

    PubMed Central

    Kruse, Martin; Vivas, Oscar; Traynor-Kaplan, Alexis

    2016-01-01

    In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate, and Ca2+ upon muscarinic stimulation in sympathetic neurons from adult male Sprague-Dawley rats with electrophysiological and optical approaches. We used this kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show and explain faster synthesis of PI(4,5)P2 in sympathetic neurons than in electrically nonexcitable tsA201 cells. They can be used to understand dynamic effects of receptor-mediated phospholipase C activation on excitability and other PI(4,5)P2-dependent processes in neurons. SIGNIFICANCE STATEMENT Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neurons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons. PMID:26818524

  7. Activation of Phosphoinositide Metabolism by Cholinergic Agents.

    DTIC Science & Technology

    1992-03-15

    most notably calcium. Cholinergic agonist-induced seizures; Brain second messenger systems; Neurotransmitter/ Neuromodulator interactions; RAV; Lab...have been described: modulation by protein kinase C and modulation by neurotransmitter (or neuromodulator ) interactions. Agents which stimulate...phosphoinositide hydrolysis that has been identified consists of interactions among neurotransmitter systems or neuromodulators . Perhaps those most widely

  8. Cyclic AMP differentiates two separate but interacting pathways of phosphoinositide hydrolysis in the DDT1-MF2 smooth muscle cell line.

    PubMed

    Schachter, J B; Wolfe, B B

    1992-03-01

    The activation of adenosine A1 receptors in DDT1-MF2 smooth muscle cells resulted in both the inhibition of agonist-stimulated cAMP accumulation and the potentiation of norepinephrine-stimulated phosphoinositide hydrolysis. Pharmacological analysis indicated the involvement of an A1 adenosine receptor subtype in both of these responses. In the absence of norepinephrine, the activation of the adenosine receptor did not directly stimulate phosphoinositide hydrolysis. The adenosine receptor-mediated augmentation of norepinephrine-stimulated phosphoinositide hydrolysis was pertussis toxin sensitive and was selectively antagonized by agents that mimicked cAMP (8-bromo-cAMP) or raised cellular cAMP levels (forskolin). This initially suggested that cAMP might partially regulate the magnitude of the phospholipase C response to norepinephrine and that adenosine agonists might enhance the phospholipase C response by reducing cAMP levels. However, neither the reduction of cellular cAMP levels by other agents nor the inhibition of cAMP-dependent protein kinase was sufficient to replicate the action of adenosine receptor activation on phosphoinositide hydrolysis. Thus, in the presence of norepinephrine, adenosine receptor agonists appear to stimulate phosphoinositide hydrolysis via a pathway that is separate from, but dependent upon, that of norepinephrine. This second pathway can be distinguished from that which is stimulated by norepinephrine on the basis of its sensitivity to inhibition by both cAMP and pertussis toxin.

  9. Phosphoinositide-binding proteins in autophagy.

    PubMed

    Lystad, Alf Håkon; Simonsen, Anne

    2016-08-01

    Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy. © 2016 Federation of European Biochemical Societies.

  10. Phosphoinositides: Key modulators of energy metabolism☆

    PubMed Central

    Bridges, Dave; Saltiel, Alan R.

    2014-01-01

    Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P3 levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides. PMID:25463477

  11. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed Central

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-01-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets. PMID:10947961

  12. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  13. Effects of the amphiphilic peptides mastoparan and adenoregulin on receptor binding, G proteins, phosphoinositide breakdown, cyclic AMP generation, and calcium influx.

    PubMed

    Shin, Y; Moni, R W; Lueders, J E; Daly, J W

    1994-04-01

    1. The amphiphilic peptide mastoparan is known to affect phosphoinositide breakdown, calcium influx, and exocytosis of hormones and neurotransmitters and to stimulate the GTPase activity of guanine nucleotide-binding regulatory proteins. Another amphiphilic peptide, adenoregulin was recently identified based on stimulation of agonist binding to A1-adenosine receptors. 2. A comparison of the effects of mastoparan and adenoregulin reveals that these peptides share many properties. Both stimulate binding of agonists to receptors and binding of GTP gamma S to G proteins in brain membranes. The enhanced guanyl nucleotide exchange may be responsible for the complete conversion of receptors to a high-affinity state, complexed with guanyl nucleotide-free G proteins. 3. Both peptides increase phosphoinositide breakdown in NIH 3T3 fibroblasts. Pertussis toxin partially inhibits the phosphoinositide breakdown elicited by mastoparan but has no effect on the response to adenoregulin. N-Ethylmaleimide inhibits the response to both peptides. 4. In permeabilized 3T3 cells, both adenoregulin and mastoparan inhibit GTP gamma S-stimulated phosphoinositide breakdown. Mastoparan slightly increases basal cyclic AMP levels in cultured cells, followed at higher concentrations by an inhibition, while adenoregulin has minimal effects. 5. Both peptides increase calcium influx in cultured cells and release of norepinephrine in pheochromocytoma PC12 cells. The calcium influx elicited by the peptides in 3T3 cells is not markedly altered by N-ethylmaleimide. 6. Multiple sites of action appear likely to underlie the effects of mastoparan/adenoregulin on receptors, G proteins, phospholipase C, and calcium.

  14. Influences of cholecystokinin octapeptide on phosphoinositide turnover in neonatal-rat brain cells.

    PubMed Central

    Zhang, L J; Lu, X Y; Han, J S

    1992-01-01

    Cholecystokinin octapeptide (CCK-8) has been shown to be coupled to phosphoinositide turnover in pancreatic acini as well as in a kind of neuroblastoma cell and a human embryonic cell line. Little is known, however, about its link with phosphatidylinositol breakdown in the brain. The brains (minus cerebella) from 1-2-day-old neonatal rats were enzymically dissociated into single cells. The intact cells were prelabelled by incubation with myo-[3H]inositol for 3 h, and were then stimulated with agonists in the presence of 10 mM-LiCl. Carbachol at 1 mM induced an increase in InsP3 labelling in brain cells (peak at 30 min, and then a gradual decrease), and a static accumulation of InsP with time, whereas the labelling of InsP2 remained essentially unchanged. A very similar time-response curve was obtained for 10 nM-CCK-8 in stimulating phosphoinositide turnover. The dose-response curve for incubated brain cells revealed that the formation of InsP3 increased when the concentration of CCK-8 was increased from 0.1 to 10 nM. A further increase in CCK-8 concentration to 100-1000 nM resulted in a gradual decrease in InsP3 formation. InsP and InsP2 levels stayed relatively stable. The production of InsP3 stimulated by 10 nM-CCK-8 was dose-dependently suppressed by the CCK-A antagonist Devazepide in the concentration range 1-10 nM; the effect declined when the concentration was further increased to 100-1000 nM. In contrast, the CCK-B antagonist L365,260 showed a sustained suppression of InsP3 production at concentrations above 0.1 nM, i.e. in the range 1-1000 nM. The results provide evidence that CCK-8 stimulates the turnover of phosphoinositide and increases InsP3 labelling in dissociated neonatal-rat brain cells, in which both CCK-A and CCK-B receptors seem to be involved. PMID:1323276

  15. Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9

    PubMed Central

    Gallop, Jennifer L.; Walrant, Astrid; Cantley, Lewis C.; Kirschner, Marc W.

    2013-01-01

    The membrane–cytosol interface is the major locus of control of actin polymerization. At this interface, phosphoinositides act as second messengers to recruit membrane-binding proteins. We show that curved membranes, but not flat ones, can use phosphatidylinositol 3-phosphate [PI(3)P] along with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to stimulate actin polymerization. In this case, actin polymerization requires the small GTPase cell cycle division 42 (Cdc42), the nucleation-promoting factor neural Wiskott–Aldrich syndrome protein (N-WASP) and the actin nucleator the actin-related protein (Arp) 2/3 complex. In liposomes containing PI(4,5)P2 as the sole phosphoinositide, actin polymerization requires transducer of Cdc42 activation-1 (toca-1). In the presence of phosphatidylinositol 3-phosphate, polymerization is both more efficient and independent of toca-1. Under these conditions, sorting nexin 9 (Snx9) can be implicated as a specific adaptor that replaces toca-1 to mobilize neural Wiskott–Aldrich syndrome protein and the Arp2/3 complex. This switch in phosphoinositide and adaptor specificity for actin polymerization from membranes has implications for how different types of actin structures are generated at precise times and locations in the cell. PMID:23589871

  16. Families of phosphoinositide-specific phospholipase C: structure and function.

    PubMed

    Katan, M

    1998-12-08

    A large number of extracellular signals stimulate hydrolysis of phosphatidylinositol 4,5-bisphosphate by phosphoinositide-specific phospholipase C (PI-PLC). PI-PLC isozymes have been found in a broad spectrum of organisms and although they have common catalytic properties, their regulation involves different signalling pathways. A number of recent studies provided an insight into domain organisation of PI-PLC isozymes and contributed towards better understanding of the structural basis for catalysis, cellular localisation and molecular changes that could underlie the process of their activation.

  17. Physical Foundations of PTEN/Phosphoinositide Interaction

    NASA Astrophysics Data System (ADS)

    Gericke, Arne; Jiang, Zhiping; Redfern, Roberta E.; Kooijman, Edgar E.; Ross, Alonzo H.

    2009-03-01

    Phosphoinositides act as signaling molecules by recruiting critical effectors to specific subcellular membranes to regulate cell proliferation, apoptosis and cytoskeletal reorganization, which requires a tight regulation of phosphoinositide generation and turnover as well as a high degree of compartmentalization. PTEN is a phosphatase specific for the 3 position of the phosophoinositide ring that is deleted or mutated in many different disease states. PTEN association with membranes requires the interaction of its C2 domain with phosphatidylserine and the interaction of its N-terminal end with phosphatidylinositol-4,5-bisphophate (PI(4,5)P2). We have investigated PTEN/PI(4,5)P2 interaction and found that Lys13 is crucial for the observed binding. We also found that the presence of cholesterol enhances PTEN binding to mixed PI(4,5)P2/POPC vesicles. Fluorescence microscopy experiments utilizing GUVs yielded results consistent with enhanced phosphoinositide domain formation in the presence of cholesterol. These experiments were accompanied by zeta potential measurements and solid state MAS ^31P-NMR experiments aimed at investigating the ionization behavior of phosphoinositides.

  18. VISUALIZIATION OF CELLULAR PHOSPHOINOSITIDE POOLS WITH GFP-FUSED PROTEIN-DOMAINS

    PubMed Central

    Balla, Tamas; Várnai, Péter

    2011-01-01

    This unit describes the method of following phosphoinositide dynamics in live cells. Inositol phospholipids have emerged as universal signaling molecules present in virtually every membrane of eukaryotic cells. Phosphoinositides are present only in tiny amounts compared to structural lipids but are metabolically very active as they are produced and degraded by the numerous inositide kinase and phosphatase enzymes. Phosphoinositides control the membrane-recruitment and activity of many protein signaling-complexes in specific membrane compartments and have been implicated in the regulation of a variety of signaling and trafficking pathways. It has been a challenge to develop methods that allow detection of phosphoinositides at the single cell level. The only available technique in live cell application is based on the use of the same protein domains selected by evolution to recognize cellular phosphoinositides. Some of these isolated protein modules when fused to fluorescent proteins can follow dynamic changes in phosphoinositides. While this technique can provide information on phosphoinositide dynamics in live cells with subcellular resolution and rapidly gained popularity, it also has several limitations that must be taken into account when interpreting the data. Here, we summarize the design and practical use of these constructs and also review important considerations for the interpretation of the data obtained by this technique. PMID:19283730

  19. Phosphoinositide and Inositol Phosphate Analysis in Lymphocyte Activation

    PubMed Central

    Sauer, Karsten; Huang, Yina Hsing; Lin, Hongying; Sandberg, Mark; Mayr, Georg W.

    2015-01-01

    Lymphocyte antigen receptor engagement profoundly changes the cellular content of phosphoinositide lipids and soluble inositol phosphates. Among these, the phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) play key signaling roles by acting as pleckstrin homology (PH) domain ligands that recruit signaling proteins to the plasma membrane. Moreover, PIP2 acts as a precursor for the second messenger molecules diacylglycerol and soluble inositol 1,4,5-trisphosphate (IP3), essential mediators of PKC, Ras/Erk, and Ca2+ signaling in lymphocytes. IP3 phosphorylation by IP3 3-kinases generates inositol 1,3,4,5-tetrakisphosphate (IP4), an essential soluble regulator of PH domain binding to PIP3 in developing T cells. Besides PIP2, PIP3, IP3, and IP4, lymphocytes produce multiple other phosphoinositides and soluble inositol phosphates that could have important physiological functions. To aid their analysis, detailed protocols that allow one to simultaneously measure the levels of multiple different phosphoinositide or inositol phosphate isomers in lymphocytes are provided here. They are based on thin layer, conventional and high-performance liquid chromatographic separation methods followed by radiolabeling or non-radioactive metal-dye detection. Finally, less broadly applicable nonchromatographic methods for detection of specific phosphoinositide or inositol phosphate isomers are discussed. Support protocols describe how to obtain pure unstimulated CD4+CD8+ thymocyte populations for analyses of inositol phosphate turnover during positive and negative selection, key steps in T cell development. PMID:19918943

  20. Modulation of phosphoinositide turnover by chronic nicergoline in rat brain.

    PubMed

    Carfagna, N; Cavanus, S; Damiani, D; Salmoiraghi, P; Fariello, R; Post, C

    1996-05-17

    Basal and agonist-stimulated phosphoinositide (PI) turnover and inositol 1,4,5 -trisphospate (InsP3) content in rat brain were investigated after chronic nicergoline (SERMION) treatment. Oral administration of nicergoline (5 mg/kg b.i.d. for 7 weeks) enhanced the basal turnover of PI in the cerebral cortex compared to controls. This effect was paralleled by a significant rise of cortical InsP3 levels. No significant changes of noradrenaline- or carbachol-induced accumulation of [3H]-inositol-I-phophate ([3H]-InsP1) were found in cortices from nicergoline-treated rats. On the contrary, in the striatum nicergoline significantly potentiated the responsiveness of noradrenaline- and carbachol-stimulated PI turnover, leaving unchanged the basal production of [3H]-InsP1 and InsP3 levels. The results suggest that the interaction of nicergoline with PI transducing pathway might have relevance to the mechanisms of action of nicergoline.

  1. Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells

    NASA Technical Reports Server (NTRS)

    Drobak, B. K.; Dewey, R. E.; Boss, W. F.; Davies, E. (Principal Investigator)

    1999-01-01

    Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.

  2. Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin cytoskeleton

    PubMed Central

    Hu, Hai; Juvekar, Ashish; Lyssiotis, Costas A.; Lien, Evan C.; Albeck, John G.; Oh, Doogie; Varma, Gopal; Hung, Yin Pun; Ullas, Soumya; Lauring, Josh; Seth, Pankaj; Lundquist, Mark R.; Tolan, Dean R.; Grant, Aaron K.; Needleman, Daniel J.; Asara, John M.; Cantley, Lewis C.

    2016-01-01

    Summary The Phosphoinositide 3-Kinase (PI3K) pathway regulates multiple steps in glucose metabolism but also cytoskeletal functions, such as cell movement and attachment. Here we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A and an increase in aldolase activity. Consistently, PI3K-, but not AKT-, SGK- or mTOR-inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point towards a master regulatory function of PI3K that integrates an epithelial cell’s metabolism and its form, shape and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling. PMID:26824656

  3. Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin Cytoskeleton.

    PubMed

    Hu, Hai; Juvekar, Ashish; Lyssiotis, Costas A; Lien, Evan C; Albeck, John G; Oh, Doogie; Varma, Gopal; Hung, Yin Pun; Ullas, Soumya; Lauring, Josh; Seth, Pankaj; Lundquist, Mark R; Tolan, Dean R; Grant, Aaron K; Needleman, Daniel J; Asara, John M; Cantley, Lewis C; Wulf, Gerburg M

    2016-01-28

    The phosphoinositide 3-kinase (PI3K) pathway regulates multiple steps in glucose metabolism and also cytoskeletal functions, such as cell movement and attachment. Here, we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A, and an increase in aldolase activity. Consistently, PI3K inhibitors, but not AKT, SGK, or mTOR inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point toward a master regulatory function of PI3K that integrates an epithelial cell's metabolism and its form, shape, and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.

    PubMed

    Antony, Priya; Baby, Bincy; Vijayan, Ranjit

    2016-11-01

    Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.

  5. Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization.

    PubMed

    Nevzorov, Ilja; Sidorenko, Ekaterina; Wang, Weihuan; Zhao, Hongxia; Vartiainen, Maria K

    2018-02-01

    Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin-dependent motor protein Myosin-1C (Myo1C) resembles the diffusion-retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  6. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase.

    PubMed

    Stoyanov, B; Volinia, S; Hanck, T; Rubio, I; Loubtchenkov, M; Malek, D; Stoyanova, S; Vanhaesebroeck, B; Dhand, R; Nürnberg, B

    1995-08-04

    Phosphoinositide-3 kinase activity is implicated in diverse cellular responses triggered by mammalian cell surface receptors and in the regulation of protein sorting in yeast. Receptors with intrinsic and associated tyrosine kinase activity recruit heterodimeric phosphoinositide-3 kinases that consist of p110 catalytic subunits and p85 adaptor molecules containing Src homology 2 (SH2) domains. A phosphoinositide-3 kinase isotype, p110 gamma, was cloned and characterized. The p110 gamma enzyme was activated in vitro by both the alpha and beta gamma subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) and did not interact with p85. A potential pleckstrin homology domain is located near its amino terminus. The p110 gamma isotype may link signaling through G protein-coupled receptors to the generation of phosphoinositide second messengers phosphorylated in the D-3 position.

  7. Inositol Pentakisphosphate Isomers Bind PH Domains with Varying Specificity and Inhibit Phosphoinositide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Jackson; S Al-Saigh; C Schultz

    2011-12-31

    PH domains represent one of the most common domains in the human proteome. These domains are recognized as important mediators of protein-phosphoinositide and protein-protein interactions. Phosphoinositides are lipid components of the membrane that function as signaling molecules by targeting proteins to their sites of action. Phosphoinositide based signaling pathways govern a diverse range of important cellular processes including membrane remodeling, differentiation, proliferation and survival. Myo-Inositol phosphates are soluble signaling molecules that are structurally similar to the head groups of phosphoinositides. These molecules have been proposed to function, at least in part, by regulating PH domain-phosphoinositide interactions. Given the structural similaritymore » of inositol phosphates we were interested in examining the specificity of PH domains towards the family of myo-inositol pentakisphosphate isomers. In work reported here we demonstrate that the C-terminal PH domain of pleckstrin possesses the specificity required to discriminate between different myo-inositol pentakisphosphate isomers. The structural basis for this specificity was determined using high-resolution crystal structures. Moreover, we show that while the PH domain of Grp1 does not possess this high degree of specificity, the PH domain of protein kinase B does. These results demonstrate that some PH domains possess enough specificity to discriminate between myo-inositol pentakisphosphate isomers allowing for these molecules to differentially regulate interactions with phosphoinositides. Furthermore, this work contributes to the growing body of evidence supporting myo-inositol phosphates as regulators of important PH domain-phosphoinositide interactions. Finally, in addition to expanding our knowledge of cellular signaling, these results provide a basis for developing tools to probe biological pathway.« less

  8. Detection and manipulation of phosphoinositides.

    PubMed

    Idevall-Hagren, Olof; De Camilli, Pietro

    2015-06-01

    Phosphoinositides (PIs) are minor components of cell membranes, but play key roles in cell function. Recent refinements in techniques for their detection, together with imaging methods to study their distribution and changes, have greatly facilitated the study of these lipids. Such methods have been complemented by the parallel development of techniques for the acute manipulation of their levels, which in turn allow bypassing the long-term adaptive changes implicit in genetic perturbations. Collectively, these advancements have helped elucidate the role of PIs in physiology and the impact of the dysfunction of their metabolism in disease. Combining methods for detection and manipulation enables the identification of specific roles played by each of the PIs and may eventually lead to the complete deconstruction of the PI signaling network. Here, we review current techniques used for the study and manipulation of cellular PIs and also discuss advantages and disadvantages associated with the various methods. This article is part of a Special Issue entitled Phosphoinositides. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling.

    PubMed

    Vaiyapuri, Sakthivel; Ali, Marfoua S; Moraes, Leonardo A; Sage, Tanya; Lewis, Kirsty R; Jones, Chris I; Gibbins, Jonathan M

    2013-12-01

    Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.

  10. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  11. PDGF activates K-Cl cotransport through phosphoinositide 3-kinase and protein phosphatase-1 in primary cultures of vascular smooth muscle cells.

    PubMed

    Zhang, Jing; Lauf, Peter K; Adragna, Norma C

    2005-07-15

    K-Cl cotransport (K-Cl COT, KCC) is an electroneutrally coupled movement of K and Cl present in most cells. In this work, we studied the pathways of regulation of K-Cl COT by platelet-derived growth factor (PDGF) in primary cultures of vascular smooth muscle cells (VSMCs). Wortmannin and LY 294002 blocked the PDGF-induced K-Cl COT activation, indicating that the phosphoinositide 3-kinase (PI 3-K) pathway is involved. However, PD 98059 had no effect on K-Cl COT activation by PDGF, suggesting that the mitogen-activated protein kinase pathway is not involved under the experimental conditions tested. Involvement of phosphatases was also examined. Sodium orthovanadate, cyclosporin A and okadaic acid had no effect on PDGF-stimulated K-Cl COT. Calyculin A blocked the PDGF-stimulated K-Cl COT by 60%, suggesting that protein phosphatase-1 (PP-1) is a mediator in the PDGF signaling pathway/s. In conclusion, our results indicate that the PDGF-mediated pathways of K-Cl COT regulation involve the signaling molecules PI 3-K and PP-1.

  12. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding.

    PubMed

    Frantz, Christian; Barreiro, Gabriela; Dominguez, Laura; Chen, Xiaoming; Eddy, Robert; Condeelis, John; Kelly, Mark J S; Jacobson, Matthew P; Barber, Diane L

    2008-12-01

    Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H(+) efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylated cofilin-S3A. Constant pH molecular dynamics simulations and nuclear magnetic resonance (NMR) reveal pH-sensitive structural changes in the cofilin C-terminal filamentous actin binding site dependent on His133. However, cofilin-H133A retains pH-sensitive changes in NMR spectra and severing activity in vitro, which suggests that it has a more complex behavior in cells. Cofilin activity is inhibited by phosphoinositide binding, and we found that phosphoinositide binding is pH-dependent for wild-type cofilin, with decreased binding at a higher pH. In contrast, phosphoinositide binding by cofilin-H133A is attenuated and pH insensitive. These data suggest a molecular mechanism whereby cofilin acts as a pH sensor to mediate a pH-dependent actin filament dynamics.

  13. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons.

    PubMed

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor

    2013-07-10

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.

  14. Distinctive Changes in Plasma Membrane Phosphoinositides Underlie Differential Regulation of TRPV1 in Nociceptive Neurons

    PubMed Central

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R.; Sharma, Esseim; Fukami, Kiyoko

    2013-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca2+-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca2+-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin–nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity. PMID:23843517

  15. BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin

    NASA Astrophysics Data System (ADS)

    Picas, Laura; Viaud, Julien; Schauer, Kristine; Vanni, Stefano; Hnia, Karim; Fraisier, Vincent; Roux, Aurélien; Bassereau, Patricia; Gaits-Iacovoni, Frédérique; Payrastre, Bernard; Laporte, Jocelyn; Manneville, Jean-Baptiste; Goud, Bruno

    2014-12-01

    Phosphoinositides play a central role in many physiological processes by assisting the recruitment of proteins to membranes through specific phosphoinositide-binding motifs. How this recruitment is coordinated in space and time is not well understood. Here we show that BIN1/M-Amphiphysin2, a protein involved in T-tubule biogenesis in muscle cells and frequently mutated in centronuclear myopathies, clusters PtdIns(4,5)P2 to recruit its downstream partner dynamin. By using several mutants associated with centronuclear myopathies, we find that the N-BAR and the SH3 domains of BIN1 control the kinetics and the accumulation of dynamin on membranes, respectively. We show that phosphoinositide clustering is a mechanism shared by other proteins that interact with PtdIns(4,5)P2, but do not contain a BAR domain. Our numerical simulations point out that clustering is a diffusion-driven process in which phosphoinositide molecules are not sequestered. We propose that this mechanism plays a key role in the recruitment of downstream phosphoinositide-binding proteins.

  16. Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation

    PubMed Central

    Alcázar, Isabela; Marqués, Miriam; Kumar, Amit; Hirsch, Emilio; Wymann, Matthias; Carrera, Ana C.; Barber, Domingo F.

    2007-01-01

    Class I phosphoinositide 3–kinases (PI3Ks) constitute a family of enzymes that generates 3-phosphorylated polyphosphoinositides at the cell membrane after stimulation of protein tyrosine (Tyr) kinase–associated receptors or G protein–coupled receptors (GPCRs). The class I PI3Ks are divided into two types: class IA p85/p110 heterodimers, which are activated by Tyr kinases, and the class IB p110γ isoform, which is activated by GPCR. Although the T cell receptor (TCR) is a protein Tyr kinase–associated receptor, p110γ deletion affects TCR-induced T cell stimulation. We examined whether the TCR activates p110γ, as well as the consequences of interfering with p110γ expression or function for T cell activation. We found that after TCR ligation, p110γ interacts with Gαq/11, lymphocyte-specific Tyr kinase, and ζ-associated protein. TCR stimulation activates p110γ, which affects 3-phosphorylated polyphosphoinositide levels at the immunological synapse. We show that TCR-stimulated p110γ controls RAS-related C3 botulinum substrate 1 activity, F-actin polarization, and the interaction between T cells and antigen-presenting cells, illustrating a crucial role for p110γ in TCR-induced T cell activation. PMID:17998387

  17. Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons

    PubMed Central

    Ukhanov, Kirill; Corey, Elizabeth; Ache, Barry W.

    2016-01-01

    Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signaling. As PI3K is known to act in concert with phospholipase C (PLC) in some cellular systems, the question arises as to whether they work together to mediate inhibitory transduction in mammalian ORNs. The present study is designed to test this hypothesis. While we establish that multiple PLC isoforms are expressed in the transduction zone of rat ORNs, that odorants can activate PLC in ORNs in situ, and that pharmacological blockade of PLC enhances the excitatory response to an odorant mixture in some ORNs in conjunction with PI3K blockade, we find that by itself PLC does not account for an inhibitory response. We conclude that PLC does not make a measurable independent contribution to odor-evoked inhibition, and that PI3K is the primary mediator of PI-dependent inhibition in mammalian ORNs. PMID:27147969

  18. Dual regulation of TRPV1 by phosphoinositides.

    PubMed

    Lukacs, Viktor; Thyagarajan, Baskaran; Varnai, Peter; Balla, Andras; Balla, Tamas; Rohacs, Tibor

    2007-06-27

    The membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PIP2] regulates many ion channels. There are conflicting reports on the effect of PtdIns(4,5)P2 on transient receptor potential vanilloid 1 (TRPV1) channels. We show that in excised patches PtdIns(4,5)P2 and other phosphoinositides activate and the PIP2 scavenger poly-Lys inhibits TRPV1. TRPV1 currents undergo desensitization on exposure to high concentrations of capsaicin in the presence of extracellular Ca2+. We show that in the presence of extracellular Ca2+, capsaicin activates phospholipase C (PLC) in TRPV1-expressing cells, inducing depletion of both PtdIns(4,5)P2 and its precursor PtdIns(4)P (PIP). The PLC inhibitor U73122 and dialysis of PtdIns(4,5)P2 or PtdIns(4)P through the patch pipette inhibited desensitization of TRPV1, indicating that Ca2+-induced activation of PLC contributes to desensitization of TRPV1 by depletion of PtdIns(4,5)P2 and PtdIns(4)P. Selective conversion of PtdIns(4,5)P2 to PtdIns(4)P by a rapamycin-inducible PIP2 5-phosphatase did not inhibit TRPV1 at high capsaicin concentrations, suggesting a significant role for PtdIns(4)P in maintaining channel activity. Currents induced by low concentrations of capsaicin and moderate heat, however, were potentiated by conversion of PtdIns(4,5)P2 to PtdIns(4)P. Increasing PtdIns(4,5)P2 levels by coexpressing phosphatidylinositol-4-phosphate 5-kinase inhibited TRPV1 at low but not at saturating capsaicin concentrations. These data show that at low capsaicin concentrations and other moderate stimuli, PtdIns(4,5)P2 partially inhibits TRPV1 in a cellular context, but this effect is likely to be indirect, because it is not detectable in excised patches. We conclude that phosphoinositides have both inhibitory and activating effects on TRPV1, resulting in complex and distinct regulation at various stimulation levels.

  19. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was foundmore » to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.« less

  20. Specific growth stimulation of cultured smooth muscle cells from spontaneously hypertensive rats by platelet-derived growth factor A-chain homodimer.

    PubMed Central

    Resink, T J; Scott-Burden, T; Hahn, A W; Rouge, M; Hosang, M; Powell, J S; Bühler, F R

    1990-01-01

    Cultured vascular smooth muscle cells (VSMC)1 from spontaneously hypertensive rats (SHR) possess specific cell surface receptors for both homodimeric forms of platelet-derived growth factor (PDGF-AA and PDGF-BB), in contrast to cells from normotensive Wistar Kyoto (WKY) animals, which express receptors only for the B-chain form of PDGF. Stimulation of quiescent VSMC from SHR with PDGF-AA resulted in activation of S6-kinase and induction of phosphoinositide catabolism, as well as cellular proliferation when cultures were maintained for prolonged periods with daily supplementation of the growth factor. WKY-derived VSMC showed no response to PDGF-AA, which was consistent with their lack of specific receptors for this homodimer. The responsiveness of quiescent cells from SHR and WKY to the B-chain homodimer was similar. The enhanced growth responsiveness of SHR-derived cells to fetal calf serum, as compared with cells from their normotensive counterparts, may be accounted for in part by their expression of receptors for the AA homodimer of PDGF. PMID:1965150

  1. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides.

    PubMed

    Saarikangas, Juha; Zhao, Hongxia; Lappalainen, Pekka

    2010-01-01

    The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.

  2. Mechanism for phosphoinositide selectivity and activation of TRPV1 ion channels

    PubMed Central

    Ufret-Vincenty, Carmen A.; Klein, Rebecca M.; Collins, Marcus D.; Rosasco, Mario G.; Martinez, Gilbert Q.

    2015-01-01

    Although PI(4,5)P2 is believed to play an essential role in regulating the activity of numerous ion channels and transporters, the mechanisms by which it does so are unknown. Here, we used the ability of the TRPV1 ion channel to discriminate between PI(4,5)P2 and PI(4)P to localize the region of TRPV1 sequence that interacts directly with the phosphoinositide. We identified a point mutation in the proximal C-terminal region after the TRP box, R721A, that inverted the selectivity of TRPV1. Although the R721A mutation produced only a 30% increase in the EC50 for activation by PI(4,5)P2, it decreased the EC50 for activation by PI(4)P by more than two orders of magnitude. We used chemically induced and voltage-activated phosphatases to determine that PI(4)P continued to support TRPV1 activity even after depletion of PI(4,5)P2 from the plasma membrane. Our data cannot be explained by a purely electrostatic mechanism for interaction between the phosphoinositide and the protein, similar to that of the MARCKS (myristoylated alanine-rich C kinase substrate) effector domain or the EGF receptor. Rather, conversion of a PI(4,5)P2-selective channel to a PI(4)P-selective channel indicates that a structured phosphoinositide-binding site mediates the regulation of TRPV1 activity and that the amino acid at position 721 likely interacts directly with the moiety at the 5′ position of the phosphoinositide. PMID:25918361

  3. Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation

    PubMed Central

    2013-01-01

    Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease. PMID:23899561

  4. Activation of Phosphoinositide Metabolism by Cholinergic Agents.

    DTIC Science & Technology

    1990-12-16

    acid significantly inhibited NE-induced [3H]IP1 production in slices that had been prelabelled with [3H]inositol and baclofen , a specific GABAB...agonist, was as effective as GABA in enhancing the response to NE (Figure 15). Neither GABA nor baclofen significantly blocked the inhibitory effect of...quisqualate, but baclofen reduced the inhibitory effect of arachidonic acid. Effects of NMDA receptor antagonists on phosphoinositide hydrolysis MK-801 is

  5. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.

    2011-01-01

    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates

  6. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition

    PubMed Central

    Juss, Jatinder K.; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M. L.; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M.; Condliffe, Alison

    2016-01-01

    Rationale: Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease’s complex pathophysiology, yet these cells have been little studied. Objectives: To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Methods: Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Measurements and Main Results: Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Conclusions: Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase–dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of

  7. Phosphoinositide regulation of TRPV1 revisited

    PubMed Central

    Rohacs, Tibor

    2015-01-01

    The heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid 1 ion channel (TRPV1) is regulated by plasma membrane phosphoinositides. The effects of these lipids on this channel have been controversial. Recent articles re-ignited the debate and also offered resolution to place some of the data in a coherent picture. This review summarizes the literature on this topic and provides a detailed and critical discussion on the experimental evidence for the various effects of phosphatidylinositol 4,5-bisphosphayte [PI(4,5)P2 or PIP2] on TRPV1. We conclude that PI(4,5)P2 and potentially its precursor PI(4)P are positive cofactors for TRPV1, acting via direct interaction with the channel, and their depletion by Ca2+-induced activation of phospholipase Cδ isoforms (PLCδ) limits channel activity during capsaicin-induced desensitization. Other negatively charged lipids at higher concentrations can also support channel activity, which may explain some controversies in the literature. PI(4,5)P2 also partially inhibits channel activity in some experimental settings, and relief from this inhibition upon PLCβ activation may contribute to sensitization. The negative effect of PI(4,5)P2 is more controversial and its mechanism is less well understood. Other TRP channels from the TRPV and TRPC families may also undergo similar dual regulation by phosphoinositides, thus the complexity of TRPV1 regulation is not unique to this channel. PMID:25754030

  8. Factors Associated with Speech-Sound Stimulability.

    ERIC Educational Resources Information Center

    Lof, Gregory L.

    1996-01-01

    This study examined stimulability in 30 children (ages 3 to 5) with articulation impairments. Factors found to relate to stimulability were articulation visibility, the child's age, the family's socioeconomic status, and the child's overall imitative ability. Perception, severity, otitis media history, language abilities, consistency of…

  9. Phosphoinositides Regulate P2X4 ATP-Gated Channels through Direct Interactions

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Chevallier, Stéphanie; Blais, Dominique; Zhao, Qi; Boué-Grabot, Éric; Logothetis, Diomedes; Séguéla, Philippe

    2008-01-01

    P2X receptors are ATP-gated nonselective cation channels highly permeable to calcium that contribute to nociception and inflammatory responses. The P2X4 subtype, upregulated in activated microglia, is thought to play a critical role in the development of tactile allodynia following peripheral nerve injury. Posttranslational regulation of P2X4 function is crucial to the cellular mechanisms of neuropathic pain, however it remains poorly understood. Here, we show that the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), products of phosphorylation by wortmannin-sensitive phosphatidylinositol 4-kinases and phosphatidylinositol 3-kinases, can modulate the function of native and recombinant P2X4 receptor channels. In BV-2 microglial cells, depleting the intracellular levels of PIP2 and PIP3 with wortmannin significantly decreased P2X4 current amplitude and P2X4-mediated calcium entry measured in patch clamp recordings and ratiometric ion imaging, respectively. Wortmannin-induced depletion of phosphoinositides in Xenopus oocytes decreased the current amplitude of P2X4 responses by converting ATP into a partial agonist. It also decreased their recovery from desensitization and affected their kinetics. Injection of phosphoinositides in wortmannin-treated oocytes reversed these effects and application of PIP2 on excised inside-out macropatches rescued P2X4 currents from rundown. Moreover, we report the direct interaction of phospholipids with the proximal C-terminal domain of P2X4 subunit (Cys360-Val375) using an in vitro binding assay. These results demonstrate novel regulatory roles of the major signaling phosphoinositides PIP2 and PIP3 on P2X4 function through direct channel-lipid interactions. PMID:19036987

  10. AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth

    PubMed Central

    Park, Young Soo; Kim, Dong Joon; Koo, Han; Jang, Se Hwan; You, Yeon-Mi; Cho, Jung Hee; Yang, Suk-Jin; Yu, Eun Sil; Jung, Yuri; Lee, Dong Chul; Kim, Jung-Ae; Park, Zee-Yong; Park, Kyung Chan; Yeom, Young Il

    2016-01-01

    Pyruvate kinase muscle type 2 (PKM2) exhibits post-translational modifications in response to various signals from the tumor microenvironment. Insulin-like growth factor 1 (IGF-1) is a crucial signal in the tumor microenvironment that promotes cell growth and survival in many human cancers. Herein, we report that AKT directly interacts with PKM2 and phosphorylates it at Ser-202, which is essential for the nuclear translocation of PKM2 protein under stimulation of IGF-1. In the nucleus, PKM2 binds to STAT5A and induces IGF-1-stimulated cyclin D1 expression, suggesting that PKM2 acts as an important factor inducing STAT5A activation under IGF-1 signaling. Concordantly, overexpression of STAT5A in cells deficient in PKM2 expression failed to restore IGF-induced growth, whereas reconstitution of PKM2 in PKM2 knockdown cells restored the IGF-induced growth capacity. Our findings suggest a novel role of PKM2 in promoting the growth of cancers with dysregulated IGF/phosphoinositide 3-kinase/AKT signaling. PMID:27340866

  11. Susceptibility of ATP-sensitive K+ channels to cell stress through mediation of phosphoinositides as examined by photoirradiation

    PubMed Central

    Fan, Zheng; Neff, Robert A

    2000-01-01

    Cell stress is implicated in a number of pathological states of metabolism, such as ischaemia, reperfusion and apoptosis in heart, neurons and other tissues. While it is known that the ATP-sensitive K+ (KATP) channel plays a role during metabolic abnormality, little information is available about the direct response of this channel to cell stress. Using photoirradiation stimulation, we studied the effects of cell stress on both native and cloned KATP channels. Single KATP channel currents were recorded from cell-attached and inside-out patches of rat ventricular myocytes and COS-1 cells coexpressing SUR2 and Kir6.2. KATP channel activity increased within < 1 min upon irradiation. The activity resulted from increased maximal open probability and decreased ATP inhibition. The effects remained after the irradiation was stopped. Irradiation also affected the channels formed only by Kir6.2ΔC35. The irradiation-induced activation was comparable to that induced by phosphoinositides. Analysis of phosphatidylinositol composition revealed an elevated phosphatidylinositol bisphosphate level with irradiation. Wortmannin, an inhibitor of phosphatidylinositol kinases, decreased both the irradiation-induced channel activity and the production of phosphatidylinositol bisphosphates. Radical scavengers also reduced the irradiation-induced activation, suggesting a role for free radicals, an immediate product of photoirradiation. We conclude that photoirradiation can modify the single-channel properties of KATP, which appears to be mediated by phosphoinositides. Our study suggests that cellular stress may be linked with KATP channels, and we offer a putative mechanism for such a linkage. PMID:11118500

  12. Differential response of normal human fibroblasts to bombesin versus thrombin.

    PubMed

    Hendey, B; Mamrack, M D

    1988-09-01

    Normal human diploid fibroblasts (WS-1 cells) were growth-arrested under serum-free conditions for 48 hr. The addition of fetal bovine serum (10% final concentration) to these cells stimulated [3H]-thymidine incorporation into DNA and phosphoinositide breakdown over nine-fold. Thrombin, at concentrations above 0.1 unit/ml (u/ml), was also effective at stimulating DNA synthesis and phosphoinositide breakdown as well as causing a rise in intracellular pH. In contrast, the peptide bombesin (concentrations ranging from 1 nM to 100 nM) stimulated phosphoinositide breakdown but did not enhance DNA synthesis or cause an increase in cytoplasmic pH. The time course of accumulation of inositol phosphates differed in response to these agents. The thrombin effect peaked rapidly and leveled off after 5 min while the bombesin effect showed a constant increase for 30 min. Serum showed an intermediate response. The different rates of inositol phosphate accumulation observed with the two growth factors is viewed as representing a difference in the mechanism of phosphoinositide turnover. The relationship between the difference in phosphoinositide turnover and the initiation of DNA synthesis is also discussed.

  13. Phosphoinositide 3-Kinase p110δ Mediates Estrogen- and FSH-Stimulated Ovarian Follicle Growth

    PubMed Central

    Li, Qian; He, Hui; Zhang, Yin-Li; Li, Xiao-Meng; Guo, Xuejiang; Huo, Ran; Bi, Ye; Li, Jing

    2013-01-01

    In the mammalian ovary, primordial follicles are generated early in life and remain dormant for prolonged periods. Their growth resumes via primordial follicle activation, and they continue to grow until the preovulatory stage under the regulation of hormones and growth factors, such as estrogen, FSH, and IGF-1. Both FSH and IGF-1 activate the phosphatidylinositol-3 kinase (PI3K)/Akt (acute transforming retrovirus thymoma protein kinase) signaling pathway in granulosa cells (GCs), yet it remains inconclusive whether the PI3K pathway is crucial for follicle growth. In this study, we investigated the p110δ isoform (encoded by the Pik3cd gene) of PI3K catalytic subunit expression in the mouse ovary and its function in fertility. Pik3cd-null females were subfertile, exhibited fewer growing follicles and more atretic antral follicles in the ovary, and responded poorly to exogenous gonadotropins compared with controls. Ovary transplantation showed that Pik3cd-null ovaries responded poorly to FSH stimulation in vitro; this confirmed that the follicle growth defect was intrinsically ovarian. In addition, estradiol (E2)-stimulated follicle growth and GC proliferation in preantral follicles was impaired in Pik3cd-null ovaries. FSH and E2 substantially activated the PI3K/Akt pathway in GCs of control mice but not in those of Pik3cd-null mice. However, primordial follicle activation and oocyte meiotic maturation were not affected by Pik3cd knockout. Taken together, our findings indicate that the p110δ isoform of the PI3K catalytic subunit is a key component of the PI3K pathway for both FSH and E2-stimulated follicle growth in ovarian GCs; however, it is not required for primordial follicle activation and oocyte development. PMID:23820902

  14. Endothelial cell stimulating angiogenesis factor.

    PubMed

    Weiss, J B; McLaughlin, B

    1998-04-01

    Endothelial cell stimulating angiogenesis factor (ESAF) is a small (> 1000 Da) dialysable non-peptide molecule with potent angiogenic activity. ESAF activates the major pro-matrix metalloproteinases and also uniquely reactivates the complex of these active enzymes with their tissue inhibitors resulting in both active enzyme and inhibitor. These actions may be pivotal in its role as an angiogenic factor. ESAF is primarily involved in angiogenic conditions where inflammatory cells are not evident such as foetal bone growth and electrically stimulated skeletal muscles and proliferative retinopathy. However, high levels also occur in actively growing human intracranial tumours but it is not noticeably elevated in rheumatoid arthritic synovial fluid. Its extreme potency and low molecular mass make its structural determination difficult. Possible therapeutic applications would be in the treatment of ischaemic ulcers, acceleration of fracture repair, infertility and more modestly in the correction of baldness. Analogues of ESAF could be of value in treating angiogenic diseases such as psoriasis and proliferative retinopathy.

  15. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1.

    PubMed

    Feldman, Richard I; Wu, James M; Polokoff, Mark A; Kochanny, Monica J; Dinter, Harald; Zhu, Daguang; Biroc, Sandra L; Alicke, Bruno; Bryant, Judi; Yuan, Shendong; Buckman, Brad O; Lentz, Dao; Ferrer, Mike; Whitlow, Marc; Adler, Marc; Finster, Silke; Chang, Zheng; Arnaiz, Damian O

    2005-05-20

    The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.

  16. Formation of PI 3-kinase products in platelets by thrombin, but not collagen, is dependent on synergistic autocrine stimulation, particularly through secreted ADP.

    PubMed

    Selheim, F; Idsøe, R; Fukami, M H; Holmsen, H; Vassbotn, F S

    1999-10-05

    Platelet activation by thrombin or collagen results in secretion and synthesis of several platelet agonists that enhance the responses to the primary agonists (autocrine stimulation). To disclose the effects of thrombin and collagen on the phosphorylation of 3-phosphoinositides per se we incubated platelets with five inhibitors of platelet autocrine stimulation (IAS) that act extracellularly. We found that IAS almost totally blocked thrombin-induced production of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. In contrast, collagen induced massive production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) in the presence of IAS. When testing the effect of each inhibitor individually we found the strongest inhibition of thrombin-induced PtdIns(3,4)P(2) production with the ADP scavenger system CP/CPK. Furthermore, we found a strong synergistic effect between exogenously added ADP and thrombin on production of PtdIns(3,4)P(2). In contrast to the results from 3-phosphorylated phosphoinositides, CP/CPK had little effect on thrombin-induced protein tyrosine phosphorylation. Our results show the importance of autocrine stimulation in thrombin-induced accumulation of 3-phosphorylated phosphoinositides and raise the question as to whether thrombin by itself is capable of inducing PI 3-K activation. In marked contrast to thrombin, collagen per se appears to be able to trigger increased production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). Copyright 1999 Academic Press.

  17. Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains

    PubMed Central

    Cronin, Thomas C; DiNitto, Jonathan P; Czech, Michael P; Lambright, David G

    2004-01-01

    The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the β1/β2 loop exhibit dual specificity for PtdIns(3,4,5)P3 and PtdIns(4,5)P2. The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Loss of contacts with the β1/β2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P3 affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P2 is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the β1/β2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition. PMID:15359279

  18. Live cell imaging of phosphoinositide dynamics during Legionella infection.

    PubMed

    Weber, Stephen; Hilbi, Hubert

    2014-01-01

    The "accidental" pathogen Legionella pneumophila replicates intracellularly in a distinct compartment, the Legionella-containing vacuole (LCV). To form this specific pathogen vacuole, the bacteria translocate via the Icm/Dot type IV secretion system approximately 300 different effector proteins into the host cell. Several of these secreted effectors anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. L. pneumophila thus largely controls the localization of secreted bacterial effectors and the recruitment of host factors to the LCV through the modulation of the vacuole membrane PI pattern. The LCV PI pattern and its dynamics can be studied in real-time using fluorescently labeled protein probes stably produced by the soil amoeba Dictyostelium discoideum. In this chapter, we describe a protocol to (1) construct and handle amoeba model systems as a tool for observing PIs in live cell imaging, (2) capture rapid changes in membrane PI patterning during uptake events, and (3) observe the dynamics of LCV PIs over the course of a Legionella infection.

  19. Role of calcium in phosphoinositide metabolism and inhibition of norepinephrine transport into synaptic vesicles by amphetamine analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, S.M.

    1985-01-01

    Norepinephrine-(NE) and calcium ionophore A23187-stimulated phosphoinositide (PIn) metabolism in rat brain slices was studied under varying calcium conditions. Tissue was labelled with /sup 3/H-myo-inositol and /sup 3/H-inositol phosphates (IPn), products of PIn metabolism were measured. In the absence of media calcium the response to NE was decreased while that to A23187 was little affected A23187 can release calcium from intracellular stores. Basal and stimulated accumulation of /sup 3/H-IPn was reversibly antagonized with EGTA by addition of calcium. Using calcium buffers, approximately 10/sup -7/ M free calcium was required to support hydrolysis. Free intracellular calcium is maintained at approximately this level.more » Thus calcium is required for PIn hydrolysis but appears to play a permissive role, basal levels being sufficient to support metabolism. Conformationally-defined (rigid) and -restricted (semi-rigid) analogs of the most stable conformations of amphetamine, antiperiplanar (exo) and gauche (endo), were utilized to probe the conformational requirements of vesicular NE transport. Analogs tested were 2-aminotetralin (2AT), 3-methyltetrahydroisoquinoline, anti- and syn-9-aminobenzobicyclo(2.2.1)heptene, and endo and exo conformers of 2-aminobenzobicyclo(2.2.1)heptene and 2-aminobenzobicyclo(2.2.2)octene.« less

  20. Protein Kinase B Activation and Lamellipodium Formation Are Independent Phosphoinositide 3-Kinase-Mediated Events Differentially Regulated by Endogenous Ras

    PubMed Central

    van Weering, David H. J.; de Rooij, Johan; Marte, Barbara; Downward, Julian; Bos, Johannes L.; Burgering, Boudewijn M. T.

    1998-01-01

    Regulation of phosphoinositide 3-kinase (PI 3-kinase) can occur by binding of the regulatory p85 subunit to tyrosine-phosphorylated proteins and by binding of the p110 catalytic subunit to activated Ras. However, the way in which these regulatory mechanisms act to regulate PI 3-kinase in vivo is unclear. Here we show that several growth factors (basic fibroblast growth factor [bFGF], platelet-derived growth factor [PDGF], and epidermal growth factor [EGF; to activate an EGF receptor-Ret chimeric receptor]) all activate PI 3-kinase in vivo in the neuroectoderm-derived cell line SKF5. However, these growth factors differ in their ability to activate PI 3-kinase-dependent signaling. PDGF and EGF(Ret) treatment induced PI 3-kinase-dependent lamellipodium formation and protein kinase B (PKB) activation. In contrast, bFGF did not induce lamellipodium formation but activated PKB, albeit to a small extent. PDGF and EGF(Ret) stimulation resulted in binding of p85 to tyrosine-phosphorylated proteins and strong Ras activation. bFGF, however, induced only strong activation of Ras. In addition, while RasAsn17 abolished bFGF activation of PKB, PDGF- and EGF(Ret)-induced PKB activation was only partially inhibited and lamellipodium formation was unaffected. Interestingly, in contrast to activation of only endogenous Ras (bFGF), ectopic expression of activated Ras did result in lamellipodium formation. From this we conclude that, in vivo, p85 and Ras synergize to activate PI 3-kinase and that strong activation of only endogenous Ras exerts a small effect on PI 3-kinase activity, sufficient for PKB activation but not lamellipodium formation. This differential sensitivity to PI 3-kinase activation could be explained by our finding that PKB activation and lamellipodium formation are independent PI 3-kinase-induced events. PMID:9528752

  1. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Does granulocyte colony-stimulating factor ameliorate the proinflammatory response in human meningococcal septic shock?

    PubMed

    Rojahn, Astrid; Brusletto, Berit; Øvstebø, Reidun; Haug, Kari B F; Kierulf, Peter; Brandtzaeg, Petter

    2008-09-01

    To test the hypothesis that granulocyte colony-stimulating factor acts cooperatively with interleukin-10 in down-regulating monocyte function in severe meningococcal septic shock. 1) We quantified the plasma levels of granulocyte colony-stimulating factor, interleukin-10, Neisseria meningitidis lipopolysaccharide and the number of N. meningitidis DNA copies in 28 patients with systemic meningococcal disease. 2) We studied the inhibitory effect of recombinant human granulocyte colony-stimulating factor on normal human monocytes stimulated with purified meningococcal lipopolysaccaride. 3) We monitored the inhibitory effects of endogenously produced granulocyte colony-stimulating factor and interleukin-10 in meningococcal shock plasmas on monocytes. Comparative, experimental study. University Hospital and laboratory. Twenty-eight patients with systemic meningococcal disease, 13 with persistent shock, 7 died, and 15 without shock. The median levels of granulocyte colony-stimulating factor in shock and nonshock patients were 1.7 x 10(6) and 8.1 x 10(2) pg/mL; interleukin-10, 2.1 x 10(4) and 4 x 10(1) pg/mL; number of N. meningitidis DNA copies, 2.9 x 10(7) and <10(3)/mL; and lipopolysaccharide, 105 and <0.04 endotoxin units/mL, respectively. The plasma levels of granulocyte colony-stimulating factor were reduced by 50% within 4 to 6 hrs after initiation of antibiotic treatment. In model experiments with lipopolysaccharide-stimulated human monocytes, recombinant human granulocyte colony-stimulating factor and interleukin-10 reduced the release of tumor necrosis factor-alpha by mean 30% and 92%, respectively. When plasmas from three shock patients were depleted of native granulocyte colony-stimulating factor or interleukin-10 by immunoprecipitation, no increase in tumor necrosis factor-alpha release occurred after removal of granulocyte colony-stimulating factor, whereas removal of interleukin-10 increased the tumor necrosis factor-alpha release eight-fold. Although

  3. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice.

    PubMed

    Rehni, Ashish K; Singh, Nirmal

    2007-01-01

    The present study has been designed to pharmacologically investigate the role of phosphoinositide 3-kinase in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion-induced behavioral dysfunction in mice. Bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in mice. Short-term memory was evaluated using the elevated plus maze test. The inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced impaired short-term memory, motor co-ordination and lateral push response. Three episodes of carotid artery occlusion for a period of 10 s and reperfusion of 10 s (ischemic postconditioning) significantly prevented ischemia-reperfusion-induced behavioral deficit measured in terms of loss of short-term memory, motor coordination and lateral push response. Wortmannin (2 mg/kg, iv), a phosphoinositide 3-kinase inhibitor given 10 min before ischemia attenuated the beneficial effects of ischemic postconditioning. It may be concluded that beneficial effects of ischemic postconditioning on global cerebral ischemia and reperfusion-induced behavioral deficits may involve activation of phosphoinositide 3-kinase-linked pathway.

  4. Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides.

    PubMed

    Salomon, Dor; Guo, Yirui; Kinch, Lisa N; Grishin, Nick V; Gardner, Kevin H; Orth, Kim

    2013-01-01

    Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.

  5. Phosphoinositide 3-kinase gamma regulates airway smooth muscle contraction by modulating calcium oscillations.

    PubMed

    Jiang, Haihong; Abel, Peter W; Toews, Myron L; Deng, Caishu; Casale, Thomas B; Xie, Yan; Tu, Yaping

    2010-09-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kgamma can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kgamma protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kgamma inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 muM. In contrast, inhibitors of PI3Kalpha, PI3Kbeta, or PI3Kdelta, at concentrations 40-fold higher than their reported IC(50) values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kgamma inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kgamma-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca(2+) transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca(2+) oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kgamma directly controls contractility of airways through regulation of Ca(2+) oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kgamma inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness.

  6. Phosphoinositide 3-Kinase γ Regulates Airway Smooth Muscle Contraction by Modulating Calcium Oscillations

    PubMed Central

    Jiang, Haihong; Abel, Peter W.; Toews, Myron L.; Deng, Caishu; Casale, Thomas B.; Xie, Yan

    2010-01-01

    Phosphoinositide 3-kinase γ (PI3Kγ) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kγ can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kγ protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kγ inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 μM. In contrast, inhibitors of PI3Kα, PI3Kβ, or PI3Kδ, at concentrations 40-fold higher than their reported IC50 values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kγ inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kγ-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca2+ transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca2+ oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kγ directly controls contractility of airways through regulation of Ca2+ oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kγ inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness. PMID:20501633

  7. Interaction of PDK1 with Phosphoinositides Is Essential for Neuronal Differentiation but Dispensable for Neuronal Survival

    PubMed Central

    Zurashvili, Tinatin; Cordón-Barris, Lluís; Ruiz-Babot, Gerard; Zhou, Xiangyu; Lizcano, Jose M.; Gómez, Nestor; Giménez-Llort, Lydia

    2013-01-01

    3-Phosphoinositide-dependent protein kinase 1 (PDK1) operates in cells in response to phosphoinositide 3-kinase activation and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] production by activating a number of AGC kinases, including protein kinase B (PKB)/Akt. Both PDK1 and PKB contain pleckstrin homology (PH) domains that interact with the PtdIns(3,4,5)P3 second messenger. Disrupting the interaction of the PDK1 PH domain with phosphoinositides by expressing the PDK1 K465E knock-in mutation resulted in mice with reduced PKB activation. We explored the physiological consequences of this biochemical lesion in the central nervous system. The PDK1 knock-in mice displayed a reduced brain size due to a reduction in neuronal cell size rather than cell number. Reduced BDNF-induced phosphorylation of PKB at Thr308, the PDK1 site, was observed in the mutant neurons, which was not rate limiting for the phosphorylation of those PKB substrates governing neuronal survival and apoptosis, such as FOXO1 or glycogen synthase kinase 3 (GSK3). Accordingly, the integrity of the PDK1 PH domain was not essential to support the survival of different embryonic neuronal populations analyzed. In contrast, PKB-mediated phosphorylation of PRAS40 and TSC2, allowing optimal mTORC1 activation and brain-specific kinase (BRSK) protein synthesis, was markedly reduced in the mutant mice, leading to impaired neuronal growth and differentiation. PMID:23275438

  8. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling.

    PubMed

    Mas, Caroline; Norwood, Suzanne J; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E; Davis, Jasmine L; Teasdale, Rohan D; Collins, Brett M

    2014-10-10

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?

    PubMed

    Ma, Xiaohong; Shatil-Cohen, Arava; Ben-Dor, Shifra; Wigoda, Noa; Perera, Imara Y; Im, Yang Ju; Diminshtein, Sofia; Yu, Ling; Boss, Wendy F; Moshelion, Menachem; Moran, Nava

    2015-03-01

    Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 μm s(-1), while in the controls only by 3-4 μm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.

  10. Dynamic formation of ER–PM junctions presents a lipid phosphatase to regulate phosphoinositides

    PubMed Central

    Jensen, Jill B.; Vivas, Oscar; Kruse, Martin; Traynor-Kaplan, Alexis E.; Hille, Bertil

    2016-01-01

    Endoplasmic reticulum–plasma membrane (ER–PM) contact sites play an integral role in cellular processes such as excitation–contraction coupling and store-operated calcium entry (SOCE). Another ER–PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER–PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2. Activation of G protein–coupled receptors that deplete PM PI(4,5)P2 disrupts E-Syt2–mediated ER–PM junctions, reducing Sac1’s access to the PM and permitting PM PI(4)P and PI(4,5)P2 to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER–PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes. PMID:27044890

  11. LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets

    PubMed Central

    O’Connor, Anne; Brasher, Christopher J.; Slatter, David A.; Meckelmann, Sven W.; Hawksworth, Jade I.; Allen, Stuart M.; O’Donnell, Valerie B.

    2017-01-01

    Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides. PMID:28405621

  12. Factors influencing parental decision making about stimulant treatment for attention-deficit/hyperactivity disorder.

    PubMed

    Ahmed, Rana; McCaffery, Kirsten J; Aslani, Parisa

    2013-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is a pediatric psychological condition commonly treated with stimulant medications. Negative media reports and stigmatizing societal attitudes surrounding the use of these medications make it difficult for parents of affected children to accept stimulant treatment, despite it being first line therapy. The purpose of this study was to identify factors that influence parental decision making regarding stimulant treatment for ADHD. A systematic review of the literature was conducted to identify studies: 1) that employed qualitative methodology, 2) that highlighted treatment decision(s) about stimulant medication, 3) in which the decision(s) were made by the parent of a child with an official ADHD diagnosis, and 4) that examined the factors affecting the decision(s) made. Individual factors influencing parental treatment decision making, and the major themes encompassing these factors, were identified and followed by a thematic analysis. Eleven studies reporting on the experiences of 335 parents of children with ADHD were included. Four major themes encompassing influences on parents' decisions were derived from the thematic analysis performed: confronting the diagnosis, external influences, apprehension regarding therapy, and experience with the healthcare system. The findings of this systematic review reveal that there are multiple factors that influence parents' decisions about stimulant therapy. This information can assist clinicians in enhancing information delivery to parents of children with ADHD, and help reduce parental ambivalence surrounding stimulant medication use. Future work needs to address parental concerns about stimulants, and increase their involvement in shared decision making with clinicians to empower them to make the most appropriate treatment decision for their child.

  13. Pathogen trafficking pathways and host phosphoinositide metabolism.

    PubMed

    Weber, Stefan S; Ragaz, Curdin; Hilbi, Hubert

    2009-03-01

    Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila, Brucella abortus, Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells.

  14. Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis

    PubMed Central

    Echave, Pedro; Machado-da-Silva, Gisela; Arkell, Rebecca S.; Duchen, Michael R.; Jacobson, Jake; Mitter, Richard; Lloyd, Alison C.

    2009-01-01

    Summary Cells generate new organelles when stimulated by extracellular factors to grow and divide; however, little is known about how growth and mitogenic signalling pathways regulate organelle biogenesis. Using mitochondria as a model organelle, we have investigated this problem in primary Schwann cells, for which distinct factors act solely as mitogens (neuregulin) or as promoters of cell growth (insulin-like growth factor 1; IGF1). We find that neuregulin and IGF1 act synergistically to increase mitochondrial biogenesis and mitochondrial DNA replication, resulting in increased mitochondrial density in these cells. Moreover, constitutive oncogenic Ras signalling results in a further increase in mitochondrial density. This synergistic effect is seen at the global transcriptional level, requires both the ERK and phosphoinositide 3-kinase (PI3K) signalling pathways and is mediated by the transcription factor ERRα. Interestingly, the effect is independent of Akt-TOR signalling, a major regulator of cell growth in these cells. This separation of the pathways that drive mitochondrial biogenesis and cell growth provides a mechanism for the modulation of mitochondrial density according to the metabolic requirements of the cell. PMID:19920079

  15. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved.

    PubMed

    Ramos, Ana Raquel; Elong Edimo, William's; Erneux, Christophe

    2018-01-01

    Inositol polyphosphate 5-phosphatases or phosphoinositide 5-phosphatases (PI 5-phosphatases) are enzymes that can act on soluble inositol phosphates and/or phosphoinositides (PIs). Several PI 5-phosphatases have been linked to human genetic diseases, in particular the Lowe protein or OCRL which is mutated in the Lowe syndrome. There are 10 different members of this family and 9 of them can use PIs as substrate. One of these substrates, PI(3,4,5)P3 binds to specific PH domains and recruits as effectors specific proteins to signaling complexes. Protein kinase B is one target protein and activation of the kinase will have a major impact on cell proliferation, survival and cell metabolism. Two other PIs, PI(4,5)P2 and PI(3,4)P2, are produced or used as substrates of PI 5-phosphatases (OCRL, INPP5B, SHIP1/2, SYNJ1/2, INPP5K, INPP5J, INPP5E). The inositol lipids may influence many aspects of cytoskeletal organization, lamellipodia formation and F-actin polymerization. PI 5-phosphatases have been reported to control cell migration, adhesion, polarity and cell invasion particularly in cancer cells. In glioblastoma, reducing SHIP2 expression can positively or negatively affect the speed of cell migration depending on the glioblastoma cell type. The two PI 5-phosphatases SHIP2 or SKIP could be localized at the plasma membrane and can reduce either PI(3,4,5)P3 or PI(4,5)P2 abundance. In the glioblastoma 1321 N1 cells, SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent

  17. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides.

    PubMed

    Dai, Gucan; Peng, Changhong; Liu, Chunming; Varnum, Michael D

    2013-04-01

    Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIP(n)), including phosphatidylinositol 3,4,5-triphosphate (PIP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIP(n) application. However, PIP(n) induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIP(n)-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIP(n) application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIP(n) regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIP(n) sensitivity to heteromeric channels formed with PIP(n)-insensitive A subunits. Finally, channels formed by mixtures of PIP(n)-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIP(n) regulation, implying that intersubunit N-C interactions help control the phosphoinositide sensitivity of cone CNG channels.

  18. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides

    PubMed Central

    Dai, Gucan; Peng, Changhong; Liu, Chunming

    2013-01-01

    Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIPn), including phosphatidylinositol 3,4,5-triphosphate (PIP3) and phosphatidylinositol 4,5-bisphosphate (PIP2), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIPn application. However, PIPn induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIPn-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIPn application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIPn regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIPn sensitivity to heteromeric channels formed with PIPn-insensitive A subunits. Finally, channels formed by mixtures of PIPn-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIPn regulation, implying that intersubunit N–C interactions help control the phosphoinositide sensitivity of cone CNG channels. PMID:23530136

  19. Streptococcus pyogenes CAMP factor promotes bacterial adhesion and invasion in pharyngeal epithelial cells without serum via PI3K/Akt signaling pathway.

    PubMed

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Isono, Toshihito; Nakamura, Yuki; Saitoh, Issei; Hayasaki, Haruaki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-01-01

    Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine-threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Aciculatin Inhibits Granulocyte Colony-Stimulating Factor Production by Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes

    PubMed Central

    Shih, Kao-Shang; Wang, Jyh-Horng; Wu, Yi-Wen; Teng, Che-Ming; Chen, Chien-Chih; Yang, Chia-Ron

    2012-01-01

    The expression of granulocyte colony-stimulating factor (G-CSF), the major regulator of neutrophil maturation, by human fibroblast-like synoviocytes (FLS) can be stimulated by the inflammatory cytokine interleukin-1β (IL-1β). G-CSF is known to contribute to the pathologic processes of destructive arthritis, but the induction mechanism remains unknown. The aims of this study were to identify the signaling pathways involved in IL-1β-stimulated G-CSF production and to determine whether this process was inhibited by aciculatin (8-((2R,4S,5S,6R)-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one), the major bioactive component of Chrysopogon aciculatus. IL-1β-induced cytokine expression was evaluated by measuring mRNA and protein levels by RT-PCR, ELISA, and Milliplex® assay. Whether aciculatin inhibited IL-1β-stimulated G-CSF expression, and if so, how, were evaluated using western blot assay, an electrophoretic mobility shift assay, and a reporter gene assay. Neutrophil differentiation was determined by Wright-Giemsa staining and flow cytometry. Aciculatin markedly inhibited G-CSF expression induced by IL-1β (10 ng/mL) in a concentration-dependent manner (1–10 µM). In clarifying the mechanisms involved, aciculatin was found to inhibit the IL-1β-induced activation of the IκB kinase (IKK)/IκB/nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways by suppressing the DNA binding activity of the transcription factors NF-κB and activator protein (AP)-1. Furthermore, aciculatin significantly inhibited the G-CSF-mediated phosphorylation of Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Akt and neutrophil differentiation from precursor cells. Our results show that aciculatin inhibits IL-1β-stimulated G-CSF expression and the subsequent neutrophil differentiation, suggesting that it might have therapeutic potential for inflammatory arthritis. PMID

  1. Involvement of phosphoinositide 3-kinase and PTEN protein in mechanism of activation of TRPC6 protein in vascular smooth muscle cells.

    PubMed

    Monet, Michaël; Francoeur, Nancy; Boulay, Guylain

    2012-05-18

    TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry after the stimulation of a G(q)-protein-coupled or tyrosine-kinase receptor. TRPC6 translocates to the plasma membrane upon stimulation and remains there as long as the stimulus is present. However, the mechanism that regulates the trafficking and activation of TRPC6 are unclear. In this study we showed phosphoinositide 3-kinase and its antagonistic phosphatase, PTEN, are involved in the activation of TRPC6. The inhibition of PI3K by PIK-93, LY294002, or wortmannin decreased carbachol-induced translocation of TRPC6 to the plasma membrane and carbachol-induced net Ca(2+) entry into T6.11 cells. Conversely, a reduction of PTEN expression did not affect carbachol-induced externalization of TRPC6 but increased Ca(2+) entry through TRPC6 in T6.11 cells. We also showed that the PI3K/PTEN pathway regulates vasopressin-induced translocation of TRPC6 to the plasma membrane and vasopressin-induced Ca(2+) entry into A7r5 cells, which endogenously express TRPC6. In summary, we provided evidence that the PI3K/PTEN pathway plays an important role in the translocation of TRPC6 to the plasma membrane and may thus have a significant impact on Ca(2+) signaling in cells that endogenously express TRPC6.

  2. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okajima, F.; Sho, K.; Kondo, Y.

    1988-08-01

    Exposure of FRTL-5 thyroid cells to ATP (1 microM to 1 mM) resulted in the stimulation of I- efflux in association with the induction of inositol trisphosphate production and intracellular Ca2+ mobilization. Nonhydrolyzable ATP derivatives, ADP and GTP, were also as effective in magnitude as ATP, whereas neither AMP nor adenosine exerted significant effect on I- efflux, suggesting a P2-purinergic receptor-mediated activation of I- efflux. Treatment of the cells with the islet-activating protein (IAP) pertussis toxin, which ADP-ribosylated a 41,000 mol wt membrane protein, effectively suppressed the phosphoinositide response to ATP in addition to ATP-dependent I- efflux at agonist concentrationsmore » below 10 microM. In contrast, the I- efflux stimulated by TSH, A23187, or phorbol myristate acetate was insusceptible to IAP. The IAP substrate, probably GTP-binding protein, is hence proposed to mediate the activation of P2-purinergic receptor-linked phospholipase-C in FRTL-5 cells. However, the responses to ATP, its nonhydrolyzable derivatives, or ADP at the higher agonist concentrations, especially above 100 microM, were only partially inhibited by IAP, even though the IAP substrate was totally ADP ribosylated by the toxin. The responses to GTP in the whole concentration range tested were not influenced by IAP treatment. Thus, signals arising from the P2-receptor might be transduced to phospholipase-C by two different pathways, i.e. IAP-sensitive and insensitive ones, and result in the stimulation of I- efflux.« less

  3. Phenol-soluble modulin α4 mediates Staphylococcus aureus-associated vascular leakage by stimulating heparin-binding protein release from neutrophils

    PubMed Central

    li, Lin; Pian, Yaya; Chen, Shaolong; Hao, Huaijie; Zheng, Yuling; Zhu, Li; Xu, Bin; Liu, Keke; Li, Min; Jiang, Hua; Jiang, Yongqiang

    2016-01-01

    Vascular leakage frequently occurs in patients with severe Staphylococcus aureus infection. However, the mechanism underlying S. aureus infection-induced vascular leakage remains unclear. Here, we identified the S. aureus virulence factor phenol-soluble modulin (PSM)α4 from the culture supernatant of strain USA300 as a stimulator of heparin-binding protein (HBP) release from polymorphonuclear neutrophils (PMNs) and demonstrated that PSMα4-induced HBP release from PMNs leads to vascular leakage. PSMα4 appeared less cytolytic than PSMα1–3 and was insensitive to lipoproteins; it significantly increased myeloperoxidase and elastase release from PMNs and cell surface CD63 expression in PMNs. PSMα4-induced HBP release required formyl peptide receptor 2 (FPR2) and phosphoinositide 3-kinase (PI3K) and depended on Ca2+ influx and cytoskeleton rearrangement. Thus, PSMα4 may stimulate HBP release by activating FPR2 and PI3K to initiate PMN degranulation. PSMα4-induced HBP release from PMNs increased endothelial cell monolayer permeability in vitro and induced vascular leakage in mice. This novel function of PSMα4 may contribute to the pathogenesis of S. aureus and may be a potential therapeutic target. PMID:27383625

  4. Sac1--Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yiying; Deng, Yongqiang; Horenkamp, Florian

    2014-08-25

    Sac1 is a phosphoinositide phosphatase of the endoplasmic reticulum and Golgi apparatus that controls organelle membrane composition principally via regulation of phosphatidylinositol 4-phosphate signaling. We present a characterization of the structure of the N-terminal portion of yeast Sac1, containing the conserved Sac1 homology domain, in complex with Vps74, a phosphatidylinositol 4-kinase effector and the orthologue of human GOLPH3. The interface involves the N-terminal subdomain of the Sac1 homology domain, within which mutations in the related Sac3/Fig4 phosphatase have been linked to Charcot–Marie–Tooth disorder CMT4J and amyotrophic lateral sclerosis. Disruption of the Sac1–Vps74 interface results in a broader distribution of phosphatidylinositolmore » 4-phosphate within the Golgi apparatus and failure to maintain residence of a medial Golgi mannosyltransferase. The analysis prompts a revision of the membrane-docking mechanism for GOLPH3 family proteins and reveals how an effector of phosphoinositide signaling serves a dual function in signal termination.« less

  5. Targeting phosphoinositide 3-kinase: moving towards therapy.

    PubMed

    Marone, Romina; Cmiljanovic, Vladimir; Giese, Bernd; Wymann, Matthias P

    2008-01-01

    Phosphoinositide 3-kinases (PI3K) orchestrate cell responses including mitogenic signaling, cell survival and growth, metabolic control, vesicular trafficking, degranulation, cytoskeletal rearrangement and migration. Deregulation of the PI3K pathway occurs by activating mutations in growth factor receptors or the PIK3CA locus coding for PI3Kalpha, by loss of function of the lipid phosphatase and tensin homolog deleted in chromosome ten (PTEN/MMAC/TEP1), by the up-regulation of protein kinase B (PKB/Akt), or the impairment of the tuberous sclerosis complex (TSC1/2). All these events are linked to growth and proliferation, and have thus prompted a significant interest in the pharmaceutical targeting of the PI3K pathway in cancer. Genetic targeting of PI3Kgamma (p110gamma) and PI3Kdelta (p110delta) in mice has underlined a central role of these PI3K isoforms in inflammation and allergy, as they modulate chemotaxis of leukocytes and degranulation in mast cells. Proof-of-concept molecules selective for PI3Kgamma have already successfully alleviated disease progress in murine models of rheumatoid arthritis and lupus erythematosus. As targeting PI3K moves forward to therapy of chronic, non-fatal disease, safety concerns for PI3K inhibitors increase. Many of the present inhibitor series interfere with target of rapamycin (TOR), DNA-dependent protein kinase (DNA-PK(cs)) and activity of the ataxia telangiectasia mutated gene product (ATM). Here we review the current disease-relevant knowledge for isoform-specific PI3K function in the above mentioned diseases, and review the progress of >400 recent patents covering pharmaceutical targeting of PI3K. Currently, several drugs targeting the PI3K pathway have entered clinical trials (phase I) for solid tumors and suppression of tissue damage after myocardial infarction (phases I,II).

  6. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M. F.; Downes, C. Peter; Batty, Ian H.

    2012-01-01

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105–107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules. PMID:22493426

  7. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those ofmore » the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.« less

  8. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein.

    PubMed

    Chao, Kinlin L; Kulakova, Liudmila; Herzberg, Osnat

    2017-02-14

    The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn's disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88 DNVD 91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport.

  9. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    PubMed

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma.

    PubMed

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-06-17

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

  11. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ

    PubMed Central

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J. H.; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-01-01

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110α, p110β, and p110δ) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110α and p110δ to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110γ class IB PI3K lack SH2 domains and instead couple p110γ to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110β and cells derived from a p110β-deficient mouse line, that p110β is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110β and p110γ contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110β but not p110γ, p110β mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110γ in these cells reduced the contribution of p110β to GPCR signaling. Taken together, these data show that p110β and p110γ can couple redundantly to the same GPCR agonists. p110β, which shows a much broader tissue distribution than the leukocyte-restricted p110γ, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110γ expression is low or absent. PMID:18544649

  12. Involvement of Phosphoinositide 3-Kinase and PTEN Protein in Mechanism of Activation of TRPC6 Protein in Vascular Smooth Muscle Cells*

    PubMed Central

    Monet, Michaël; Francoeur, Nancy; Boulay, Guylain

    2012-01-01

    TRPC6 is a cation channel in the plasma membrane that plays a role in Ca2+ entry after the stimulation of a Gq-protein-coupled or tyrosine-kinase receptor. TRPC6 translocates to the plasma membrane upon stimulation and remains there as long as the stimulus is present. However, the mechanism that regulates the trafficking and activation of TRPC6 are unclear. In this study we showed phosphoinositide 3-kinase and its antagonistic phosphatase, PTEN, are involved in the activation of TRPC6. The inhibition of PI3K by PIK-93, LY294002, or wortmannin decreased carbachol-induced translocation of TRPC6 to the plasma membrane and carbachol-induced net Ca2+ entry into T6.11 cells. Conversely, a reduction of PTEN expression did not affect carbachol-induced externalization of TRPC6 but increased Ca2+ entry through TRPC6 in T6.11 cells. We also showed that the PI3K/PTEN pathway regulates vasopressin-induced translocation of TRPC6 to the plasma membrane and vasopressin-induced Ca2+ entry into A7r5 cells, which endogenously express TRPC6. In summary, we provided evidence that the PI3K/PTEN pathway plays an important role in the translocation of TRPC6 to the plasma membrane and may thus have a significant impact on Ca2+ signaling in cells that endogenously express TRPC6. PMID:22493444

  13. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    PubMed Central

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  14. Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ae Sin; Kim, Dal; Wagle, Susbin Raj

    2013-07-12

    Highlights: •G-CSF induces tube formation, migration and proliferation of lymphatic cells. •G-CSF increases phosphorylation of MAPK and Akt in lymphatic endothelial cells. •MAPK and Akt pathways are linked to G-CSF-induced in vitro lymphangiogenesis. •G-CSF increases sprouting of a lymphatic ring. •G-CSF produces peritoneal lymphangiogenesis. -- Abstract: Granulocyte-colony stimulating factor (G-CSF) is reported to induce differentiation in cells of the monocyte lineage and angiogenesis in vascular endothelial cells, but its effects on lymphangiogenesis is uncertain. Here we examined the effects and the mechanisms of G-CSF-induced lymphangiogenesis using human lymphatic endothelial cells (hLECs). Our results showed that G-CSF induced capillary-like tube formation,more » migration and proliferation of hLECs in a dose- and time-dependent manner and enhanced sprouting of thoracic duct. G-CSF increased phosphorylation of Akt and ERK1/2 in hLECs. Supporting the observations, specific inhibitors of phosphatidylinositol 3′-kinase and MAPK suppressed the G-CSF-induced in vitro lymphangiogenesis and sprouting. Intraperitoneal administration of G-CSF to mice also stimulated peritoneal lymphangiogenesis. These findings suggest that G-CSF is a lymphangiogenic factor.« less

  15. Colony-stimulating factors: clinical evidence for treatment and prophylaxis of chemotherapy-induced febrile neutropenia.

    PubMed

    Gómez Raposo, César; Pinto Marín, Alvaro; González Barón, Manuel

    2006-10-01

    The hematopoietic growth factors (HGFs) are a family of glycoproteins which plays a major role in the proliferation, differentiation, and survival of primitive hematopoietic stem and progenitor cells, and in the functions of some mature cells. More than 20 different molecules of HGF have been identified. Among them, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) have been demostrated to be effective in reducing the incidence of febrile neutropenia when administered inmediately after chemotherapy and as supportive therapy in patients undergoing bone marrow transplantation. Chemotherapy used for treatment of cancer often causes neutropenia, which may be profound, requiring hospitalization, and leading to potentially fatal infection. The uses of the recombinant human hematopoietic colony-stimulating factors G-CSF and GM-CSF for treatment and prophylaxis of chemotherapy-induced febrile neutropenia will be reviewed here.

  16. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    PubMed

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.

  17. Factors Influencing the Central Nervous System Distribution of a Novel Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GSK2126458: Implications for Overcoming Resistance with Combination Therapy for Melanoma Brain Metastases

    PubMed Central

    Vaidhyanathan, Shruthi; Wilken-Resman, Brynna; Ma, Daniel J.; Parrish, Karen E.; Mittapalli, Rajendar K.; Carlson, Brett L.; Sarkaria, Jann N.

    2016-01-01

    Small molecule inhibitors targeting the mitogen-activated protein kinase pathway (Braf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) have had success in extending survival for patients with metastatic melanoma. Unfortunately, resistance may occur via cross-activation of alternate signaling pathways. One approach to overcome resistance is to simultaneously target the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. Recent reports have shown that GSK2126458 [2,4-difluoro-N-(2-methoxy-5-(4-(pyridazin-4-yl)quinolin-6-yl)pyridin-3-yl) benzenesulfonamide], a dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor, can overcome acquired resistance to Braf and mitogen-activated protein kinase kinase inhibitors in vitro. These resistance mechanisms may be especially important in melanoma brain metastases because of limited drug delivery across the blood–brain barrier. The purpose of this study was to investigate factors that influence the brain distribution of GSK2126458 and to examine the efficacy of GSK2126458 in a novel patient-derived melanoma xenograft (PDX) model. Both in vitro and in vivo studies indicate that GSK2126458 is a substrate for P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), two dominant active efflux transporters in the blood–brain barrier. The steady-state brain distribution of GSK2126458 was 8-fold higher in the P-gp/Bcrp knockout mice compared with the wild type. We also observed that when simultaneously infused to steady state, GSK212658, dabrafenib, and trametinib, a rational combination to overcome mitogen-activated protein kinase inhibitor resistance, all had limited brain distribution. Coadministration of elacridar, a P-gp/Bcrp inhibitor, increased the brain distribution of GSK2126458 by approximately 7-fold in wild-type mice. In the PDX model, GSK2126458 showed efficacy in flank tumors but was ineffective in intracranial melanoma. These results show

  18. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein

    PubMed Central

    Chao, Kinlin L.; Kulakova, Liudmila; Herzberg, Osnat

    2017-01-01

    The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn’s disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88DNVD91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport. PMID:28154144

  19. Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors

    PubMed Central

    Mo, Gary; Bernier, Louis-Philippe; Zhao, Qi; Chabot-Doré, Anne-Julie; Ase, Ariel R; Logothetis, Diomedes; Cao, Chang-Qing; Séguéla, Philippe

    2009-01-01

    Background P2X3 and P2X2/3 purinergic receptor-channels, expressed in primary sensory neurons that mediate nociception, have been implicated in neuropathic and inflammatory pain responses. The phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) are involved in functional modulation of several types of ion channels. We report here evidence that these phospholipids are able to modulate the function of homomeric P2X3 and heteromeric P2X2/3 purinoceptors expressed in dorsal root ganglion (DRG) nociceptors and in heterologous expression systems. Results In dissociated rat DRG neurons, incubation with the PI3K/PI4K inhibitor wortmannin at 35 μM induced a dramatic decrease in the amplitude of ATP- or α,β-meATP-evoked P2X3 currents, while incubation with 100 nM wortmannin (selective PI3K inhibition) produced no significant effect. Intracellular application of PIP2 was able to fully reverse the inhibition of P2X3 currents induced by wortmannin. In Xenopus oocytes and in HEK293 cells expressing recombinant P2X3, 35 μM wortmannin incubation induced a significant decrease in the rate of receptor recovery. Native and recombinant P2X2/3 receptor-mediated currents were inhibited by incubation with wortmannin both at 35 μM and 100 nM. The decrease of P2X2/3 current amplitude induced by wortmannin could be partially reversed by application of PIP2 or PIP3, indicating a sensitivity to both phosphoinositides in DRG neurons and Xenopus oocytes. Using a lipid binding assay, we demonstrate that the C-terminus of the P2X2 subunit binds directly to PIP2, PIP3 and other phosphoinositides. In contrast, no direct binding was detected between the C-terminus of P2X3 subunit and phosphoinositides. Conclusion Our findings indicate a functional regulation of homomeric P2X3 and heteromeric P2X2/3 ATP receptors by phosphoinositides in the plasma membrane of DRG nociceptors, based on subtype-specific mechanisms of direct and indirect

  20. Granulocyte colony stimulating factor treatment for neonatal neutropenia.

    PubMed Central

    Russell, A. R.; Davies, E. G.; Ball, S. E.; Gordon-Smith, E.

    1995-01-01

    In a pilot study recombinant human granulocyte colony-stimulating factor (rhG-CSF) was administered to 12 neutropenic preterm infants to determine if neonatal neutropenia is secondary to decreased endogenous G-CSF production. Respiratory variables were monitored because of the possible link between inflammatory cells and hyaline membrane disease. All infants showed increased neutrophil counts. The only possible side effect observed was an exacerbation of thrombocytopenia. PMID:7538031

  1. Increased C3 production in human monocytes after stimulation with Candida albicans is suppressed by granulocyte-macrophage colony-stimulating factor.

    PubMed Central

    Høgåsen, A K; Abrahamsen, T G

    1993-01-01

    Activation of the complement system is an important part of host resistance against fungal infections. When human monocytes, cultured for 2 days or more, were treated in vitro with Candida albicans for 24 h, an enhancement of their biosynthesis of the complement components C3 and factor B was found. However, when C. albicans was administered to freshly isolated monocytes, a consistent stimulation of factor B biosynthesis occurred, while the C3 production was increased in about 50% of the donors. C. albicans also induced the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) from the cultured cells, apparently in larger amounts in the donors in whom no stimulation of C3 production was found. An antibody to GM-CSF administered with the yeast at the initiation of the monocyte culture caused an increase in the C3 production. Furthermore, when monocytes were treated with recombinant human GM-CSF either at the same time as or 4 days prior to the addition of C. albicans, the increase in C3 production was suppressed or neutralized, while factor B biosynthesis was unaffected. Taken together, these results indicate that monocytes respond to C. albicans with an increased production of complement factors. This may be an important mechanism both for opsonization of the fungus and for initiation of an inflammatory reaction. At an inflammatory site, this complement response may be suppressed by locally produced GM-CSF. PMID:8478067

  2. Epidermal growth factor receptor is required for estradiol-stimulated bovine satellite cell proliferation.

    PubMed

    Reiter, B C; Kamanga-Sollo, E; Pampusch, M S; White, M E; Dayton, W R

    2014-07-01

    The objective of this study was to assess the role of the epidermal growth factor receptor (EGFR) in estradiol-17β (E2)-stimulated proliferation of cultured bovine satellite cells (BSCs). Treatment of BSC cultures with AG1478 (a specific inhibitor of EGFR tyrosine kinase activity) suppresses E2-stimulated BSC proliferation (P < 0.05). In addition, E2-stimulated proliferation is completely suppressed (P < 0.05) in BSCs in which EGFR expression is silenced by treatment with EGFR small interfering RNA (siRNA). These results indicate that EGFR is required for E2 to stimulate proliferation in BSC cultures. Both AG1478 treatment and EGFR silencing also suppress proliferation stimulated by LR3-IGF-1 (an IGF1 analogue that binds normally to the insulin-like growth factor receptor (IGFR)-1 but has little or no affinity for IGF binding proteins) in cultured BSCs (P < 0.05). Even though EGFR siRNA treatment has no effect on IGFR-1β mRNA expression in cultured BSCs, IGFR-1β protein level is substantially reduced in BSCs treated with EGFR siRNA. These data suggest that EGFR silencing results in post-transcriptional modifications that result in decreased IGFR-1β protein levels. Although it is clear that functional EGFR is necessary for E2-stimulated proliferation of BSCs, the role of EGFR is not clear. Transactivation of EGFR may directly stimulate proliferation, or EGFR may function to maintain the level of IGFR-1β which is necessary for E2-stimulated proliferation. It also is possible that the role of EGFR in E2-stimulated BSC proliferation may involve both of these mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Decellularized heart valve as a scaffold for in vivo recellularization: deleterious effects of granulocyte colony-stimulating factor.

    PubMed

    Juthier, Francis; Vincentelli, André; Gaudric, Julien; Corseaux, Delphine; Fouquet, Olivier; Calet, Christine; Le Tourneau, Thierry; Soenen, Valérie; Zawadzki, Christophe; Fabre, Olivier; Susen, Sophie; Prat, Alain; Jude, Brigitte

    2006-04-01

    Autologous recellularization of decellularized heart valve scaffolds is a promising challenge in the field of tissue-engineered heart valves and could be boosted by bone marrow progenitor cell mobilization. The aim of this study was to examine the spontaneous in vivo recolonization potential of xenogeneic decellularized heart valves in a lamb model and the effects of granulocyte colony-stimulating factor mobilization of bone marrow cells on this process. Decellularized porcine aortic valves were implanted in 12 lambs. Six lambs received granulocyte colony-stimulating factor (10 microg x kg(-1) x d(-1) for 7 days, granulocyte colony-stimulating factor group), and 6 received no granulocyte colony-stimulating factor (control group). Additionally, nondecellularized porcine valves were implanted in 5 lambs (xenograft group). Angiographic and histologic evaluation was performed at 3, 6, 8, and 16 weeks. Few macroscopic modifications of leaflets and the aortic wall were observed in the control group, whereas progressive shrinkage and thickening of the leaflets appeared in the granulocyte colony-stimulating factor and xenograft groups. In the 3 groups progressive ovine cell infiltration (fluorescence in situ hybridization) was observed in the leaflets and in the adventitia and the intima of the aortic wall but not in the media. Neointimal proliferation of alpha-actin-positive cells, inflammatory infiltration, adventitial neovascularization, and calcifications were more important in the xenograft and the granulocyte colony-stimulating factor groups than in the control group. Continuous re-endothelialization appeared only in the control group. Decellularized xenogeneic heart valve scaffolds allowed partial autologous recellularization. Granulocyte colony-stimulating factor led to accelerated heart valve deterioration similar to that observed in nondecellularized xenogeneic cardiac bioprostheses.

  4. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.

    PubMed

    Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter

    2003-03-14

    Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.

  5. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase

    NASA Technical Reports Server (NTRS)

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.

  6. Fluorine-18 fluorodeoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation.

    PubMed

    Abdel-Dayem, H M; Rosen, G; El-Zeftawy, H; Naddaf, S; Kumar, M; Atay, S; Cacavio, A

    1999-05-01

    Two patients with sarcoma, one with recurrent osteosarcoma of the spine and the other with metastatic synovial cell sarcoma, were treated with high-dose chemotherapy that produced severe leukopenia. The patients received granulocyte colony-stimulating factor (G-CSF) to stimulate the bone marrow (480 mg given subcutaneously twice daily for 5 to 7 days); their responses were seen as a marked increase in peripheral leukocyte count with no change in the erythrocyte or platelet counts. The patients had fluorine-18 fluorodeoxyglucose (F-18 FDG) imaging 24 hours after the end of G-CSF treatment. Diffusely increased uptake of F-18 FDG was seen in the bone marrow in both patients. In addition, markedly increased uptake in the spleen was noted in both, indicating that the spleen was the site of extramedullary hematopoiesis. The patients had no evidence of splenic metastases. The first patient had a history of irradiation to the dorsal spine, which was less responsive to G-CSF administration than was the nonirradiated lumbar spine.

  7. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  8. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.

  9. Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy.

    PubMed

    Luo, Ji; McMullen, Julie R; Sobkiw, Cassandra L; Zhang, Li; Dorfman, Adam L; Sherwood, Megan C; Logsdon, M Nicole; Horner, James W; DePinho, Ronald A; Izumo, Seigo; Cantley, Lewis C

    2005-11-01

    Class I(A) phosphoinositide 3-kinases (PI3Ks) are activated by growth factor receptors, and they regulate, among other processes, cell growth and organ size. Studies using transgenic mice overexpressing constitutively active and dominant negative forms of the p110alpha catalytic subunit of class I(A) PI3K have implicated the role of this enzyme in regulating heart size and physiological cardiac hypertrophy. To further understand the role of class I(A) PI3K in controlling heart growth and to circumvent potential complications from the overexpression of dominant negative and constitutively active proteins, we generated mice with muscle-specific deletion of the p85alpha regulatory subunit and germ line deletion of the p85beta regulatory subunit of class I(A) PI3K. Here we show that mice with cardiac deletion of both p85 subunits exhibit attenuated Akt signaling in the heart, reduced heart size, and altered cardiac gene expression. Furthermore, exercise-induced cardiac hypertrophy is also attenuated in the p85 knockout hearts. Despite such defects in postnatal developmental growth and physiological hypertrophy, the p85 knockout hearts exhibit normal contractility and myocardial histology. Our results therefore provide strong genetic evidence that class I(A) PI3Ks are critical regulators for the developmental growth and physiological hypertrophy of the heart.

  10. PGE2 is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation

    PubMed Central

    Starner, Renny J.; McClelland, Lindy; Abdel-Malek, Zalfa; Fricke, Alex; Scott, Glynis

    2013-01-01

    Melanocyte proliferation, dendrite formation, and pigmentation are controlled by paracrine factors, particularly following exposure to ultraviolet radiation (UVR). Little is known about autocrine factors for melanocytes. Prostaglandins activate signaling pathways involved in growth, differentiation and apoptosis. Prostaglandin E2 (PGE2) is the most abundant prostaglandin released by keratinocytes following UVR, and stimulates the formation of dendrites in melanocytes. Synthesis of PGE2 is controlled by cPLA2, which releases arachidonic acid from membranes, and COX-2 and prostaglandin E2 synthases (PGES), which convert arachidonic acid to PGH2 and PGH2 to PGE2, respectively. In this report we show that multiple irradiations of human melanocytes with UVR stimulates tyrosinase activity, independent of expression of a functional melanocortin 1 receptor, suggesting the presence of a non-melanocortin autocrine factor. Irradiation of melanocytes activated cPLA2, the rate-limiting step in eicosanoid synthesis, and stimulated PGE2 secretion. PGE2 increased cAMP production, tyrosinase activity and proliferation in melanocytes. PGE2 binds to four distinct G-protein coupled receptors (EP1–4). We show that EP4 receptor signaling stimulates cAMP production in melanocytes. Conversely, stimulation of the EP3 receptor lowered basal cAMP levels. These data suggest that relative levels or activity of these receptors controls effects of PGE2 on cAMP in melanocytes. The data are the first to identify PGE2 as an UVR-inducible autocrine factor for melanocytes that stimulates tyrosinase activity and proliferation, and to show that EP3 and EP4 receptor signaling have opposing effects on cAMP production, a critical signaling pathway that regulates proliferation and melanogenesis in melanocytes. PMID:20500768

  11. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies.

    PubMed

    Dwivedi, Pankaj; Greis, Kenneth D

    2017-02-01

    Granulocyte colony-stimulating factor is a hematopoietic cytokine that stimulates neutrophil production and hematopoietic stem cell mobilization by initiating the dimerization of homodimeric granulocyte colony-stimulating factor receptor. Different mutations of CSF3R have been linked to a unique spectrum of myeloid disorders and related malignancies. Myeloid disorders caused by the CSF3R mutations include severe congenital neutropenia, chronic neutrophilic leukemia, and atypical chronic myeloid leukemia. In this review, we provide an analysis of granulocyte colony-stimulating factor receptor, various mutations, and their roles in the severe congenital neutropenia, chronic neutrophilic leukemia, and malignant transformation, as well as the clinical implications and some perspective on approaches that could expand our knowledge with respect to the normal signaling mechanisms and those associated with mutations in the receptor. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. delta opioid receptors stimulate Akt-dependent phosphorylation of c-jun in T cells.

    PubMed

    Shahabi, Nahid A; McAllen, Kathy; Sharp, Burt M

    2006-02-01

    Activation of naive T cells markedly up-regulates the expression of delta opioid receptors (DORs). These receptors are bound by DOR peptides released by T cells, modulating T cell functions such as interleukin-2 production, cellular proliferation, and chemotaxis. Previous studies have shown that DOR agonists [e.g., [D-Ala(2)-D-Leu(5)]-enkephalin (DADLE)] modulate T cell antigen receptor signaling through mitogen-activated protein kinases (MAPKs; i.e., extracellular signal-regulated kinases 1 and 2) and that DORs directly induce phosphorylation of activating transcription factor-2 (implicated in cytokine gene transcription) and its association with the MAPK c-jun1 NH(2)-terminal kinase (JNK). Such observations suggest that DORs may induce the phosphorylation of c-jun. These experiments were performed to test this hypothesis and determine the potential roles of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B). DADLE (10(-10) to 10(-6) M) dose-dependently induced c-jun phosphorylation. This was blocked by pertussis toxin and the DOR-specific antagonist naltindole. Fluorescence flow cytometry showed that DADLE significantly stimulated c-jun phosphorylation by T cells. DADLE stimulated phosphorylation of membrane-associated Akt; wortmannin and LY294002 ([2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]), specific inhibitors of PI3K, abolished the DADLE-induced phosphorylation of c-jun. Finally, inhibitors of Akt and JNK blocked DADLE-induced phosphorylation of c-jun. Thus, activated DORs directly stimulate c-jun phosphorylation through a PI3K-dependent pathway in T cells, apparently involving Akt. This implies that DORs activate JNK through a novel pathway dependent on PI3K and Akt, thereby regulating the function of activator protein-1 transcription complexes containing c-jun and other transcription partners.

  13. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    PubMed Central

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  14. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    PubMed

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  15. Nuclear factor ETF specifically stimulates transcription from promoters without a TATA box.

    PubMed

    Kageyama, R; Merlino, G T; Pastan, I

    1989-09-15

    Transcription factor ETF stimulates the expression of the epidermal growth factor receptor (EGFR) gene which does not have a TATA box in the promoter region. Here, we show that ETF recognizes various GC-rich sequences including stretches of deoxycytidine or deoxyguanosine residues and GC boxes with similar affinities. ETF also binds to TATA boxes but with a lower affinity. ETF stimulated in vitro transcription from several promoters without TATA boxes but had little or no effect on TATA box-containing promoters even though they had strong ETF-binding sites. These inactive ETF-binding sites became functional when placed upstream of the EGFR promoter whose own ETF-binding sites were removed. Furthermore, when a TATA box was introduced into the EGFR promoter, the responsiveness to ETF was abolished. These results indicate that ETF is a specific transcription factor for promoters which do not contain TATA elements.

  16. Multiple roles of phosphoinositide-specific phospholipase C isozymes.

    PubMed

    Suh, Pann-Ghill; Park, Jae-Il; Manzoli, Lucia; Cocco, Lucio; Peak, Joanna C; Katan, Matilda; Fukami, Kiyoko; Kataoka, Tohru; Yun, Sanguk; Ryu, Sung Ho

    2008-06-30

    Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-beta, -gamma, -delta, -epsilon, -zeta and -eta. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.

  17. Identification of functional VEGF receptors on human platelets.

    PubMed

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  18. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  19. Up-Regulation of Phosphoinositide Metabolism in Tobacco Cells Constitutively Expressing the Human Type I Inositol Polyphosphate 5-Phosphatase1

    PubMed Central

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP3) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP3. The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP3 compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP3 in both wild-type and transgenic cells. However, even with stimulation, InsP3 levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP3 signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP2), the lipid precursor of InsP3, was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP2 metabolism showed that the activity of the PtdInsP2-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of 32P into PtdInsP2 in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP2 synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP2 synthesis as a regulatory step in this system. PMID:12177493

  20. Dexamethasone and interleukin-1 potently synergize to stimulate the production of granulocyte colony-stimulating factor in differentiated THP-1 cells.

    PubMed

    Wang, Y; Zhang, J J; Lei, K Y; Pike, J W

    1997-10-29

    The human monocytic leukemic cell line, THP-1, which differentiates toward macrophages in response to phorbol 12-myristate 13-acetate (PMA) was investigated for its ability to produce granulocyte colony-stimulating factor (G-CSF). G-CSF protein was neither produced during PMA-induced differentiation nor in response to dexamethasone (Dex) alone. However, when combined, PMA and Dex synergistically stimulated THP-1 cells to produce G-CSF. The synergistic interaction between PMA and Dex on G-CSF production appeared to be mediated through the production of interleukin-1 (IL-1) since neutralization of IL-1 activity completely inhibited G-CSF production. Further experiments demonstrated that in THP-1 cells pretreated with PMA, Dex potently synergized with IL-1 to stimulate G-CSF production.

  1. Oxalobacter formigenes–Derived Bioactive Factors Stimulate Oxalate Transport by Intestinal Epithelial Cells

    PubMed Central

    Arvans, Donna; Jung, Yong-Chul; Antonopoulos, Dionysios; Koval, Jason; Granja, Ignacio; Bashir, Mohamed; Karrar, Eltayeb; Roy-Chowdhury, Jayanta; Musch, Mark; Asplin, John; Chang, Eugene

    2017-01-01

    Hyperoxaluria is a major risk factor for kidney stones and has no specific therapy, although Oxalobacter formigenes colonization is associated with reduced stone risk. O. formigenes interacts with colonic epithelium and induces colonic oxalate secretion, thereby reducing urinary oxalate excretion, via an unknown secretagogue. The difficulties in sustaining O. formigenes colonization underscore the need to identify the derived factors inducing colonic oxalate secretion. We therefore evaluated the effects of O. formigenes culture conditioned medium (CM) on apical 14C-oxalate uptake by human intestinal Caco-2-BBE cells. Compared with control medium, O. formigenes CM significantly stimulated oxalate uptake (>2.4-fold), whereas CM from Lactobacillus acidophilus did not. Treating the O. formigenes CM with heat or pepsin completely abolished this bioactivity, and selective ultrafiltration of the CM revealed that the O. formigenes–derived factors have molecular masses of 10–30 kDa. Treatment with the protein kinase A inhibitor H89 or the anion exchange inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid completely blocked the CM-induced oxalate transport. Knockdown of the oxalate transporter SLC26A6 also significantly restricted the induction of oxalate transport by CM. In a mouse model of primary hyperoxaluria type 1, rectal administration of O. formigenes CM significantly reduced (>32.5%) urinary oxalate excretion and stimulated (>42%) distal colonic oxalate secretion. We conclude that O. formigenes–derived bioactive factors stimulate oxalate transport in intestinal cells through mechanisms including PKA activation. The reduction in urinary oxalate excretion in hyperoxaluric mice treated with O. formigenes CM reflects the in vivo retention of biologic activity and the therapeutic potential of these factors. PMID:27738124

  2. Possible role of the phosphoinositide pathway for signal transduction in changes in the sensitivity of delta-opiate receptors during diabetes mellitus.

    PubMed

    Agadjanov, M I; Vartanian, G S; Tadevosyan, Yu V; Batikyan, T B; Agadjanova, E M

    2004-02-01

    We studied the effects of selective delta-opiate receptor agonists and antagonists on the phosphoinositide pathway in lymphocytes from healthy donors and patients with diabetes mellitus. The test compounds probably play a role in changes in the sensitivity to pharmacological substances binding to delta-opiate receptors during diabetes mellitus.

  3. Activation of adenosine A(3) receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice.

    PubMed

    Hofer, Michal; Pospísil, Milan; Sefc, Ludek; Dusek, Ladislav; Vacek, Antonín; Holá, Jirina; Hoferová, Zuzana; Streitová, Denisa

    2010-08-01

    Research areas of 'post-exposure treatment' and 'cytokines and growth factors' have top priority among studies aimed at radiological nuclear threat countermeasures. The experiments were aimed at testing the ability of N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), an adenosine A(3) receptor agonist, to modulate hematopoiesis in sublethally irradiated mice, when administered alone or in a combination with granulocyte colony-stimulating factor (G-CSF) in a two-day post-irradiation treatment regimen. A complete analysis of hematopoiesis including determination of numbers of bone marrow hematopoietic progenitor and precursor cells, as well as of numbers of peripheral blood cells, was performed. The outcomes of the treatment were assessed at days 3 to 22 after irradiation. IB-MECA alone has been found to induce a significant elevation of numbers of bone marrow granulocyte-macrophage progenitor cells (GM-CFC) and peripheral blood neutrophils. IB-MECA given concomitantly with G-CSF increased significantly bone marrow GM-CFC and erythroid progenitor cells (BFU-E) in comparison with the controls and with animals administered each of the drugs alone. The findings suggest the ability of IB-MECA to stimulate hematopoiesis and to support the hematopoiesis-stimulating effects of G-CSF in sublethally irradiated mice.

  4. Tools for visualization of phosphoinositides in the cell nucleus.

    PubMed

    Kalasova, Ilona; Fáberová, Veronika; Kalendová, Alžběta; Yildirim, Sukriye; Uličná, Lívia; Venit, Tomáš; Hozák, Pavel

    2016-04-01

    Phosphoinositides (PIs) are glycerol-based phospholipids containing hydrophilic inositol ring. The inositol ring is mono-, bis-, or tris-phosphorylated yielding seven PIs members. Ample evidence shows that PIs localize both to the cytoplasm and to the nucleus. However, tools for direct visualization of nuclear PIs are limited and many studies thus employ indirect approaches, such as staining of their metabolic enzymes. Since localization and mobility of PIs differ from their metabolic enzymes, these approaches may result in incomplete data. In this paper, we tested commercially available PIs antibodies by light microscopy on fixed cells, tested their specificity using protein-lipid overlay assay and blocking assay, and compared their staining patterns. Additionally, we prepared recombinant PIs-binding domains and tested them on both fixed and live cells by light microscopy. The results provide a useful overview of usability of the tools tested and stress that the selection of adequate tools is critical. Knowing the localization of individual PIs in various functional compartments should enable us to better understand the roles of PIs in the cell nucleus.

  5. Granulocyte-Macrophage Colony-Stimulating Factor: More Than a Hemopoietin

    DTIC Science & Technology

    1990-01-01

    Sullivan, R., Elias, A., Antman , K.. Schnipper, L.. and Griffin, D., Granulocyte-macrophage colony-stimulating factor induces the expression of the CDI lb...surface adhesion molecule on human granulocytes in vivo. Blood 72, 691--697, 1988. 38. Socinski, M. A., Cannistra, S., Elias, A., Antman , K. H...1989. 82. Antman , K.. Griffin, J., Elias, A., Socinski. M., Ryan, L., Cannistra, S., Gette, D., Whitly, M., Frei, E., and Schnipper, L., Effect of

  6. Computational studies of the binding profile of phosphoinositide PtdIns (3,4,5) P3 with the pleckstrin homology domain of an oomycete cellulose synthase

    PubMed Central

    Kuang, Guanglin; Bulone, Vincent; Tu, Yaoquan

    2016-01-01

    Saprolegnia monoica is a model organism to investigate Saprolegnia parasitica, an important oomycete which causes considerable loss in aquaculture every year. S. monoica contains cellulose synthases vital for oomycete growth. However, the molecular mechanism of the cellulose biosynthesis process in the oomycete growth is still poorly understood. Some cellulose synthases of S. monoica, such as SmCesA2, are found to contain a plecsktrin homology (PH) domain, which is a protein module widely found in nature and known to bind to phosphoinositides, a class of signaling compounds involved in many biological processes. Understanding the molecular interactions between the PH domain and phosphoinositides would help to unravel the cellulose biosynthesis process of oomycetes. In this work, the binding profile of PtdIns (3,4,5) P3, a typical phosphoinositide, with SmCesA2-PH was studied by molecular docking, molecular dynamics and metadynamics simulations. PtdIns (3,4,5) P3 is found to bind at a specific site located at β1, β2 and β1-β2 loop of SmCesA2-PH. The high affinity of PtdIns (3,4,5) P3 to SmCesA2-PH is contributed by the free phosphate groups, which have electrostatic and hydrogen-bond interactions with Lys88, Lys100 and Arg102 in the binding site. PMID:26857031

  7. Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection.

    PubMed

    Weber, Stephen; Wagner, Maria; Hilbi, Hubert

    2014-01-28

    -permissive compartment, the Legionella-containing vacuole (LCV). To subvert host cell processes, the bacteria secrete the amazing number of ~300 different proteins into host cells. Some of these proteins bind phosphoinositide (PI) lipids to decorate the LCV. PI lipids are crucial factors involved in host cell membrane dynamics and LCV formation. Using Dictyostelium amoebae producing one or two distinct fluorescent probes, we elucidated the dynamic LCV PI pattern in high temporal and spatial resolution. Notably, the endocytic PI lipid PtdIns(3)P was slowly cleared from LCVs, thus incapacitating the host cell's digestive machinery, while PtdIns(4)P gradually accumulated on the LCV, enabling critical interactions with host organelles. The LCV PI pattern underlies the spatiotemporal configuration of bacterial effector proteins and therefore represents a crucial aspect of LCV formation.

  8. Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination.

    PubMed

    Döring, Axinia; Sloka, Scott; Lau, Lorraine; Mishra, Manoj; van Minnen, Jan; Zhang, Xu; Kinniburgh, David; Rivest, Serge; Yong, V Wee

    2015-01-21

    Approaches to stimulate remyelination may lead to recovery from demyelinating injuries and protect axons. One such strategy is the activation of immune cells with clinically used medications, since a properly directed inflammatory response can have healing properties through mechanisms such as the provision of growth factors and the removal of cellular debris. We previously reported that the antifungal medication amphotericin B is an activator of circulating monocytes, and their tissue-infiltrated counterparts and macrophages, and of microglia within the CNS. Here, we describe that amphotericin B activates these cells through engaging MyD88/TRIF signaling. When mice were subjected to lysolecithin-induced demyelination of the spinal cord, systemic injections of nontoxic doses of amphotericin B and another activator, macrophage colony-stimulating factor (MCSF), further elevated the representation of microglia/macrophages at the site of injury. Treatment with amphotericin B, particularly in combination with MCSF, increased the number of oligodendrocyte precursor cells and promoted remyelination within lesions; these pro-regenerative effects were mitigated in mice treated with clodronate liposomes to reduce circulating monocytes and tissue-infiltrated macrophages. Our results have identified candidates among currently used medications as potential therapies for the repair of myelin. Copyright © 2015 the authors 0270-6474/15/351136-13$15.00/0.

  9. Recombinant granulocyte colony-stimulating factor administered enterally to neonates is not absorbed.

    PubMed

    Calhoun, Darlene A; Maheshwari, Akhil; Christensen, Robert D

    2003-08-01

    Granulocyte colony-stimulating factor (G-CSF) is present in liquids swallowed by the fetus and neonate; specifically, amniotic fluid, colostrum, and human milk. The swallowed G-CSF has local effects on enteric cells, which express the G-CSF receptor. However, some portion of the G-CSF ingested by the fetus and neonate might be absorbed into the circulation and have systemic actions, such as stimulating neutrophil production. To assess this possibility we sought to determine if circulating G-CSF concentrations of neonates increase after enteral administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF). This was a single-center, prospective, blinded, randomized, 2 x 2 crossover study, with each infant receiving 1 dose of rhG-CSF (100 microg/kg) and 1 dose of placebo. Plasma G-CSF concentrations were measured at 2 and 4 hours after administration of the test solution. No significant change in plasma G-CSF concentration was observed after the enteral administration of rhG-CSF. On this basis, we conclude that orally administered rhG-CSF is not absorbed in significant quantities, and we speculate that the G-CSF swallowed by the fetus and neonate has local but not systemic effects.

  10. Stimulation of phosphatidylcholine breakdown and diacylglycerol production by growth factors in Swiss-3T3 cells.

    PubMed Central

    Price, B D; Morris, J D; Hall, A

    1989-01-01

    The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase. PMID:2690829

  11. Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry

    PubMed Central

    Maccari, Maria Elena; Abolhassani, Hassan; Aghamohammadi, Asghar; Aiuti, Alessandro; Aleinikova, Olga; Bangs, Catherine; Baris, Safa; Barzaghi, Federica; Baxendale, Helen; Buckland, Matthew; Burns, Siobhan O.; Cancrini, Caterina; Cant, Andrew; Cathébras, Pascal; Cavazzana, Marina; Chandra, Anita; Conti, Francesca; Coulter, Tanya; Devlin, Lisa A.; Edgar, J. David M.; Faust, Saul; Fischer, Alain; Garcia-Prat, Marina; Hammarström, Lennart; Heeg, Maximilian; Jolles, Stephen; Karakoc-Aydiner, Elif; Kindle, Gerhard; Kiykim, Ayca; Kumararatne, Dinakantha; Grimbacher, Bodo; Longhurst, Hilary; Mahlaoui, Nizar; Milota, Tomas; Moreira, Fernando; Moshous, Despina; Mukhina, Anna; Neth, Olaf; Neven, Benedicte; Nieters, Alexandra; Olbrich, Peter; Ozen, Ahmet; Schmid, Jana Pachlopnik; Picard, Capucine; Prader, Seraina; Rae, William; Reichenbach, Janine; Rusch, Stephan; Savic, Sinisa; Scarselli, Alessia; Scheible, Raphael; Sediva, Anna; Sharapova, Svetlana O.; Shcherbina, Anna; Slatter, Mary; Soler-Palacin, Pere; Stanislas, Aurelie; Suarez, Felipe; Tucci, Francesca; Uhlmann, Annette; van Montfrans, Joris; Warnatz, Klaus; Williams, Anthony Peter; Wood, Phil; Kracker, Sven; Condliffe, Alison Mary; Ehl, Stephan

    2018-01-01

    Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2–3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies. PMID:29599784

  12. Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry.

    PubMed

    Maccari, Maria Elena; Abolhassani, Hassan; Aghamohammadi, Asghar; Aiuti, Alessandro; Aleinikova, Olga; Bangs, Catherine; Baris, Safa; Barzaghi, Federica; Baxendale, Helen; Buckland, Matthew; Burns, Siobhan O; Cancrini, Caterina; Cant, Andrew; Cathébras, Pascal; Cavazzana, Marina; Chandra, Anita; Conti, Francesca; Coulter, Tanya; Devlin, Lisa A; Edgar, J David M; Faust, Saul; Fischer, Alain; Garcia-Prat, Marina; Hammarström, Lennart; Heeg, Maximilian; Jolles, Stephen; Karakoc-Aydiner, Elif; Kindle, Gerhard; Kiykim, Ayca; Kumararatne, Dinakantha; Grimbacher, Bodo; Longhurst, Hilary; Mahlaoui, Nizar; Milota, Tomas; Moreira, Fernando; Moshous, Despina; Mukhina, Anna; Neth, Olaf; Neven, Benedicte; Nieters, Alexandra; Olbrich, Peter; Ozen, Ahmet; Schmid, Jana Pachlopnik; Picard, Capucine; Prader, Seraina; Rae, William; Reichenbach, Janine; Rusch, Stephan; Savic, Sinisa; Scarselli, Alessia; Scheible, Raphael; Sediva, Anna; Sharapova, Svetlana O; Shcherbina, Anna; Slatter, Mary; Soler-Palacin, Pere; Stanislas, Aurelie; Suarez, Felipe; Tucci, Francesca; Uhlmann, Annette; van Montfrans, Joris; Warnatz, Klaus; Williams, Anthony Peter; Wood, Phil; Kracker, Sven; Condliffe, Alison Mary; Ehl, Stephan

    2018-01-01

    Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2-3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies.

  13. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, J.; Pei-Chen Lin, C.; Pathak, M. C.

    2016-07-06

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumedmore » during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.« less

  14. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.

    2014-07-11

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumedmore » during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.« less

  15. Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis.

    PubMed

    Lupia, Enrico; Pigozzi, Luca; Goffi, Alberto; Hirsch, Emilio; Montrucchio, Giuseppe

    2014-11-07

    A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis.

  16. Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis

    PubMed Central

    Lupia, Enrico; Pigozzi, Luca; Goffi, Alberto; Hirsch, Emilio; Montrucchio, Giuseppe

    2014-01-01

    A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis. PMID:25386068

  17. STIMULATION OF DEFENSE FACTORS FOR OYSTERS DEPLOYED TO CONTAMINATED SITES IN PENSACOLA BAY, FLORIDA

    EPA Science Inventory

    A positive association between chemical contaminants and defense factors has been established for eastern oysters (Crassostrea virginica) from Florida, but it is unknown whether such factors can be stimulated through short-term exposure to contaminants in the field. Hatchery oyst...

  18. Effects of macrophage colony-stimulating factor on macrophages and their related cell populations in the osteopetrosis mouse defective in production of functional macrophage colony-stimulating factor protein.

    PubMed Central

    Umeda, S.; Takahashi, K.; Shultz, L. D.; Naito, M.; Takagi, K.

    1996-01-01

    The development of macrophage populations in osteopetrosis (op) mutant mice defective in production of functional macrophage colony-stimulating factor (M-CSF) and the response of these cell populations to exogenous M-CSF were used to classify macrophages into four groups: 1) monocytes, monocyte-derived macrophages, and osteoclasts, 2) MOMA-1-positive macrophages, 3) ER-TR9-positive macrophages, and 4) immature tissue macrophages. Monocytes, monocyte-derived macrophages, osteoclasts in bone, microglia in brain, synovial A cells, and MOMA-1- or ER-TR9-positive macrophages were deficient in op/op mice. The former three populations expanded to normal levels in op/op mice after daily M-CSF administration, indicating that they are developed and differentiated due to the effect of M-CSF supplied humorally. In contrast, the other cells did not respond or very slightly responded to M-CSF, and their development seems due to either M-CSF produced in situ or expression of receptor for M-CSF. Macrophages present in tissues of the mutant mice were immature and appear to be regulated by either granulocyte/macrophage colony-stimulating factor and/or interleukin-3 produced in situ or receptor expression. Northern blot analysis revealed different expressions of GM-CSF and IL-3 mRNA in various tissues of the op/op mice. However, granulocyte/macrophage colony-stimulating factor and interleukin-3 in serum were not detected by enzyme-linked immunosorbent assay. The immature macrophages differentiated and matured into resident macrophages after M-CSF administration, and some of these cells proliferated in response to M-CSF. Images Figure 4 Figure 6 Figure 8 Figure 10 Figure 11 PMID:8701995

  19. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review.

    PubMed

    Hofer, Michal; Pospíšil, Milan; Komůrková, Denisa; Hoferová, Zuzana

    2014-04-16

    This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.

  20. Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor and Granulocyte Colony-Stimulating Factor Prolong the Survival of Neutrophils Infiltrating Bronchoalveolar Subtype Pulmonary Adenocarcinoma

    PubMed Central

    Wislez, Marie; Fleury-Feith, Jocelyne; Rabbe, Nathalie; Moreau, Joelle; Cesari, Danielle; Milleron, Bernard; Mayaud, Charles; Antoine, Martine; Soler, Paul; Cadranel, Jacques

    2001-01-01

    We evaluated the role of the tumor environment in the regulation of apoptosis of tumor-infiltrating neutrophils, the number of which correlates negatively with outcome, in patients with adenocarcinoma of the bronchioloalveolar (BAC) subtype. We examined three different parameters of apoptosis, namely morphological aspect, annexin-V expression, and DNA fragmentation. Bronchoalveolar lavage fluid (BALF) supernatants from patients with BAC significantly inhibited the 24-hour spontaneous apoptosis of normal peripheral blood neutrophils in vitro compared to BALF supernatants from control patients (64 ± 4% versus 90 ± 2% measured by annexin-V flow cytometry, P = 0.04). The alveolar neutrophil count correlated positively with the granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) concentrations in the patient’s BALF. Furthermore, neutralizing antibodies (Abs) against GM-CSF and G-CSF significantly inhibited BALF anti-apoptotic activity (15 to 40% and 34 to 63% inhibition, respectively), whereas neutralizing Abs against interleukin (IL)-8, IL-6, IL-1β and tumor necrosis factor-α had no significant effect. In an attempt to identify the cell origin of anti-apoptotic cytokines, we tested in vitro the effect of BAC cells (A549 cell line and primary culture derived from a patient’s BAC tumor) on the apoptosis of peripheral blood neutrophils. Cell-free supernatants from tumor cells did not inhibit neutrophil apoptosis. In contrast, cell-free supernatants from tumor cells previously exposed to conditioned media from peripheral blood mononuclear cells and alveolar macrophages significantly inhibited spontaneous neutrophil apoptosis. This inhibition was partially lifted when conditioned media from mononuclear cells were previously treated with Abs against IL-1β and tumor necrosis factor-α. As in vivo, neutralizing Abs against GM-CSF significantly inhibited the anti-apoptotic activity of cell culture supernatants

  1. Osthole protects against inflammation in a rat model of chronic kidney failure via suppression of nuclear factor-κB, transforming growth factor-β1 and activation of phosphoinositide 3-kinase/protein kinase B/nuclear factor (erythroid-derived 2)-like 2 signaling.

    PubMed

    Huang, Tao; Dong, Zhen

    2017-10-01

    Multiple pharmacological applications of osthole have been previously recognized, including antioxidant, anti-inflammatory, anti‑platelet and estrogenic effects, and resistance to pain. The present study investigated the protective effects of osthole against inflammation in a rat model of chronic kidney failure (CRF) and the underlying mechanisms. Osthole treatment with significantly reversed CRF‑induced changes in serum creatinine, calcium, phosphorus and blood urea nitrogen levels in CRF rats. Male Sprague‑Dawley rats (age, 8 weeks) received 200 mg/kg 2% adenine suspension to induce CRF in the model group. In the osthole‑treated group, rats received 200 mg/kg 2% adenine suspension + osthole (40 mg/kg, intravenously). The results revealed that treatment with osthole significantly inhibited CRF‑induced tumor necrosis factor‑α, interleukin (IL)‑8 and IL‑6 expression, and suppressed nuclear factor‑κB (NF‑κB) protein expression in CRF rats. Osthole treatment significantly attenuated the protein expression of transforming growth factor‑β1 (TGF‑β1), reduced monocyte chemoattractant protein‑1 activity and increased the phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) ratio in CRF rats. These results suggested that osthole protects against inflammation in a rat model of CRF via suppression of NF‑κB and TGF‑β1, and activation of PI3K/Akt/nuclear factor (erythroid‑derived 2)‑like 2 signaling. Therefore, osthole may represent a potential therapeutic agent for the treatment of CRF.

  2. Highly Expressed Granulocyte Colony-Stimulating Factor (G-CSF) and Granulocyte Colony-Stimulating Factor Receptor (G-CSFR) in Human Gastric Cancer Leads to Poor Survival.

    PubMed

    Fan, Zhisong; Li, Yong; Zhao, Qun; Fan, Liqiao; Tan, Bibo; Zuo, Jing; Hua, Kelei; Ji, Qiang

    2018-03-23

    BACKGROUND Chemotherapy for advanced gastric cancer (GC) patients has been the mainstay of therapy for many years. Although adding anti-angiogenic drugs to chemotherapy improves patient survival slightly, identifying anti-angiogenic therapy-sensitive patients remains challenging for oncologists. Granulocyte colony-stimulating factor (G-CSF) promotes tumor growth and angiogenesis, which can be minimized with the anti-G-CSF antibody. Thus, G-CSF might be a potential tumor marker. However, the effects of G-CSF and G-CSFR expression on GC patient survival remain unclear. MATERIAL AND METHODS Seventy GC tissue samples were collected for G-CSF and G-CSFR detection by immunohistochemistry. A total of 40 paired GC tissues and matched adjacent mucosa were used to measure the G-CSF and G-CSFR levels by ELISA. Correlations between G-CSF/G-CSFR and clinical characteristics, VEGF-A levels and overall survival were analyzed. Biological function and underlying mechanistic investigations were carried out using SGC7901 cell lines, and the effects of G-CSF on tumor proliferation, migration, and tube formation were examined. RESULTS The levels of G-CSFR were upregulated in GC tissues compared to normal mucosa tissues. Higher G-CSF expression was associated with later tumor stages and higher tumor VEGF-A and serum CA724 levels, whereas higher G-CSFR expression was associated with lymph node metastasis. Patients with higher G-CSF expression had shorter overall survival times. In vitro, G-CSF stimulated SGC7901 proliferation and migration through the JAK2/STAT3 pathway and accelerated HUVEC tube formation. CONCLUSIONS These data suggest that increased G-CSF and G-CSFR in tumors leads to unfavorable outcomes for GC patients by stimulating tumor proliferation, migration, and angiogenesis, indicating that these factors are potential tumor targets for cancer treatment.

  3. Ephrin type-A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3-kinase/Akt signalling pathway

    PubMed Central

    WANG, YUNYUN; LIU, YONG; LI, GUO; SU, ZHONGWU; REN, SHULING; TAN, PINGQING; ZHANG, XIN; QIU, YUANZHENG; TIAN, YONGQUAN

    2015-01-01

    Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that is associated with cancer cell metastasis. There has been little investigation into its impact on the regulation of sensitivity to paclitaxel in nasopharyngeal carcinoma (NPC). In the present study, upregulation of EphA2 expression enhanced the survival of NPC 5-8F cells, compared with control cells exposed to the same concentrations of paclitaxel. Flow cytometry and western blot analysis demonstrated that over-expression of EphA2 decreased NPC cancer cell sensitivity to paclitaxel by regulating paclitaxel-mediated cell cycle progression but not apoptosis in vitro. This was accompanied by alterations in the expression of cyclin-dependent kinase inhibitors, p21 and p27, and of inactive phosphorylated-retinoblastoma protein. Furthermore, paclitaxel stimulation and EphA2 over-expression resulted in activation of the phosphoinositide 3-kinase (PI3K)/Akt signalling pathway in NPC cells. Inhibition of the PI3K/Akt signalling pathway restored sensitivity to paclitaxel in 5-8F cells over-expressing EphA2, which indicated that the PI3K/Akt pathway is involved in EphA2-mediated paclitaxel sensitivity. The current study demonstrated that EphA2 mediates sensitivity to paclitaxel via the regulation of the PI3K/Akt signalling pathway in NPC. PMID:25351620

  4. Alternative Splicing Governs Cone Cyclic Nucleotide-gated (CNG) Channel Sensitivity to Regulation by Phosphoinositides*

    PubMed Central

    Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.

    2014-01-01

    Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082

  5. Alternative splicing governs cone cyclic nucleotide-gated (CNG) channel sensitivity to regulation by phosphoinositides.

    PubMed

    Dai, Gucan; Sherpa, Tshering; Varnum, Michael D

    2014-05-09

    Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.

  6. Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity.

    PubMed

    Doignon, François; Laquel, Patricia; Testet, Eric; Tuphile, Karine; Fouillen, Laetitia; Bessoule, Jean-Jacques

    2015-12-28

    Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Which Factors Obstruct or Stimulate Teacher Educators to Use ICT Innovatively?

    ERIC Educational Resources Information Center

    Drent, Marjolein; Meelissen, Martina

    2008-01-01

    This article discusses the factors which stimulate or limit the innovative use of ICT by teacher educators in the Netherlands. Innovative use of ICT is defined as the use of ICT applications that support the educational objectives based on the needs of the current knowledge society. Explorative path analysis and case studies were used to study the…

  8. Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver.

    PubMed Central

    Kurz, A K; Block, C; Graf, D; Dahl, S V; Schliess, F; Häussinger, D

    2000-01-01

    Ursodesoxycholic acid, widely used for the treatment of cholestatic liver disease, causes choleretic, anti-apoptotic and immunomodulatory effects. Here the effects on choleresis of its taurine conjugate tauroursodesoxycholate (TUDC), which is present in the enterohepatic circulation, were correlated with the activation of important elements of intracellular signal transduction in cultured rat hepatocytes and perfused rat liver. TUDC induced a time- and concentration-dependent activation of the small GTP-binding protein Ras and of phosphoinositide 3-kinase (PI 3-kinase) in cultured hepatocytes. Ras activation was dependent on PI 3-kinase activity, without the involvement of protein kinase C- and genistein-sensitive tyrosine kinases. Ras activation by TUDC was followed by an activation of the mitogen-activated protein kinases extracellular-signal-regulated kinase-1 (Erk-1) and Erk-2. In perfused rat liver, PI 3-kinase inhibitors largely abolished the stimulatory effect of TUDC on taurocholate excretion, suggesting an important role for a PI 3-kinase/Ras/Erk pathway in the choleretic effect of TUDC. PMID:10926845

  9. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent proteinmore » kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.« less

  10. Constitutive Macropinocytosis in Oncogene-transformed Fibroblasts Depends on Sequential Permanent Activation of Phosphoinositide 3-Kinase and Phospholipase C

    PubMed Central

    Amyere, Mustapha; Payrastre, Bernard; Krause, Ulrike; Smissen, Patrick Van Der; Veithen, Alex; Courtoy, Pierre J.

    2000-01-01

    Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85α constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selective acceleration of fluid-phase endocytosis. These alterations closely correlated with activation of PI3K and phosphatidylinositol-specific phospholipase C (PI-PLC), as assayed by 3-phosphoinositide synthesis in situ and in vitro and inositol 1,4,5 trisphosphate steady-state levels, respectively; they were abolished by stable transfection of v-Src–transformed cells for dominant-negative truncated p85α expression and by pharmacological inhibitors of PI3K and PI-PLC, indicating a requirement for both enzymes. Whereas PI3K activation resisted PI-PLC inhibition, PI-PLC activation was abolished by a PI3K inhibitor and dominant-negative transfection, thus placing PI-PLC downstream of PI3K. Together, these data suggest that permanent sequential activation of both PI3K and PI-PLC is necessary for the dramatic reorganization of the actin cytoskeleton in oncogene-transformed fibroblasts, resulting in constitutive ruffling and macropinocytosis. PMID:11029048

  11. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells

    PubMed Central

    Zhang, Mengxia; Zhang, Hailiang; Tang, Fan; Wang, Yuhua; Mo, Zhongcheng; Lei, Xiaoyong

    2016-01-01

    Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte–macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death. PMID:27439542

  12. Role of granulocyte colony-stimulating factor in human reproduction.

    PubMed

    Eftekhar, Maryam; Naghshineh, Elham; Khani, Parisa

    2018-01-01

    As new research reveals, granulocyte colony-stimulating factor (G-CSF) plays an effective role in pregnancy success, considering that it not only affects the embryo implantation and ovarian function but also it promotes endometrial thickening and improves the pathophysiology of endometriosis, which all fundamentally lead to reducing pregnancy loss. In this review, we focus on the role of G-CSF in human reproduction. We summarized its role in ovulation, luteinized unruptured follicle syndrome, poor responders, improving repeated in vitro fertilization failure, endometrial receptivity and treatment of thin endometrium, and recurrent spontaneous abortion.

  13. Ovarian stimulation for in vitro fertilization alters the intrauterine cytokine, chemokine, and growth factor milieu encountered by the embryo.

    PubMed

    Boomsma, Carolien M; Kavelaars, Annemieke; Eijkemans, Marinus J C; Fauser, Bart C J M; Heijnen, Cobi J; Macklon, Nick S

    2010-10-01

    To elucidate the impact of ovarian stimulation on the intrauterine milieu represented by the cytokine, chemokine, and growth factor profile in endometrial secretions aspirated before embryo transfer. Prospective cohort study. Fertility center in tertiary referral university hospital. Forty-two patients undergoing ovarian stimulation with GnRH analogues were recruited. They participated in both a natural and an ovarian-stimulated cycle for within patient comparisons. Endometrial secretion aspiration was performed immediately before embryo transfer. The concentrations of 17 mediators known to be involved in human embryo implantation were assessed by multiplex immunoassay. After correction for multiple testing, significantly higher concentrations of interleukin (IL)-1β, IL-5, IL-10, IL-12, IL-17, tumor necrosis factor (TNF)-α, heparin-binding epidermal growth factor (HbEGF), eotaxin, and dickkopf homologue-1 were present in endometrial secretions obtained in stimulated compared with natural cycles. Endometrial secretion analysis provides a novel means of investigating the effect of ovarian stimulation on the intrauterine milieu. The in vivo milieu encountered by the embryo after transfer is significantly altered by ovarian stimulation. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia.

    PubMed

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M; Dombkowski, Alan A; Buck, Steven A; Boerner, Julie L; Taub, Jeffrey W; Matherly, Larry H; Ge, Yubin

    2009-09-24

    RUNX1 (AML1) encodes the core binding factor alpha subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the delta catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)-kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease.

  15. Effect of granulocyte colony-stimulating factor on myocardium recovery in postinfarction period.

    PubMed

    Gol'dberg, E D; Dygai, A M; Zhdanov, V V; Stavrova, L A; Fomina, T I; Plotnikov, M B; Aliev, O I; Chernyshova, G A; Masycheva, V I; Sotnikova, N V

    2005-03-01

    The effect of Neutrostim (preparation of granulocytic colony-stimulating factor) on recovery of myocardial tissue after acute myocardial infarction was studied in rats. A course of Neutrostim after ligation of the left coronary artery led to normalization of electrocardiographic and morphological parameters of the myocardium after one month.

  16. Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins.

    PubMed

    Huang, Jin; Ghosh, Ratna; Tripathi, Ashutosh; Lönnfors, Max; Somerharju, Pentti; Bankaitis, Vytas A

    2016-07-15

    Lipid signaling, particularly phosphoinositide signaling, plays a key role in regulating the extreme polarized membrane growth that drives root hair development in plants. The Arabidopsis AtSFH1 gene encodes a two-domain protein with an amino-terminal Sec14-like phosphatidylinositol transfer protein (PITP) domain linked to a carboxy-terminal nodulin domain. AtSfh1 is critical for promoting the spatially highly organized phosphatidylinositol-4,5-bisphosphate signaling program required for establishment and maintenance of polarized root hair growth. Here we demonstrate that, like the yeast Sec14, the AtSfh1 PITP domain requires both its phosphatidylinositol (PtdIns)- and phosphatidylcholine (PtdCho)-binding properties to stimulate PtdIns-4-phosphate [PtdIns(4)P] synthesis. Moreover, we show that both phospholipid-binding activities are essential for AtSfh1 activity in supporting polarized root hair growth. Finally, we report genetic and biochemical evidence that the two-ligand mechanism for potentiation of PtdIns 4-OH kinase activity is a broadly conserved feature of plant Sec14-nodulin proteins, and that this strategy appeared only late in plant evolution. Taken together, the data indicate that the PtdIns/PtdCho-exchange mechanism for stimulated PtdIns(4)P synthesis either arose independently during evolution in yeast and in higher plants, or a suitable genetic module was introduced to higher plants from a fungal source and subsequently exploited by them. © 2016 Huang, Ghosh, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Reactive oxygen species potentiate the negative inotropic effect of cardiac M2-muscarinic receptor stimulation.

    PubMed

    Peters, S L; Sand, C; Batinik, H D; Pfaffendorf, M; van Zwieten, P A

    2001-08-01

    The aim of the present study was to investigate the influence of reactive oxygen species (ROS) on the contractile responses of rat isolated left atria to muscarinic receptor stimulation. ROS were generated by means of electrolysis (30 mA, 75 s) of the organ bath fluid. Twenty minutes after the electrolysis period, the electrically paced atria (3 Hz) were stimulated with the adenylyl cyclase activator forskolin (1 microM). Subsequently, cumulative acetylcholine concentration-response curves were constructed (0.01 nM-10 microM). In addition, phosphoinositide turnover and adenylyl cyclase activity under basal and stimulated conditions were measured. For these biochemical experiments we used the stable acetylcholine analogue carbachol. The atria exposed to reactive oxygen species were influenced more potently (pD2 control: 6.2 vs. 7.1 for electrolysis-treated atria, P<0.05) and more effectively (Emax control: 40% vs. 90% reduction of the initial amplitude, P<0.05) by acetylcholine. In contrast, ROS exposure did not alter the responses to adenosine, whose receptor is also coupled via a Gi-protein to adenylyl cyclase. The basal (40% vs. control, P<0.05) as well as the carbachol-stimulated (-85% vs. control, P<0.05) inositol-phosphate formation was reduced in atria exposed to ROS. The forskolin-stimulated adenylyl cyclase activity was identical in both groups but carbachol stimulation induced a more pronounced reduction in adenylyl cyclase activity in the electrolysis-treated atria. Accordingly we may conclude that ROS enhance the negative inotropic response of isolated rat atria to acetylcholine by both a reduction of the positive (inositide turnover) and increase of the negative (adenylyl cyclase inhibition) inotropic components of cardiac muscarinic receptor stimulation. This phenomenon is most likely M2-receptor specific, since the negative inotropic response to adenosine is unaltered by ROS exposure.

  18. Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement.

    PubMed

    Brachmann, Saskia M; Yballe, Claudine M; Innocenti, Metello; Deane, Jonathan A; Fruman, David A; Thomas, Sheila M; Cantley, Lewis C

    2005-04-01

    Class Ia phosphoinositide 3-kinases (PI3Ks) are heterodimers of p110 catalytic and p85 regulatory subunits that mediate a variety of cellular responses to growth and differentiation factors. Although embryonic development is not impaired in mice lacking all isoforms of the p85alpha gene (p85alpha-/- p55alpha-/- p50alpha-/-) or in mice lacking the p85beta gene (p85beta-/-) (D. A. Fruman, F. Mauvais-Jarvis, D. A. Pollard, C. M. Yballe, D. Brazil, R. T. Bronson, C. R. Kahn, and L. C. Cantley, Nat Genet. 26:379-382, 2000; K. Ueki, C. M. Yballe, S. M. Brachmann, D. Vicent, J. M. Watt, C. R. Kahn, and L. C. Cantley, Proc. Natl. Acad. Sci. USA 99:419-424, 2002), we show here that loss of both genes results in lethality at embryonic day 12.5 (E12.5). The phenotypes of these embryos, including subepidermal blebs flanking the neural tube at E8 and bleeding into the blebs during the turning process, are similar to defects observed in platelet-derived growth factor receptor alpha null (PDGFRalpha-/-) mice (P. Soriano, Development 124:2691-2700, 1997), suggesting that PI3K is an essential mediator of PDGFRalpha signaling at this developmental stage. p85alpha-/- p55alpha+/+ p50alpha+/+ p85beta-/- mice had similar but less severe defects, indicating that p85alpha and p85beta have a critical and redundant function in development. Mouse embryo fibroblasts deficient in all p85alpha and p85beta gene products (p85alpha-/- p55alpha-/- p50alpha-/- p85beta-/-) are defective in PDGF-induced membrane ruffling. Overexpression of the Rac-specific GDP-GTP exchange factor Vav2 or reintroduction of p85alpha or p85beta rescues the membrane ruffling defect. Surprisingly, reintroduction of p50alpha also restored PDGF-dependent membrane ruffling. These results indicate that class Ia PI3K is critical for PDGF-dependent actin rearrangement but that the SH3 domain and the Rho/Rac/Cdc42-interacting domain of p85, which lacks p50alpha, are not required for this response.

  19. Curcumin inhibits vasculogenic mimicry through the downregulation of erythropoietin-producing hepatocellular carcinoma-A2, phosphoinositide 3-kinase and matrix metalloproteinase-2

    PubMed Central

    LIANG, YIMING; HUANG, MIN; LI, JIANWEN; SUN, XINLIN; JIANG, XIAODAN; LI, LIANGPING; KE, YIQUAN

    2014-01-01

    Glioblastomas (GBMs) are the most common and aggressive malignant primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry (VM) is often detected. VM is the formation of de novo vascular networks by highly invasive tumor cells, instead of endothelial cells. An understanding of the mechanisms of VM formation will contribute to the targeted therapy of GBMs. In the present study, the efficacy of curcumin (CCM) on VM formation and its mechanisms were investigated. It was found that CCM inhibits the VM formation, proliferation, migration and invasion of human glioma U251 cells in a dose-dependent manner. Furthermore, CCM downregulated the protein and mRNA expression of erythropoietin-producing hepatocellular carcinoma-A2, phosphoinositide 3-kinase and matrix metalloproteinase-2, indicating that CCM may function through these factors for the inhibition of VM formation. These data provide novel insights into the use of CCM to antagonize VM, and may contribute to the angiogenesis-targeted therapy of malignant glioma. PMID:25202424

  20. Infrared neural stimulation induces intracellular Ca2+ release mediated by phospholipase C.

    PubMed

    Moreau, David; Lefort, Claire; Pas, Jolien; Bardet, Sylvia M; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    The influence of infrared laser pulses on intracellular Ca 2+ signaling was investigated in neural cell lines with fluorescent live cell imaging. The probe Fluo-4 was used to measure Ca 2+ in HT22 mouse hippocampal neurons and nonelectrically excitable U87 human glioblastoma cells exposed to 50 to 500 ms infrared pulses at 1470 nm. Fluorescence recordings of Fluo-4 demonstrated that infrared stimulation induced an instantaneous intracellular Ca 2+ transient with similar dose-response characteristics in hippocampal neurons and glioblastoma cells (half-maximal effective energy density EC 50 of around 58 J.cm -2 ). For both type of cells, the source of the infrared-induced Ca 2+ transients was found to originate from intracellular stores and to be mediated by phospholipase C and IP 3 -induced Ca 2+ release from the endoplasmic reticulum. The activation of phosphoinositide signaling by IR light is a new mechanism of interaction relevant to infrared neural stimulation that will also be widely applicable to nonexcitable cell types. The prospect of infrared optostimulation of the PLC/IP 3 cell signaling cascade has many potential applications including the development of optoceutical therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study.

    PubMed

    Coulter, Tanya I; Chandra, Anita; Bacon, Chris M; Babar, Judith; Curtis, James; Screaton, Nick; Goodlad, John R; Farmer, George; Steele, Cathal Laurence; Leahy, Timothy Ronan; Doffinger, Rainer; Baxendale, Helen; Bernatoniene, Jolanta; Edgar, J David M; Longhurst, Hilary J; Ehl, Stephan; Speckmann, Carsten; Grimbacher, Bodo; Sediva, Anna; Milota, Tomas; Faust, Saul N; Williams, Anthony P; Hayman, Grant; Kucuk, Zeynep Yesim; Hague, Rosie; French, Paul; Brooker, Richard; Forsyth, Peter; Herriot, Richard; Cancrini, Caterina; Palma, Paolo; Ariganello, Paola; Conlon, Niall; Feighery, Conleth; Gavin, Patrick J; Jones, Alison; Imai, Kohsuke; Ibrahim, Mohammad A A; Markelj, Gašper; Abinun, Mario; Rieux-Laucat, Frédéric; Latour, Sylvain; Pellier, Isabelle; Fischer, Alain; Touzot, Fabien; Casanova, Jean-Laurent; Durandy, Anne; Burns, Siobhan O; Savic, Sinisa; Kumararatne, D S; Moshous, Despina; Kracker, Sven; Vanhaesebroeck, Bart; Okkenhaug, Klaus; Picard, Capucine; Nejentsev, Sergey; Condliffe, Alison M; Cant, Andrew James

    2017-02-01

    Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights

  2. TOR signaling is involved in PTTH-stimulated ecdysteroidogenesis by prothoracic glands in the silkworm, Bombyx mori.

    PubMed

    Gu, Shi-Hong; Yeh, Wei-Lan; Young, Shun-Chieh; Lin, Pei-Ling; Li, Sheng

    2012-04-01

    The prothoracicotropic hormone (PTTH) is a stimulator of ecdysteroidogenesis in prothoracic gland of larval insects. Our recent studies showed that phosphoinositide 3-kinase (PI3K)/Akt signaling was involved in PTTH-stimulated ecdysteroidogenesis by Bombyx mori prothoracic glands. In the present study, downstream signaling of PI3K/Akt was further investigated. Results showed that PTTH rapidly enhanced the phosphorylation of translational repressor 4E-binding protein (4E-BP) and p70 ribosomal protein S6 kinase (S6K), two known downstream signaling targets of the target of rapamycin complex 1 (TORC1). PTTH stimulated 4E-BP phosphorylation in time- and dose-dependent manners. Injection of PTTH into day-6 last instar larvae greatly increased 4E-BP phosphorylation, verifying the in vitro effect. PTTH-stimulated 4E-BP phosphorylation was blocked by both LY294002 and wortmannin, indicating the involvement of PI3K. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitors (PD 98059 and U0126), did not inhibit PTTH-stimulated 4E-BP phosphorylation, implying that ERK signaling is not related to PTTH-stimulated 4E-BP phosphorylation. The phosphorylation of S6K was also stimulated by PTTH both in vitro and in vivo. PI3K signaling appears to be involved in PTTH-stimulated phosphorylation of S6K. Rapamycin, a specific inhibitor of mammalian TOR signaling attenuated PTTH-stimulated phosphorylation of 4E-BP and S6K of the glands, and greatly inhibited PTTH-stimulated ecdysteroidogenesis. Examination of gene expression levels of 4E-BP and S6K showed that PTTH inhibited mRNA levels of both 4E-BP and S6K, indicating that PTTH may exert its action at both the transcriptional and phosphorylation levels. These results suggest that PTTH/PI3K/TOR/4E-BP (S6K) signaling is involved in PTTH-stimulated ecdysteroidogenesis by prothoracic glands in B. mori. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides.

    PubMed

    Blaha, Milan; Nemcova, Lucie; Kepkova, Katerina Vodickova; Vodicka, Petr; Prochazka, Radek

    2015-10-06

    The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation. We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR. Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells. The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and

  4. The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles.

    PubMed

    Carpenter, Victoria; Chen, Yi-Shan; Dolat, Lee; Valdivia, Raphael H

    2017-01-01

    Chlamydia trachomatis delivers multiple type 3 secreted effector proteins to host epithelial cells to manipulate cytoskeletal functions, membrane dynamics, and signaling pathways. TepP is the most abundant effector protein secreted early in infection, but its molecular function is poorly understood. In this report, we provide evidence that TepP is important for bacterial replication in cervical epithelial cells, activation of type I IFN genes, and recruitment of class I phosphoinositide 3-kinases (PI3K) and signaling adaptor protein CrkL to nascent pathogen-containing vacuoles (inclusions). We also show that TepP is a target of tyrosine phosphorylation by Src kinases but that these modifications do not appear to influence the recruitment of PI3K or CrkL. The translocation of TepP correlated with an increase in the intracellular pools of phosphoinositide-(3,4,5)-triphosphate but not the activation of the prosurvival kinase Akt, suggesting that TepP-mediated activation of PI3K is spatially restricted to early inclusions. Furthermore, we linked PI3K activity to the dampening of transcription of type I interferon (IFN)-induced genes early in infection. Overall, these findings indicate that TepP can modulate cell signaling and, potentially, membrane trafficking events by spatially restricted activation of PI3K. IMPORTANCE This article shows that Chlamydia recruits PI3K, an enzyme important for host cell survival and internal membrane functions, to the pathogens inside cells by secreting a scaffolding protein called TepP. TepP enhances Chlamydia replication and dampens the activation of immune responses.

  5. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured inmore » the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.« less

  6. Imbalanced PTEN and Phosphoinositide 3-kinase signaling impairs class switch recombination1

    PubMed Central

    Chen, Xiaomi; Dollin, Yonatan; Cambier, John C.; Wang, Jing H.

    2015-01-01

    Class switch recombination (CSR) generates isotype-switched antibodies with distinct effector functions. B cells express phosphatase and tensin homolog (PTEN) and multiple isoforms of class IA phosphoinositide 3-kinase (PI3K) catalytic subunits, including p110α and p110δ, whose roles in CSR remain unknown or controversial. Here, we demonstrate a direct effect of PTEN on CSR signaling by acute deletion of Pten specifically in mature B cells, thereby excluding the developmental impact of Pten deletion. We show that mature B cell-specific PTEN overexpression enhances CSR. More importantly, we establish a critical role of p110α in CSR. Furthermore, we identify a cooperative role of p110α and p110δ in suppressing CSR. Mechanistically, dysregulation of p110α or PTEN reversely affects activation-induced deaminase expression via modulating AKT activity. Thus, our study reveals that a signaling balance between PTEN and PI3K isoforms is essential to maintain normal CSR. PMID:26500350

  7. Amplification of Chromosome 1q Genes Encoding the Phosphoinositide Signalling Enzymes PI4KB, AKT3, PIP5K1A and PI3KC2B in Breast Cancer

    PubMed Central

    Waugh, Mark G.

    2014-01-01

    Little is known about the possible oncogenic roles of genes encoding for the phosphatidylinositol 4-kinases, a family of enzymes that regulate an early step in phosphoinositide signalling. To address this issue, the mutational status of all four human phosphatidylinositol 4-kinases genes was analyzed across 852 breast cancer samples using the COSMIC data resource. Point mutations in the phosphatidylinositol 4-kinase genes were uncommon and appeared in less than 1% of the patient samples however, 62% of the tumours had increases in gene copy number for PI4KB which encodes the phosphatidylinositol 4-kinase IIIbeta isozyme. Extending this analysis to subsequent enzymes in the phosphoinositide signalling cascades revealed that the only PIP5K1A, PI3KC2B and AKT3 genes exhibited similar patterns of gene copy number variation. By comparison, gene copy number increases for established oncogenes such as EGFR and HER2/Neu were only evident in 20% of the samples. The PI4KB, PIP5K1A, PI3KC2B and AKT3 genes are related in that they all localize to chromosome 1q which is often structurally and numerically abnormal in breast cancer. These results demonstrate that a gene quartet encoding a potential phosphoinositide signalling pathway is amplified in a subset of breast cancers. PMID:25368680

  8. Use of granulocyte-colony stimulating factor to prevent recurrent clozapine-induced neutropenia on drug rechallenge: A systematic review of the literature and clinical recommendations.

    PubMed

    Myles, Nicholas; Myles, Hannah; Clark, Scott R; Bird, Robert; Siskind, Dan

    2017-10-01

    Clozapine is the most effective medication for treatment-refractory schizophrenia; however, its use is contraindicated in people who have had previous clozapine-induced neutropenia. Co-prescription of granulocyte-colony stimulating factor may prevent recurrent neutropenia and allow continuation or rechallenge of clozapine. Systematic review of literature reporting the use of granulocyte-colony stimulating factor to allow rechallenge or continuation of clozapine in people with previous episodes of clozapine-induced neutropenia. The efficacy of granulocyte-colony stimulating factor and predictors of successful rechallenge will be determined to elucidate whether evidence-based recommendations can be made regarding the use of granulocyte-colony stimulating factor in this context. A total of 17 articles were identified that reported on clozapine rechallenge with granulocyte-colony stimulating factor support. In all, 76% of cases were able to continue clozapine at median follow-up of 12 months. There were no clear clinical or laboratory predictors of successful rechallenge; however, initial neutropenia was more severe in successful cases compared to unsuccessful cases. Cases co-prescribed lithium had lower success rates of rechallenge (60%) compared to those who were not prescribed lithium (81%). The most commonly reported rechallenge strategy was use of filgrastim 150-480 µg between daily to three times a week. There were no medication-specific side effects of granulocyte-colony stimulating factor reported apart from euphoria in one case. Three cases who failed granulocyte-colony stimulating factor had bacterial infection at time of recurrent neutropenia. No deaths were reported. Preliminary data suggest granulocyte-colony stimulating factor is safe and effective in facilitating rechallenge with clozapine. Clinical recommendations for use are discussed.

  9. Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation.

    PubMed

    Tal, Reshef; Seifer, David B; Grazi, Richard V; Malter, Henry E

    2014-08-20

    Polycystic ovarian syndrome (PCOS) is characterized by increased ovarian angiogenesis and vascularity. Accumulating evidence indicates that vascular endothelial growth factor (VEGF) is increased in PCOS and may play an important role in these vascular changes and the pathogenesis of this disease. Placental growth factor (PlGF), a VEGF family member, has not been previously characterized in PCOS women. We investigated levels and temporal expression patterns of PlGF and its soluble receptor sFlt-1 (soluble Fms-like tyrosine kinase) in serum and follicular fluid (FF) of women with PCOS during controlled ovarian stimulation. This was a prospective cohort study of 14 PCOS women (Rotterdam criteria) and 14 matched controls undergoing controlled ovarian stimulation. Serum was collected on day 3, day of hCG and day of oocyte retrieval. FF was collected on retrieval day. PlGF, sFlt-1 and anti-mullerian hormone (AMH) protein concentrations were measured using ELISA. Since sFlt-1 binds free PlGF, preventing its signal transduction, we calculated PlGF bioavailability as PlGF/sFlt-1 ratio. Serum PlGF and sFlt-1 levels were constant throughout controlled ovarian stimulation, and no significant differences were observed in either factor in PCOS women compared with non-PCOS controls at all three measured time points. However, FF PlGF levels were increased 1.5-fold in PCOS women compared with controls (p < 0.01). Moreover, FF PlGF correlated positively with number of oocytes retrieved and the ovarian reserve marker anti-mullerian hormone (AMH) and negatively with age. In addition, FF sFlt-1 levels were decreased 1.4-fold in PCOS women compared to controls (p = 0.04). PlGF bioavailability in FF was significantly greater (2-fold) in PCOS women compared with non-PCOS controls (p < 0.01). These data provide evidence that FF PlGF correlates with ovarian stimulation and that its bioavailability is increased in women with PCOS undergoing controlled ovarian stimulation. This

  10. Childhood Conduct Problems and Other Early Risk Factors in Rural Adult Stimulant Users

    ERIC Educational Resources Information Center

    Kramer, Teresa L.; Han, Xiaotong; Leukefeld, Carl; Booth, Brenda M.; Edlund, Carrie

    2009-01-01

    Context: Understanding childhood risk factors associated with adult substance use and legal problems is important for treatment and prevention. Purpose: To examine the relationship of early substance use, conduct problems before age 15, and family history of substance abuse on adult outcomes in rural, stimulant users. Methods: Adult cocaine and…

  11. Receptor stimulated formation of inositol phosphates in cultures of bovine adrenal medullary cells: the effects of bradykinin, bombesin and neurotensin.

    PubMed

    Bunn, S J; Marley, P D; Livett, B G

    1990-04-01

    The ability of a number of drugs and neuropeptides to stimulate phosphoinositide metabolism in cultured bovine adrenal medullary cells has been assessed. Low concentrations (10 nM) of angiotensin II, bradykinin, histamine, arginine-vasopressin, and bombesin, and high (10 microM) concentrations of oxytocin, prostaglandins E1, and E2, beta-endorphin, and neurotensin stimulated significant accumulation of [3H]inositol phosphates in adrenal medullary cells preloaded with [3H)]inositol. Bradykinin stimulated a significant response at concentration as low as 10pM, with an EC50 of approximately 0.5 nM. The response was markedly inhibited by the bradykinin B2 antagonist [Thi5,8,D-Phe7] bradykinin but not the B1 antagonist [Des-Arg9,Leu8] bradykinin. Higher concentrations of bombesin and neurotensin were required to elicit a response (10 nM and 10 microM respectively). The bombesin response was sensitive to inhibition by the bombesin antagonist [D-Arg1,D-Pro2,D-Trp7,9Leu11]-substance P. In contrast, the neurotensin response was not reduced by the NT1 antagonist [D-Trp11]-neurotensin. These results indicate there are a number of agents that can stimulate phosphatidylinositide hydrolysis in the adrenal medullary cells by acting on different classes of receptors. Such a range of diverse agonists that stimulate inositol phosphate formation will facilitate further analysis of the phosphatidylinositide breakdown in chromaffin cell function.

  12. Co-amplification of phosphoinositide 3-kinase enhancer A and cyclin-dependent kinase 4 triggers glioblastoma progression | Office of Cancer Genomics

    Cancer.gov

    Glioblastoma (GBM) is the most common primary brain tumor and has a dismal prognosis. Amplification of chromosome 12q13-q15 (Cyclin-dependent kinase 4 (CDK4) amplicon) is frequently observed in numerous human cancers including GBM. Phosphoinositide 3-kinase enhancer (PIKE) is a group of GTP-binding proteins that belong to the subgroup of centaurin GTPase family, encoded by CENTG1 located in CDK4 amplicon. However, the pathological significance of CDK4 amplicon in GBM formation remains incompletely understood.

  13. Differential Regulation of Macrophage Glucose Metabolism by Macrophage Colony-stimulating Factor and Granulocyte-Macrophage Colony-stimulating Factor: Implications for 18F FDG PET Imaging of Vessel Wall Inflammation

    PubMed Central

    Tavakoli, Sina; Short, John D.; Downs, Kevin; Nguyen, Huynh Nga; Lai, Yanlai; Zhang, Wei; Jerabek, Paul; Goins, Beth; Sadeghi, Mehran M.

    2017-01-01

    Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article. PMID:27849433

  14. Carbachol-induced phosphoinositide turnover in NCB-20 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, D.M.; Dillon-Carter, O.

    NCB-20 cells (fetal Chinese hamster brain cell x neuroblastoma hybrids) have been shown to contain a variety of neurotransmitter receptors. The authors now report that this cloned cell line also contains acetylcholne receptors which are linked to phospholipase C. Confluent cell cultures were preincubated with /sup 3/H-myo-inositol to label endogenous phosphoinositide (PI) and the accumulation of a PI metabolite, inositol monophosphate (IP/sub 1/), was measured in the presence of LiCl. Carbachol increased IP/sub 1/), accumulation be more than 400% with a EC/sub 50/ of about 50 ..mu..M. Acetylcholine and muscarine were also effective, whereas oxotremorine and McN-A-343 were weak inmore » both potency and efficacy. The carbachol-induced IP/sub 1/ accumulation was completely blocked by atropine (Ki approx. 0.6 nM) and pirenzepine (Ki approx. 15 nM). The presence of KCl was not required for the carbachol-induced effect. The formation of inositol bis- and triphosphate was also increased carbachol; these increases occurred earlier but were of much smaller magnitude. Pretreatment of cells with 4 ..beta..-phorbol dibutyrate or 4 ..beta..-phorbol myristate acetate was found to attenuate the carbachol-induced formation of IP/sub 1/ (IC/sub 50/ in the low nanomolar concentration ranges), however 4 ..beta..-phorbol, the biologically inactive phorbol ester, was ineffective in causing this attenuation. These results suggest a feedback inhibition of PI turnover in NCB-20 cells through the action of protein kinase C.« less

  15. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma

    PubMed Central

    von Bueren, André O.; Ćwiek, Paulina; Rehrauer, Hubert; Djonov, Valentin; Anderle, Pascale; Arcaro, Alexandre

    2015-01-01

    Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation. PMID:25915540

  16. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  17. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    PubMed Central

    Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978

  18. Exploring bikeability in a metropolitan setting: stimulating and hindering factors in commuting route environments

    PubMed Central

    2012-01-01

    Background Route environments may influence people's active commuting positively and thereby contribute to public health. Assessments of route environments are, however, needed in order to better understand the possible relationship between active commuting and the route environment. The aim of this study was, therefore, to assess the potential associations between perceptions of whether the route environment on the whole hinders or stimulates bicycle commuting and perceptions of environmental factors. Methods The Active Commuting Route Environment Scale (ACRES) was used for the assessment of bicycle commuters' perceptions of their route environments in the inner urban parts of Greater Stockholm, Sweden. Bicycle commuters (n = 827) were recruited by advertisements in newspapers. Simultaneous multiple regression analyses were used to assess the relation between predictor variables (such as levels of exhaust fumes, noise, traffic speed, traffic congestion and greenery) and the outcome variable (hindering - stimulating route environments). Two models were run, (Model 1) without and (Model 2) with the item traffic: unsafe or safe included as a predictor. Results Overall, about 40% of the variance of hindering - stimulating route environments was explained by the environmental predictors in our models (Model 1, R2 = 0.415, and Model 2, R 2= 0.435). The regression equation for Model 1 was: y = 8.53 + 0.33 ugly or beautiful + 0.14 greenery + (-0.14) course of the route + (-0.13) exhaust fumes + (-0.09) congestion: all types of vehicles (p ≤ 0.019). The regression equation for Model 2 was y = 6.55 + 0.31 ugly or beautiful + 0.16 traffic: unsafe or safe + (-0.13) exhaust fumes + 0.12 greenery + (-0.12) course of the route (p ≤ 0.001). Conclusions The main results indicate that beautiful, green and safe route environments seem to be, independently of each other, stimulating factors for bicycle commuting in inner urban areas. On the other hand, exhaust fumes, traffic

  19. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Colagiovanni, D. B.; Henry, V. A.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure.

  20. [Effect of moxa-burning heat stimulating Liangmen (ST 21) and Zusanli (ST 36) on proliferation and apoptosis signaling proteins in rats with stress-induced gastric ulcer].

    PubMed

    Peng, Li; Wang, Yadong; Chang, Xiaorong; Wu, Huangan; Liu, Mi; Wang, Hong; Chen, Jiaolong; Wang Chao; Quan, Renfu; Yang, Zongbao

    2016-06-01

    To observe the effect of moxa-burning heat stimulating acupoints of Liangmen (ST 21) and Zusanli (ST 36) on the proliferation and apoptosis signaling proteins in rats with stress-induced gastric ulcer. Forty rats were randomly divided into four groups: negative control (NC), ulcer control (UC), acupoints of stomach meridian (ASM), and acupoints control (AC). The acute gastric ulcer model was established by bound and water immersion. Rats in NC and UC groups didn't receive any moxa-burning heat stimulating treatment, while rats in ASM and AC groups were treated with buringmoxa heat stimulating the acupoints of Liangmen (ST 21) and Zusanli (ST 36) and their controlled points, respectively. Rats in all groups were sacrificed after 12 consecutive days treatment. The ulcer index was evaluated by using Guth's method. The expression of tumor necrosis factor-alpha (TNF-α), apoptotic protease activating facter-1 (Apaf-1), Caspase-3, p21 activated kinase 1 (PAK1), extracellular regulated protein kinases 2 (ERK2), phosphorylated ERK2 (pERK2), phosphoinositide 3-kinase (PI3K) and RAC-alpha serine/threonine-protein kinase (Akt) in gastric mucosa was detected by enzyme linked immunosorbent assay (ELISA). Compared with UC group, the ulcer index of ASM and AC groups decreased, and the injured gastric mucosa was improved, the expression of TNF-α, Apaf-1 and Caspase-3 in gastric mucosa was significantly reduced (P < 0.05), while the expression of PAK1, ERK2, pERK2, PI3K and Akt in gastric mucosa was significantly increased (P < 0.05). And ASM showed better effect than AC group (P < 0.05). Moxa-burning Heat stimulating of Liangmen (ST 21) and Zusanli (ST 36) could promote the recovery of gastric mucosal lesion probably by inhibiting cell apoptosis and promoting cell proliferation in stress-induced gastric ulcer.

  1. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral

  2. Regulation of glucose transport by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts: Involvement of protein kinase C-dependent and -independent mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettori, C.; Meldolesi, J.

    1989-05-01

    Glucose transport stimulation by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts was compared with the phosphoinositide hydrolysis effects of the same stimulants in a variety of experimental paradigms known to affect generation and/or functioning of intracellular second messengers: short- and long-term treatments with phorbol dibutyrate, that cause activation and down-regulation of protein kinase C, respectively; cell loading with high (quin2), that causes clamping of (Ca{sup 2+}){sub i} near the resting level; poisoning with pertussis toxin, that affects the GTP binding proteins of the Go/Gi class; treatment with Ca{sup 2+} ionophores. ({sup 14}C) glucose transport stimulation by maximal (insulin) wasmore » affected by neither pertussis toxin nor protein kinase C down-regulation. This result correlates with the lack of effect of insulin on phosphoinositide hydrolysis. In contrast, part of the glucose transport responses induced by bombesin and bradykinin appeared to be mediated by protein kinase C in proportion with the stimulation induced by these peptides on the phosphoinositide hydrolysis. The protein kinase C-independent portion of the response to bradykinin was found to be inhibitable by pertussis toxin. This latter result might suggest an interaction between the bradykinin receptor and a glucose transporter, mediated by a protein of the Go/Gi class.« less

  3. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.

    PubMed

    Iwaya, Naoko; Takasu, Hirotoshi; Goda, Natsuko; Shirakawa, Masahiro; Tanaka, Toshiki; Hamada, Daizo; Hiroaki, Hidekazu

    2013-05-01

    The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.

  4. Assembly and Molecular Architecture of the Phosphoinositide 3-Kinase p85α Homodimer.

    PubMed

    LoPiccolo, Jaclyn; Kim, Seung Joong; Shi, Yi; Wu, Bin; Wu, Haiyan; Chait, Brian T; Singer, Robert H; Sali, Andrej; Brenowitz, Michael; Bresnick, Anne R; Backer, Jonathan M

    2015-12-18

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated by growth factor and G-protein-coupled receptors and propagate intracellular signals for growth, survival, proliferation, and metabolism. p85α, a modular protein consisting of five domains, binds and inhibits the enzymatic activity of class IA PI3K catalytic subunits. Here, we describe the structural states of the p85α dimer, based on data from in vivo and in vitro solution characterization. Our in vitro assembly and structural analyses have been enabled by the creation of cysteine-free p85α that is functionally equivalent to native p85α. Analytical ultracentrifugation studies showed that p85α undergoes rapidly reversible monomer-dimer assembly that is highly exothermic in nature. In addition to the documented SH3-PR1 dimerization interaction, we identified a second intermolecular interaction mediated by cSH2 domains at the C-terminal end of the polypeptide. We have demonstrated in vivo concentration-dependent dimerization of p85α using fluorescence fluctuation spectroscopy. Finally, we have defined solution conditions under which the protein is predominantly monomeric or dimeric, providing the basis for small angle x-ray scattering and chemical cross-linking structural analysis of the discrete dimer. These experimental data have been used for the integrative structure determination of the p85α dimer. Our study provides new insight into the structure and assembly of the p85α homodimer and suggests that this protein is a highly dynamic molecule whose conformational flexibility allows it to transiently associate with multiple binding proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton.

    PubMed

    Huang, Chiung-Hua; Crain, Richard C

    2009-10-01

    Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.

  6. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor.

    PubMed

    Perez, Jessica; Hill, Bradford G; Benavides, Gloria A; Dranka, Brian P; Darley-Usmar, Victor M

    2010-05-13

    Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.

  7. Impact of rs361072 in the phosphoinositide 3-kinase p110beta gene on whole-body glucose metabolism and subunit protein expression in skeletal muscle.

    PubMed

    Ribel-Madsen, Rasmus; Poulsen, Pernille; Holmkvist, Johan; Mortensen, Brynjulf; Grarup, Niels; Friedrichsen, Martin; Jørgensen, Torben; Lauritzen, Torsten; Wojtaszewski, Jørgen F P; Pedersen, Oluf; Hansen, Torben; Vaag, Allan

    2010-04-01

    Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects. The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes. The functional role of rs361072 was studied in 196 Danish healthy adult twins. Peripheral and hepatic insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp. Basal and insulin-stimulated biopsies were taken from the vastus lateralis muscle, and tissue p110beta and p85alpha proteins were measured by Western blotting. The genetic association with type 2 diabetes and quantitative metabolic traits was investigated in 9,316 Danes with glucose tolerance ranging from normal to overt type 2 diabetes. While hepatic insulin resistance was similar in the fasting state, carriers of the minor G allele had lower hepatic glucose output (per-allele effect: -16%, P(add) = 0.004) during high physiological insulin infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85alpha:p110beta protein ratio (P(add) = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact with rs361072 on these traits. Our study suggests that the minor G allele of PIK3CB rs361072 associates with decreased muscle p85alpha:p110beta ratio and lower hepatic glucose production at high plasma insulin levels. However, no impact on type 2 diabetes prevalence was found.

  8. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    PubMed

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-08-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.

  9. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    PubMed Central

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-01-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots. PMID:12228558

  10. GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1α (HIF-1α) pathways.

    PubMed

    Burrows, Natalie; Babur, Muhammad; Resch, Julia; Ridsdale, Sophie; Mejin, Melissa; Rowling, Emily J; Brabant, Georg; Williams, Kaye J

    2011-12-01

    Phosphoinositide 3-kinase (PI3K) regulates the transcription factor hypoxia-inducible factor-1 (HIF-1) in thyroid carcinoma cells. Both pathways are associated with aggressive phenotype in thyroid carcinomas. Our objective was to assess the effects of the clinical PI3K inhibitor GDC-0941 and genetic inhibition of PI3K and HIF on metastatic behavior of thyroid carcinoma cells in vitro and in vivo. Vascular endothelial growth factor ELISA, HIF activity assays, proliferation studies, and scratch-wound migration and cell spreading assays were performed under various O(2) tensions [normoxia, hypoxia (1 and 0.1% O(2)), and anoxia] with or without GDC-0941 in a panel of four thyroid carcinoma cell lines (BcPAP, WRO, FTC133, and 8505c). Genetic inhibition was achieved by overexpressing phosphatase and tensin homolog (PTEN) into PTEN-null cells and by using a dominant-negative variant of HIF-1α (dnHIF). In vivo, human enhanced green fluorescence protein-expressing follicular thyroid carcinomas (FTC) were treated with GDC-0941 (orally). Spontaneous lung metastasis was confirmed by viewing enhanced green fluorescence protein-positive colonies cultured from lung tissue. GDC-0941 inhibited hypoxia/anoxia-induced HIF-1α and HIF-2α expression and HIF activity in thyroid carcinoma cells. Basal (three of four cell lines) and/or hypoxia-induced (four of four) secreted vascular endothelial growth factor was inhibited by GDC-0941, whereas selective HIF targeting predominantly affected hypoxia/anoxia-mediated secretion (P < 0.05-0.0001). Antiproliferative effects of GDC-0941 were more pronounced in PTEN mutant compared with PTEN-restored cells (P < 0.05). Hypoxia increased migration in papillary cells and cell spreading/migration in FTC cells (P < 0.01). GDC-0941 reduced spreading and migration in all O(2) conditions, whereas dnHIF had an impact only on hypoxia-induced migration (P < 0.001). In vivo, GDC-0941 reduced expression of HIF-1α, phospho-AKT, GLUT-1, and lactate

  11. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells

    PubMed Central

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S. Joseph

    2017-01-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF–positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  12. Predictive Success Factors in Selective Upper Airway Stimulation.

    PubMed

    Heiser, Clemens; Hofauer, Benedikt

    2017-01-01

    Obstructive sleep apnea is one of the most common diseases in Western industrialized countries. A variety of conservative and surgical treatment options are available for its treatment. In recent years, selective upper airway stimulation (sUAS) has been shown to be effective and safe. Different biomarkers have been investigated as predictive clinical success factors in a number of clinical trials. Age does not matter in sUAS, as compared to its predictive role in other therapies. Weight seems to play a limited role, depending on drug-induced sleep endoscopy to rule out a complete concentric collapse with an increased body mass index. For surgical success and the related postoperative tongue motions, a nerve integrity monitoring methodology has been developed for predicting correct cuff placement. Postoperative sonography remains a promising method for the future assessment of predictive markers in sUAS. © 2017 S. Karger AG, Basel.

  13. Ecdysteroidogenesis and development in Heliothis virescens (Lepidoptera: Noctuidae): Focus on PTTH-stimulated pathways.

    PubMed

    Scieuzo, Carmen; Nardiello, Marisa; Salvia, Rosanna; Pezzi, Marco; Chicca, Milvia; Leis, Marilena; Bufo, Sabino A; Vinson, S Bradleigh; Rao, Asha; Vogel, Heiko; Falabella, Patrizia

    2018-02-15

    Post-embryonic development and molting in insects are regulated by endocrine changes, including prothoracicotropic hormone (PTTH)-stimulated ecdysone secretion by the prothoracic glands (PGs). In Lepidoptera, two pathways are potentially involved in PTTH-stimulated ecdysteroidogenesis, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/protein kinase B/target of rapamycin (PI3K/Akt/TOR). We investigated the potential roles of both these pathways in Heliothis virescens ecdysteroidogenesis. We identified putative proteins belonging to MAPK and PI3K/Akt/TOR signaling cascades, using transcriptomic analyses of PGs from last (fifth) instar larvae. Using western blots, we measured the phosphorylation of 4E-BP and S6K proteins, the main targets of TOR, following the in vitro exposure of PGs to brain extract containing PTTH (hereafter referred to as PTTH) and/or the inhibitors of MAPK (U0126), PI3K (LY294002) or TOR (rapamycin). Next, we measured ecdysone production, under the same experimental conditions, by enzyme immunoassay (EIA). We found that in Heliothis virescens last instar larvae, both pathways modulated PTTH-stimulated ecdysteroidogenesis. Finally, we analyzed the post-embryonic development of third and fourth instar larvae fed on diet supplemented with rapamycin, in order to better understand the role of the TOR pathway in larval growth. When rapamycin was added to the diet of larvae, the onset of molting was delayed, the growth rate was reduced and abnormally small larvae/pupae with high mortality rates resulted. In larvae fed on diet supplemented with rapamycin, the growth of PGs was suppressed, and ecdysone production and secretion were inhibited. Overall, the in vivo and in vitro results demonstrated that, similarly to Bombyx mori, MAPK and PI3K/Akt/TOR pathways are involved in PTTH signaling-stimulated ecdysteroidogenesis, and indicated the important role of TOR protein in H. virescens systemic growth. Copyright © 2018 Elsevier Ltd. All

  14. Kit signaling inhibits the sphingomyelin-ceramide pathway through PLC gamma 1: implication in stem cell factor radioprotective effect.

    PubMed

    Maddens, Stéphane; Charruyer, Alexandra; Plo, Isabelle; Dubreuil, Patrice; Berger, Stuart; Salles, Bernard; Laurent, Guy; Jaffrézou, Jean-Pierre

    2002-08-15

    Previous studies demonstrated that Kit activation confers radioprotection. However, the mechanism by which Kit signaling interferes with cellular response to ionizing radiation (IR) has not been firmly established. Based on the role of the sphingomyelin (SM) cycle apoptotic pathway in IR-induced apoptosis, we hypothesized that one of the Kit signaling components might inhibit IR-induced ceramide production or ceramide-induced apoptosis. Results show that, in both Ba/F3 and 32D murine cell lines transfected with wild-type c-kit, stem cell factor (SCF) stimulation resulted in a significant reduction of IR-induced apoptosis and cytotoxicity, whereas DNA repair remained unaffected. Moreover, SCF stimulation inhibited IR-induced neutral sphingomyelinase (N-SMase) stimulation and ceramide production. The SCF inhibitory effect on SM cycle was not influenced by wortmannin, a phosphoinositide-3 kinase (PI3K) inhibitor. The SCF protective effect was maintained in 32D-KitYF719 cells in which the PI3K/Akt signaling pathway is abolished due to mutation in Kit docking site for PI3K. In contrast, phospholipase C gamma (PLC gamma) inhibition by U73122 totally restored IR-induced N-SMase stimulation, ceramide production, and apoptosis in Kit-activated cells. Moreover, SCF did not protect 32D-KitYF728 cells (lacking a functional docking site for PLC gamma 1), from IR-induced SM cycle. Finally, SCF-induced radioprotection of human CD34(+) bone marrow cells was also inhibited by U73122. Altogether, these results suggest that SCF radioprotection is due to PLC gamma 1-dependent negative regulation of IR-induced N-SMase stimulation. Beyond the scope of Kit-expressing cells, it suggests that PLC gamma 1 status could greatly influence the post-DNA damage cellular response to IR, and perhaps, to other genotoxic agents.

  15. The granulocyte-macrophage colony-stimulating factor promoter cis-acting element CLE0 mediates induction signals in T cells and is recognized by factors related to AP1 and NFAT.

    PubMed Central

    Masuda, E S; Tokumitsu, H; Tsuboi, A; Shlomai, J; Hung, P; Arai, K; Arai, N

    1993-01-01

    Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation. Images PMID:8246960

  16. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita

    2013-04-01

    Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being

  17. Using Student-Centred Learning Environments to Stimulate Deep Approaches to Learning: Factors Encouraging or Discouraging Their Effectiveness

    ERIC Educational Resources Information Center

    Baeten, Marlies; Kyndt, Eva; Struyven, Katrien; Dochy, Filip

    2010-01-01

    This review outlines encouraging and discouraging factors in stimulating the adoption of deep approaches to learning in student-centred learning environments. Both encouraging and discouraging factors can be situated in the context of the learning environment, in students' perceptions of that context and in characteristics of the students…

  18. Calcium mobilization and phosphoinositide turnover in fluoride-activated human neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strnad, C.F.; Wong, K.

    1986-05-01

    Fluoride ion, at concentrations above 10 mM, has been found to activate a superoxide production response in human neutrophils which is strongly dependent on the presence of extracellular calcium. In an attempt to further explore the calcium requirement of fluoride-induced neutrophil activation, intracellular calcium concentrations were monitored through use of the fluorescent calcium probe, Quin 2. Fluoride ion, at concentrations between 10 and 20 mM, was found to elicit a rise in intracellular calcium levels which was characterized by a lag period of 4 to 10 min and a prolonged duration of action (greater than 20 min). In contrast, themore » chemotactic peptide, formylmethionyl-leucyl-phenylalanine (FMLP), induced a rise in intracellular calcium concentration which peaked within 1 min. Preincubation of cells with 1 ..mu..g/ml pertussis toxin resulted in inhibition of the FMLP-induced response, but not that elicited by fluoride. Furthermore, anion exchange chromatography indicated that inositol phosphate accumulation occurred in fluoride-treated cells in association with calcium mobilization. Recent evidence suggests that the FMLP receptor is coupled to phospholipase C and phosphoinositide turnover through a guanine nucleotide binding protein susceptible to inhibition by pertussis toxin. Present results suggest that fluoride ion may serve to activate this protein in a manner resistant to inhibition by pertussis toxin.« less

  19. Impact on acute myeloid leukemia relapse in granulocyte colony-stimulating factor application: a meta-analysis.

    PubMed

    Feng, Xiaoqin; Lan, He; Ruan, Yongsheng; Li, Chunfu

    2018-03-08

    This meta-analysis evaluated the impact of granulocyte colony-stimulating factor (G-CSF) added to chemotherapy on treatment outcomes including survival and disease recurrence in patients with acute myeloid leukemia (AML). Medline, Cochrane, EMBASE, and Google Scholar databases were searched until 19 September 2016 using search terms. Studies that investigated patients with AML who underwent stem-cell transplantation were included. The overall analysis revealed a significant improvement in overall survival (OS) (P = .019) and disease-free survival (DFS) (P = .002) for patients receiving G-CSF with chemotherapy. Among patients without prior AML treatment, there was a significant improvement in DFS (P = .014) and reduction in incidence of relapse (P = .015) for those who received G-CSF. However, subgroup analyses found no significant difference between G-CSF (+) and G-CSF (-) treatments in rates of OS (P = .104) and complete remission (CR) (P = .572) for patients without prior AML treatment. Among patients with relapsed/refractory AML, there was no significant difference found between G-CSF (+) and G-CSF (-) groups for OS (P = .225), DFS (P = .209), and CR (P = .208). Treatment with chemotherapy plus G-CSF appears to provide better survival and treatment responses compared with chemotherapy alone, particularly for patients with previously untreated AML. AML, acute myeloid leukemia; CI, confidence interval; CR, complete remission; DFS, disease-free survival; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; HR, hazard ratio; MDS, myelodysplastic syndrome; OR, odds ratio; OS, overall survival; RCTs, randomized control trials; RR, relative risk.

  20. Cytokine Response of Cultured Skeletal Muscle Cells Stimulated with Proinflammatory Factors Depends on Differentiation Stage

    PubMed Central

    Podbregar, Matej; Lainscak, Mitja; Prelovsek, Oja; Mars, Tomaz

    2013-01-01

    Myoblast proliferation and myotube formation are critical early events in skeletal muscle regeneration. The attending inflammation and cytokine signaling are involved in regulation of skeletal muscle cell proliferation and differentiation. Secretion of muscle-derived cytokines upon exposure to inflammatory factors may depend on the differentiation stage of regenerating muscle cells. Cultured human myoblasts and myotubes were exposed to 24-hour treatment with tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS). Secretion of interleukin 6 (IL-6), a major muscle-derived cytokine, and interleukin 1 (IL-1), an important regulator of inflammatory response, was measured 24 hours after termination of TNF-α or LPS treatment. Myoblasts pretreated with TNF-α or LPS displayed robustly increased IL-6 secretion during the 24-hour period after removal of treatments, while IL-1 secretion remained unaltered. IL-6 secretion was also increased in myotubes, but the response was less pronounced compared with myoblasts. In contrast to myoblasts, IL-1 secretion was markedly stimulated in LPS-pretreated myotubes. We demonstrate that preceding exposure to inflammatory factors stimulates a prolonged upregulation of muscle-derived IL-6 and/or IL-1 in cultured skeletal muscle cells. Our findings also indicate that cytokine response to inflammatory factors in regenerating skeletal muscle partially depends on the differentiation stage of myogenic cells. PMID:23509435

  1. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Activation of human gingival epithelial cells by cell-surface components of black-pigmented bacteria: augmentation of production of interleukin-8, granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor and expression of intercellular adhesion molecule 1.

    PubMed

    Sugiyama, A; Uehara, A; Iki, K; Matsushita, K; Nakamura, R; Ogawa, T; Sugawara, S; Takada, H

    2002-01-01

    Black-pigmented anaerobic bacteria, such as Porphyromonas gingivalis and Prevotella intermedia, are amongst the predominant bacteria in periodontal pockets and have been implicated in periodontal diseases. To elucidate the roles of gingival keratinocytes, which are the first cells encountered by oral bacteria in periodontal diseases, human gingival keratinocytes in primary culture were stimulated with cell-surface components of P gingivalis and Pr. intermedia. A glycoprotein fraction from Pr. intermedia (PGP) clearly augmented the release of interleukin-8, granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor, as determined by enzyme-linked immunosorbent assay. This PGP also induced expression of intercellular adhesion molecule-1 (ICAM-1), as determined by flow cytometry. The augmentation of mRNA expression for these molecules was also confirmed by reverse transcription PCR. In contrast, lipopolysaccharide (LPS) from Pr. intermedia and Escherichia coli was completely inactive in these assays. LPS fraction and purified fimbriae from P gingivalis exhibited weak activities. Cytokine production and ICAM-1 expression by gingival keratinocytes might cause accumulation and activation of neutrophils in the epithelium and, therefore, may be involved in the initiation and development of inflammation in periodontal tissues.

  3. Tumor Necrosis Factor α Stimulates Osteoclast Differentiation by a Mechanism Independent of the Odf/Rankl–Rank Interaction

    PubMed Central

    Kobayashi, Kanichiro; Takahashi, Naoyuki; Jimi, Eijiro; Udagawa, Nobuyuki; Takami, Masamichi; Kotake, Shigeru; Nakagawa, Nobuaki; Kinosaki, Masahiko; Yamaguchi, Kyoji; Shima, Nobuyuki; Yasuda, Hisataka; Morinaga, Tomonori; Higashio, Kanji; Martin, T. John; Suda, Tatsuo

    2000-01-01

    Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF–dependent bone marrow macrophages (M-BMMφ) appeared within 3 d. Tartrate-resistant acid phosphatase–positive osteoclasts were also formed when M-BMMφ were further cultured for 3 d with mouse tumor necrosis factor α (TNF-α) in the presence of M-CSF. Osteoclast formation induced by TNF-α was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti–RANK (ODF/RANKL receptor) antibody. Experiments using M-BMMφ prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-α. Osteoclasts induced by TNF-α formed resorption pits on dentine slices only in the presence of IL-1α. These results demonstrate that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system. TNF-α together with IL-1α may play an important role in bone resorption of inflammatory bone diseases. PMID:10637272

  4. Airway epithelial phosphoinositide 3-kinase-δ contributes to the modulation of fungi-induced innate immune response.

    PubMed

    Jeong, Jae Seok; Lee, Kyung Bae; Kim, So Ri; Kim, Dong Im; Park, Hae Jin; Lee, Hern-Ku; Kim, Hyung Jin; Cho, Seong Ho; Kolliputi, Narasaiah; Kim, Soon Ha; Lee, Yong Chul

    2018-04-05

    Respiratory fungal exposure is known to be associated with severe allergic lung inflammation. Airway epithelium is an essential controller of allergic inflammation. An innate immune recognition receptor, nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome, and phosphoinositide 3 kinase (PI3K)-δ in airway epithelium are involved in various inflammatory processes. We investigated the role of NLRP3 inflammasome in fungi-induced allergic lung inflammation and examined the regulatory mechanism of NLRP3 inflammasome, focusing on PI3K-δ in airway epithelium. We used two in vivo models induced by exposure to Aspergillus fumigatus ( Af ) and Alternaria alternata ( Aa ), as well as an Af -exposed in vitro system. We also checked NLRP3 expression in lung tissues from patients with allergic bronchopulmonary aspergillosis (ABPA). Assembly/activation of NLRP3 inflammasome was increased in the lung of Af -exposed mice. Elevation of NLRP3 inflammasome assembly/activation was observed in Af -stimulated murine and human epithelial cells. Similarly, pulmonary expression of NLRP3 in patients with ABPA was increased. Importantly, neutralisation of NLRP3 inflammasome derived IL-1β alleviated pathophysiological features of Af -induced allergic inflammation. Furthermore, PI3K-δ blockade improved Af -induced allergic inflammation through modulation of NLRP3 inflammasome, especially in epithelial cells. This modulatory role of PI3K-δ was mediated through the regulation of mitochondrial reactive oxygen species (mtROS) generation. NLRP3 inflammasome was also implicated in Aa -induced eosinophilic allergic inflammation, which was improved by PI3K-δ blockade. These findings demonstrate that fungi-induced assembly/activation of NLRP3 inflammasome in airway epithelium may be modulated by PI3K-δ, which is mediated partly through the regulation of mtROS generation. Inhibition of PI3K-δ may have potential for treating fungi-induced severe

  5. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions

    PubMed Central

    Dai, Gucan

    2013-01-01

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the

  6. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions.

    PubMed

    Dai, Gucan; Varnum, Michael D

    2013-07-15

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the

  7. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts

    PubMed Central

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097

  8. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    PubMed

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    PubMed

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways.

    PubMed

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-02-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K

  11. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways

    PubMed Central

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-01-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K

  12. The effect of aroma stimulation during isotonic exercise on the rating of perceived exertion and blood fatigue factors of athletes with patellofemoral pain syndrome

    PubMed Central

    Kim, Sangsoo; Choo, JongHoo; Ju, Sungbum

    2018-01-01

    [Purpose] The purpose of this study is to examine the effect of aroma stimulation during isotonic exercise on the rating of perceived exertion (RPE) and the blood fatigue factors of athletes who have patellofemoral pain syndrome (PFPS). [Subjects and Methods] The research subjects were seven athletes in their twenties who suffer from PFPS. They were divided into a control group and an aroma stimulation group and performed isotonic exercises repeatedly. After exercising, the RPE and blood fatigue factors, including creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and ammonia, were measured through blood sampling. [Results] The aroma stimulus group showed significantly lower RPE than the control group immediately after exercising, which included leg presses, leg curls, bicep curls, and leg extensions. Among the blood fatigue factors, the change in LDH indicated the effect of aroma stimulation. [Conclusion] We confirmed that aroma stimulation during isotonic exercise has the positive effect of reducing the RPE and blood fatigue factors, such as blood LDH, of the athletes with PFPS. PMID:29545683

  13. Evidence of insulin-like growth factor binding protein-3 proteolysis during growth hormone stimulation testing.

    PubMed

    Nwosu, Benjamin U; Soyka, Leslie A; Angelescu, Amanda; Lee, Mary M

    2011-01-01

    The ternary complex is composed of insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3 and acid labile subunit (ALS). Growth hormone (GH) promotes IGFBP-3 proteolysis to release free IGF-I, ALS, and IGFBP-3 fragments. Our aim was to determine whether elevated GH levels during GH stimulation testing would trigger IGFBP-3 proteolysis. This prospective study of 10 short prepubertal children (height standard deviation score -2.37 +/- 0.31) used arginine and GH releasing hormone stimulation to study dynamic changes in the ternary complex moieties. IGFBP-3 was measured in two assays: a radioimmunoassay (RIA) that detects both cleaved and intact IGFBP-3; and an immunochemiluminescence assay (ICMA) that detects only intact IGFBP-3. IGFBP-3 measured by RIA increased by 19% (p < 0.05), while IGFBP-3 measured by ICMA did not significantly increase (6.1%). The significant increase in IGFBP-3 measured by RIA, but not ICMA, provides evidence of IGFBP-3 proteolysis during acute GH stimulation.

  14. Bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by protein kinase C, and is enhanced by disruption of rho/cytoskeletal pathways.

    PubMed Central

    Seensalu, R; Avedian, D; Barbuti, R; Song, M; Slice, L; Walsh, J H

    1997-01-01

    Isolated canine G cells in primary culture have been used to study calcium, protein kinase C (PKC), and rho/cytoskeletal-dependent intracellular pathways involved in bombesin- stimulated gastrin release. A method to obtain highly purified G cells by culture (64% G cells) after flow cytometry on elutriated fractions of cells from digested canine gastric antral mucosa has been developed. Pretreatment of G cells with thapsigargin (10(-8)-10(-6) M) and release experiments in Ca2+-containing or -depleted media showed that influx of Ca2+ into the cells and not acute release from intracellular stores plays an important role in bombesin-stimulated gastrin release. Inhibition of PKC by the specific inhibitor GF 109 203X did not affect bombesin-stimulated release. Rho, a small GTP-binding protein that regulates the actin cytoskeleton, is specifically antagonized by Clostridium botulinum C3 exoenzyme. C3 (10 microg/ml) enhanced basal and bombesin-stimulated gastrin release by 315 and 266%, respectively. The importance of the cytoskeleton for regulation of gastrin release was emphasized by a more pronounced release of gastrin when the organization of the actin cytoskeleton was disrupted by cytochalasin D (5 x 10(-)7 and 10(-)6 M). Wortmannin, a potent inhibitor of phosphoinositide-3-kinase, did not alter bombesin-stimulated gastrin release. Thus, it is concluded that bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by PKC, and is enhanced by disruption of rho/cytoskeletal pathways. PMID:9276720

  15. Bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by protein kinase C, and is enhanced by disruption of rho/cytoskeletal pathways.

    PubMed

    Seensalu, R; Avedian, D; Barbuti, R; Song, M; Slice, L; Walsh, J H

    1997-09-01

    Isolated canine G cells in primary culture have been used to study calcium, protein kinase C (PKC), and rho/cytoskeletal-dependent intracellular pathways involved in bombesin- stimulated gastrin release. A method to obtain highly purified G cells by culture (64% G cells) after flow cytometry on elutriated fractions of cells from digested canine gastric antral mucosa has been developed. Pretreatment of G cells with thapsigargin (10(-8)-10(-6) M) and release experiments in Ca2+-containing or -depleted media showed that influx of Ca2+ into the cells and not acute release from intracellular stores plays an important role in bombesin-stimulated gastrin release. Inhibition of PKC by the specific inhibitor GF 109 203X did not affect bombesin-stimulated release. Rho, a small GTP-binding protein that regulates the actin cytoskeleton, is specifically antagonized by Clostridium botulinum C3 exoenzyme. C3 (10 microg/ml) enhanced basal and bombesin-stimulated gastrin release by 315 and 266%, respectively. The importance of the cytoskeleton for regulation of gastrin release was emphasized by a more pronounced release of gastrin when the organization of the actin cytoskeleton was disrupted by cytochalasin D (5 x 10(-)7 and 10(-)6 M). Wortmannin, a potent inhibitor of phosphoinositide-3-kinase, did not alter bombesin-stimulated gastrin release. Thus, it is concluded that bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by PKC, and is enhanced by disruption of rho/cytoskeletal pathways.

  16. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  17. Potent inhibitory effect of silibinin from milk thistle on skin inflammation stimuli by 12-O-tetradecanoylphorbol-13-acetate.

    PubMed

    Liu, Wenfeng; Li, Yonglian; Zheng, Xi; Zhang, Kun; Du, Zhiyun

    2015-12-01

    Silibinin, a major polyphenol in milk thistle, has been reported to have multiple pharmacological activities; therefore, there is an urgent need to well understand how silibinin works on inflammation-associated skin diseases. We herein designed silibinin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated skin inflammation to test its inhibitory effects. It was demonstrated that silibinin, applied topically onto mouse ears following TPA stimulation, effectively down-regulated the expressions of TPA-induced interleukin-1β (IL-1β), interleukin-6 (IL-6), necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Further mechanistic investigations indicated that silibinin suppressed the expression of IκB kinase (IKK) by inhibiting the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, and thereby suppressing TPA-stimulated nuclear factor-κB (NF-κB) activation. Promisingly, silibinin, used for transdermal application, may be a potent naturally occurring anti-inflammatory agent for the prevention of inflammation-associated skin diseases.

  18. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development.

    PubMed

    Dobrenis, Kostantin; Gauthier, Laurent R; Barroca, Vilma; Magnon, Claire

    2015-02-15

    The hematopoietic growth factor granulocyte colony-stimulating factor (G-CSF) has a role in proliferation, differentiation and migration of the myeloid lineage and in mobilizing hematopoietic stem and progenitor cells into the bloodstream. However, G-CSF has been newly characterized as a neurotrophic factor in the brain. We recently uncovered that autonomic nerve development in the tumor microenvironment participates actively in prostate tumorigenesis and metastasis. Here, we found that G-CSF constrains cancer to grow and progress by, respectively, supporting the survival of sympathetic nerve fibers in 6-hydroxydopamine-sympathectomized mice and also, promoting the aberrant outgrowth of parasympathetic nerves in transgenic or xenogeneic prostate tumor models. This provides insight into how neurotrophic growth factors may control tumor neurogenesis and may lead to new antineurogenic therapies for prostate cancer. © 2014 UICC.

  19. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  20. Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages.

    PubMed

    Jin, Xueting; Kruth, Howard S

    2016-06-30

    A protocol is presented for cell culture of macrophage colony-stimulating factor (M-CSF) differentiated human monocyte-derived macrophages. For initiation of experiments, fresh or frozen monocytes are cultured in flasks for 1 week with M-CSF to induce their differentiation into macrophages. Then, the macrophages can be harvested and seeded into culture wells at required cell densities for carrying out experiments. The use of defined numbers of macrophages rather than defined numbers of monocytes to initiate macrophage cultures for experiments yields macrophage cultures in which the desired cell density can be more consistently attained. Use of cryopreserved monocytes reduces dependency on donor availability and produces more homogeneous macrophage cultures.

  1. mTOR Complexes Repress Hypertrophic Agonist-Stimulated Expression of Connective Tissue Growth Factor in Adult Cardiac Muscle Cells.

    PubMed

    Sundararaj, Kamala; Pleasant, Dorea L; Moschella, Phillip C; Panneerselvam, Kavin; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2016-02-01

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that promotes fibrosis in various organs. In the heart, both cardiomyocytes (CM) and cardiac fibroblasts have been reported as a source of CTGF expression, aiding cardiac fibrosis. Although the mammalian target of rapamycin (mTOR) forms 2 distinct complexes, mTORC1 and mTORC2, and plays a central role in integrating biochemical signals for protein synthesis and cellular homeostasis, we explored its role in CTGF expression in adult feline CM. CM were stimulated with 10 μM phenylephrine (PE), 200 nM angiotensin (Ang), or 100 nM insulin for 24 hours. PE and Ang, but not insulin, caused an increase in CTGF mRNA expression with the highest expression observed with PE. Inhibition of mTOR with torin1 but not rapamycin significantly enhanced PE-stimulated CTGF expression. Furthermore, silencing of raptor and rictor using shRNA adenoviral vectors to suppress mTORC1 and mTORC2, respectively, or blocking phosphatidylinositol 3-kinase (PI3K) signaling with LY294002 (LY) or Akt signaling by dominant-negative Akt expression caused a substantial increase in PE-stimulated CTGF expression as measured by both mRNA and secreted protein levels. However, studies with dominant-negative delta isoform of protein kinase C demonstrate that delta isoform of protein kinase C is required for both agonist-induced CTGF expression and mTORC2/Akt-mediated CTGF suppression. Finally, PE-stimulated CTGF expression was accompanied with a corresponding increase in Smad3 phosphorylation and pretreatment of cells with SIS3, a Smad3 specific inhibitor, partially blocked the PE-stimulated CTGF expression. Therefore, a PI3K/mTOR/Akt axis plays a suppressive role on agonist-stimulated CTGF expression where the loss of this mechanism could be a contributing factor for the onset of cardiac fibrosis in the hypertrophying myocardium.

  2. Colony-Stimulating Factors for Febrile Neutropenia during Cancer Therapy

    PubMed Central

    Bennett, Charles L.; Djulbegovic, Benjamin; Norris, LeAnn B.; Armitage, James O.

    2014-01-01

    A 55-year-old, previously healthy woman received a diagnosis of diffuse large-B-cell lymphoma after the evaluation of an enlarged left axillary lymph node obtained on biopsy. She had been asymptomatic except for the presence of enlarged axillary lymph nodes, which she had found while bathing. She was referred to an oncologist, who performed a staging evaluation. A complete blood count and test results for liver and renal function and serum lactate dehydrogenase were normal. Positron-emission tomography and computed tomography (PET–CT) identified enlarged lymph nodes with abnormal uptake in the left axilla, mediastinum, and retroperitoneum. Results on bone marrow biopsy were normal. The patient’s oncologist recommends treatment with six cycles of cyclophosphamide, doxorubicin, vincristine, and prednisone with rituximab (CHOP-R) at 21-day intervals. Is the administration of prophylactic granulocyte colony-stimulating factor (G-CSF) with the first cycle of chemotherapy indicated? PMID:23514290

  3. Plasma granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor levels in critical illness including sepsis and septic shock: relation to disease severity, multiple organ dysfunction, and mortality.

    PubMed

    Presneill, J J; Waring, P M; Layton, J E; Maher, D W; Cebon, J; Harley, N S; Wilson, J W; Cade, J F

    2000-07-01

    To define the circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) during critical illness and to determine their relationship to the severity of illness as measured by the Acute Physiology and Chronic Health Evaluation (APACHE) II score, the development of multiple organ dysfunction, or mortality. Prospective cohort study. University hospital intensive care unit. A total of 82 critically ill adult patients in four clinically defined groups, namely septic shock (n = 29), sepsis without shock (n = 17), shock without sepsis (n = 22), and nonseptic, nonshock controls (n = 14). None. During day 1 of septic shock, peak plasma levels of G-CSF, interleukin (IL)-6, and leukemia inhibitory factor (LIF), but not GM-CSF, were greater than in sepsis or shock alone (p < .001), and were correlated among themselves (rs = 0.44-0.77; p < .02) and with the APACHE II score (rs = 0.25-0.40; p = .03 to .18). G-CSF, IL-6, and UF, and sepsis, shock, septic shock, and APACHE II scores were strongly associated with organ dysfunction or 5-day mortality by univariate analysis. However, multiple logistic regression analysis showed that only septic shock remained significantly associated with organ dysfunction and only APACHE II scores and shock with 5-day mortality. Similarly, peak G-CSF, IL-6, and LIF were poorly predictive of 30-day mortality. Plasma levels of G-CSF, IL-6, and LIF are greatly elevated in critical illness, including septic shock, and are correlated with one another and with the severity of illness. However, they are not independently predictive of mortality, or the development of multiple organ dysfunction. GM-CSF was rarely elevated, suggesting different roles for G-CSF and GM-CSF in human septic shock.

  4. Analysis of phosphoinositide 3-kinase inhibitors by bottom-up electron-transfer dissociation hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Masson, Glenn R.; Maslen, Sarah L.

    2017-01-01

    Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics. PMID:28381646

  5. Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors.

    PubMed

    Hua, Zhang Guo; Xiong, Lu Jian; Yan, Chen; Wei, Dai Hong; YingPai, ZhaXi; Qing, Zhao Yong; Lin, Qiao Zi; Fei, Feng Ruo; Ling, Wang Ya; Ren, Ma Zhong

    2016-11-30

    Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. LXRα activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, LXRα activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, LXRα might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and LXRα activation enhanced these effects, suggesting LXRα mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes.

  6. Ca2+-induced changes in the secondary structure of a 60 kDa phosphoinositide-specific phospholipase C from bovine brain cytosol.

    PubMed Central

    Herrero, C; Cornet, M E; Lopez, C; Barreno, P G; Municio, A M; Moscat, J

    1988-01-01

    The purification to homogeneity of a 60 kDa phosphoinositide-specific phospholipase C from bovine brain cytosol is reported here. This enzyme exhibits the same properties, in terms of response to Ca2+, as does the cytosolic activity in a variety of cell types. We show here that Ca2+ does not appear to modulate the binding of the enzyme to the substrate, but induces dramatic changes in its secondary structure. Therefore we suggest that a decrease in the alpha-helix content of this enzyme correlates with its ability to be activated by Ca2+. Images Fig. 1. PMID:2850798

  7. Thyroid hormone stimulates progesterone release from human luteal cells by generating a proteinaceous factor.

    PubMed

    Datta, M; Roy, P; Banerjee, J; Bhattacharya, S

    1998-09-01

    Blood samples collected from 29 women (aged between 19 and 35 years) during the luteal phase of the menstrual cycle (between days 18 and 23 of the cycle) showed that deficiency in thyroid hormone level is related to a decrease in progesterone (P4) secretion. To observe the effect of thyroid hormone on human ovarian luteal cells, 3,5,3'-triiodothyronine (T3; 125 ng/ml) was added to luteal cells in vitro. T3 significantly stimulated progesterone release (P < 0.01) from luteal cells and this could be blocked by cycloheximide, indicating a protein mediator for the T3 effect. The T3 stimulatory effect was inhibited by anti-T3 antibody suggesting specificity of T3 action. Addition of T3 caused a more than threefold increase in cellular protein synthesis which was inhibited by cycloheximide. Preparation of partially purified thyroid hormone-induced factor (TIF) (from peak II of Sephadex G 100 chromatography of T3-incubated cells), and its addition to luteal cell incubations caused a significant increase in P4 release (P < 0.05). Incubation with trypsin or treatment with heat destroyed the stimulatory effect of TIF on P4 release, indicating the proteinaceous nature of TIF. Purified thyroid hormone-induced protein. (TIP) from rat granulosa cells and fish ovarian follicles greatly stimulated P4 release from human luteal cells. These results suggest that T3 stimulation of P4 release from human luteal cells is not direct, but is mediated through a putative protein factor, which appears to be a protein conserved through evolution as far as its biological activity is concerned.

  8. Structure-Based Design of Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.

    2014-10-02

    Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction ofmore » phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.« less

  9. Effects of granulocyte-colony-stimulating factor on potential normal granulocyte donors.

    PubMed

    McCullough, J; Clay, M; Herr, G; Smith, J; Stroncek, D

    1999-10-01

    The use of granulocyte-colony-stimulating factor (G-CSF) to increase the granulocyte count and the yield from leukapheresis in normal donors is leading to renewed interest in granulocyte transfusion. Therefore, it is important to understand the side effects of G-CSF. We studied the effect of G-CSF on peripheral blood counts and recorded the side effects experienced 24 hours after an injection of G-CSF in normal subjects donating peripheral blood progenitor cells for research. Following administration of G-CSF to 261 donors, the neutrophil count increased to 20.6 to 24.5 x 10(9) per microL depending on the dose of G-CSF. This represented a 6.2 to 7.4-fold increase over the neutrophil count before G-CSF administration. Of all donors, 69 percent experienced one or more side effects. The most common effects were: muscle and bone pain, headache, fatigue, and nausea. There was a relationship between the dose of G-CSF and the likelihood of experiencing a side effect. Most side effects were mild, but about 75 percent of donors took analgesics because of them. In a granulocyte donation program involving G-CSF stimulation, about two-thirds of donors would experience one or more side effects, but these would usually be mild and well tolerated.

  10. Mineral fiber-mediated activation of phosphoinositide-specific phospholipase c in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells.

    PubMed

    Loreto, Carla; Carnazza, Maria Luisa; Cardile, Venera; Libra, Massimo; Lombardo, Laura; Malaponte, Grazia; Martinez, Giuseppina; Musumeci, Giuseppe; Papa, Veronica; Cocco, Lucio

    2009-02-01

    Given the role of phosphoinositide-specific phospholipase C (PLC) isozymes in the control of cell growth and differentiation we were prompted to analyze the expression of some of these PLC in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells. The effects of several fluoro-edenite fibers were compared with those of tremolite, a member of the calcic amphibole group of asbestos that originates from Calabria (Italy), and crocidolite, that, due to its high toxicity, is one of the most studied asbestos amphiboles. Our data show an increased expression of both PLC beta1 and PLC gamma1 in A549 cells treated with asbestos-like fibers, hinting at a role of PLC signalling in those cancerous cells.

  11. Quantitative analysis of phosphoinositide 3-kinase (PI3K) signaling using live-cell total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Johnson, Heath E; Haugh, Jason M

    2013-12-02

    This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.

  12. Role of G protein-coupled estrogen receptor-1, matrix metalloproteinases 2 and 9, and heparin binding epidermal growth factor-like growth factor in estradiol-17β-stimulated bovine satellite cell proliferation.

    PubMed

    Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R

    2014-10-01

    In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters. Although the positive effects of E2 on rate and efficiency of bovine muscle growth are well established, the mechanisms involved in these effects are not well understood. Combined E2 and trenbolone acetate implants result in significantly increased muscle satellite cell number in feedlot steers. Additionally, E2 treatment stimulates proliferation of cultured bovine satellite cells (BSC). Studies in nonmuscle cells have shown that binding of E2 to G protein-coupled estrogen receptor (GPER)-1 results in activation of matrix metalloproteinases 2 and 9 (MMP2/9) resulting in proteolytic release of heparin binding epidermal growth factor-like growth factor (hbEGF) from the cell surface. Released hbEGF binds to and activates the epidermal growth factor receptor resulting in increased proliferation. To assess if GPER-1, MMP2/9, and/or hbEGF are involved in the mechanism of E2-stimulated BSC proliferation, we have examined the effects of G36 (a specific inhibitor of GPER-1), CRM197 (a specific inhibitor of hbEGF), and MMP-2/MMP-9 Inhibitor II (an inhibitor of MMP2/9 activity) on E2-stimulated BSC proliferation. Inhibition of GPER-1, MMP2/9, or hbEGF suppresses E2-stimulated BSC proliferation (P < 0.001) suggesting that all these are required in order for E2 to stimulate BSC proliferation. These results strongly suggest that E2 may stimulate BSC proliferation by binding to GPER-1 resulting in MMP2/9-catalyzed release of cell membrane-bound hbEGF and subsequent activation of epidermal growth factor receptor by binding of released hbEGF. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Ablation of Phosphoinositide 3-Kinase-γ Reduces the Severity of Acute Pancreatitis

    PubMed Central

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P.; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-01-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-γ (PI3Kγ) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3Kγ, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3Kγ significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3Kγ-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3Kγ, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3Kγ. Our results thus suggest that inhibition of PI3Kγ may be of therapeutic value in acute pancreatitis. PMID:15579443

  14. Activity-Driven CNS Changes in Learning and Development

    DTIC Science & Technology

    1991-04-14

    26 Stimulation of Phosphoinositide Turnover by Excitatory Amino Acids: Pharmacology, Development, and Role in Visual Cortical Plasticity. By...Hz for I sec. Immedi- ately following this tetanic stimulation , the strength of the synaptic connection (as tested with single-shock stimuli...increases up to about 5-fold. Most of this increase decays to a level of about 150-200% of baseline within a few minutes after tetanic stimulation . The early

  15. Phosphoinositide 3-Kinase p110β Regulates Integrin αIIbβ3 Avidity and the Cellular Transmission of Contractile Forces*

    PubMed Central

    Schoenwaelder, Simone M.; Ono, Akiko; Nesbitt, Warwick S.; Lim, Joanna; Jarman, Kate; Jackson, Shaun P.

    2010-01-01

    Phosphoinositide (PI) 3-kinase (PI3K) signaling processes play an important role in regulating the adhesive function of integrin αIIbβ3, necessary for platelet spreading and sustained platelet aggregation. PI3K inhibitors are effective at reducing platelet aggregation and thrombus formation in vivo and as a consequence are currently being evaluated as novel antithrombotic agents. PI3K regulation of integrin αIIbβ3 activation (affinity modulation) primarily occurs downstream of Gi-coupled and tyrosine kinase-linked receptors linked to the activation of Rap1b, AKT, and phospholipase C. In the present study, we demonstrate an important role for PI3Ks in regulating the avidity (strength of adhesion) of high affinity integrin αIIbβ3 bonds, necessary for the cellular transmission of contractile forces. Using knock-out mouse models and isoform-selective PI3K inhibitors, we demonstrate that the Type Ia p110β isoform plays a major role in regulating thrombin-stimulated fibrin clot retraction in vitro. Reduced clot retraction induced by PI3K inhibitors was not associated with defects in integrin αIIbβ3 activation, actin polymerization, or actomyosin contractility but was associated with a defect in integrin αIIbβ3 association with the contractile cytoskeleton. Analysis of integrin αIIbβ3 adhesion contacts using total internal reflection fluorescence microscopy revealed an important role for PI3Ks in regulating the stability of high affinity integrin αIIbβ3 bonds. These studies demonstrate an important role for PI3K p110β in regulating the avidity of high affinity integrin αIIbβ3 receptors, necessary for the cellular transmission of contractile forces. These findings may provide new insight into the potential antithrombotic properties of PI3K p110β inhibitors. PMID:19940148

  16. Lysophosphatidic acid stimulates epidermal growth factor-family ectodomain shedding and paracrine signaling from human lung fibroblasts.

    PubMed

    Shiomi, Tetsuya; Boudreault, Francis; Padem, Nurcicek; Higashiyama, Shigeki; Drazen, Jeffrey M; Tschumperlin, Daniel J

    2011-01-01

    Lysophospatidic acid (LPA) is a bioactive lipid mediator implicated in tissue repair and wound healing. It mediates diverse functional effects in fibroblasts, including proliferation, migration and contraction, but less is known about its ability to evoke paracrine signaling to other cell types involved in wound healing. We hypothesized that human pulmonary fibroblasts stimulated by LPA would exhibit ectodomain shedding of epidermal growth factor receptor (EGFR) ligands that signal to lung epithelial cells. To test this hypothesis, we used alkaline phosphatase-tagged EGFR ligand plasmids transfected into lung fibroblasts, and enzyme-linked immunosorbent assays to detect shedding of native ligands. LPA induced shedding of alkaline phosphatase-tagged heparin-binding epidermal growth factor (HB-EGF), amphiregulin, and transforming growth factor-a; non-transfected fibroblasts shed amphiregulin and HBEGF under baseline conditions, and increased shedding of HB-EGF in response to LPA. Treatment of fibroblasts with LPA resulted in elevated phosphorylation of extracellular signal-regulated kinase 1/2, enhanced expression of mRNA for c-fos, HB-EGF and amphiregulin, and enhanced proliferation at 96 hours. However, none of these fibroblast responses to LPA required ectodomain shedding or EGFR activity. To test the ability of LPA to stimulate paracrine signaling from fibroblasts, we transferred conditioned medium from LPA-stimulated cells, and found enhanced EGFR and extracellular signal-regulated kinase 1/2 phosphorylation in reporter A549 cells in excess of what could be accounted for by transferred LPA alone. These data show that LPA mediates EGF-family ectodomain shedding, resulting in enhanced paracrine signaling from lung fibroblasts to epithelial cells. © 2011 by the Wound Healing Society.

  17. Phosphoinositide Signaling Regulates the Exocyst Complex and Polarized Integrin Trafficking in Directionally Migrating Cells

    PubMed Central

    Thapa, Narendra; Sun, Yue; Schramp, Mark; Choi, Suyoung; Ling, Kun; Anderson, Richard A

    2011-01-01

    Summary Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP2 synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration PIPKIγi2 via PIP2 generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment(s) that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP2 requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP2 binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration. PMID:22264730

  18. In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.M.; Zsebo, K.M.; Inoue, H.

    1987-04-01

    Osmotic pumps containing Escherichia coli-derived recombinant human granulocyte colony-stimulating factor (rhG-CSF) were attached to indwelling jugular vein catheters and implanted subcutaneously into Golden Syrian hamsters. Within 3 days, peripheral granulocyte counts had increased > 10-fold with a concomitant 4-fold increase in total leukocytes. Microscopic examination of Wright-Giemsa-stained blood smears from rhG-CSF hamsters showed that only the neutrophil subpopulation of granulocytes had increased. After subcutaneous injection at /sup 35/S-labeled rhG-CSF doses of up to 10 ..mu..g x kg/sup -1/ x day/sup -1/ only granulocyte counts were affected. However, at higher dose levels, a transient thrombocytopenia was noted. Erythrocyte and lymphocyte/monocyte countsmore » remained unaffected by rhG-CSF over the entire dose range studied. Total leukocyte counts increased 3-fold within 12 hr after a single s.c. injection of rhG-CSF. This early effect was associated with an increase in the total number of colony-forming cells and the percent of active cycling cells in the marrow. A sustained elevation of peripheral leukocyte and marrow progenitor counts was observed following seven daily s.c. injections of rhG-CSF. The ability of rhG-CSF to increase the production and release of granulocytes from the marrow may underlie the beneficial effect it produced on the restoration of peripheral leukocyte counts in hamsters made leukopenic by treatment with 5-fluorouracil.« less

  19. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    PubMed

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Interdependence of Platelet-Derived Growth Factor and Estrogen-Signaling Pathways in Inducing Neonatal Rat Testicular Gonocytes Proliferation1

    PubMed Central

    Thuillier, Raphael; Mazer, Monty; Manku, Gurpreet; Boisvert, Annie; Wang, Yan; Culty, Martine

    2010-01-01

    We previously found that platelet-derived growth factor (PDGF) and 17beta-estradiol stimulate gonocyte proliferation in a dose-dependent, nonadditive manner. In the present study, we report that gonocytes express RAF1, MAP2K1, and MAPK1/3. Inhibition of RAF1 and MAP2K1/2, but not phosphoinositide-3-kinase, blocked PDGF-induced proliferation. AG-370, an inhibitor of PDGF receptor kinase activity, suppressed not only PDGF-induced proliferation but also that induced by 17beta-estradiol. In addition, RAF1 and MAP2K1/2 inhibitors blocked 17beta-estradiol-activated proliferation. The estrogen receptor antagonist ICI 182780 inhibited both the effects of 17beta-estradiol and PDGF. PDGF lost its stimulatory effect when steroid-depleted serum or no serum was used. Similarly, 17beta-estradiol did not induce gonocyte proliferation in the absence of PDGF. The xenoestrogens genistein, bisphenol A, and DES, but not coumestrol, stimulated gonocyte proliferation in a dose-dependent and PDGF-dependent manner similarly to 17beta-estradiol. Their effects were blocked by ICI 182780, suggesting that they act via the estrogen receptor. AG-370 blocked genistein and bisphenol A effects, demonstrating their requirement of PDGF receptor activation in a manner similar to 17beta-estradiol. These results demonstrate the interdependence of PDGF and estrogen pathways in stimulating in vitro gonocyte proliferation, suggesting that this critical step in gonocyte development might be regulated in vivo by the coordinated action of PDGF and estrogen. Thus, the inappropriate exposure of gonocytes to xenoestrogens might disrupt the crosstalk between the two pathways and potentially interfere with gonocyte development. PMID:20089883

  1. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries.

    PubMed

    Pérez, Francisco R; Venegas, Fabiola; González, Magdalena; Andrés, Sergio; Vallejos, Catalina; Riquelme, Gloria; Sierralta, Jimena; Michea, Luis

    2009-06-01

    Recent studies have shown that the epithelial sodium channel (ENaC) is expressed in vascular tissue. However, the role that ENaC may play in the responses to vasoconstrictors and NO production has yet to be addressed. In this study, the contractile responses of perfused pressurized small-diameter rat mesenteric arteries to phenylephrine and serotonin were reduced by ENaC blockade with amiloride (75.1+/-3.2% and 16.9+/-2.3% of control values, respectively; P<0.01) that was dose dependent (EC(50)=88.9+/-1.6 nmol/L). Incubation with benzamil, another ENaC blocker, had similar effects. alpha, beta, and gamma ENaC were identified in small-diameter rat mesenteric arteries using RT-PCR and Western blot with specific antibodies. In situ hybridization and immunohistochemistry localized ENaC expression to the tunica media and endothelium of small-diameter rat mesenteric arteries. Patch-clamp experiments demonstrated that primary cultures of mesenteric artery endothelial cells expressed amiloride-sensitive sodium currents. Mechanical ablation of the endothelium or inhibition of eNOS with N(omega)-nitro-L-arginine inhibited the reduction in contractility caused by ENaC blockers. ENaC inhibitors increased eNOS phosphorylation (Ser 1177) and Akt phosphorylation (Ser 473). The presence of the phosphoinositide 3-kinase inhibitor LY294002 blunted Akt phosphorylation and eNOS phosphorylation and the decrease in the response to phenylephrine caused by blockers of ENaC, indicating that the phosphoinositide 3-kinase/Akt pathway was activated after ENaC inhibition. Finally, we observed that the effects of blockers of ENaC were flow dependent and that the vasodilatory response to shear stress was enhanced by ENaC blockade. Our results identify a previously unappreciated role for ENaC as a negative modulator of eNOS and NO production in resistance arteries.

  2. Targeted Inhibition of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Sensitizes Pancreatic Cancer Cells to Doxorubicin without Exacerbating Cardiac Toxicity.

    PubMed

    Durrant, David E; Das, Anindita; Dyer, Samya; Tavallai, Seyedmehrad; Dent, Paul; Kukreja, Rakesh C

    2015-09-01

    Pancreatic cancer has the lowest 5-year survival rate of all major cancers despite decades of effort to design and implement novel, more effective treatment options. In this study, we tested whether the dual phosphoinositide 3-kinase/mechanistic target of rapamycin inhibitor BEZ235 (BEZ) potentiates the antitumor effects of doxorubicin (DOX) against pancreatic cancer. Cotreatment of BEZ235 with DOX resulted in dose-dependent inhibition of the phosphoinositide 3-kinase/mechanistic target of rapamycin survival pathway, which corresponded with an increase in poly ADP ribose polymerase cleavage. Moreover, BEZ cotreatment significantly improved the effects of DOX toward both cell viability and cell death in part through reduced Bcl-2 expression and increased expression of the shorter, more cytotoxic forms of BIM. BEZ also facilitated intracellular accumulation of DOX, which led to enhanced DNA damage and reactive oxygen species generation. Furthermore, BEZ in combination with gemcitabine reduced MiaPaca2 cell proliferation but failed to increase reactive oxygen species generation or BIM expression, resulting in reduced necrosis and apoptosis. Treatment with BEZ and DOX in mice bearing tumor xenographs significantly repressed tumor growth as compared with BEZ, DOX, or gemcitabine. Additionally, in contrast to the enhanced expression seen in MiaPaca2 cells, BEZ and DOX cotreatment reduced BIM expression in H9C2 cardiomyocytes. Also, the Bcl-2/Bax ratio was increased, which was associated with a reduction in cell death. In vivo echocardiography showed decreased cardiac function with DOX treatment, which was not improved by combination treatment with BEZ. Thus, we propose that combining BEZ with DOX would be a better option for patients than current standard of care by providing a more effective tumor response without the associated increase in toxicity. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors

    PubMed Central

    de Souza, Devandir Antonio; Borges, Antonio Carlos; Santana, Ana Carolina; Oliver, Constance; Jamur, Maria Célia

    2015-01-01

    Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization. PMID:26633538

  4. Cellular Transcription Factors Induced in Trigeminal Ganglia during Dexamethasone-Induced Reactivation from Latency Stimulate Bovine Herpesvirus 1 Productive Infection and Certain Viral Promoters

    PubMed Central

    Workman, Aspen; Eudy, James; Smith, Lynette; Frizzo da Silva, Leticia; Sinani, Devis; Bricker, Halie; Cook, Emily; Doster, Alan

    2012-01-01

    Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay—Bovine Gene Chip—was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons. PMID:22190728

  5. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer.

    PubMed

    Huang, Yan-Shan; Wen, Xiao-Fang; Wu, Yi-Liang; Wang, Ye-Fei; Fan, Min; Yang, Zhi-Yu; Liu, Wei; Zhou, Lin-Fu

    2010-03-01

    The plasma half-life of therapeutic proteins is a critical factor in many clinical applications. Therefore, new strategies to prolong plasma half-life of long-acting peptides and protein drugs are in high demand. Here, we designed an artificial gelatin-like protein (GLK) and fused this hydrophilic GLK polymer to granulocyte-colony-stimulating factor (G-CSF) to generate a chimeric GLK/G-CSF fusion protein. The genetically engineered recombinant GLK/G-CSF (rGLK/G-CSF) fusion protein was purified from Pichia pastoris. In vitro studies demonstrated that rGLK/G-CSF possessed an enlarged hydrodynamic radius, improved thermal stability and retained full bioactivity compared to unfused G-CSF. Following a single subcutaneous administration to rats, the rGLK/G-CSF fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating white blood cells than G-CSF. Our findings indicate that fusion with this artificial, hydrophilic, GLK polymer provides many advantages in the construction of a potent hematopoietic factor with extended plasma half-life. This approach could be easily applied to other therapeutic proteins and have important clinical applications. (c) 2009 Elsevier B.V. All rights reserved.

  6. Electrical muscle stimulation in thomboprophylaxis: review and a derived hypothesis about thrombogenesis-the 4th factor.

    PubMed

    Stefanou, Christos

    2016-01-01

    Electrical muscle stimulation (EMS) is an FDA-approved thromboprophylactic method. Thrombus pathogenesis is considered to depend on factors related to components of the vessel wall, the velocity of blood, and blood consistency-collectively known as, the Virchow's triad. The testimony supporting the thromboprophylactic effects of the EMS is reviewed. An emphasis is placed on the fact that, EMS has demonstrated, in certain circumstances, an efficacy rate that cannot be fully explained by the Virchow's triad; also that, in reviewing relevant evidence and the theorized pathophysiological mechanisms, several findings collectively point to a potentially missed point. Remarkably, venous thromboembolic disease (VTE) is extremely more common in the lower versus the upper extremities even when the blood velocities equalize; EMS had synergistic effects with intermittent compressive devices, despite their presumed identical mechanism of action; sleep is not thrombogenic; non-peroperative EMS is meaningful only if applied ≥5 times daily; neural insult increases VTEs more than the degree expected by the hypomobility-related blood stasis; etc. These phenomena infer the presence of a 4th thrombogenetic factor: neural supply to the veins provides direct antithrombic effects, by inducing periodic vessel diameter changes and/or by neuro-humoral, chemically acting factors. EMS may stimulate or substitute the 4th factor. This evidence-based hypothesis is analyzed. A novel pathophysiologic mechanism of thrombogenesis is supported; and, based on this, the role of EMS in thromboprophylaxis is expanded. Exploration of this mechanism may provide new targets for intervention.

  7. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  8. The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi; Zhou, Yajuan; Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071

    Here we explored the potential effect of PP121, a novel dual inhibitor of tyrosine and phosphoinositide kinases, against human esophageal cancer cells. We showed that PP121 exerted potent cytotoxic effect in primary (patient-derived) and established (Eca-109, TE-1 and TE-3 lines) esophageal cancer cells, possibly through activating caspase-3-dependnent apoptosis. PP121 was, however, non-cytotoxic to the normal human esophageal epithelial cells (EECs). At the molecular level, we showed that PP121 blocked Akt-mTOR (mammalian target of rapamycin) activation in esophageal cancer cells, which was restored by introducing a constitutively-active Akt (CA-Akt). Yet, CA-Akt only partly inhibited cytotoxicity by PP121 in Eca-109 cells. Importantly, wemore » showed that PP121 inhibited nuclear factor kappa B (NFκB) signaling activation in esophageal cancer cells, which appeared independent of Akt-mTOR blockage. In vivo, oral administration of PP121 remarkably inhibited Eca-109 xenograft growth in nude mice, and significantly improved mice survival. Further, the immunohistochemistry (IHC) and Western blot assays analyzing xenografted tumors showed that PP121 inhibited Akt-mTOR and NFκB activations in vivo. Together, we demonstrate that PP121 potently inhibits esophageal cancer cells in vitro and in vivo, possibly through concurrently inhibiting Akt-mTOR and NFκB signalings. - Highlights: • PP121 is cytotoxic against primary and established esophageal cancer cells. • PP121 induces caspase-3-dependnent apoptosis in esophageal cancer cells. • PP121 blocks Akt-mTOR activation in esophageal cancer cells. • PP121 inhibits NFκB activation, independent of Akt-mTOR blockage. • PP121 inhibits Eca-109 xenograft growth and Akt-mTOR/NFκB activation in vivo.« less

  9. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders.

    PubMed

    Inaguma, Yutaka; Matsumoto, Ayumi; Noda, Mariko; Tabata, Hidenori; Maeda, Akihiko; Goto, Masahide; Usui, Daisuke; Jimbo, Eriko F; Kikkawa, Kiyoshi; Ohtsuki, Mamitaro; Momoi, Mariko Y; Osaka, Hitoshi; Yamagata, Takanori; Nagata, Koh-Ichi

    2016-10-01

    Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future

  10. CKI isoforms α and ε regulate Star–PAP target messages by controlling Star–PAP poly(A) polymerase activity and phosphoinositide stimulation

    PubMed Central

    Laishram, Rakesh S.; Barlow, Christy A.; Anderson, Richard A.

    2011-01-01

    Star–PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P2), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P2 sensitive CKI isoform, CKIα associates with and phosphorylates Star–PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star–PAP, which is critical for both its polyadenylation activity and stimulation by PI4,5P2. CKI activity was required for the expression and efficient 3′-end processing of its target mRNAs in vivo as well as the polyadenylation activity of Star–PAP in vitro. Specific CKI activity inhibitors (IC261 and CKI7) block in vivo Star–PAP activity, but the knockdown of CKIα did not equivalently inhibit the expression of Star–PAP targets. We show that in addition to CKIα, Star–PAP associates with another CKI isoform, CKIε in the Star–PAP complex that phosphorylates Star–PAP and complements the loss of CKIα. Knockdown of both CKI isoforms (α and ε) resulted in the loss of expression and the 3′-end processing of Star–PAP targets similar to the CKI activity inhibitors. Our results demonstrate that CKI isoforms α and ε modulate Star–PAP activity and regulates Star–PAP target messages. PMID:21729869

  11. Granulocyte colony-stimulating factor improves host defense to resuscitated shock and polymicrobial sepsis without provoking generalized neutrophil-mediated damage.

    PubMed

    Patton, J H; Lyden, S P; Ragsdale, D N; Croce, M A; Fabian, T C; Proctor, K G

    1998-05-01

    Granulocyte colony-stimulating factor (G-CSF) increases production and release of neutrophil precursors and activates multiple functions of circulating polymorphonuclear neutrophils (PMNs). G-CSF has therapeutic effects in many experimental models of sepsis; its actions with superimposed reperfusion insults are unknown. In traumatic conditions, G-CSF could exacerbate unregulated, PMN-dependent injury to otherwise normal host tissue or, it could partially reverse trauma-induced immune suppression, which may improve long-term outcome. This study tested whether stimulating PMN proliferation and function with G-CSF during recovery from trauma+sepsis potentiated reperfusion injury or whether it improved host defense. Anesthetized swine were subjected to cecal ligation and incision, 35% hemorrhage, and 1 hr of hypotension. Resuscitation consisted of intravenous G-CSF (5 microg/kg) or placebo followed by shed blood and 40 mL/kg of lactated Ringer's solution. The control group received laparotomy only. G-CSF or placebo was given daily. Animals were killed at 4 days. Observers, blind to the protocol, graded autopsy samples for localization of infection and quality of abscess wall formation. Data included complete blood count, granulocyte oxidative burst after phorbol myristate acetate stimulation in vitro (GO2B), bronchoalveolar lavage (BAL) cell count, BAL noncellular protein, lipopolysaccharide-stimulated tumor necrosis factor production in whole blood in vitro (lipopolysaccharide-tumor necrosis factor), and lung tissue myeloperoxidase (MPO). Neutrophilia and localization of infection, were significantly improved by G-CSF. Variables altered by G-CSF, though not significantly, showed GO2B potential increased by 50%, lipopolysaccharide-tumor necrosis factor decreased by 50%, and improved survival versus placebo (100% vs. 70%). G-CSF did not increase lung MPO, BAL cell count, or BAL protein. Both arterial and venous O2 saturations were unaltered. Our data show that G

  12. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis.

    PubMed

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-12-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.

  13. Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels.

    PubMed

    Duex, Jason E; Nau, Johnathan J; Kauffman, Emily J; Weisman, Lois S

    2006-04-01

    Phosphoinositide lipids regulate complex events via the recruitment of proteins to a specialized region of the membrane at a specific time. Precise control of both the synthesis and turnover of phosphoinositide lipids is integral to membrane trafficking, signal transduction, and cytoskeletal rearrangements. Little is known about the acute regulation of the levels of these signaling lipids. When Saccharomyces cerevisiae cells are treated with hyperosmotic medium the levels of phosphatidylinositol 3,5-bisphosphate (PI3,5P(2)) increase 20-fold. Here we show that this 20-fold increase is rapid and occurs within 5 min. Surprisingly, these elevated levels are transient. Fifteen minutes following hyperosmotic shock they decrease at a rapid rate, even though the cells remain in hyperosmotic medium. In parallel with the rapid increase in the levels of PI3,5P(2), vacuole volume decreases rapidly. Furthermore, concomitant with a return to basal levels of PI3,5P(2) vacuole volume is restored. We show that Fig 4p, consistent with its proposed role as a PI3,5P(2) 5-phosphatase, is required in vivo for this rapid return to basal levels of PI3,5P(2). Surprisingly, we find that Fig 4p is also required for the hyperosmotic shock-induced increase in PI3,5P(2) levels. These findings demonstrate that following hyperosmotic shock, large, transient changes occur in the levels of PI3,5P(2) and further suggest that Fig 4p is important in regulating both the acute rise and subsequent fall in PI3,5P(2) levels.

  14. Skin complications in deep brain stimulation for Parkinson's disease: frequency, time course, and risk factors.

    PubMed

    Sixel-Döring, Friederike; Trenkwalder, Claudia; Kappus, Christoph; Hellwig, Dieter

    2010-02-01

    Deep brain stimulation (DBS) has been recognized as an efficacious treatment for movement disorders. Its beneficial effects however may be lost due to skin complications such as erosions or infections over the implanted foreign material. We sought to document skin complications in the entire Parkinson's disease patient population who received a DBS system at the Marburg/Kassel implantation centre since the start of our DBS program in January 2002 to analyze frequency, time course, and possible risk factors. We investigated 85 consecutive patients with Parkinson's disease (PD) from a single center/single surgeon DBS series for the occurrence of skin complications and analyzed localization, time course, and possible risk factors. Mean follow-up was 3 years (range 1-7 years). In total, 21/85 patients (24.7%) suffered a total of 30 single skin complications. Sixty percent of all incidents occurred within the first post-operative year. Forty percent of all incidents occurred later than the first year following primary implantation. Complications involved the burr hole cap in 37%, the course of the cables in 33%, and the impulse generator (IPG) site in 30%. Six of 21 patients suffered recurring skin complications. Eight patients permanently lost their DBS system. Factor analysis for age, gender, disease duration, disease severity, the incidence of hypertension or diabetes as well as a 2-day period with externalized electrodes for continuous test stimulation did not have any statistically significant impact on skin complications. We conclude that (1) PD patients have a risk for skin complications after DBS as long as the system remains in situ and (2) there are at present no identifiable risk factors for skin complications after DBS, other than PD itself.

  15. Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma.

    PubMed

    Pomel, Vincent; Klicic, Jasna; Covini, David; Church, Dennis D; Shaw, Jeffrey P; Roulin, Karen; Burgat-Charvillon, Fabienne; Valognes, Delphine; Camps, Montserrat; Chabert, Christian; Gillieron, Corinne; Françon, Bernard; Perrin, Dominique; Leroy, Didier; Gretener, Denise; Nichols, Anthony; Vitte, Pierre Alain; Carboni, Susanna; Rommel, Christian; Schwarz, Matthias K; Rückle, Thomas

    2006-06-29

    Class I phosphoinositide 3-kinases (PI3Ks), in particular PI3Kgamma, have become attractive drug targets for inflammatory and autoimmune diseases. Here, we disclose a novel series of furan-2-ylmethylene thiazolidinediones as selective, ATP-competitive PI3Kgamma inhibitors. Structure-based design and X-ray crystallography of complexes formed by inhibitors bound to PI3Kgamma identified key pharmacophore features for potency and selectivity. An acidic NH group on the thiazolidinedione moiety and a hydroxy group on the furan-2-yl-phenyl part of the molecule play crucial roles in binding to PI3K and contribute to class IB PI3K selectivity. Compound 26 (AS-252424), a potent and selective small-molecule PI3Kgamma inhibitor emerging from these efforts, was further profiled in three different cellular PI3K assays and shown to be selective for class IB PI3K-mediated cellular effects. Oral administration of 26 in a mouse model of acute peritonitis led to a significant reduction of leukocyte recruitment.

  16. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min

    diverse classes of proteins, both in plants and in mammals, have been identified as targets of S-nitrosylation (5-9). In plants, proteins with diverse functions are S-nitrosylated at specific Cys residue(s) and their functions are either inhibited or enhanced by this modification (10-25). 3-Phosphoinositide-dependent protein kinase-1 (PDK1) and its downstream target, protein kinase B (PKB; also known as Akt), are central regulators of mammalian apoptosis (26-28). PKB is a member of the AGC family of protein kinases, which is activated by second messengers such as phospholipids and Ca2+ through PDK1. Mammalian PDK1 phosphorylates PKB to promote its function in suppressing programmed cell death (PCD) (27-30). PKB negatively regulates apoptosis by phosphorylation and inactivation of pro-apoptotic factors such as BAD and activation of anti-apoptotic factors such as CREB and IKK (27-29; and 31). Deficiency of the PDK1 gene(s) in Drosophila (32), mice (33), yeast (34-35) and tomato (36), respectively, results in lethality or severe apoptosis. PKB knockout mice display spontaneous apoptosis in several different tissues (37). In tomato, the PKB/Akt homolog, Adi3 (AvrPto-dependent Pto-interacting protein 3), physically interacts with and is phosphorylated by SlPDK1 (36). Silencing both SlPDK1 and Adi3 or treatment with a PDK1 inhibitor results in MAPKKK -dependent cell death, indicating that Adi3 functions analogously to the mammalian PKB/Akt by negatively regulating cell death via PDK1 phosphorylation (36). Yasukawa et al (38) showed that NO donors induced S-nitrosylation and inactivation of Akt/PKB kinase activity in vitro and in vivo and the mutant Akt1/PKB (C224S) was resistant to S-nitrosylation by NO and its kinase inactivation (38). Although the NO and PDK1-PKB/Akt pathways are both key regulators of cell death, the link between these two pathways has not been firmly established in plants. Here we show that the kinase activity of tomato SlPDK1 was inhibited by GSNO in a

  17. Priming effect of platelet activating factor on leukotriene C4 from stimulated eosinophils of asthmatic patients.

    PubMed Central

    Shindo, K.; Koide, K.; Hirai, Y.; Sumitomo, M.; Fukumura, M.

    1996-01-01

    BACKGROUND: Eosinophils from asthmatic patients are known to release greater amounts of leukotrienes than normal eosinophils when stimulated by the calcium ionophore A23187. The effect of platelet activating factor (PAF) in priming eosinophils was investigated. METHODS: Eosinophils were obtained from 18 asthmatic patients and 18 healthy donors. Cells separated by the Percoll gradients were incubated with PAF (C-18) for 30 minutes and then stimulated with the calcium ionophore A23187 (2.5 microM) for 15 minutes. The amount of leukotriene C4 (LTC4) in supernatants was measured using a combination of high pressure liquid chromatography and radioimmunoassay. RESULTS: The mean (SD) amount of LTC4 released by eosinophils from asthmatic patients upon stimulation with the calcium ionophore A23187 alone was 27.9 (9.9) ng/10(6) cells (n = 6). The amount of LTC4 released following stimulation with the calcium ionophore A23187 after pretreatment with PAF (1, 5, and 10 microM) was 57.2 (8.9), 75.1 (14.3), and 52.6 (10.7) ng/10(6) cells (n = 6), respectively. Trace amounts of LTC4 (0.9 (0.02) ng/10(6) cells, n = 6) were detected in the supernatant of the cells after stimulation by PAF alone (5 microM). The amount of LTC4 released upon stimulation by calcium ionophore A23187 alone in eosinophils from healthy donors was 10.3 (3.7) ng/10(6) cells (n = 4). The amounts of LTC4 released upon stimulation with calcium ionophore A23187 after pretreatment with PAF at concentrations of 1, 5, and 10 microM were 11.9 (3.5), 17.8 (5.6), and 12.7 (5.1) ng/10(6) cells (n = 4), respectively. Trace amounts of LTC4 (0.6 (0.02) ng/10(6) cells, n = 4) were detected in the supernatant of the cells upon stimulation with PAF alone (5 microM). The amounts of LTC4 released upon stimulation with calcium ionophore A23187 after pretreatment with lyso-PAF at concentrations of 1, 5, and 10 microM (n = 4 or 6) were 30.8 (5.2), 22.9 (5.1), and 27.3 (4.3) ng/10(6) cells (n = 6) from the eosinophils of asthmatic

  18. Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis.

    PubMed

    Krieger, Nancy S; Bushinsky, David A

    2017-10-01

    Serum fibroblast growth factor 23 (FGF23) increases progressively in chronic kidney disease (CKD) and is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the factors regulating its production are not clear. Patients with CKD have decreased renal acid excretion leading to metabolic acidosis (MET). During MET, acid is buffered by bone with release of mineral calcium (Ca) and phosphate (P). MET increases intracellular Ca signaling and cyclooxygenase 2 (COX2)-induced prostaglandin production in the osteoblast, leading to decreased bone formation and increased bone resorption. We found that MET directly stimulates FGF23 in mouse bone organ cultures and primary osteoblasts. We hypothesized that MET increases FGF23 through similar pathways that lead to bone resorption. Neonatal mouse calvariae were incubated in neutral (NTL, pH = 7.44, Pco 2 = 38 mmHg, [HCO 3 - ] = 27 mM) or acid (MET, pH = 7.18, Pco 2 = 37 mmHg, [HCO 3 - ] = 13 mM) medium without or with 2-APB (50 μM), an inhibitor of intracellular Ca signaling or NS-398 (1 μM), an inhibitor of COX2. Each agent significantly inhibited MET stimulation of medium FGF23 protein and calvarial FGF23 RNA as well as bone resorption at 48 h. To exclude the potential contribution of MET-induced bone P release, we utilized primary calvarial osteoblasts. In these cells each agent inhibited MET stimulation of FGF23 RNA expression at 6 h. Thus stimulation of FGF23 by MET in mouse osteoblasts utilizes the same initial signaling pathways as MET-induced bone resorption. Therapeutic interventions directed toward correction of MET, especially in CKD, have the potential to not only prevent bone resorption but also lower FGF23 and perhaps decrease mortality. Copyright © 2017 the American Physiological Society.

  19. Stimulant-Responsive and Stimulant-Refractory Aggressive Behavior Among Children with ADHD

    PubMed Central

    Blader, Joseph C.; Pliszka, Steven R.; Jensen, Peter S.; Schooler, Nina R.; Kafantaris, Vivian

    2010-01-01

    OBJECTIVES The objective of this study was to examine factors that are associated with aggression that is responsive versus refractory to individualized optimization of stimulant monotherapy among children with attention-deficit/hyperactivity disorder (ADHD). METHODS Children who were aged 6 to 13 years and had ADHD, either oppositional defiant disorder or conduct disorder, significant aggressive behavior, and a history of insufficient response to stimulants completed an open stimulant monotherapy optimization protocol. Stimulant titration with weekly assessments of behavior and tolerability identified an optimal regimen for each child. Families also received behavioral therapy. Parents completed the Retrospective-Modified Overt Aggression Scale (R-MOAS) at each visit. Children were classified as having stimulant-refractory aggression on the basis of R-MOAS ratings and clinician judgment. Differences that pertained to treatment, demographic, and psychopathology between groups with stimulant monotherapy–responsive and –refractory aggression were evaluated. RESULTS Aggression among 32 (49.3%) of 65 children was reduced sufficiently after stimulant dosage adjustment and behavioral therapy to preclude adjunctive medication. Those who responded to stimulant monotherapy were more likely to benefit from the protocol’s methylphenidate preparation (once-daily, triphasic release), showed a trend for lower average dosages, and received fewer behavioral therapy sessions than did children with stimulant-refractory aggression. Boys, especially those with higher ratings of baseline aggression and of depressive and manic symptoms, more often exhibited stimulant-refractory aggression. CONCLUSIONS Among children whose aggressive behavior develops in the context of ADHD and of oppositional defiant disorder or conduct disorder, and who had insufficient response to previous stimulant treatment in routine clinical care, systematic, well-monitored titration of stimulant monotherapy

  20. Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor kappa B-dependent transcriptional activation.

    PubMed Central

    Zhu, Z; Tang, W; Ray, A; Wu, Y; Einarsson, O; Landry, M L; Gwaltney, J; Elias, J A

    1996-01-01

    To further understand the biology of rhinovirus (RV), we determined whether IL-6 was produced during RV infections and characterized the mechanism by which RV stimulates lung cell IL-6 production. In contrast to normals and minimally symptomatic volunteers, IL-6 was detected in the nasal washings from patients who developed colds after RV challenge. RV14 and RV1A, major and minor receptor group RVs, respectively, were potent stimulators of IL-6 protein production in vitro. These effects were associated with significant increases in IL-6 mRNA accumulation and gene transcription. RV was also a potent stimulator of IL-6 promoter-driven luciferase activity. This stimulation was modestly decreased by mutation of the nuclear factor (NF)-IL-6 site and abrogated by mutation of the NF-kappa B site in this promoter. An NF-kappa B-DNA binding activity, mediated by p65, p50, and p52 NF-kappa B moieties, was rapidly induced in RV-infected cells. Activator protein 1-DNA binding was not similarly altered. These studies demonstrate that IL-6 is produced during symptomatic RV infections, that RVs are potent stimulators of IL-6 elaboration, and that RV stimulation IL-6 production is mediated by an NF-kappa B-dependent transcriptional stimulation pathway. IL-6 may play an important role in the pathogenesis of RV infection, and NF-kappa B activation is likely to be an important event in RV-induced pathologies. PMID:8567963

  1. Rho/Rho kinase and phosphoinositide 3-kinase are parallel pathways in the development of spontaneous arterial tone in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wehrwein, Erica A; Northcott, Carrie A; Loberg, Robert D; Watts, Stephanie W

    2004-06-01

    Hypertension is characterized by abnormal vascular contractility and function. Arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats develop spontaneous tone that is not observed in arteries from normotensive rats. Inhibition of phosphoinositide 3-kinase (PI3-kinase) by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) reduces spontaneous tone development. The Rho/Rho-kinase pathway has been suggested to play a role in hypertension and may be dependent on PI3-kinase activity. We hypothesized that Rhokinase is involved in spontaneous tone development and that Rho/Rho-kinase is a downstream effector of PI3-kinase. Using endothelium-denuded aortic strips in isolated tissue bath, we demonstrated that (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) (Y27632) (1 microM), a Rho-kinase inhibitor, significantly reduced spontaneous tone in the DOCA aorta but that it did not affect sham aorta basal tone (DOCA 63.5 +/- 15.9 versus sham 1.2 +/- 0.4 total change in percentage of phenylephrine contraction). We examined the interaction between the PI3-kinase and Rho pathways by observing the effects of LY294002 on a Rhokinase effector, myosin phosphatase (MYPT), and Y27632 on a PI3-kinase effector, Akt, using Western blot analysis. Inhibition of PI3-kinase reduced spontaneous tone, but it had no effect on the phosphorylation status of MYPT, indicating that PI3-kinase is not a downstream effector of Rho/Rho-kinase. These data indicate that there is little interaction between the Rho/Rhokinase and PI3-kinase pathways in the DOCA-salt aorta, and the two pathways seem to operate in parallel in supporting spontaneous arterial tone. These data reflect spontaneous tone only and do not rule out the possibility of interaction between these pathways in agonist-stimulated tone.

  2. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosheverova, Vera V., E-mail: kosheverova_vera@incras.ru; Kamentseva, Rimma S., E-mail: rkamentseva@yandex.ru; St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time ofmore » slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.« less

  3. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  4. Pedagogical Factors Stimulating the Self-Development of Students' Multi-Dimensional Thinking in Terms of Subject-Oriented Teaching

    ERIC Educational Resources Information Center

    Andreev, Valentin I.

    2014-01-01

    The main aim of this research is to disclose the essence of students' multi-dimensional thinking, also to reveal the rating of factors which stimulate the raising of effectiveness of self-development of students' multi-dimensional thinking in terms of subject-oriented teaching. Subject-oriented learning is characterized as a type of learning where…

  5. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation.

    PubMed

    Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E

    2008-01-18

    Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.

  6. Granulocyte macrophage-colony stimulating factor and interleukin-3 increase expression of type II tumour necrosis factor receptor, increasing susceptibility to tumour necrosis factor-induced apoptosis. Control of leukaemia cell life/death switching.

    PubMed

    Rae, C; MacEwan, D J

    2004-12-01

    Tumour necrosis factor (TNF) induces apoptosis in a range of cell types via its two receptors, TNFR1 and TNFR2. Here, we demonstrate that proliferation and TNFR2 expression was increased in human leukaemic TF-1 cells by granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3), with TNFR1 expression unaffected. Consequently, they switch from a proliferative to a TNF-induced apoptotic phenotype. Raised TNFR2 expression and susceptibility to TNF-induced apoptosis was not a general effect of proliferation as IL-1beta and IFN-gamma both proliferated TF-1 cells with no effect on TNFR expression or apoptosis. Although raised TNFR2 expression correlated with the apoptotic phenotype, stimulation of apoptosis in GM-CSF-pretreated cells was mediated by TNFR1, with stimulation of TNFR2 alone insufficient to initiate cell death. However, TNFR2 did play a role in apoptotic and proliferative responses as they were blocked by the presence of an antagonistic TNFR2 antibody. Additionally, coincubation with cycloheximide blocked the mitotic effects of GM-CSF or IL-3, allowing only the apoptotic responses of TNF to persist. TNF life/death was also observed in K562, but not MOLT-4 and HL-60 human leukaemic cell types. These findings show a cooperative role of TNFR2 in the TNF life/death switching phenomenon.

  7. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  8. Biosimilar granulocyte colony-stimulating factor uptakes in the EU-5 markets: a descriptive analysis.

    PubMed

    Bocquet, François; Paubel, Pascal; Fusier, Isabelle; Cordonnier, Anne-Laure; Le Pen, Claude; Sinègre, Martine

    2014-06-01

    Biosimilars are copies of biological reference medicines. Unlike generics (copies of chemical molecules), biologics are complex, expensive and complicated to produce. The knowledge of the factors affecting the competition following patent expiry for biologics remains limited. The aims of this study were to analyse the EU-5 Granulocyte-Colony Stimulating Factor (G-CSF) markets and to determine the factors affecting the G-CSF biosimilar uptakes, particularly that of biosimilar prices relative to originators. Data on medicine volumes, values, and ex-manufacturer prices for all G-CSF categories were provided by IMS Health. Volumes were calculated in defined daily doses (DDD) and prices in Euros per DDD. In the EU-5 countries, there is 5 years of experience with biosimilar G-CSFs (2007-2011). Two G-CSF market profiles exist: (1) countries with a high retail market distribution, which are the largest G-CSF markets with low global G-CSF biosimilar uptakes (5.4% in France and 8.5% in Germany in 2011); and (2) countries with a dominant hospital channel, which are the smallest markets with higher G-CSF biosimilar uptakes (12.4% in Spain and 20.4% in the UK). The more the decisions are decentralized, the more their uptakes are high. The price difference between G-CSF biosimilars and their reference plays a marginal role at a global level (price differences of +13.3% in the UK and -20.4% in France). The competition with G-CSF biosimilars varies significantly between EU-5 countries, probably because of G-CSF distribution channel differences. Currently, this competition is not mainly based on prices, but on local political options to stimulate tendering between them and recently branded second- or third-generation products.

  9. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  10. Phosphoinositides Regulate Membrane-dependent Actin Assembly by Latex Bead Phagosomes

    PubMed Central

    Defacque, Hélène; Bos, Evelyne; Garvalov, Boyan; Barret, Cécile; Roy, Christian; Mangeat, Paul; Shin, Hye-Won; Rybin, Vladimir; Griffiths, Gareth

    2002-01-01

    Actin assembly on membrane surfaces is an elusive process in which several phosphoinositides (PIPs) have been implicated. We have reconstituted actin assembly using a defined membrane surface, the latex bead phagosome (LBP), and shown that the PI(4,5)P2-binding proteins ezrin and/or moesin were essential for this process (Defacque et al., 2000b). Here, we provide several lines of evidence that both preexisting and newly synthesized PI(4,5)P2, and probably PI(4)P, are essential for phagosomal actin assembly; only these PIPs were routinely synthesized from ATP during in vitro actin assembly. Treatment of LBP with phospholipase C or with adenosine, an inhibitor of type II PI 4-kinase, as well as preincubation with anti-PI(4)P or anti-PI(4,5)P2 antibodies all inhibited this process. Incorporation of extra PI(4)P or PI(4,5)P2 into the LBP membrane led to a fivefold increase in the number of phagosomes that assemble actin. An ezrin mutant mutated in the PI(4,5)P2-binding sites was less efficient in binding to LBPs and in reconstituting actin assembly than wild-type ezrin. Our data show that PI 4- and PI 5-kinase, and under some conditions also PI 3-kinase, activities are present on LBPs and can be activated by ATP, even in the absence of GTP or cytosolic components. However, PI 3-kinase activity is not required for actin assembly, because the process was not affected by PI 3-kinase inhibitors. We suggest that the ezrin-dependent actin assembly on the LBP membrane may require active turnover of D4 and D5 PIPs on the organelle membrane. PMID:11950931

  11. Hypothalamic self-stimulation and stimulation escape in relation to feeding and mating.

    PubMed

    Hoebel, B G

    1979-10-01

    This review begins with James Olds' discovery that self-stimulation at various brain sites can be influenced by food intake or androgen treatment. It then describes our research designed to reveal the functional significance of self-stimulation. The evidence suggests that lateral hypothalamic self-stimulation is controlled by many of the same factors that control feeding. We believe this control is exerted by at least two neural mechanisms. One is the classical, medial hypothalamic satiety system. Another is an adrenergic system ascending from the midbrain to the lateral hypothalamus. Damage to either one can disinhibit self-stimulation and feeding, thus contributing to obesity. Some of our studies use rats with two electrodes, one that induces feeding and one that induces mating. There are two response levers in the test cage, one for self-stimulation and one for escape from automatic stimulation. With the feeding electrode, rats self-stimulated less and escaped more after a meal than before. The same shift occurred after an anorectic dose of insulin or the commercial appetite suppressant phenylpropanolamine. With the sex electrode the shift from reward to aversion occurred after ejaculation. The review ends with credit to James Olds for pioneering this line of research into the neuropsychology of reinforcement.

  12. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Cryopreservation induces macrophage colony stimulating factor from human periodontal ligament cells in vitro.

    PubMed

    Rhim, E-M; Ahn, S-J; Kim, J-Y; Chang, Y-R; Kim, K-H; Lee, H-W; Jung, S-H; Kim, E-C; Park, S-H

    2013-10-01

    Cryopreservation is used to protect vital periodontal ligaments during the transplantation of teeth. We investigated which gene products implicated in root resorption are upregulated in human periodontal ligament cells by cryopreservation, and whether cryopreservation affects the expression of macrophage-colony stimulating factor (M-CSF) in human periodontal ligament cells. We used customized microarrays to compare gene expression in human periodontal ligament cells cultured from teeth immediately after extraction and from cryopreserved teeth. Based on the result of these assays, we examined M-CSF expression in periodontal ligament cells from the immediately extracted tooth and cryopreserved teeth by real-time PCR, enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and immunofluorescence. We also investigated whether human bone marrow cells differentiate into tartrate-resistant acid phosphatase (TRAP) positive osteoclasts when stimulated with RANKL (Receptor Activator for Nuclear Factor κ B Ligand) together with any secreted M-CSF present in the supernatants of the periodontal ligament cells cultured from the various groups of teeth. M-CSF was twofold higher in the periodontal ligament cells from the rapid freezing teeth than in those from the immediately extracted group (p < 0.05). Cryopreservation increased M-CSF expression in the periodontal ligament cells when analyzed by real time PCR, ELISA, Western blotting, and immunofluorescence (p < 0.05). TRAP positive osteoclasts were formed in response to RANKL and the secreted M-CSF present in the supernatants of all the experimental groups except negative control. These results demonstrate that cryopreservation promotes the production of M-CSF, which plays an important role in root resorption by periodontal ligament cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFβ Superfamily

    PubMed Central

    Laird, Mhairi; Thomson, Kacie; Fenwick, Mark; Mora, Jocelyn; Hardy, Kate

    2017-01-01

    Androgens are essential for the normal function of mature antral follicles but also have a role in the early stages of follicle development. Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by androgen excess and aberrant follicle development that includes accelerated early follicle growth. We have examined the effects of testosterone and dihydrotestosterone (DHT) on development of isolated mouse preantral follicles in culture with the specific aim of investigating interaction with follicle-stimulating hormone (FSH), the steroidogenic pathway, and growth factors of the TGFβ superfamily that are known to have a role in early follicle development. Both testosterone and DHT stimulated follicle growth and augmented FSH-induced growth and increased the incidence of antrum formation among the granulosa cell layers of these preantral follicles after 72 hours in culture. Effects of both androgens were reversed by the androgen receptor antagonist flutamide. FSH receptor expression was increased in response to both testosterone and DHT, as was that of Star, whereas Cyp11a1 was down-regulated. The key androgen-induced changes in the TGFβ signaling pathway were down-regulation of Amh, Bmp15, and their receptors. Inhibition of Alk6 (Bmpr1b), a putative partner for Amhr2 and Bmpr2, by dorsomorphin resulted in augmentation of androgen-stimulated growth and modification of androgen-induced gene expression. Our findings point to varied effects of androgen on preantral follicle growth and function, including interaction with FSH-activated growth and steroidogenesis, and, importantly, implicate the intrafollicular TGFβ system as a key mediator of androgen action. These findings provide insight into abnormal early follicle development in PCOS. PMID:28324051

  15. Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFβ Superfamily.

    PubMed

    Laird, Mhairi; Thomson, Kacie; Fenwick, Mark; Mora, Jocelyn; Franks, Stephen; Hardy, Kate

    2017-04-01

    Androgens are essential for the normal function of mature antral follicles but also have a role in the early stages of follicle development. Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by androgen excess and aberrant follicle development that includes accelerated early follicle growth. We have examined the effects of testosterone and dihydrotestosterone (DHT) on development of isolated mouse preantral follicles in culture with the specific aim of investigating interaction with follicle-stimulating hormone (FSH), the steroidogenic pathway, and growth factors of the TGFβ superfamily that are known to have a role in early follicle development. Both testosterone and DHT stimulated follicle growth and augmented FSH-induced growth and increased the incidence of antrum formation among the granulosa cell layers of these preantral follicles after 72 hours in culture. Effects of both androgens were reversed by the androgen receptor antagonist flutamide. FSH receptor expression was increased in response to both testosterone and DHT, as was that of Star, whereas Cyp11a1 was down-regulated. The key androgen-induced changes in the TGFβ signaling pathway were down-regulation of Amh, Bmp15, and their receptors. Inhibition of Alk6 (Bmpr1b), a putative partner for Amhr2 and Bmpr2, by dorsomorphin resulted in augmentation of androgen-stimulated growth and modification of androgen-induced gene expression. Our findings point to varied effects of androgen on preantral follicle growth and function, including interaction with FSH-activated growth and steroidogenesis, and, importantly, implicate the intrafollicular TGFβ system as a key mediator of androgen action. These findings provide insight into abnormal early follicle development in PCOS.

  16. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    PubMed

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  17. Psychological factors in spinal cord stimulation therapy: brief review and discussion.

    PubMed

    Doleys, Daniel M

    2006-12-15

    Since its introduction in 1967 by Shealy and colleagues, spinal cord stimulation (SCS) therapy has become an accepted approach to the treatment of certain types of chronic pain. Significant advances have been made in surgical technique, hardware technology, and the variety of disorders for which SCS has proven to be potentially beneficial. Despite these advancements, 25 to 50% of patients in whom a preimplantation trial screening yields successful results report loss of analgesia within 12 to 24 months of implantation, even in the presence of a functioning device. Psychological factors may play an important role in understanding this observation and improving the outcomes. In this article the author briefly reviews some of the data on psychological factors potentially involved in SCS. Research on patients with low-back and extremity pain was more heavily relied on because this is the population for which the most data exist. The discussion is divided into four sections: 1) role of psychological factors; 2) psychological screening and assessment; 3) patient selection and psychological screening; and 4) psychological variables and outcomes. To date, the data remain speculative. Although few definitive conclusions can be drawn, the cumulative existing experience does lend itself to some reasonable recommendations. As with all therapies for chronic pain, invasive or noninvasive, the criteria for success and an acceptable level of failure need to be established, but remain elusive. The emphasis herein is to try to take what works and make it work better.

  18. Combined Administration of Recombinant Human Megakaryocyte Growth and Development Factor and Granulocyte Colony-Stimulating Factor Enhances Multilineage Hematopoietic Reconstitution in Nonhuman Primates after Radiation-Induced Marrow Aplasia

    DTIC Science & Technology

    1996-05-01

    dose would yield an equivalent or better biological activity. Neupogen ® ( Filgrastim ), r-metHuG-CSF, was produced in E. coli as a...recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoi- etic recovery after otherwise lethal total body

  19. Platelet-Derived Growth Factor-BB Stimulates Fibronectin Gene Expression in Fibroblasts Isolated from Rat Thoracic Aorta

    DTIC Science & Technology

    1994-06-13

    MARYLAND 20814-4799 TEACHING HOSPITALS WALTER REED ARMY MEDtCA L CENTER APPROVAL SHEET NAVAL HOSPITAL. BETHESDA MALCOLM GROW AIR FORCE MEDICAL ...CENTER WILFORD HALL "IR FORCE MEDICAL CENTER Title of Dissertation: "Platelet-derived growth factor-BB stimulates fibronectin gene expression in...fascinating world of basic medical science. His dedication and pursuit of excellence in all facets of his work are standards by which I will guide my own

  20. Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1

    PubMed Central

    Blagoveshchenskaya, Anastasia; Cheong, Fei Ying; Rohde, Holger M.; Glover, Greta; Knödler, Andreas; Nicolson, Teresa; Boehmelt, Guido; Mayinger, Peter

    2008-01-01

    When a growing cell expands, lipids and proteins must be delivered to its periphery. Although this phenomenon has been observed for decades, it remains unknown how the secretory pathway responds to growth signaling. We demonstrate that control of Golgi phosphatidylinositol-4-phosphate (PI(4)P) is required for growth-dependent secretion. The phosphoinositide phosphatase SAC1 accumulates at the Golgi in quiescent cells and down-regulates anterograde trafficking by depleting Golgi PI(4)P. Golgi localization requires oligomerization of SAC1 and recruitment of the coat protein (COP) II complex. When quiescent cells are stimulated by mitogens, SAC1 rapidly shuttles back to the endoplasmic reticulum (ER), thus releasing the brake on Golgi secretion. The p38 mitogen-activated kinase (MAPK) pathway induces dissociation of SAC1 oligomers after mitogen stimulation, which triggers COP-I–mediated retrieval of SAC1 to the ER. Inhibition of p38 MAPK abolishes growth factor–induced Golgi-to-ER shuttling of SAC1 and slows secretion. These results suggest direct roles for p38 MAPK and SAC1 in transmitting growth signals to the secretory machinery. PMID:18299350

  1. In situ detection of the activation of Rac1 and RalA small GTPases in mouse adipocytes by immunofluorescent microscopy following in vivo and ex vivo insulin stimulation.

    PubMed

    Takenaka, Nobuyuki; Nihata, Yuma; Ueda, Sho; Satoh, Takaya

    2017-11-01

    Rac1 has been implicated in insulin-dependent glucose uptake by mechanisms involving plasma membrane translocation of the glucose transporter GLUT4 in skeletal muscle. Although the uptake of glucose is also stimulated by insulin in adipose tissue, the role for Rac1 in adipocyte insulin signaling remains controversial. As a step to reveal the role for Rac1 in adipocytes, we aimed to establish immunofluorescent microscopy to detect the intracellular distribution of activated Rac1. The epitope-tagged Rac1-binding domain of a Rac1-specific target was utilized as a probe that specifically recognizes the activated form of Rac1. Rac1 activation in response to ex vivo and in vivo insulin stimulations in primary adipocyte culture and mouse white adipose tissue, respectively, was successfully observed by immunofluorescent microscopy. These Rac1 activations were mediated by phosphoinositide 3-kinase. Another small GTPase RalA has also been implicated in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Similarly to Rac1, immunofluorescent microscopy using an activated RalA-specific polypeptide probe allowed us to detect intracellular distribution of insulin-activated RalA in adipocytes. These novel approaches to visualize the activation status of small GTPases in adipocytes will largely contribute to the understanding of signal transduction mechanisms particularly for insulin action. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Direct stimulation of the transcellular and paracellular calcium transport in the rat cecum by prolactin.

    PubMed

    Kraidith, Kamonshanok; Jantarajit, Walailuk; Teerapornpuntakit, Jarinthorn; Nakkrasae, La-iad; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2009-09-01

    Prolactin (PRL) is reported to stimulate calcium absorption in the rat's small intestine. However, little is known regarding its effects on the cecum, a part of the large intestine with the highest rate of intestinal calcium transport. We demonstrated herein by quantitative real-time polymerase chain reaction and Western blot analysis that the cecum could be a target organ of PRL since cecal epithelial cells strongly expressed PRL receptors. In Ussing chamber experiments, PRL enhanced the transcellular cecal calcium absorption in a biphasic dose-response manner. PRL also increased the paracellular calcium permeability and passive calcium transport in the cecum, which could be explained by the PRL-induced decrease in transepithelial resistance and increase in cation selectivity of the cecal epithelium. PRL actions in the cecum were abolished by inhibitors of phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and RhoA-associated coiled-coil forming kinase (ROCK), but not inhibitors of gene transcription and protein biosynthesis. In conclusion, PRL directly enhanced the transcellular and paracellular calcium transport in the rat cecum through the nongenomic signaling pathways involving PI3K, PKC, and ROCK.

  3. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  4. Acetyl coenzyme A stimulates RNA polymerase II transcription and promoter binding by transcription factor IID in the absence of histones.

    PubMed

    Galasinski, S K; Lively, T N; Grebe De Barron, A; Goodrich, J A

    2000-03-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression.

  5. Granulocyte Colony-Stimulating Factor and Azole Antifungal Therapy in Murine Aspergillosis: Role of Immune Suppression

    PubMed Central

    Graybill, John R.; Bocanegra, Rosie; Najvar, Laura K.; Loebenberg, David; Luther, Mike F.

    1998-01-01

    Outbred ICR mice were immune suppressed either with hydrocortisone or with 5-fluorouracil and were infected intranasally with Aspergillus fumigatus. Beginning 3 days before infection some groups of mice were given recombinant human granulocyte colony-stimulating factor (G-CSF), SCH56592 (an antifungal triazole), or both. Corticosteroid-pretreated mice responded to SCH56592 and had reduced counts in lung tissue and prolonged survival. In these mice, G-CSF strongly antagonized the antifungal activity of SCH56592. Animals treated with both agents developed large lung abscesses with polymorphonuclear leukocytes and large amounts of Aspergillus. In contrast, mice made neutropenic with 5-fluorouracil and then infected with A. fumigatus conidia benefited from either G-CSF or triazoles, and the effect of the combination was additive rather than antagonistic. Host predisposing factors contribute in different ways to the outcome of growth factor therapy in aspergillosis. PMID:9756743

  6. Paresthesia-Independence: An Assessment of Technical Factors Related to 10 kHz Paresthesia-Free Spinal Cord Stimulation.

    PubMed

    De Carolis, Giuliano; Paroli, Mery; Tollapi, Lara; Doust, Matthew W; Burgher, Abram H; Yu, Cong; Yang, Thomas; Morgan, Donna M; Amirdelfan, Kasra; Kapural, Leonardo; Sitzman, B Todd; Bundschu, Richard; Vallejo, Ricardo; Benyamin, Ramsin M; Yearwood, Thomas L; Gliner, Bradford E; Powell, Ashley A; Bradley, Kerry

    2017-05-01

    Spinal cord stimulation (SCS) has been successfully used to treat chronic intractable pain for over 40 years. Successful clinical application of SCS is presumed to be generally dependent on maximizing paresthesia-pain overlap; critical to achieving this is positioning of the stimulation field at the physiologic midline. Recently, the necessity of paresthesia for achieving effective relief in SCS has been challenged by the introduction of 10 kHz paresthesia-free stimulation. In a large, prospective, randomized controlled pivotal trial, HF10 therapy was demonstrated to be statistically and clinically superior to paresthesia-based SCS in the treatment of severe chronic low back and leg pain. HF10 therapy, unlike traditional paresthesia-based SCS, requires no paresthesia to be experienced by the patient, nor does it require paresthesia mapping at any point during lead implant or post-operative programming. To determine if pain relief was related to technical factors of paresthesia, we measured and analyzed the paresthesia responses of patients successfully using HF10 therapy. Prospective, multicenter, non-randomized, non-controlled interventional study. Outpatient pain clinic at 10 centers across the US and Italy. Patients with both back and leg pain already implanted with an HF10 therapy device for up to 24 months were included in this multicenter study. Patients provided pain scores prior to and after using HF10 therapy. Each patient's most efficacious HF10 therapy stimulation program was temporarily modified to a low frequency (LF; 60 Hz), wide pulse width (~470 mus), paresthesia-generating program. On a human body diagram, patients drew the locations of their chronic intractable pain and, with the modified program activated, all regions where they experienced LF paresthesia. Paresthesia and pain drawings were then analyzed to estimate the correlation of pain relief outcomes to overlap of pain by paresthesia, and the mediolateral distribution of paresthesia (as a

  7. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    PubMed

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  8. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  9. Treatment of clozapine- and molindone-induced agranulocytosis with granulocyte colony-stimulating factor.

    PubMed

    Geibig, C B; Marks, L W

    1993-10-01

    To report a case of clozapine- and molindone-induced agranulocytosis and to discuss treatment using filgrastim, a granulocyte colony-stimulating factor. A 64-year-old woman who had been on long-term clozapine therapy for schizophrenia was hospitalized with presumed drug-induced agranulocytosis. She had also been on short-term molindone therapy. A bone marrow biopsy and the initial white blood cell (WBC) count were consistent with drug-induced agranulocytosis. Following seven days of treatment with subcutaneous filgrastim 300 micrograms/d, her absolute neutrophil count was above 500 x 10(6)/L. Reports in the literature discussing antipsychotic drug-induced agranulocytosis are reviewed. A relationship between treatment with filgrastim and WBC response is postulated. Filgrastim may be useful in ameliorating the effects of clozapine- and molindone-induced agranulocytosis.

  10. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.

    PubMed

    Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi

    2014-06-01

    We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.

  11. Extended Culture of Bone Marrow with Granulocyte Macrophage-Colony Stimulating Factor Generates Immunosuppressive Cells

    PubMed Central

    Na, Hye Young; Sohn, Moah; Ryu, Seul Hye; Choi, Wanho; In, Hyunju; Shin, Hyun Soo

    2018-01-01

    Bone marrow-derived dendritic cells (BM-DCs) are generated from bone marrow (BM) cells cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for a week. In this study we investigated the effect of duration on the BM culture with GM-CSF. Within several months, the cells in the BM culture gradually expressed homogeneous levels of CD11c and major histocompatibility complex II on surface, and they became unable to stimulate allogeneic naïve T cells in mixed lymphocyte reaction (MLR). In addition, when the BM culture were sustained for 32 wk or longer, the BM cells acquired ability to suppress the proliferation of allogeneic T cells in MLR as well as the response of ovalbumin-specific OT-I transgenic T cells in antigen-dependent manner. We found that, except for programmed death-ligand 1, most cell surface molecules were expressed lower in the BM cells cultured with GM-CSF for the extended duration. These results indicate that BM cells in the extended culture with GM-CSF undergo 2 distinct steps of functional change; first, they lose the immunostimulatory capacity; and next, they gain the immunosuppressive ability. PMID:29736292

  12. Niemann-Pick disease, Type C: evidence for the deficiency of an activating factor stimulating sphingomyelin and glucocerebroside degradation.

    PubMed

    Christomanou, H

    1980-10-01

    1) Qualitative lipid analyses by thin-layer chromatography of 4 Niemann-Pick type C spleens confirmed sphingomyelin accumulation together with increase in the amount of glucocerebroside. 2) In the presence of crude sodium taurocholate as detergent, sphingomyelin degradation rates of normal and Niemann-Pick type C-cultured fibroblasts were fairly close under standard conditions at pH 5.0. In the absence of sodium taurocholate, sphingomyelinase activity was optimal at pH 4.0. Sphingomyelinase activities of fibroblasts from two patients with Niemann-Pick disease type C measured without detergent, were about 30% of that of controls. 3) Extracts from Gaucher spleen heated to 90 degrees C and devoid of sphingomyelinase activity stimulated at the optimal pH of 4.0 sphingomyelin degradation by cultured normal fibroblasts (2--4-fold, Niemann-Pick type C fibroblasts (5--9-fold), whereas similarly treated extracts from Niemann-Pick type C spleen showed no stimulation of sphingomyelin catabolism. Heated extracts from normal human spleen exhibited a smaller stimulation than that shown by Gaucher spleen. This stimulating effect could not be observed in fibroblasts from patients suffering from Niemann-Pick type B (sphingomyelinase defect). 4) Heat-treated extracts of Gaucher spleen were fractionated by ion exchange chromatography, isoelectric focusing and gel filtration. The active fractions obtained by these procedures stimulated sphingomyelin as well as glucocerebroside degradation and were absent from the corresponding Niemann-Pick type C preparations. Enriched activator preparations of Gaucher spleen stimulated sphingomyelinase activity of Niemann-Pick type C fibroblasts 25--38-fold and that of normal cells 3-fold. 5) The activating factor had an isoelectric point of 4.0 and an apparent molecular weight, as estimated by gel filtration, of 25000. Treatment with pronase E abolished its activity.

  13. Brain-derived neurotrophic factor in the nucleus tractus solitarii modulates glucose homeostasis after carotid chemoreceptor stimulation in rats.

    PubMed

    Montero, Sergio; Cuéllar, Ricardo; Lemus, Mónica; Avalos, Reyes; Ramírez, Gladys; de Álvarez-Buylla, Elena Roces

    2012-01-01

    Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.

  14. Propofol mediates signal transducer and activator of transcription 3 activation and crosstalk with phosphoinositide 3-kinase/AKT.

    PubMed

    Shravah, Jayant; Wang, Baohua; Pavlovic, Marijana; Kumar, Ujendra; Chen, David Dy; Luo, Honglin; Ansley, David M

    2014-01-01

    We previously demonstrated that propofol, an intravenous anesthetic with anti-oxidative properties, activated the phosphoinositide 3-kinase (PI3K)/AKT pathway to increase the expression of B cell lymphoma (Bcl)-2 and, therefore the anti-apoptotic potential on cardiomyocytes. Here, we wanted to determine if propofol can also activate the Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3 pathway, another branch of cardioprotective signaling. The cellular response of nuclear factor kappa B (NFκB) and STAT3 was also evaluated. Cardiac H9c2 cells were treated by propofol alone or in combination with pretreatment by inhibitors for JAK2/STAT3 or PI3K/AKT pathway. STAT3 and AKT phosphorylation, and STAT3 translocation were measured by western blotting and immunofluorescence staining, respectively. Propofol treatment significantly increased STAT3 phosphorylation at both tyrosine 705 and serine 727 residues. Sustained early phosphorylation of STAT3 was observed with 25~75 μM propofol at 10 and 30 min. Nuclear translocation of STAT3 was seen at 4 h after treatment with 50 μM propofol. In cultured H9c2 cells, we further demonstrated that propofol-induced STAT3 phosphorylation was reduced by pretreatment with PI3K/AKT pathway inhibitors wortmannin or API-2. Conversely, pretreatment with JAK2/STAT3 pathway inhibitor AG490 or stattic inhibited propofol-induced AKT phosphorylation. In addition, propofol induced NFκB p65 subunit perinuclear translocation. Inhibition or knockdown of STAT3 was associated with increased levels of the NFκB p65 subunit. Our results suggest that propofol induces an adaptive response by dual activation and crosstalk of cytoprotective PI3K/AKT and JAK2/STAT3 pathways. Rationale to apply propofol clinically as a preemptive cardioprotectant during cardiac surgery is supported by our findings.

  15. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies

    PubMed Central

    Li, Lucia M.; Uehara, Kazumasa; Hanakawa, Takashi

    2015-01-01

    There has been an explosion of research using transcranial direct current stimulation (tDCS) for investigating and modulating human cognitive and motor function in healthy populations. It has also been used in many studies seeking to improve deficits in disease populations. With the slew of studies reporting “promising results” for everything from motor recovery after stroke to boosting memory function, one could be easily seduced by the idea of tDCS being the next panacea for all neurological ills. However, huge variability exists in the reported effects of tDCS, with great variability in the effect sizes and even contradictory results reported. In this review, we consider the interindividual factors that may contribute to this variability. In particular, we discuss the importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain. We additionally consider how interindividual variability affects the results of motor-evoked potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can lead to apparent variability in response to tDCS in motor studies. PMID:26029052

  16. BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth

    PubMed Central

    Schneider, Pascal; MacKay, Fabienne; Steiner, Véronique; Hofmann, Kay; Bodmer, Jean-Luc; Holler, Nils; Ambrose, Christine; Lawton, Pornsri; Bixler, Sarah; Acha-Orbea, Hans; Valmori, Danila; Romero, Pedro; Werner-Favre, Christiane; Zubler, Rudolph H.; Browning, Jeffrey L.; Tschopp, Jürg

    1999-01-01

    Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family, designated BAFF (for B cell activating factor belonging to the TNF family), which is expressed by T cells and dendritic cells. Human BAFF was mapped to chromosome 13q32-34. Membrane-bound BAFF was processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The expression of BAFF receptor appeared to be restricted to B cells. Both membrane-bound and soluble BAFF induced proliferation of anti-immunoglobulin M–stimulated peripheral blood B lymphocytes. Moreover, increased amounts of immunoglobulins were found in supernatants of germinal center–like B cells costimulated with BAFF. These results suggest that BAFF plays an important role as costimulator of B cell proliferation and function. PMID:10359578

  17. Isolation, nucleotide sequence and expression of a cDNA encoding feline granulocyte colony-stimulating factor.

    PubMed

    Dunham, S P; Onions, D E

    2001-06-21

    A cDNA encoding feline granulocyte colony stimulating factor (fG-CSF) was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction. The cDNA is 949 bp in length and encodes a predicted mature protein of 174 amino acids. Recombinant fG-CSF was expressed as a glutathione S-transferase fusion and purified by affinity chromatography. Biological activity of the recombinant protein was demonstrated using the murine myeloblastic cell line GNFS-60, which showed an ED50 for fG-CSF of approximately 2 ng/ml. Copyright 2001 Academic Press.

  18. Granulocyte-Colony Stimulating Factor (G-CSF) Administration for Chemotherapy-Induced Neutropenia.

    PubMed

    Yalçin, Ş; Güler, N; Kansu, E; Ertenli, I; Güllü, I; Barişta, I; Çelik, I; Kars, A; Tekuzman, G; Baltali, E; Firat, D

    1996-01-01

    This study was aimed to evaluate the efficacy of G-CSF (Granulocyte colony stimulating factor) administration to 37 patients with neutropenia following intensive combination chemotherapy. The patients were divided into two subgroups including solid tumors given ifosfamide and etoposide combination chemotherapy (IMET subgroup) and acute myeloid leukemia (AML) patients treated with mitoxantrone and cytarabine. Control group consisted of 31 acute myeloid leukemia patients. G-CSF was started on the first day of absolute neutropenia until the absolute neutrophil count was above 1000/mm(3) for two consecutive days. G-CSF was found to be effective for early recovery of neutrophil count. Expected response was achieved within 14 days in 91.5% of the courses with a median of fifth day of G-CSF treatment. In conclusion, this study showed the efficacy of G-CSF in early recovery of neutrophil count without any reduction in the incidence of febrile episodes and documented rates of bacterial and fungal infections in patients with acute myeloid leukemia.

  19. Chondrogenic differentiation of growth factor-stimulated precursor cells in cartilage repair tissue is associated with increased HIF-1alpha activity.

    PubMed

    Gelse, K; Mühle, C; Knaup, K; Swoboda, B; Wiesener, M; Hennig, F; Olk, A; Schneider, H

    2008-12-01

    To investigate the chondrogenic potential of growth factor-stimulated periosteal cells with respect to the activity of Hypoxia-inducible Factor 1alpha (HIF-1alpha). Scaffold-bound autologous periosteal cells, which had been activated by Insulin-like Growth Factor 1 (IGF-1) or Bone Morphogenetic Protein 2 (BMP-2) gene transfer using both adeno-associated virus (AAV) and adenoviral (Ad) vectors, were applied to chondral lesions in the knee joints of miniature pigs. Six weeks after transplantation, the repair tissues were investigated for collagen type I and type II content as well as for HIF-1alpha expression. The functional role of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling on BMP-2/IGF-1-induced HIF-1alpha expression was assessed in vitro by employing specific inhibitors. Unstimulated periosteal cells formed a fibrous extracellular matrix in the superficial zone and a fibrocartilaginous matrix in deep zones of the repair tissue. This zonal difference was reflected by the absence of HIF-1alpha staining in superficial areas, but moderate HIF-1alpha expression in deep zones. In contrast, Ad/AAVBMP-2-stimulated periosteal cells, and to a lesser degree Ad/AAVIGF-1-infected cells, adopted a chondrocyte-like phenotype with strong intracellular HIF-1alpha staining throughout all zones of the repair tissue and formed a hyaline-like matrix. In vitro, BMP-2 and IGF-1 supplementation increased HIF-1alpha protein levels in periosteal cells, which was based on posttranscriptional mechanisms rather than de novo mRNA synthesis, involving predominantly the MEK/ERK pathway. This pilot experimental study on a relatively small number of animals indicated that chondrogenesis by precursor cells is facilitated in deeper hypoxic zones of cartilage repair tissue and is stimulated by growth factors which enhance HIF-1alpha activity.

  20. Induction of autocrine factor inhibiting cell motility from murine B16-BL6 melanoma cells by alpha-melanocyte stimulating hormone.

    PubMed

    Murata, J; Ayukawa, K; Ogasawara, M; Watanabe, H; Saiki, I

    1999-03-15

    We have previously reported that neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) successfully inhibited Matrigel invasion and haptotactic migration of B16-BL6 melanoma cells towards both fibronectin and laminin without affecting their growth. In the present study, we investigated the inhibitory mechanism of tumor cell motility by alpha-MSH. Alpha-MSH significantly blocked the autocrine motility factor (AMF)-enhanced cell motility. However, alpha-MSH did neither prevent the secretion of AMF from B16-BL6 cells nor alter the expression level of AMF receptor (gp78). On the other hand, alpha-MSH induced the secretion of the motility inhibitory factor(s) from B16-BL6 cells in a concentration- and time-dependent manner. The induction of the motility inhibitor(s) was proportional to increasing levels of intracellular cAMP induced by alpha-MSH as well as forskolin, and the activity was abolished by an adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA). The motility-inhibiting activity in conditioned medium (CM) from alpha-MSH-treated B16-BL6 cells was found to have a m.w. below 3 kDa after fractionation. This activity was abolished by boiling but insensitive to trypsin. The treatment of tumor cells with cycloheximide reduced the activity in alpha-MSH-stimulated CM. Our results suggest that alpha-MSH inhibited the motility of B16-BL6 cells through induction of autocrine factor(s).

  1. Stimulation of phagocytosis by sulforaphane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu; Fahey, Jed W., E-mail: jfahey@jhmi.edu; Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatorymore » and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.« less

  2. Modulation of the Endocannabinoid System: Vulnerability Factor and New Treatment Target for Stimulant Addiction

    PubMed Central

    Olière, Stéphanie; Jolette-Riopel, Antoine; Potvin, Stéphane; Jutras-Aswad, Didier

    2013-01-01

    Cannabis is one of the most widely used illicit substance among users of stimulants such as cocaine and amphetamines. Interestingly, increasing recent evidence points toward the involvement of the endocannabinoid system (ECBS) in the neurobiological processes related to stimulant addiction. This article presents an up-to-date review with deep insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. This article aims to: (1) review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and (2) evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction. A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoids in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants. PMID:24069004

  3. Studies on the effects of acetylcholine and antiepileptic drugs on /sup 32/P incorporation into phospholipids of rat brain synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, M.I.; Abdel-Latif, A.A.

    1982-02-01

    Studies were conducted on the effects of antiepileptic drugs on the acetylcholine-stimulated /sup 32/P labeling of phospholipids in rat brain synaptosomes. Of the four antiepileptic drugs investigated in the present study, namely phenytoin, carbamazepine, phenobarbital, and valproate, only phenytoin blocked the acetylcholine-stimulated /sup 32/P labeling of phosphatidylinositol and phosphatidic acid, and the acetylcholine-stimulated breakdown of polyphosphoinositides. Phenytoin alone, like atropine alone, had no effect on the /sup 32/P labeling of phospholipids nor on the specific radioactivity of (/sup 32/P)ATP. Omission of Na/sup +/ drastically reduced both the /sup 32/P labeling of synaptosomal phospholipids and the specific radioactivity of (/sup 32/P)ATPmore » and furthermore it significantly decreased the phosphoinositide effect. It was concluded that certain antiepileptic drugs, such as phenytoin, could exert their pharmacological actions through their antimuscarinic effects. In addition the finding that phenytoin, which acts to regulate NA/sup +/ and Ca/sup 2 +/ permeability of neuronal membranes, also inhibited the phosphoinositide effects in synaptosomes, support the conclusions that Ca2+ and Na+ are probably involved in the molecular mechanism underlying this phenomenon in excitable tissues.« less

  4. Mutation of the 3-Phosphoinositide-Dependent Protein Kinase 1 (PDK1) Substrate-Docking Site in the Developing Brain Causes Microcephaly with Abnormal Brain Morphogenesis Independently of Akt, Leading to Impaired Cognition and Disruptive Behaviors

    PubMed Central

    Cordón-Barris, Lluís; Pascual-Guiral, Sònia; Yang, Shaobin; Giménez-Llort, Lydia; Lope-Piedrafita, Silvia; Niemeyer, Carlota; Claro, Enrique; Lizcano, Jose M.

    2016-01-01

    The phosphoinositide (PI) 3-kinase/Akt signaling pathway plays essential roles during neuronal development. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) coordinates the PI 3-kinase signals by activating 23 kinases of the AGC family, including Akt. Phosphorylation of a conserved docking site in the substrate is a requisite for PDK1 to recognize, phosphorylate, and activate most of these kinases, with the exception of Akt. We exploited this differential mechanism of regulation by generating neuron-specific conditional knock-in mice expressing a mutant form of PDK1, L155E, in which the substrate-docking site binding motif, termed the PIF pocket, was disrupted. As a consequence, activation of all the PDK1 substrates tested except Akt was abolished. The mice exhibited microcephaly, altered cortical layering, and reduced circuitry, leading to cognitive deficits and exacerbated disruptive behavior combined with diminished motivation. The abnormal patterning of the adult brain arises from the reduced ability of the embryonic neurons to polarize and extend their axons, highlighting the essential roles that the PDK1 signaling beyond Akt plays in mediating the neuronal responses that regulate brain development. PMID:27644329

  5. The Akt DUBbed InAktive.

    PubMed

    Lin, Kui

    2013-01-08

    Akt is a central node in the phosphoinositide-3 kinase-Akt-mammalian target of rapamycin pathway and is activated by a multistep process in response to growth factor stimulation. An additional layer of posttranslational modification has emerged as a new paradigm in the regulation of Akt. The identification of an E3 ligase for Lys(63)-linked ubiquitination of Akt has now been complemented with the discovery of the tumor suppressor cylindromatosis as a deubiquitinating enzyme (DUB) for Akt. Thus, like phosphorylation and dephosphorylation, cycles of ubiquitination and deubiquitination provide additional on-off switches that keep Akt activity in balance, and disturbances in this balance have pathological consequences.

  6. The role of granulocyte macrophage-colony stimulating factor in gastrointestinal immunity to salmonellosis.

    PubMed

    Coon, C; Beagley, K W; Bao, S

    2009-08-01

    Human Salmonella infection, in particular, typhoid fever is a highly infectious disease that remains a major public health problem causing significant morbidity and mortality. The outcome of these infections depends on the host's immune response, particularly the actions of granulocytes and macrophages. Using a mouse model of human typhoid fever, with Salmonella typhimurium infection of wild type and granulocyte macrophage-colony stimulating factor (GM-CSF) knock out mice we show a delay in the onset of immune-mediated tissue damage in the spleens and livers of GM-CSF(-/-) mice. Furthermore, GM-CSF(-/-) mice have a prolonged sequestration of S. typhimurium in affected tissues despite an increased production of F4/80+ effector cells. Moreover in the absence of GM-CSF, a decrease in pro-inflammatory cytokine expression of tumor necrosis factor-alpha, interleukin-12 (IL-12) and IL-18 was found, which may alter the host's immune response to infection. GM-CSF appears to play an important role in the pathogenesis of Salmonellosis, and may contribute significantly to the development of protective gastrointestinal mucosal immune responses against oral pathogens.

  7. Neurotensin is an autocrine trophic factor stimulated by androgen withdrawal in human prostate cancer.

    PubMed Central

    Sehgal, I; Powers, S; Huntley, B; Powis, G; Pittelkow, M; Maihle, N J

    1994-01-01

    After therapeutic hormone deprivation, prostate cancer cells often develop androgen-insensitive growth through mechanisms thus far undefined. Neuropeptides have been previously implicated as growth factors in some prostate cancers. Here, we demonstrate that androgen-sensitive LNCaP human prostate cancer cells produce and secrete neurotensin following androgen withdrawal. We show that while LNCaP cells express the neurotensin receptor, only androgen-deprived cells exhibit a growth response to exogenous neurotensin. We further demonstrate that androgen-stimulated cells may be refractory to exogenous neurotensin due to androgen induction of a metalloprotease active toward neurotensin. Thus, prostate cancer cells deprived of androgen develop an alternative autocrine growth mechanism involving neurotensin. Images PMID:8197117

  8. Lack of phosphoinositide 3-kinase-gamma attenuates ventilator-induced lung injury.

    PubMed

    Lionetti, Vincenzo; Lisi, Alberto; Patrucco, Enrico; De Giuli, Paolo; Milazzo, Maria Giovanna; Ceci, Simone; Wymann, Matthias; Lena, Annalisa; Gremigni, Vittorio; Fanelli, Vito; Hirsch, Emilio; Ranieri, V Marco

    2006-01-01

    G protein-coupled receptors may up-regulate the inflammatory response elicited by ventilator-induced lung injury but also regulate cell survival via protein kinase B (Akt) and extracellular signal regulated kinases 1/2 (ERK1/2). The G protein-sensitive phosphoinositide-3-kinase gamma (PI3Kgamma) regulates several cellular functions including inflammation and cell survival. We explored the role of PI3Kgamma on ventilator-induced lung injury. Prospective, randomized, experimental study. University animal research laboratory. Wild-type (PI3Kgamma), knock-out (PI3Kgamma ), and kinase-dead (PI3Kgamma) mice. Three ventilatory strategies (no stretch, low stretch, high stretch) were studied in an isolated, nonperfused model of acute lung injury (lung lavage) in PI3Kgamma, PI3Kgamma, and PI3Kgamma mice. Reduction in lung compliance, hyaline membrane formation, and epithelial detachment with high stretch were more pronounced in PI3Kgamma than in PI3Kgamma and PI3Kgamma (p < .01). Inflammatory cytokines and IkBalpha phosphorylation with high stretch did not differ among PI3Kgamma, PI3Kgamma, and PI3Kgamma. Apoptotic index (terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling) and caspase-3 (immunohistochemistry) with high stretch were larger (p < .01) in PI3Kgamma and PI3Kgamma than in PI3Kgamma. Electron microscopy showed that high stretch caused apoptotic changes in alveolar cells of PI3Kgamma mice whereas PI3Kgamma mice showed necrosis. Phosphorylation of Akt and ERK1/2 with high stretch was more pronounced in PI3Kgamma than in PI3Kgamma and PI3Kgamma (p < .01). Silencing PI3Kgamma seems to attenuate functional and morphological consequences of ventilator-induced lung injury independently of inhibitory effects on cytokines release but through the enhancement of pulmonary apoptosis.

  9. Granulocyte colony-stimulating factor in repeated IVF failure, a randomized trial.

    PubMed

    Aleyasin, Ashraf; Abediasl, Zhila; Nazari, Atefeh; Sheikh, Mahdi

    2016-06-01

    Recent studies have revealed key roles for granulocyte colony-stimulating factor (GCSF) in embryo implantation process and maintenance of pregnancy, and some studies showed promising results by using local intrauterine infusion of GCSF in patients undergoing in vitro fertilization (IVF). This multicenter, randomized, controlled trial included 112 infertile women with repeated IVF failure to evaluate the efficacy of systemic single-dose subcutaneous GCSF administration on IVF success in these women. In this study, the Long Protocol of ovarian stimulation was used for all participants. Sealed, numbered envelopes assigned 56 patients to receive subcutaneous 300 µg GCSF before implantation and 56 in the control group. The implantation (number of gestational sacs on the total number of transferred embryos), chemical pregnancy (positive serum β-HCG), and clinical pregnancy (gestational sac and fetal heart) rates were compared between the two groups. This trial is registered at www.irct.ir (IRCT201503119568N11). The successful implantation (18% vs 7.2%, P=0.007), chemical pregnancy (44.6% vs 19.6%, P=0.005), and clinical pregnancy (37.5% vs 14.3%, P=0.005) rates were significantly higher in the intervention group than in the control group. After adjustment for participants' age, endometrial thickness, good-quality oocyte counts, number of transferred embryos, and anti-Mullerian hormone levels, GCSF treatment remained significantly associated with successful implantation (OR=2.63, 95% CI=1.09-6.96), having chemical pregnancy (OR= 2.74, 95% CI=1.11-7.38) and clinical pregnancy (OR=2.94, 95% CI=1.23-8.33). In conclusion, administration of single-dose systemic subcutaneous GCSF before implantation significantly increases the IVF success, implantation, and pregnancy rates in infertile women with repeated IVF failure. © 2016 Society for Reproduction and Fertility.

  10. Leukocytosis due to markedly elevated granulocyte-colony stimulating factor levels in a patient with endometrial cancer: Case report and literature review.

    PubMed

    Clark, Leslie H; Moll, Stephan; Houghton, Damon; O'Connor, Siohban; Soper, John T

    2017-05-01

    •Granulocyte-colony stimulating factor (GCSF) secretion by gynecologic tumors is rare.•Elevations in serum GCSF can be seen in the absence of tumor GSCF secretion.•Extreme leukocytosis is associated with autocrine tumor growth and poor prognosis.

  11. Phosphoinositide 3-kinase regulates maturation of lysosomes in rat hepatocytes.

    PubMed Central

    Mousavi, Seyed Ali; Brech, Andreas; Berg, Trond; Kjeken, Rune

    2003-01-01

    To obtain information about the role of phosphoinositide 3-kinase (PI3K) in the endocytic pathway in hepatocytes, the uptake and intracellular transport of asialo-orosomucoid (ASOR) was followed in cells treated with wortmannin or LY294002. The two inhibitors, at concentrations known to inhibit the enzyme, did not affect internalization or the number of surface asialoglycoprotein receptors, but they caused a paradoxical increase (approx. 50% above control values) in the degradation of ASOR labelled with [(125)I]tyramine cellobiose ([(125)I]TC). Wortmannin or LY204002 inhibited the autophagic sequestration of lactate dehydrogenase very effectively, and the enhanced degradation of [(125)I]TC-ASOR could be an indirect effect of reduced autophagy, as an amino acid mixture known to inhibit autophagy also caused increased degradation of [(125)I]TC-ASOR, and its effect was not additive to that of wortmannin or LY294002. Wortmannin or LY294002 had pronounced effects on the late parts of the endocytic pathway in the hepatocytes: first, dense lysosomes disappeared and were replaced by swollen vesicles; secondly, degradation of [(125)I]TC-ASOR took place in an organelle of lower buoyant density (in a sucrose gradient) than the bulk of lysosomes (identified in the gradient by lysosomal marker enzymes). With increasing length of incubation with wortmannin or LY294002, the density distributions of the lysosomal markers also shifted to lower density and gradually approached that of the labelled degradation products. The labelled degradation products formed from [(125)I]TC-labelled proteins were trapped at the site of formation, because they did not penetrate the vesicle membranes. The results obtained indicate that internalization and intracellular transport of ASOR to lysomes may take place in the absence of PI3K activity in rat hepatocytes. On the other hand, fusion of late endosomes with lysosomes seems to produce 'hybrid organelles' (active lysosomes) that are unable to

  12. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min

    It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione–induced inhibitionmore » was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H 2O 2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys 128), and substitution of Cys 128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys 128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.« less

  13. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE PAGES

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min; ...

    2017-09-29

    It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione–induced inhibitionmore » was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H 2O 2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys 128), and substitution of Cys 128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys 128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.« less

  14. Short-Form Ron Promotes Spontaneous Breast Cancer Metastasis through Interaction with Phosphoinositide 3-Kinase

    PubMed Central

    Liu, Xuemei; Zhao, Ling; DeRose, Yoko S.; Lin, Yi-Chun; Bieniasz, Magdalena; Eyob, Henok; Buys, Saundra S.; Neumayer, Leigh

    2011-01-01

    Receptor tyrosine kinases (RTKs) have been the subject of intense investigation due to their widespread deregulation in cancer and the prospect of developing targeted therapeutics against these proteins. The Ron RTK has been implicated in tumor aggressiveness and is a developing target for therapy, but its function in tumor progression and metastasis is not fully understood. We examined Ron activity in human breast cancers and found striking predominance of an activated Ron isoform known as short-form Ron (sfRon), whose function in breast tumors has not been explored. We found that sfRon plays a significant role in aggressiveness of breast cancer in vitro and in vivo. sfRon expression was sufficient to convert slow-growing, nonmetastatic tumors into rapidly growing tumors that spontaneously metastasized to liver and bones. Mechanistic studies revealed that sfRon promotes epithelial-mesenchymal transition, invasion, tumor growth, and metastasis through interaction with p85, the regulatory subunit of phosphoinositide 3-kinase (PI3K). Inhibition of PI3K activity, or introduction of a single mutation in the p85 docking site on sfRon, completely eliminated the ability of sfRon to promote tumor growth, invasion, and metastasis. These findings reveal sfRon as an important new player in breast cancer and validate Ron and PI3K as therapeutic targets in this disease. PMID:22207901

  15. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  16. Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid.

    PubMed

    Anitua, E; Sanchez, M; De la Fuente, M; Zalduendo, M M; Orive, G

    2012-09-01

    Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.

  17. Stimulation by thyroid-stimulating hormone and Grave's immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo.

    PubMed

    Sato, K; Yamazaki, K; Shizume, K; Kanaji, Y; Obara, T; Ohsumi, K; Demura, H; Yamaguchi, S; Shibuya, M

    1995-09-01

    To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.

  18. Tumor necrosis factor-alpha stimulates the production of squamous cell carcinoma antigen in normal squamous cells.

    PubMed

    Numa, F; Takeda, O; Nakata, M; Nawata, S; Tsunaga, N; Hirabayashi, K; Suminami, Y; Kato, H; Hamanaka, S

    1996-01-01

    Squamous cell carcinoma (SCC) antigen, a tumor marker of squamous cell carcinoma, is also increased in several nonmalignant skin lesions, e.g. pemphigus. The aim of the present investigation was to determine if tumor necrosis factor-alpha (TNF-alpha), one of the important environmental factors, stimulated the production of SCC antigen in the normal squamous cells. The exposure of normal human epidermal keratinocytes to TNF-alpha (100 IU/ml) for 72 h greatly increased the SCC antigen production. The stimulatory effect of TNF-alpha (1,000 IU/ml) on the production of SCC antigen was also observed in the normal squamous epithelium tissue. These results would be helpful for understanding the increase of SCC antigen in several nonmalignant skin disorders.

  19. Porcine granulocyte-colony stimulating factor (G-CSF) delivered via replication-defective adenovirus induces a sustained increase in circulating peripheral blood neutrophils

    USDA-ARS?s Scientific Manuscript database

    The use of immunomodulators is a promising area for biotherapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease, particularly during periods of peak disease incidence. Cytokines, including granulocyte colony-stimulating factor (G-CSF), are one class of compounds that...

  20. Granulocyte-macrophage colony-stimulating factor induces the differentiation of murine erythroleukaemia cells into dendritic cells.

    PubMed Central

    Cao, X; Zhao, Y; Yu, Y; Wang, Y; Zhang, M; Zhang, W; Wang, J

    1998-01-01

    Dendritic cells (DC) are professional antigen-presenting cells (APC) within the immune system and antigen-pulsed DC can be used as an effective vaccine for active immunotherapy of cancer. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the generation of DC. We previously showed that GM-CSF can induce murine erythroleukaemia cells (FBL-3) to differentiate into monocyte-like cells. To develop a new vaccinating method to stimulate the host immune response to leukaemia, we further investigate whether FBL-3 cells induced by GM-CSF can differentiate into DC in the present study. After being treated with GM-CSF, FBL-3 cells expressed high levels of 33D1 and NLDC-145, which are the specific markers of DC. The expression of MHC-II, B7-1, B7-2 and vascular cell adhesion molecule-1 (VCAM-1) was up-regulated markedly; the typical morphology of DC were also observed by electron microscopy. Functionally, the GM-CSF-induced FBL-3 cells could apparently stimulate the proliferation of naive allogeneic and autologous T lymphocytes and induce the generation of specific CTL more efficiently than the wild-type FBL-3 cells. Mice immunized with GM-CSF-induced FBL-3 cells could resist the subsequent challenge with the wild-type FBL-3 cells. Collectively, these data indicate that GM-CSF differentiates murine erythroleukaemia cells into DC phenotypically, morphologically and functionally. FBL-3-derived DC can be used as a new type of vaccine. Our results may have important implications for the immunotherapy of leukaemia. Images Figure 3 Figure 4 PMID:9767469

  1. Heterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid progenitor cells of patients with severe congenital neutropenia treated with granulocyte colony-stimulating factor.

    PubMed

    Cario, Gunnar; Skokowa, Julia; Wang, Zheng; Bucan, Vesna; Zeidler, Cornelia; Stanulla, Martin; Schrappe, Martin; Welte, Karl

    2005-04-01

    Apoptosis is accelerated in the myeloid progenitor cells of patients with severe congenital neutropenia (CN). Granulocyte colony-stimulating factor (G-CSF) increases neutrophil numbers in most CN patients. The effect of G-CSF on apoptosis in CN was analysed by apoptosis rate and expression of anti- and pro-apoptotic factors. G-CSF-treated patients showed higher apoptosis frequency, lower expression of bcl-2 and bcl-xL, but higher expression of bfl-1/A1 and mcl-1. Caspase 9 was highly expressed in patients and controls after G-CSF administration. Thus, G-CSF acts on apoptosis regulation, but additional mechanisms leading to the increase of neutrophil numbers must be assumed.

  2. 1-[N, O-bis-(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), an inhibitor of calcium-dependent camodulin protein kinase II, inhibits both insulin- and hypoxia-stimulated glucose transport in skeletal muscle.

    PubMed Central

    Brozinick, J T; Reynolds, T H; Dean, D; Cartee, G; Cushman, S W

    1999-01-01

    Previous studies have indicated a role for calmodulin in hypoxia-and insulin-stimulated glucose transport. However, since calmodulin interacts with multiple protein targets, it is unknown which of these targets is involved in the regulation of glucose transport. In the present study, we have used the calcium-dependent calmodulin protein kinase II (CAMKII) inhibitor 1-[N, O-bis-(5-isoquinolinesulphonyl) -N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) to investigate the possible role of this enzyme in the regulation of glucose transport in isolated rat soleus and epitrochlearis muscles. KN-62 did not affect basal 2-deoxyglucose transport, but it did inhibit both insulin- and hypoxia-stimulated glucose transport activity by 46 and 40% respectively. 1-[N,O-Bis-(1, 5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-04), a structural analogue of KN-62 that does not inhibit CAMKII, had no effect on hypoxia-or insulin-stimulated glucose transport. Accordingly, KN-62 decreased the stimulated cell-surface GLUT4 labelling by a similar extent as the inhibition of glucose transport (insulin, 49% and hypoxia, 54%). Additional experiments showed that KN-62 also inhibited insulin- and hypoxia-stimulated transport by 37 and 40% respectively in isolated rat epitrochlearis (a fast-twitch muscle), indicating that the effect of KN-62 was not limited to the slow-twitch fibres of the soleus. The inhibitory effect of KN-62 on hypoxia-stimulated glucose transport appears to be specific to CAMKII, since KN-62 did not inhibit hypoxia-stimulated 45Ca efflux from muscles pre-loaded with 45Ca, or hypoxia-stimulated glycogen breakdown. Additionally, KN-62 affected neither insulin-stimulated phosphoinositide 3-kinase nor Akt activity, suggesting that the effects of KN-62 are not due to non-specific effects of this inhibitor on these regions of the insulin-signalling cascade. The results of the present study suggest that CAMKII might have a distinct role in insulin- and hypoxia-stimulated

  3. A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes without Growth Factor Stimulation

    DTIC Science & Technology

    2011-01-01

    A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our

  4. Neurologic Complications of Psychomotor Stimulant Abuse.

    PubMed

    Sanchez-Ramos, Juan

    2015-01-01

    Psychomotor stimulants are drugs that act on the central nervous system (CNS) to increase alertness, elevate mood, and produce a sense of well-being. These drugs also decrease appetite and the need for sleep. Stimulants can enhance stamina and improve performance in tasks that have been impaired by fatigue or boredom. Approved therapeutic applications of stimulants include attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. These agents also possess potent reinforcing properties that can result in excessive self-administration and abuse. Chronic use is associated with adverse effects including psychosis, seizures, and cerebrovascular accidents, though these complications usually occur in individuals with preexisting risk factors. This chapter reviews the adverse neurologic consequences of chronic psychomotor stimulant use and abuse, with a focus on two prototypical stimulants methamphetamine and cocaine. © 2015 Elsevier Inc. All rights reserved.

  5. ETP-46321, a dual p110α/δ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis.

    PubMed

    Aragoneses-Fenoll, L; Montes-Casado, M; Ojeda, G; Acosta, Y Y; Herranz, J; Martínez, S; Blanco-Aparicio, C; Criado, G; Pastor, J; Dianzani, U; Portolés, P; Rojo, J M

    2016-04-15

    Class IA phosphoinositide 3-kinases (PI3Ks) are essential to function of normal and tumor cells, and to modulate immune responses. T lymphocytes express high levels of p110α and p110δ class IA PI3K. Whereas the functioning of PI3K p110δ in immune and autoimmune reactions is well established, the role of p110α is less well understood. Here, a novel dual p110α/δ inhibitor (ETP-46321) and highly specific p110α (A66) or p110δ (IC87114) inhibitors have been compared concerning T cell activation in vitro, as well as the effect on responses to protein antigen and collagen-induced arthritis in vivo. In vitro activation of naive CD4(+) T lymphocytes by anti-CD3 and anti-CD28 was inhibited more effectively by the p110δ inhibitor than by the p110α inhibitor as measured by cytokine secretion (IL-2, IL-10, and IFN-γ), T-bet expression and NFAT activation. In activated CD4(+) T cells re-stimulated through CD3 and ICOS, IC87114 inhibited Akt and Erk activation, and the secretion of IL-2, IL-4, IL-17A, and IFN-γ better than A66. The p110α/δ inhibitor ETP-46321, or p110α plus p110δ inhibitors also inhibited IL-21 secretion by differentiated CD4(+) T follicular (Tfh) or IL-17-producing (Th17) helper cells. In vivo, therapeutic administration of ETP-46321 significantly inhibited responses to protein antigen as well as collagen-induced arthritis, as measured by antigen-specific antibody responses, secretion of IL-10, IL-17A or IFN-γ, or clinical symptoms. Hence, p110α as well as p110δ Class IA PI3Ks are important to immune regulation; inhibition of both subunits may be an effective therapeutic approach in inflammatory autoimmune diseases like rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Role of phosphoinositide 3-OH kinase p110β in skeletal myogenesis.

    PubMed

    Matheny, Ronald W; Riddle-Kottke, Melissa A; Leandry, Luis A; Lynch, Christine M; Abdalla, Mary N; Geddis, Alyssa V; Piper, David R; Zhao, Jean J

    2015-04-01

    Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit β (p110β) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110β delayed differentiation. We next generated mice with conditional deletion of p110β in skeletal muscle (p110β muscle knockout [p110β-mKO] mice). While young p110β-mKO mice possessed a lower quadriceps mass and exhibited less strength than control littermates, no differences in muscle mass or strength were observed between genotypes in old mice. However, old p110β-mKO mice were less glucose tolerant than old control mice. Overexpression of p110β accelerated differentiation in C2C12 cells and primary human myoblasts through an Akt-dependent mechanism, while expression of kinase-inactive p110β had the opposite effect. p110β overexpression was unable to promote myoblast differentiation under conditions of p110α inhibition, but expression of p110α was able to promote differentiation under conditions of p110β inhibition. These findings reveal a role for p110β during myogenesis and demonstrate that long-term reduction of skeletal muscle p110β impairs whole-body glucose tolerance without affecting skeletal muscle size or strength in old mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Benefits of gene transduction of granulocyte macrophage colony-stimulating factor in cancer vaccine using genetically modified dendritic cells.

    PubMed

    Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki

    2007-10-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.

  9. Protective effects of granulocyte colony-stimulating factor on endotoxin shock in mice with retrovirus-induced immunodeficiency syndrome.

    PubMed

    Toki, S; Hiromatsu, K; Aoki, Y; Makino, M; Yoshikai, Y

    1997-10-01

    Mice with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) were hypersensitive to lipopolysaccharide (LPS)-induced lethal shock accompanied by marked elevations of systematic interleukin 1beta (IL-beta) and interferon gamma (IFN-gamma) after LPS challenge. Pretreatment with 10 microg of recombinant human granulocyte colony-stimulating factor (rhG-CSF) protected MAIDS mice from hypersensitivity to LPS-induced lethal shock and this protection was concomitant with suppression of IFN-gamma production. Copyright 1997 Academic Press Limited.

  10. Successful treatment of chronic severe neutropenia with weekly recombinant granulocyte-colony stimulating factor.

    PubMed

    Fine, K D; Byrd, T D; Stone, M J

    1997-04-01

    Daily treatment for symptomatic chronic neutropenia with recombinant granulocyte-colony stimulating factor (rhG-CSF) filgrastim is costly and sometimes causes neutrophillia. We report the use of weekly filgrastim in a 40-year-old man with life-long symptomatic neutropenia. Baseline neutrophil counts were < 1 x 10(9)/l 60% of the time, and fell below 0.5 x 10(9)/l for 7d periods every 22 d. Following 1 year of weekly filgrastim treatment, the absolute neutrophil count was maintained > 1 x 10(9)/l (averaging 2 x 10(9)/l) and the frequency and severity of symptoms were reduced by 85%. Therefore the benefits of filgrastim for the treatment of at least one form of chronic severe neutropenia can be derived from weekly rather than daily doses.

  11. Neutrophil kinetics of recombinant human granulocyte colony-stimulating factor-induced neutropenia in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Yuji; Kawagishi, Mayumi; Kusaka, Masaru

    Single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) immediately induced a decrease in the number of circulating neutrophils in rats. This neutropenia occurred 10 minutes after the injection but disappeared 40 minutes after injection. This transient neutropenia was dose-dependently induced by rhG-CSF and also induced by repeated injections. We studied the kinetics of circulating neutrophils in transient neutropenia. rhG-CSF markedly decreased the number of {sup 3}H-diisopropylfluorophosphate ({sup 3}H-DFP) labeled neutrophils in the circulation 10 minutes after injection but the labeled neutrophils recovered to near the control level 40 minutes after the injection. These results indicate that the neutrophil marginationmore » accounts for the neutrophenia and the marginated neutrophils return to the circulation.« less

  12. Injury among Stimulant-Treated Youth with ADHD

    ERIC Educational Resources Information Center

    Marcus, Steven C.; Wan, George J.; Zhang, Huabin F.; Olfson, Mark

    2008-01-01

    Objective: To assess risk factors for injury among children and adolescents treated with stimulants for ADHD. Method: An analysis was performed of pharmacy and service claims data from 2000-2003 California Medicaid (Medi-Cal) focusing on children and adolescents ages 6 to 17 years who initiated stimulant therapy for ADHD. Bivariate and…

  13. Associations Between Pre-Implant Psychosocial Factors and Spinal Cord Stimulation Outcome: Evaluation Using the MMPI-2-RF.

    PubMed

    Block, Andrew R; Marek, Ryan J; Ben-Porath, Yossef S; Kukal, Deborah

    2017-01-01

    Spinal cord stimulation (SCS) has variable effectiveness in controlling chronic pain. Previous research has demonstrated that psychosocial factors are associated with diminished results of SCS. The objective of this investigation is to examine associations between pre-implant psychological functioning as measured by the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) and SCS outcomes. SCS candidates at two sites (total N = 319) completed the MMPI-2-RF and measures of pain, emotional distress, and functional ability as part of a pre-implant psychological evaluation. At an average of 5 months post-implant, patients completed the measures of pain and emotional distress a second time. Poorer SCS outcomes and poorer patient satisfaction were associated with higher pre-implant MMPI-2-RF scores on scales used to assess emotional dysfunction, somatic/cognitive complaints, and interpersonal problems. Ways through which pre-implant psychological evaluations of spinal cord stimulator candidates can be informed by MMPI-2-RF findings are discussed. © The Author(s) 2015.

  14. Demultiplexer circuit for neural stimulation

    DOEpatents

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  15. Ion channel regulation by phosphoinositides analyzed with VSPs—PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility

    PubMed Central

    Rjasanow, Alexandra; Leitner, Michael G.; Thallmair, Veronika; Halaszovich, Christian R.; Oliver, Dominik

    2015-01-01

    The activity of many proteins depends on the phosphoinositide (PI) content of the membrane. E.g., dynamic changes of the concentration of PI(4,5)P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5)P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids. Voltage-sensitive phosphatases (VSPs) turn over PI(4,5)P2 to PI(4)P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5)P2. Because cellular PI(4,5)P2 is resynthesized rapidly, steady state PI(4,5)P2 changes with the degree of VSP activation and thus depends on membrane potential. Here we show that titration of endogenous PI(4,5)P2 with Ci-VSP allows for the quantification of relative PI(4,5)P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5)P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5)P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5)P2 and PI(4)P was insensitive to VSP. Surprisingly, despite comparable PI(4,5)P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5)P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5)P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5)P2 that differ in their accessibility to PLC and VSPs. PMID

  16. Granulocyte-colony–stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis

    PubMed Central

    Basso, Lilian; Lapointe, Tamia K.; Iftinca, Mircea; Marsters, Candace; Hollenberg, Morley D.; Kurrasch, Deborah M.; Altier, Christophe

    2017-01-01

    Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony–stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF–induced visceral pain in vivo. Finally, administration of G-CSF–neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron–microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain. PMID:28973941

  17. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis.

    PubMed

    Basso, Lilian; Lapointe, Tamia K; Iftinca, Mircea; Marsters, Candace; Hollenberg, Morley D; Kurrasch, Deborah M; Altier, Christophe

    2017-10-17

    Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.

  18. Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model

    PubMed Central

    2013-01-01

    Background Alopecia areata is the hair loss usually reversible, in sharply defined areas. The treatment of alopecia using growth factors shows interesting activity in promoting hair growth. In this concept, VEGF (vascular endothelial growth factor) is a marker of angiogenesis, stimulating hair growth by facilitating the supply of nutrients to the hair follicle, increasing follicular diameter. The aim of this study was the evaluation of a topical gel enriched with VEGF liposomes on the hair growth stimulation and its toxicological aspects. Methods Mesocricetus auratus were randomly divided into three groups. Control group was treated with Aristoflex® gel, 1% group with the same gel but added 1% VEGF and 3% group with 3% VEGF. Biochemical, hematological and histological analyses were done. Results At the end of the experiment (15th day of VEGF treatment) efficacy was determined macroscopically by hair density dermatoscopy analysis, and microscopically by hair diameter analysis. They both demonstrated that hair of the VEGF group increased faster and thicker than control. On the other hand, biochemical and hematological results had shown that VEGF was not 100% inert. Conclusions VEGF increased hair follicle area, but more studies are necessary to confirm its toxicity. PMID:24168457

  19. Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis.

    PubMed

    Anzinger, Joshua J; Chang, Janet; Xu, Qing; Buono, Chiara; Li, Yifu; Leyva, Francisco J; Park, Bum-Chan; Greene, Lois E; Kruth, Howard S

    2010-10-01

    To examine the pinocytotic pathways mediating native low-density lipoprotein (LDL) uptake by human macrophage colony-stimulating factor-differentiated macrophages (the predominant macrophage phenotype in human atherosclerotic plaques). We identified the kinase inhibitor SU6656 and the Rho GTPase inhibitor toxin B as inhibitors of macrophage fluid-phase pinocytosis of LDL. Assessment of macropinocytosis by time-lapse microscopy revealed that both drugs almost completely inhibited macropinocytosis, although LDL uptake and cholesterol accumulation by macrophages were only partially inhibited (approximately 40%) by these agents. Therefore, we investigated the role of micropinocytosis in mediating LDL uptake in macrophages and identified bafilomycin A1 as an additional partial inhibitor (approximately 40%) of macrophage LDL uptake that targeted micropinocytosis. When macrophages were incubated with both bafilomycin A1 and SU6656, inhibition of LDL uptake was additive (reaching 80%), showing that these inhibitors target different pathways. Microscopic analysis of fluid-phase uptake pathways in these macrophages confirmed that LDL uptake occurs through both macropinocytosis and micropinocytosis. Our findings show that human macrophage colony-stimulating factor-differentiated macrophages take up native LDL by macropinocytosis and micropinocytosis, underscoring the importance of both pathways in mediating LDL uptake by these cells.

  20. Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model.

    PubMed

    Gnann, Laís Angelo; Castro, Rafael Ferreira; Azzalis, Ligia Ajaime; Feder, David; Perazzo, Fabio Ferreira; Pereira, Edimar Cristiano; Rosa, Paulo César Pires; Junqueira, Virginia Berlanga Campos; Rocha, Katya Cristina; Machado, Carlos D' Aparecida; Paschoal, Francisco Camargo; de Abreu, Luiz Carlos; Valenti, Vitor Engrácia; Fonseca, Fernando Luiz Affonso

    2013-10-29

    Alopecia areata is the hair loss usually reversible, in sharply defined areas. The treatment of alopecia using growth factors shows interesting activity in promoting hair growth. In this concept, VEGF (vascular endothelial growth factor) is a marker of angiogenesis, stimulating hair growth by facilitating the supply of nutrients to the hair follicle, increasing follicular diameter. The aim of this study was the evaluation of a topical gel enriched with VEGF liposomes on the hair growth stimulation and its toxicological aspects. Mesocricetus auratus were randomly divided into three groups. Control group was treated with Aristoflex® gel, 1% group with the same gel but added 1% VEGF and 3% group with 3% VEGF. Biochemical, hematological and histological analyses were done. At the end of the experiment (15th day of VEGF treatment) efficacy was determined macroscopically by hair density dermatoscopy analysis, and microscopically by hair diameter analysis. They both demonstrated that hair of the VEGF group increased faster and thicker than control. On the other hand, biochemical and hematological results had shown that VEGF was not 100% inert. VEGF increased hair follicle area, but more studies are necessary to confirm its toxicity.

  1. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: Role of tumor necrosis factor alpha and apoptosis

    PubMed Central

    Woller, Sarah A.; Huie, J. Russell; Hartman, John J.; Hook, Michelle A.; Miranda, Rajesh C.; Huang, Yung-Jen; Ferguson, Adam R.; Grau, James W.

    2014-01-01

    We previously showed that peripheral noxious input after spinal cord injury (SCI) inhibits beneficial spinal plasticity and impairs recovery of locomotor and bladder functions. These observations suggest that noxious input may similarly affect the development and maintenance of chronic neuropathic pain, an important consequence of SCI. In adult rats with a moderate contusion SCI, we investigated the effect of noxious tail stimulation, administered one day after SCI, on mechanical withdrawal responses to von Frey stimuli from 1 to 28 days, post-treatment. In addition, because the pro-inflammatory cytokine tumor necrosis factor α (TNFα) is implicated in numerous injury-induced processes including pain hypersensitivity, we assessed the temporal and spatial expression of TNFα, TNF receptors, and several downstream signaling targets after stimulation. Our results showed that unlike sham surgery or SCI only, nociceptive stimulation following SCI induced mechanical sensitivity by 24 hours. These behavioral changes were accompanied by increased expression of TNFα. Cellular assessments of downstream targets of TNFα revealed that nociceptive stimulation increased the expression of caspase 8 and the active subunit (12 kDa) of caspase 3 at a time point consistent with the onset of mechanical allodynia, indicative of active apoptosis. In addition, immunohistochemical analysis revealed distinct morphological signs of apoptosis in neurons and microglia at 24 hours post-stimulation. Interestingly, expression of the inflammatory mediator NFκB was unaltered by nociceptive stimulation. These results suggest that noxious input caudal to the level of SCI can increase the onset and expression of behavioral responses indicative of pain, potentially involving TNFα signaling. PMID:25180012

  2. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases. PMID:26018563

  3. Down-Regulation by Resveratrol of Basic Fibroblast Growth Factor-Stimulated Osteoprotegerin Synthesis through Suppression of Akt in Osteoblasts

    PubMed Central

    Kuroyanagi, Gen; Otsuka, Takanobu; Yamamoto, Naohiro; Matsushima-Nishiwaki, Rie; Nakakami, Akira; Mizutani, Jun; Kozawa, Osamu; Tokuda, Haruhiko

    2014-01-01

    It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation. PMID:25290095

  4. Identification of a Potent Phosphoinositide 3-Kinase Pan Inhibitor Displaying a Strategic Carboxylic Acid Group and Development of Its Prodrugs.

    PubMed

    Pirali, Tracey; Ciraolo, Elisa; Aprile, Silvio; Massarotti, Alberto; Berndt, Alex; Griglio, Alessia; Serafini, Marta; Mercalli, Valentina; Landoni, Clarissa; Campa, Carlo Cosimo; Margaria, Jean Piero; Silva, Rangel L; Grosa, Giorgio; Sorba, Giovanni; Williams, Roger; Hirsch, Emilio; Tron, Gian Cesare

    2017-09-21

    Activation of the phosphoinositide 3-kinase (PI3K) pathway is a key signaling event in cancer, inflammation, and other proliferative diseases. PI3K inhibitors are already approved for some specific clinical indications, but their systemic on-target toxicity limits their larger use. In particular, whereas toxicity is tolerable in acute treatment of life-threatening diseases, this is less acceptable in chronic conditions. In the past, the strategy to overcome this drawback was to block selected isoforms mainly expressed in leukocytes, but redundancy within the PI3K family members challenges the effectiveness of this approach. On the other hand, decreasing exposure to selected target cells represents a so-far unexplored alternative to circumvent systemic toxicity. In this manuscript, we describe the generation of a library of triazolylquinolones and the development of the first prodrug pan-PI3K inhibitor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    PubMed Central

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre–electrical vagus nerve stimulation = 1033 ± 210 s versus post–electrical vagus nerve stimulation = 585 ± 111 s; P < 0.05) and total blood loss (pre–electrical vagus nerve stimulation = 48.4 ± 6.8 mL versus post–electrical vagus nerve stimulation = 26.3 ± 6.7 mL; P < 0.05). Reduced bleeding time after vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity. PMID:19953009

  6. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation

    PubMed Central

    Tillu, Vikas A.; Kovtun, Oleksiy; McMahon, Kerrie-Ann; Collins, Brett M.; Parton, Robert G.

    2015-01-01

    Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae. PMID:26269585

  7. Tyrosol Suppresses Allergic Inflammation by Inhibiting the Activation of Phosphoinositide 3-Kinase in Mast Cells.

    PubMed

    Je, In-Gyu; Kim, Duk-Sil; Kim, Sung-Wan; Lee, Soyoung; Lee, Hyun-Shik; Park, Eui Kyun; Khang, Dongwoo; Kim, Sang-Hyun

    2015-01-01

    Allergic diseases such as atopic dermatitis, rhinitis, asthma, and anaphylaxis are attractive research areas. Tyrosol (2-(4-hydroxyphenyl)ethanol) is a polyphenolic compound with diverse biological activities. In this study, we investigated whether tyrosol has anti-allergic inflammatory effects. Ovalbumin-induced active systemic anaphylaxis and immunoglobulin E-mediated passive cutaneous anaphylaxis models were used for the immediate-type allergic responses. Oral administration of tyrosol reduced the allergic symptoms of hypothermia and pigmentation in both animal models. Mast cells that secrete allergic mediators are key regulators on allergic inflammation. Tyrosol dose-dependently decreased mast cell degranulation and expression of inflammatory cytokines. Intracellular calcium levels and activation of inhibitor of κB kinase (IKK) regulate cytokine expression and degranulation. Tyrosol blocked calcium influx and phosphorylation of the IKK complex. To define the molecular target for tyrosol, various signaling proteins involved in mast cell activation such as Lyn, Syk, phosphoinositide 3-kinase (PI3K), and Akt were examined. Our results showed that PI3K could be a molecular target for tyrosol in mast cells. Taken together, these findings indicated that tyrosol has anti-allergic inflammatory effects by inhibiting the degranulation of mast cells and expression of inflammatory cytokines; these effects are mediated via PI3K. Therefore, we expect tyrosol become a potential therapeutic candidate for allergic inflammatory disorders.

  8. Effect of soluble factors derived from oral cancer cells on the production of interferon-γ from peripheral blood mononuclear cells following stimulation with OK-432.

    PubMed

    Ohe, Go; Sasai, Akiko; Uchida, Daisuke; Tamatani, Tetsuya; Nagai, Hirokazu; Miyamoto, Youji

    2013-08-01

    The streptococcal antitumor agent OK-432 is commonly used as an immunopotentiator for immunotherapy in various types of malignant tumors including oral cancer. It has been demonstrated that OK-432 elicits an antitumor effect by stimulating immunocompetent cells, thereby inducing multiple cytokines including interferon (IFN)-γ, interleukin (IL)-2 and IL-12. Serum concentrations of IFN-γ in patients with oral cancer were examined 24 h after administration of OK-432. Serum concentrations of IFN-γ in patients with advanced cancer were significantly lower than those in patients with early cancer. These results suggested that some soluble factors produced by cancer cells may inhibit IFN-γ production with OK-432. Thus, in the present study, an in vitro simulation model was established for the immune status of patients with oral cancer by adding conditioned medium (CM) derived from oral cancer cell lines into a culture of peripheral blood mononuclear cells (PBMCs) derived from a healthy volunteer. We investigated whether soluble factors derived from oral cancer cells affected IFN-γ production from PBMCs following stimulation with OK-432. PBMCs stimulated with OK-432 produced a large amount of IFN-γ; however, both IFN-γ production and cytotoxic activity from PBMCs induced by OK-432 were inhibited by the addition of CM in a dose-dependent manner. In order to examine these inhibitory effects against IFN-γ production, the contribution of inhibitory cytokines such as IL-4, IL-6, IL-10, transforming growth factor-β and vascular endothelial growth factor was investigated. However, neutralization of these inhibitory cytokines did not recover IFN-γ production inhibited by CM. These results indicated that unknown molecules may inhibit IFN-γ production from PBMCs following stimulation with OK-432.

  9. Cell Autonomous Phosphoinositide 3-Kinase Activation in Oocytes Disrupts Normal Ovarian Function Through Promoting Survival and Overgrowth of Ovarian Follicles

    PubMed Central

    Ebbert, Katherine; Cordeiro, Marilia H.; Romero, Megan; Zhu, Jie; Serna, Vanida Ann; Whelan, Kelly A.; Woodruff, Teresa K.

    2015-01-01

    In this study, we explored the effects of oocytic phosphoinositide 3-kinase (PI3K) activation on folliculogensis by generating transgenic mice, in which the oocyte-specific Cre-recombinase induces the expression of constitutively active mutant PI3K during the formation of primordial follicles. The ovaries of neonatal transgenic (Cre+) mice showed significantly reduced apoptosis in follicles, which resulted in an excess number of follicles per ovary. Thus, the elevation of phosphatidylinositol (3,4,5)-trisphosphate levels within oocytes promotes the survival of follicles during neonatal development. Despite the increase in AKT phosphorylation, primordial follicles in neonatal Cre+ mice remained dormant demonstrating a nuclear accumulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These primordial follicles containing a high level of nuclear PTEN persisted in postpubertal females, suggesting that PTEN is the dominant factor in the maintenance of female reproductive lifespan through the regulation of primordial follicle recruitment. Although the oocytic PI3K activity and PTEN levels were elevated, the activation of primordial follicles and the subsequent accumulation of antral follicles with developmentally competent oocytes progressed normally in prepubertal Cre+ mice. However, mature Cre+ female mice were anovulatory. Because postnatal day 50 Cre+ mice released cumulus-oocyte complexes with developmentally competent oocytes in response to super-ovulation treatment, the anovulatory phenotype was not due to follicular defects but rather endocrine abnormalities, which were likely caused by the excess number of overgrown follicles. Our current study has elucidated the critical role of oocytic PI3K activity in follicular function, as well as the presence of a PTEN-mediated mechanism in the prevention of immature follicle activation. PMID:25594701

  10. Identification of a Potent Phosphoinositide 3‐Kinase Pan Inhibitor Displaying a Strategic Carboxylic Acid Group and Development of Its Prodrugs

    PubMed Central

    Pirali, Tracey; Ciraolo, Elisa; Aprile, Silvio; Massarotti, Alberto; Berndt, Alex; Griglio, Alessia; Serafini, Marta; Mercalli, Valentina; Landoni, Clarissa; Campa, Carlo Cosimo; Margaria, Jean Piero; Silva, Rangel L.; Grosa, Giorgio; Sorba, Giovanni; Williams, Roger

    2017-01-01

    Abstract Activation of the phosphoinositide 3‐kinase (PI3K) pathway is a key signaling event in cancer, inflammation, and other proliferative diseases. PI3K inhibitors are already approved for some specific clinical indications, but their systemic on‐target toxicity limits their larger use. In particular, whereas toxicity is tolerable in acute treatment of life‐threatening diseases, this is less acceptable in chronic conditions. In the past, the strategy to overcome this drawback was to block selected isoforms mainly expressed in leukocytes, but redundancy within the PI3K family members challenges the effectiveness of this approach. On the other hand, decreasing exposure to selected target cells represents a so‐far unexplored alternative to circumvent systemic toxicity. In this manuscript, we describe the generation of a library of triazolylquinolones and the development of the first prodrug pan‐PI3K inhibitor. PMID:28857471

  11. Phosphatidylcholine hydrolysis and c-myc expression are in collaborating mitogenic pathways activated by colony-stimulating factor 1.

    PubMed

    Xu, X X; Tessner, T G; Rock, C O; Jackowski, S

    1993-03-01

    Stimulation of diglyceride production via phospholipase C (PLC) hydrolysis of phosphatidylcholine was an early event in the mitogenic action of colony-stimulating factor 1 (CSF-1) in the murine macrophage cell line BAC1.2F5 and was followed by a second phase of diglyceride production that persisted throughout the G1 phase of the cell cycle. Addition of phosphatidylcholine-specific PLC (PC-PLC) from Bacillus cereus to the medium of quiescent cells raised the intracellular diglyceride concentration and stimulated [3H]thymidine incorporation, although PC-PLC did not support continuous proliferation. PC-PLC treatment did not induce tyrosine phosphorylation or turnover of the CSF-1 receptor. The major protein kinase C (PKC) isotype in BAC1.2F5 cells was PKC-delta. Diglyceride production from PC-PLC did not target PKC-delta, since unlike phorbol esters, PC-PLC treatment neither decreased the electrophoretic mobility of PKC-delta nor increased the amount of GTP bound to Ras, and PC-PLC was mitogenically active in BAC1.2F5 cells in which PKC-delta was downregulated by prolonged treatment with phorbol ester. PC-PLC mimicked CSF-1 action by elevating c-fos and junB mRNAs to 40% of the level induced by CSF-1; however, PC-PLC induced c-myc mRNA to only 5% of the level in CSF-1-stimulated cells. PC-PLC addition to CSF-1-dependent BAC1.2F5 clones that constitutively express c-myc increased [3H]thymidine incorporation to 86% of the level evoked by CSF-1 and supported slow growth in the absence of CSF-1. Therefore, PC-PLC is a component of a signal transduction pathway leading to transcription of c-fos and junB that collaborates with c-myc and is independent of PKC-delta and Ras activation.

  12. Effects of granulocyte-macrophage colony-stimulating factor and interleukin 6 on the growth of leukemic blasts in suspension culture.

    PubMed

    Tsao, C J; Cheng, T Y; Chang, S L; Su, W J; Tseng, J Y

    1992-05-01

    We examined the stimulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL)-6 on the in vitro proliferation of leukemic blast cells from patients with acute leukemia. Bone marrow or peripheral blood leukemic blast cells were obtained from 21 patients, including 14 cases of acute myeloblastic leukemia (AML), four cases of acute lymphoblastic leukemia (ALL), two cases of acute undifferentiated leukemia, and one case of acute mixed-lineage leukemia. The proliferation of leukemic blast cells was evaluated by measuring the incorporation of 3H-thymidine into cells incubated with various concentrations of cytokines for 3 days. GM-CSF stimulated the DNA synthesis (with greater than 2.0 stimulation index) of blast cells in 9 of 14 (64%) AML cases, two cases of acute undifferentiated leukemia and one case of acute mixed-lineage leukemia. Only two cases of AML blasts responded to IL-6 to grow in the short-term suspension cultures. GM-CSF and IL-6 did not display a synergistic effect on the growth of leukemic cells. Moreover, GM-CSF and IL-6 did not stimulate the proliferation of ALL blast cells. Binding study also revealed the specific binding of GM-CSF on the blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia. Our results indicated that leukemic blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia possessed functional GM-CSF receptors.

  13. Staurosporine potentiates platelet activating factor stimulated phospholipase C activity in rabbit platelets but does not block desensitization by platelet activating factor.

    PubMed

    Morrison, W J; Dhar, A; Shukla, S D

    1989-01-01

    The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF (100 nM for 5 seconds) stimulated incorporation of 32P into proteins and caused [3H]InsP3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [3H]InsP3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [3H]InsP3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF.

  14. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    PubMed

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  15. Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Han, Joo-Hui; Kim, Yohan; Jung, Sang-Hyuk; Lee, Jung-Jin; Park, Hyun-Soo; Song, Gyu-Yong; Cuong, Nguyen Manh; Kim, Young Ho

    2015-01-01

    The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through G0/G1 to S phase of the cell cycle, as measured by [3H]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at G0/G1 phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis. PMID:26330754

  16. Neuroendocrine factors affecting the glycogen metabolism of purified Mytilus edulis glycogen cells: partial characterization of the putative glycogen mobilization hormone--demonstration of a factor that stimulates glycogen synthesis.

    PubMed

    Robbins, I; Lenoir, F; Mathieu, M

    1991-04-01

    A putative glycogen mobilizing hormone (GMH) from the marine mussel Mytilus edulis L. has been partially characterized. GMH activity is present in the cerebral ganglia and the hemolymph serum and promotes the mobilization of glycogen in isolated glycogen cells. The cerebral GMH is trypsin sensitive and partially heat labile and has an apparent molecular mass of greater than 20 kDa. Following fractionation of cerebral extracts by molecular mass, a second factor, with a molecular mass of ca. 1.5 kDa, was discovered. This factor stimulates post-incubation incorporation of 14C into glycogen in isolated glycogen cells.

  17. Exogenous ciliary neurotrophic factor (CNTF) reduces synaptic depression during repetitive stimulation.

    PubMed

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Priego, Mercedes; Obis, Teresa; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2012-09-01

    It has been shown that ciliary neurotrophic factor (CNTF) has trophic and maintenance effects on several types of peripheral and central neurons, glia, and cells outside the nervous system. Both CNTF and its receptor, CNTF-Rα, are expressed in the muscle. We use confocal immunocytochemistry to show that the trophic cytokine and its receptor are present in the pre- and post-synaptic sites of the neuromuscular junctions (NMJs). Applied CNTF (7.5-200 ng/ml, 60 min-3 h) does not acutely affect spontaneous potentials (size or frequency) or quantal content of the evoked acetylcholine release from post-natal (in weak or strong axonal inputs on dually innervated end plates or in the most mature singly innervated synapses at P6) or adult (P30) NMJ of Levator auris longus muscle of the mice. However, CNTF reduces roughly 50% the depression produced by repetitive stimulation (40 Hz, 2 min) on the adult NMJs. Our findings indicate that, unlike neurotrophins, exogenous CNTF does not acutely modulate transmitter release locally at the mammalian neuromuscular synapse but can protect mature end plates from activity-induced synaptic depression. © 2012 Peripheral Nerve Society.

  18. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor.

    PubMed Central

    Reedijk, M; Liu, X Q; Pawson, T

    1990-01-01

    The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781

  19. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization.

    PubMed

    Vanz, Ana Ls; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-04-04

    Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The

  20. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large

  1. Anhedonia and Amotivation in Psychiatric Outpatients with Fully Remitted Stimulant Use Disorder

    PubMed Central

    Leventhal, Adam M.; Kahler, Christopher W.; Ray, Lara A.; Stone, Kristen; Young, Diane; Chelminski, Iwona; Zimmerman, Mark

    2009-01-01

    This study evaluated whether psychiatric outpatients with a past stimulant use disorder in full remission for ≥ 2 months (STIM+, n = 204) and those with no history of stimulant use disorder (STIM−, n = 2070) differed in the prevalence of current anhedonia and amotivation. Results showed that a significantly greater proportion of STIM+ participants reported anhedonia and amotivation than STIM− participants. The relation between stimulant use disorder history and anhedonia remained robust after controlling for other relevant clinical and demographic factors. These findings suggest that anhedonia may be a preexisting risk factor or protracted effect of stimulant misuse. PMID:18463999

  2. Anhedonia and amotivation in psychiatric outpatients with fully remitted stimulant use disorder.

    PubMed

    Leventhal, Adam M; Kahler, Christopher W; Ray, Lara A; Stone, Kristen; Young, Diane; Chelminski, Iwona; Zimmerman, Mark

    2008-01-01

    This study evaluated whether psychiatric outpatients with a past stimulant use disorder in full remission for >/= 2 months (STIM+, n = 204) and those with no history of stimulant use disorder (STIM-, n = 2070) differed in the prevalence of current anhedonia and amotivation. Results showed that a significantly greater proportion of STIM+ participants reported anhedonia and amotivation than STIM- participants. The relation between stimulant use disorder history and anhedonia remained robust after controlling for other relevant clinical and demographic factors. These findings suggest that anhedonia may be a preexisting risk factor or protracted effect of stimulant misuse.

  3. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex

    PubMed Central

    Tamada, Taro; Honjo, Eijiro; Maeda, Yoshitake; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota

    2006-01-01

    A crystal structure of the signaling complex between human granulocyte colony-stimulating factor (GCSF) and a ligand binding region of GCSF receptor (GCSF-R), has been determined to 2.8 Å resolution. The GCSF:GCSF-R complex formed a 2:2 stoichiometry by means of a cross-over interaction between the Ig-like domains of GCSF-R and GCSF. The conformation of the complex is quite different from that between human GCSF and the cytokine receptor homologous domain of mouse GCSF-R, but similar to that of the IL-6/gp130 signaling complex. The Ig-like domain cross-over structure necessary for GCSF-R activation is consistent with previously reported thermodynamic and mutational analyses. PMID:16492764

  4. Therapeutic trial of granulocyte-colony stimulating factor for dilated cardiomyopathy in three dogs.

    PubMed

    Park, Chul; Yoo, Jong-Hyun; Jeon, Hyo-Won; Kang, Byeong-Teck; Kim, Jung-Hyun; Jung, Dong-In; Lim, Chae-Young; Lee, Hye-Jung; Hahm, Dae-Hyun; Woo, Eung-Je; Park, Hee-Myung

    2007-09-01

    Three dogs were presented to us for evaluation of cardiac problems. Electrocardiographic recordings revealed severe tachyarrhythmia and atrial fibrillation with ventricular tachycardia in 2 of the 3 dogs. The echocardiographic findings of the 3 dogs revealed markedly decreased fractional shortening and a marked increase in E-point septal separation. Based on the results of electrocardiographic and echocardiographic evaluation, the 3 dogs were diagnosed as dilated cardiomyopathy (DCM). The dogs were treated with conventional cardiac medication, but cardiac function did not improve and the clinical signs remained. We subsequently attempted treatment with granulocyte-colony stimulating factor (G-CSF; 10 microg/kg, subcutaneously). The specific purpose of G-CSF therapy for DCM was to improve cardiac function and a significant improvement in cardiac function was confirmed. The three dogs had no treatment side effects. This case report suggests that G-CSF might have therapeutic effects for medically refractory DCM in dogs.

  5. Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector.

    PubMed

    Miyafusa, Takamitsu; Shibuya, Risa; Honda, Shinya

    2018-06-02

    Backbone circularization is a powerful approach for enhancing the structural stability of polypeptides. Herein, we present the crystal structure of the circularized variant of the granulocyte colony-stimulating factor (G-CSF) in which the terminal helical region was circularized using a short, two-amino acid connector. The structure revealed that the N- and C-termini were indeed connected by a peptide bond. The local structure of the C-terminal region transited from an α helix to 3 10 helix with a bend close to the N-terminal region, indicating that the structural change offset the insufficient length of the connector. This is the first-ever report of a crystal structure of the backbone of a circularized protein. It will facilitate the development of backbone circularization methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Inhibitory effect of morphine on granulocyte stimulation by tumor necrosis factor and substance P.

    PubMed

    Stefano, G B; Kushnerik, V; Rodriquez, M; Bilfinger, T V

    1994-04-01

    We demonstrate that morphine, at higher concentrations than that effective in the inhibition of spontaneously active cells, can antagonize stimulation of human granulocytes by tumor necrosis factor (TNF) or substance P. The antagonistic effect appears to occur indirectly by way of downregulation of the cells' responsiveness to these stimulatory substances. We have previously shown that neutral endopeptidase 24.11 (NEP) is an important enzyme in neuro- and autoimmunoregulation of both vertebrates and invertebrates, and that activation of human granulocytes by monokines and neuropeptides results in regulation of NEP. Exposure of intact human granulocytes to morphine increases NEP by a naloxone-sensitive mechanism. The increased expression of NEP downregulates the stimulatory effect of substance P and TNF. In the case of substance P, we demonstrate the significance of NEP in modulating the process of downregulation by use of a specific NEP inhibitor, phosphoramidon. These results indicate that morphine is a significant factor in downregulating immunocyte responsiveness to NEP substrates and also to those signal molecules (i.e. cytokines) not metabolized by it. In summary, we infer that opiates may be endogenous signal molecules, a status that appears to be amply supported by their immunosuppressive actions.

  7. Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell-cell interaction with activated cells.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji

    2014-10-01

    Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Acute molecular response of mouse hindlimb muscles to chronic stimulation.

    PubMed

    LaFramboise, W A; Jayaraman, R C; Bombach, K L; Ankrapp, D P; Krill-Burger, J M; Sciulli, C M; Petrosko, P; Wiseman, R W

    2009-09-01

    Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 +/- 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T(3) and I, alpha-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1beta/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -beta, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1alpha) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A(2), B(2), C, and E(1) and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within

  9. Expression of granulocyte colony-stimulating factor receptor correlates with prognosis in oral and mesopharyngeal carcinoma.

    PubMed

    Tsuzuki, H; Fujieda, S; Sunaga, H; Noda, I; Saito, H

    1998-02-15

    Granulocyte colony-stimulating factor receptors (G-CSFRs) have been observed on the surface of not only hematopoietic cells but also several cancer cells. The stimulation of G-CSF has been demonstrated to induce proliferation and activation of G-CSFR-positive cells. In this study, we investigated the expression of G-CSFR on the surface of tumor cells and G-CSF production in oral and mesopharyngeal squamous cell carcinoma (SCC) by an immunohistochemical approach. Of 58 oral and mesopharyngeal SCCs, 31 cases (53.4%) and 36 cases (62.1%) were positive for G-CSFR and G-CSF, respectively. There was no association between G-CSFR expression and G-CSF staining. In the group positive for G-CSFR expression, relapse was significantly more likely after primary treatment (P = 0.0069), whereas there was no association between G-CSFR expression and age, sex, tumor size, lymph node metastasis, and clinical stage. Also, the G-CSFR-positive groups had a significantly lower disease-free and overall survival rate than the G-CSFR-negative groups (P = 0.0172 and 0.0188, respectively). However, none of the clinical markers correlated significantly with G-CSF staining, nor did the status of G-CSF production influence the overall survival. The results imply that assessment of G-CSFR may prove valuable in selecting patients with oral and mesopharyngeal SCC for aggressive therapy.

  10. Hematologic improvement in dogs with parvovirus infection treated with recombinant canine granulocyte-colony stimulating factor.

    PubMed

    Duffy, A; Dow, S; Ogilvie, G; Rao, S; Hackett, T

    2010-08-01

    Previously, dogs with canine parvovirus-induced neutropenia have not responded to treatment with recombinant human granulocyte-colony stimulating factor (rhG-CSF). However, recombinant canine G-CSF (rcG-CSF) has not been previously evaluated for treatment of parvovirus-induced neutropenia in dogs. We assessed the effectiveness of rcG-CSF in dogs with parvovirus-induced neutropenia with a prospective, open-label, nonrandomized clinical trial. Endpoints of our study were time to recovery of WBC and neutrophil counts, and duration of hospitalization. 28 dogs with parvovirus and neutropenia were treated with rcG-CSF and outcomes were compared to those of 34 dogs with parvovirus and neutropenia not treated with rcG-CSF. We found that mean WBC and neutrophil counts were significantly higher (P < 0.05) in the 28 dogs treated with rcG-CSF compared to disease-matched dogs not treated with rcG-CSF. In addition, the mean duration of hospitalization was reduced (P = 0.01) in rcG-CSF treated dogs compared to untreated dogs. However, survival times were decreased in dogs treated with rcG-CSF compared to untreated dogs. These results suggest that treatment with rcG-CSF was effective in stimulating neutrophil recovery and shortening the duration of hospitalization in dogs with parvovirus infection, but indicate the need for additional studies to evaluate overall safety of the treatment.

  11. Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Arafa, El-Shaimaa A; Zhu, Qianzheng; Barakat, Bassant M; Wani, Gulzar; Zhao, Qun; El-Mahdy, Mohamed A; Wani, Altaf A

    2009-12-01

    Combination of innocuous dietary components with anticancer drugs is an emerging new strategy for cancer chemotherapy to increase antitumor responses. Tangeretin is a citrus flavonoid known to inhibit cancer cell proliferation. Here, we show an enhanced response of A2780/CP70 and 2008/C13 cisplatin-resistant human ovarian cancer cells to various combination treatments of cisplatin and tangeretin. Pretreatment of cells with tangeretin before cisplatin treatment synergistically inhibited cancer cell proliferation. This combination was effective in activating apoptosis via caspase cascade as well as arresting cell cycle at G(2)-M phase. Moreover, phospho-Akt and its downstream substrates, e.g., NF-kappaB, phospho-GSK-3beta, and phospho-BAD, were downregulated upon tangeretin-cisplatin treatment. The tangeretin-cisplatin-induced apoptosis in A2780/CP70 cells was increased by phosphoinositide-3 kinase (PI3K) inhibition and siRNA-mediated Akt silencing, but reduced by overexpression of constitutively activated Akt and GSK-3beta inhibition. The overall results indicated that tangeretin exposure preconditions cisplatin-resistant human ovarian cancer cells for a conventional response to low-dose cisplatin-induced cell death occurring through downregulation of PI3K/Akt signaling pathway. Thus, effectiveness of tangeretin combinations, as a promising modality in the treatment of resistant cancers, warrants systematic clinical studies.

  12. Transcription factor specificity protein 1 modulates TGFβ1/Smad signaling to negatively regulate SIGIRR expression by human M1 macrophages stimulated with substance P.

    PubMed

    Yamaguchi, Rui; Sakamoto, Arisa; Yamaguchi, Reona; Haraguchi, Misa; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2018-08-01

    The stimuli inducing expression of single immunoglobulin IL-1-related receptor (SIGIRR) and the relevant regulatory mechanisms are not well defined. Transforming growth factor β1 (TGFβ1) delays internalization of neurokinin-1 receptor (NK1R) and subsequently enhances cellular signaling. This study investigated the effect of TGFβ1 on SIGIRR protein production by human M1 macrophages in response to stimulation with substance P (SP). SP caused upregulation of SIGIRR expression in a concentration-dependent manner, whereas aprepitant (an NK1R inhibitor) blunted this response. Silencing p38γMAPK or TAK-1 partially attenuated the response to SP stimulation, while TGFβ1/2/3 siRNA dramatically diminished it. SP induced much greater SIGIRR protein production than either lipopolysaccharide (a TLR4 agonist) or resiquimod (a TLR7/8 agonist). Unexpectedly, silencing of transcription factor specificity protein 1 (Sp1) led to significant upregulation of SIGIRR expression after SP stimulation, while KLF2 siRNA only partially enhanced it and Fli-1 siRNA reduced it. SP also upregulated TGFβ1 expression, along with a corresponding increase of SIGIRR protein, whereas silencing TGFβ1/2/3 blunted these responses. Sp1 siRNA or mithramycin (a gene-selective Sp1 inhibitor) significantly enhanced the expression of TGFβ1 and SIGIRR by macrophages after SP stimulation. Importantly, this effect of Sp1 siRNA on TGFβ1 and SIGIRR was blunted by siRNA for Smad2, Smad3, or Smad4, but not by TAK-1 siRNA. Next, we investigated the influence of transcription factor cross-talk on SIGIRR expression in response to SP. Co-transfection of macrophages with Sp1 siRNA and C/EBPβ or TIF1β siRNA attenuated the upregulation of SIGIRR by SP, while a combination of Sp1 siRNA and Fli-1 siRNA dramatically diminished it. In conclusion, TGFβ1 may be an intermediary between SP/NK1R activation and SIGIRR expression in Sp1 siRNA-transfected macrophages. In addition, Sp1 modulates TGFβ1/Smad signaling and

  13. Involvement of purines and phosphoinositides in spontaneous and progesterone-induced nuclear maturation of Bufo arenarum oocytes.

    PubMed

    Zelarayán, L; Oterino, J; Sánchez Toranzo, G; Bühler, M I

    2000-07-01

    Although progesterone is the established maturation inducer in amphibia, it has been demonstrated that Bufo arenarum oocytes resume meiosis with no need of an exogenous hormonal stimulus if deprived of their enveloping follicle cells, a phenomenon called "spontaneous maturation." The present studies were designed to evaluate the participation of purines and phosphoinositides in the spontaneous and progesterone-induced maturation in Bufo arenarum full-grown oocytes. The presented data demonstrate that high intracellular levels of purines such as cAMP or guanosine can inhibit both spontaneous and progesterone-induced maturation in full-grown denuded Bufo arenarum oocytes. Moreover, the fact that the mycophenolic acid was able to induce maturation in denuded oocytes obtained during the nonreproductive period in a manner similar to that of the progesterone and also to increase the percentages of spontaneous maturation suggests that in Bufo arenarum, inosine monophosphate dehydrogenase inhibition is an important step in the resumption of meiosis. Inhibition of the phosphatidylinositol 4,5 bisphosphate hydrolysis by treatment of denuded oocytes with neomycin totally blocks spontaneous and progesterone-induced maturation, suggesting that the products of this hydrolysis (1,2 diacylglycerol and inositol 1,4,5 trisphosphate) may be involved in the maturation process of Bufo. In addition, our results indicate that the activation of protein kinase C is also involved in both types of maturation.

  14. Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review.

    PubMed

    Singh, Vijay K; Newman, Victoria L; Seed, Thomas M

    2015-01-01

    One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims.

  15. Cranial electrotherapy stimulation affects mood state but not levels of peripheral neurotrophic factors or hypothalamic- pituitary-adrenal axis regulation.

    PubMed

    Roh, Hee-Tae; So, Wi-Young

    2017-01-01

    Cranial electrotherapy stimulation (CES) is reported to aid in relieving symptoms of depression and anxiety, though the mechanism underlying this effect remains unclear. Therefore, the present study aimed to evaluate changes in the hypothalamic-pituitary-adrenal (HPA) axis response and levels of neurotrophic factors, as well as changes in mood state, in patients undergoing CES therapy. Fifty healthy postmenopausal women were randomly assigned to either a Sham CES group (n = 25) or an Active CES group (n = 25). CES treatment was conducted in 20-minute sessions, three times per week for 8 weeks, using a micro current cranial electrotherapy stimulator. Blood samples were collected prior to and following the 8-week treatment period for measurement of cortisol, adrenocorticotropic hormone (ACTH), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) levels. Changes in mood state were also examined at the time of blood collection using the Profile of Mood States (POMS). No significant differences in cortisol, ACTH, BDNF, or NGF were observed between the two participant groups (p > 0.05) following the treatment period. However, those in the Active CES group exhibited significantly decreased Tension-Anxiety and Depression-Dejection scores on the POMS relative to pre-treatment scores (p < 0.05). Furthermore, Depression-Dejection scores following treatment were significantly lower in the Active CES group than in the Sham CES group (p < 0.05). No significant differences were observed in any other POMS scores such as Anger-Hostility, Vigor-Activity, Fatigue-Inertia, and Confusion-Bewilderment (p > 0.05). These results suggest that 8 weeks of CES treatment does not induce changes in blood levels of neurotrophic factors or HPA-axis-related hormones, though such treatment may be effective in treating symptoms of anxiety and depression.

  16. Macrophage Colony-Stimulating Factor Improves Cardiac Function after Ischemic Injury by Inducing Vascular Endothelial Growth Factor Production and Survival of Cardiomyocytes

    PubMed Central

    Okazaki, Tatsuma; Ebihara, Satoru; Asada, Masanori; Yamanda, Shinsuke; Saijo, Yoshifumi; Shiraishi, Yasuyuki; Ebihara, Takae; Niu, Kaijun; Mei, He; Arai, Hiroyuki; Yambe, Tomoyuki

    2007-01-01

    Macrophage colony-stimulating factor (M-CSF), known as a hematopoietic growth factor, induces vascular endothelial growth factor (VEGF) production from skeletal muscles. However, the effects of M-CSF on cardiomyocytes have not been reported. Here, we show M-CSF increases VEGF production from cardiomyocytes, protects cardiomyocytes and myotubes from cell death, and improves cardiac function after ischemic injury. In mice, M-CSF increased VEGF production in hearts and in freshly isolated cardiomyocytes, which showed M-CSF receptor expression. In rat cell line H9c2 cardiomyocytes and myotubes, M-CSF induced VEGF production via the Akt signaling pathway, and M-CSF pretreatment protected these cells from H2O2-induced cell death. M-CSF activated Akt and extracellular signal-regulated kinase signaling pathways and up-regulated downstream anti-apoptotic Bcl-xL expression in these cells. Using goats as a large animal model of myocardial infarction, we found that M-CSF treatment after the onset of myocardial infarction by permanent coronary artery ligation promoted angiogenesis in ischemic hearts but did not reduce the infarct area. M-CSF pretreatment of the goat myocardial infarction model by coronary artery occlusion-reperfusion improved cardiac function, as assessed by hemodynamic parameters and echocardiography. These results suggest M-CSF might be a novel therapeutic agent for ischemic heart disease. PMID:17717142

  17. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix

    PubMed Central

    1989-01-01

    The angiogenic factor, basic fibroblast growth factor (FGF), either stimulates endothelial cell growth or promotes capillary differentiation depending upon the microenvironment in which it acts. Analysis of various in vitro models of spontaneous angiogenesis, in combination with time-lapse cinematography, demonstrated that capillary tube formation was greatly facilitated by promoting multicellular retraction and cell elevation above the surface of the rigid culture dish or by culturing endothelial cells on malleable extracellular matrix (ECM) substrata. These observations suggested to us that mechanical (i.e., tension-dependent) interactions between endothelial cells and ECM may serve to regulate capillary development. To test this hypothesis, FGF-stimulated endothelial cells were grown in chemically defined medium on bacteriological (nonadhesive) dishes that were precoated with different densities of fibronectin. Extensive cell spreading and growth were promoted by fibronectin coating densities that were highly adhesive (greater than 500 ng/cm2), whereas cell rounding, detachment, and loss of viability were observed on dishes coated with low fibronectin concentrations (less than 100 ng/cm2). Intermediate fibronectin coating densities (100-500 ng/cm2) promoted cell extension, but they could not completely resist cell tractional forces. Partial retraction of multicellular aggregates resulted in cell shortening, cessation of growth, and formation of branching tubular networks within 24-48 h. Multicellular retraction and subsequent tube formation also could be elicited on highly adhesive dishes by overcoming the mechanical resistance of the substratum using higher cell plating numbers. Dishes coated with varying concentrations of type IV collagen or gelatin produced similar results. These results suggest that ECM components may act locally to regulate the growth and pattern- regulating actions of soluble FGF based upon their ability to resist cell-generated mechanical

  18. Effect of thyrotropin-releasing factor on serum thyroid-stimulating hormone

    PubMed Central

    Costom, Bruce H.; Grumbach, Melvin M.; Kaplan, Selna L.

    1971-01-01

    To test the hypothesis that the primary defect in some patients with idiopathic hypopituitary dwarfism is failure to secrete hypothalamic hypophysiotropic-releasing factors, synthetic thyrotropin-releasing factor (TRF), 500 μg, wa given intravenously, and timed venous samples obtained for determination of the concentration of plasma TSH by radioimmunoassay in three groups of subjects: (a) 11 patients without evidence of endocrine or systemic disease, (group I) (b) 8 with isolated growth hormone deficiency and normal thyroid function, (group II) and (c) 9 patients with idiopathic hypopituitary dwarfism and thyroid-stimulating hormone (TSH) deficiency (group III). The mean fasting plasma TSH value was 4.1 μU/ml in group I, and 3.9 μU/ml in group II; in both groups there was a brisk rise in plasma TSH to peak levels of 12-45 μU/ml at 30-45 min, and a fall toward base line levels at 120 min. All children in group III had basal TSH levels of < 1.5 μU/ml; one failed to respond to TRF; eight exhibited a rise in plasma TSH with peak values comparable with those in groups I and II. In four of eight children in group III who responded to TRF, the TSH response was delayed and the initial rise in plasma TSH was not detectable until 10-60 min. In these four patients, plasma TSH levels continued to rise at 120 min. The mean fasting concentration of plasma thyroxine iodide (T4) in subjects with normal thyroid function (groups I and II) was 5.6 μg/100 ml, and the mean plasma T4 level at 120 min was 6.6 μg/100 ml. This difference between fasting and postTRF plasma T4 was significant (P < 0.001) by paired analysis. Mean fasting plasma T4 concentration in group III patients was 1.3 μg/100 ml; after TRF a significant rise in T4 concentration was not detected in this group. The results indicate that TRF test is useful in distinguishing between primary hypothalamic and pituitary forms of TSH deficiency. In light of the evidence of TRF deficiency in eight of nine patients with

  19. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically inmore » all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.« less

  20. Prevention of myelosuppression by combined treatment with enterosorbent and granulocyte colony-stimulating factor.

    PubMed

    Shevchuk, O O; Posokhova, К А; Todor, I N; Lukianova, N Yu; Nikolaev, V G; Chekhun, V F

    2015-06-01

    Hematotoxicity and its complication are the prominent limiting factors for rational treatment of malignancies. Granulocyte colony-stimulating factor (G-CSF) is used to increase granulocyte production. It has been shown previously that enterosorption causes prominent myeloprotective activity also. Still, no trial was performed to combine both of them. To study the influence of combination of enterosorption and pharmaceutical analogue of naturally occurring G-CSF (filgrastim) on bone marrow protection and the growth of grafted tumor in a case of injection of melphalan (Mel). Mel injections were used for promotion of bone marrow suppression in rats. Carbon granulated enterosorbent C2 (IEPOR) was used for providing of enteral sorption detoxifying therapy. Filgrastim was used to increase white blood cells (WBC) count. The simultaneous usage of enterosorption and filgrastim had maximum effectiveness for restoring of all types of blood cells. WBC count was higher by 138.3% compared with the Mel group. The increase of platelets count by 98.5% was also observed. In the group (Mel + C2 + filgrastim) the absolute neutrophils count was twofold higher, in comparison with rats of Mel group. Simultaneous administration of G-CSF-analogue and carbonic enterosorbent C2 is a perspective approach for bone marrow protection, when the cytostatic drug melphalan is used. Such combination demonstrates prominent positive impact on restoring of all types of blood cells and had no influence on the antitumor efficacy.

  1. Phosphoinositide 3-kinase/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.

    PubMed

    Lim, Jeong A; Woo, Joo Hong; Kim, Hye Sun

    2008-09-01

    In this study, it was found that undifferentiated myoblasts were more vulnerable to menadione-induced oxidative stress than differentiated myotubes. Cell death occurred with a relatively low concentration of menadione in myoblasts compared to myotubes. With the same concentration of menadione, the Bcl-2/Bax ratio decreased and nuclei containing condensed chromatin were observed in myoblasts to a greater extent than in myotubes. However, myotubes became increasingly susceptible to menadione when phosphoinositide 3-kinase (PI3-K) was blocked by pre-incubation with LY294002, a PI3-K inhibitor. Actually, PI3-K activity was reduced by menadione in myoblasts but not in myotubes. In addition, the phosphorylation of Akt, a downstream effector of PI3-K, was inhibited in myoblasts by menadione but increased in myotubes. Both LY294002 and API-2, an Akt inhibitor, decreased the Bcl-2/Bax ratio in menadione-exposed myotubes. These results suggest that the differential activity of PI3-K/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.

  2. GP88 (PC-Cell Derived Growth Factor, progranulin) stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    PubMed Central

    2011-01-01

    Background Aromatase inhibitors (AI) that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+) breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88), also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer. PMID:21658239

  3. Mechanisms of stimulation of interleukin-1 beta and tumor necrosis factor-alpha by Mycobacterium tuberculosis components.

    PubMed Central

    Zhang, Y; Doerfler, M; Lee, T C; Guillemin, B; Rom, W N

    1993-01-01

    The granulomatous immune response in tuberculosis is characterized by delayed hypersensitivity and is mediated by various cytokines released by the stimulated mononuclear phagocytes, including tumor necrosis factor-alpha (TNF alpha) and IL-1 beta. We have demonstrated that Mycobacterium tuberculosis cell wall component lipoarabinomannan (LAM), mycobacterial heat shock protein-65 kD, and M. tuberculosis culture filtrate, devoid of LPS as assessed by the Amebocyte Lysate assay, stimulate the production of TNF alpha and IL-1 beta proteins and mRNA from mononuclear phagocytes (THP-1 cells). The effect of LAM on the release of these cytokines was specific, as only LAM stimulation was inhibited by anti-LAM monoclonal antibody. Interestingly, we found that LAM and Gram-negative bacterial cell wall-associated endotoxin LPS may share a similar mechanism in their stimulatory action as demonstrated by inhibition of TNF alpha and IL-1 beta release by monoclonal antibodies to CD14. Anti-CD14 monoclonal antibody MY4 inhibited both TNF alpha and IL-1 beta release with LAM and LPS but no effect was observed with other mycobacterial proteins. An isotype antibody control did not inhibit release of cytokines under the same experimental conditions. M. tuberculosis and its components upregulated IL-1 beta and TNF alpha mRNAs in THP-1 cells. Nuclear run-on assay for IL-1 beta demonstrated that LAM increased the transcription rate. The induction of IL-1 beta was regulated at the transcriptional level, in which these stimuli acted through cis-acting element(s) on the 5' flanking region of the IL-1 beta genomic DNA. M. tuberculosis cell wall component LAM acts similarly to LPS in activating mononuclear phagocyte cytokine TNF alpha and IL-1 beta release through CD14 and synthesis at the transcriptional level; both cytokines are key participants in the host immune response to tuberculosis. Images PMID:7683696

  4. Requirement of Nck adaptors for actin dynamics and cell migration stimulated by platelet-derived growth factor B.

    PubMed

    Rivera, G M; Antoku, S; Gelkop, S; Shin, N Y; Hanks, S K; Pawson, T; Mayer, B J

    2006-06-20

    The Nck family of Src homology (SH) 2/SH3 domain adaptors functions to link tyrosine phosphorylation induced by extracellular signals with downstream regulators of actin dynamics. We investigated the role of mammalian Nck adaptors in signaling from the activated platelet-derived growth factor (PDGF) receptor (PDGFbetaR) to the actin cytoskeleton. We report here that Nck adaptors are required for cytoskeletal reorganization and chemotaxis stimulated by PDGF-B. Analysis of tyrosine-phosphorylated proteins demonstrated that Crk-associated substrate (p130(Cas)), not the activated PDGFbetaR itself, is the major Nck SH2 domain-binding protein in PDGF-B-stimulated cells. Both Nck- and p130(Cas)-deficient cells fail to display cytoskeletal rearrangements, including the formation of membrane ruffles and the disassembly of actin bundles, typically shown by their WT counterparts in response to PDGF-B. Furthermore, Nck and p130(Cas) colocalize in phosphotyrosine-enriched membrane ruffles induced by PDGF-B in NIH 3T3 cells. These results suggest that Nck adaptors play an essential role in linking the activated PDGFbetaR with actin dynamics through a pathway that involves p130(Cas).

  5. Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate alpha v integrin expression on cultured human macrophages.

    PubMed

    De Nichilo, M O; Burns, G F

    1993-03-15

    The colony-stimulating factors (CSFs) greatly influence mature macrophage function in vitro: macrophage (M)-CSF induces maturation of monocytes and enhances differentiated cell function; granulocyte-macrophage (GM)-CSF stimulates a variety of antimicrobial functions. In vivo M-CSF is thought to promote differentiation, and GM-CSF is thought to potentiate the inflammatory response. One mechanism by which these differential effects may be achieved is through the receptor-mediated interaction of macrophages with their extracellular matrix. Here we show that M-CSF induces specifically the expression of the alpha v beta 5 integrin receptor, whereas GM-CSF rapidly induces mRNA and surface expression of the alpha v beta 3 integrin. The M-CSF-treated cells acquire a flattened epitheloid phenotype, and on vitronectin the alpha v beta 5 is located in adhesion plaques. These cells do not bind collagen or laminin. In contrast, cells treated with GM-CSF adopt an elongated phenotype on a number of substrates, including collagen and laminin, and express alpha v beta 3 at the leading edge of cells on vitronectin. These results suggest that a primary means by which the CSFs exert their individual effects on mature cells may be through regulating integrin expression.

  6. IgG1 antimycobacterial antibodies can reverse the inhibitory effect of pentoxifylline on tumour necrosis factor alpha (TNF-alpha) secreted by mycobacterial antigen-stimulated adherent cells.

    PubMed

    Thakurdas, S M; Hasan, Z; Hussain, R

    2004-05-01

    Chronic inflammation associated with cachexia, weight loss, fever and arthralgia is the hallmark of advanced mycobacterial diseases. These symptoms are attributed to the chronic stimulation of tumour necrosis factor (TNF)-alpha. Mycobacterial components directly stimulate adherent cells to secrete TNF-alpha. We have shown recently that IgG1 antimycobacterial antibodies play a role in augmenting TNF-alpha in purified protein derivative (PPD)-stimulated adherent cells from non-BCG-vaccinated donors. We now show that IgG1 antibodies can also augment TNF-alpha expression in stimulated adherent cells obtained from BCG-vaccinated donors and this augmentation is not linked to interleukin (IL)-10 secretion. In addition IgG1 antimycobacterial antibodies can reverse the effect of TNF-alpha blockers such as pentoxifylline and thalidomide. These studies therefore have clinical implications for anti-inflammatory drug treatments which are used increasingly to alleviate symptoms associated with chronic inflammation.

  7. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    PubMed

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons, Ltd.

  8. Posterior reversible encephalopathy syndrome (PRES) after granulocyte-colony stimulating factor (G-CSF) therapy: a report of 2 cases.

    PubMed

    Stübgen, Joerg-Patrick

    2012-10-15

    Two patients with recurrent lymphoma developed an acute, transient encephalopathy following administration of recombinant human granulocyte-colony stimulating factor (rhG-CSF), filgrastim, in anticipation of leukapheresis for hematopoietic stem cell transplantation. Head magnetic resonance imaging showed evidence of blood-brain barrier (BBB) breakdown, compatible with posterior reversible encephalopathy syndrome (PRES). The proposed pathogenesis of PRES was rhG-CSF-induced neutrophil mobilization and activation with the release of inflammatory mediators, resulting in transient alteration of barrier permeability and capillary leakage. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Aversive Stimulation -- Criteria for Application.

    ERIC Educational Resources Information Center

    O'Donnell, Patrick A.; Ohlson, Glenn A.

    Criteria for applying aversive stimulation with severely handicapped children are examined, and practical and ethical issues are considered. Factors seen to influence punishment outcomes include timing, intensity, and schedule of reinforcement. Suggested is the need for further research on the comparative effectiveness of positive and negative…

  10. Effect of Increased Endometrial Thickness and Implantation Rate by Granulocyte Colony-Stimulating Factor on Unresponsive Thin Endometrium in Fresh In Vitro Fertilization Cycles: A Randomized Clinical Trial

    PubMed Central

    Sarvi, Fatemeh; Arabahmadi, Marjan; Alleyassin, Ashraf; Aghahosseini, Marzieh

    2017-01-01

    Background The correlation between endometrial thickness and receptivity has been mentioned in various studies. This study investigated the effect of granulocyte colony-stimulating factor in treating thin endometrium of infertile women who were chosen for in vitro fertilization in our infertility clinic in 2014 and 2015. Methods In this randomized clinical trial, 28 women who were chosen for in vitro fertilization and had endometrial thickness of less than 6 mm on the day of human chorionic gonadotropin (hCG) injection were included in the study. They were randomly divided into two groups: investigation and control groups. In investigation group (n = 13) one granulocyte colony-stimulating factor vial (300 micrograms in 1 mL) was infused into the uterus within five minutes by embryo transfer catheter. In control group (n = 15) 1 mL of saline was injected into the uterus with the same catheter. Results There were significant differences between the two groups in terms of means of endometrial thickness on oocyte retrieval day (P = 0.001), embryo transfer day (P = 0.001), hCG injections (P = 0.001), and implantation rates (P = 0.001). Conclusion Granulocyte colony-stimulating factor can increase endometrial thickness in women treated with in vitro fertilization. RCT Code is 201406046063N2. PMID:28791050

  11. A randomized case-controlled study of recombinant human granulocyte colony stimulating factor for the treatment of sepsis in preterm neutropenic infants.

    PubMed

    Aktaş, Doğukan; Demirel, Bilge; Gürsoy, Tuğba; Ovalı, Fahri

    2015-06-01

    To investigate the efficacy and safety of recombinant human granulocyte colony-stimulating factor, recombinant human granulocyte-macrophage colony-stimulating factor (rhG-CSF) to treat sepsis in neutropenic preterm infants. Fifty-six neutropenic preterm infants with suspected or culture-proven sepsis hospitalized in Zeynep Kamil Maternity and Children's Educational and Training Hospital, Kozyatağı/Istanbul, Turkey between January 2008 and January 2010 were enrolled. Patients were randomized either to receive rhG-CSF plus empirical antibiotics (Group I) or empirical antibiotics alone (Group II). Clinical features were recorded. Daily complete blood count was performed until neutropenia subsided. Data were analyzed using SPSS version 11.5. Thirty-three infants received rhG-CSF plus antibiotic treatment and 23 infants received antibiotic treatment. No drug-related adverse event was recorded. Absolute neutrophil count values were significantly higher on the 2(nd) study day and 3(rd) study day in Group I. Short-term mortality did not differ between the groups. Treatment with rhG-CSF resulted in a more rapid recovery of ANC in neutropenic preterm infants. However, no reduction in short-term mortality was documented. Copyright © 2014. Published by Elsevier B.V.

  12. Gab1 Mediates Hepatocyte Growth Factor-Stimulated Mitogenicity and Morphogenesis in Multipotent Myeloid Cells

    PubMed Central

    Felici, Angelina; Giubellino, Alessio; Bottaro, Donald P.

    2012-01-01

    Hepatocyte growth factor (HGF)-stimulated mitogenesis, motogenesis and morphogenesis in various cell types begins with activation of the Met receptor tyrosine kinase and the recruitment of intracellular adaptors and kinase substrates. The adapter protein Gab1 is a critical effector and substrate of activated Met, mediating morphogenesis, among other activities, in epithelial cells. To define its role downstream of Met in hematopoietic cells, Gab1 was expressed in the HGF-responsive, Gab1-negative murine myeloid cell line 32D. Interestingly, the adhesion and motility of Gab1-expressing cells were significantly greater than parental cells, independent of growth factor treatment. Downstream of activated Met, Gab1 expression was specifically associated with rapid Shp-2 recruitment and activation, increased mitogenic potency, suppression of GATA-1 expression and concomitant upregulation of GATA-2 transcription. In addition to enhanced proliferation, continuous culture of Gab1-expressing 32D cells in HGF resulted in cell attachment, filopodia extension and phenotypic changes suggestive of monocytic differentiation. Our results suggest that in myeloid cells, Gab1 is likely to enhance HGF mitogenicity by coupling Met to Shp-2 and GATA-2 expression, thereby potentially contributing to normal myeloid differentiation as well as oncogenic transformation. PMID:20506405

  13. How Learning Environments Can Stimulate Student Imagination

    ERIC Educational Resources Information Center

    Liang, Chaoyun; Hsu, Yuling; Huang, Yinghsiu; Chen, Sheng-Chih

    2012-01-01

    The purpose of this study was to investigate an array of environmental factors that can stimulate imagination and explore how these factors manifest in different design phases. The participants of this study were students in the field of educational technology from four universities across Taiwan. The instructional design process was divided into…

  14. Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma.

    PubMed

    Chinen, Yoshiaki; Kuroda, Junya; Shimura, Yuji; Nagoshi, Hisao; Kiyota, Miki; Yamamoto-Sugitani, Mio; Mizutani, Shinsuke; Sakamoto, Natsumi; Ri, Masaki; Kawata, Eri; Kobayashi, Tsutomu; Matsumoto, Yosuke; Horiike, Shigeo; Iida, Shinsuke; Taniwaki, Masafumi

    2014-12-15

    Multiple myeloma is a cytogenetically/molecularly heterogeneous hematologic malignancy that remains mostly incurable, and the identification of a universal and relevant therapeutic target molecule is essential for the further development of therapeutic strategy. Herein, we identified that 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a serine threonine kinase, is expressed and active in all eleven multiple myeloma-derived cell lines examined regardless of the type of cytogenetic abnormality, the mutation state of RAS and FGFR3 genes, or the activation state of ERK and AKT. Our results revealed that PDPK1 is a pivotal regulator of molecules that are essential for myelomagenesis, such as RSK2, AKT, c-MYC, IRF4, or cyclin Ds, and that PDPK1 inhibition caused the growth inhibition and the induction of apoptosis with the activation of BIM and BAD, and augmented the in vitro cytotoxic effects of antimyeloma agents in myeloma cells. In the clinical setting, PDPK1 was active in myeloma cells of approximately 90% of symptomatic patients at diagnosis, and the smaller population of patients with multiple myeloma exhibiting myeloma cells without active PDPK1 showed a significantly less frequent proportion of the disease stage III by the International Staging System and a significantly more favorable prognosis, including the longer overall survival period and the longer progression-free survival period by bortezomib treatment, than patients with active PDPK1, suggesting that PDPK1 activation accelerates the disease progression and the resistance to treatment in multiple myeloma. Our study demonstrates that PDPK1 is a potent and a universally targetable signaling mediator in multiple myeloma regardless of the types of cytogenetic/molecular profiles. ©2014 American Association for Cancer Research.

  15. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    PubMed

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p < 0.05) and dose dependent increase in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclasts. Functionality of these osteoclasts was assessed quantitatively and qualitatively by evaluating resorption pit area from both osteo-assay plates and harvested bone. Data indicated a statistically significant higher resorption area from the cells exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may

  16. Uptake and economic impact of first-cycle colony-stimulating factor use during adjuvant treatment of breast cancer.

    PubMed

    Hershman, Dawn L; Wilde, Elizabeth T; Wright, Jason D; Buono, Donna L; Kalinsky, Kevin; Malin, Jennifer L; Neugut, Alfred I

    2012-03-10

    In 2002, pegfilgrastim was approved by the US Food and Drug Administration and the benefits of dose-dense breast cancer chemotherapy, especially for hormone receptor (HR) -negative tumors, were reported. We examined first-cycle colony-stimulating factor use (FC-CSF) before and after 2002 and estimated US expenditures for dose-dense chemotherapy. We identified patients in Surveillance, Epidemiology, and End Results-Medicare greater than 65 years old with stages I to III breast cancer who had greater than one chemotherapy claim within 6 months of diagnosis(1998 to 2005) and classified patients with an average cycle length less than 21 days as having received dose-dense chemotherapy. The associations of patient, tumor, and physician-related factors with the receipt of any colony-stimulating factor (CSF) and FC-CSF use were analyzed by using generalized estimating equations. CSF costs were estimated for patients who were undergoing dose-dense chemotherapy. Among the 10,773 patients identified, 5,266 patients (48.9%) had a CSF claim. CSF use was stable between 1998 and 2002 and increased from 36.8% to 73.7% between 2002 and 2005, FC-CSF use increased from 13.2% to 67.9%, and pegfilgrastim use increased from 4.1% to 83.6%. In a multivariable analysis, CSF use was associated with age and chemotherapy type and negatively associated with black/Hispanic race, rural residence, and shorter chemotherapy duration. FC-CSF use was associated with high socioeconomic status but not with age or race/ethnicity. The US annual CSF expenditure for women with HR-positive tumors treated with dose-dense chemotherapy is estimated to be $38.8 million. A rapid increase in FC-CSF use occurred over a short period of time, which was likely a result of the reported benefits of dose-dense chemotherapy and the ease of pegfilgrastim administration. Because of the increasing evidence that elderly HR-positive patients do not benefit from dose-dense chemotherapy, limiting pegfilgrastim use would combat

  17. Effects of antiglaucoma drugs on [32P]orthophosphate incorporation into phospholipids of cat iris and ciliary process.

    PubMed

    Yorio, T; DeLoach, G; Satumtira, N

    1985-01-01

    The effects of antiglaucoma drugs on [32P]-orthophosphate incorporation into phospholipids of iris and ciliary process were investigated. Both iris and ciliary process rapidly incorporated 32Pi into the major phospholipids, with the acidic phosphoinositides demonstrating a greater labelling than phosphatidylcholine, indicating a greater turnover. The muscarinic agonists, carbachol and pilocarpine, stimulated 32Pi-labelling of phosphatidylinositol (PI) and phosphatidic acid (PA) in both iris and ciliary process. These effects were blocked by atropine, suggesting that the response was mediated through muscarinic receptors. The beta blocking ocular hypotensive drugs, propranolol, timolol and atenolol, produced varying effects on 32P incorporation into phospholipids of iris and ciliary process. Propranolol stimulated 32Pi-labelling into phosphatidylinositol 4', 5' bisphosphate (PIP2), phosphatidylinositol 4' phosphate (PIP), PI and PA. Timolol decreased 32Pi-incorporation into PIP2 and PI, whereas atenolol, a selective beta 1 antagonist, had no significant effect on 32Pi-labelling of phospholipids. The above findings on propranolol agree with previous observations which demonstrated that propranolol redirects glycerolipid metabolism through multiple effects on the enzymes in phospholipid biosynthesis, particularly in stimulating phosphatidylinositol kinases. The results with timolol suggest that this drug may decrease phosphoinositide hydrolysis. The effects of these ocular hypotensive, non-selective beta blocking drugs on phospholipid turnover may ultimately limit the accumulation of breakdown products which could serve as cellular messengers.

  18. Effects of recombinant granulocyte-colony stimulating factor administration during Mycobacterium avium infection in mice

    PubMed Central

    Gonçalves, A S; Appelberg, R

    2001-01-01

    Granulocyte colony-stimulating factor (G-CSF) administration in vivo has been shown to improve the defence mechanisms against infection by different microbes. Here we evaluated a possible protective role of this molecule in a mouse model of mycobacterial infection. The administration of recombinant G-CSF promoted an extensive blood neutrophilia but failed to improve the course of Mycobacterium avium infection in C57Bl/6 or beige mice. G-CSF administration also failed to improve the efficacy of a triple chemotherapeutic regimen (clarithromycin + ethambutol + rifabutin). G-CSF treatment did not protect interleukin-10 gene disrupted mice infected with M. avium. Spleen cells from infected mice treated with G-CSF had a decreased priming for antigen-specific production of interferon gamma compared to control infected mice. Our data do not substantiate previous reports on the protective activity of G-CSF in antimycobacterial immunity using mouse models. PMID:11422200

  19. In vivo effect of human granulocyte-macrophage colony-stimulating factor on megakaryocytopoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aglietta, M.; Monzeglio, C.; Sanavio, F.

    1991-03-15

    The effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on megakaryocytopoiesis and platelet production was investigated in patients with normal hematopoiesis. Three findings indicated that GM-CSF plays a role in megakaryocytopoiesis. During treatment with GM-CSF (recombinant mammalian, glycosylated; Sandoz/Schering-Plough, 5.5 micrograms protein/kg/d, subcutaneously for 3 days) the percentage of megakaryocyte progenitors (megakaryocyte colony forming unit (CFU-Mk)) in S phase (evaluated by the suicide technique with high 3H-Tdr doses) increased from 31% +/- 16% to 88% +/- 11%; and the maturation profile of megakaryocytes was modified, with a relative increase in more immature stage I-III forms. Moreover, by autoradiography (after incubation of marrowmore » cells with 125I-labeled GM-CSF) specific GM-CSF receptors were detectable on megakaryocytes. Nevertheless, the proliferative stimulus induced on the progenitors was not accompanied by enhanced platelet production (by contrast with the marked granulomonocytosis). It may be suggested that other cytokines are involved in the regulation of the intermediate and terminal stages of megakaryocytopoiesis in vivo and that their intervention is an essential prerequisite to turn the GM-CSF-induced proliferative stimulus into enhanced platelet production.« less

  20. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation.

    PubMed

    Kostadinova, Radina; Montagner, Alexandra; Gouranton, Erwan; Fleury, Sébastien; Guillou, Hervé; Dombrowicz, David; Desreumaux, Pierre; Wahli, Walter

    2012-10-10

    After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.

  1. A Novel Combinatorial Therapy With Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration

    PubMed Central

    Iohara, Koichiro; Murakami, Masashi; Takeuchi, Norio; Osako, Yohei; Ito, Masataka; Ishizaka, Ryo; Utunomiya, Shinji; Nakamura, Hiroshi; Matsushita, Kenji

    2013-01-01

    Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications. PMID:23761108

  2. The Influence of Thyroid-Stimulating Hormone and Thyroid-Stimulating Hormone Receptor Antibodies on Osteoclastogenesis

    PubMed Central

    Morshed, Syed; Latif, Rauf; Zaidi, Mone; Davies, Terry F.

    2011-01-01

    Background We have shown that thyroid-stimulating hormone (TSH) has a direct inhibitory effect on osteoclastic bone resorption and that TSH receptor (TSHR) null mice display osteoporosis. To determine the stage of osteoclast development at which TSH may exert its effect, we examined the influence of TSH and agonist TSHR antibodies (TSHR-Ab) on osteoclast differentiation from murine embryonic stem (ES) cells to gain insight into bone remodeling in hyperthyroid Graves' disease. Methods Osteoclast differentiation was initiated in murine ES cell cultures through exposure to macrophage colony stimulation factor, receptor activator of nuclear factor кB ligand, vitamin D, and dexamethasone. Results Tartrate resistant acid phosphatase (TRAP)-positive osteoclasts formed in ∼12 days. This coincided with the expected downregulation of known markers of self renewal and pluripotency (including Oct4, Sox2, and REX1). Both TSH and TSHR-Abs inhibited osteoclastogenesis as evidenced by decreased development of TRAP-positive cells (∼40%–50% reduction, p = 0.0047), and by decreased expression, in a concentration-dependent manner, of osteoclast differentiation markers (including the calcitonin receptor, TRAP, cathepsin K, matrix metallo-proteinase-9, and carbonic anhydrase II). Similar data were obtained using serum immunoglobulin-Gs (IgGs) from patients with hyperthyroid Graves' disease and known TSHR-Abs. TSHR stimulators inhibited tumor necrosis factor-alpha mRNA and protein expression, but increased the expression of osteoprotegerin (OPG), an antiosteoclastogenic human soluble receptor activator of nuclear factor кB ligand receptor. Neutralizing antibody to OPG reversed the inhibitory effect of TSH on osteoclast differentiation evidencing that the TSH effect was at least in part mediated by increased OPG. Conclusion These data establish ES-derived osteoclastogenesis as an effective model system to study the regulation of osteoclast differentiation in early development

  3. Gamma-tocotrienol inhibits lipopolysaccharide-induced interlukin-6 and granulocyte-colony stimulating factor by suppressing C/EBP-β and NF-κB in macrophages

    PubMed Central

    Wang, Yun; Jiang, Qing

    2012-01-01

    Cytokines generated from macrophages contributes to pathogenesis of inflammation-associated diseases. Here we show that gamma-tocotrienol (γ-TE), a natural vitamin E form, inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) production without affecting TNFα, IL-10 or cyclooxygenase-2 (COX-2) up-regulation in murine RAW267.4 macrophages. Mechanistic studies indicate that nuclear factor (NF)-κB, but not JNK, p38 or ERK MAP kinases, is important to IL-6 production and γ-TE treatment blocks NF-κB activation. In contrast, COX-2 appears to be regulated by p38 MAPK in RAW cells, but γ-TE has no effect on LPS-stimulated p38 phosphorylation. Despite necessary for IL-6, NF-κB activation by TNFα or other cytokines is not sufficient for IL-6 induction with exception of LPS. CCAAT-enhancer binding protein β (C/EBPβ) appears to be involved in IL-6 formation, because LPS induces C/EBPβ up-regulation, which parallels IL-6 production, and knockdown of C/EBPβ with siRNA results in diminished IL-6. LPS but not individual cytokines is capable of stimulating C/EBPβ and IL-6 in macrophages. Consistent with its dampening effect on IL-6, γ-TE blunts LPS-induced up-regulation of C/EBPβ without affecting C/EBPδ. γ-TE also decreases LPS-stimulated granulocyte-colony stimulating factor (G-CSF), a C/EBPβ target gene. Compared with RAW267.4 cells, γ-TE shows similar or stronger inhibitory effects on LPS-triggered activation of NF-κB, C/EPBβ and C/EBPδ, and more potently suppresses IL-6 and G-CSF in bone marrow-derived macrophages. Our study demonstrates that γ-TE has anti-inflammatory activities by inhibition of NF-κB and C/EBPs activation in macrophages. PMID:23246159

  4. The Mediating Effects of Generative Cognition on Imagination Stimulation

    ERIC Educational Resources Information Center

    Hsu, Yuling; Liang, Chaoyun; Chang, Chi-Cheng

    2014-01-01

    This study, based in Taiwan, aims to explore what psychological factors influence imagination stimulation of education major students, and what the relationship is between these factors and imagination. Both principal component analysis and confirmatory factor analysis were employed to determine the most appropriate structure of the developed…

  5. Prolonged Stimulation of a Brainstem Raphe Region Attenuates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Madsen, Pernille M.; Sloley, Stephanie S.; Vitores, Alberto A.; Carballosa-Gautam, Melissa M.; Brambilla, Roberta; Hentall, Ian D.

    2017-01-01

    Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical stimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with a connectorless protruding microelectrode was implanted cranially, and daily intermittent stimulation of awake, unrestrained mice began immediately. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19–25 that stimulation for >16 days eliminated. Prolonged stimulation also reduced infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered gene expression for some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and for platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising it for myelin basic protein. Restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output. PMID:28147248

  6. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jirina; Streitová, Denisa

    2007-10-01

    A low-molecular-weight (<12 kDa) ultrafiltered pig leukocyte extract, IMUNOR, was tested in experiments in vitro on non-stimulated and lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages in order to assess modulation of nitric oxide (NO) production (measured indirectly as the concentration of nitrites), hematopoiesis-stimulating activity of the supernatant of the macrophage cells (ascertained by counting cell colonies growing from progenitor cells for granulocytes and macrophages (GM-CFC) in vitro), and the release of hematopoiesis-stimulating cytokines. No hematopoiesis-stimulating activity and cytokine or NO production were found in the supernatant of non-stimulated macrophages. It was found that IMUNOR does not influence this status. Supernatant of LPS-stimulated macrophages was characterized by hematopoiesis-stimulating activity, as well as by the presence of nitrites, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). A key role in the hematopoiesis-stimulating activity of the supernatant of LPS-stimulated macrophages could be ascribed to G-CSF since the formation of the colonies could be abrogated nearly completely by monoclonal antibodies against G-CSF. IMUNOR was found to suppress all the mentioned manifestations of the LPS-activated macrophages. When considering these results together with those from our previous in vivo study revealing stimulatory effects of IMUNOR on radiation-suppressed hematopoiesis, a hypothesis may be formulated which postulates a homeostatic role of IMUNOR, consisting in stimulation of impaired immune and hematopoietic systems but also in cutting back the production of proinflammatory mediators in cases of overstimulation which threats with undesirable consequences.

  7. Modulation of the tumor microvasculature by phosphoinositide-3 kinase inhibition increases doxorubicin delivery in vivo.

    PubMed

    Qayum, Naseer; Im, Jaehong; Stratford, Michael R; Bernhard, Eric J; McKenna, W Gillies; Muschel, Ruth J

    2012-01-01

    Because effective drug delivery is often limited by inadequate vasculature within the tumor, the ability to modulate the tumor microenvironment is one strategy that may achieve better drug distribution. We have previously shown that treatment of mice bearing tumors with phosphoinositide-3 kinase (PI3K) inhibitors alters vascular structure in a manner analogous to vascular normalization and results in increased perfusion of the tumor. On the basis of that result, we asked whether inhibition of PI3K would improve chemotherapy delivery. Mice with xenografts using the cell line SQ20B bearing a hypoxia marker or MMTV-neu transgenic mice with spontaneous breast tumors were treated with the class I PI3K inhibitor GDC-0941. The tumor vasculature was evaluated by Doppler ultrasound, and histology. The delivery of doxorubicin was assessed using whole animal fluorescence, distribution on histologic sections, high-performance liquid chromatography on tumor lysates, and tumor growth delay. Treatment with GDC-0941 led to approximately three-fold increases in perfusion, substantially reduced hypoxia and vascular normalization by histology. Significantly increased amounts of doxorubicin were delivered to the tumors correlating with synergistic tumor growth delay. The GDC-0941 itself had no effect on tumor growth. Inhibition of PI3K led to vascular normalization and improved delivery of a chemotherapeutic agent. This study highlights the importance of the microvascular effects of some novel oncogenic signaling inhibitors and the need to take those changes into account in the design of clinical trials many of which use combinations of chemotherapeutic agents. © 2011 AACR.

  8. Tumor Necrosis Factor-Alpha Stimulates Cytokine Expression and Transient Sensitization of Trigeminal Nociceptive Neurons

    PubMed Central

    Durham, Zachary L.; Hawkins, Jordan L.; Durham, Paul L.

    2016-01-01

    Objective Elevated levels of tumor necrosis factor-alpha (TNF-α) in the capsule of the temporomandibular joint (TMJ) are implicated in the underlying pathology of temporomandibular disorders (TMD). TMD are a group of conditions that result in pain in the TMJ and/or muscles of mastication, and are associated with significant social and economic burdens. The goal of this study was to investigate the effect of elevated TNF-α levels in the TMJ capsule on nocifensive behavioral response to mechanical stimulation of trigeminal neurons and regulation of cytokines within the trigeminal ganglion. Design Male Sprague-Dawley rats were injected bilaterally in the TMJ capsule with TNF-α and changes in nocifensive head withdrawal responses to mechanical stimulation of cutaneous tissue directly over the capsule was determined using von Frey filaments. Cytokine levels in trigeminal ganglia were determined by protein array analysis at several time points post injection and correlated to nocifensive behavior. Results TNF-α caused a significant increase in the average number of nocifensive responses when compared to naive and vehicle treated animals 2 hours post injection, but levels returned to control levels at 24 hours. Based on array analysis, the levels of eight cytokines were significantly elevated above vehicle control levels at 2 hours following TNF-α injection, but all eight had returned to the vehicle control levels after 24 hours. Conclusions Our findings provide evidence that elevated levels of TNF-α in the joint capsule, which is reported to occur in TMD, promotes nociception in trigeminal ganglia neurons via a mechanism that temporally correlates with differential regulation of several cytokines. PMID:27836101

  9. Functional factor XIII-A is exposed on the stimulated platelet surface

    PubMed Central

    Mitchell, Joanne L.; Lionikiene, Ausra S.; Fraser, Steven R.; Whyte, Claire S.; Booth, Nuala A.

    2014-01-01

    Factor XIII (FXIII) stabilizes thrombi against fibrinolysis by cross-linking α2-antiplasmin (α2AP) to fibrin. Cellular FXIII (FXIII-A) is abundant in platelets, but the extracellular functions of this pool are unclear because it is not released by classical secretion mechanisms. We examined the function of platelet FXIII-A using Chandler model thrombi formed from FXIII-depleted plasma. Platelets stabilized FXIII-depleted thrombi in a transglutaminase-dependent manner. FXIII-A activity on activated platelets was unstable and was rapidly lost over 1 hour. Inhibiting platelet activation abrogated the ability of platelets to stabilize thrombi. Incorporating a neutralizing antibody to α2AP into FXIII-depleted thrombi revealed that the stabilizing effect of platelet FXIII-A on lysis was α2AP dependent. Platelet FXIII-A activity and antigen were associated with the cytoplasm and membrane fraction of unstimulated platelets, and these fractions were functional in stabilizing FXIII-depleted thrombi against lysis. Fluorescence confocal microscopy and flow cytometry revealed exposure of FXIII-A on activated membranes, with maximal signal detected with thrombin and collagen stimulation. FXIII-A was evident in protruding caps on the surface of phosphatidylserine-positive platelets. Our data show a functional role for platelet FXIII-A through exposure on the activated platelet membrane where it exerts antifibrinolytic function by cross-linking α2AP to fibrin. PMID:25331118

  10. Predictive factors for anemia response to erythropoiesis-stimulating agents in myelofibrosis.

    PubMed

    Hernández-Boluda, Juan-Carlos; Correa, Juan-Gonzalo; García-Delgado, Regina; Martínez-López, Joaquín; Alvarez-Larrán, Alberto; Fox, María-Laura; García-Gutiérrez, Valentín; Pérez-Encinas, Manuel; Ferrer-Marín, Francisca; Mata-Vázquez, María-Isabel; Raya, José-María; Estrada, Natalia; García, Silvia; Kerguelen, Ana; Durán, María-Antonia; Albors, Manuel; Cervantes, Francisco

    2017-04-01

    Erythropoiesis-stimulating agents (ESAs) are commonly used to treat the anemia of myelofibrosis (MF), but information on the predictors of response is limited. Results of ESA therapy were analyzed in 163 MF patients with severe anemia, most of whom had inadequate erythropoietin (EPO) levels (<125 U/L) at treatment start. According to the revised criteria of the International Working Group for Myelofibrosis Treatment and Research, anemia response was achieved in 86 patients (53%). Median response duration was 19.3 months. In multivariate analysis, baseline factors associated with a higher response rate were female sex (P=.007), leukocyte count ≥10×10 9 /L (P=.033), and serum ferritin <200 ng/mL (P=.002). Patients with 2 or 3 of the above features had a significantly higher response rate than the remainder (73% vs 28%, respectively; P<.001). Over the 373 patient-years of follow-up on ESA treatment, nine patients developed thrombotic complications (six arterial, three venous), accounting for 2.41 events per 100 patient-years. Survival time from ESA start was longer in anemia responders than in non-responders (P=.011). Besides the already established predictive value of EPO levels, these data can help to identify which MF patients are more likely to benefit from ESA treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Effect of Granulocyte-Colony Stimulating Factor on Endothelial Cells and Osteoblasts

    PubMed Central

    Liu, Xi Ling; Hu, Xiang; Cai, Wei Xin; Lu, Weijia William; Zheng, Li Wu

    2016-01-01

    Objectives. Some animal studies showed that granulocyte-colony stimulating factor (G-CSF) provides beneficial environment for bone healing. It has been well documented that endothelial cells and osteoblasts play critical roles in multiple phases of bone healing. However, the biological effects of G-CSF on these cells remain controversial. This study aimed to investigate the influence of G-CSF at various concentrations on endothelial cells and osteoblasts. Materials and Methods. Human umbilical vein endothelial cells (HUVECs) and human osteoblasts (hOBs) were treated with G-CSF at 1000, 100, 10, and 0 ng/mL, respectively. The capacity of cell proliferation, migration, and tube formation of HUVECs was evaluated at 72, 8, and 6 hours after treatment, respectively. The capacity of proliferation, differentiation, and mineralization of hOBs was evaluated at 24 hours, 72 hours, and 21 days after treatment, respectively. Results. HUVECs treated with 100 and 1000 ng/mL G-CSF showed a significantly higher value comparing with controls in migration assay (p < 0.001, p < 0.01, resp.); the group treated with 1000 ng/mL G-CSF showed a significantly lower value on tube formation. No significant difference was detected in groups of hOBs. Conclusions. G-CSF showed favorable effects only on the migration of HUVECs, and no direct influence was found on hOBs. PMID:27006951

  12. Effects and safety of granulocyte colony-stimulating factor in healthy volunteers

    PubMed Central

    Anderlini, Paolo

    2015-01-01

    Purpose of Review Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is now widely used in normal donors for collection of peripheral blood progenitor cells (PBPCs) for allogeneic transplantation and granulocytes for transfusion. Currently available data on biologic and molecular effects, and safety of rhG-CSF in normal healthy volunteers are reviewed. Recent Findings In addition to its known activating role on neutrophil kinetics and functional status, rhG-CSF administration can affect monocytes, lymphocytes and the hemostatic system. G-CSF receptors were identified in a variety of non-myeloid tissues, although their role and functional activity have not always been well defined. Moreover, rhG-CSF is capable of modulating complex cytokine networks and can impact the inflammatory response. In addition to its known mobilizing role for PBPCs, rhG-CSF can mobilize dendritic and endothelial progenitor cells as well. On a clinical level, serious rhG-CSF-related adverse events are well described (e.g. splenic rupture) but remain rare. Summary rhG-CSF effects in healthy volunteers, while normally transient and self-limiting, are now believed to be more complex and heterogeneous that previously thought. While rhG-CSF administration to healthy volunteers continues to have a favorable risk-benefit profile, these new findings have implications for safeguarding the safety of normal individuals. PMID:19057203

  13. Increased macrophage colony-stimulating factor levels in patients with Graves' disease.

    PubMed

    Morishita, Eriko; Sekiya, Akiko; Hayashi, Tomoe; Kadohira, Yasuko; Maekawa, Mio; Yamazaki, Masahide; Asakura, Hidesaku; Nakao, Shinji; Ohtake, Shigeki

    2008-10-01

    Previous studies have found markedly elevated serum concentrations of proinflammatory cytokines in patients with Graves' disease (GD). We investigated the role of macrophage colony-stimulating factor (M-CSF) in GD. We assayed concentrations of M-CSF in sera from 32 patients with GD (25 untreated; 7 receiving thiamazole therapy). We also studied 32 age-matched healthy subjects as controls. Relationships between serum M-CSF and both thyroid state and serum lipids were examined. Moreover, to examine the effect of thyroid hormone alone on serum M-CSF, T3 was administered orally to normal subjects. Serum concentrations of M-CSF in GD patients who were hyperthyroid were significantly increased compared with GD patients who were euthyroid (P < 0.05) and control subjects (P < 0.0001). Serum M-CSF concentrations correlated closely with T3 levels in patients (r = 0.51, P < 0.005). Serial measurement of five individual patients revealed that serum concentrations of M-CSF were significantly decreased (P < 0.05), reaching normal control values upon attainment of euthyroidism. Furthermore, oral T3 administered to 15 volunteers for 7 days produced significant increases in serum levels of M-CSF (P < 0.05). The close correlation between serum M-CSF and serum thyroid hormone levels suggests that high circulating levels of thyroid hormones may directly or indirectly potentiate the production of M-CSF in patients with GD.

  14. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation.

    PubMed

    Andrews, Russell J

    2003-05-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  15. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  16. Complex interactions in EML cell stimulation by stem cell factor and IL-3.

    PubMed

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M

    2011-03-22

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34- cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone.

  17. Complex interactions in EML cell stimulation by stem cell factor and IL-3

    PubMed Central

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M.

    2011-01-01

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34− cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone. PMID:21383156

  18. Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis

    PubMed Central

    Griseri, Thibault; Arnold, Isabelle C.; Pearson, Claire; Krausgruber, Thomas; Schiering, Chris; Franchini, Fanny; Schulthess, Julie; McKenzie, Brent S.; Crocker, Paul R.; Powrie, Fiona

    2015-01-01

    Summary The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target. PMID:26200014

  19. Granulocyte-colony stimulating factor and stem cell factor are the crucial factors in long-term culture of human primitive hematopoietic cells supported by a murine stromal cell line.

    PubMed

    Nishi, N; Ishikawa, R; Inoue, H; Nishikawa, M; Kakeda, M; Yoneya, T; Tsumura, H; Ohashi, H; Yamaguchi, Y; Motoki, K; Sudo, T; Mori, K J

    1996-09-01

    The findings that murine marrow stromal cell line MS-5 supported the proliferation of human lineage-negative (Lin-) CD34+CD38- bone marrow cells in long-term culture have been reported. In this study, we analyzed this proliferating activity of MS-5-conditioned medium (CM) on human primitive hematopoietic cells. When Lin-CD34+CD38- cells of normal human cord blood cells were co-cultured with MS-5, colony forming cells (CFCs) were maintained over 7 weeks in vitro. Prevention of contact between MS-5 and Lin-CD34+CD38- cells by using membrane filter (0.45 micron) was negligible for this activity. This indicated that the activity of MS-5 on human primitive hematopoietic cells is a soluble factor(s) secreted from MS-5, which is not induced by the contact between MS-5 and Lin-CD34+CD38- cells. We tried to purify this soluble activity. An active material with a molecular weight of about 150 kDa, determined by gel filtration chromatography, solely supported the growth of Lin-CD34+CD38- cells and Mo7e, a human megakaryocytic cell line. This activity not only reacted with anti-mouse stem cell factor (mSCF) antibody on Western blots, but it was also neutralized in the presence of anti-mSCF antibody. Another active material with a molecular weight of about 20-30 kDa synergized with mSCF to stimulate the growth of Lin-CD34+CD38- cells but failed to do so alone, although this synergy was inhibited in the presence of soluble mouse granulocyte-colony stimulating factor (mG-CSF) receptor, which is a chimeric protein consisting of the extracellular domain of mG-CSF receptor and the Fe region of human IgG1. In addition, the latter molecule supported the growth of the G-CSF dependent cell line FD/GR3, which is a murine myeloid leukemia cell line, FDC-P2, transfected with mG-CSF receptor cDNA. Adding of anti-mSCF antibody and soluble mG-CSF receptor to the culture completely abrogated the activity of MS-5-CM. Recombinant (r) mSCF and rmG-CSF had synergistic activity on the growth of Lin

  20. Granulocyte Macrophage-Colony Stimulating Factor-induced Zn Sequestration Enhances Macrophage Superoxide and Limits Intracellular Pathogen Survival

    PubMed Central

    Vignesh, Kavitha Subramanian; Landero Figueroa, Julio A.; Porollo, Aleksey; Caruso, Joseph A.; Deepe, George S.

    2013-01-01

    SUMMARY Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like Zn. The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7 and the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H+ channel function and triggered reactive oxygen species (ROS) generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function. PMID:24138881

  1. Effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on biomaterial-associated staphylococcal infection in mice.

    PubMed

    Rózalska, B; Ljungh, A; Paziak-Domańska, B; Rudnicka, W

    1996-01-01

    Staphylococcal infections are a major complication in the usage of biomaterials. Different modifications of polymers have been made to reduce the incidence of such infections. We studied the effects of modifying heparinized polyethylene (H-PE) with mouse recombinant granulocyte-macrophage stimulating factor (rGM-CSF). The elimination of staphylococci (Staphylococcus aureus, S. epidermidis) from the peritoneum of mice implanted with rGM-CSF-coated H-PE was slightly more effective than the elimination of the bacteria from the peritoneum of animals implanted with uncoated H-PE. Most interestingly, the number of staphylococci present in the biofilms covering rGM-CSF-coated implants were significantly lower than the number of bacteria detected on the surface of H-PE not coated with rGM-CSF. In vitro, rGM-CSF restored the anti-bacterial potency of the phagocytes, which had been reduced by surface contact with H-PE. The results suggest that modification of biomaterials with rGM-CSF could be one way of preventing staphylococcal infections; especially in neutropenic disorders, which constitute the highest risk factor for foreign body-associated infections.

  2. Induction of vascular endothelial growth factor expression in human pulp fibroblasts stimulated with black-pigmented Bacteroides.

    PubMed

    Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C

    2004-09-01

    To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.

  3. Simplified Large-Scale Refolding, Purification, and Characterization of Recombinant Human Granulocyte-Colony Stimulating Factor in Escherichia coli

    PubMed Central

    Kim, Chang Kyu; Lee, Chi Ho; Lee, Seung-Bae; Oh, Jae-Wook

    2013-01-01

    Granulocyte-colony stimulating factor (G-CSF) is a pleiotropic cytokine that stimulates the development of committed hematopoietic progenitor cells and enhances the functional activity of mature cells. Here, we report a simplified method for fed-batch culture as well as the purification of recombinant human (rh) G-CSF. The new system for rhG-CSF purification was performed using not only temperature shift strategy without isopropyl-l-thio-β-d-galactoside (IPTG) induction but also the purification method by a single step of prep-HPLC after the pH precipitation of the refolded samples. Through these processes, the final cell density and overall yield of homogenous rhG-CSF were obtained 42.8 g as dry cell weights, 1.75 g as purified active proteins, from 1 L culture broth, respectively. The purity of rhG-CSF was finally 99% since the isoforms of rhG-CSF could be separated through the prep-HPLC step. The result of biological activity indicated that purified rhG-CSF has a similar profile to the World Health Organization (WHO) 2nd International Standard for G-CSF. Taken together, our results demonstrate that the simple purification through a single step of prep-HPLC may be valuable for the industrial-scale production of biologically active proteins. PMID:24224041

  4. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation

    PubMed Central

    Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Shuman, Anne L.; Diener, Antonia K.; Lin, Liyong; Mai, Wilfried; Kennedy, Ann R.

    2015-01-01

    Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for white blood cell (WBC) loss, which are the body’s main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved white blood cell (WBC), specifically neutrophil, loss in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses. PMID:25909052

  5. Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis.

    PubMed

    Beuck, Simon; Schänzer, Wilhelm; Thevis, Mario

    2012-11-01

    Increasing the blood's capacity for oxygen transport by erythropoiesis-stimulating agents (ESAs) constitutes a prohibited procedure of performance enhancement according to the World Anti-Doping Agency (WADA). The advent of orally bio-available small-molecule ESAs such as hypoxia-inducible factor (HIF) stabilizers in the development of novel anti-anaemia therapies expands the list of potential ESA doping techniques. Here, the erythropoiesis-stimulating properties and doping relevance of experimental HIF-stabilizers, such as cobaltous chloride, 3,4-dihydroxybenzoic acid or GSK360A, amongst others, are discussed. The stage of clinical trials is reviewed for the anti-anaemia drug candidates FG-2216, FG-4592, GSK1278863, AKB-6548, and BAY85-3934. Currently available methods and strategies for the determination of selected HIF stabilizers in sports drug testing are based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). For the support of further analytical assay development, patents claiming distinct compounds for the use in HIF-mediated therapies are evaluated and exemplary molecular structures of HIF stabilizers presented. Moreover, data concerning the erythropoiesis-enhancing effects of the GATA inhibitors K7174 and K11706 as well as the lipidic small-molecule ESA PBI-1402 are elucidated the context of doping analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Shuman, Anne L.; Diener, Antonia K.; Lin, Liyong; Mai, Wilfried; Kennedy, Ann R.

    2015-04-01

    Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for loss of white blood cells (WBCs), which are the body's main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved WBC loss, specifically neutrophils, in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated, irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well as internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses.

  7. Invasive Cortical Stimulation to Promote Recovery of Function After Stroke

    PubMed Central

    Plow, Ela B.; Carey, James R.; Nudo, Randolph J.; Pascual-Leone, Alvaro

    2011-01-01

    Background and Purpose Residual motor deficits frequently linger after stroke. Search for newer effective strategies to promote functional recovery is ongoing. Brain stimulation, as a means of directing adaptive plasticity, is appealing. Animal studies and Phase I and II trials in humans have indicated safety, feasibility, and efficacy of combining rehabilitation and concurrent invasive cortical stimulation. However, a recent Phase III trial showed no advantage of the combination. We critically review results of various trials and discuss the factors that contributed to the distinctive result. Summary of Review Regarding cortical stimulation, it is important to determine the (1) location of peri-infarct representations by integrating multiple neuroanatomical and physiological techniques; (2) role of other mechanisms of stroke recovery; (3) viability of peri-infarct tissue and descending pathways; (4) lesion geometry to ensure no alteration/displacement of current density; and (5) applicability of lessons generated from noninvasive brain stimulation studies in humans. In terms of combining stimulation with rehabilitation, we should understand (1) the principle of homeostatic plasticity; (2) the effect of ongoing cortical activity and phases of learning; and (3) that subject-specific intervention may be necessary. Conclusions Future cortical stimulation trials should consider the factors that may have contributed to the peculiar results of the Phase III trial and address those in future study designs. PMID:19359643

  8. The Gottingen minipig is a model of the hematopoietic acute radiation syndrome: G-colony stimulating factor stimulates hematopoiesis and enhances survival from lethal total-body γ-irradiation.

    PubMed

    Moroni, Maria; Ngudiankama, Barbara F; Christensen, Christine; Olsen, Cara H; Owens, Rossitsa; Lombardini, Eric D; Holt, Rebecca K; Whitnall, Mark H

    2013-08-01

    We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes. Published by Elsevier Inc.

  9. AGE-DEPENDENT CHANGES IN RECEPTOR-STIMULATED PHOSPHOINOSITIDE TURNOVER IN THE RAT HIPPOCAMPUS

    EPA Science Inventory

    To study the changes in the hippocampal cholinergic system of chronologically old and behaviorally impaired animals, old (21 months of age) and young (3 months of age) male, Fischer-344 rats were used. The aged animals were tested on a reference memory task (Morris water maze) an...

  10. Injury among stimulant-treated youth with ADHD.

    PubMed

    Marcus, Steven C; Wan, George J; Zhang, Huabin F; Olfson, Mark

    2008-07-01

    To assess risk factors for injury among children and adolescents treated with stimulants for ADHD. An analysis was performed of pharmacy and service claims data from 2000-2003 California Medicaid (Medi-Cal) focusing on children and adolescents ages 6 to 17 years who initiated stimulant therapy for ADHD. Bivariate and multivariate analyses were performed to examine associations of demographic and clinical characteristics with injury. In a Cox proportional hazard model that controlled for background patient characteristics, patients ages 13 to 17 years, male gender, prescription of anxiolytic/hypnotic medications, and diagnosis of a mood disorder were each independently associated with increased risk of injury, whereas African American ancestry and other minority racial/ethnic ancestry were associated with lower risk. Youth with high stimulant medication possession ratios (MPR) had a nonsignificantly lower risk of injury as compared to those with a low stimulant MPR. These findings reveal several patient characteristics that may be associated with increased risk of injury among children and adolescents treated for ADHD.

  11. Protection against 1-methyl-4-phenyl pyridinium-induced neurotoxicity in human neuroblastoma SH-SY5Y cells by Soyasaponin I by the activation of the phosphoinositide 3-kinase/AKT/GSK3β pathway.

    PubMed

    Guo, Zheng; Cao, Wei; Zhao, Shifeng; Han, Zengtai; Han, Boxiang

    2016-07-06

    Parkinson's disease (PD) can be ascribed to the progressive and selective loss of dopaminergic neurons in the substantia nigra pars compacta, and thus molecules with neuroprotective ability may have therapeutic value against PD. In the current study, the neuroprotective effects and underlying mechanisms of Soyasaponin I (Soya-I), a naturally occurring triterpene extracted from a widely used ingredient in many foods, such as Glycine max (soybean), were evaluated in a widely used cellular PD model in which neurotoxicity was induced by 1-methyl-4-phenyl pyridinium (MPP) in cultured SH-SY5Y cells. We found that Soya-I at 10-40 μM considerably protected against MPP-induced neurotoxicity as evidenced by an increase in cell viability, a decrease in lactate dehydrogenase release, and a reduction in apoptotic nuclei. Moreover, Soya-I effectively inhibited the elevated intracellular accumulation of reactive oxygen species as well as the Bax/Bcl-2 ratio caused by MPP. Most importantly, Soya-I markedly reversed the inhibition of protein expression of phosphorylated AKT and phosphorylated GSK3β caused by MPP. LY294002, the specific inhibitor of phosphoinositide 3-kinase, significantly abrogated the upregulated phosphorylated AKT and phosphorylated GSK3β offered by Soya-I, suggesting that the neuroprotection of Soya-I was mainly dependent on the activation of the phosphoinositide 3-kinase/AKT/GSK3β signaling pathway. The results taken together indicate that Soya-I may be a potential candidate for further preclinical study aimed at the prevention and treatment of PD.

  12. The interaction of protein-tyrosine phosphatase α (PTPα) and RACK1 protein enables insulin-like growth factor 1 (IGF-1)-stimulated Abl-dependent and -independent tyrosine phosphorylation of PTPα.

    PubMed

    Khanna, Ranvikram S; Le, Hoa T; Wang, Jing; Fung, Thomas C H; Pallen, Catherine J

    2015-04-10

    Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Stimulation of phagocytosis by sulforaphane.

    PubMed

    Suganuma, Hiroyuki; Fahey, Jed W; Bryan, Kelley E; Healy, Zachary R; Talalay, Paul

    2011-02-04

    Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2(-/-) mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Sequential promotion of normal and leukemic hemopoiesis by recombinant human granulocyte colony-stimulating factor during the course of myelodysplastic syndrome.

    PubMed

    Ueda, T; Kawai, Y; Sugiyama, T; Takeuchi, N; Yoshida, A; Iwasaki, H; Wano, Y; Tsutani, H; Kamada, N; Nakamura, T

    1993-12-01

    A 48-year-old man developed refractory anemia with excess of blasts in transformation. Complete response was achieved by low-dose ara-C therapy, but he relapsed 15 months later, with pancytopenia and 13.0% myeloblasts in normocellular marrow. He was treated unsuccessfully with prednisolone, metenolone, and 1-alpha-hydroxyvitamin D3 for 8 weeks. He then developed life-threatening pneumonia and was treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF Filgrastim; 125 micrograms/day s.c.). The pneumonia resolved and, interestingly, he achieved a partial response, with normal blood cell counts and only a few dysmyelopoietic cells in the marrow. However, thrombocytopenia progressed when rhG-CSF administration was tapered. When the dose was increased again, leukemic blasts were found to proliferate. When rhG-CSF was discontinued, blasts rapidly decreased in the peripheral blood. Chromosomal analysis revealed a complex abnormality during the first relapse, a normal 46,XY karyotype during the partial response, and recurrence of the same complex abnormality during leukemic transformation. The stimulation index of marrow mononuclear cells cultured with rhG-CSF increased with disease progression. These findings suggest that rhG-CSF initially stimulated the selective proliferation of normal hemopoietic cells, but the evolution or selection of a leukemic clone responsive to rhG-CSF appears to have occurred subsequently.

  15. Synergism between thrombin and adrenaline (epinephrine) in human platelets. Marked potentiation of inositol phospholipid metabolism.

    PubMed Central

    Steen, V M; Tysnes, O B; Holmsen, H

    1988-01-01

    We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism. PMID:2845924

  16. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Suling, E-mail: suling_chen86@163.com; Li, Fang; Chai, Haiyun

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeuticmore » gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.« less

  17. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    PubMed

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  18. Transcriptional response to muscarinic acetylcholine receptor stimulation: regulation of Egr-1 biosynthesis by ERK, Elk-1, MKP-1, and calcineurin in carbachol-stimulated human neuroblastoma cells.

    PubMed

    Rössler, Oliver G; Henss, Isabell; Thiel, Gerald

    2008-02-01

    Carbachol-mediated activation of type M(3) muscarinic acetylcholine receptors induces the biosynthesis of the transcription factor Egr-1 in human SH-SY5Y neuroblastoma cells involving an activation of extracellular signal-regulated protein kinase. Carbachol triggered the phosphorylation of the ternary complex factor Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, and strikingly enhanced the transcriptional activation potential of Elk-1. Chromatin immunoprecipitation experiments revealed that Elk-1 binds in vivo to the 5'-upstream region of the Egr-1 gene in carbachol-stimulated neuroblastoma cells. Together, these data indicate that Elk-1 connects the intracellular signaling cascade elicited by activation of M(3) muscarinic acetylcholine receptors with the transcription of the Egr-1 gene. Lentiviral-mediated expression of either MAP kinase phosphatase-1 (MKP-1) or a constitutively active mutant of calcineurin A inhibited Egr-1 biosynthesis following carbachol stimulation, indicating that these phosphatases function as shut-off devices of muscarinic acetylcholine receptor signaling. Additionally, carbachol stimulation increased transcription of a chromatin-embedded collagenase promoter/reporter gene, showing that AP-1 activity is enhanced in carbachol-stimulated neuroblastoma. Expression experiments revealed that both MKP-1 and a constitutively active mutant of calcineurin A impaired carbachol-induced upregulation of AP-1 activity. The fact that carbachol stimulation of neuroblastoma cells activates the transcription factors Egr-1 and AP-1 suggests that changes in the gene expression pattern are an integral part of muscarinic acetylcholine receptor signaling.

  19. Stimulant Medication and the Hyperactive Adolescent: Myths and Facts.

    ERIC Educational Resources Information Center

    Clampit, M. K.; Pirkle, Jane B.

    1983-01-01

    Reviews literature that describes the rational and nonrational factors sustaining the myth that stimulant medication is ineffective for hyperactive adolescents. Discusses methodological problems and factors--such as increasing size, misbehavior and misattribution, and perceived relationship to drug abuse--that influence treatment decisions. (JAC)

  20. The Effect of Deep Brain Stimulation on the Speech Motor System

    ERIC Educational Resources Information Center

    Mücke, Doris; Becker, Johannes; Barbe, Michael T.; Meister, Ingo; Liebhart, Lena; Roettger, Timo B.; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-01-01

    Purpose: Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the…

  1. Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor.

    PubMed

    Beckman, Sarah A; Chen, William C W; Tang, Ying; Proto, Jonathan D; Mlakar, Logan; Wang, Bing; Huard, Johnny

    2013-08-01

    We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZ-MDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF.

  2. Beneficial Effect of Mechanical Stimulation on the Regenerative Potential of Muscle-Derived Stem Cells Is Lost by Inhibiting Vascular Endothelial Growth Factor

    PubMed Central

    Beckman, Sarah A.; Chen, William C.W.; Tang, Ying; Proto, Jonathan D.; Mlakar, Logan; Wang, Bing; Huard, Johnny

    2016-01-01

    Objective We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. Approach and Results MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZMDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. Conclusions The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF. PMID:23723372

  3. 3,4,5-Tricaffeoylquinic acid inhibits tumor necrosis factor-α-stimulated production of inflammatory mediators in keratinocytes via suppression of Akt- and NF-κB-pathways.

    PubMed

    Lee, Chung Soo; Lee, Seon Ae; Kim, Yun Jeong; Seo, Seong Jun; Lee, Min Won

    2011-11-01

    Keratinocytes may play an important role in the pathogenesis of skin disease in atopic dermatitis. Caffeoyl derivatives are demonstrated to have anti-inflammatory and anti-oxidant effects. However, the effect of 3,4,5-tricaffeoylquinic acid prepared from Aconium koreanum on the pro-inflammatory cytokine-stimulated keratinocyte responses remains uncertain. In human keratinocytes, we investigated the effect of 3,4,5-tricaffeoylquinic acid on the tumor necrosis factor (TNF)-α-stimulated production of inflammatory mediators in relation to the nuclear factor (NF)-κB and cell signaling Akt, which regulates the transcription genes involved in immune and inflammatory responses. 3,4,5-Tricaffeoylquinic acid inhibited the TNF-α-stimulated production of cytokines (IL-1β and IL-8) and chemokine (CCL17 and CCL27) in keratinocytes. Bay 11-7085 (an inhibitor of NF-κB activation) and Akt inhibitor attenuated the TNF-α-induced formation of inflammatory mediators. 3,4,5-Tricaffeoylquinic acid, Bay 11-7085, Akt inhibitor and N-acetylcysteine inhibited the TNF-α-induced activation of NF-κB, activation of Akt, and formation of reactive oxygen and nitrogen species. The results show that 3,4,5-tricaffeoylquinic acid seems to attenuate the TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of Akt and NF-κB pathways which may be mediated by reactive oxygen species. The findings suggest that 3,4,5-tricaffeoylquinic acid may exert an inhibitory effect against the pro-inflammatory mediator-induced skin disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    PubMed

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  5. Colony-Stimulating Factor 1 Receptor Antagonists Sensitize Human Immunodeficiency Virus Type 1-Infected Macrophages to TRAIL-Mediated Killing

    PubMed Central

    Cunyat, Francesc; Rainho, Jennifer N.; West, Brian; Swainson, Louise; McCune, Joseph M.

    2016-01-01

    ABSTRACT Strategies aimed at eliminating persistent viral reservoirs from HIV-1-infected individuals have focused on CD4+ T-cell reservoirs. However, very little attention has been given to approaches that could promote elimination of tissue macrophage reservoirs. HIV-1 infection of macrophages induces phosphorylation of colony-stimulating factor 1 receptor (CSF-1R), which confers resistance to apoptotic pathways driven by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), thereby promoting viral persistence. In this study, we assessed whether CSF-1R antagonists (PLX647, PLX3397, and PLX5622) restored apoptotic sensitivity of HIV-1-infected macrophages in vitro. PLX647, PLX3397, and PLX5622 at clinically relevant concentrations blocked the activation of CSF-1R and reduced the viability of infected macrophages, as well as the extent of viral replication. Our data show that strategies targeting monocyte colony-stimulating factor (MCSF) signaling could be used to promote elimination of HIV-1-infected myeloid cells and to contribute to the elimination of persistent viral reservoirs. IMPORTANCE As the HIV/AIDS research field explores approaches to eliminate HIV-1 in individuals on suppressive antiviral therapy, those approaches will need to eliminate both CD4+ T-cell and myeloid cell reservoirs. Most of the attention has focused on CD4+ T-cell reservoirs, and scant attention has been paid to myeloid cell reservoirs. The distinct nature of the infection in myeloid cells versus CD4+ T cells will likely dictate different approaches in order to achieve their elimination. For CD4+ T cells, most strategies focus on promoting virus reactivation to promote immune-mediated clearance and/or elimination by viral cytopathicity. Macrophages resist viral cytopathic effects and CD8+ T-cell killing. Therefore, we have explored clearance strategies that render macrophages sensitive to viral cytopathicity. This research helps inform the design of strategies to promote

  6. Distributed stimulation increases force elicited with functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Buckmire, Alie J.; Lockwood, Danielle R.; Doane, Cynthia J.; Fuglevand, Andrew J.

    2018-04-01

    Objective. The maximum muscle forces that can be evoked using functional electrical stimulation (FES) are relatively modest. The reason for this weakness is not fully understood but could be partly related to the widespread distribution of motor nerve branches within muscle. As such, a single stimulating electrode (as is conventionally used) may be incapable of activating the entire array of motor axons supplying a muscle. Therefore, the objective of this study was to determine whether stimulating a muscle with more than one source of current could boost force above that achievable with a single source. Approach. We compared the maximum isometric forces that could be evoked in the anterior deltoid of anesthetized monkeys using one or two intramuscular electrodes. We also evaluated whether temporally interleaved stimulation between two electrodes might reduce fatigue during prolonged activity compared to synchronized stimulation through two electrodes. Main results. We found that dual electrode stimulation consistently produced greater force (~50% greater on average) than maximal stimulation with single electrodes. No differences, however, were found in the fatigue responses using interleaved versus synchronized stimulation. Significance. It seems reasonable to consider using multi-electrode stimulation to augment the force-generating capacity of muscles and thereby increase the utility of FES systems.

  7. TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17

    PubMed Central

    Cook, Andrew D.; Khiew, Hsu-Wei; Christensen, Anne D.; Fleetwood, Andrew J.; Lacey, Derek C.; Smith, Julia E.; Förster, Irmgard

    2018-01-01

    TNF and granulocyte macrophage-colony stimulating factor (GM-CSF) have proinflammatory activity and both contribute, for example, to rheumatoid arthritis pathogenesis. We previously identified a new GM-CSF→JMJD3 demethylase→interferon regulatory factor 4 (IRF4)→CCL17 pathway that is active in monocytes/macrophages in vitro and important for inflammatory pain, as well as for arthritic pain and disease. Here we provide evidence for a nexus between TNF and this pathway, and for TNF and GM-CSF interdependency. We report that the initiation of zymosan-induced inflammatory pain and zymosan-induced arthritic pain and disease are TNF dependent. Once arthritic pain and disease are established, blockade of GM-CSF or CCL17, but not of TNF, is still able to ameliorate them. TNF is required for GM-CSF–driven inflammatory pain and for initiation of GM-CSF–driven arthritic pain and disease, but not once they are established. TNF-driven inflammatory pain and TNF-driven arthritic pain and disease are dependent on GM-CSF and mechanistically require the same downstream pathway involving GM-CSF→CCL17 formation via JMJD3-regulated IRF4 production, indicating that GM-CSF and CCL17 can mediate some of the proinflammatory and algesic actions of TNF. Given we found that TNF appears important only early in arthritic pain and disease progression, targeting a downstream mediator, such as CCL17, which appears to act throughout the course of disease, could be effective at ameliorating chronic inflammatory conditions where TNF is implicated. PMID:29563337

  8. Shared Neural Mechanisms for the Evaluation of Intense Sensory Stimulation and Economic Reward, Dependent on Stimulation-Seeking Behavior

    PubMed Central

    Valton, Vincent; Rees, Geraint; Roiser, Jonathan P.; Husain, Masud

    2016-01-01

    prefrontal cortex. Further understanding of stimulation-seeking behavior may shed light on the etiology of psychopathologies such as addiction, for which high or low sensation-seeking personality has been identified as a risk factor. PMID:27683900

  9. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    PubMed

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair

  10. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    PubMed

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  11. Application of microchip CGE for the analysis of PEG-modified recombinant human granulocyte-colony stimulating factors.

    PubMed

    Park, Eun Ji; Lee, Kyung Soo; Lee, Kang Choon; Na, Dong Hee

    2010-11-01

    The purpose of this study was to evaluate the microchip CGE (MCGE) for the analysis of PEG-modified granulocyte-colony stimulating factor (PEG-G-CSF) prepared with PEG-aldehydes. The unmodified and PEG-modified G-CSFs were analyzed by Protein 80 and 230 Labchips on the Agilent 2100 Bioanalyzer. The MCGE allowed size-based separation and quantitation of PEG-G-CSF. The Protein 80 Labchip was useful for PEG-5K-G-CSF, while the Protein 230 Labchip was more suitable for PEG-20K-G-CSF. The MCGE was also used to monitor a search for optimal PEG-modification (PEGylation) conditions to produce mono-PEG-G-CSF. This study demonstrates the usefulness of MCGE for monitoring and optimizing the PEGylation of G-CSF with the advantages of speed, minimal sample consumption, and automatic quantitation.

  12. Heterogeneity Within Macrophage Populations: A Possible Role for Colony Stimulating Factors

    DTIC Science & Technology

    1988-04-04

    highest concentration ofriFN-yused (5.0 U/ml), a depression of T cell proliferation induced by the antigen-pulsed rGM-CSF-derived macrophages was...stimulation by rGM-CSF and nCSF-1 in bone marrow cells derived from normal mice and mice 3 and 7 days post-treatment with 5FU . Bone marrow cells

  13. The Effect of Paired Muscle Stimulation on Preparation for Movement.

    PubMed

    Brownjohn, Philip W; Blakemore, Rebekah L; Fox, Jonathan A; Shemmell, Jonathan

    2018-06-07

    Paired muscle stimulation is used clinically to facilitate the performance of motor tasks for individuals with motor dysfunction. However, the optimal temporal relationship between stimuli for enhancing movement remains unknown. We hypothesized that synchronous, muscle stimulation would increase the extent to which stimulated muscles are concurrently prepared for movement. We validated a measure of muscle-specific changes in corticomotor excitability prior to movement. We used this measure to examine the preparation of the first dorsal interosseous (FDI), abductor digiti minimi (ADM), abductor pollicis brevis (APB) muscles prior to voluntary muscle contractions before and after paired muscle stimulation at four interstimulus intervals (0, 5, 10, and 75 ms). Paired muscle stimulation increased premovement excitability in the stimulated FDI, but not in the ADM muscle. Interstimulus interval was not a significant factor in determining efficacy of the protocol. Paired stimulation, therefore, did not result in a functional association being formed between the stimulated muscles. Somatosensory potentials evoked by the muscle stimuli were small compared to those commonly elicited by stimulation of peripheral nerves, suggesting that the lack of functional association formation between muscles may be due to the small magnitude of afferent volleys from the stimulated muscles, particularly the ADM, reaching the cortex.

  14. [LED LIGHTING AS A FACTOR FOR THE STIMULATION OF THE HORMONE SYSTEM].

    PubMed

    Deynego, V N; Kaptsov, V A

    2015-01-01

    There are considered questions of non-visual effects of blue LED light sources on hormonal systems (cortisol, glucose, insulin) providing the high human performance. In modern conditions hygiene strategy for child and adolescent health strategy was shown to be replaced by a strategy of light stimulation of the hormonal profile. There was performed a systematic analysis of the axis "light stimulus-hypothalamus-pituitary-adrenals-cortisol-glucose-insulin". The elevation of the content of cortisol leads to the increase of the glucose level in the blood and the stimulation of the production of insulin, which can, like excessive consumption of food, give rise to irreversible decline in the number of insulin receptors on the cell surface, and thus--to a steady reduction in the ability of cells to utilize glucose, i.e. to type 2 diabetes or its aggravation.

  15. Hematopoietic growth factors and human acute leukemia.

    PubMed

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  16. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  17. Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans.

    PubMed

    Czakai, Kristin; Leonhardt, Ines; Dix, Andreas; Bonin, Michael; Linde, Joerg; Einsele, Hermann; Kurzai, Oliver; Loeffler, Jürgen

    2016-06-27

    Invasive fungal infections are associated with high mortality rates and are mostly caused by the opportunistic fungi Aspergillus fumigatus and Candida albicans. Immune responses against these fungi are still not fully understood. Dendritic cells (DCs) are crucial players in initiating innate and adaptive immune responses against fungal infections. The immunomodulatory effects of fungi were compared to the bacterial stimulus LPS to determine key players in the immune response to fungal infections. A genome wide study of the gene regulation of human monocyte-derived dendritic cells (DCs) confronted with A. fumigatus, C. albicans or LPS was performed and Krüppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS. Downstream analysis demonstrated the influence of KLF4 on the interleukine-6 expression in human DCs. Furthermore, KLF4 regulation was shown to be dependent on pattern recognition receptor ligation. Therefore KLF4 was identified as a controlling element in the IL-6 immune response with a unique expression pattern comparing fungal and LPS stimulation.

  18. Acid rain stimulation of Lake Michigan phytoplankton growth

    USGS Publications Warehouse

    Manny, Bruce A.; Fahnenstiel, G.L.; Gardner, W.S.

    1987-01-01

    Three laboratory experiments demonstrated that additions of rainwater to epilimnetic lake water collected in southeastern Lake Michigan stimulated chlorophyll a production more than did additions of reagent-grade water during incubations of 12 to 20 d. Chlorophyll a production did not begin until 3–5 d after the rain and lake water were mixed. The stimulation caused by additions of rain acidified to pH 3.0 was greater than that caused by additions of untreated rain (pH 4.0–4.5). Our results support the following hypotheses: (1) Acid rain stimulates the growth of phytoplankton in lake water; (2) phosphorus in rain appears to be the factor causing this stimulation. We conclude that acid rain may accelerate the growth of epilimnetic phytoplankton in Lake Michigan (and other similar lakes) during stratification when other sources of bioavailable phosphorus to the epilimnion are limited

  19. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components.

    PubMed Central

    Delfino, D; Cianci, L; Lupis, E; Celeste, A; Petrelli, M L; Curró, F; Cusumano, V; Teti, G

    1997-01-01

    In order to ascertain if Cryptococcus neoformans components can induce interleukin-6 (IL-6) production, we stimulated human whole blood with purified capsular products. Their potencies in stimulating IL-6 release were mannoproteins > galactoxylomannan = glucuronoxylomannan > alpha(1-3)glucan. IL-6 production was tumor necrosis factor alpha independent and required the presence of monocytes and plasma. Since IL-6 can stimulate replication of the human immunodeficiency virus in monocytic cells, these findings may be clinically relevant. PMID:9169790

  20. Spatial factors and muscle spindle input influence the generation of neuromuscular responses to stimulation of the human foot

    NASA Astrophysics Data System (ADS)

    Layne, Charles S.; Forth, Katharine E.; Abercromby, Andrew F. J.

    2005-05-01

    Removal of the mechanical pressure gradient on the soles leads to physiological adaptations that ultimately result in neuromotor degradation during spaceflight. We propose that mechanical stimulation of the soles serves to partially restore the afference associated with bipedal loading and assists in attenuating the negative neuromotor consequences of spaceflight. A dynamic foot stimulus device was used to stimulate the soles in a variety of conditions with different stimulation locations, stimulation patterns and muscle spindle input. Surface electromyography revealed the lateral side of the sole elicited the greatest neuromuscular response in ankle musculature, followed by the medial side, then the heel. These responses were modified by preceding stimulation. Neuromuscular responses were also influenced by the level of muscle spindle input. These results provide important information that can be used to guide the development of a "passive" countermeasure that relies on sole stimulation and can supplement existing exercise protocols during spaceflight.

  1. Biologic Activity of Autologous, Granulocyte-Macrophage Colony Stimulating Factor Secreting Alveolar Soft Parts Sarcoma and Clear Cell Sarcoma Vaccines

    PubMed Central

    Goldberg, John; Fisher, David E.; Demetri, George D.; Neuberg, Donna; Allsop, Stephen A.; Fonseca, Catia; Nakazaki, Yukoh; Nemer, David; Raut, Chandrajit P.; George, Suzanne; Morgan, Jeffrey A.; Wagner, Andrew J.; Freeman, Gordon J.; Ritz, Jerome; Lezcano, Cecilia; Mihm, Martin; Canning, Christine; Hodi, F. Stephen; Dranoff, Glenn

    2015-01-01

    Purpose Alveolar soft parts sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral mediated gene transfer to secrete granulocyte-macrophage colony stimulating factor (GM-CSF). Experimental Design Metastatic tumors from ASPS and CCS patients were resected, processed to single cell suspensions, transduced with a replication defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly times three and then every other week. Results Vaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from 3 to 13 immunizations. Toxicities were restricted to grade 1–2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell mediated delayed type-hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1) positive CD8+ T cells in association with PD ligand-1 (PD-L1) expressing sarcoma cells. No tumor regressions were observed. Conclusions Vaccination with irradiated, GM-CSF secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1 negative regulatory pathway might intensify immune-mediated tumor destruction. PMID:25805798

  2. [Status and progress of stimulating parameters in acupuncture treatment of ischemic cerebrovascular disease].

    PubMed

    Wei, Yuan-yuan; Fan, Xiao-nong; Wang, Shu; Shi, Xue-min

    2008-08-01

    Acute ischemic cerebrovascular disease is one of the critical diseases seriously endangering human health. Acupuncture therapy, an effective treatment method for many types of disorders has been generally acknowledged. In recent years, many scientific researchers have studied the relationship between the effects of acupuncture in relieving cerebral ischemia-induced sequelae and the stimulating parameters. The acupuncture stimulating parameter includes the frequency of electroacupuncture (EA), the frequency of acupuncture treatment, and the acquired quantity of stimulation, etc for clinical patients and experimental animals. It was found that different stimulating parameters may have different efficacies. Current research results provide a good basis not only for analysis of the factors of acupuncture-produced effects, but also for determination of the optimal combination of stimulating parameters. However, acupuncture therapeutic effect involves multiple factors and multiple levels, and current quantitative acupuncture parameter researches have been mainly restricted to animal experiments. Hence, more researches in which statistics specialists take part are definitely needed.

  3. Dendrobium mixture regulates hepatic gluconeogenesis in diabetic rats via the phosphoinositide-3-kinase/protein kinase B signaling pathway.

    PubMed

    Lin, Xinjun; Shi, Hong; Cui, Yi; Wang, Xiaoning; Zhang, Jieping; Yu, Wenzhen; Wei, Min

    2018-07-01

    The present study aimed to evaluate the impact of dendrobium mixture (DMix) on the gene and protein expression of insulin signaling pathway-associated factors in the livers of diabetic rats. The molecular mechanisms by which DMix inhibits gluconeogenesis were also investigated. A total of 47 female Wistar rats were used in the present study. Of these, 11 rats were randomly selected as healthy controls and diabetes was induced in the remaining 36 rats by administering a high-fat and high-sugar diet for 6 weeks, followed by two intraperitoneal injections of streptozotocin. The 36 rats were screened for diabetes and then randomly divided into three groups: Model, metformin and DMix groups. Following 12 weeks of treatment, the fasting blood glucose (FBG), glycosylated serum protein (GSP), serum insulin, blood lipids [total cholesterol (Tch) and triglycerides (TG)], alanine transaminase (ALT) and aspartate transaminase (AST) were assessed. In addition, hematoxylin and eosin staining was used for histomorphological examination of the liver tissues. The mRNA expression of insulin receptor (InsR), forkhead box protein O1 (FoxO1), phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) in the liver was measured with reverse transcription-quantitative polymerase chain reaction and the protein expression of InsR, phosphoinositide-3-kinase (PI3K), phosphorylated (p)-PI3K, protein kinase B (Akt), p-Akt, FoxO1, PEPCK and G6Pase in the liver was measured by western blot analysis. The FBG, GSP, InsR, Tch, TG, ALT and AST levels were significantly lower in the DMix-treated group compared with the model group (P<0.05). In addition, DMix treatment notably improved liver histopathology and significantly increased the gene and protein expression of InsR, PI3K and Akt (P<0.05). DMix treatment also significantly reduced the gene and protein expression of FoxO1, PEPCK and G6Pase (P<0.05). DMix effectively reduced FBG and blood lipids and significantly improved liver

  4. Anticancer molecules targeting fibroblast growth factor receptors.

    PubMed

    Liang, Guang; Liu, Zhiguo; Wu, Jianzhang; Cai, Yuepiao; Li, Xiaokun

    2012-10-01

    The fibroblast growth factor receptor (FGFR) family includes four highly conserved receptor tyrosine kinases: FGFR1-4. Upon ligand binding, FGFRs activate an array of downstream signaling pathways, such as the mitogen activated protein kinase (MAPK) and the phosphoinositide-3-kinase (PI3K)/Akt pathways. These FGFR cascades play crucial roles in tumor cell proliferation, angiogenesis, migration, and survival. The combination of knockdown studies and pharmaceutical inhibition in preclinical models demonstrates that FGFRs are attractive targets for therapeutic intervention in cancer. Multiple FGFR inhibitors with various structural skeletons have been designed, synthesized, and evaluated. Reviews on FGFRs have recently focused on FGFR signaling, pathophysiology, and functions in cancer or other diseases. In this article, we review recent advances in structure-activity relationships (SAR) of FGFR inhibitors, as well as the FGFR-targeting drug design strategies currently employed in targeting deregulated FGFRs by antibodies and small molecule inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Bradykinin-induced growth inhibition of normal rat kidney (NRK) cells is paralleled by a decrease in epidermal-growth-factor receptor expression.

    PubMed Central

    Van Zoelen, E J; Peters, P H; Afink, G B; Van Genesen, S; De Roos, D G; Van Rotterdam, W; Theuvenet, A P

    1994-01-01

    Normal rat kidney fibroblasts, grown to density arrest in the presence of epidermal growth factor (EGF), can be induced to undergo phenotypic transformation by treatment with transforming growth factor beta or retinoic acid. Here we show that bradykinin blocks this growth-stimulus-induced loss of density-dependent growth arrest by a specific receptor-mediated mechanism. The effects of bradykinin are specific, and are not mimicked by other phosphoinositide-mobilizing agents such as prostaglandin F2 alpha. Northern-blot analysis and receptor-binding studies demonstrate that bradykinin also inhibits the retinoic acid-induced increase in EGF receptor levels in these cells. These studies provide additional evidence that EGF receptor levels modulate EGF-induced expression of the transformed phenotype in these cells. Images Figure 5 PMID:8135739

  6. Exploring risk factors for stuttering development in Parkinson disease after deep brain stimulation.

    PubMed

    Picillo, Marina; Vincos, Gustavo B; Sammartino, Francesco; Lozano, Andres M; Fasano, Alfonso

    2017-05-01

    Stuttering is a speech disorder with disruption of verbal fluency, occasionally present in Parkinson's disease (PD). PD co-incident stuttering may either worsen or improve after Deep Brain Stimulation (DBS). Sixteen out of 453 PD patients (3.5%) exhibited stuttering after DBS (PD-S) and were compared with a group of patients without stuttering (PD-NS) using non-parametric statistics. After DBS, stuttering worsened in 3 out of 4 patients with co-incidental stuttering. Most PD-S underwent subthalamic (STN) DBS, but 4 were implanted in the globus pallidus (GPi). Nine out of 16 PD-S (56.3%) reported a positive familial history for stuttering compared to none of the PD-NS. PD-S were mainly male (81.3%) with slight worse motor features compared to PD-NS. Herein, we describe a group of PD patients developing stuttering after DBS and report the presence of a positive familial history for stuttering as the most relevant risk factor, suggesting a possible underlying genetic cause. The fact that stuttering occurred after either STN or GPi DBS is an argument against the impact of medication reduction on stuttering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Effect of trichostatin A on the osteogenic differentiation potential of periodontal ligament stem cells in inflammatory microenvironment induced by tumor necrosis factorstimulation].

    PubMed

    Wang, H; Chen, Q; Liu, W J; Yang, Z H; Li, D; Jin, F

    2016-04-09

    To compare the expression of histone deacetylase(HDAC)1-11 of human periodontal ligament stem cells(PDLSC)in normal and inflammatory microenvironments, and to investigate the effect of histone deacetylase inhibitor trichostatin A(TSA)on the osteogenic differentiation potential of PDLSC in inflammatory microenvironment induced by tumor necrosis factor-α(TNF-α)stimulation. PDLSC were isolated from periodontal ligament tissues obtained from the surgically extracted human teeth and cultured by single-colony selection. The expression of HDAC1-11 in cells with or without TNF-α(10 μg/L)stimulation was evaluated by quantitative real time-PCR(RT-PCR). The effect of TSA on cell proliferation was investigated by methyl thiazolyl tetrazolium(MTT)assay. The influence of TSA on osteogenic differentiation of PDLSC in inflammatory microenvironment with TNF-α stimulation was assessed by alizarin red staining, quantitative RT-PCR and Western blotting, respectively. The expression of HDAC in PDLSC with TNF-α stimulation was significantly higher than that in normal PDLSC(P<0.05)(except HDAC7, P=0.243). TSA had no significant effect on PDLSC proliferation at the concentration of 50 nmol/L(P=0.232). The alizarin red staining showed that PDLSC in TNF-α group generated less mineralized nodule than the control group, while the cell matrix mineralization in TSA group was improved obviously. TNF-α had an inhibitory effect on the expression of osteogenesis related genes, runt-related transcription factor-2(RUNX2)and alkaline phosphatase(ALP), with relative gene expression ratio(experimental/control)decreased to 0.17 ± 0.02 and 0.32 ± 0.03, while TSA could significantly increase the genes' expression to 0.67±0.03 and 0.89±0.02(P<0.01). Western blotting test showed that in TNF-α group the expression of osteogenesis related proteins was obviously reduced, and compared with the TNF-α group, TSA could significantly promote the expression of proteinsin inflammatory microenvironment

  8. Requirement for Class II Phosphoinositide 3-Kinase C2α in Maintenance of Glomerular Structure and Function▿

    PubMed Central

    Harris, David P.; Vogel, Peter; Wims, Marie; Moberg, Karen; Humphries, Juliane; Jhaver, Kanchan G.; DaCosta, Christopher M.; Shadoan, Melanie K.; Xu, Nianhua; Hansen, Gwenn M.; Balakrishnan, Sanjeevi; Domin, Jan; Powell, David R.; Oravecz, Tamas

    2011-01-01

    An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function. PMID:20974805

  9. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroni, Maria, E-mail: maria.moroni@usuhs.edu; Ngudiankama, Barbara F.; Christensen, Christine

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment formore » ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.« less

  10. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells.

    PubMed

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Park, Young Joo; Cho, Bo Youn

    2007-10-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.

  11. Microarray Analysis of Thyroid Stimulating Hormone, Insulin-Like Growth Factor-1, and Insulin-Induced Gene Expression in FRTL-5 Thyroid Cells

    PubMed Central

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Cho, Bo Youn

    2007-01-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation. PMID:17982240

  12. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    PubMed Central

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  13. Granulocyte colony-stimulating factors for febrile neutropenia prophylaxis following chemotherapy: systematic review and meta-analysis

    PubMed Central

    2011-01-01

    Background Febrile neutropenia (FN) occurs following myelosuppressive chemotherapy and is associated with morbidity, mortality, costs, and chemotherapy reductions and delays. Granulocyte colony-stimulating factors (G-CSFs) stimulate neutrophil production and may reduce FN incidence when given prophylactically following chemotherapy. Methods A systematic review and meta-analysis assessed the effectiveness of G-CSFs (pegfilgrastim, filgrastim or lenograstim) in reducing FN incidence in adults undergoing chemotherapy for solid tumours or lymphoma. G-CSFs were compared with no primary G-CSF prophylaxis and with one another. Nine databases were searched in December 2009. Meta-analysis used a random effects model due to heterogeneity. Results Twenty studies compared primary G-CSF prophylaxis with no primary G-CSF prophylaxis: five studies of pegfilgrastim; ten of filgrastim; and five of lenograstim. All three G-CSFs significantly reduced FN incidence, with relative risks of 0.30 (95% CI: 0.14 to 0.65) for pegfilgrastim, 0.57 (95% CI: 0.48 to 0.69) for filgrastim, and 0.62 (95% CI: 0.44 to 0.88) for lenograstim. Overall, the relative risk of FN for any primary G-CSF prophylaxis versus no primary G-CSF prophylaxis was 0.51 (95% CI: 0.41 to 0.62). In terms of comparisons between different G-CSFs, five studies compared pegfilgrastim with filgrastim. FN incidence was significantly lower for pegfilgrastim than filgrastim, with a relative risk of 0.66 (95% CI: 0.44 to 0.98). Conclusions Primary prophylaxis with G-CSFs significantly reduces FN incidence in adults undergoing chemotherapy for solid tumours or lymphoma. Pegfilgrastim reduces FN incidence to a significantly greater extent than filgrastim. PMID:21943360

  14. Endothelin-1 stimulates colon cancer adjacent fibroblasts.

    PubMed

    Knowles, Jonathan P; Shi-Wen, Xu; Haque, Samer-ul; Bhalla, Ashish; Dashwood, Michael R; Yang, Shiyu; Taylor, Irving; Winslet, Marc C; Abraham, David J; Loizidou, Marilena

    2012-03-15

    Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy. Copyright © 2011 UICC.

  15. The influence of right ventricular stimulation on acute response to cardiac resynchronisation therapy.

    PubMed

    Wu, L; de Roest, G J; Hendriks, M L; van Rossum, A C; de Cock, C C; Allaart, C P

    2016-01-01

    The contribution of right ventricular (RV) stimulation to cardiac resynchronisation therapy (CRT) remains controversial. RV stimulation might be associated with adverse haemodynamic effects, dependent on intrinsic right bundle branch conduction, presence of scar, RV function and other factors which may partly explain non-response to CRT. This study investigates to what degree RV stimulation modulates response to biventricular (BiV) stimulation in CRT candidates and which baseline factors, assessed by cardiac magnetic resonance imaging, determine this modulation. Forty-one patients (24 (59 %) males, 67 ± 10 years, QRS 153 ± 22 ms, 21 (51 %) ischaemic cardiomyopathy, left ventricular (LV) ejection fraction 25 ± 7 %), who successfully underwent temporary stimulation with pacing leads in the RV apex (RVapex) and left ventricular posterolateral (PL) wall were included. Stroke work, assessed by a conductance catheter, was used to assess acute haemodynamic response during baseline conditions and RVapex, PL (LV) and PL+RVapex (BiV) stimulation. Compared with baseline, stroke work improved similarly during LV and BiV stimulation (∆+ 51 ± 42 % and ∆+ 48 ± 47 %, both p < 0.001), but individual response showed substantial differences between LV and BiV stimulation. Multivariate analysis revealed that RV ejection fraction (β = 1.01, p = 0.02) was an independent predictor for stroke work response during LV stimulation, but not for BiV stimulation. Other parameters, including atrioventricular delay and scar presence and localisation, did not predict stroke work response in CRT. The haemodynamic effect of addition of RVapex stimulation to LV stimulation differs widely among patients receiving CRT. Poor RV function is associated with poor response to LV but not BiV stimulation.

  16. Biological properties in vitro of a combination of recombinant murine interleukin-3 and granulocyte-macrophage colony-stimulating factor.

    PubMed

    Riklis, I; Kletter, Y; Bleiberg, I; Fabian, I

    1989-04-01

    The effect of recombinant murine interleukin-3 (rIL-3) and recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) on in vitro murine myeloid progenitor cell (CFU-C) growth and on the function of murine resident peritoneal macrophages was investigated. Both rIL-3 and rGM-CSF are known to support the growth of CFU-C and, when combined, were found to act synergistically to induce the development of an increased number of CFU-C. The distribution pattern of myeloid colonies in the presence of these two growth factors was in general similar to that in the presence of rGM-CSF alone. Both rGM-CSF and rIL-3 enhanced the phagocytosis of Candida albicans (CA) by mature macrophages producing an increase in the percentage of phagocytosing cells as well as an increase in the number of yeast particles ingested per cell. No additive effect on the phagocytosis was observed when the two growth factors were added concurrently. rGM-CSF, but not rIL-3, enhanced the killing of CA by macrophages. This killing was inhibited by scavengers of oxygen radicals.

  17. Stimulating at the right time: phase-specific deep brain stimulation

    PubMed Central

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    Abstract See Moll and Engel (doi:10.1093/aww308) for a scientific commentary on this article. Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson’s disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient’s tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. PMID:28007997

  18. Comparative effectiveness of colony-stimulating factors in febrile neutropenia prophylaxis: how results are affected by research design.

    PubMed

    Henk, Henry J; Li, Xiaoyan; Becker, Laura K; Xu, Hairong; Gong, Qi; Deeter, Robert G; Barron, Richard L

    2015-01-01

    To examine the impact of research design on results in two published comparative effectiveness studies. Guidelines for comparative effectiveness research have recommended incorporating disease process in study design. Based on the recommendations, we develop a checklist of considerations and apply the checklist in review of two published studies on comparative effectiveness of colony-stimulating factors. Both studies used similar administrative claims data, but different methods, which resulted in directionally different estimates. Major design differences between the two studies include: whether the timing of intervention in disease process was identified and whether study cohort and outcome assessment period were defined based on this temporal relationship. Disease process and timing of intervention should be incorporated into the design of comparative effectiveness studies.

  19. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  20. [Effect of lipopolysaccharides from Porphyromonas endodontalis on the expression of macrophage colony stimulating factor in mouse osteoblasts].

    PubMed

    Yu, Yaqiong; Qiu, Lihong; Guo, Jiajie; Qu, Liu; Xu, Liya; Zhong, Ming

    2014-09-01

    To investigate the effects of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis (Pe) on the expression of macrophage colony stimulating factor (M-CSF) mRNA and protein in MC3T3-E1 cells and the role of nucler factor-κB (NF-κB) in the process. MC3T3-E1 cells were treated with different concentrations of Pe-LPS (0-50 mg/L) and 10 mg/L Pe-LPS for different hours (0-24 h). The expression of M-CSF mRNA and protein was detected by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunoadsordent assay (ELISA). The cells untreated by Pe-LPS served as control. The expression of M- CSF mRNA and protein was also detected in 10 mg/L Pe- LPS treated MC3T3-E1 cells after pretreated with BAY 11-7082 for 1 h, a special NF-κB inhibitor. The groups were divided as follows, control group, BAY group (10 µmol/L BAY 11-7082 treated alone MC3T3-E1 cells), Pe-LPS group (10 mg/L Pe-LPS stimulated MC3T3-E1 cells for 6 h), BAY combine with Pe-LPS group (10 µmol/L BAY 11-7082 pretreated cells for 1 h and 10 mg/L of Pe-LPS stimulated MC3T3-E1 cells for 6 h). The level of M- CSF mRNA and protein increased significantly after treatment with different concentrations of Pe-LPS (0-50 mg/L), which indicated that Pe-LPS induced osteoblasts to express M-CSF mRNA and protein in dose dependent manners. The expression of M-CSF protein increased from (35 ± 2) ng/L (control group) to (170 ± 8) ng/L (50 mg/L group). Maximal induction of M-CSF mRNA expression was found in the MC3T3- E1 cells treated with 10 mg/L Pe-LPS for 6 h. After 6 h, the expression of M-CSF mRNA decreased gradually. The expression of M-CSF protein also increased with the treatment of 10 mg/L Pe-LPS for 10 h [(122 ± 4) ng/L]. After 10 h, the expression of M-CSF protein decreased gradually. The mRNA and proteins of M-CSF decreased significantly after pretreatment with 10 µmol/L BAY 11-7082 for 1 h. There was no significant difference between BAY group and the control. Pe-LPS may induce

  1. Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.

    PubMed Central

    Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J

    1990-01-01

    The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing. PMID:2159144

  2. Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.

    PubMed

    Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J

    1990-05-01

    The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing.

  3. Prescription stimulant use is associated with earlier onset of psychosis.

    PubMed

    Moran, Lauren V; Masters, Grace A; Pingali, Samira; Cohen, Bruce M; Liebson, Elizabeth; Rajarethinam, R P; Ongur, Dost

    2015-12-01

    A childhood history of attention deficit hyperactivity disorder (ADHD) is common in psychotic disorders, yet prescription stimulants may interact adversely with the physiology of these disorders. Specifically, exposure to stimulants leads to long-term increases in dopamine release. We therefore hypothesized that individuals with psychotic disorders previously exposed to prescription stimulants will have an earlier onset of psychosis. Age of onset of psychosis (AOP) was compared in individuals with and without prior exposure to prescription stimulants while controlling for potential confounding factors. In a sample of 205 patients recruited from an inpatient psychiatric unit, 40% (n = 82) reported use of stimulants prior to the onset of psychosis. Most participants were prescribed stimulants during childhood or adolescence for a diagnosis of ADHD. AOP was significantly earlier in those exposed to stimulants (20.5 vs. 24.6 years stimulants vs. no stimulants, p < 0.001). After controlling for gender, IQ, educational attainment, lifetime history of a cannabis use disorder or other drugs of abuse, and family history of a first-degree relative with psychosis, the association between stimulant exposure and earlier AOP remained significant. There was a significant gender × stimulant interaction with a greater reduction in AOP for females, whereas the smaller effect of stimulant use on AOP in males did not reach statistical significance. In conclusion, individuals with psychotic disorders exposed to prescription stimulants had an earlier onset of psychosis, and this relationship did not appear to be mediated by IQ or cannabis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Recombinant human granulocyte colony-stimulating factor (rhG-CSF; filgrastim) treatment of clozapine-induced agranulocytosis.

    PubMed

    Nielsen, H

    1993-11-01

    After 10 weeks of treatment with clozapine, severe agranulocytosis was diagnosed in a 33-year-old female. The patient was treated with filgrastim (granulocyte colony-stimulating factor [G-CSF]) 5 micrograms kg-1 day-1. The neutrophil count was 0.234 x 10(9) l-1 on admission, with a further decrease the next day to < 0.050 x 10(9) l-1, and this complete agranulocytosis continued for 10 days. As no response was obtained after 1 week the dosage of filgrastim was increased to 10 micrograms kg-1 day-1 with immediate improvement. A rapid and pronounced leucocytosis developed with maximal value of neutrophil granulocytes (including immature forms) of 33.108 x 10(9) l-1 on day 12 after admission. The patient only had minor infectious complications during the neutropenic period. In conclusion, early treatment with filgrastim seems warranted in severe cases of clozapine-induced agranulocytosis. A dosage of 10 micrograms kg-1 day-1 can be recommended.

  5. Paradoxical drop in circulating neutrophil count following granulocyte-colony stimulating factor and stem cell factor administration in rhesus macaques.

    PubMed

    Gordon, Brent C; Revenis, Amy M; Bonifacino, Aylin C; Sander, William E; Metzger, Mark E; Krouse, Allen E; Usherson, Tatiana N; Donahue, Robert E

    2007-06-01

    Granulocyte colony-stimulating factor (G-CSF) is frequently used therapeutically to treat chronic or transient neutropenia and to mobilize hematopoietic stem cells. Shortly following G-CSF administration, we observed a dramatic transient drop in circulating neutrophil number. This article characterizes this effect in a rhesus macaque animal model. Hematologic changes were monitored following subcutaneous (SQ) administration of G-CSF. G-CSF was administered as a single SQ dose at 10 microg/kg or 50 microg/kg. It was also administered (10 microg/kg) in combination with stem cell factor (SCF; 200 microg/kg) over 5 days. Flow cytometry was performed on serial blood samples to detect changes in cell surface adhesion protein expression. Neutrophil count dramatically declined 30 minutes after G-CSF administration. This decline was observed whether 10 microg/kg G-CSF was administered in combination with SCF over 5 days, or given as a single 10 microg/kg dose. At a single 50 microg/kg dose, the decline accelerated to 15 minutes. Neutrophil count returned to baseline after 120 minutes and rapidly increased thereafter. An increase in CD11a and CD49d expression coincided with the drop in neutrophil count. A transient paradoxical decline in neutrophil count was observed following administration of G-CSF either alone or in combination with SCF. This decline accelerated with the administration of a higher dose of G-CSF and was associated with an increase in CD11a and CD49d expression. It remains to be determined whether this decline in circulating neutrophils is associated with an increase in endothelial margination and/or entrance into extravascular compartments.

  6. Gene expression-based detection of radiation exposure in mice after treatment with granulocyte colony-stimulating factor and lipopolysaccharide.

    PubMed

    Tucker, James D; Grever, William E; Joiner, Michael C; Konski, Andre A; Thomas, Robert A; Smolinski, Joseph M; Divine, George W; Auner, Gregory W

    2012-02-01

    In a large-scale nuclear incident, many thousands of people may be exposed to a wide range of radiation doses. Rapid biological dosimetry will be required on an individualized basis to estimate the exposures and to make treatment decisions. To ameliorate the adverse effects of exposure, victims may be treated with one or more cytokine growth factors, including granulocyte colony-stimulating factor (G-CSF), which has therapeutic efficacy for treating radiation-induced bone marrow ablation by stimulating granulopoiesis. The existence of infections and the administration of G-CSF each may confound the ability to achieve reliable dosimetry by gene expression analysis. In this study, C57BL/6 mice were used to determine the extent to which G-CSF and lipopolysaccharide (LPS, which simulates infection by gram-negative bacteria) alter the expression of genes that are either radiation-responsive or non-responsive, i.e., show potential for use as endogenous controls. Mice were acutely exposed to (60)Co γ rays at either 0 Gy or 6 Gy. Two hours later the animals were injected with either 0.1 mg/kg of G-CSF or 0.3 mg/kg of LPS. Expression levels of 96 different gene targets were evaluated in peripheral blood after an additional 4 or 24 h using real-time quantitative PCR. The results indicate that the expression levels of some genes are altered by LPS, but altered expression after G-CSF treatment was generally not observed. The expression levels of many genes therefore retain utility for biological dosimetry or as endogenous controls. These data suggest that PCR-based quantitative gene expression analyses may have utility in radiation biodosimetry in humans even in the presence of an infection or after treatment with G-CSF.

  7. Stimulating at the right time: phase-specific deep brain stimulation.

    PubMed

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. Sulforaphane has opposing effects on TNF-alpha stimulated and unstimulated synoviocytes.

    PubMed

    Fragoulis, Athanassios; Laufs, Jendrik; Müller, Susanna; Soppa, Ulf; Siegl, Stephanie; Reiss, Lucy Kathleen; Tohidnezhad, Mersedeh; Rosen, Christian; Tenbrock, Klaus; Varoga, Deike; Lippross, Sebastian; Pufe, Thomas; Wruck, Christoph Jan

    2012-10-27

    Rheumatoid arthritis (RA) is characterized by progressive inflammation associated with rampantly proliferating synoviocytes and joint destruction due to oxidative stress. Recently, we described nuclear factor erythroid 2-related factor 2 (Nrf2) as a major requirement for limiting cartilage destruction. NF-κB and AP-1 are the main transcription factors triggering the inflammatory progression in RA. We used sulforaphane, an isothiocyanate, which is both an Nrf2 inducer and a NF-κB and AP-1 inhibitor. Cultured synoviocytes were stimulated with sulforaphane (SFN) with or without TNF-α pre-treatment. NF-κB, AP-1, and Nrf2 activation was investigated via dual luciferase reporter gene assays. Matrix metalloproteinases (MMPs) were measured via zymography and luminex technique. Cytokine levels were detected using ELISA. Cell viability, apoptosis and caspase activity were studied. Cell proliferation was analysed by real-time cell analysis. SFN treatment decreased inflammation and proliferation dose-dependently in TNF-α-stimulated synoviocytes. SFN did not reduce MMP-3 and MMP-9 activity or expression significantly. Interestingly, we demonstrated that SFN has opposing effects on naïve and TNF-α-stimulated synoviocytes. In naïve cells, SFN activated the cytoprotective transcription factor Nrf2. In marked contrast to this, SFN induced apoptosis in TNF-α-pre-stimulated synoviocytes. We were able to show that SFN treatment acts contrary on naïve and inflammatory synoviocytes. SFN induces the cytoprotective transcription factor Nrf2 in naïve synoviocytes, whereas it induces apoptosis in inflamed synoviocytes. These findings indicate that the use of sulforaphane might be considered as an adjunctive therapeutic strategy to combat inflammation, pannus formation, and cartilage destruction in RA.

  9. Granulocyte colony-stimulating factor enhances protection by anti-K1 capsular IgM antibody in murine Escherichia coli sepsis.

    PubMed

    Hustinx, W; Benaissa-Trouw, B; Van Kessel, K; Kuenen, J; Tavares, L; Kraaijeveld, K; Verhoef, J; Hoepelman, A

    1997-12-01

    Combined prophylactic treatment with recombinant murine granulocyte colony-stimulating factor (G-CSF) and a suboptimal dose of anti-K1 capsular IgM monoclonal antibody (MAb) significantly enhanced survival in an experimental mouse Escherichia coli O7:K1 peritonitis model compared with untreated animals (67% vs. 11% survival; P < 0.001) and with either treatment alone (67 vs. 29% and 27% survival, respectively; P < 0.01), which suggests synergism between these agents. Enhanced survival by combined treatment was associated with increased neutrophil counts in blood and peritoneal lavage fluid, lower systemic and higher levels of local tumour necrosis factor (TNF) and lower bacterial counts in blood cultures. Mouse neutrophils treated with G-CSF but not infected with E. coli showed enhanced phagocytic and respiratory burst capacity, down-regulation of L-selectin receptors and enhanced expression of Fc RII-III receptors but not of complement receptors.

  10. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Heparin-binding epidermal growth factor expression in KATO-III cells after Helicobacter pylori stimulation under the influence of strychnos Nux vomica and Calendula officinalis.

    PubMed

    Hofbauer, Roland; Pasching, Eva; Moser, Doris; Frass, Michael

    2010-07-01

    Previous studies have shown the stimulating effect of Helicobacter pylori on the gene expression of heparin-binding epidermal growth factor (HB-EGF) using the gastric epithelial cell line KATO-III. Strychnos Nux vomica (Nux vomica) and Calendula officinalis are used in highly diluted form in homeopathic medicine to treat patients suffering from gastritis and gastric ulcers. To investigate the influence of Nux vomica and Calendula officinalis on HB-EGF-like growth factor gene expression in KATO-III cells under the stimulation of H. pylori strain N6 using real-time PCR with and without addition of Nux vomica and Calendula officinalis as a 10c or 12c potency. Baseline expression and stimulation were similar to previous experiments, addition of Nux vomica 10c and Calendula officinalis 10c in a 43% ethanolic solution led to a significant reduction of H. pylori induced increase in gene expression of HB-EGF (reduced to 53.12+/-0.95% and 75.32+/-1.16% vs. control; p<0.05), respectively. Nux vomica 12c reduced HB-EGF gene expression even in dilutions beyond Avogadro's number (55.77+/-1.09%; p<0.05). Nux vomica 12c in a 21.5% ethanol showed a smaller effect (71.80+/-3.91%, p<0.05). This effect was only be observed when the drugs were primarily prepared in ethanol, not in aqueous solutions. The data suggest that both drugs prepared in ethanolic solution are potent inhibitors of H. pylori induced gene expression. 2010 Elsevier Ltd. All rights reserved.

  12. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    PubMed Central

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  13. Effectiveness of Granulocyte Colony-Stimulating Factor in Hospitalized Infants with Neutropenia.

    PubMed

    Lee, Jin A; Sauer, Brooke; Tuminski, William; Cheong, Jiyu; Fitz-Henley, John; Mayers, Megan; Ezuma-Igwe, Chidera; Arnold, Christopher; Hornik, Christoph P; Clark, Reese H; Benjamin, Daniel K; Smith, P Brian; Ericson, Jessica E

    2017-04-01

    Objective  The objective of this study was to determine the time to hematologic recovery and the incidence of secondary sepsis and mortality among neutropenic infants treated or not treated with granulocyte colony-stimulating factor (G-CSF). Study Design  We identified all neutropenic infants discharged from 348 neonatal intensive care units from 1997 to 2012. Neutropenia was defined as an absolute neutrophil count ≤ 1,500/µL for ≥ 1 day during the first 120 days of life. Incidence of secondary sepsis and mortality and number of days required to reach an absolute neutrophil count > 1,500/µL for infants exposed to G-CSF were compared with those of unexposed infants. Results  We identified 30,705 neutropenic infants, including 2,142 infants (7%) treated with G-CSF. Treated infants had a shorter adjusted time to hematologic recovery (hazard ratio: 1.36, 95% confidence interval [CI]: 1.30-1.44) and higher adjusted odds of secondary sepsis (odds ratio [OR]: 1.50, 95% CI: 1.20-1.87), death (OR: 1.33, 95% CI: 1.05-1.68), and the combined outcome of sepsis or death (OR: 1.41, 95% CI: 1.19-1.67) at day 14 compared with untreated infants. These differences persisted at day 28. Conclusion  G-CSF treatment decreased the time to hematologic recovery but was associated with increased odds of secondary sepsis and mortality in neutropenic infants. G-CSF should not routinely be used for infants with neutropenia. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. [Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].

    PubMed

    Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P

    2012-12-01

    Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.

  15. Factor Analysis of Low-Frequency Repetitive Transcranial Magnetic Stimulation to the Temporoparietal Junction for Tinnitus

    PubMed Central

    Li, Bei; Wang, Meiye; Li, Ming; Yin, Shankai

    2016-01-01

    Objectives. We investigated factors that contribute to suppression of tinnitus after repetitive transcranial magnetic stimulation (rTMS). Methods. A total of 289 patients with tinnitus underwent active 1 Hz rTMS in the left temporoparietal region. A visual analog scale (VAS) was used to assess tinnitus loudness. All participants were interviewed regarding age, gender, tinnitus duration, laterality and pitch, audiometric parameters, sleep, and so forth. The resting motor thresholds (RMTs) were measured in all patients and 30 age- and gender-matched volunteers. Results. With respect to different factors that contribute to tinnitus suppression, we found improvement in the following domains: shorter duration, normal hearing (OR: 3.25, 95%CI: 2.01–5.27, p = 0.001), and without sleep disturbance (OR: 2.51, 95%CI: 1.56–4.1, p = 0.005) adjusted for age and gender. The patients with tinnitus lasting less than 1 year were more likely to show suppression of tinnitus (OR: 2.77, 95%CI: 1.48–5.19, p = 0.002) compared to those with tinnitus lasting more than 5 years. Tinnitus patients had significantly lower RMTs compared with healthy volunteers. Conclusion. Active low-frequency rTMS results in a significant reduction in the loudness of tinnitus. Significant tinnitus suppression was shown in subjects with shorter tinnitus duration, with normal hearing, and without sleep disturbance. PMID:27847647

  16. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte–macrophage colony-stimulating factor in experimental pulmonary tuberculosis

    PubMed Central

    Francisco-Cruz, A.; Mata-Espinosa, D.; Estrada-Parra, S.; Xing, Z.; Hernández-Pando, R.

    2013-01-01

    Summary BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte–macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. PMID:23379435

  17. Theoretical studies on beta and delta isoform-specific binding mechanisms of phosphoinositide 3-kinase inhibitors.

    PubMed

    Zhu, Jingyu; Pan, Peichen; Li, Youyong; Wang, Man; Li, Dan; Cao, Biyin; Mao, Xinliang; Hou, Tingjun

    2014-03-04

    Phosphoinositide 3-kinase (PI3K) is known to be closely related to tumorigenesis and cell proliferation, and controls a variety of cellular processes, including proliferation, growth, apoptosis, migration, metabolism, etc. The PI3K family comprises eight catalytic isoforms, which are subdivided into three classes. Recently, the discovery of inhibitors that block a single isoform of PI3K has continued to attract special attention because they may have higher selectivity for certain tumors and less toxicity for healthy cells. The PI3Kβ and PI3Kδ share fewer studies than α/γ, and therefore, in this work, the combination of molecular dynamics simulations and free energy calculations was employed to explore the binding of three isoform-specific PI3K inhibitors (COM8, IC87114, and GDC-0941) to PI3Kβ or PI3Kδ. The isoform specificities of the studied inhibitors derived from the predicted binding free energies are in good agreement with the experimental data. In addition, the key residues critical for PI3Kβ or PI3Kδ selectivity were highlighted by decomposing the binding free energies into the contributions from individual residues. It was observed that although PI3Kβ and PI3Kδ share the conserved ATP-binding pockets, individual residues do behave differently, particularly the residues critical for PI3Kβ or PI3Kδ selectivity. It can be concluded that the inhibitor specificity between PI3Kβ and PI3Kδ is determined by the additive contributions from multiple residues, not just a single one. This study provides valuable information for understanding the isoform-specific binding mechanisms of PI3K inhibitors, and should be useful for the rational design of novel and selective PI3K inhibitors.

  18. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.

    PubMed

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-07-16

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  19. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    PubMed Central

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  20. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes.

    PubMed

    Xu, Lei; Zhou, Xinying; Wang, Wenshi; Wang, Yijin; Yin, Yuebang; Laan, Luc J W van der; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-10-01

    IFN regulatory factor 1 (IRF1) is one of the most important IFN-stimulated genes (ISGs) in cellular antiviral immunity. Although hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide, how ISGs counteract HEV infection is largely unknown. This study was conducted to investigate the effect of IRF1 on HEV replication. Multiple cell lines were used in 2 models that harbor HEV. In different HEV cell culture systems, IRF1 effectively inhibited HEV replication. IRF1 did not trigger IFN production, and chromatin immunoprecipitation sequencing data analysis revealed that IRF1 bound to the promoter region of signal transducers and activators of transcription 1 (STAT1). Functional assay confirmed that IRF1 could drive the transcription of STAT1, resulting in elevation of total and phosphorylated STAT1 proteins and further activating the transcription of a panel of downstream antiviral ISGs. By pharmacological inhibitors and RNAi-mediated gene-silencing approaches, we revealed that antiviral function of IRF1 is dependent on the JAK-STAT cascade. Furthermore, induction of ISGs and the anti-HEV effect of IRF1 overlapped that of IFNα, but was potentiated by ribavirin. We demonstrated that IRF1 effectively inhibits HEV replication through the activation of the JAK-STAT pathway, and the subsequent transcription of antiviral ISGs, but independent of IFN production.-Xu, L., Zhou, X., Wang, W., Wang, Y., Yin, Y., van der Laan, L. J. W., Sprengers, D., Metselaar, H. J., Peppelenbosch, M. P., Pan, Q. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes. © FASEB.