Sample records for factor tf gene

  1. Identifying Stress Transcription Factors Using Gene Expression and TF-Gene Association Data

    PubMed Central

    Wu, Wei-Sheng; Chen, Bor-Sen

    2007-01-01

    Unicellular organisms such as yeasts have evolved to survive environmental stresses by rapidly reorganizing the genomic expression program to meet the challenges of harsh environments. The complex adaptation mechanisms to stress remain to be elucidated. In this study, we developed Stress Transcription Factor Identification Algorithm (STFIA), which integrates gene expression and TF-gene association data to identify the stress transcription factors (TFs) of six kinds of stresses. We identified some general stress TFs that are in response to various stresses, and some specific stress TFs that are in response to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs may be sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the adaptation mechanisms to different stresses may have a bow-tie structure. Second, there may exist extensive regulatory cross-talk among different stress responses. In conclusion, this study proposes a network of the regulators of stress responses and their mechanism of action. PMID:20066130

  2. SM-TF: A structural database of small molecule-transcription factor complexes.

    PubMed

    Xu, Xianjin; Ma, Zhiwei; Sun, Hongmin; Zou, Xiaoqin

    2016-06-30

    Transcription factors (TFs) are the proteins involved in the transcription process, ensuring the correct expression of specific genes. Numerous diseases arise from the dysfunction of specific TFs. In fact, over 30 TFs have been identified as therapeutic targets of about 9% of the approved drugs. In this study, we created a structural database of small molecule-transcription factor (SM-TF) complexes, available online at http://zoulab.dalton.missouri.edu/SM-TF. The 3D structures of the co-bound small molecule and the corresponding binding sites on TFs are provided in the database, serving as a valuable resource to assist structure-based drug design related to TFs. Currently, the SM-TF database contains 934 entries covering 176 TFs from a variety of species. The database is further classified into several subsets by species and organisms. The entries in the SM-TF database are linked to the UniProt database and other sequence-based TF databases. Furthermore, the druggable TFs from human and the corresponding approved drugs are linked to the DrugBank. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression.

    PubMed

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen; Brent, Gregory A

    2011-03-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).

  4. Thyroid Hormone and COUP-TF1 Regulate Kallikrein-Binding Protein (KBP) Gene Expression

    PubMed Central

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen

    2011-01-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T3 and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5′ flanking region (−53 to −29) and nTRE2, located in the first intron (104–132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T3. COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T3 repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T3. Nuclear corepressor knockdown resulted in loss of T3 repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T3 induction of positive thyroid hormone response elements, reverses T3 repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T3 and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T3. PMID:21266512

  5. CORE_TF: a user-friendly interface to identify evolutionary conserved transcription factor binding sites in sets of co-regulated genes

    PubMed Central

    Hestand, Matthew S; van Galen, Michiel; Villerius, Michel P; van Ommen, Gert-Jan B; den Dunnen, Johan T; 't Hoen, Peter AC

    2008-01-01

    Background The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set of similarly regulated promoters or to look for conservation in orthologous promoter alignments. Results We have developed a novel tool, "CORE_TF" (Conserved and Over-REpresented Transcription Factor binding sites) that identifies common transcription factor binding sites in promoters of co-regulated genes. To improve upon existing binding site predictions, the tool searches for position weight matrices from the TRANSFACR database that are over-represented in an experimental set compared to a random set of promoters and identifies cross-species conservation of the predicted transcription factor binding sites. The algorithm has been evaluated with expression and chromatin-immunoprecipitation on microarray data. We also implement and demonstrate the importance of matching the random set of promoters to the experimental promoters by GC content, which is a unique feature of our tool. Conclusion The program CORE_TF is accessible in a user friendly web interface at . It provides a table of over-represented transcription factor binding sites in the users input genes' promoters and a graphical view of evolutionary conserved transcription factor binding sites. In our test data sets it successfully predicts target transcription factors and their binding sites. PMID:19036135

  6. Associations of TF Gene Polymorphisms with the Risk of Ischemic Stroke.

    PubMed

    Cai, Yi; Wu, Shaofang; Zeng, Chaosheng; Su, Qingjie; Zhou, Jingxia; Li, Pengxiang; Dai, Mingming; Wang, Desheng; Long, Faqing

    2018-06-23

    Ischemic stroke (IS) is the main cause of mortality and disability in China; thus, this study aimed to examine the association between six variants and their haplotypes within the transferrin (TF) gene and the risk of IS in the Southern Chinese Han population. Genotyping was performed using the Sequenom MassARRAY platform for 249 IS patients and 249 age- and sex-matched controls. The association between polymorphisms and IS risk was tested by Chi squared test and haplotype and stratification analysis. Odds ratios (ORs) and confidence intervals (CIs) were estimated by unconditional logistic regression analysis. The results of genetic model analyses indicated that the two SNPs (rs1880669 and rs2692695) were associated with decreased IS risk under the co-dominant, dominant, and additive models. Additionally, rs4525863 was also associated with decreased IS risk both under the dominant and additive models in males. Moreover, the CG haplotype of TF (rs1880669 and rs2692695) was significantly associated with a decreased risk of IS in the total population and males. Our findings suggested that polymorphisms (rs4525863, rs1880669, and rs2692695) of the TF gene might be a protective factor for IS in Southern Chinese Han population. Further large prospective studies are required to confirm these findings.

  7. Structural modulation of factor VIIa by full-length tissue factor (TF1-263): implication of novel interactions between EGF2 domain and TF.

    PubMed

    Prasad, Ramesh; Sen, Prosenjit

    2018-02-01

    Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF 1-263 -FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF 1-263 -FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.

  8. The nuclear orphan receptors COUP-TF and ARP-1 positively regulate the trout estrogen receptor gene through enhancing autoregulation.

    PubMed Central

    Lazennec, G; Kern, L; Valotaire, Y; Salbert, G

    1997-01-01

    The rainbow trout estrogen receptor (rtER) is a positively autoregulated gene in liver cells. In a previous report, we showed that upregulation is mediated by an estrogen response element (ERE) located in the proximal promoter of the gene and that a half binding site for nuclear receptors (5'-TGACCT-3') located 15 bp upstream of the ERE is involved in the magnitude of the estrogen response. We now report that the human orphan receptor COUP-TF and a COUP-TF-like protein from trout liver are able to bind to the consensus half-site. When cotransfected with the rtER gene proximal promoter, COUP-TF had no regulatory functions on its own. Interestingly, COUP-TF enhanced rtER transactivation properties in the presence of estradiol in a dose-dependent manner when cotransfected with the rtER gene promoter. Unliganded retinoid receptor heterodimers had the same helper function as COUP-TF in the presence of estradiol but were switched to repressors when the ligand all-trans-retinoic acid was added. Mutation of the consensus half-site only slightly reduced COUP-TF helper function, suggesting that it actually results from a complex mechanism that probably involves both DNA binding of COUP-TF to the promoter and protein-protein interaction with another transcription factor bound to the promoter. Nevertheless, a DNA-binding-defective mutant of COUP-TF was also defective in ER helper function. Competition footprinting analysis suggested that COUP-TF actually establishes contacts with the consensus upstream half-site and the downstream ERE half-site that would form a DR-24-like response element. Interaction of COUP-TF with the DR-24 element was confirmed in footprinting assays by using nuclear extracts from Saccharomyces cerevisiae expressing COUP-TF. Finally, interaction of COUP-TF with mutants of the rtER gene promoter showed that COUP-TF recognizes the ERE when the upstream half-site is mutated. These data show that COUP-TF may activate transcription through interaction with

  9. Hypoxia and PGE2 Regulate MiTF-CX During Cervical Ripening

    PubMed Central

    Hari Kishore, Annavarapu; Li, Xiang-Hong

    2012-01-01

    The mechanisms by which the cervix remains closed during the massive uterine expansion of pregnancy are unknown. IL-8 is important for recruitment of immune cells into the cervical stroma, matrix remodeling, and dilation of the cervix during labor. Previously, we have shown that several cytokine genes transcriptionally repressed in the cervix during gestation are activated during cervical ripening and dilation. IL-8 gene expression is repressed in cervical stromal cells during pregnancy by the transcription factor microphthalmia-associated transcription factor (MiTF-CX). Here, we tested the hypothesis that hypoxia and the transcription factor hypoxia inducible factor-1α (HIF-1α) may regulate MiTF-CX and cervical ripening. Using tissues from women during pregnancy before and after cervical ripening, we show that, during cervical ripening, HIF-1α was stabilized and relocalized to the nucleus. Further, we found that hypoxia and two hypoxia mimetics that stabilize HIF-1α activated the transcriptional repressor differentiated embryo chondrocyte-expressed gene 1, which bound to sites in the MiTF-CX promoter crucial for its positive autoregulation. Ectopic overexpression of MiTF-CX abrogated hypoxia-induced up-regulation of IL-8 gene expression. We also show that activation of HIF-1α induced cyclooxygenase-2 and that prostaglandin E2 repressed MiTF-CX. We conclude that hypoxia and stabilization of the transcription factor HIF-1α result in up-regulation of differentiated embryo chondrocyte-expressed gene 1, loss of MiTF, and absence of MiTF binding to the IL-8 promoter, which in turn leads to up-regulation of IL-8 gene expression. Hypoxia also up-regulated cyclooxygenase-2, leading to prostaglandin E2-mediated loss of MiTF in cervical stromal cells. The results support a pivotal role for hypoxia and HIF-1α in the cervical ripening process during pregnancy. PMID:23144021

  10. The Long Terminal Repeat Retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe.

    PubMed

    Esnault, Caroline; Levin, Henry L

    2015-08-01

    The long terminal repeat (LTR) retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe are active mobile elements of the Ty3/gypsy family. The mobilization of these retrotransposons depends on particle formation, reverse transcription and integration, processes typical of other LTR retrotransposons. However, Tf1 and Tf2 are distinct from other LTR elements in that they assemble virus-like particles from a single primary translation product, initiate reverse transcription with an unusual self-priming mechanism, and, in the case of Tf1, integrate with a pattern that favors specific promoters of RNA pol II-transcribed genes. To avoid the chromosome instability and genome damage that results from increased copy number, S. pombe applies a variety of defense mechanisms that restrict Tf1 and Tf2 activity. The mRNA of the Tf elements is eliminated by an exosome-based pathway when cells are in favorable conditions whereas nutrient deprivation triggers an RNA interference-dependent pathway that results in the heterochromatization of the elements. Interestingly, Tf1 integrates into the promoters of stress-induced genes and these insertions are capable of increasing the expression of adjacent genes. These properties of Tf1 transposition raise the possibility that Tf1 benefits cells with specific insertions by providing resistance to environmental stress.

  11. Stochastic model of transcription factor-regulated gene expression

    NASA Astrophysics Data System (ADS)

    Karmakar, Rajesh; Bose, Indrani

    2006-09-01

    We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.

  12. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance.

    PubMed

    Bang, Seung Woon; Lee, Dong-Keun; Jung, Harin; Chung, Pil Joong; Kim, Youn Shic; Choi, Yang Do; Suh, Joo-Won; Kim, Ju-Kon

    2018-05-21

    Drought stress seriously impacts on plant development and productivity. Improvement of drought tolerance without yield penalty is a great challenge in crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper transcription factor gene, OsTF1L (Oryza sativa transcription factor 1-like), is a key regulator of drought tolerance mechanisms. Overexpression of the OsTF1L in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both effective photosynthesis and a reduction in the water loss rate under drought conditions. Importantly, the OsTF1L overexpressing plants showed a higher drought tolerance at the reproductive stage of growth with a higher grain yield than non-transgenic controls under field-drought conditions. Genome-wide analysis of OsTF1L overexpression plants revealed up-regulation of drought-inducible, stomatal movement and lignin biosynthetic genes. Overexpression of OsTF1L promoted accumulation of lignin in shoots, whereas the RNAi lines showed opposite patterns of lignin accumulation. OsTF1L is mainly expressed in outer cell layers including the epidermis, and the vasculature of the shoots, which coincides with areas of lignification. In addition, OsTF1L overexpression enhances stomatal closure under drought conditions resulted in drought tolerance. More importantly, OsTF1L directly bound to the promoters of lignin biosynthesis and drought-related genes involving poxN/PRX38, Nodulin protein, DHHC4, CASPL5B1 and AAA-type ATPase. Collectively, our results provide a new insight into the role of OsTF1L in enhancing drought tolerance through lignin biosynthesis and stomatal closure in rice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Nup124p Is a Nuclear Pore Factor of Schizosaccharomyces pombe That Is Important for Nuclear Import and Activity of Retrotransposon Tf1

    PubMed Central

    Balasundaram, David; Benedik, Michael J.; Morphew, Mary; Dang, Van-Dinh; Levin, Henry L.

    1999-01-01

    The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag. PMID:10409764

  14. Nup124p is a nuclear pore factor of Schizosaccharomyces pombe that is important for nuclear import and activity of retrotransposon Tf1.

    PubMed

    Balasundaram, D; Benedik, M J; Morphew, M; Dang, V D; Levin, H L

    1999-08-01

    The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.

  15. USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1.

    PubMed

    Maekawa, T; Sudo, T; Kurimoto, M; Ishii, S

    1991-09-11

    The transcription factor HIV-TF1, which binds to a region about 60 bp upstream from the enhancer of the human immunodeficiency virus-1 (HIV-1), was purified from human B cells. HIV-TF1 had a molecular weight of 39,000. Binding of HIV-TF1 to the HIV long terminal repeat (LTR) activated transcription from the HIV promoter in vitro. The HIV-TF1-binding site in HIV LTR was similar to the site recognized by upstream stimulatory factor (USF) in the adenovirus major late promoter. DNA-binding properties of HIV-TF1 suggested that HIV-TF1 might be identical or related to USF. Interestingly, treatment of purified HIV-TF1 by phosphatase greatly reduced its DNA-binding activity, suggesting that phosphorylation of HIV-TF1 was essential for DNA binding. The disruption of HIV-TF1-binding site induced a 60% decrease in the level of transcription from the HIV promoter in vivo. These results suggest that HIV-TF1 is involved in transcriptional regulation of HIV-1.

  16. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    PubMed

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

  17. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells

    PubMed Central

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-01-01

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment. PMID:27827420

  18. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi

    2006-12-15

    The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17{alpha}-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ER{alpha}-selective agonist), diarylpropionitrile (DPN, an ER{beta}-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE inmore » the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ER{alpha}-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ER{beta}-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.« less

  19. Association study between four polymorphisms in the HFE, TF and TFR genes and Parkinson's disease in southern Italy.

    PubMed

    Greco, Valentina; De Marco, Elvira Valeria; Rocca, Francesca Emanuela; Annesi, Ferdinanda; Civitelli, Donatella; Provenzano, Giovanni; Tarantino, Patrizia; Scornaienchi, Vittorio; Pucci, Franco; Salsone, Maria; Novellino, Fabiana; Morelli, Maurizio; Paglionico, Sandra; Gambardella, Antonio; Quattrone, Aldo; Annesi, Grazia

    2011-06-01

    Iron overload may lead to neurodegenerative disorders such as Parkinson's disease (PD) and alterations of iron-related genes might be involved in the pathogenesis of this disease. The gene of haemochromatosis (HFE) encodes the HFE protein which interacts with the transferrin receptor (TFR), lowering its affinity for iron-bound transferrin (TF). We examined four known polymorphisms, C282Y and H63D in the HFE gene, G258S in the TF gene and S82G in the TFR gene, in 181 sporadic PD patients and 180 controls from Southern Italy to investigate their possible role in susceptibility to PD. No significant differences were found in genotype and allele frequencies between PD and controls for all the polymorphisms studied, suggesting that these variants do not contribute significantly to the risk of PD.

  20. Increased circulating procoagulant and anticoagulant factors as TF and TFPI according to severity or infecting serotypes in human dengue infection.

    PubMed

    Leal de Azeredo, Elzinandes; Solórzano, Victor Edgar Fiestas; de Oliveira, Débora Batista; Marinho, Cintia Ferreira; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Kubelka, Claire Fernandes; de-Oliveira-Pinto, Luzia Maria

    2017-01-01

    Tissue Factor (TF) is the initiator of coagulation and Tissue Factor Inhibitor (TFPI) is the physiological inhibitor of the TF/FVIIa complex. Circulating levels of TF and TFPI were quantified in dengue patients and the relationships with disease severity and infecting serotype analysed. A significant decrease in TF and TPFI plasma levels was observed in mild DF patients compared with severe dengue. Furthermore, both factors were associated with haemorrhagic manifestations. Finally, TF levels were significantly increased in DENV-1/2 infected patients as compared with DENV-4. These findings suggest that activation of TF-pathway is an important component of DENV -related coagulation disorders. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  2. Construction and properties of a temperature-sensitive mutation in the gene for the bacteriophage SPO1 DNA-binding protein TF1.

    PubMed

    Sayre, M H; Geiduschek, E P

    1990-08-01

    The Bacillus subtilis bacteriophage SPO1 encodes the DNA-binding protein TF1, a homolog of the ubiquitous type II DNA-binding proteins that are components of bacterial chromatin. The known three-dimensional structure of a related protein was used in devising a scheme of site-directed mutagenesis that led to the creation of a temperature-sensitive mutation in the TF1 gene. At the nonpermissive temperature, this mutation disrupted the temporal regulation of viral protein synthesis and processing, altered the kinetics of accumulation of at least one viral transcript, and prohibited the production of infective progeny phage. We suggest that TF1 function is required to shut off the expression of several early-middle and middle viral genes and that TF1 plays a role in phage head morphogenesis. Spontaneous second-site mutations of the temperature-sensitive mutant TF1 allele that suppressed its associated phenotypes were analyzed. These suppressor mutations conferred greater amino acid sequence homology with the type II DNA-binding protein from the thermophile Bacillus stearothermophilus.

  3. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. DNA-bending properties of TF1.

    PubMed

    Schneider, G J; Sayre, M H; Geiduschek, E P

    1991-10-05

    Transcription factor 1 (TF1) is the Bacillus subtilis phage SPO1-encoded member of the family of DNA-binding proteins that includes Escherichia coli HU and integration host factor, IHF. A gel electrophoretic retardation method has been used to show that a TF1 dimer binding to one of its preferred sites in (5-hydroxymethyl)uracil (hmUra)-containing DNA sharply bends the latter. In fact, the DNA-bending properties of TF1 and E. coli IHF are indistinguishable. Substitutions at amino acid 61 in the DNA-binding "arm" of TF1 are known to affect DNA-binding affinity and site selectivity. Experiments described here show that these substitutions also affect DNA bending. The selectivity of TF1 binding is very greatly diminished and the affinity is reduced when hmUra is replaced in DNA by thymine (T). An extension of the gel retardation method that permits an analysis of DNA bending by non-specifically bound TF1 is proposed. Under the assumptions of this analysis, the reduced affinity of TF1 for T-containing DNA is shown to be associated with bending that is still sharp. The analysis of the TF1-DNA interaction has also been extended by hydroxyl radical (.OH) and methylation interference footprinting at two DNA sites. At each of these sites, and on each strand, TF1 strongly protects three segments of DNA from attack by OH. Patches of protected DNA are centered approximately ten base-pairs apart and fall on one side of the B-helix. Methylation in either the major or minor groove in the central ten base-pairs of the two TF1 binding sites quantitatively diminishes, but does not abolish, TF1 binding. We propose that multiple protein contacts allow DNA to wrap around the relatively small TF1 dimer, considerably deforming the DNA B-helix in the process.

  5. Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression.

    PubMed

    Zhuang, Yong; Gudas, Lorraine J

    2008-09-01

    Vitamin A (retinol [Rol]) and its metabolites are essential for embryonic development. The Rol metabolite all-trans retinoic acid (RA) is a biologically active form of Rol. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription-factors (COUP-TF) proteins have been implicated in the regulation of several important biological processes, such as embryonic development and neuronal cell differentiation. Because there is evidence that COUP-TFs function in the retinoid signaling network during development and differentiation, we generated murine embryonic stem (ES) cell lines which stably and constitutively overexpress COUP-TF1 (NR2F1) and we analyzed RA-induced differentiation. COUP-TF1 overexpression resulted in reduced RA-associated growth arrest. A 2.4+/-0.17-fold higher Nanog mRNA level was seen in COUP-TF1 overexpressing lines, as compared with wild-type (WT) ES cells, after a 72 hr RA treatment. We also showed that COUP-TF1 overexpression enhanced RA-induced extraembryonic endoderm gene expression. Specifically, COUP-TF1 overexpression increased mRNA levels of GATA6 by 3.3+/-0.3-fold, GATA4 by 3.6+/-0.1-fold, laminin B1 (LAMB1) by 3.4+/-0.1-fold, LAMC1 by 3.4+/-0.2-fold, Dab2 by 2.4+0.1-fold, and SOX17 by 2.5-fold at 72 hr after RA treatment plus LIF, as compared with the increases seen in WT ES cells. However, RA-induced neurogenesis was unaffected by COUP-TF1 overexpression, as shown by the equivalent levels of expression of NeuroD1, nestin, GAP43 and other neuronal markers. Our results revealed for the first time that COUP-TF1 is an important signaling molecule during vitamin A (Rol)-mediated very early stage of embryonic development.

  6. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  7. Diversification of transcription factor-DNA interactions and the evolution of gene regulatory networks.

    PubMed

    Rogers, Julia M; Bulyk, Martha L

    2018-04-25

    Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology. © 2018 Wiley Periodicals, Inc.

  8. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  9. Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1

    PubMed Central

    Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan

    2006-01-01

    AIM: To study the expression of HBV enhancer II by transcription factor COUP-TF1. METHODS: In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. RESULTS: Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. CONCLUSION: Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes. PMID:17009409

  10. Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1.

    PubMed

    Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan

    2006-10-07

    To study the expression of HBV enhancer II by transcription factor COUP-TF1. In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes.

  11. Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames.

    PubMed

    Behrens, R; Hayles, J; Nurse, P

    2000-12-01

    Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100-420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed.

  12. Repressor- and Activator-Type Ethylene Response Factors Functioning in Jasmonate Signaling and Disease Resistance Identified via a Genome-Wide Screen of Arabidopsis Transcription Factor Gene Expression[w

    PubMed Central

    McGrath, Ken C.; Dombrecht, Bruno; Manners, John M.; Schenk, Peer M.; Edgar, Cameron I.; Maclean, Donald J.; Scheible, Wolf-Rüdiger; Udvardi, Michael K.; Kazan, Kemal

    2005-01-01

    To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NAC TF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor- and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance. PMID:16183832

  13. The transcription factor titration effect dictates level of gene expression.

    PubMed

    Brewster, Robert C; Weinert, Franz M; Garcia, Hernan G; Song, Dan; Rydenfelt, Mattias; Phillips, Rob

    2014-03-13

    Models of transcription are often built around a picture of RNA polymerase and transcription factors (TFs) acting on a single copy of a promoter. However, most TFs are shared between multiple genes with varying binding affinities. Beyond that, genes often exist at high copy number-in multiple identical copies on the chromosome or on plasmids or viral vectors with copy numbers in the hundreds. Using a thermodynamic model, we characterize the interplay between TF copy number and the demand for that TF. We demonstrate the parameter-free predictive power of this model as a function of the copy number of the TF and the number and affinities of the available specific binding sites; such predictive control is important for the understanding of transcription and the desire to quantitatively design the output of genetic circuits. Finally, we use these experiments to dynamically measure plasmid copy number through the cell cycle. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Demonstration of retrotransposition of the Tf1 element in fission yeast.

    PubMed

    Levin, H L; Boeke, J D

    1992-03-01

    Tf1, a retrotransposon from fission yeast, has LTRs and coding sequences resembling the protease, reverse transcriptase and integrase domains of retroviral pol genes. A unique aspect of Tf1 is that it contains a single open reading frame whereas other retroviruses and retrotransposons usually possess two or more open reading frames. To determine whether Tf1 can transpose, we overproduced Tf1 transcripts encoded by a plasmid copy of the element marked with a neo gene. Approximately 0.1-4.0% of the cell population acquired chromosomally inherited resistance to G418. DNA blot analysis demonstrated that such strains had acquired both Tf1 and neo specific sequences within a restriction fragment of the same size; the size of this restriction fragment varied between different isolates. Structural analysis of the cloned DNA flanking the Tf1-neo element of two transposition candidates with the same regions in the parent strain showed that the ability to grow on G418 was due to transposition of Tf1-neo and not other types of recombination events.

  15. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein.

    PubMed Central

    Avram, Dorina; Fields, Andrew; Senawong, Thanaset; Topark-Ngarm, Acharawan; Leid, Mark

    2002-01-01

    Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems. PMID:12196208

  16. Fission yeast retrotransposon Tf1 integration is targeted to 5′ ends of open reading frames

    PubMed Central

    Behrens, Ralf; Hayles, Jacky; Nurse, Paul

    2000-01-01

    Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100–420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed. PMID:11095681

  17. TF1, the bacteriophage SPO1-encoded type II DNA-binding protein, is essential for viral multiplication.

    PubMed

    Sayre, M H; Geiduschek, E P

    1988-09-01

    The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.

  18. Systematic Analysis of Zn2Cys6 Transcription Factors Required for Development and Pathogenicity by High-Throughput Gene Knockout in the Rice Blast Fungus

    PubMed Central

    Huang, Pengyun; Lin, Fucheng

    2014-01-01

    Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn2Cys6 transcription factor (TF) genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn2Cys6TF genes. A large variation in biological functions of Zn2Cys6TF genes was observed under the conditions tested. Sixty-one of 104 Zn2Cys6 TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae. PMID:25299517

  19. Radiation hardness of lead glasses TF1 and TF101

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masaaki; Prokoshkin, Yuri; Singovsky, Alexandre; Takamatsu, Kunio

    1994-06-01

    We have measured the radiation hardness of two types of lead glasses, TF1 and TF101, for low energy γ-rays from 60Co. TF101 containing cerium is a few tens times radiation harder than TF1 which contains no cerium. The radiation hardness, or the tolerable accumulated dose, of TF101 is 2 × 10 3 rad when the degradation of the transmittance is required to be less than 1% for the unit radiation length X0 = 2.8 cm. When the present result is compared with the work of Inyakin et al., the radiation hardness of TF101 glass should be similar for both γ-rays and for high energy hadrons.

  20. Retrotransposon Tf1 is targeted to pol II promoters by transcription activators

    PubMed Central

    Leem, Young-Eun; Ripmaster, Tracy; Kelly, Felice; Ebina, Hirotaka; Heincelman, Marc; Zhang, Ke; Grewal, Shiv I. S.; Hoffman, Charles S.; Levin, Henry L.

    2008-01-01

    SUMMARY The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of pol II transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly we found Tf1 contained sequences that activated transcription and these substituted for elements of the ade6 promoter disrupted by integration. PMID:18406330

  1. Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators.

    PubMed

    Leem, Young-Eun; Ripmaster, Tracy L; Kelly, Felice D; Ebina, Hirotaka; Heincelman, Marc E; Zhang, Ke; Grewal, Shiv I S; Hoffman, Charles S; Levin, Henry L

    2008-04-11

    The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of Pol II-transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed, indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly, we found Tf1 contained sequences that activated transcription, and these substituted for elements of the ade6 promoter disrupted by integration.

  2. From data repositories to submission portals: rethinking the role of domain-specific databases in CollecTF.

    PubMed

    Kılıç, Sefa; Sagitova, Dinara M; Wolfish, Shoshannah; Bely, Benoit; Courtot, Mélanie; Ciufo, Stacy; Tatusova, Tatiana; O'Donovan, Claire; Chibucos, Marcus C; Martin, Maria J; Erill, Ivan

    2016-01-01

    Domain-specific databases are essential resources for the biomedical community, leveraging expert knowledge to curate published literature and provide access to referenced data and knowledge. The limited scope of these databases, however, poses important challenges on their infrastructure, visibility, funding and usefulness to the broader scientific community. CollecTF is a community-oriented database documenting experimentally validated transcription factor (TF)-binding sites in the Bacteria domain. In its quest to become a community resource for the annotation of transcriptional regulatory elements in bacterial genomes, CollecTF aims to move away from the conventional data-repository paradigm of domain-specific databases. Through the adoption of well-established ontologies, identifiers and collaborations, CollecTF has progressively become also a portal for the annotation and submission of information on transcriptional regulatory elements to major biological sequence resources (RefSeq, UniProtKB and the Gene Ontology Consortium). This fundamental change in database conception capitalizes on the domain-specific knowledge of contributing communities to provide high-quality annotations, while leveraging the availability of stable information hubs to promote long-term access and provide high-visibility to the data. As a submission portal, CollecTF generates TF-binding site information through direct annotation of RefSeq genome records, definition of TF-based regulatory networks in UniProtKB entries and submission of functional annotations to the Gene Ontology. As a database, CollecTF provides enhanced search and browsing, targeted data exports, binding motif analysis tools and integration with motif discovery and search platforms. This innovative approach will allow CollecTF to focus its limited resources on the generation of high-quality information and the provision of specialized access to the data.Database URL: http://www.collectf.org/. © The Author(s) 2016

  3. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights

    PubMed Central

    2011-01-01

    Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles. PMID:22189060

  4. MiRNA and TF co-regulatory network analysis for the pathology and recurrence of myocardial infarction.

    PubMed

    Lin, Ying; Sibanda, Vusumuzi Leroy; Zhang, Hong-Mei; Hu, Hui; Liu, Hui; Guo, An-Yuan

    2015-04-13

    Myocardial infarction (MI) is a leading cause of death in the world and many genes are involved in it. Transcription factor (TFs) and microRNAs (miRNAs) are key regulators of gene expression. We hypothesized that miRNAs and TFs might play combinatory regulatory roles in MI. After collecting MI candidate genes and miRNAs from various resources, we constructed a comprehensive MI-specific miRNA-TF co-regulatory network by integrating predicted and experimentally validated TF and miRNA targets. We found some hub nodes (e.g. miR-16 and miR-26) in this network are important regulators, and the network can be severed as a bridge to interpret the associations of previous results, which is shown by the case of miR-29 in this study. We also constructed a regulatory network for MI recurrence and found several important genes (e.g. DAB2, BMP6, miR-320 and miR-103), the abnormal expressions of which may be potential regulatory mechanisms and markers of MI recurrence. At last we proposed a cellular model to discuss major TF and miRNA regulators with signaling pathways in MI. This study provides more details on gene expression regulation and regulators involved in MI progression and recurrence. It also linked up and interpreted many previous results.

  5. Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons.

    PubMed

    Hu, Jia Sheng; Vogt, Daniel; Lindtner, Susan; Sandberg, Magnus; Silberberg, Shanni N; Rubenstein, John L R

    2017-08-01

    Distinct cortical interneuron (CIN) subtypes have unique circuit functions; dysfunction in specific subtypes is implicated in neuropsychiatric disorders. Somatostatin- and parvalbumin-expressing (SST + and PV + ) interneurons are the two major subtypes generated by medial ganglionic eminence (MGE) progenitors. Spatial and temporal mechanisms governing their cell-fate specification and differential integration into cortical layers are largely unknown. We provide evidence that Coup-TF1 and Coup-TF2 ( Nr2f1 and Nr2f2 ) transcription factor expression in an arc-shaped progenitor domain within the MGE promotes time-dependent survival of this neuroepithelium and the time-dependent specification of layer V SST + CINs. Coup-TF1 and Coup-TF2 autonomously repress PV + fate in MGE progenitors, in part through directly driving Sox6 expression. These results have identified, in mouse, a transcriptional pathway that controls SST-PV fate. © 2017. Published by The Company of Biologists Ltd.

  6. COUP-TF1 Modulates Thyroid Hormone Action in an Embryonic Stem-Cell Model of Cortical Pyramidal Neuronal Differentiation.

    PubMed

    Teng, Xiaochun; Liu, Yan-Yun; Teng, Weiping; Brent, Gregory A

    2018-05-01

    Thyroid hormone is critical for normal brain development and acts in a spatial and temporal specific pattern. Thyroid hormone excess, or deficiency, can lead to irreversible impairment of brain and sensory development. Chicken ovalbumin upstream-transcription factor 1 (COUP-TF1), expressed early in neuronal development, is essential to achieve normal brain structure. Thyroid hormone stimulation of gene expression is inversely correlated with the level of COUP-TF1 expression. An in vitro method of differentiating mouse embryonic stem (mES) cells into cortical neurons was utilized to study the influence of COUP-TF1 on thyroid hormone signaling in brain development. mES cells were cultured and differentiated in specific conditioned media, and a high percentage of nestin-positive progenitor neurons in the first stage, and cortical neurons in the second stage, was obtained with characteristic neuronal firing. The number of nestin-positive progenitors, as determined by fluorescence-activated cell sorting analysis, was significantly greater with triiodothyronine (T3) treatment compared to control (p < 0.05). T3 enhanced the expression of cortical neuron marker (Tbr1 and Rc3) mRNAs. After COUP-TF1 knockdown, the number of nestin-positive progenitors was reduced compared to control (p < 0.05), but the number increased with T3 treatment. The mRNA of cortical neuronal gene markers was measured after COUP-TF1 knockdown. In the presence of T3, the peak expression of neuron markers Emx1, Tbr1, Camkiv, and Rc3 mRNA was earlier, at day 18 of differentiation, compared to control cells, at day 22. Furthermore, after COUP-TF1 knockdown, T3 induction of Rc3 and Tbr1 mRNA was significantly enhanced compared to cells expressing COUP-TF1. These results indicate that COUP-TF1 plays an important role in modulating the timing and magnitude of T3-stimulated gene expression required for normal corticogenesis.

  7. Transposon integration enhances expression of stress response genes.

    PubMed

    Feng, Gang; Leem, Young-Eun; Levin, Henry L

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.

  8. Transposon integration enhances expression of stress response genes

    PubMed Central

    Feng, Gang; Leem, Young-Eun; Levin, Henry L.

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress. PMID:23193295

  9. Involvement of H-ras in erythroid differentiation of TF1 and human umbilical cord blood CD34 cells.

    PubMed

    Ge, Y; Li, Z H; Marshall, M S; Broxmeyer, H E; Lu, L

    1998-06-01

    To investigate the role of the ras gene in erythroid differentiation, a human erythroleukemic cell line, TF1, was transduced with a selectable retroviral vector carrying a mammalian wild type H-ras gene or a cytoplasmic dominant negative RAS1 gene. Transduction of TF1 cells with the wild type H-ras gene resulted in changes of cell types and up-regulation of erythroid-specific gene expression similar to that seen in differentiating erythroid cells. The number of red blood cell containing colonies derived from TF1 cells transduced with wild type H-ras cDNA was significantly increased and the cells in the colonies were more hemoglobinized as estimated by a deeper red color compared to those colony cells from mock or dominant negative RAS1 gene transduced TF1 cells, suggesting increased erythroid differentiation of TF1 cells after transduction of wild type H-ras in vitro. The mRNA levels of beta- and gamma-, but not alpha-, globin genes were significantly higher in H-ras transduced TF1 cells than those in TF1 cells transduced with mock or dominant negative RAS1 gene. Moreover, a 4kb pre-mRNA of the Erythropoietin receptor (EpoR) was highly expressed only in H-ras transduced TF1 cells. Additionally, human umbilical cord blood (CB) CD34 cells which are highly enriched for hematopoietic stem/progenitor cells were transduced with the same retroviral vectors to evaluate in normal primary cells the activities of H-ras in erythroid differentiation. Increased numbers of erythroid cell containing colonies (BFU-E and CFU-GEMM) were observed in CD34 cells transduced with the H-ras cDNA, compared to that from mock transduced cells. These data suggest a possible role for ras in erythroid differentiation.

  10. CardioTF, a database of deconstructing transcriptional circuits in the heart system.

    PubMed

    Zhen, Yisong

    2016-01-01

    Information on cardiovascular gene transcription is fragmented and far behind the present requirements of the systems biology field. To create a comprehensive source of data for cardiovascular gene regulation and to facilitate a deeper understanding of genomic data, the CardioTF database was constructed. The purpose of this database is to collate information on cardiovascular transcription factors (TFs), position weight matrices (PWMs), and enhancer sequences discovered using the ChIP-seq method. The Naïve-Bayes algorithm was used to classify literature and identify all PubMed abstracts on cardiovascular development. The natural language learning tool GNAT was then used to identify corresponding gene names embedded within these abstracts. Local Perl scripts were used to integrate and dump data from public databases into the MariaDB management system (MySQL). In-house R scripts were written to analyze and visualize the results. Known cardiovascular TFs from humans and human homologs from fly, Ciona, zebrafish, frog, chicken, and mouse were identified and deposited in the database. PWMs from Jaspar, hPDI, and UniPROBE databases were deposited in the database and can be retrieved using their corresponding TF names. Gene enhancer regions from various sources of ChIP-seq data were deposited into the database and were able to be visualized by graphical output. Besides biocuration, mouse homologs of the 81 core cardiac TFs were selected using a Naïve-Bayes approach and then by intersecting four independent data sources: RNA profiling, expert annotation, PubMed abstracts and phenotype. The CardioTF database can be used as a portal to construct transcriptional network of cardiac development. Database URL: http://www.cardiosignal.org/database/cardiotf.html.

  11. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be themore » potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.« less

  12. Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics

    PubMed Central

    Gao, Rong

    2015-01-01

    ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501

  13. Kinetics of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 ATPase.

    PubMed

    Rögner, M; Gräber, P

    1986-09-01

    The rate of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 was measured as a function of the ATP concentration in the presence of inhibitors [ADP, Pi and 3'-O-(1-naphthoyl)ATP]. ATP hydrolysis can be described by Michaelis-Menten kinetics with Km(TF1) = 390 microM and Km (TF0F1) = 180 microM. The inhibition constants are for ADP Ki(TF1) = 20 microM and Ki(TF0F1) = 100 microM, for 3'-O-(1-naphthoyl)ATP Ki(TF1) = 150 microM and Ki(TF0F1) = 3 microM, and for Pi Ki(TF1) = 60 mM. From these results it is concluded that upon binding of TF0 to TF1 the mechanism of ATP hydrolysis catalyzed by TF1 is not changed qualitatively; however, the kinetic constants differ quantitatively.

  14. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    PubMed Central

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  15. CardioTF, a database of deconstructing transcriptional circuits in the heart system

    PubMed Central

    2016-01-01

    Background: Information on cardiovascular gene transcription is fragmented and far behind the present requirements of the systems biology field. To create a comprehensive source of data for cardiovascular gene regulation and to facilitate a deeper understanding of genomic data, the CardioTF database was constructed. The purpose of this database is to collate information on cardiovascular transcription factors (TFs), position weight matrices (PWMs), and enhancer sequences discovered using the ChIP-seq method. Methods: The Naïve-Bayes algorithm was used to classify literature and identify all PubMed abstracts on cardiovascular development. The natural language learning tool GNAT was then used to identify corresponding gene names embedded within these abstracts. Local Perl scripts were used to integrate and dump data from public databases into the MariaDB management system (MySQL). In-house R scripts were written to analyze and visualize the results. Results: Known cardiovascular TFs from humans and human homologs from fly, Ciona, zebrafish, frog, chicken, and mouse were identified and deposited in the database. PWMs from Jaspar, hPDI, and UniPROBE databases were deposited in the database and can be retrieved using their corresponding TF names. Gene enhancer regions from various sources of ChIP-seq data were deposited into the database and were able to be visualized by graphical output. Besides biocuration, mouse homologs of the 81 core cardiac TFs were selected using a Naïve-Bayes approach and then by intersecting four independent data sources: RNA profiling, expert annotation, PubMed abstracts and phenotype. Discussion: The CardioTF database can be used as a portal to construct transcriptional network of cardiac development. Availability and Implementation: Database URL: http://www.cardiosignal.org/database/cardiotf.html. PMID:27635320

  16. Identification of Transcription Factor Genes and Their Correlation with the High Diversity of Stramenopiles

    PubMed Central

    Buitrago-Flórez, Francisco Javier; Restrepo, Silvia; Riaño-Pachón, Diego Mauricio

    2014-01-01

    The biological diversity among Stramenopiles is striking; they range from large multicellular seaweeds to tiny unicellular species, they embrace many ecologically important autothrophic (e.g., diatoms, brown algae), and heterotrophic (e.g., oomycetes) groups. Transcription factors (TFs) and other transcription regulators (TRs) regulate spatial and temporal gene expression. A plethora of transcriptional regulatory proteins have been identified and classified into families on the basis of sequence similarity. The purpose of this work is to identify the TF and TR complement in diverse species belonging to Stramenopiles in order to understand how these regulators may contribute to their observed diversity. We identified and classified 63 TF and TR families in 11 species of Stramenopiles. In some species we found gene families with high relative importance. Taking into account the 63 TF and TR families identified, 28 TF and TR families were established to be positively correlated with specific traits like number of predicted proteins, number of flagella and number of cell types during the life cycle. Additionally, we found gains and losses in TF and TR families specific to some species and clades, as well as, two families with high abundance specific to the autotrophic species and three families with high abundance specific to the heterotropic species. For the first time, there is a systematic search of TF and TR families in Stramenopiles. The attempts to uncover relationships between these families and the complexity of this group may be of great impact, considering that there are several important pathogens of plants and animals, as well as, important species involved in carbon cycling. Specific TF and TR families identified in this work appear to be correlated with particular traits in the Stramenopiles group and may be correlated with the high complexity and diversity in Stramenopiles. PMID:25375671

  17. Identification of transcription factor genes and their correlation with the high diversity of stramenopiles.

    PubMed

    Buitrago-Flórez, Francisco Javier; Restrepo, Silvia; Riaño-Pachón, Diego Mauricio

    2014-01-01

    The biological diversity among Stramenopiles is striking; they range from large multicellular seaweeds to tiny unicellular species, they embrace many ecologically important autothrophic (e.g., diatoms, brown algae), and heterotrophic (e.g., oomycetes) groups. Transcription factors (TFs) and other transcription regulators (TRs) regulate spatial and temporal gene expression. A plethora of transcriptional regulatory proteins have been identified and classified into families on the basis of sequence similarity. The purpose of this work is to identify the TF and TR complement in diverse species belonging to Stramenopiles in order to understand how these regulators may contribute to their observed diversity. We identified and classified 63 TF and TR families in 11 species of Stramenopiles. In some species we found gene families with high relative importance. Taking into account the 63 TF and TR families identified, 28 TF and TR families were established to be positively correlated with specific traits like number of predicted proteins, number of flagella and number of cell types during the life cycle. Additionally, we found gains and losses in TF and TR families specific to some species and clades, as well as, two families with high abundance specific to the autotrophic species and three families with high abundance specific to the heterotropic species. For the first time, there is a systematic search of TF and TR families in Stramenopiles. The attempts to uncover relationships between these families and the complexity of this group may be of great impact, considering that there are several important pathogens of plants and animals, as well as, important species involved in carbon cycling. Specific TF and TR families identified in this work appear to be correlated with particular traits in the Stramenopiles group and may be correlated with the high complexity and diversity in Stramenopiles.

  18. Genome-Wide Analysis of Androgen Receptor Targets Reveals COUP-TF1 as a Novel Player in Human Prostate Cancer

    PubMed Central

    Perets, Ruth; Kaplan, Tommy; Stein, Ilan; Hidas, Guy; Tayeb, Shay; Avraham, Eti; Ben-Neriah, Yinon; Simon, Itamar; Pikarsky, Eli

    2012-01-01

    Androgen activity plays a key role in prostate cancer progression. Androgen receptor (AR) is the main mediator of androgen activity in the prostate, through its ability to act as a transcription mediator. Here we performed a genome-wide analysis of human AR binding to promoters in the presence of an agonist or antagonist in an androgen dependent prostate cancer cell line. Many of the AR bound promoters are bound in all examined conditions while others are bound only in the presence of an agonist or antagonist. Several motifs are enriched in AR bound promoters, including the AR Response Element (ARE) half-site and recognition elements for the transcription factors OCT1 and SOX9. This suggests that these 3 factors could define a module of co-operating transcription factors in the prostate. Interestingly, AR bound promoters are preferentially located in AT rich genomic regions. Analysis of mRNA expression identified chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) as a direct AR target gene that is downregulated upon binding by the agonist liganded AR. COUP-TF1 immunostaining revealed nucleolar localization of COUP-TF1 in epithelium of human androgen dependent prostate cancer, but not in adjacent benign prostate epithelium. Stromal cells both in human and mouse prostate show nuclear COUP-TF1 staining. We further show that there is an inverse correlation between COUP-TF1 expression in prostate stromal cells and the rising levels of androgen with advancing puberty. This study extends the pool of recognized putative AR targets and identifies a negatively regulated target of AR – COUP-TF1 – which could possibly play a role in human prostate cancer. PMID:23056316

  19. Genome-wide analysis of androgen receptor targets reveals COUP-TF1 as a novel player in human prostate cancer.

    PubMed

    Perets, Ruth; Kaplan, Tommy; Stein, Ilan; Hidas, Guy; Tayeb, Shay; Avraham, Eti; Ben-Neriah, Yinon; Simon, Itamar; Pikarsky, Eli

    2012-01-01

    Androgen activity plays a key role in prostate cancer progression. Androgen receptor (AR) is the main mediator of androgen activity in the prostate, through its ability to act as a transcription mediator. Here we performed a genome-wide analysis of human AR binding to promoters in the presence of an agonist or antagonist in an androgen dependent prostate cancer cell line. Many of the AR bound promoters are bound in all examined conditions while others are bound only in the presence of an agonist or antagonist. Several motifs are enriched in AR bound promoters, including the AR Response Element (ARE) half-site and recognition elements for the transcription factors OCT1 and SOX9. This suggests that these 3 factors could define a module of co-operating transcription factors in the prostate. Interestingly, AR bound promoters are preferentially located in AT rich genomic regions. Analysis of mRNA expression identified chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) as a direct AR target gene that is downregulated upon binding by the agonist liganded AR. COUP-TF1 immunostaining revealed nucleolar localization of COUP-TF1 in epithelium of human androgen dependent prostate cancer, but not in adjacent benign prostate epithelium. Stromal cells both in human and mouse prostate show nuclear COUP-TF1 staining. We further show that there is an inverse correlation between COUP-TF1 expression in prostate stromal cells and the rising levels of androgen with advancing puberty. This study extends the pool of recognized putative AR targets and identifies a negatively regulated target of AR - COUP-TF1 - which could possibly play a role in human prostate cancer.

  20. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1.

    PubMed

    Galson, D L; Tsuchiya, T; Tendler, D S; Huang, L E; Ren, Y; Ogura, T; Bunn, H F

    1995-04-01

    The erythropoietin (Epo) gene is regulated by hypoxia-inducible cis-acting elements in the promoter and in a 3' enhancer, both of which contain consensus hexanucleotide hormone receptor response elements which are important for function. A group of 11 orphan nuclear receptors, transcribed and translated in vitro, were screened by the electrophoretic mobility shift assay. Of these, hepatic nuclear factor 4 (HNF-4), TR2-11, ROR alpha 1, and EAR3/COUP-TF1 bound specifically to the response elements in the Epo promoter and enhancer and, except for ROR alpha 1, formed DNA-protein complexes that had mobilities similar to those observed in nuclear extracts of the Epo-producing cell line Hep3B. Moreover, both anti-HNF-4 and anti-COUP antibodies were able to supershift complexes in Hep3B nuclear extracts. Like Epo, HNF-4 is expressed in kidney, liver, and Hep3B cells but not in HeLa cells. Transfection of a plasmid expressing HNF-4 into HeLa cells enabled an eightfold increase in the hypoxic induction of a luciferase reporter construct which contains the minimal Epo enhancer and Epo promoter, provided that the nuclear hormone receptor consensus DNA elements in both the promoter and the enhancer were intact. The augmentation by HNF-4 in HeLa cells could be abrogated by cotransfection with HNF-4 delta C, which retains the DNA binding domain of HNF-4 but lacks the C-terminal activation domain. Moreover, the hypoxia-induced expression of the endogenous Epo gene was significantly inhibited in Hep3B cells stably transfected with HNF-4 delta C. On the other hand, cotransfection of EAR3/COUP-TF1 and the Epo reporter either with HNF-4 into HeLa cells or alone into Hep3B cells suppressed the hypoxia induction of the Epo reporter. These electrophoretic mobility shift assay and functional experiments indicate that HNF-4 plays a critical positive role in the tissue-specific and hypoxia-inducible expression of the Epo gene, whereas the COUP family has a negative modulatory role.

  1. Vertebrate LTR retrotransposons of the Tf1/sushi group.

    PubMed

    Butler, M; Goodwin, T; Simpson, M; Singh, M; Poulter, R

    2001-03-01

    LTR retrotransposons of the Tf1/sushi group from a diversity of vertebrates, including fish, amphibians, and mammals (humans, mice, and others), are described as full-length or partial elements. These elements are compared, and the mechanisms involved in self-priming of reverse transcriptase and programmed phase shifting are inferred. Evidence is presented that in mammals these elements are still transcriptionally active and are represented as proteins. This suggests that members of the Tf1/sushi group are present as functional elements (or incorporated as partial elements into host genes) in diverse vertebrate lineages.

  2. Exploring lateral genetic transfer among microbial genomes using TF-IDF.

    PubMed

    Cong, Yingnan; Chan, Yao-Ban; Ragan, Mark A

    2016-07-25

    Many microbes can acquire genetic material from their environment and incorporate it into their genome, a process known as lateral genetic transfer (LGT). Computational approaches have been developed to detect genomic regions of lateral origin, but typically lack sensitivity, ability to distinguish donor from recipient, and scalability to very large datasets. To address these issues we have introduced an alignment-free method based on ideas from document analysis, term frequency-inverse document frequency (TF-IDF). Here we examine the performance of TF-IDF on three empirical datasets: 27 genomes of Escherichia coli and Shigella, 110 genomes of enteric bacteria, and 143 genomes across 12 bacterial and three archaeal phyla. We investigate the effect of k-mer size, gap size and delineation of groups on the inference of genomic regions of lateral origin, finding an interplay among these parameters and sequence divergence. Because TF-IDF identifies donor groups and delineates regions of lateral origin within recipient genomes, aggregating these regions by gene enables us to explore, for the first time, the mosaic nature of lateral genes including the multiplicity of biological sources, ancestry of transfer and over-writing by subsequent transfers. We carry out Gene Ontology enrichment tests to investigate which biological processes are potentially affected by LGT.

  3. Identification and expression of the tig gene coding for trigger factor from psychrophilic bacteria with no information of genome sequence available.

    PubMed

    Lee, Kyunghee; Choi, Hyojung; Im, Hana

    2009-08-01

    Trigger factor (TF) plays a key role as a molecular chaperone with a peptidyl-prolyl cis-trans isomerase (PPIase) activity by which cells promote folding of newly synthesized proteins coming out of ribosomes. Since psychrophilic bacteria grow at a quite low temperature, between 4 and 15 degrees C, TF from such bacteria was investigated and compared with that of mesophilic bacteria E. coli in order to offer an explanation of cold-adaptation at a molecular level. Using a combination of gradient PCRs with homologous primers and LA PCR in vitro cloning technology, the tig gene was fully identified from Psychromonas arctica, whose genome sequence is not yet available. The resulting amino acid sequence of the TF was compared with other homologous TFs using sequence alignments to search for common domains. In addition, we have developed a protein expression system, by which TF proteins from P. arctica (PaTF) were produced by IPTG induction upon cloning the tig gene on expression vectors, such as pAED4. We have further examined the role of expressed psychrophilic PaTF on survival against cold treatment at 4 degrees C. Finally, we have attempted the in vitro biochemical characterization of TF proteins with His-tags expressed in a pET system, such as the PPIase activity of PaTF protein. Our results demonstrate that the expressed PaTF proteins helped cells survive against cold environments in vivo and the purified PaTF in vitro display the functional PPIase activity in a concentration dependent manner.

  4. Identification of novel mutations in HFE, HFE2, TfR2, and SLC40A1 genes in Chinese patients affected by hereditary hemochromatosis.

    PubMed

    Wang, Yongwei; Du, Yali; Liu, Gang; Guo, Shanshan; Hou, Bo; Jiang, Xianyong; Han, Bing; Chang, Yanzhong; Nie, Guangjun

    2017-04-01

    Hereditary hemochromatosis (HH) is a group of inherited iron-overload disorders associated with pathogenic defects in the genes encoding hemochromatosis (HFE), hemojuvelin (HJV/HFE2), hepcidin (HAMP), transferrin receptor 2 (TfR2), and ferroportin (FPN1/SLC40A1) proteins, and the clinical features are well described. However, there have been only a few detailed reports of HH in Chinese populations. Thus, there is insufficient patient information for population-based analyses in Chinese populations or comparative studies among different ethical groups. In the current work, we describe eight Chinese cases of hereditary hemochromatosis. Gene sequencing results revealed eight mutations (five novel mutations) in HFE, HFE2, TfR2, and SLC40A1 genes in these Chinese HH patients. In addition, we used Polymorphism Phenotyping v2 (Polyphen), Sorting Intolerant From Tolerant (SIFT), and a sequence alignment program to predict the molecular consequences of missense mutations.

  5. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    PubMed

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice

  6. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  7. Effect of dibutyryl cyclic adenosine monophosphate on the gene expression of plasminogen activator inhibitor-1 and tissue factor in adipocytes.

    PubMed

    Taniguchi, Makoto; Ono, Naoko; Hayashi, Akira; Yakura, Yuwna; Takeya, Hiroyuki

    2011-10-01

    Hypertrophic adipocytes in obese states express the elevated levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF). An increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP) promotes triglyceride hydrolysis and may improve dysregulation of adipocyte metabolism. Here, we investigate the effect of dibutyryl-cAMP (a phosphodiesterase-resistant analog of cAMP) on the gene expression of PAI-1 and TF in adipocytes. Differentiated 3T3-L1 adipocytes were treated with dibutyryl-cAMP and agents that would be expected to elevate intracellular cAMP, including cilostazol (a phosphodiesterase inhibitor with anti-platelet and vasodilatory properties), isoproterenol (a beta adrenergic agonist) and forskolin (an adenylyl cyclase activator). The levels of PAI-1 and TF mRNAs were measured using real-time quantitative reverse transcription-PCR. The treatment of adipocytes with dibutyryl-cAMP resulted in the inhibition of both lipid accumulation and TF gene expression. However, PAI-1 gene expression was slightly but significantly increased by dibutyryl-cAMP. On the other hand, cilostazol inhibited the expression of PAI-1 without affecting lipid accumulation. When the adipocytes were treated with cilostazol in combination with isoproterenol or forskolin, the inhibitory effect of cilostazol on PAI-1 gene expression was counteracted, thus suggesting that inhibition by cilostazol may not be the result of intracellular cAMP accumulation by phosphodiesterase inhibition. These results suggest the implication of cAMP in regulation of the gene expression of TF and PAI-1 in adipocytes. Our findings will serve as a useful basis for further research in therapy for obesity-associated thrombosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The seed dormancy defect of Arabidopsis mutants lacking the transcript elongation factor TFIIS is caused by reduced expression of the DOG1 gene.

    PubMed

    Mortensen, Simon A; Grasser, Klaus D

    2014-01-03

    TFIIS is a transcript elongation factor that facilitates transcription by RNA polymerase II, as it assists the enzyme to bypass blocks to mRNA synthesis. Previously, we have reported that Arabidopsis plants lacking TFIIS exhibit reduced seed dormancy. Among the genes differentially expressed in tfIIs seeds, the DOG1 gene was identified that is a known QTL for seed dormancy. Here we have analysed plants that overexpress TFIIS in wild type background, or that harbour an additional copy of DOG1 in tfIIs mutant background. These experiments demonstrate that the down-regulation of DOG1 expression causes the seed dormancy phenotype of tfIIs mutants. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Genome-wide association study identifies TF as a significant modifier gene of iron metabolism in HFE hemochromatosis.

    PubMed

    de Tayrac, Marie; Roth, Marie-Paule; Jouanolle, Anne-Marie; Coppin, Hélène; le Gac, Gérald; Piperno, Alberto; Férec, Claude; Pelucchi, Sara; Scotet, Virginie; Bardou-Jacquet, Edouard; Ropert, Martine; Bouvet, Régis; Génin, Emmanuelle; Mosser, Jean; Deugnier, Yves

    2015-03-01

    Hereditary hemochromatosis (HH) is the most common form of genetic iron loading disease. It is mainly related to the homozygous C282Y/C282Y mutation in the HFE gene that is, however, a necessary but not a sufficient condition to develop clinical and even biochemical HH. This suggests that modifier genes are likely involved in the expressivity of the disease. Our aim was to identify such modifier genes. We performed a genome-wide association study (GWAS) using DNA collected from 474 unrelated C282Y homozygotes. Associations were examined for both quantitative iron burden indices and clinical outcomes with 534,213 single nucleotide polymorphisms (SNP) genotypes, with replication analyses in an independent sample of 748 C282Y homozygotes from four different European centres. One SNP met genome-wide statistical significance for association with transferrin concentration (rs3811647, GWAS p value of 7×10(-9) and replication p value of 5×10(-13)). This SNP, located within intron 11 of the TF gene, had a pleiotropic effect on serum iron (GWAS p value of 4.9×10(-6) and replication p value of 3.2×10(-6)). Both serum transferrin and iron levels were associated with serum ferritin levels, amount of iron removed and global clinical stage (p<0.01). Serum iron levels were also associated with fibrosis stage (p<0.0001). This GWAS, the largest one performed so far in unselected HFE-associated HH (HFE-HH) patients, identified the rs3811647 polymorphism in the TF gene as the only SNP significantly associated with iron metabolism through serum transferrin and iron levels. Because these two outcomes were clearly associated with the biochemical and clinical expression of the disease, an indirect link between the rs3811647 polymorphism and the phenotypic presentation of HFE-HH is likely. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation.

    PubMed

    Sasaki, Katsutomo; Yamaguchi, Hiroyasu; Aida, Ryutaro; Shikata, Masahito; Abe, Tomoko; Ohtsubo, Norihiro

    2012-09-01

    We identified a Torenia fournieri Lind. mutant (no. 252) that exhibited a sepaloid phenotype in which the second whorls were changed to sepal-like organs. This mutant had no stamens, and the floral organs consisted of sepals and carpels. Although the expression of a torenia class B MADS-box gene, GLOBOSA (TfGLO), was abolished in the 252 mutant, no mutation of TfGLO was found. Among torenia homologs such as APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO), which regulate expression of class B genes in Arabidopsis, only accumulation of the TfUFO transcript was diminished in the 252 mutant. Furthermore, a missense mutation was found in the coding region of the mutant TfUFO. Intact TfUFO complemented the mutant phenotype whereas mutated TfUFO did not; in addition, the transgenic phenotype of TfUFO-knockdown torenias coincided with the mutant phenotype. Yeast two-hybrid analysis revealed that the mutated TfUFO lost its ability to interact with TfLFY protein. In situ hybridization analysis indicated that the transcripts of TfUFO and TfLFY were partially accumulated in the same region. These results clearly demonstrate that the defect in TfUFO caused the sepaloid phenotype in the 252 mutant due to the loss of interaction with TfLFY. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  11. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data

    PubMed Central

    O'Connor, Timothy; Bodén, Mikael

    2017-01-01

    Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599

  12. Identification of cis-regulatory modules in promoters of human genes exploiting mutual positioning of transcription factors

    PubMed Central

    Nandi, Soumyadeep; Blais, Alexandre; Ioshikhes, Ilya

    2013-01-01

    In higher organisms, gene regulation is controlled by the interplay of non-random combinations of multiple transcription factors (TFs). Although numerous attempts have been made to identify these combinations, important details, such as mutual positioning of the factors that have an important role in the TF interplay, are still missing. The goal of the present work is in silico mapping of some of such associating factors based on their mutual positioning, using computational screening. We have selected the process of myogenesis as a study case, and we focused on TF combinations involving master myogenic TF Myogenic differentiation (MyoD) with other factors situated at specific distances from it. The results of our work show that some muscle-specific factors occur together with MyoD within the range of ±100 bp in a large number of promoters. We confirm co-occurrence of the MyoD with muscle-specific factors as described in earlier studies. However, we have also found novel relationships of MyoD with other factors not specific for muscle. Additionally, we have observed that MyoD tends to associate with different factors in proximal and distal promoter areas. The major outcome of our study is establishing the genome-wide connection between biological interactions of TFs and close co-occurrence of their binding sites. PMID:23913413

  13. Transcription factor target site search and gene regulation in a background of unspecific binding sites.

    PubMed

    Hettich, J; Gebhardt, J C M

    2018-06-02

    Response time and transcription level are vital parameters of gene regulation. They depend on how fast transcription factors (TFs) find and how efficient they occupy their specific target sites. It is well known that target site search is accelerated by TF binding to and sliding along unspecific DNA and that unspecific associations alter the occupation frequency of a gene. However, whether target site search time and occupation frequency can be optimized simultaneously is mostly unclear. We developed a transparent and intuitively accessible state-based formalism to calculate search times to target sites on and occupation frequencies of promoters of arbitrary state structure. Our formalism is based on dissociation rate constants experimentally accessible in live cell experiments. To demonstrate our approach, we consider promoters activated by a single TF, by two coactivators or in the presence of a competitive inhibitor. We find that target site search time and promoter occupancy differentially vary with the unspecific dissociation rate constant. Both parameters can be harmonized by adjusting the specific dissociation rate constant of the TF. However, while measured DNA residence times of various eukaryotic TFs correspond to a fast search time, the occupation frequencies of target sites are generally low. Cells might tolerate low target site occupancies as they enable timely gene regulation in response to a changing environment. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Molecular Screening Tools to Study Arabidopsis Transcription Factors

    PubMed Central

    Wehner, Nora; Weiste, Christoph; Dröge-Laser, Wolfgang

    2011-01-01

    In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY®-compatible ORF collections. (1) The Arabidopsis thaliana TF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast trans activation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta. PMID:22645547

  15. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.

    PubMed

    Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G

    2016-02-25

    Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    PubMed

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  17. Functionally Relevant Microsatellite Markers From Chickpea Transcription Factor Genes for Efficient Genotyping Applications and Trait Association Mapping

    PubMed Central

    Kujur, Alice; Bajaj, Deepak; Saxena, Maneesha S.; Tripathi, Shailesh; Upadhyaya, Hari D.; Gowda, C.L.L.; Singh, Sube; Jain, Mukesh; Tyagi, Akhilesh K.; Parida, Swarup K.

    2013-01-01

    We developed 1108 transcription factor gene-derived microsatellite (TFGMS) and 161 transcription factor functional domain-associated microsatellite (TFFDMS) markers from 707 TFs of chickpea. The robust amplification efficiency (96.5%) and high intra-specific polymorphic potential (34%) detected by markers suggest their immense utilities in efficient large-scale genotyping applications, including construction of both physical and functional transcript maps and understanding population structure. Candidate gene-based association analysis revealed strong genetic association of TFFDMS markers with three major seed and pod traits. Further, TFGMS markers in the 5′ untranslated regions of TF genes showing differential expression during seed development had higher trait association potential. The significance of TFFDMS markers was demonstrated by correlating their allelic variation with amino acid sequence expansion/contraction in the functional domain and alteration of secondary protein structure encoded by genes. The seed weight-associated markers were validated through traditional bi-parental genetic mapping. The determination of gene-specific linkage disequilibrium (LD) patterns in desi and kabuli based on single nucleotide polymorphism-microsatellite marker haplotypes revealed extended LD decay, enhanced LD resolution and trait association potential of genes. The evolutionary history of a strong seed-size/weight-associated TF based on natural variation and haplotype sharing among desi, kabuli and wild unravelled useful information having implication for seed-size trait evolution during chickpea domestication. PMID:23633531

  18. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses.

    PubMed

    Pan, Lin-Jie; Jiang, Ling

    2014-03-01

    The WRKY transcription factor (TF) plays a very important role in the response of plants to various abiotic and biotic stresses. A local papaya database was built according to the GenBank expressed sequence tag database using the BioEdit software. Fifty-two coding sequences of Carica papaya WRKY TFs were predicted using the tBLASTn tool. The phylogenetic tree of the WRKY proteins was classified. The expression profiles of 13 selected C. papaya WRKY TF genes under stress induction were constructed by quantitative real-time polymerase chain reaction. The expression levels of these WRKY genes in response to 3 abiotic and 2 biotic stresses were evaluated. TF807.3 and TF72.14 are upregulated by low temperature; TF807.3, TF43.76, TF12.199 and TF12.62 are involved in the response to drought stress; TF9.35, TF18.51, TF72.14 and TF12.199 is involved in response to wound; TF12.199, TF807.3, TF21.156 and TF18.51 was induced by PRSV pathogen; TF72.14 and TF43.76 are upregulated by SA. The regulated expression levels of above eight genes normalized against housekeeping gene actin were significant at probability of 0.01 levels. These WRKY TFs could be related to corresponding stress resistance and selected as the candidate genes, especially, the two genes TF807.3 and TF12.199, which were regulated notably by four stresses respectively. This study may provide useful information and candidate genes for the development of transgenic stress tolerant papaya varieties.

  19. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.).

    PubMed

    Misra, Vikram A; Wang, Yu; Timko, Michael P

    2017-11-22

    Cowpea (Vigna unguiculata (L.) Walp.) is the most important food and forage legume in the semi-arid tropics of sub-Saharan Africa where approximately 80% of worldwide production takes place primarily on low-input, subsistence farm sites. Among the major goals of cowpea breeding and improvement programs are the rapid manipulation of agronomic traits for seed size and quality and improved resistance to abiotic and biotic stresses to enhance productivity. Knowing the suite of transcription factors (TFs) and transcriptionally active proteins (TAPs) that control various critical plant cellular processes would contribute tremendously to these improvement aims. We used a computational approach that employed three different predictive pipelines to data mine the cowpea genome and identified over 4400 genes representing 136 different TF and TAP families. We compare the information content of cowpea to two evolutionarily close species common bean (Phaseolus vulgaris), and soybean (Glycine max) to gauge the relative informational content. Our data indicate that correcting for genome size cowpea has fewer TF and TAP genes than common bean (4408 / 5291) and soybean (4408/ 11,065). Members of the GROWTH-REGULATING FACTOR (GRF) and Auxin/indole-3-acetic acid (Aux/IAA) gene families appear to be over-represented in the genome relative to common bean and soybean, whereas members of the MADS (Minichromosome maintenance deficient 1 (MCM1), AGAMOUS, DEFICIENS, and serum response factor (SRF)) and C2C2-YABBY appear to be under-represented. Analysis of the AP2-EREBP APETALA2-Ethylene Responsive Element Binding Protein (AP2-EREBP), NAC (NAM (no apical meristem), ATAF1, 2 (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon)), and WRKY families, known to be important in defense signaling, revealed changes and phylogenetic rearrangements relative to common bean and soybean that suggest these groups may have evolved different functions. The availability of detailed

  20. Novel gene expression mechanism in a fission yeast retroelement: Tf1 proteins are derived from a single primary translation product.

    PubMed

    Levin, H L; Weaver, D C; Boeke, J D

    1993-12-01

    In sharp contrast to the single ORF of the Schizosaccharomyces pombe retrotransposon Tf1, retroviruses and most retrotransposons employ two different ORFs to separately encode the Gag and Pol proteins. The different ORFs are thought to allow for overexpression of the Gag protein relative to Pol protein presumed necessary for the assembly of functional retrovirus particles and virus-like particles (VLPs). The results of in vivo experiments designed to detect the transposition of Tf1 show that Tf1 is indeed active and can insert itself into the host genome via a true retrotransposition process. Thus, a paradox emerged between the lack of any obvious means of overexpressing Tf1 Gag protein and the demonstrated functionality of the element. Epitope tagging experiments described here confirm that the Tf1 large ORF is intact and that there is no translational or transcriptional mechanism used to overexpress the Tf1 Gag protein. In addition, we used sucrose gradients and antisera specific for Tf1 capsid (CA) and integrase (IN) to show that the Tf1 proteins do assemble into uniform populations of macromolecular particles that also cosediment with Tf1 reverse transcription products. This evidence suggests that Tf1 proteins form VLPs without using the previously described mechanisms that retroviruses and retrotransposons require to overexpress Gag proteins.

  1. Transcription Factor Binding Profiles Reveal Cyclic Expression of Human Protein-coding Genes and Non-coding RNAs

    PubMed Central

    Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.

    2013-01-01

    Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175

  2. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression

    PubMed Central

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-01-01

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division. PMID:24714560

  3. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    PubMed

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  4. Hepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus

    PubMed Central

    Dong, Yewei; Wang, Shuqi; Chen, Junliang; Zhang, Qinghao; Liu, Yang; You, Cuihong; Monroig, Óscar; Tocher, Douglas R.; Li, Yuanyou

    2016-01-01

    Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis. PMID:27472219

  5. Factors Associated with Clinician Participation in TF-CBT Post-workshop Training Components.

    PubMed

    Pemberton, Joy R; Conners-Burrow, Nicola A; Sigel, Benjamin A; Sievers, Chad M; Stokes, Lauren D; Kramer, Teresa L

    2017-07-01

    For proficiency in an evidence-based treatment (EBT), mental health professionals (MHPs) need training activities extending beyond a one-time workshop. Using data from 178 MHPs participating in a statewide TF-CBT dissemination project, we used five variables assessed at the workshop, via multiple and logistic regression, to predict participation in three post-workshop training components. Perceived in-workshop learning and client-treatment mismatch were predictive of consultation call participation and case presentation respectively. Attitudes toward EBTs were predictive of trauma assessment utilization, although only with non-call participants removed from analysis. Productivity requirements and confidence in TF-CBT skills were not associated with participation in post-workshop activities.

  6. Analysis of bax protein in sphingosine-induced apoptosis in the human leukemic cell line TF1 and its bcl-2 transfectants.

    PubMed

    Isogai, C; Murate, T; Tamiya-Koizumi, K; Yoshida, S; Ito, T; Nagai, H; Kinoshita, T; Kagami, Y; Hotta, T; Hamaguchi, M; Saito, H

    1998-11-01

    Sphingosine, a sphingolipid breakdown product, has been proposed as an apoptosis-inducing agent. In this study, we examined the effect of sphingosine in bcl-2-overexpressing cells compared with cells that do not express the bcl-2 gene. The human erythroleukemic cell line TF1, which lacks bcl-2 expression, was easily induced to undergo apoptotic cell death by a variety of stimuli, including depletion of granulocyte-macrophage colony-stimulating factor (GM-CSF) or exposure to methylmethane sulfonate (MMS) (100 microg/mL), ultraviolet light (15 J/m2), X-ray irradiation (20 Gy), or sphingosine, a sphingolipid breakdown product (5 microM). In contrast, bcl-2 transfectants of TF1 (TF1-bcl2), which we established, were resistant to most of these treatments but remained sensitive to sphingosine. Neither C2- nor C6-ceramide (short-chain ceramide) induced apoptosis in TF1-mock and TF1-bcl2 cells. Sphingosine-induced apoptosis could not be inhibited by fumonisin B1, which can prevent conversion of sphingosine to ceramide, suggesting that sphingosine itself, not ceramide, possesses apoptosis-inducing capability. Western blotting, which revealed a 21-kDa bax protein in untreated cells, revealed the presence of an additional 18-kDa protein in GM-CSF-depleted and MMS- or sphingosine-treated TF1-mock cells. In TF1-bcl2 cells, this protein was not detected after GM-CSF depletion or MMS treatment, but was observed after sphingosine treatment. Immunoprecipitation with anti-bcl2 antibody, followed by immunoblotting with anti-bax antibody, showed that both the 21-kDa bax protein and the 18-kDa protein heterodimerized with bcl-2 protein. These results suggest that sphingosine is a unique reagent for apoptosis and that it can overcome bcl-2 gene expression. Furthermore, induction of 18-kDa bax-related protein may play an important role in apoptosis. Sphingosine, but not ceramide, may prove applicable as a reagent for future cytotoxic drugs used to treat intractable tumors overexpressing

  7. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.

    PubMed

    Yang, Chia-Chun; Andrews, Erik H; Chen, Min-Hsuan; Wang, Wan-Yu; Chen, Jeremy J W; Gerstein, Mark; Liu, Chun-Chi; Cheng, Chao

    2016-08-12

    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the

  8. A novel transcription factor gene FHS1 is involved in the DNA damage response in Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Fu, Minmin; Lee, Yoonji; Lim, Jae Yun; Min, Kyunghun; Kim, Jin-Cheol; Choi, Gyung Ja; Lee, Yin-Won

    2016-01-01

    Cell cycle regulation and the maintenance of genome integrity are crucial for the development and virulence of the pathogenic plant fungus Fusarium graminearum. To identify transcription factors (TFs) related to these processes, four DNA-damaging agents were applied to screen a F. graminearum TF mutant library. Sixteen TFs were identified to be likely involved in DNA damage responses. Fhs1 is a fungal specific Zn(II)2Cys6 TF that localises exclusively to nuclei. fhs1 deletion mutants were hypersensitive to hydroxyurea and defective in mitotic cell division. Moreover, deletion of FHS1 resulted in defects in perithecia production and virulence and led to the accumulation of DNA damage. Our genetic evidence demonstrated that the FHS1-associated signalling pathway for DNA damage response is independent of the ATM or ATR pathways. This study identified sixteen genes involved in the DNA damage response and is the first to characterise the novel transcription factor gene FHS1, which is involved in the DNA damage response. The results provide new insights into mechanisms underlying DNA damage responses in fungi, including F. graminearum. PMID:26888604

  9. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    PubMed Central

    Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno

    2008-01-01

    Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190

  10. Combinatorial Regulation of Stilbene Synthase Genes by WRKY and MYB Transcription Factors in Grapevine (Vitis vinifera L.).

    PubMed

    Vannozzi, Alessandro; Wong, Darren Chern Jan; Höll, Janine; Hmmam, Ibrahim; Matus, José Tomás; Bogs, Jochen; Ziegler, Tobias; Dry, Ian; Barcaccia, Gianni; Lucchin, Margherita

    2018-05-01

    Stilbene synthase (STS) is the key enzyme leading to the biosynthesis of resveratrol. Recently we reported two R2R3-MYB transcription factor (TF) genes that regulate the stilbene biosynthetic pathway in grapevine: VviMYB14 and VviMYB15. These genes are strongly co-expressed with STS genes under a range of stress and developmental conditions, in agreement with the specific activation of STS promoters by these TFs. Genome-wide gene co-expression analysis using two separate transcriptome compendia based on microarray and RNA sequencing data revealed that WRKY TFs were the top TF family correlated with STS genes. On the basis of correlation frequency, four WRKY genes, namely VviWRKY03, VviWRKY24, VviWRKY43 and VviWRKY53, were further shortlisted and functionally validated. Expression analyses under both unstressed and stressed conditions, together with promoter-luciferase reporter assays, suggested different hierarchies for these TFs in the regulation of the stilbene biosynthetic pathway. In particular, VviWRKY24 seems to act as a singular effector in the activation of the VviSTS29 promoter, while VviWRKY03 acts through a combinatorial effect with VviMYB14, suggesting that these two regulators may interact at the protein level as previously reported in other species.

  11. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    PubMed

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  12. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines.

    PubMed

    Yamamizu, Kohei; Sharov, Alexei A; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B; Schlessinger, David; Ko, Minoru S H

    2016-05-06

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range - and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this "NIA Mouse ESC Bank," we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs.

  13. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    PubMed

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which

  14. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors

    PubMed Central

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-01-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around −120 to −80 bp, while highly effective sgRNAs targeted from −147 to −89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells. PMID:24500196

  15. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    PubMed

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  16. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network

    PubMed Central

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-01-01

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.03346.001 PMID:25163748

  17. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    NASA Astrophysics Data System (ADS)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  18. Frequency Modulation of Transcriptional Bursting Enables Sensitive and Rapid Gene Regulation.

    PubMed

    Li, Congxin; Cesbron, François; Oehler, Michael; Brunner, Michael; Höfer, Thomas

    2018-04-25

    Gene regulation is a complex non-equilibrium process. Here, we show that quantitating the temporal regulation of key gene states (transcriptionally inactive, active, and refractory) provides a parsimonious framework for analyzing gene regulation. Our theory makes two non-intuitive predictions. First, for transcription factors (TFs) that regulate transcription burst frequency, as opposed to amplitude or duration, weak TF binding is sufficient to elicit strong transcriptional responses. Second, refractoriness of a gene after a transcription burst enables rapid responses to stimuli. We validate both predictions experimentally by exploiting the natural, optogenetic-like responsiveness of the Neurospora GATA-type TF White Collar Complex (WCC) to blue light. Further, we demonstrate that differential regulation of WCC target genes is caused by different gene activation rates, not different TF occupancy, and that these rates are tuned by both the core promoter and the distance between TF-binding site and core promoter. In total, our work demonstrates the relevance of a kinetic, non-equilibrium framework for understanding transcriptional regulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. FVIIa-sTF and Thrombin Inhibitory Activities of Compounds Isolated from Microcystis aeruginosa K-139.

    PubMed

    Anas, Andrea Roxanne J; Mori, Akane; Tone, Mineka; Naruse, Chiaki; Nakajima, Anna; Asukabe, Hirohiko; Takaya, Yoshiaki; Imanishi, Susumu Y; Nishizawa, Tomoyasu; Shirai, Makoto; Harada, Ken-Ichi

    2017-08-30

    The rise of bleeding and bleeding complications caused by oral anticoagulant use are serious problems nowadays. Strategies that block the initiation step in blood coagulation involving activated factor VII-tissue factor (fVIIa-TF) have been considered. This study explores toxic Microcystis aeruginosa K-139, from Lake Kasumigaura, Ibaraki, Japan, as a promising cyanobacterium for isolation of fVIIa-sTF inhibitors. M. aeruginosa K-139 underwent reversed-phase solid-phase extraction (ODS-SPE) from 20% MeOH to MeOH elution with 40%-MeOH increments, which afforded aeruginosin K-139 in the 60% MeOH fraction; micropeptin K-139 and microviridin B in the MeOH fraction. Aeruginosin K-139 displayed an fVIIa-sTF inhibitory activity of ~166 µM, within a 95% confidence interval. Micropeptin K-139 inhibited fVIIa-sTF with EC 50 10.62 µM, which was more efficient than thrombin inhibition of EC 50 26.94 µM. The thrombin/fVIIa-sTF ratio of 2.54 in micropeptin K-139 is higher than those in 4-amidinophenylmethane sulfonyl fluoride (APMSF) and leupeptin, when used as positive controls. This study proves that M. aeruginosa K-139 is a new source of fVIIa-sTF inhibitors. It also opens a new avenue for micropeptin K-139 and related depsipeptides as fVIIa-sTF inhibitors.

  20. MAGIA2: from miRNA and genes expression data integrative analysis to microRNA–transcription factor mixed regulatory circuits (2012 update)

    PubMed Central

    Bisognin, Andrea; Sales, Gabriele; Coppe, Alessandro; Bortoluzzi, Stefania; Romualdi, Chiara

    2012-01-01

    MAGIA2 (http://gencomp.bio.unipd.it/magia2) is an update, extension and evolution of the MAGIA web tool. It is dedicated to the integrated analysis of in silico target prediction, microRNA (miRNA) and gene expression data for the reconstruction of post-transcriptional regulatory networks. miRNAs are fundamental post-transcriptional regulators of several key biological and pathological processes. As miRNAs act prevalently through target degradation, their expression profiles are expected to be inversely correlated to those of the target genes. Low specificity of target prediction algorithms makes integration approaches an interesting solution for target prediction refinement. MAGIA2 performs this integrative approach supporting different association measures, multiple organisms and almost all target predictions algorithms. Nevertheless, miRNAs activity should be viewed as part of a more complex scenario where regulatory elements and their interactors generate a highly connected network and where gene expression profiles are the result of different levels of regulation. The updated MAGIA2 tries to dissect this complexity by reconstructing mixed regulatory circuits involving either miRNA or transcription factor (TF) as regulators. Two types of circuits are identified: (i) a TF that regulates both a miRNA and its target and (ii) a miRNA that regulates both a TF and its target. PMID:22618880

  1. Transcription Factor Map Alignment of Promoter Regions

    PubMed Central

    Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic

    2006-01-01

    We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547

  2. Detection of eQTL modules mediated by activity levels of transcription factors.

    PubMed

    Sun, Wei; Yu, Tianwei; Li, Ker-Chau

    2007-09-01

    Studies of gene expression quantitative trait loci (eQTL) in different organisms have shown the existence of eQTL hot spots: each being a small segment of DNA sequence that harbors the eQTL of a large number of genes. Two questions of great interest about eQTL hot spots arise: (1) which gene within the hot spot is responsible for the linkages, i.e. which gene is the quantitative trait gene (QTG)? (2) How does a QTG affect the expression levels of many genes linked to it? Answers to the first question can be offered by available biological evidence or by statistical methods. The second question is harder to address. One simple situation is that the QTG encodes a transcription factor (TF), which regulates the expression of genes linked to it. However, previous results have shown that TFs are not overrepresented in the eQTL hot spots. In this article, we consider the scenario that the propagation of genetic perturbation from a QTG to other linked genes is mediated by the TF activity. We develop a procedure to detect the eQTL modules (eQTL hot spots together with linked genes) that are compatible with this scenario. We first detect 27 eQTL modules from a yeast eQTL data, and estimate TF activity profiles using the method of Yu and Li (2005). Then likelihood ratio tests (LRTs) are conducted to find 760 relationships supporting the scenario of TF activity mediation: (DNA polymorphism --> cis-linked gene --> TF activity --> downstream linked gene). They are organized into 4 eQTL modules: an amino acid synthesis module featuring a cis-linked gene LEU2 and the mediating TF Leu3; a pheromone response module featuring a cis-linked gene GPA1 and the mediating TF Ste12; an energy-source control module featuring two cis-linked genes, GSY2 and HAP1, and the mediating TF Hap1; a mitotic exit module featuring four cis-linked genes, AMN1, CSH1, DEM1 and TOS1, and the mediating TF complex Ace2/Swi5. Gene Ontology is utilized to reveal interesting functional groups of the downstream

  3. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  4. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling

    PubMed Central

    2012-01-01

    Background Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. Results We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (P<0.05). Among the 442 TF genes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2–4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. Conclusions We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The

  5. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.

    PubMed

    Wang, Yubing; Guo, Huimin; Li, Haichao; Zhang, Hao; Miao, Xuexia

    2012-12-10

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (P<0.05). Among the 442 TF genes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2-4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance

  6. Targeted Delivery of siRNA to Activated T Cells via Transferrin-Polyethylenimine (Tf-PEI) as a Potential Therapy of Asthma

    PubMed Central

    Xie, Yuran; Kim, Na Hyung; Nadithe, Venkatareddy; Schalk, Dana; Thakur, Archana; Kılıç, Ayşe; Lum, Lawrence G.; Bassett, David JP; Merkel, Olivia M

    2016-01-01

    Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy. PMID:27001893

  7. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration

    PubMed Central

    Rydenfelt, Mattias; Cox, Robert Sidney; Garcia, Hernan; Phillips, Rob

    2014-01-01

    Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in correlation (“promoter entanglement”) between transcription of different genes. We develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression for a general set of promoters and the resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could be important for understanding gene expression in many regulatory settings. PMID:24580252

  8. Mapping of the Pim-1 oncogene in mouse t-haplotypes and its use to define the relative map positions of the tcl loci t0(t6) and tw12 and the marker tf (tufted).

    PubMed

    Ark, B; Gummere, G; Bennett, D; Artzt, K

    1991-06-01

    Pim-1 is an oncogene activated in mouse T-cell lymphomas induced by Moloney and AKR mink cell focus (MCF) viruses. Pim-1 was previously mapped to chromosome 17 by somatic cell hybrids, and subsequently to the region between the hemoglobin alpha-chain pseudogene 4 (Hba-4ps) and the alpha-crystalline gene (Crya-1) by Southern blot analysis of DNA obtained from panels of recombinant inbred strains. We have now mapped Pim-1 more accurately in t-haplotypes by analysis of recombinant t-chromosomes. The recombinants were derived from Tts6tf/t12 parents backcrossed to + tf/ + tf, and scored for recombination between the loci of T and tf. For simplicity all t-complex lethal genes properly named tcl-tx are shortened to tx. The Pim-1 gene was localized 0.6 cM proximal to the tw12 lethal gene, thus placing the Pim-1 gene 5.2 cM distal to the H-2 region in t-haplotypes. Once mapped, the Pim-1 gene was used as a marker for further genetic analysis of t-haplotypes. tw12 is so close to tf that even with a large number of recombinants it was not possible to determine whether it is proximal or distal to tf. Southern blot analysis of DNA from T-tf recombinants with a separation of tw12 and tf indicated that tw12 is proximal to tf. The mapping of two allelic t-lethals, t0 and t6 with respect to tw12 and tf has also been a problem.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. "Hit-and-Run" leaves its mark: catalyst transcription factors and chromatin modification.

    PubMed

    Varala, Kranthi; Li, Ying; Marshall-Colón, Amy; Para, Alessia; Coruzzi, Gloria M

    2015-08-01

    Understanding how transcription factor (TF) binding is related to gene regulation is a moving target. We recently uncovered genome-wide evidence for a "Hit-and-Run" model of transcription. In this model, a master TF "hits" a target promoter to initiate a rapid response to a signal. As the "hit" is transient, the model invokes recruitment of partner TFs to sustain transcription over time. Following the "run", the master TF "hits" other targets to propagate the response genome-wide. As such, a TF may act as a "catalyst" to mount a broad and acute response in cells that first sense the signal, while the recruited TF partners promote long-term adaptive behavior in the whole organism. This "Hit-and-Run" model likely has broad relevance, as TF perturbation studies across eukaryotes show small overlaps between TF-regulated and TF-bound genes, implicating transient TF-target binding. Here, we explore this "Hit-and-Run" model to suggest molecular mechanisms and its biological relevance. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

  10. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  11. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    PubMed

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  12. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    PubMed

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  13. [siRNA-mediated tissue factor knockdown in porcine neonatal islet cell clusters in vitro].

    PubMed

    Ji, Ming; Yi, Shounan; Yu, Deling; Wang, Wei

    2011-12-01

    To determine the genetic modification on neonatal porcine islet cell clusters (NICC) by small interfering RNA (siRNA)-mediated tissue factor (TF) knockdown in vitro. Porcine NICC were transfected with 5 pairs of designed siRNA respectively or in different combinations with lipofectamine 2000. Transfected NICC were analyzed for TF gene by real-time PCR to select the siRNA which worked best. Meanwhile, the viability of NICC after the TF siRNA transfection was examined by FACS. The efficiency of TF gene and protein suppression was measured by real-time PCR and and FACS respectively. Real-time PCR and FACS showed that a 60% reduction in the TF gene expression and a 50% reduction in the protien level of TF on NICC were achieved by transfecting 3 pairs of selected siRNA. The siRNA transfection had no significant effect on the viability of NICC which was analyzed by FACS. The expression of TF on porcine NICC is efficiently suppressed by 3 pairs of designed siRNA in vitro.

  14. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha

    PubMed Central

    2013-01-01

    Background Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. Results In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. Conclusions The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants. PMID:24365221

  15. The removal of RNA primers from DNA synthesized by the reverse transcriptase of the retrotransposon Tf1 is stimulated by Tf1 integrase.

    PubMed

    Herzig, Eytan; Voronin, Nickolay; Hizi, Amnon

    2012-06-01

    The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process.

  16. The Removal of RNA Primers from DNA Synthesized by the Reverse Transcriptase of the Retrotransposon Tf1 Is Stimulated by Tf1 Integrase

    PubMed Central

    Herzig, Eytan; Voronin, Nickolay

    2012-01-01

    The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process. PMID:22491446

  17. Establishment of the Inducible Tet-On System for the Activation of the Silent Trichosetin Gene Cluster in Fusarium fujikuroi

    PubMed Central

    Janevska, Slavica; Arndt, Birgit; Baumann, Leonie; Apken, Lisa Helene; Mauriz Marques, Lucas Maciel; Humpf, Hans-Ulrich; Tudzynski, Bettina

    2017-01-01

    The PKS-NRPS-derived tetramic acid equisetin and its N-desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus. The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum, a species distantly related to the notorious rice pathogen Fusarium fujikuroi. Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi. Bioinformatic analysis revealed that this cluster does not contain the equisetin N-methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi. Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22, led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23, encoding a second Zn(II)2Cys6 TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T. TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus. PMID:28379186

  18. Establishment of the Inducible Tet-On System for the Activation of the Silent Trichosetin Gene Cluster in Fusarium fujikuroi.

    PubMed

    Janevska, Slavica; Arndt, Birgit; Baumann, Leonie; Apken, Lisa Helene; Mauriz Marques, Lucas Maciel; Humpf, Hans-Ulrich; Tudzynski, Bettina

    2017-04-05

    The PKS-NRPS-derived tetramic acid equisetin and its N -desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus . The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum , a species distantly related to the notorious rice pathogen Fusarium fujikuroi . Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi . Bioinformatic analysis revealed that this cluster does not contain the equisetin N -methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi . Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22 , led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23 , encoding a second Zn(II)₂Cys₆ TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T . TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus.

  19. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma.

    PubMed

    Xie, Yuran; Kim, Na Hyung; Nadithe, Venkatareddy; Schalk, Dana; Thakur, Archana; Kılıç, Ayşe; Lum, Lawrence G; Bassett, David J P; Merkel, Olivia M

    2016-05-10

    Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. An analysis of subunit exchange in the dimeric DNA-binding and DNA-bending protein, TF1.

    PubMed

    Andera, L; Schneider, G J; Geiduschek, E P

    1994-01-01

    TF1 is the Bacillus subtilis bacteriophage-encoded dimeric type II DNA-binding protein. This relative of the eubacterial HU proteins and of the Escherichia coli integration host factor binds preferentially to 5-(hydroxymethyluracil)-containing DNA. We have examined the dynamics of exchange of monomer subunits between molecules of dimeric TF1. The analysis takes advantage of the fact that replacement of phenylalanine with arginine at amino acid 61 in the beta-loop 'arm' of TF1 alters DNA-bending and -binding properties, generating DNA complexes with distinctively different mobilities in gel electrophoresis. New species of DNA-protein complexes were formed by mixtures of wild type and mutant TF1, reflecting the formation of heterodimeric TF1, and making the dynamics of monomer exchange between TF1 dimers accessible to a simple gel retardation analysis. Exchange was rapid at high protein concentrations, even at 0 degrees C, and is proposed to be capable of proceeding through an interaction of molecules of TF1 dimer rather than exclusively through dissociation into monomer subunits. Evidence suggesting that DNA-bound TF1 dimers do not exchange subunits readily is also presented.

  1. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach

    PubMed Central

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978

  2. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach.

    PubMed

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions.

  3. Two-finger (TF) SPUDT cells.

    PubMed

    Martin, Guenter; Biryukov, Sergey V; Schmidt, Hagen; Steiner, Bernd; Wall, Bert

    2011-03-01

    SPUDT cells including two fingers are only known thus far for so-called NSPUDT directions. In that case, usual solid-finger cells are used. The purpose of the present paper is to find SPUDT cell types consisting of two fingers only for pure mode directions. Two-finger (TF) cells for pure mode directions on substrates like 128°YX LiNbO(3) and YZ LiNbO(3) were found by means of an optimization procedure. The forward direction of a TF-cell SPUDT on 128°YX LiNbO(3) was determined experimentally. The properties of the new cells are compared with those of conventional SPUDT cells. The reflectivity of TF cells on 128°YX LiNbO(3) turns out to be two to three times larger than that of distributed acoustic reflection transducer (DART) and Hanma-Hunsinger cells at the same metal layer thickness.

  4. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.

    PubMed

    Fang, Bin; Everett, Logan J; Jager, Jennifer; Briggs, Erika; Armour, Sean M; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A

    2014-11-20

    Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.

  5. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xiao; Gang, Yi; Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself.more » The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.« less

  6. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.

    PubMed

    Hisabori, T; Yoshida, M; Sakurai, H

    1986-09-01

    Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.

  7. Effects of mutations at amino acid 61 in the arm of TF1 on its DNA-binding properties.

    PubMed

    Sayre, M H; Geiduschek, E P

    1990-12-20

    Transcription factor 1 (TF1) is the Bacillus subtilis phage SPO1-encoded member of the family of bacterial DNA-binding proteins that includes Escherichia coli HU and integration host factor (IHF). We have initiated a mutational analysis of the TF1 molecule to understand better its unique DNA-binding properties and to investigate its physiological function. We report here the consequences of mutating the putative DNA-binding "arms" of TF1. At position 61 in its primary sequence, TF1 contains a Phe residue in place of the Arg residue found in all other known members of the HU family. Substituting polar, uncharged residues for Phe61 substantially reduced the DNA-binding affinity and site-selectivity of TF1 in vitro, whereas the substitution of Tyr had no effect. Substituting Trp or Arg for Phe61 had little effect on the affinity of TF1 for SPO1 DNA, but altered the electrophoretic mobilities of protein-DNA complexes in non-denaturing gels. The Arg61 substitution increased the affinity of the protein for non-specific sites on thymine-containing DNA, thus reducing the natural preference of TF1 for (5-hydroxymethyluracil)-containing DNA. The Phe61-to-Arg mutation was also correlated with decreased phage yield and aberrant regulation of viral protein synthesis in vivo.

  8. Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.

    PubMed

    Silva, M V; Pasternack, L B; Kearns, D R

    1997-12-15

    Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.

  9. How gene order is influenced by the biophysics of transcription regulation

    PubMed Central

    Kolesov, Grigory; Wunderlich, Zeba; Laikova, Olga N.; Gelfand, Mikhail S.; Mirny, Leonid A.

    2007-01-01

    What are the forces that shape the structure of prokaryotic genomes: the order of genes, their proximity, and their orientation? Coregulation and coordinated horizontal gene transfer are believed to promote the proximity of functionally related genes and the formation of operons. However, forces that influence the structure of the genome beyond the level of a single operon remain unknown. Here, we show that the biophysical mechanism by which regulatory proteins search for their sites on DNA can impose constraints on genome structure. Using simulations, we demonstrate that rapid and reliable gene regulation requires that the transcription factor (TF) gene be close to the site on DNA the TF has to bind, thus promoting the colocalization of TF genes and their targets on the genome. We use parameters that have been measured in recent experiments to estimate the relevant length and times scales of this process and demonstrate that the search for a cognate site may be prohibitively slow if a TF has a low copy number and is not colocalized. We also analyze TFs and their sites in a number of bacterial genomes, confirm that they are colocalized significantly more often than expected, and show that this observation cannot be attributed to the pressure for coregulation or formation of selfish gene clusters, thus supporting the role of the biophysical constraint in shaping the structure of prokaryotic genomes. Our results demonstrate how spatial organization can influence timing and noise in gene expression. PMID:17709750

  10. PlantTFDB: a comprehensive plant transcription factor database

    PubMed Central

    Guo, An-Yuan; Chen, Xin; Gao, Ge; Zhang, He; Zhu, Qi-Hui; Liu, Xiao-Chuan; Zhong, Ying-Fu; Gu, Xiaocheng; He, Kun; Luo, Jingchu

    2008-01-01

    Transcription factors (TFs) play key roles in controlling gene expression. Systematic identification and annotation of TFs, followed by construction of TF databases may serve as useful resources for studying the function and evolution of transcription factors. We developed a comprehensive plant transcription factor database PlantTFDB (http://planttfdb.cbi.pku.edu.cn), which contains 26 402 TFs predicted from 22 species, including five model organisms with available whole genome sequence and 17 plants with available EST sequences. To provide comprehensive information for those putative TFs, we made extensive annotation at both family and gene levels. A brief introduction and key references were presented for each family. Functional domain information and cross-references to various well-known public databases were available for each identified TF. In addition, we predicted putative orthologs of those TFs among the 22 species. PlantTFDB has a simple interface to allow users to search the database by IDs or free texts, to make sequence similarity search against TFs of all or individual species, and to download TF sequences for local analysis. PMID:17933783

  11. Navigating the Functional Landscape of Transcription Factors via Non-Negative Tensor Factorization Analysis of MEDLINE Abstracts

    PubMed Central

    Roy, Sujoy; Yun, Daqing; Madahian, Behrouz; Berry, Michael W.; Deng, Lih-Yuan; Goldowitz, Daniel; Homayouni, Ramin

    2017-01-01

    In this study, we developed and evaluated a novel text-mining approach, using non-negative tensor factorization (NTF), to simultaneously extract and functionally annotate transcriptional modules consisting of sets of genes, transcription factors (TFs), and terms from MEDLINE abstracts. A sparse 3-mode term × gene × TF tensor was constructed that contained weighted frequencies of 106,895 terms in 26,781 abstracts shared among 7,695 genes and 994 TFs. The tensor was decomposed into sub-tensors using non-negative tensor factorization (NTF) across 16 different approximation ranks. Dominant entries of each of 2,861 sub-tensors were extracted to form term–gene–TF annotated transcriptional modules (ATMs). More than 94% of the ATMs were found to be enriched in at least one KEGG pathway or GO category, suggesting that the ATMs are functionally relevant. One advantage of this method is that it can discover potentially new gene–TF associations from the literature. Using a set of microarray and ChIP-Seq datasets as gold standard, we show that the precision of our method for predicting gene–TF associations is significantly higher than chance. In addition, we demonstrate that the terms in each ATM can be used to suggest new GO classifications to genes and TFs. Taken together, our results indicate that NTF is useful for simultaneous extraction and functional annotation of transcriptional regulatory networks from unstructured text, as well as for literature based discovery. A web tool called Transcriptional Regulatory Modules Extracted from Literature (TREMEL), available at http://binf1.memphis.edu/tremel, was built to enable browsing and searching of ATMs. PMID:28894735

  12. Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

    PubMed Central

    Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.

    2014-01-01

    SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951

  13. Single-Nucleotide-Specific Targeting of the Tf1 Retrotransposon Promoted by the DNA-Binding Protein Sap1 of Schizosaccharomyces pombe.

    PubMed

    Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R; McQueen, Philip G; Yang, Andrew X; Mizuguchi, Takeshi; Grewal, Shiv I S; Levin, Henry L

    2015-11-01

    Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and -9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. Copyright © 2015 by the Genetics Society of America.

  14. Single-Nucleotide-Specific Targeting of the Tf1 Retrotransposon Promoted by the DNA-Binding Protein Sap1 of Schizosaccharomyces pombe

    PubMed Central

    Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R.; McQueen, Philip G.; Yang, Andrew X.; Mizuguchi, Takeshi; Grewal, Shiv I. S.; Levin, Henry L.

    2015-01-01

    Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and −9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. PMID:26358720

  15. Specificity of the weak binding between the phage SPO1 transcription-inhibitory protein, TF1, and SPO1 DNA.

    PubMed

    Johnson, G G; Geiduschek, E P

    1977-04-05

    The interaction of the phage SPO1 protein transcription factor 1 (TF1), with DNA has been analyzed by membrane filter binding and by sedimentation methods. Substantially specific binding of TF1 to helical SPO1 DNA can be demonstrated by nitrocellulose filter-binding assays at relatively low ionic strength (0.08). However, TF1-DNA complexes dissociate and reequilibrate relatively rapidly and this makes filter-binding assays unsuitable for quantitative measurements of binding equilibra. Accordingly, the sedimentation properties of TF1-DNA complexes have been explored and a short-column centrifugation assay has been elaborated for quantitative measurements. Preferential binding of TF1 to the hydroxymethyluracil-containing SPO1 DNA has also been demonstrated by short-column centrifugation. TF1 binds relatively weakly and somewhat cooperatively to SPO1 DNA at many sites; TF1-DNA complexes dissociate and reequilibrate rapidly. At 20 degrees C in 0.01 M phosphate, pH 7.5, 0.15 KC1, one molecule of TF1 can bind to approximately every 60 nucleotide pairs of SPO1 DNA.

  16. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    PubMed

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  17. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea.

    PubMed

    Konda, Aravind Kumar; Farmer, Rohit; Soren, Khela Ram; P S, Shanmugavadivel; Setti, Aravind

    2017-07-28

    Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.

  18. Schizosaccharomyces pombe Retrotransposon Tf2 Mobilizes Primarily through Homologous cDNA Recombination

    PubMed Central

    Hoff, Eleanor F.; Levin, Henry L.; Boeke, Jef D.

    1998-01-01

    The Tf2 retrotransposon, found in the fission yeast Schizosaccharomyces pombe, is nearly identical to its sister element, Tf1, in its reverse transcriptase-RNase H and integrase domains but is very divergent in the gag domain, the protease, the 5′ untranslated region, and the U3 domain of the long terminal repeats. It has now been demonstrated that a neo-marked copy of Tf2 overexpressed from a heterologous promoter can mobilize into the S. pombe genome and produce true transposition events. However, the Tf2-neo mobilization frequency is 10- to 20-fold lower than that of Tf1-neo, and 70% of the Tf2-neo events are homologous recombination events generated independently of a functional Tf2 integrase. Thus, the Tf2 element is primarily dependent on homologous recombination with preexisting copies of Tf2 for its propagation. Finally, production of Tf2-neo proteins and cDNA was also analyzed; surprisingly, Tf2 was found to produce its reverse transcriptase as a single species in which it is fused to protease, unlike all other retroviruses and retrotransposons. PMID:9774697

  19. p53 determines prognostic significance of the carbohydrate stem cell marker TF1 (CD176) in ovarian cancer.

    PubMed

    Heublein, Sabine; Page, Sabina K; Mayr, Doris; Ditsch, Nina; Jeschke, Udo

    2016-06-01

    The oncofoetal Thomsen-Friedenreich (TF1, CD176) epitope is a carbohydrate cancer stem cell (CSC) antigen, and TF1-mediated cancer progression can be widely reversed by anti-TF1 antibodies. Particularly, CSC-like cells are regarded to be tumorigenic and chemoresistant. Aberrant p53 is probably the factor most closely associated with chemoresistance and tumour aggressiveness in ovarian tumours. We thus questioned whether TF1 in combination with p53 or as a single marker may be related to clinico-pathological features and survival of ovarian cancer patients. Both markers were quantified in ovarian cancer tissue (n = 151) by immunohistochemistry. p53 staining was subdivided into three subgroups [n (completely negative) = 57, n (moderately stained) = 28, n (overexpressing) = 66]. TF1 was scored as positive (n = 30) versus negative (n = 121). Only in those cancers classified with moderate p53 staining-and thus most likely displaying with wild-type TP53-TF1 positivity turned out to be a predictor for shortened overall survival (univariate: p < 0.001, multivariate: p = 0.001). By screening 17 different protein markers for correlation with TF1, only mucin-1 emerged as a potential TF1 carrier protein. It is hypothesized that TF1 may confer tumour-promoting features, especially in a TP53 wild-type genetic background. In addition, TF1 is an attractive immunotherapeutic target. Whether those cases classified as TF1 positive and at the same time as moderately stained for p53 might particularly benefit from a future anti-TF1 antibody treatment or from TF1 vaccination therapy remains to be determined.

  20. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes

    PubMed Central

    Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak

    2017-01-01

    Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. PMID:29232693

  1. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    PubMed

    Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak; Levin, Henry L

    2017-12-01

    Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  2. “Hit‐and‐Run” leaves its mark: Catalyst transcription factors and chromatin modification

    PubMed Central

    Varala, Kranthi; Li, Ying; Marshall‐Colón, Amy; Para, Alessia

    2015-01-01

    Understanding how transcription factor (TF) binding is related to gene regulation is a moving target. We recently uncovered genome‐wide evidence for a “Hit‐and‐Run” model of transcription. In this model, a master TF “hits” a target promoter to initiate a rapid response to a signal. As the “hit” is transient, the model invokes recruitment of partner TFs to sustain transcription over time. Following the “run”, the master TF “hits” other targets to propagate the response genome‐wide. As such, a TF may act as a “catalyst” to mount a broad and acute response in cells that first sense the signal, while the recruited TF partners promote long‐term adaptive behavior in the whole organism. This “Hit‐and‐Run” model likely has broad relevance, as TF perturbation studies across eukaryotes show small overlaps between TF‐regulated and TF‐bound genes, implicating transient TF‐target binding. Here, we explore this “Hit‐and‐Run” model to suggest molecular mechanisms and its biological relevance. PMID:26108710

  3. Biophysical Fitness Landscapes for Transcription Factor Binding Sites

    PubMed Central

    Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.

    2014-01-01

    Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228

  4. Evaluation of surface antigen TF1.17 in feline Tritrichomonas foetus isolates.

    PubMed

    Gould, E N; Corbeil, L B; Kania, S A; Tolbert, M K

    2017-09-15

    Tritrichomonas foetus (T. foetus) is a flagellated protozoa that infects the distal ileum and proximal colon of domestic cats, as well as the urogenital tract of cattle. Feline trichomonosis is recognized as a prevalent cause of chronic diarrhea in cats worldwide. The suspected route of transmission is fecal-oral, with cats in densely crowded environments at highest risk for infection. Thus, the recommended strategy for minimizing spread of infection is to identify and isolate T. foetus-positive cats from the general population. Rapid identification of infected cats can be challenging due to the inability to accurately and quickly detect the organism in samples at point of care facilities. Thus, identification of targets for use in development of a novel diagnostic test, as well as a vaccine or therapy for T. foetus infection is a significant area of research. Despite a difference in organ tropism between T. foetus genotypes, evidence exists for conserved virulence factors between feline and bovine T. foetus. The bovine T. foetus surface antigen, TF1.17, is an adhesin that is conserved across isolates. Vaccination with the purified antigen results in amelioration of cytopathogenicity and more rapid clearance of infection in cattle. We previously showed that three feline isolates of T. foetus were positive for TF1.17 antigen so we further hypothesized that TF1.17 is conserved across feline T. foetus isolates and that this antigen would represent an attractive target for development of a novel diagnostic test or therapy for feline trichomonosis. In these studies, we used monoclonal antibodies previously generated against 1.15 and 1.17 epitopes of the bovine T. foetus TF1.17 antigen, to evaluate for the presence and role of TF1.17 in the cytopathogenicity of feline T. foetus. A previously validated in vitro co-culture approach was used to model feline T. foetus infection. Immunoblotting, immunofluorescence assays, and flow cytometric analysis confirmed the presence

  5. Expression of the Thomsen-Friedenreich (TF) tumor antigen in human abort placentas.

    PubMed

    Richter, D U; Jeschke, U; Bergemann, C; Makovitzky, J; Lüthen, F; Karsten, U; Briese, V

    2005-01-01

    The Thomsen-Friedenreich antigen (TF), or more precisely epitope, has been known as a pancarcinoma antigen. It consists of galactose-beta1-3-N-acetylgalactose. We have already described the expression of TF in the normal placenta. TF is expressed by the syncytium and by extravillous trophoblast cells. In this study, we investigated the expression of TF in the abort placenta. Frozen samples of human abort placentas (12 placentas), obtained from the first and second trimesters of pregnancy and, for comparison, samples of normal placentas (17 placentas) from the first, second and third trimesters of pregnancy, were used. Expression of TF was investigated by immunohistochemical methods. For identification of TF-positive cells in abort placentas, immunofluorescence methods were used. Evaluation of simple and double immunofluorescence was performed on a laser scanning microscope. Furthermore, we isolated trophoblast cells from first and third trimester placentas and evaluated cytokeratin 7 and Muc1 expression by immunofluorescence methods. We observed expression of TF antigen in the syncytiotrophoblasts layer of the placenta in all three trimesters of pregnancy in normal and abort placentas evaluated by immunohistochemical methods. There was no expression of TF antigen in the decidua of abort placentas. Immunofluorescence double staining of TF antigen and cytokeratin 7 showed reduced expression of both antigens in the abort decidua and co-expression of both antigens in the syncytiotrophoblast layer of normal and abort placentas. TF expression in the syncytiotrophoblast was reduced in abort placentas. In the isolated trophoblast cells, no TF expression was found, however, Muc1 expression was visualized. Expression of TF antigen was reduced in the first and second trimester abort decidua compared to the normal decidua during the same time of pregnancy. TF antigen was restricted to the syncytiotrophoblast and extravillous trophoblast cells in the decidua. Abort placentas

  6. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    PubMed

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  7. cGRNB: a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets.

    PubMed

    Xu, Huayong; Yu, Hui; Tu, Kang; Shi, Qianqian; Wei, Chaochun; Li, Yuan-Yuan; Li, Yi-Xue

    2013-01-01

    We are witnessing rapid progress in the development of methodologies for building the combinatorial gene regulatory networks involving both TFs (Transcription Factors) and miRNAs (microRNAs). There are a few tools available to do these jobs but most of them are not easy to use and not accessible online. A web server is especially needed in order to allow users to upload experimental expression datasets and build combinatorial regulatory networks corresponding to their particular contexts. In this work, we compiled putative TF-gene, miRNA-gene and TF-miRNA regulatory relationships from forward-engineering pipelines and curated them as built-in data libraries. We streamlined the R codes of our two separate forward-and-reverse engineering algorithms for combinatorial gene regulatory network construction and formalized them as two major functional modules. As a result, we released the cGRNB (combinatorial Gene Regulatory Networks Builder): a web server for constructing combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. The cGRNB enables two major network-building modules, one for MPGE (miRNA-perturbed gene expression) datasets and the other for parallel miRNA/mRNA expression datasets. A miRNA-centered two-layer combinatorial regulatory cascade is the output of the first module and a comprehensive genome-wide network involving all three types of combinatorial regulations (TF-gene, TF-miRNA, and miRNA-gene) are the output of the second module. In this article we propose cGRNB, a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. Since parallel miRNA/mRNA expression datasets are rapidly accumulated by the advance of next-generation sequencing techniques, cGRNB will be very useful tool for researchers to build combinatorial gene regulatory networks based on expression datasets

  8. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    PubMed

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI < 25 kg/m2) and obese (BMI > 30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  9. Stochastic modular analysis for gene circuits: interplay among retroactivity, nonlinearity, and stochasticity.

    PubMed

    Kim, Kyung Hyuk; Sauro, Herbert M

    2015-01-01

    This chapter introduces a computational analysis method for analyzing gene circuit dynamics in terms of modules while taking into account stochasticity, system nonlinearity, and retroactivity. (1) ANALOG ELECTRICAL CIRCUIT REPRESENTATION FOR GENE CIRCUITS: A connection between two gene circuit components is often mediated by a transcription factor (TF) and the connection signal is described by the TF concentration. The TF is sequestered to its specific binding site (promoter region) and regulates downstream transcription. This sequestration has been known to affect the dynamics of the TF by increasing its response time. The downstream effect-retroactivity-has been shown to be explicitly described in an electrical circuit representation, as an input capacitance increase. We provide a brief review on this topic. (2) MODULAR DESCRIPTION OF NOISE PROPAGATION: Gene circuit signals are noisy due to the random nature of biological reactions. The noisy fluctuations in TF concentrations affect downstream regulation. Thus, noise can propagate throughout the connected system components. This can cause different circuit components to behave in a statistically dependent manner, hampering a modular analysis. Here, we show that the modular analysis is still possible at the linear noise approximation level. (3) NOISE EFFECT ON MODULE INPUT-OUTPUT RESPONSE: We investigate how to deal with a module input-output response and its noise dependency. Noise-induced phenotypes are described as an interplay between system nonlinearity and signal noise. Lastly, we provide the comprehensive approach incorporating the above three analysis methods, which we call "stochastic modular analysis." This method can provide an analysis framework for gene circuit dynamics when the nontrivial effects of retroactivity, stochasticity, and nonlinearity need to be taken into account.

  10. Identification and characterization of TF1(phox), a DNA-binding protein that increases expression of gp91(phox) in PLB985 myeloid leukemia cells.

    PubMed

    Eklund, E A; Kakar, R

    1997-04-04

    The CYBB gene encodes gp91(phox), the heavy chain of the phagocyte-specific NADPH oxidase. CYBB is transcriptionally inactive until the promyelocyte stage of myelopoiesis, and in mature phagocytes, expression of gp91(phox) is further increased by interferon-gamma (IFN-gamma) and other inflammatory mediators. The CYBB promoter region contains several lineage-specific cis-elements involved in the IFN-gamma response. We screened a leukocyte cDNA expression library for proteins able to bind to one of these cis-elements (-214 to -262 base pairs) and identified TF1(phox), a protein with sequence-specific binding to the CYBB promoter. Electrophoretic mobility shift assay with nuclear proteins from a variety of cell lines demonstrated binding of a protein to the CYBB promoter that was cross-immunoreactive with TF1(phox). DNA binding of this protein was increased by IFN-gamma treatment in the myeloid cell line PLB985, but not in the non-myeloid cell line HeLa. Overexpression of recombinant TF1(phox) in PLB985 cells increased endogenous gp91(phox) message abundance, but did not lead to cellular differentiation. Overexpression of TF1(phox) in myeloid leukemia cell lines increased reporter gene expression from artificial promoter constructs containing CYBB promoter sequence. These data suggested that TF1(phox) increased expression of gp91(phox).

  11. Genome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish (Raphanus sativus L.)

    PubMed Central

    Muleke, Everlyne M’mbone; Jabir, Bashir Mohammed; Xie, Yang; Zhu, Xianwen; Cheng, Wanwan

    2017-01-01

    NAC (NAM, no apical meristem; ATAF, Arabidopsis transcription activation factor and CUC, cup-shaped cotyledon) proteins are among the largest transcription factor (TF) families playing fundamental biological processes, including cell expansion and differentiation, and hormone signaling in response to biotic and abiotic stresses. In this study, 172 RsNACs comprising 17 membrane-bound members were identified from the whole radish genome. In total, 98 RsNAC genes were non-uniformly distributed across the nine radish chromosomes. In silico analysis revealed that expression patterns of several NAC genes were tissue-specific such as a preferential expression in roots and leaves. In addition, 21 representative NAC genes were selected to investigate their responses to heavy metals (HMs), salt, heat, drought and abscisic acid (ABA) stresses using real-time polymerase chain reaction (RT-qPCR). As a result, differential expressions among these genes were identified where RsNAC023 and RsNAC080 genes responded positively to all stresses except ABA, while RsNAC145 responded more actively to salt, heat and drought stresses compared with other genes. The results provides more valuable information and robust candidate genes for future functional analysis for improving abiotic stress tolerances in radish. PMID:29259849

  12. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.

    PubMed

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh

    2013-09-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action.

  13. Regression Analysis of Combined Gene Expression Regulation in Acute Myeloid Leukemia

    PubMed Central

    Li, Yue; Liang, Minggao; Zhang, Zhaolei

    2014-01-01

    Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However, there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18 regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p, whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML

  14. APG: an Active Protein-Gene network model to quantify regulatory signals in complex biological systems.

    PubMed

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.

  15. APG: an Active Protein-Gene Network Model to Quantify Regulatory Signals in Complex Biological Systems

    PubMed Central

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information. PMID:23346354

  16. Intrinsic limits to gene regulation by global crosstalk

    PubMed Central

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  17. Combinatorial Control of Light Induced Chromatin Remodeling and Gene Activation in Neurospora

    PubMed Central

    Sancar, Cigdem; Ha, Nati; Yilmaz, Rüstem; Tesorero, Rafael; Fisher, Tamas; Brunner, Michael; Sancar, Gencer

    2015-01-01

    Light is an important environmental cue that affects physiology and development of Neurospora crassa. The light-sensing transcription factor (TF) WCC, which consists of the GATA-family TFs WC1 and WC2, is required for light-dependent transcription. SUB1, another GATA-family TF, is not a photoreceptor but has also been implicated in light-inducible gene expression. To assess regulation and organization of the network of light-inducible genes, we analyzed the roles of WCC and SUB1 in light-induced transcription and nucleosome remodeling. We show that SUB1 co-regulates a fraction of light-inducible genes together with the WCC. WCC induces nucleosome eviction at its binding sites. Chromatin remodeling is facilitated by SUB1 but SUB1 cannot activate light-inducible genes in the absence of WCC. We identified FF7, a TF with a putative O-acetyl transferase domain, as an interaction partner of SUB1 and show their cooperation in regulation of a fraction of light-inducible and a much larger number of non light-inducible genes. Our data suggest that WCC acts as a general switch for light-induced chromatin remodeling and gene expression. SUB1 and FF7 synergistically determine the extent of light-induction of target genes in common with WCC but have in addition a role in transcription regulation beyond light-induced gene expression. PMID:25822411

  18. Blood lead levels, iron metabolism gene polymorphisms and homocysteine: a gene-environment interaction study.

    PubMed

    Kim, Kyoung-Nam; Lee, Mee-Ri; Lim, Youn-Hee; Hong, Yun-Chul

    2017-12-01

    Homocysteine has been causally associated with various adverse health outcomes. Evidence supporting the relationship between lead and homocysteine levels has been accumulating, but most prior studies have not focused on the interaction with genetic polymorphisms. From a community-based prospective cohort, we analysed 386 participants (aged 41-71 years) with information regarding blood lead and plasma homocysteine levels. Blood lead levels were measured between 2001 and 2003, and plasma homocysteine levels were measured in 2007. Interactions of lead levels with 42 genotyped single-nucleotide polymorphisms (SNPs) in five genes ( TF , HFE , CBS , BHMT and MTR ) were assessed via a 2-degree of freedom (df) joint test and a 1-df interaction test. In secondary analyses using imputation, we further assessed 58 imputed SNPs in the TF and MTHFR genes. Blood lead concentrations were positively associated with plasma homocysteine levels (p=0.0276). Six SNPs in the TF and MTR genes were screened using the 2-df joint test, and among them, three SNPs in the TF gene showed interactions with lead with respect to homocysteine levels through the 1-df interaction test (p<0.0083). Seven SNPs in the MTHFR gene were associated with homocysteine levels at an α-level of 0.05, but the associations did not persist after Bonferroni correction. These SNPs did not show interactions with lead levels. Blood lead levels were positively associated with plasma homocysteine levels measured 4-6 years later, and three SNPs in the TF gene modified the association. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  20. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  1. Twin hydroxymethyluracil-A base pair steps define the binding site for the DNA-binding protein TF1.

    PubMed

    Grove, A; Figueiredo, M L; Galeone, A; Mayol, L; Geiduschek, E P

    1997-05-16

    The DNA-bending protein TF1 is the Bacillus subtilis bacteriophage SPO1-encoded homolog of the bacterial HU proteins and the Escherichia coli integration host factor. We recently proposed that TF1, which binds with high affinity (Kd was approximately 3 nM) to preferred sites within the hydroxymethyluracil (hmU)-containing phage genome, identifies its binding sites based on sequence-dependent DNA flexibility. Here, we show that two hmU-A base pair steps coinciding with two previously proposed sites of DNA distortion are critical for complex formation. The affinity of TF1 is reduced 10-fold when both of these hmU-A base pair steps are replaced with A-hmU, G-C, or C-G steps; only modest changes in affinity result when substitutions are made at other base pairs of the TF1 binding site. Replacement of all hmU residues with thymine decreases the affinity of TF1 greatly; remarkably, the high affinity is restored when the two hmU-A base pair steps corresponding to previously suggested sites of distortion are reintroduced into otherwise T-containing DNA. T-DNA constructs with 3-base bulges spaced apart by 9 base pairs of duplex also generate nM affinity of TF1. We suggest that twin hmU-A base pair steps located at the proposed sites of distortion are key to target site selection by TF1 and that recognition is based largely, if not entirely, on sequence-dependent DNA flexibility.

  2. Identification of Direct Target Genes Using Joint Sequence and Expression Likelihood with Application to DAF-16

    PubMed Central

    Yu, Ron X.; Liu, Jie; True, Nick; Wang, Wei

    2008-01-01

    A major challenge in the post-genome era is to reconstruct regulatory networks from the biological knowledge accumulated up to date. The development of tools for identifying direct target genes of transcription factors (TFs) is critical to this endeavor. Given a set of microarray experiments, a probabilistic model called TRANSMODIS has been developed which can infer the direct targets of a TF by integrating sequence motif, gene expression and ChIP-chip data. The performance of TRANSMODIS was first validated on a set of transcription factor perturbation experiments (TFPEs) involving Pho4p, a well studied TF in Saccharomyces cerevisiae. TRANSMODIS removed elements of arbitrariness in manual target gene selection process and produced results that concur with one's intuition. TRANSMODIS was further validated on a genome-wide scale by comparing it with two other methods in Saccharomyces cerevisiae. The usefulness of TRANSMODIS was then demonstrated by applying it to the identification of direct targets of DAF-16, a critical TF regulating ageing in Caenorhabditis elegans. We found that 189 genes were tightly regulated by DAF-16. In addition, DAF-16 has differential preference for motifs when acting as an activator or repressor, which awaits experimental verification. TRANSMODIS is computationally efficient and robust, making it a useful probabilistic framework for finding immediate targets. PMID:18350157

  3. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development

    PubMed Central

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh

    2013-01-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein–protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action. PMID:23847101

  4. Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation

    PubMed Central

    1994-01-01

    Cells of monocytic lineage can initiate extravascular fibrin deposition via expression of blood coagulation mediators. This report is about experiments on three mechanisms with the potential to modulate monocyte- initiated coagulation. Monocyte procoagulant activity was examined as a function of lipid cofactor, protein cofactor, and specific inhibitor expression during short-term culture in vitro. Lipid cofactor activity was measured as the initial rate of factor X activation by intrinsic- pathway components, the assembly of which depends on this cofactor. Lipid cofactor activity levels changed by < 30% during 48-h culture. Protein cofactor, i.e., tissue factor (TF) antigen was measured by enzyme immunoassay. It increased from 461 pg/ml to a maximum value of 3,550 pg/ml at 24 h and remained at 70% of this value. Specific TF activity, measured as factor VII-dependent factor X activation rate, decreased from 54 to 18 nM FXa/min between 24 and 48 h. TF activity did not correlate well with either lipid cofactor or TF protein levels. In contrast, the decrease in TF activity coincided in time with maximal expression of tissue factor pathway inhibitor (TFPI) mRNA, which was determined using reverse transcriptase polymerase chain reaction (RT- PCR), and with maximal TFPI protein levels measured by immunoassay. The number of mRNA copies coding for TFPI and TF in freshly isolated blood monocytes were 46 and 20 copies/cells, respectively. These values increased to 220 and 63 copies/cell during short-term cell culture in the presence of endotoxin. Results demonstrate concomitant expression by monocytes of genes coding for both the essential protein cofactor and the specific inhibitor of the extrinsic coagulation pathway. Together with functional and antigenic analyses, they also imply that the initiation of blood clotting by extravascular monocyte/macrophages can be modulated locally by TFPI independently of plasma sources of the inhibitor. PMID:8195712

  5. Identification of upstream transcription factors (TFs) for expression signature genes in breast cancer.

    PubMed

    Zang, Hongyan; Li, Ning; Pan, Yuling; Hao, Jingguang

    2017-03-01

    Breast cancer is a common malignancy among women with a rising incidence. Our intention was to detect transcription factors (TFs) for deeper understanding of the underlying mechanisms of breast cancer. Integrated analysis of gene expression datasets of breast cancer was performed. Then, functional annotation of differentially expressed genes (DEGs) was conducted, including Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, TFs were identified and a global transcriptional regulatory network was constructed. Seven publically available GEO datasets were obtained, and a set of 1196 DEGs were identified (460 up-regulated and 736 down-regulated). Functional annotation results showed that cell cycle was the most significantly enriched pathway, which was consistent with the fact that cell cycle is closely related to various tumors. Fifty-three differentially expressed TFs were identified, and the regulatory networks consisted of 817 TF-target interactions between 46 TFs and 602 DEGs in the context of breast cancer. Top 10 TFs covering the most downstream DEGs were SOX10, NFATC2, ZNF354C, ARID3A, BRCA1, FOXO3, GATA3, ZEB1, HOXA5 and EGR1. The transcriptional regulatory networks could enable a better understanding of regulatory mechanisms of breast cancer pathology and provide an opportunity for the development of potential therapy.

  6. [The gene pool of Belgorod oblast population: study of biochemical gene markers in populations of Ukraine and Belarus and the position of the Belgorod population in the Eastern Slavic gene pool system].

    PubMed

    Lependina, I N; Churnosov, M I; Artamentova, L A; Ishchuk, M A; Tegako, O V; Balanovskaia, E V

    2008-04-01

    The characteristics of the gene pools of indigenous populations of Ukraine and Belarus have been studied using 28 alleles of 10 loci of biochemical gene markers (HP, GC, TF, PI, C'3, ACP1, GLO1, PGM1, ESD, and 6-PGD). The gene pools of the Russian and Ukrainian indigenous populations of Belgorod oblast (Russia) and the indigenous populations of Ukraine and Belarus have been compared. Cluster analysis, multidimensional scaling, and factor analysis of the obtained data have been used to determine the position of the Belgorod population gene pool in the Eastern Slavic gene pool system.

  7. Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice.

    PubMed

    Antoniak, S; Tatsumi, K; Hisada, Y; Milner, J J; Neidich, S D; Shaver, C M; Pawlinski, R; Beck, M A; Bastarache, J A; Mackman, N

    2016-06-01

    Essentials H1N1 Influenza A virus (IAV) infection is a hemostatic challenge for the lung. Tissue factor (TF) on lung epithelial cells maintains lung hemostasis after IAV infection. Reduced TF-dependent activation of coagulation leads to alveolar hemorrhage. Anticoagulation might increase the risk for hemorrhages into the lung during severe IAV infection. Background Influenza A virus (IAV) infection is a common respiratory tract infection that causes considerable morbidity and mortality worldwide. Objective To investigate the effect of genetic deficiency of tissue factor (TF) in a mouse model of IAV infection. Methods Wild-type mice, low-TF (LTF) mice and mice with the TF gene deleted in different cell types were infected with a mouse-adapted A/Puerto Rico/8/34 H1N1 strain of IAV. TF expression was measured in the lungs, and bronchoalveolar lavage fluid (BALF) was collected to measure extracellular vesicle TF, activation of coagulation, alveolar hemorrhage, and inflammation. Results IAV infection of wild-type mice increased lung TF expression, activation of coagulation and inflammation in BALF, but also led to alveolar hemorrhage. LTF mice and mice with selective deficiency of TF in lung epithelial cells had low basal levels of TF and failed to increase TF expression after infection; these two strains of mice had more alveolar hemorrhage and death than controls. In contrast, deletion of TF in either myeloid cells or endothelial cells and hematopoietic cells did not increase alveolar hemorrhage or death after IAV infection. These results indicate that TF expression in the lung, particularly in epithelial cells, is required to maintain alveolar hemostasis after IAV infection. Conclusion Our study indicates that TF-dependent activation of coagulation is required to limit alveolar hemorrhage and death after IAV infection. © 2016 International Society on Thrombosis and Haemostasis.

  8. Identifying transcription factor functions and targets by phenotypic activation

    PubMed Central

    Chua, Gordon; Morris, Quaid D.; Sopko, Richelle; Robinson, Mark D.; Ryan, Owen; Chan, Esther T.; Frey, Brendan J.; Andrews, Brenda J.; Boone, Charles; Hughes, Timothy R.

    2006-01-01

    Mapping transcriptional regulatory networks is difficult because many transcription factors (TFs) are activated only under specific conditions. We describe a generic strategy for identifying genes and pathways induced by individual TFs that does not require knowledge of their normal activation cues. Microarray analysis of 55 yeast TFs that caused a growth phenotype when overexpressed showed that the majority caused increased transcript levels of genes in specific physiological categories, suggesting a mechanism for growth inhibition. Induced genes typically included established targets and genes with consensus promoter motifs, if known, indicating that these data are useful for identifying potential new target genes and binding sites. We identified the sequence 5′-TCACGCAA as a binding sequence for Hms1p, a TF that positively regulates pseudohyphal growth and previously had no known motif. The general strategy outlined here presents a straightforward approach to discovery of TF activities and mapping targets that could be adapted to any organism with transgenic technology. PMID:16880382

  9. Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TF1 progenitor cell line.

    PubMed

    Coppola, S; Narciso, L; Feccia, T; Bonci, D; Calabrò, L; Morsilli, O; Gabbianelli, M; De Maria, R; Testa, U; Peschle, C

    2006-01-01

    Vascular endothelial growth factor (VEGF) receptor-2/kinase insert domain-containing receptor (KDR) is expressed in primitive hematopoietic cells, in megakaryocytes and platelets. In primitive hematopoiesis KDR mediates cell survival via autocrine VEGF, while its effect on cell growth and differentiation has not been elucidated. We induced enforced KDR expression in the granulocyte macrophage-colony-stimulating factor (GM-CSF)-dependent TF1 progenitor cell line (TF1-KDR), treated the cells with VEGF and analyzed their response. In GM-CSF-deprived cells, VEGF induces cell proliferation and protection against apoptosis, followed by enhanced expression of megakaryocytic (MK) markers. Combined with GM-CSF, VEGF induces a mild proliferative stimulus, followed by cell adherence, accumulation in G0/G1, massive MK differentiation and Fas-mediated apoptosis. Accordingly, we observed that MK-differentiating cells, derived from hematopoietic progenitors, produce VEGF, express KDR, inhibition of which reduces MK differentiation, indicating a key role of KDR in megakaryopoiesis. In conclusion, TF1-KDR cells provide a reliable model to investigate the biochemical and molecular mechanisms underlying hematopoietic progenitor proliferation, survival and MK differentiation.

  10. Opposing Control by Transcription Factors MYB61 and MYB3 Increases Freezing Tolerance by Relieving C-Repeat Binding Factor Suppression1[OPEN

    PubMed Central

    Zhang, Yunqin; Miao, Zhenyan; Xie, Can; Meng, Xiangzhao; Deng, Jie; Mysore, Kirankumar S.; Frugier, Florian; Wang, Tao

    2016-01-01

    Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula. In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula. PMID:27578551

  11. Genome-wide network of regulatory genes for construction of a chordate embryo.

    PubMed

    Shoguchi, Eiichi; Hamaguchi, Makoto; Satoh, Nori

    2008-04-15

    Animal development is controlled by gene regulation networks that are composed of sequence-specific transcription factors (TF) and cell signaling molecules (ST). Although housekeeping genes have been reported to show clustering in the animal genomes, whether the genes comprising a given regulatory network are physically clustered on a chromosome is uncertain. We examined this question in the present study. Ascidians are the closest living relatives of vertebrates, and their tadpole-type larva represents the basic body plan of chordates. The Ciona intestinalis genome contains 390 core TF genes and 119 major ST genes. Previous gene disruption assays led to the formulation of a basic chordate embryonic blueprint, based on over 3000 genetic interactions among 79 zygotic regulatory genes. Here, we mapped the regulatory genes, including all 79 regulatory genes, on the 14 pairs of Ciona chromosomes by fluorescent in situ hybridization (FISH). Chromosomal localization of upstream and downstream regulatory genes demonstrates that the components of coherent developmental gene networks are evenly distributed over the 14 chromosomes. Thus, this study provides the first comprehensive evidence that the physical clustering of regulatory genes, or their target genes, is not relevant for the genome-wide control of gene expression during development.

  12. Regulation of tissue factor in NT2 germ cell tumor cells by cisplatin chemotherapy.

    PubMed

    Jacobsen, Christine; Oechsle, Karin; Hauschild, Jessica; Steinemann, Gustav; Spath, Brigitte; Bokemeyer, Carsten; Ruf, Wolfram; Honecker, Friedemann; Langer, Florian

    2015-09-01

    Patients with germ cell tumors (GCTs) receiving cisplatin-based chemotherapy are at increased risk of thrombosis, but the underlying cellular and molecular mechanisms remain obscure. To study baseline tissue factor (TF) expression by GCT cell lines and its modulation by cisplatin treatment. TF expression was assessed by single-stage clotting and thrombin generation assay, flow cytometry, ELISA, and Western blot analysis. Cell cycle analysis and detection of phosphatidylserine (PS) membrane exposure were carried out by flow cytometry. TF mRNA was analyzed by quantitative RT-PCR. Significant expression of TF-specific procoagulant activity (PCA) was detected on three non-seminoma (NT2, 2102Ep, NCCIT) and one seminoma cell line (TCam-2). Treatment with 0.4μM cisplatin (corresponding to the IC50) for 48hrs increased TF PCA on NT2 cells 3-fold, an effect that was largely independent of PS exposure and that could not be explained by translocation of active TF from intracellular storage pools. Cisplatin-induced TF PCA expression in NT2 cells did not occur before 12hrs, but was steady thereafter and accompanied by a 2-fold increase in total and surface-located TF antigen. Importantly, increased TF gene transcription or production and release of an intermediate factor were not involved in this process. Cell cycle analysis suggested that cisplatin-induced G2/M arrest resulted in an accumulation of procoagulant TF on the membrane surface of NT2 cells. In addition to induction of apoptosis/necrosis with PS-mediated activation of preformed TF, cisplatin may alter the procoagulant phenotype of GCT cells through an increase in total cellular TF antigen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    PubMed Central

    Wenger, Aaron M.; Clarke, Shoa L.; Guturu, Harendra; Chen, Jenny; Schaar, Bruce T.; McLean, Cory Y.; Bejerano, Gill

    2013-01-01

    The human genome encodes 1500–2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells. PMID:23382538

  14. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

    PubMed

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schildkraut, Joellen M; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston-Campbell, Lara E; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; van Altena, Anne M; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A; Monteiro, Alvaro N A; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P

    2015-10-01

    Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. ©2015 American Association for Cancer Research.

  15. Lead suppresses chimeric human transferrin gene expression in transgenic mouse liver.

    PubMed

    Adrian, G S; Rivera, E V; Adrian, E K; Lu, Y; Buchanan, J; Herbert, D C; Weaker, F J; Walter, C A; Bowman, B H

    1993-01-01

    The major iron-transport protein in serum is transferrin (TF) which also has the capacity to transport other metals. This report presents evidence that synthesis of human TF can be regulated by the metal lead. Transgenic mice carrying chimeric human TF-chloramphenicol acetyl transferase (CAT) genes received lead or sodium salts by intraperitoneal injections or in drinking water. Transgene expression in liver was suppressed 31 to 50% by the lead treatment. Lead regulates human TF transgenes at the mRNA level since liver CAT enzyme activity, CAT protein, and TF-CAT mRNA levels were all suppressed. The dosages of lead did not alter synthesis of the other liver proteins, mouse TF and albumin, as measured by Northern blot analysis of total liver RNA and rocket immunoelectrophoresis of mouse sera. Moderate levels of lead exposure were sufficient to evoke the human TF transgene response; blood lead levels in mice that received lead acetate in drinking water ranged from 30 micrograms/dl to 56 micrograms/dl. In addition to suppressing expression of TF-CAT genes in transgenic mice, lead also suppressed synthesis of TF protein in cultured human hepatoma HepG2 cells. The regulation of human TF apparently differs from the regulation of mouse TF which is unresponsive to lead exposure.

  16. Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage

    PubMed Central

    Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong

    2016-01-01

    The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris. PMID:27853303

  17. Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage.

    PubMed

    Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong

    2016-11-17

    The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris.

  18. Distinct Modes of Regulation of Transcription of Hepatitis B Virus by the Nuclear Receptors HNF4α and COUP-TF1

    PubMed Central

    Yu, Xianming; Mertz, Janet E.

    2003-01-01

    To study the effects of the nuclear receptors (NRs) HNF4α and COUP-TF1 on the life cycle of hepatitis B virus (HBV), the human hepatoma cell line Huh7 was transiently cotransfected with plasmids containing the HBV genome and encoding these two NRs. Overexpression of HNF4α and COUP-TF1 led to a 9-fold increase and a 7- to 10-fold decrease, respectively, in viral DNA synthesis. These two NRs also exhibited distinct modes of regulation of viral transcription. Overexpression of HNF4α led to a more-than-10-fold increase in synthesis of the pregenomic RNA but to only a 2- to 3-fold increase in synthesis of the pre-C and S RNAs. Moreover, the NR response element within the pre-C promoter, NRREpreC, played the major role in activation of pregenomic RNA synthesis by HNF4α. On the other hand, overexpression of COUP-TF1 led to an over-10-fold repression of synthesis of both pre-C and pregenomic RNAs mediated through either NRREpreC or NRREenhI. HNF4α and COUP-TF1 antagonized each other's effects on synthesis of pregenomic RNA and viral DNA when they were co-overexpressed. A naturally occurring HBV variant which allows for binding by HNF4α but not COUP-TF1 in its NRREpreC exhibited significantly higher levels of synthesis of pregenomic RNA and viral DNA than wild-type HBV in coexpression experiments. Last, deletion analysis revealed that non-NRRE sequences located within both the C and pre-S1 regions are also essential for maximum activation of the pregenomic promoter by HNF4α but not for repression by COUP-TF1. Thus, HNF4α and COUP-TF1 function through different mechanisms to regulate expression of the HBV genes. PMID:12551987

  19. Distinct modes of regulation of transcription of hepatitis B virus by the nuclear receptors HNF4alpha and COUP-TF1.

    PubMed

    Yu, Xianming; Mertz, Janet E

    2003-02-01

    To study the effects of the nuclear receptors (NRs) HNF4alpha and COUP-TF1 on the life cycle of hepatitis B virus (HBV), the human hepatoma cell line Huh7 was transiently cotransfected with plasmids containing the HBV genome and encoding these two NRs. Overexpression of HNF4alpha and COUP-TF1 led to a 9-fold increase and a 7- to 10-fold decrease, respectively, in viral DNA synthesis. These two NRs also exhibited distinct modes of regulation of viral transcription. Overexpression of HNF4alpha led to a more-than-10-fold increase in synthesis of the pregenomic RNA but to only a 2- to 3-fold increase in synthesis of the pre-C and S RNAs. Moreover, the NR response element within the pre-C promoter, NRRE(preC,) played the major role in activation of pregenomic RNA synthesis by HNF4alpha. On the other hand, overexpression of COUP-TF1 led to an over-10-fold repression of synthesis of both pre-C and pregenomic RNAs mediated through either NRRE(preC) or NRRE(enhI). HNF4alpha and COUP-TF1 antagonized each other's effects on synthesis of pregenomic RNA and viral DNA when they were co-overexpressed. A naturally occurring HBV variant which allows for binding by HNF4alpha but not COUP-TF1 in its NRRE(preC) exhibited significantly higher levels of synthesis of pregenomic RNA and viral DNA than wild-type HBV in coexpression experiments. Last, deletion analysis revealed that non-NRRE sequences located within both the C and pre-S1 regions are also essential for maximum activation of the pregenomic promoter by HNF4alpha but not for repression by COUP-TF1. Thus, HNF4alpha and COUP-TF1 function through different mechanisms to regulate expression of the HBV genes.

  20. Transduction of human IL-9 receptor cDNA into TF1 cells induces IL-9 dependency and erythroid differentiation.

    PubMed

    Xiao, M; Luo, Z; Mantel, C; Broxmeyer, H E; Lu, L

    2000-02-01

    Human growth factor-dependent cell line TF1, which lacks interleukin (IL)-9 receptors (R) and does not grow in IL-9, was transduced with a retroviral vector containing human IL-9R cDNA and a selection marker. An IL-9-dependent TF1 cell line, which could also grow in other cytokines, was established after selection in G418 and could produce mature RBC in response to cytokine stimulation. TF1 cells transduced with the same viral vector without the IL-9R insert cDNA (mock control) and then selected responded the same as nontransduced TF1 cells. They failed to grow in response to IL-9 and did not generate RBC. An increased number and size of burst-forming units-erythroid (BFU-E)-like colonies were detected from IL-9R-transduced TF1 cells, compared with mock-transduced cells, in response to erythropoietin (EPO) and IL-9. To evaluate self-renewal and differentiation capacity, colony-replating assays were performed in the presence of IL-3, GM-CSF, IL-9, and EPO. After four replatings, the cloning efficiency of IL-9R-transduced TF1 cells decreased from 98% to 38%, most likely due to terminal erythroid cell differentiation. In contrast, no change in replating efficiency was detected in mock-transduced cells. TF1 cells stably expressing IL-9R and responding to IL-9 can serve as a cell line model to study the intracellular signals mediating IL-9-induced erythroid cell proliferation and differentiation.

  1. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.

  2. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

    PubMed Central

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-01-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  3. Assessment of Muscle Fatigue from TF Distributions of SEMG Signals

    DTIC Science & Technology

    2008-06-01

    Wigner - Ville distribution ( WVD ) holds the...techniques used to build a TF distribution of SEMG signals, namely spectrogram, Wigner - Ville , Choi- Williams and smoothed pseudo Wigner - Ville . SEMG signals...spectrogram but also other Cohen’s class TF distributions , such as the Choi-Williams distribution (CWD) and the smoothed pseudo Wigner - Ville distribution

  4. Identification of Tf1 integration events in S. pombe under nonselective conditions

    PubMed Central

    Cherry, Kristina E.; Hearn, Willis E.; Seshie, Osborne Y.; Singleton, Teresa L.; Singleton, Teresa L.

    2014-01-01

    Integration of retroviral elements into the host genome is a phenomena observed among many classes of retroviruses. Much information concerning integration of retroviral elements has been documented based on in vitro analysis or expression of selectable markers. To identify possible Tf1 integration events within silent regions of the S. pombe genome, we focused on performing an in vivo genome-wide analysis of Tf1 integration events from the nonselective phase of the retrotransposition assay. We analyzed 1000 individual colonies streaked from four independent Tf1 transposed patches under nonselection conditions. Our analysis detected a population of G418S/neo+ Tf1 integration events that would have been overlooked during the selective phase of the assay. Further RNA analysis from the G418S/neo+ clones revealed 50% of clones expressing the neo selectable marker. Our data reveals Tf1’s ability to insert within silent regions of S. pombe’s genome. PMID:24680781

  5. Identification of Tf1 integration events in S. pombe under nonselective conditions.

    PubMed

    Cherry, Kristina E; Hearn, Willis E; Seshie, Osborne Y K; Singleton, Teresa L

    2014-06-01

    Integration of retroviral elements into the host genome is a phenomena observed among many classes of retroviruses. Much information concerning the integration of retroviral elements has been documented based on in vitro analysis or expression of selectable markers. To identify possible Tf1 integration events within silent regions of the Schizosaccharomyces pombe genome, we focused on performing an in vivo genome-wide analysis of Tf1 integration events from the nonselective phase of the retrotransposition assay. We analyzed 1000 individual colonies streaked from four independent Tf1 transposed patches under nonselection conditions. Our analysis detected a population of G418(S)/neo(+) Tf1 integration events that would have been overlooked during the selective phase of the assay. Further RNA analysis from the G418(S)/neo(+) clones revealed 50% of clones expressing the neo selectable marker. Our data reveals Tf1's ability to insert within silent regions of S. pombe's genome. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Design, synthesis, nuclear localization, and biological activity of a fluorescent duocarmycin analog, HxTfA.

    PubMed

    Kiakos, Konstantinos; Englinger, Bernhard; Yanow, Stephanie K; Wernitznig, Debora; Jakupec, Michael A; Berger, Walter; Keppler, Bernhard K; Hartley, John A; Lee, Moses; Patil, Pravin C

    2018-05-01

    HxTfA 4 is a fluorescent analog of a potent cytotoxic and antimalarial agent, TfA 3, which is currently being investigated for the development of an antimalarial vaccine, PlasProtect®. HxTfA contains a p-anisylbenzimidazole or Hx moiety, which is endowed with a blue emission upon excitation at 318 nm; thus enabling it to be used as a surrogate for probing the cellular fate of TfA using confocal microscopy, and addressing the question of nuclear localization. HxTfA exhibits similar selectivity to TfA for A-tract sequences of DNA, alkylating adenine-N3, albeit at 10-fold higher concentrations. It also possesses in vitro cytotoxicity against A549 human lung carcinoma cells and Plasmodium falciparum. Confocal microscopy studies showed for the first time that HxTfA, and by inference TfA, entered A549 cells and localized in the nucleus to exert its biological activity. At biologically relevant concentrations, HxTfA elicits DNA damage response as evidenced by a marked increase in the levels of γH2AX observed by confocal microscopy and immunoblotting studies, and ultimately induces apoptosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Palmitoylation of Sindbis Virus TF Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions.

    PubMed

    Ramsey, Jolene; Renzi, Emily C; Arnold, Randy J; Trinidad, Jonathan C; Mukhopadhyay, Suchetana

    2017-02-01

    Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a -1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the

  8. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    PubMed

    Müller-Molina, Arnoldo J; Schöler, Hans R; Araúzo-Bravo, Marcos J

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  9. Comprehensive Human Transcription Factor Binding Site Map for Combinatory Binding Motifs Discovery

    PubMed Central

    Müller-Molina, Arnoldo J.; Schöler, Hans R.; Araúzo-Bravo, Marcos J.

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%–20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory “DNA words.” From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%—far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of “DNA words,” newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters. PMID:23209563

  10. Positive Feedback Loops for Factor V and Factor VII Activation Supply Sensitivity to Local Surface Tissue Factor Density During Blood Coagulation

    PubMed Central

    Balandina, A.N.; Shibeko, A.M.; Kireev, D.A.; Novikova, A.A.; Shmirev, I.I.; Panteleev, M.A.; Ataullakhanov, F.I.

    2011-01-01

    Blood coagulation is triggered not only by surface tissue factor (TF) density but also by surface TF distribution. We investigated recognition of surface TF distribution patterns during blood coagulation and identified the underlying molecular mechanisms. For these investigations, we employed 1), an in vitro reaction-diffusion experimental model of coagulation; and 2), numerical simulations using a mathematical model of coagulation in a three-dimensional space. When TF was uniformly immobilized over the activating surface, the clotting initiation time in normal plasma increased from 4 min to >120 min, with a decrease in TF density from 100 to 0.7 pmol/m2. In contrast, surface-immobilized fibroblasts initiated clotting within 3–7 min, independently of fibroblast quantity and despite a change in average surface TF density from 0.5 to 130 pmol/m2. Experiments using factor V-, VII-, and VIII-deficient plasma and computer simulations demonstrated that different responses to these two TF distributions are caused by two positive feedback loops in the blood coagulation network: activation of the TF–VII complex by factor Xa, and activation of factor V by thrombin. This finding suggests a new role for these reactions: to supply sensitivity to local TF density during blood coagulation. PMID:22004734

  11. Network-based integration of GWAS and gene expression identifies a HOX-centric network associated with serous ovarian cancer risk

    PubMed Central

    Kar, Siddhartha P.; Tyrer, Jonathan P.; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K.; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K.; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain A.; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston-Campbell, Lara E.; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Monteiro, Alvaro N. A.; Freedman, Matthew L.; Gayther, Simon A.; Pharoah, Paul D. P.

    2015-01-01

    Background Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by co-expression may also be enriched for additional EOC risk associations. Methods We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly co-expressed with each selected TF gene in the unified microarray data set of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this data set were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Results Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P<0.05 and FDR<0.05). These results were replicated (P<0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. Conclusion We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Impact Network analysis integrating large, context-specific data sets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. PMID:26209509

  12. TF34 convertible engine control system design

    NASA Technical Reports Server (NTRS)

    Gilmore, D. R., Jr.

    1984-01-01

    The characteristics of the TF34 convertible engine, capable of producing shaft power, thrust, or a combination of both, is investigated with respect to the control system design, development, bench testing, and the anticipated transient response during engine testing at NASA. The modifications to the prototype standard TF34-GE-400 turbofan, made primarily in the fan section, consist of the variable inlet guide vanes and variable exit guide vanes. The control system was designed using classical frequency domain techniques and was based on the anticipated convertible/VTOL airframe requirements. The engine has been run in the fan mode and in the shaft mode, exhibiting a response of 0.14 second to a 5-percent thrust change.

  13. The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression

    PubMed Central

    Wolfram, Verena; Southall, Tony D.; Günay, Cengiz; Prinz, Astrid A.; Brand, Andrea H.

    2014-01-01

    Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K+ channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca2+, the fast K+ current is carried solely by Sh channels (unlike neurons in which a second fast K+ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression. PMID:24523544

  14. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.

    PubMed

    Guo, Wei-Li; Huang, De-Shuang

    2017-08-22

    Transcription factors (TFs) are DNA-binding proteins that have a central role in regulating gene expression. Identification of DNA-binding sites of TFs is a key task in understanding transcriptional regulation, cellular processes and disease. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) enables genome-wide identification of in vivo TF binding sites. However, it is still difficult to map every TF in every cell line owing to cost and biological material availability, which poses an enormous obstacle for integrated analysis of gene regulation. To address this problem, we propose a novel computational approach, TFBSImpute, for predicting additional TF binding profiles by leveraging information from available ChIP-seq TF binding data. TFBSImpute fuses the dataset to a 3-mode tensor and imputes missing TF binding signals via simultaneous completion of multiple TF binding matrices with positional consistency. We show that signals predicted by our method achieve overall similarity with experimental data and that TFBSImpute significantly outperforms baseline approaches, by assessing the performance of imputation methods against observed ChIP-seq TF binding profiles. Besides, motif analysis shows that TFBSImpute preforms better in capturing binding motifs enriched in observed data compared with baselines, indicating that the higher performance of TFBSImpute is not simply due to averaging related samples. We anticipate that our approach will constitute a useful complement to experimental mapping of TF binding, which is beneficial for further study of regulation mechanisms and disease.

  15. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.

    PubMed

    Gomes, Antonio L C; Wang, Harris H

    2016-04-01

    ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.

  16. Sp8 and COUP-TF1 reciprocally regulate patterning and Fgf signaling in cortical progenitors.

    PubMed

    Borello, Ugo; Madhavan, Mayur; Vilinsky, Ilya; Faedo, Andrea; Pierani, Alessandra; Rubenstein, John; Campbell, Kenneth

    2014-06-01

    To gain new insights into the transcriptional regulation of cortical development, we examined the role of the transcription factor Sp8, which is downstream of Fgf8 signaling and known to promote rostral cortical development. We have used a binary transgenic system to express Sp8 throughout the mouse telencephalon in a temporally restricted manner. Our results show that misexpression of Sp8 throughout the telencephalon, at early but not late embryonic stages, results in cortical hypoplasia, which is accompanied by increased cell death, reduced proliferation, and precocious neuronal differentiation. Misexpression of Sp8 at early developmental stages represses COUP-TF1 expression, a negative effector of Fgf signaling and a key promoter of posterior cortical identity, while ablation of Sp8 has the opposite effect. In addition, transgenic misexpression of COUP-TF1 resulted in downregulation of Sp8, indicating a reciprocal cross-regulation between these 2 transcription factors. Although Sp8 has been suggested to induce and/or maintain Fgf8 expression in the embryonic telencephalon, neither Fgf8 nor Fgf15 was upregulated using our gain-of-function approach. However, misexpression of Sp8 greatly increased the expression of Fgf target molecules, suggesting enhanced Fgf signaling. Thus, we propose that Sp8 promotes rostral and dorsomedial cortical development by repressing COUP-TF1 and promoting Fgf signaling in pallial progenitors.

  17. Sp8 and COUP-TF1 Reciprocally Regulate Patterning and Fgf Signaling in Cortical Progenitors

    PubMed Central

    Borello, Ugo; Madhavan, Mayur; Vilinsky, Ilya; Faedo, Andrea; Pierani, Alessandra; Rubenstein, John; Campbell, Kenneth

    2014-01-01

    To gain new insights into the transcriptional regulation of cortical development, we examined the role of the transcription factor Sp8, which is downstream of Fgf8 signaling and known to promote rostral cortical development. We have used a binary transgenic system to express Sp8 throughout the mouse telencephalon in a temporally restricted manner. Our results show that misexpression of Sp8 throughout the telencephalon, at early but not late embryonic stages, results in cortical hypoplasia, which is accompanied by increased cell death, reduced proliferation, and precocious neuronal differentiation. Misexpression of Sp8 at early developmental stages represses COUP-TF1 expression, a negative effector of Fgf signaling and a key promoter of posterior cortical identity, while ablation of Sp8 has the opposite effect. In addition, transgenic misexpression of COUP-TF1 resulted in downregulation of Sp8, indicating a reciprocal cross-regulation between these 2 transcription factors. Although Sp8 has been suggested to induce and/or maintain Fgf8 expression in the embryonic telencephalon, neither Fgf8 nor Fgf15 was upregulated using our gain-of-function approach. However, misexpression of Sp8 greatly increased the expression of Fgf target molecules, suggesting enhanced Fgf signaling. Thus, we propose that Sp8 promotes rostral and dorsomedial cortical development by repressing COUP-TF1 and promoting Fgf signaling in pallial progenitors. PMID:23307639

  18. Identification of active miRNA and transcription factor regulatory pathways in human obesity-related inflammation.

    PubMed

    Zhang, Xi-Mei; Guo, Lin; Chi, Mei-Hua; Sun, Hong-Mei; Chen, Xiao-Wen

    2015-03-07

    Obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of metabolic syndrome (MS). Recently, a growing body of evidence supports that miRNAs are largely dysregulated in obesity and that specific miRNAs regulate obesity-associated inflammation. We applied an approach aiming to identify active miRNA-TF-gene regulatory pathways in obesity. Firstly, we detected differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) from mRNA and miRNA expression profiles, respectively. Secondly, by mapping the DEGs and DEmiRs to the curated miRNA-TF-gene regulatory network as active seed nodes and connect them with their immediate neighbors, we obtained the potential active miRNA-TF-gene regulatory subnetwork in obesity. Thirdly, using a Breadth-First-Search (BFS) algorithm, we identified potential active miRNA-TF-gene regulatory pathways in obesity. Finally, through the hypergeometric test, we identified the active miRNA-TF-gene regulatory pathways that were significantly related to obesity. The potential active pathways with FDR < 0.0005 were considered to be the active miRNA-TF regulatory pathways in obesity. The union of the active pathways is visualized and identical nodes of the active pathways were merged. We identified 23 active miRNA-TF-gene regulatory pathways that were significantly related to obesity-related inflammation.

  19. The construction of a novel kind of non-viral gene delivery vector based on protein as core backbone.

    PubMed

    Li, D; Kong, Y; Yu, H; Lehtinen, A; Huang, H; Shen, F; Min, L; Zhou, J; Tang, G; Wang, Q

    2008-04-01

    A novel kind of non-viral gene delivery vector based on transferrin (Tf) as the core component was constructed with high transfection efficiency and low toxicity. The synthesis vector of Tf-PEI600 was confirmed by different physicochemical methods, including (1)H nuclear magnetic resonance, gel permeation chromatography, X-ray and thermogravimetric analysis. The cytotoxicity and gene delivery efficiency of the synthesized vector were verified by in vitro experiments. The agarose gel electrophoresis assay indicated that the novel copolymer Tf-PEI600 could efficiently condense plasmid DNA and the condensed nanoparticles exhibited a spherical shape. As the weight ratio of Tf-PEI600 to DNA reached 15.0, the particle size (about 200 nm) and the zeta potential (about 20 mV) of the nanoparticles became optimal for gene delivery. The methylthiazolyl tetrazolium (MTT) assay showed the cytotoxicity of Tf-PEI600 to be similar to that of PEI600 and much lower than that of PEI25kDa. In gene-delivery experiments with COS-7 cells and HepG2 cells, the Tf-PEI600 showed about a 30- to 53-fold higher efficiency than PEI600 and nearly equal to that of PEI25kDa. These data suggest that Tf-PEI600, with the advantages of low toxicity and high gene-delivery efficiency, might have great prospects in the practice of gene delivery. The core-shell structure of Tf-PEI600 also provided a novel strategy for the construction of non-viral gene delivery vectors.

  20. Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice

    PubMed Central

    Li, Huihui; Choesang, Tenzin; Bao, Weili; Chen, Huiyong; Feola, Maria; Garcia-Santos, Daniel; Li, Jie; Sun, Shuming; Follenzi, Antonia; Pham, Petra; Liu, Jing; Zhang, Jinghua; Ponka, Prem; An, Xiuli; Mohandas, Narla; Fleming, Robert E.; Rivella, Stefano; Li, Guiyuan

    2017-01-01

    Iron availability for erythropoiesis and its dysregulation in β-thalassemia are incompletely understood. We previously demonstrated that exogenous apotransferrin leads to more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing hepcidin in β-thalassemic mice. Transferrin-bound iron binding to transferrin receptor 1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that apotransferrin’s effect is mediated via decreased TfR1 expression and evaluate TfR1 expression in β-thalassemic mice in vivo and in vitro with and without added apotransferrin. Our findings demonstrate that β-thalassemic erythroid precursors overexpress TfR1, an effect that can be reversed by the administration of exogenous apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1 expression independent of erythropoietin- and iron-related signaling, decreases TfR1 partitioning to reticulocytes during enucleation, and enhances enucleation of defective β-thalassemic erythroid precursors. These findings strongly suggest that overexpressed TfR1 may play a regulatory role contributing to iron overload and anemia in β-thalassemic mice. To evaluate further, we crossed TfR1+/− mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin, with β-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis, hepcidin derepression, and increased erythroid enucleation in relation to β-thalassemic mice. Our data demonstrate for the first time that TfR1+/− haploinsufficiency reverses iron overload specifically in β-thalassemic erythroid precursors. Taken together, decreasing TfR1 expression during β-thalassemic erythropoiesis, either directly via induced haploinsufficiency or via exogenous apotransferrin, decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron

  1. The COUP-TFs compose a family of functionally related transcription factors

    PubMed Central

    Wang, Lee-Ho; Ing, Nancy H.; Tsai, Sophia Y.; O’Malley, Bert W.; Tsai, Ming-Jer

    1991-01-01

    The chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are members of the steroid/thyroid hormone receptor superfamily and function in transcriptional regulation of a wide variety of genes. The COUP-TFs purified from HeLa nuclear extract by COUP-affinity chromatography are composed of multiple Mr forms. The Low Mr COUP-TFs (43,000, 44,000, 46,000, and 47,000 Mr) produce a relatively fast migrating complex (Cl) with DNA in electrophoresis mobility shift assays, while the high Mr forms (66,000, 68,000, 72,000, and 74,000 Mr) produce a slower migrating (C2) complex. The high Mr COUP-TFs were purified by gel filtration chromatography and independently formed the C2 DNA complex, probably acting as dimers. The high Mr forms are indistinguishable from the low Mr COUP-TFs in DNA binding and in enhancement of in vitro transcription from the ovalbumin promoter. The finding of multiple COUP-TF forms led us to clone a second low Mr COUP-TF, “COUP-TF2.” The COUP-TF2 sequence has very strong homology with COUP-TF1. The N-termini of COUP-TF1 and COUP-TF2 are least similar, but both contain glutamine-rich and proline-rich motifs, putative activation domains. PMID:1820218

  2. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis

    PubMed Central

    Sharma, Anupma; Wai, Ching Man; Ming, Ray

    2017-01-01

    Abstract Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. PMID:28922793

  3. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier.

    PubMed

    Couch, Jessica A; Yu, Y Joy; Zhang, Yin; Tarrant, Jacqueline M; Fuji, Reina N; Meilandt, William J; Solanoy, Hilda; Tong, Raymond K; Hoyte, Kwame; Luk, Wilman; Lu, Yanmei; Gadkar, Kapil; Prabhu, Saileta; Ordonia, Benjamin A; Nguyen, Quyen; Lin, Yuwen; Lin, Zhonghua; Balazs, Mercedesz; Scearce-Levie, Kimberly; Ernst, James A; Dennis, Mark S; Watts, Ryan J

    2013-05-01

    Bispecific antibodies using the transferrin receptor (TfR) have shown promise for boosting antibody uptake in brain. Nevertheless, there are limited data on the therapeutic properties including safety liabilities that will enable successful development of TfR-based therapeutics. We evaluate TfR/BACE1 bispecific antibody variants in mouse and show that reducing TfR binding affinity improves not only brain uptake but also peripheral exposure and the safety profile of these antibodies. We identify and seek to address liabilities of targeting TfR with antibodies, namely, acute clinical signs and decreased circulating reticulocytes observed after dosing. By eliminating Fc effector function, we ameliorated the acute clinical signs and partially rescued a reduction in reticulocytes. Furthermore, we show that complement mediates a residual decrease in reticulocytes observed after Fc effector function is eliminated. These data raise important safety concerns and potential mitigation strategies for the development of TfR-based therapies that are designed to cross the blood-brain barrier.

  4. A Global Genomic and Genetic Strategy to Predict Pathway Activation of Xenobiotic Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors(TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  5. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    PubMed

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. On the connection between inherent DNA flexure and preferred binding of hydroxymethyluracil-containing DNA by the type II DNA-binding protein TF1.

    PubMed

    Grove, A; Galeone, A; Mayol, L; Geiduschek, E P

    1996-07-12

    TF1 is a member of the family of type II DNA-binding proteins, which also includes the bacterial HU proteins and the Escherichia coli integration host factor (IHF). Distinctive to TF1, which is encoded by the Bacillus subtilis bacteriophage SPO1, is its preferential binding to DNA in which thymine is replaced by 5-hydroxymethyluracil (hmU), as it is in the phage genome. TF1 binds to preferred sites within the phage genome and generates pronounced DNA bending. The extent to which DNA flexibility contributes to the sequence-specific binding of TF1, and the connection between hmU preference and DNA flexibility has been examined. Model flexible sites, consisting of consecutive mismatches, increase the affinity of thymine-containing DNA for TF1. In particular, tandem mismatches separated by nine base-pairs generate an increase, by orders of magnitude, in the affinity of TF1 for T-containing DNA with the sequence of a preferred TF1 binding site, and fully match the affinity of TF1 for this cognate site in hmU-containing DNA (Kd approximately 3 nM). Other placements of loops generate suboptimal binding. This is consistent with a significant contribution of site-specific DNA flexibility to complex formation. Analysis of complexes with hmU-DNA of decreasing length shows that a major part of the binding affinity is generated within a central 19 bp segment (delta G0 = 41.7 kJ mol-1) with more-distal DNA contributing modestly to the affinity (delta delta G = -0.42 kJ mol-1 bp-1 on increasing duplex length to 37 bp). However, a previously characterised thermostable and more tightly binding mutant TF1, TF1(E15G/T32I), derives most of its extra affinity from interaction with flanking DNA. We propose that inherent but sequence-dependent deformability of hmU-containing DNA underlies the preferential binding of TF1 and that TF1-induced DNA bendings is a result of distortions at two distinct sites separated by 9 bp of duplex DNA.

  7. Stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1.

    PubMed

    Schneider, G J; Geiduschek, E P

    1990-06-25

    The stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1 has been determined. 3H-Labeled TF1 was allowed to bind to a 32P-labeled DNA fragment containing a TF1 binding site. Multiple TF1-DNA complexes were resolved from each other and from unbound DNA by native gel electrophoresis. DNA-protein complexes were cut from polyacrylamide gels, and the amounts of 3H and 32P contained in each slice were measured. A ratio of 1.12 +/- 0.06 TF1 dimer/DNA molecule was calculated for the fastest-migrating TF1-DNA complex. We conclude that TF1 has a DNA-binding unit of one dimer. More slowly migrating complexes are apparently formed by serial addition of single TF1 dimers.

  8. Dynamic Transcription Factor Networks in Epithelial-Mesenchymal Transition in Breast Cancer Models

    PubMed Central

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J.; Shin, Seungjin; Jeruss, Jacqueline S.; Shea, Lonnie D.

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy. PMID:23593114

  9. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    PubMed

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  10. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv.

    PubMed Central

    Xu, L.; Tang, W. H.; Huang, C. C.; Alexander, W.; Xiang, L. M.; Pirollo, K. F.; Rait, A.; Chang, E. H.

    2001-01-01

    BACKGROUND: A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS: A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel. RESULTS: The TfRscFv-targeting cationic immunolipoplex had a size of 60-100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival. CONCLUSIONS: This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of

  11. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    PubMed Central

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  12. Exploring the bZIP transcription factor regulatory network in Neurospora crassa

    PubMed Central

    Tian, Chaoguang; Li, Jingyi; Glass, N. Louise

    2011-01-01

    Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution. PMID:21081763

  13. Exploring the bZIP transcription factor regulatory network in Neurospora crassa.

    PubMed

    Tian, Chaoguang; Li, Jingyi; Glass, N Louise

    2011-03-01

    Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution.

  14. Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli

    PubMed Central

    Ullers, Ronald S.; Ang, Debbie; Schwager, Françoise; Georgopoulos, Costa; Genevaux, Pierre

    2007-01-01

    Polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytoplasmic, integral membrane, or exported proteins. In Escherichia coli, the chaperones SecB, Trigger Factor (TF), and DnaK are key players in this process. Here, we report that, as with dnaK or dnaJ mutants, a secB null strain exhibits a strong cold-sensitive (Cs) phenotype. Through suppressor analyses, we found that inactivating mutations in the tig gene encoding TF fully relieve both the Cs phenotype and protein aggregation observed in the absence of SecB. This antagonistic effect of TF depends on its ribosome-binding and chaperone activities but unrelated to its peptidyl-prolyl cis/trans isomerase (PPIase) activity. Furthermore, in contrast to the previously known synergistic action of TF and DnaK/DnaJ above 30°C, a tig null mutation partially suppresses the Cs phenotype exhibited by a compromised DnaK/DnaJ chaperone machine. The antagonistic role of TF is further exemplified by the fact that the secB dnaJ double mutant is viable only in the absence of TF. Finally, we show that, in the absence of TF, more SecA and ribosomes are associated with the inner membrane, suggesting that the presence of TF directly or indirectly interferes with the process of cotranslational protein targeting to the Sec translocon. PMID:17360615

  15. BOREAS TF-11 SSA-Fen 1995 Leaf Area Index Data

    NASA Technical Reports Server (NTRS)

    Arkebauer, Timothy J.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. These data are LAI measurements made by the TF-11 team throughout the 1995 growing season. The data include the LAI of plants that fall into six categories: total, Carex spp., Betula pumila, Menyanthes trifoliata, Salix spp., and other vascular plants. The data are stored in tabular ASCII files.

  16. Quantitative comparison of MiTF, Melan-A, HMB-45 and Mel-5 in solar lentigines and melanoma in situ.

    PubMed

    Kim, Jinah; Taube, Janis M; McCalmont, Timothy H; Glusac, Earl J

    2011-10-01

    It is often challenging to reliably assess the number of lesional melanocytes in intraepidermal melanocytic proliferations involving sun-damaged skin. Therefore, dermatopathologists routinely use immunostains to help differentiate melanocytes from surrounding keratinocytes. Forty-three cases of solar lentigo or melanoma in situ (of the lentigo maligna type) were retrospectively chosen (20 melanomas in situ and 23 solar lentigo). Microphthalmia transcription factor (MiTF), HMB-45, Melan-A and Mel-5 immunostains were performed with an Azure blue counterstain, and the mean melanocyte counts were calculated within a 1-mm segment of epidermis. In solar lentigines, the mean melanocyte counts were 27 (MiTF), 23 (HMB-45 and Mel-5) and 41 (Melan-A), as compared to hematoxylin and eosin (H&E) (25). In melanoma in situ, the mean melanocyte counts were 112 (MiTF), 149 (Melan-A), 111 (HMB-45) and 80 (Mel-5), as compared to H&E (109). These results show that Melan-A significantly overestimates the density of melanocytes within dermatoheliotic skin. Compared to other tested stains, nuclear staining MiTF allowed greater distinction of melanocytes from keratinocytes with melanized cytoplasm. These findings indicate that MiTF is a superior marker for quantification of melanocytes in the evaluation of subtle intraepidermal melanocytic proliferations and in the differential diagnosis of solar lentigo. Copyright © 2011 John Wiley & Sons A/S.

  17. Finding biomarkers in non-model species: literature mining of transcription factors involved in bovine embryo development

    PubMed Central

    2012-01-01

    Background Since processes in well-known model organisms have specific features different from those in Bos taurus, the organism under study, a good way to describe gene regulation in ruminant embryos would be a species-specific consideration of closely related species to cattle, sheep and pig. However, as highlighted by a recent report, gene dictionaries in pig are smaller than in cattle, bringing a risk to reduce the gene resources to be mined (and so for sheep dictionaries). Bioinformatics approaches that allow an integration of available information on gene function in model organisms, taking into account their specificity, are thus needed. Besides these closely related and biologically relevant species, there is indeed much more knowledge of (i) trophoblast proliferation and differentiation or (ii) embryogenesis in human and mouse species, which provides opportunities for reconstructing proliferation and/or differentiation processes in other mammalian embryos, including ruminants. The necessary knowledge can be obtained partly from (i) stem cell or cancer research to supply useful information on molecular agents or molecular interactions at work in cell proliferation and (ii) mouse embryogenesis to supply useful information on embryo differentiation. However, the total number of publications for all these topics and species is great and their manual processing would be tedious and time consuming. This is why we used text mining for automated text analysis and automated knowledge extraction. To evaluate the quality of this “mining”, we took advantage of studies that reported gene expression profiles during the elongation of bovine embryos and defined a list of transcription factors (or TF, n = 64) that we used as biological “gold standard”. When successful, the “mining” approach would identify them all, as well as novel ones. Methods To gain knowledge on molecular-genetic regulations in a non model organism, we offer an approach based on

  18. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu

    In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less

  19. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

    DOE PAGES

    Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu; ...

    2017-08-30

    In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less

  20. BloodChIP: a database of comparative genome-wide transcription factor binding profiles in human blood cells.

    PubMed

    Chacon, Diego; Beck, Dominik; Perera, Dilmi; Wong, Jason W H; Pimanda, John E

    2014-01-01

    The BloodChIP database (http://www.med.unsw.edu.au/CRCWeb.nsf/page/BloodChIP) supports exploration and visualization of combinatorial transcription factor (TF) binding at a particular locus in human CD34-positive and other normal and leukaemic cells or retrieval of target gene sets for user-defined combinations of TFs across one or more cell types. Increasing numbers of genome-wide TF binding profiles are being added to public repositories, and this trend is likely to continue. For the power of these data sets to be fully harnessed by experimental scientists, there is a need for these data to be placed in context and easily accessible for downstream applications. To this end, we have built a user-friendly database that has at its core the genome-wide binding profiles of seven key haematopoietic TFs in human stem/progenitor cells. These binding profiles are compared with binding profiles in normal differentiated and leukaemic cells. We have integrated these TF binding profiles with chromatin marks and expression data in normal and leukaemic cell fractions. All queries can be exported into external sites to construct TF-gene and protein-protein networks and to evaluate the association of genes with cellular processes and tissue expression.

  1. BOREAS TF-11 Decomposition Data over the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains decomposition rates of a standard substrate (wheat straw) across treatments. The measurements were conducted in 1994 as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitrogen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. The data are stored in tabular ASCII files.

  2. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype.

    PubMed

    Almeida, Diego M; Gregorio, Glenn B; Oliveira, M Margarida; Saibo, Nelson J M

    2017-01-01

    This manuscript reports the identification and characterization of five transcription factors binding to the promoter of OsNHX1 in a salt stress tolerant rice genotype (Hasawi). Although NHX1 encoding genes are known to be highly regulated at the transcription level by different abiotic stresses, namely salt and drought stress, until now only one transcription factor (TF) binding to its promoter has been reported. In order to unveil the TFs regulating NHX1 gene expression, which is known to be highly induced under salt stress, we have used a Y1H system to screen a salt induced rice cDNA expression library from Hasawi. This approach allowed us to identify five TFs belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) binding to the OsNHX1 gene promoter. We have also shown that these TFs act either as transcriptional activators (OsPCF2, OsNIN-like4) or repressors (OsCPP5, OsNIN-like2) and their encoding genes are differentially regulated by salt and PEG-induced drought stress in two rice genotypes, Nipponbare (salt-sensitive) and Hasawi (salt-tolerant). The transactivation activity of OsNIN-like3 was not possible to determine. Increased soil salinity has a direct impact on the reduction of plant growth and crop yield and it is therefore fundamental to understand the molecular mechanisms underlying gene expression regulation under adverse environmental conditions. OsNHX1 is the most abundant K + -Na + /H + antiporter localized in the tonoplast and its gene expression is induced by salt, drought and ABA. To investigate how OsNHX1 is transcriptionally regulated in response to salt stress in a salt-tolerant rice genotype (Hasawi), a salt-stress-induced cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsNHX1 promoter as bait. Five transcription factors (TFs) belonging to three distinct TF families: one TCP (OsPCF2), one CPP (Os

  3. Discovery and validation of gene classifiers for endocrine-disrupting chemicals in zebrafish (danio rerio)

    PubMed Central

    2012-01-01

    Background Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of biomedical sciences. Many such classifiers discovered thus far lack vigorous statistical and experimental validations. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors was used in this study to search for classifiers of endocrine-disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and tissue-combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset. Results Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their targeted chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain. Conclusions The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical

  4. Nuclear Import of the Retrotransposon Tf1 Is Governed by a Nuclear Localization Signal That Possesses a Unique Requirement for the FXFG Nuclear Pore Factor Nup124p

    PubMed Central

    Dang, Van-Dinh; Levin, Henry L.

    2000-01-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674

  5. Nuclear import of the retrotransposon Tf1 is governed by a nuclear localization signal that possesses a unique requirement for the FXFG nuclear pore factor Nup124p.

    PubMed

    Dang, V D; Levin, H L

    2000-10-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.

  6. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis.

    PubMed

    Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi

    2017-09-01

    Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Model of a ternary complex between activated factor VII, tissue factor and factor IX.

    PubMed

    Chen, Shu-wen W; Pellequer, Jean-Luc; Schved, Jean-François; Giansily-Blaizot, Muriel

    2002-07-01

    Upon binding to tissue factor, FVIIa triggers coagulation by activating vitamin K-dependent zymogens, factor IX (FIX) and factor X (FX). To understand recognition mechanisms in the initiation step of the coagulation cascade, we present a three-dimensional model of the ternary complex between FVIIa:TF:FIX. This model was built using a full-space search algorithm in combination with computational graphics. With the known crystallographic complex FVIIa:TF kept fixed, the FIX docking was performed first with FIX Gla-EGF1 domains, followed by the FIX protease/EGF2 domains. Because the FIXa crystal structure lacks electron density for the Gla domain, we constructed a chimeric FIX molecule that contains the Gla-EGF1 domains of FVIIa and the EGF2-protease domains of FIXa. The FVIIa:TF:FIX complex has been extensively challenged against experimental data including site-directed mutagenesis, inhibitory peptide data, haemophilia B database mutations, inhibitor antibodies and a novel exosite binding inhibitor peptide. This FVIIa:TF:FIX complex provides a powerful tool to study the regulation of FVIIa production and presents new avenues for developing therapeutic inhibitory compounds of FVIIa:TF:substrate complex.

  8. A new sample treatment for asialo-Tf determination with capillary electrophoresis: an added value to the analysis of CDT.

    PubMed

    Porpiglia, Nadia Maria; De Palo, Elio Franco; Savchuk, Sergey Alexandrovich; Appolonova, Svetlana Alexandrovna; Bortolotti, Federica; Tagliaro, Franco

    2018-05-10

    The non-glycosylated glycoform of transferrin (Tf), known as asialo-Tf, was not selected (in favor of disialo-Tf) as the measurand for the standardization of carbohydrate deficient transferrin (CDT) determination because of a lower diagnostic sensitivity provided with the currently available analytical procedures for sera. However, asialo-Tf could provide an additional value to disialo-Tf in the CDT analysis employed in forensic toxicology contexts. The present work aimed at developing an easy sample preparation based on PEG precipitation in order to improve the detectability of asialo-Tf in capillary electrophoresis (CE). Equal volumes (35 μL) of serum and of 30% PEG-8000 were mixed and briefly vortexed. After centrifugation, the supernatant was iron saturated with a ferric solution (1:1, v/v). The mixture was analyzed in CE for asialo-Tf and disialo-Tf determination. PEG-8000 precipitation allowed the improvement of the baseline in the electropherograms in terms of interferences reduction particularly in the asialo-Tf migration region. The detection of asialo-Tf was possible in 89% of samples with disialo-Tf above the cut-off limit, whereas only 16% of them showed asialo-Tf by employing the traditional sample preteatment. Asialo-Tf represents an additional value to disialo-Tf as a biomarker of alcohol abuse in forensic toxicology. Copyright © 2018. Published by Elsevier B.V.

  9. Interrelations of secondary structure stability and DNA-binding affinity in the bacteriophage SPO1-encoded type II DNA-binding protein TF1.

    PubMed

    Andera, L; Spangler, C J; Galeone, A; Mayol, L; Geiduschek, E P

    1994-02-11

    TF1, a homodimeric DNA-binding and -bending protein with a preference for hydroxymethyluracil-containing DNA is the Bacillus subtilis-encoded homolog of the bacterial HU proteins and of the E. coli integration host factor. A temperature-sensitive mutation at amino acid 25 of TF1 (L25-->A) and two intragenic second site revertants at amino acids 15 (E15-->G) and 32 (L32-->I) were previously identified and their effects on virus development were examined. The DNA-binding properties of these proteins and the thermal stability of their secondary structures have now been analyzed. Amino acids 15 and 32 are far removed from the putative DNA-binding domains of TF1 but changes there exert striking effects on DNA affinity that correlate with effects on structure. The double mutant protein TF1-G15I32 binds to a preferred site in hydroxymethyluracil-containing DNA 40 times more tightly, denatures at higher temperature (delta tm = 21 degrees C), and also exchanges subunits much more slowly than does the wild-type protein. The L25-->A mutation makes TF1 secondary structure and DNA-binding highly salt concentration-dependent. The E15-->G mutation partly suppresses this effect: secondary structure of TF1-A25G15 is restored at 21 degrees C by 1 M NaCl or, at low NaCl concentration, by binding to DNA.

  10. Cool-Down and Current Test Results of the KSTAR Prototype TF Coil

    NASA Astrophysics Data System (ADS)

    Oh, Y. K.; Lee, S.; Chu, Y.; Park, K. R.; Yonekawa, H.; Baek, S. H.; Cho, K. W.; Park, Y. M.; Kim, M. K.; Chang, H. S.; Kim, Y. S.; Chang, Y. B.; Lee, Y. J.; Kim, W. C.; Kim, K.; Kwag, S. W.; Lee, S. H.; Yang, S. H.; Lee, S. J.; Bak, J. S.; Lee, G. S.

    2004-06-01

    A prototype toroidal field (TF) coil, TF00 coil, of the Korea Superconducting Tokamak Advanced Research (KSTAR) project has been assembled and tested at the coil test facility in Korea Basic Science Institute (KBSI). The TF00 coil is a real-sized TF coil made of Nb3Sn superconducting cable-in-conduit conductor (CICC). The coil test was conducted by several campaigns according to the objectives. The first campaign, which was carried out by Jan. 2003, has objectives of cooling the coil into operating temperature and finding any defect in the coil such as cold leaks. From the results of the first campaign experiment, any defect in the coil was not found. The second campaign, which was carried out by Aug. 2003, has objectives to get the operating characteristics according to the current ramp up and discharge operations. In this paper, the coil test results are introduced as well as the details of the coil test system setup.

  11. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DOE PAGES

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather; ...

    2017-10-30

    Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less

  12. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather

    Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less

  13. Overexpression of a Novel Apple NAC Transcription Factor Gene, MdNAC1, Confers the Dwarf Phenotype in Transgenic Apple (Malus domestica)

    PubMed Central

    Jia, Dongfeng; Gong, Xiaoqing; Li, Mingjun; Li, Chao; Sun, Tingting

    2018-01-01

    Plant height is an important trait for fruit trees. The dwarf characteristic is commonly associated with highly efficient fruit production, a major objective when breeding for apple (Malus domestica). We studied the function of MdNAC1, a novel NAC transcription factor (TF) gene in apple related to plant dwarfing. Localized primarily to the nucleus, MdNAC1 has transcriptional activity in yeast cells. Overexpression of the gene results in a dwarf phenotype in transgenic apple plants. Their reduction in size is manifested by shorter, thinner stems and roots, and a smaller leaf area. The transgenics also have shorter internodes and fewer cells in the stems. Levels of endogenous abscisic acid (ABA) and brassinosteroid (BR) are lower in the transgenic plants, and expression is decreased for genes involved in the biosynthesis of those phytohormones. All of these findings demonstrate that MdNAC1 has a role in plants dwarfism, probably by regulating ABA and BR production. PMID:29702625

  14. oPOSSUM-3: Advanced Analysis of Regulatory Motif Over-Representation Across Genes or ChIP-Seq Datasets

    PubMed Central

    Kwon, Andrew T.; Arenillas, David J.; Hunt, Rebecca Worsley; Wasserman, Wyeth W.

    2012-01-01

    oPOSSUM-3 is a web-accessible software system for identification of over-represented transcription factor binding sites (TFBS) and TFBS families in either DNA sequences of co-expressed genes or sequences generated from high-throughput methods, such as ChIP-Seq. Validation of the system with known sets of co-regulated genes and published ChIP-Seq data demonstrates the capacity for oPOSSUM-3 to identify mediating transcription factors (TF) for co-regulated genes or co-recovered sequences. oPOSSUM-3 is available at http://opossum.cisreg.ca. PMID:22973536

  15. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets.

    PubMed

    Kwon, Andrew T; Arenillas, David J; Worsley Hunt, Rebecca; Wasserman, Wyeth W

    2012-09-01

    oPOSSUM-3 is a web-accessible software system for identification of over-represented transcription factor binding sites (TFBS) and TFBS families in either DNA sequences of co-expressed genes or sequences generated from high-throughput methods, such as ChIP-Seq. Validation of the system with known sets of co-regulated genes and published ChIP-Seq data demonstrates the capacity for oPOSSUM-3 to identify mediating transcription factors (TF) for co-regulated genes or co-recovered sequences. oPOSSUM-3 is available at http://opossum.cisreg.ca.

  16. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development.

    PubMed

    Vimolmangkang, Sornkanok; Han, Yuepeng; Wei, Guochao; Korban, Schuyler S

    2013-11-07

    Red coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits. In this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus suggesting that this

  17. ROBNCA: robust network component analysis for recovering transcription factor activities.

    PubMed

    Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem

    2013-10-01

    Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF)-gene regulations. Most of the contemporary algorithms either exhibit the drawback of inconsistency and poor reliability, or suffer from prohibitive computational complexity. In addition, the existing algorithms do not possess the ability to counteract the presence of outliers in the microarray data. Hence, robust and computationally efficient algorithms are needed to enable practical applications. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. An attractive feature of the ROBNCA algorithm is the derivation of a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared with FastNCA and the non-iterative NCA (NI-NCA). ROBNCA estimates the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, correlation and/or amount of outliers in case of synthetic data. The ROBNCA algorithm is also tested on Saccharomyces cerevisiae data and Escherichia coli data, and it is observed to outperform the existing algorithms. The run time of the ROBNCA algorithm is comparable with that of FastNCA, and is hundreds of times faster than NI-NCA. The ROBNCA software is available at http://people.tamu.edu/∼amina/ROBNCA

  18. Expression and characterization of a novel reverse transcriptase of the LTR retrotransposon Tf1.

    PubMed

    Kirshenboim, Noa; Hayouka, Zvi; Friedler, Assaf; Hizi, Amnon

    2007-09-30

    The LTR retrotransposon of Schizosacharomyces pombe, Tf1, has several distinctive properties that can be related to the unique properties of its reverse transcriptase (RT). Consequently, we expressed, purified and studied the recombinant Tf1 RT. This monomeric protein possesses all activities typical to RTs: DNA and RNA-dependent DNA polymerase as well as an inherent ribonuclease H. The DNA polymerase activity shows preference to Mn(+)(2) or Mg(+)(2), depending on the substrate used, whereas the ribonuclease H strongly prefers Mn(+)(2). The most outstanding feature of Tf1 RT is its capacity to add non-templated nucleotides to the 3'-ends of the nascent DNA. This is mainly apparent in the presence of Mn(+)(2), as is the noticeable low fidelity of DNA synthesis. In all, Tf1 RT has a marked infidelity in synthesizing DNA at template ends, a phenomenon that can explain, as discussed herein, some of the features of Tf1 replication in the host cells.

  19. Interleukin-6 Directly Impairs the Erythroid Development of Human TF-1 Erythroleukemic Cells

    PubMed Central

    McCranor, Bryan J.; Kim, Min Jung; Cruz, Nicole M.; Xue, Qian-Li; Berger, Alan E.; Walston, Jeremy D.; Civin, Curt I.; Roy, Cindy N.

    2013-01-01

    Anemia of inflammation or chronic disease is a highly prevalent form of anemia. The inflammatory cytokine interleukin-6 (IL-6) negatively correlates with hemoglobin concentration in many disease states. The IL-6-hepcidin antimicrobial peptide axis promotes iron-restricted anemia; however the full role of IL-6 in anemia of inflammation is not well-defined. We previously reported that chronic inflammation had a negative impact on maturation of erythroid progenitors in a mouse model. We hypothesized that IL-6 may be responsible for impaired erythropoiesis, independent of iron restriction. To test the hypothesis we utilized the human erythroleukemia TF-1 cell line to model erythroid maturation and exposed them to varying doses of IL-6 over six days. At 10 ng/ml, IL-6 significantly repressed erythropoietin-dependent TF-1 erythroid maturation. While IL-6 did not decrease the expression of genes associated with hemoglobin synthesis, we observed impaired hemoglobin synthesis as demonstrated by decreased benzidine staining. We also observed that IL-6 down regulated expression of the gene SLC4a1 which is expressed late in erythropoiesis. Those findings suggested that IL-6-dependent inhibition of hemoglobin synthesis might occur. We investigated the impact of IL-6 on mitochondria. IL-6 decreased the mitochondrial membrane potential at all treatment doses, and significantly decreased mitochondrial mass at the highest dose. Our studies indicate that IL-6 may impair mitochondrial function in maturing erythroid cells resulting in impaired hemoglobin production and erythroid maturation. Our findings may indicate a novel pathway of action for IL-6 in the anemia of inflammation, and draw attention to the potential for new therapeutic targets that affect late erythroid development. PMID:24119518

  20. PvTFDB: a Phaseolus vulgaris transcription factors database for expediting functional genomics in legumes

    PubMed Central

    Bhawna; Bonthala, V.S.; Gajula, MNV Prasad

    2016-01-01

    The common bean [Phaseolus vulgaris (L.)] is one of the essential proteinaceous vegetables grown in developing countries. However, its production is challenged by low yields caused by numerous biotic and abiotic stress conditions. Regulatory transcription factors (TFs) symbolize a key component of the genome and are the most significant targets for producing stress tolerant crop and hence functional genomic studies of these TFs are important. Therefore, here we have constructed a web-accessible TFs database for P. vulgaris, called PvTFDB, which contains 2370 putative TF gene models in 49 TF families. This database provides a comprehensive information for each of the identified TF that includes sequence data, functional annotation, SSRs with their primer sets, protein physical properties, chromosomal location, phylogeny, tissue-specific gene expression data, orthologues, cis-regulatory elements and gene ontology (GO) assignment. Altogether, this information would be used in expediting the functional genomic studies of a specific TF(s) of interest. The objectives of this database are to understand functional genomics study of common bean TFs and recognize the regulatory mechanisms underlying various stress responses to ease breeding strategy for variety production through a couple of search interfaces including gene ID, functional annotation and browsing interfaces including by family and by chromosome. This database will also serve as a promising central repository for researchers as well as breeders who are working towards crop improvement of legume crops. In addition, this database provide the user unrestricted public access and the user can download entire data present in the database freely. Database URL: http://www.multiomics.in/PvTFDB/ PMID:27465131

  1. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    PubMed

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  2. Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer.

    PubMed

    Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L

    2003-08-01

    Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.

  3. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-06-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.

  4. Rational Design of a Triple Reporter Gene for Multimodality Molecular Imaging

    PubMed Central

    Hsieh, Ya-Ju; Ke, Chien-Chih; Yeh, Skye Hsin-Hsien; Lin, Chien-Feng; Chen, Fu-Du; Lin, Kang-Ping; Chen, Ran-Chou; Liu, Ren-Shyan

    2014-01-01

    Multimodality imaging using noncytotoxic triple fusion (TF) reporter genes is an important application for cell-based tracking, drug screening, and therapy. The firefly luciferase (fl), monomeric red fluorescence protein (mrfp), and truncated herpes simplex virus type 1 thymidine kinase SR39 mutant (ttksr39) were fused together to create TF reporter gene constructs with different order. The enzymatic activities of TF protein in vitro and in vivo were determined by luciferase reporter assay, H-FEAU cellular uptake experiment, bioluminescence imaging, and micropositron emission tomography (microPET). The TF construct expressed in H1299 cells possesses luciferase activity and red fluorescence. The tTKSR39 activity is preserved in TF protein and mediates high levels of H-FEAU accumulation and significant cell death from ganciclovir (GCV) prodrug activation. In living animals, the luciferase and tTKSR39 activities of TF protein have also been successfully validated by multimodality imaging systems. The red fluorescence signal is relatively weak for in vivo imaging but may expedite FACS-based selection of TF reporter expressing cells. We have developed an optimized triple fusion reporter construct DsRedm-fl-ttksr39 for more effective and sensitive in vivo animal imaging using fluorescence, bioluminescence, and PET imaging modalities, which may facilitate different fields of biomedical research and applications. PMID:24809057

  5. A transcription factor hierarchy defines an environmental stress response network.

    PubMed

    Song, Liang; Huang, Shao-Shan Carol; Wise, Aaron; Castanon, Rosa; Nery, Joseph R; Chen, Huaming; Watanabe, Marina; Thomas, Jerushah; Bar-Joseph, Ziv; Ecker, Joseph R

    2016-11-04

    Environmental stresses are universally encountered by microbes, plants, and animals. Yet systematic studies of stress-responsive transcription factor (TF) networks in multicellular organisms have been limited. The phytohormone abscisic acid (ABA) influences the expression of thousands of genes, allowing us to characterize complex stress-responsive regulatory networks. Using chromatin immunoprecipitation sequencing, we identified genome-wide targets of 21 ABA-related TFs to construct a comprehensive regulatory network in Arabidopsis thaliana Determinants of dynamic TF binding and a hierarchy among TFs were defined, illuminating the relationship between differential gene expression patterns and ABA pathway feedback regulation. By extrapolating regulatory characteristics of observed canonical ABA pathway components, we identified a new family of transcriptional regulators modulating ABA and salt responsiveness and demonstrated their utility to modulate plant resilience to osmotic stress. Copyright © 2016, American Association for the Advancement of Science.

  6. Phenylpropanoids Accumulation in Eggplant Fruit: Characterization of Biosynthetic Genes and Regulation by a MYB Transcription Factor

    PubMed Central

    Docimo, Teresa; Francese, Gianluca; Ruggiero, Alessandra; Batelli, Giorgia; De Palma, Monica; Bassolino, Laura; Toppino, Laura; Rotino, Giuseppe L.; Mennella, Giuseppe; Tucci, Marina

    2016-01-01

    Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70–90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C

  7. Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm

    PubMed Central

    Jin, Xiaoli; Ren, Jing; Nevo, Eviatar; Yin, Xuegui; Sun, Dongfa; Peng, Junhua

    2017-01-01

    NAC (NAM/ATAF/CUC) proteins constitute one of the biggest plant-specific transcription factor (TF) families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be divergent evolutionary patterns of NAC TFs both between dicots and monocots, and among NAC subfamilies. In this study, we compared the gene duplication and loss, evolutionary rate, and selective pattern among non-lineage specific NAC subfamilies, as well as those between dicots and monocots, through genome-wide analyses of sequence and functional data in six dicot and five grass lineages. The number of genes gained in the dicot lineages was much larger than that in the grass lineages, while fewer gene losses were observed in the grass than that in the dicots. We revealed (1) uneven constitution of Clusters of Orthologous Groups (COGs) and contrasting birth/death rates among subfamilies, and (2) two distinct evolutionary scenarios of NAC TFs between dicots and grasses. Our results demonstrated that relaxed selection, resulting from concerted gene duplications, may have permitted substitutions responsible for functional divergence of NAC genes into new lineages. The underlying mechanism of distinct evolutionary fates of NAC TFs shed lights on how evolutionary divergence contributes to differences in establishing NAC gene subfamilies and thus impacts the distinct features between dicots and grasses. PMID:28713414

  8. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  9. COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development.

    PubMed

    Guo, L; Lynch, J; Nakamura, K; Fliegel, L; Kasahara, H; Izumo, S; Komuro, I; Agellon, L B; Michalak, M

    2001-01-26

    Calreticulin, a Ca(2+) binding chaperone of the endoplasmic reticulum, is also highly expressed in the embryonic heart, and knockout of the calreticulin gene is lethal during embryogenesis because of impaired cardiac development. The protein is down-regulated after birth, and elevated expression of calreticulin in newborn hearts is associated with severe cardiac pathology and death. Here we show that the transcription factor Nkx2.5 activates expression of the calreticulin gene in the heart. Binding of chicken ovalbumin upstream promoter-transcription factor 1 to the Nkx2.5 binding site suppresses transcription from the calreticulin promoter. Nkx2.5 and chicken ovalbumin upstream promoter-transcription factor 1 play antagonistic roles in regulating the expression of calreticulin during cardiac development. These studies indicate that cardiac-specific transcription factor Nkx2.5 plays a central role in activating calreticulin expression and that there is a cooperation between chicken ovalbumin upstream promoter-transcription factor 1 and Nkx2.5 at the calreticulin promoter.

  10. Aluminum resistance transcription factor 1 (ART1) contributes to natural variation in rice aluminum resistance

    USDA-ARS?s Scientific Manuscript database

    Transcription factors (TFs) mediate stress resistance indirectly via physiological mechanisms driven by the array of genes they regulate. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with different genetic backgrounds. Here, we fine-mapped th...

  11. Domain retention in transcription factor fusion genes and its biological and clinical implications: a pan-cancer study

    PubMed Central

    Kim, Pora; Ballester, Leomar Y.; Zhao, Zhongming

    2017-01-01

    Genomic rearrangements involving transcription factors (TFs) can form fusion proteins resulting in either enhanced, weakened, or even loss of TF activity. Functional domain (FD) retention is a critical factor in the activity of transcription factor fusion genes (TFFGs). A systematic investigation of FD retention in TFFGs and their outcome (e.g. expression changes) in a pan-cancer study has not yet been completed. Here, we examined the FD retention status in 386 TFFGs across 13 major cancer types and identified 83 TFFGs involving 67 TFs that retained FDs. To measure the potential biological relevance of TFs in TFFGs, we introduced a Major Active Isofusion Index (MAII) and built a prioritized TFFG network using MAII scores and the observed frequency of fusion positive samples. Interestingly, the four TFFGs (PML-RARA, RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-TFE3) with the highest MAII scores showed 50 differentially expressed target genes (DETGs) in fusion-positive versus fusion-negative cancer samples. DETG analysis revealed that they were involved in tumorigenesis-related processes in each cancer type. PLAU, which encodes plasminogen activator urokinase and serves as a biomarker for tumor invasion, was found to be consistently activated in the samples with the highest MAII scores. Among the 50 DETGs, 21 were drug targetable genes. Fourteen of these 21 DETGs were expressed in acute myeloid leukemia (AML) samples. Accordingly, we constructed an AML-specific TFFG network, which included 38 DETGs in RUNX1-RUNX1T1 or PML-RARA positive samples. In summary, this study revealed several TFFGs and their potential target genes, and provided insights into the clinical implications of TFFGs. PMID:29299133

  12. MiRNA-TF-gene network analysis through ranking of biomolecules for multi-informative uterine leiomyoma dataset.

    PubMed

    Mallik, Saurav; Maulik, Ujjwal

    2015-10-01

    Gene ranking is an important problem in bioinformatics. Here, we propose a new framework for ranking biomolecules (viz., miRNAs, transcription-factors/TFs and genes) in a multi-informative uterine leiomyoma dataset having both gene expression and methylation data using (statistical) eigenvector centrality based approach. At first, genes that are both differentially expressed and methylated, are identified using Limma statistical test. A network, comprising these genes, corresponding TFs from TRANSFAC and ITFP databases, and targeter miRNAs from miRWalk database, is then built. The biomolecules are then ranked based on eigenvector centrality. Our proposed method provides better average accuracy in hub gene and non-hub gene classifications than other methods. Furthermore, pre-ranked Gene set enrichment analysis is applied on the pathway database as well as GO-term databases of Molecular Signatures Database with providing a pre-ranked gene-list based on different centrality values for comparing among the ranking methods. Finally, top novel potential gene-markers for the uterine leiomyoma are provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. BOREAS TF-11 Biomass Data over the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains plant cover, standing crop of plant biomass, and estimated net primary productivity at each chamber site at the end of the 1994 field season. The measurements were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitrogen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. The data are stored in tabular ASCII files.

  14. Transcriptome analysis of nitric oxide-responsive genes in upland cotton (Gossypium hirsutum).

    PubMed

    Huang, Juan; Wei, Hengling; Li, Libei; Yu, Shuxun

    2018-01-01

    Nitric oxide (NO) is an important signaling molecule with diverse physiological functions in plants. It is therefore important to characterize the downstream genes and signal transduction networks modulated by NO. Here, we identified 1,932 differentially expressed genes (DEGs) responding to NO in upland cotton using high throughput tag sequencing. The results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 25 DEGs showed good consistency. Gene Ontology (GO) and KEGG pathway were analyzed to gain a better understanding of these DEGs. We identified 157 DEGs belonging to 36 transcription factor (TF) families and 72 DEGs related to eight plant hormones, among which several TF families and hormones were involved in stress responses. Hydrogen peroxide and malondialdehyde (MDA) contents were increased, as well related genes after treatment with sodium nitroprusside (SNP) (an NO donor), suggesting a role for NO in the plant stress response. Finally, we compared of the current and previous data indicating a massive number of NO-responsive genes at the large-scale transcriptome level. This study evaluated the landscape of NO-responsive genes in cotton and identified the involvement of NO in the stress response. Some of the identified DEGs represent good candidates for further functional analysis in cotton.

  15. System analysis identifies distinct and common functional networks governed by transcription factor ASCL1, in glioma and small cell lung cancer.

    PubMed

    Donakonda, Sainitin; Sinha, Swati; Dighe, Shrinivas Nivrutti; Rao, Manchanahalli R Satyanarayana

    2017-07-25

    ASCL1 is a basic Helix-Loop-Helix transcription factor (TF), which is involved in various cellular processes like neuronal development and signaling pathways. Transcriptome profiling has shown that ASCL1 overexpression plays an important role in the development of glioma and Small Cell Lung Carcinoma (SCLC), but distinct and common molecular mechanisms regulated by ASCL1 in these cancers are unknown. In order to understand how it drives the cellular functional network in these two tumors, we generated a gene expression profile in a glioma cell line (U87MG) to identify ASCL1 gene targets by an si RNA silencing approach and then compared this with a publicly available dataset of similarly silenced SCLC (NCI-H1618 cells). We constructed TF-TF and gene-gene interactions, as well as protein interaction networks of ASCL1 regulated genes in glioma and SCLC cells. Detailed network analysis uncovered various biological processes governed by ASCL1 target genes in these two tumor cell lines. We find that novel ASCL1 functions related to mitosis and signaling pathways influencing development and tumor growth are affected in both glioma and SCLC cells. In addition, we also observed ASCL1 governed functional networks that are distinct to glioma and SCLC.

  16. A Follow-Up Study from a Multisite, Randomized Controlled Trial for Traumatized Children Receiving TF-CBT.

    PubMed

    Jensen, Tine K; Holt, Tonje; Ormhaug, Silje M

    2017-11-01

    Trauma-focused cognitive behavioral therapy (TF-CBT) is the treatment of choice for traumatized youth, however, follow-up studies are scarce, and treatment effects for co-occurring depression show mixed findings. The aims of this study were to examine whether treatment effects of TF-CBT are maintained at 18 month follow-up and whether degree of co-occurring depression influences treatment effects. As rapid improvement in psychological functioning is warranted for youth, we also investigated whether the symptom trajectory was different for TF-CBT compared to therapy as usual (TAU). The sample consisted of 156 youth (M age = 15.05, 79.50% girls) randomly assigned to TF-CBT or TAU. The youth were assessed for posttraumatic stress symptoms (PTSS), depression, anxiety and general mental health symptoms. Mixed effects analyses followed the symptom courses over 5 time points. Youth receiving TF-CBT maintained their symptom improvement at 18 months follow-up with scores below clinical cut-of on all symptom measures. The most depressed youth had also a significant decline in symptoms that were maintained at follow-up. Symptom trajectories differed as the TF-CBT group reported a more rapid symptom reduction compared to the TAU condition. In the TAU condition, participants received 1.5 times the number of treatment sessions compared to the TF-CBT participants. After 18 months the groups were significantly different on general mental health symptoms only. In conclusion, youth receiving TF-CBT experienced more efficient improvement in trauma related symptoms than youth receiving TAU and these improvements were maintained after 18 months. Also youth experiencing serious co-occurring depression benefitted from TF-CBT.

  17. Comparative genomics of pyridoxal 5′-phosphate-dependent transcription factor regulons in Bacteria

    PubMed Central

    Suvorova, Inna A.

    2016-01-01

    The MocR-subfamily transcription factors (MocR-TFs) characterized by the GntR-family DNA-binding domain and aminotransferase-like sensory domain are broadly distributed among certain lineages of Bacteria. Characterized MocR-TFs bind pyridoxal 5′-phosphate (PLP) and control transcription of genes involved in PLP, gamma aminobutyric acid (GABA) and taurine metabolism via binding specific DNA operator sites. To identify putative target genes and DNA binding motifs of MocR-TFs, we performed comparative genomics analysis of over 250 bacterial genomes. The reconstructed regulons for 825 MocR-TFs comprise structural genes from over 200 protein families involved in diverse biological processes. Using the genome context and metabolic subsystem analysis we tentatively assigned functional roles for 38 out of 86 orthologous groups of studied regulators. Most of these MocR-TF regulons are involved in PLP metabolism, as well as utilization of GABA, taurine and ectoine. The remaining studied MocR-TF regulators presumably control genes encoding enzymes involved in reduction/oxidation processes, various transporters and PLP-dependent enzymes, for example aminotransferases. Predicted DNA binding motifs of MocR-TFs are generally similar in each orthologous group and are characterized by two to four repeated sequences. Identified motifs were classified according to their structures. Motifs with direct and/or inverted repeat symmetry constitute the majority of inferred DNA motifs, suggesting preferable TF dimerization in head-to-tail or head-to-head configuration. The obtained genomic collection of in silico reconstructed MocR-TF motifs and regulons in Bacteria provides a basis for future experimental characterization of molecular mechanisms for various regulators in this family. PMID:28348826

  18. Investigation of candidate genes for osteoarthritis based on gene expression profiles.

    PubMed

    Dong, Shuanghai; Xia, Tian; Wang, Lei; Zhao, Qinghua; Tian, Jiwei

    2016-12-01

    To explore the mechanism of osteoarthritis (OA) and provide valid biological information for further investigation. Gene expression profile of GSE46750 was downloaded from Gene Expression Omnibus database. The Linear Models for Microarray Data (limma) package (Bioconductor project, http://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to identify differentially expressed genes (DEGs) in inflamed OA samples. Gene Ontology function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of DEGs were performed based on Database for Annotation, Visualization and Integrated Discovery data, and protein-protein interaction (PPI) network was constructed based on the Search Tool for the Retrieval of Interacting Genes/Proteins database. Regulatory network was screened based on Encyclopedia of DNA Elements. Molecular Complex Detection was used for sub-network screening. Two sub-networks with highest node degree were integrated with transcriptional regulatory network and KEGG functional enrichment analysis was processed for 2 modules. In total, 401 up- and 196 down-regulated DEGs were obtained. Up-regulated DEGs were involved in inflammatory response, while down-regulated DEGs were involved in cell cycle. PPI network with 2392 protein interactions was constructed. Moreover, 10 genes including Interleukin 6 (IL6) and Aurora B kinase (AURKB) were found to be outstanding in PPI network. There are 214 up- and 8 down-regulated transcription factor (TF)-target pairs in the TF regulatory network. Module 1 had TFs including SPI1, PRDM1, and FOS, while module 2 contained FOSL1. The nodes in module 1 were enriched in chemokine signaling pathway, while the nodes in module 2 were mainly enriched in cell cycle. The screened DEGs including IL6, AGT, and AURKB might be potential biomarkers for gene therapy for OA by being regulated by TFs such as FOS and SPI1, and participating in the cell cycle and cytokine-cytokine receptor

  19. The long terminal repeat-containing retrotransposon Tf1 possesses amino acids in gag that regulate nuclear localization and particle formation.

    PubMed

    Kim, Min-Kyung; Claiborn, Kathryn C; Levin, Henry L

    2005-08-01

    Tf1 is a long terminal repeat-containing retrotransposon of Schizosaccharomyces pombe that is studied to further our understanding of retrovirus propagation. One important application is to examine Tf1 as a model for how human immunodeficiency virus type 1 proteins enter the nucleus. The accumulation of Tf1 Gag in the nucleus requires an N-terminal nuclear localization signal (NLS) and the nuclear pore factor Nup124p. Here, we report that NLS activity is regulated by adjacent residues. Five mutant transposons were made, each with sequential tracts of four amino acids in Gag replaced by alanines. All five versions of Tf1 transposed with frequencies that were significantly lower than that of the wild type. Although all five made normal amounts of Gag, two of the mutations did not make cDNA, indicating that Gag contributed to reverse transcription. The localization of the Gag in the nucleus was significantly reduced by mutations A1, A2, and A3. These results identified residues in Gag that contribute to the function of the NLS. The Gags of A4 and A5 localized within the nucleus but exhibited severe defects in the formation of virus-like particles. Of particular interest was that the mutations in Gag-A4 and Gag-A5 caused their nuclear localization to become independent of Nup124p. These results suggested that Nup124p was only required for import of Tf1 Gag because of its extensive multimerization.

  20. Absence of tissue factor is characteristic of lymphoid malignancies of both T- and B-cell origin

    PubMed Central

    Cesarman-Maus, Gabriela; Braggio, Esteban; Lome-Maldonado, Carmen; Morales-Leyte, Ana Lilia; Fonseca, Rafael

    2014-01-01

    Summary Background Thrombosis is a marker of poor prognosis in individuals with solid tumors. The expression of tissue factor (TF) on the cell surface membrane of malignant cells is a pivotal molecular link between activation of coagulation, angiogenesis, metastasis, aggressive tumor behavior and poor survival. Interestingly, thrombosis is associated with shortened survival in solid, but not in lymphoid neoplasias. Objectives We sought to study whether the lack of impact of thrombosis on survival in lymphoid neoplasias could be due to a lack of tumor-derived TF expression. Methods We analyzed TF gene (F3) expression in lymphoid (N=114), myeloid (N=49) and solid tumor (N=856) cell lines using the publicly available dataset from the Broad-Novartis Cancer Cell Line Encyclopedia (http://www.broadinstitute.org/ccle/home), and in 90 patient-derived lymphoma samples. TF protein expression was studied by immunohistochemistry (IHC). Results In sharp contrast to wide F3 expression in solid tumors (74.2%), F3 was absent in all low and high grade T- and B-cell lymphomas, and in most myeloid tumors, except for select acute myeloid leukemias with monocytic component. IHC confirmed the absence of TF protein in all indolent and high-grade B-cell (0/90) and T-cell (0/20) lymphomas, and acute leukemias (0/11). Conclusions We show that TF in lymphomas does not derive from the malignant cells, since these do not express either F3 or TF protein. Therefore, it is unlikely that thrombosis in patients with lymphoid neoplasms is secondary to tumor-derived tissue factor. PMID:24491425

  1. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    PubMed

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  2. The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis ElementsW⃞

    PubMed Central

    Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.

    2003-01-01

    The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974

  3. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined.

  4. Structure of the Bacillus subtilis phage SPO1-encoded type II DNA-binding protein TF1 in solution.

    PubMed

    Jia, X; Grove, A; Ivancic, M; Hsu, V L; Geiduscheck, E P; Kearns, D R

    1996-10-25

    The solution structure of a type II DNA-binding protein, the bacteriophage SPO1-encoded transcription factor 1 (TF1), was determined using NMR spectroscopy. Selective 2H-labeling, 13C-labeling and isotopic heterodimers were used to distinguish contacts between and within monomers of the dimeric protein. A total of 1914 distance and dihedral angle constraints derived from NMR experiments were used in structure calculations using restrained molecular dynamics and simulated annealing protocols. The ensemble of 30 calculated structures has a root-mean-square deviation (r.m.s.d.) of 0.9 A, about the average structure for the backbone atoms, and 1.2 A for all heavy-atoms of the dimeric core (helices 1 and 2) and the beta-sheets. A severe helix distortion at residues 92-93 in the middle of helix 3 is associated with r.m.s.d. of approximately 1.5 A for the helix 3 backbone. Deviations of approximately 5 A or larger are noted for the very flexible beta-ribbon arms that constitute part of a proposed DNA-binding region. A structural model of TF1 has been calculated based on the previously reported crystal structure of the homologous HU protein and this model was used as the starting structure for calculations. A comparison between the calculated average solution structure of TF1 and a solution structure of HU indicates a similarity in the dimeric core (excluding the nine amino acid residue tail) with pairwise deviations of 2 to 3 A. The largest deviations between the average structure and the HU solution structure were found in the beta-ribbon arms, as expected. A 4 A deviation is found at residue 15 of TF1 which is in a loop connecting two helical segments; it has been reported that substitution of Glu15 by Gly increases the thermostability of TF1. The homology between TF1 and other proteins of this family leads us to anticipate similar tertiary structures.

  5. Manufacture and Quality Control of Insert Coil with Real ITER TF Conductor

    DOE PAGES

    Ozeki, H.; Isono, T.; Uno, Y.; ...

    2016-03-02

    JAEA successfully completed the manufacture of the toroidal field (TF) insert coil (TFIC) for a performance test of the ITER TF conductor in the final design in cooperation with Hitachi, Ltd. The TFIC is a single-layer 8.875-turn solenoid coil with 1.44-m diameter. This will be tested for 68-kA current application in a 13-T external magnetic field. TFIC was manufactured in the following order: winding of the TF conductor, lead bending, fabrication of the electrical termination, heat treatment, turn insulation, installation of the coil into the support mandrel structure, vacuum pressure impregnation (VPI), structure assembly, and instrumentation. Here in this presentation,more » manufacture process and quality control status for the TFIC manufacturing are reported.« less

  6. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress

    PubMed Central

    Prasad, Kasavajhala V. S. K.; Abdel-Hameed, Amira A. E.; Xing, Denghui; Reddy, Anireddy S. N.

    2016-01-01

    Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464

  7. Determinants that specify the integration pattern of retrotransposon Tf1 in the fbp1 promoter of Schizosaccharomyces pombe.

    PubMed

    Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Ripmaster, Tracy L; Levin, Henry L

    2011-01-01

    Long terminal repeat (LTR) retrotransposons are closely related to retroviruses and, as such, are important models for the study of viral integration and target site selection. The transposon Tf1 of Schizosaccharomyces pombe integrates with a strong preference for the promoters of polymerase II (Pol II)-transcribed genes. Previous work in vivo with plasmid-based targets revealed that the patterns of insertion were promoter specific and highly reproducible. To determine which features of promoters are recognized by Tf1, we studied integration in a promoter that has been characterized. The promoter of fbp1 has two upstream activating sequences, UAS1 and UAS2. We found that integration was targeted to two windows, one 180 nucleotides (nt) upstream and the other 30 to 40 nt downstream of UAS1. A series of deletions in the promoter showed that the integration activities of these two regions functioned autonomously. Integration assays of UAS2 and of a synthetic promoter demonstrated that strong promoter activity alone was not sufficient to direct integration. The factors that modulate the transcription activities of UAS1 and UAS2 include the activators Atf1p, Pcr1p, and Rst2p as well as the repressors Tup11p, Tup12p, and Pka1p. Strains lacking each of these proteins revealed that Atf1p alone mediated the sites of integration. These data indicate that Atf1p plays a direct and specific role in targeting integration in the promoter of fbp1.

  8. Carbohydrates and activity of natural and recombinant tissue factor.

    PubMed

    Krudysz-Amblo, Jolanta; Jennings, Mark E; Mann, Kenneth G; Butenas, Saulius

    2010-01-29

    The effect of glycosylation on tissue factor (TF) activity was evaluated, and site-specific glycosylation of full-length recombinant TF (rTF) and that of natural TF from human placenta (pTF) were studied by liquid chromatography-tandem mass spectrometry. The amidolytic activity of the TF.factor VIIa (FVIIa) complex toward a fluorogenic substrate showed that the catalytic efficiency (V(max)) of the complex increased in the order rTF(1-243) (Escherichia coli) < rTF(1-263) (Sf9 insect cells) < pTF for the glycosylated and deglycosylated forms. Substrate hydrolysis was unaltered by deglycosylation. In FXase, the K(m) of FX for rTF(1-263)-FVIIa remained unchanged after deglycosylation, whereas the k(cat) decreased slightly. A pronounced decrease, 4-fold, in k(cat) was observed for pTF.FVIIa upon deglycosylation, whereas the K(m) was minimally altered. The parameters of FX activation by both rTF(1-263D)-FVIIa and pTF(D)-FVIIa were identical and similar to those for rTF(1-243)-FVIIa. In conclusion, carbohydrates significantly influence the activity of TF proteins. Carbohydrate analysis revealed glycosylation on asparagines 11, 124, and 137 in both rTF(1-263) and pTF. The carbohydrates of rTF(1-263) contain high mannose, hybrid, and fucosylated glycans. Natural pTF contains no high mannose glycans but is modified with hybrid, highly fucosylated, and sialylated sugars.

  9. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    NASA Astrophysics Data System (ADS)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  10. PvTFDB: a Phaseolus vulgaris transcription factors database for expediting functional genomics in legumes.

    PubMed

    Bhawna; Bonthala, V S; Gajula, Mnv Prasad

    2016-01-01

    The common bean [Phaseolus vulgaris (L.)] is one of the essential proteinaceous vegetables grown in developing countries. However, its production is challenged by low yields caused by numerous biotic and abiotic stress conditions. Regulatory transcription factors (TFs) symbolize a key component of the genome and are the most significant targets for producing stress tolerant crop and hence functional genomic studies of these TFs are important. Therefore, here we have constructed a web-accessible TFs database for P. vulgaris, called PvTFDB, which contains 2370 putative TF gene models in 49 TF families. This database provides a comprehensive information for each of the identified TF that includes sequence data, functional annotation, SSRs with their primer sets, protein physical properties, chromosomal location, phylogeny, tissue-specific gene expression data, orthologues, cis-regulatory elements and gene ontology (GO) assignment. Altogether, this information would be used in expediting the functional genomic studies of a specific TF(s) of interest. The objectives of this database are to understand functional genomics study of common bean TFs and recognize the regulatory mechanisms underlying various stress responses to ease breeding strategy for variety production through a couple of search interfaces including gene ID, functional annotation and browsing interfaces including by family and by chromosome. This database will also serve as a promising central repository for researchers as well as breeders who are working towards crop improvement of legume crops. In addition, this database provide the user unrestricted public access and the user can download entire data present in the database freely.Database URL: http://www.multiomics.in/PvTFDB/. © The Author(s) 2016. Published by Oxford University Press.

  11. The pig CYP2E1 promoter is activated by COUP-TF1 and HNF-1 and is inhibited by androstenone.

    PubMed

    Tambyrajah, Winston S; Doran, Elena; Wood, Jeffrey D; McGivan, John D

    2004-11-15

    Functional analysis of the pig cytochrome P4502E1 (CYP2E1) promoter identified two major activating elements. One corresponded to the hepatic nuclear factor 1 (HNF-1) consensus binding sequence at nucleotides -128/-98 and the other was located in the region -292/-266. The binding of proteins in pig liver nuclear extracts to a synthetic double-stranded oligonucleotide corresponding to this more distal activating sequence was studied by electrophoretic mobility shift assay. The minimum protein binding sequence was identified as TGTTCTGACCTCTGGG. Gel super-shift assays identified the protein binding to this site as chick ovalbumin upstream promoter transcription factor 1 (COUP-TF1). Androstenone inhibited promoter activity in transfection experiments only with constructs which included the COUP-TF1 binding site. Androstenone inhibited COUP-TF1 binding to synthetic oligonucleotides but did not affect HNF-1 binding. The results offer an explanation for the inhibition of CYP2E1 protein expression by androstenone in isolated pig hepatocytes and may be relevant to the low expression of hepatic CYP2E1 in those pigs which accumulate high levels of androstenone in vivo.

  12. Antiphospholipid antibodies promote tissue factor-dependent angiogenic switch and tumor progression.

    PubMed

    Wu, Yuan-Yuan; V Nguyen, Andrew; Wu, Xiao-Xuan; Loh, Mingyu; Vu, Michelle; Zou, Yiyu; Liu, Qiang; Guo, Peng; Wang, Yanhua; Montgomery, Leslie L; Orlofsky, Amos; Rand, Jacob H; Lin, Elaine Y

    2014-12-01

    Progression to an angiogenic state is a critical event in tumor development, yet few patient characteristics have been identified that can be mechanistically linked to this transition. Antiphospholipid autoantibodies (aPLs) are prevalent in many human cancers and can elicit proangiogenic expression in several cell types, but their role in tumor biology is unknown. Herein, we observed that the elevation of circulating aPLs among breast cancer patients is specifically associated with invasive-stage tumors. By using multiple in vivo models of breast cancer, we demonstrated that aPL-positive IgG from patients with autoimmune disease rapidly accelerates tumor angiogenesis and consequent tumor progression, particularly in slow-growing avascular tumors. The action of aPLs was local to the tumor site and elicited leukocytic infiltration and tumor invasion. Tumor cells treated with aPL-positive IgG expressed multiple proangiogenic genes, including vascular endothelial growth factor, tissue factor (TF), and colony-stimulating factor 1. Knockdown and neutralization studies demonstrated that the effects of aPLs on tumor angiogenesis and growth were dependent on tumor cell-derived TF. Tumor-derived TF was essential for the development of pericyte coverage of tumor microvessels and aPL-induced tumor cell expression of chemokine ligand 2, a mediator of pericyte recruitment. These findings identify antiphospholipid autoantibodies as a potential patient-specific host factor promoting the transition of indolent tumors to an angiogenic malignant state through a TF-mediated pathogenic mechanism. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua) - Conserved synteny between fish monolobal and tetrapod bilobal transferrin loci

    PubMed Central

    2011-01-01

    Background The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. Results The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. Conclusions The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive

  14. Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua)--conserved synteny between fish monolobal and tetrapod bilobal transferrin loci.

    PubMed

    Andersen, Øivind; De Rosa, Maria Cristina; Pirolli, Davide; Tooming-Klunderud, Ave; Petersen, Petra E; André, Carl

    2011-05-25

    The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive selection and local adaptation in

  15. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Evaluation of TF11 attenuated-PSM mask blanks with DUV laser patterning

    NASA Astrophysics Data System (ADS)

    Xing, Kezhao; Björnberg, Charles; Karlsson, Henrik; Paulsson, Adisa; Beiming, Peter; Vedenpää, Jukka; Walford, Jonathan

    2008-05-01

    Tightening requirements on resolution, CD uniformity and positional accuracy push the development of improved photomask blanks. One such blank for 45nm node attenuated phase shift masks (att-PSM) provides a thinner chrome film, TF11, with a higher etch rate compared to previous generation NTAR5 att-PSM blanks from the same supplier. FEP-171, a positive chemically amplified resist, is commonly used in mask manufacturing for both e-beam and DUV laser pattern generators. TF11 chrome allows the FEP-171 resist thickness to be decreased at least down to 2000 Å while maintaining sufficient etch resistance, thereby improving photomask CD performance. The lower stress level in TF11 chrome films also reduces the image placement error induced by the material. In this study, TF11 chrome and FEP-171 resist are evaluated with exposures on a 248 nm DUV laser pattern generator, the Sigma7500. Patterning is first characterized for resist thicknesses of 2000 Å to 2600 Å in steps of 100 Å, assessing the minimum feature resolution, CD linearity, isolated-dense CD bias and dose sensitivity. Swing curve analysis shows a minimum near 2200 Å and a maximum near 2500 Å, corresponding closely to the reflectivity measurements provided by the blank supplier. The best overall patterning performance is obtained when operating near the swing maximum. The patterning performance is then studied in more detail with a resist thickness of 2550 Å that corresponds to the reflectivity maximum. This is compared to the results with 2000 Å resist, a standard thickness for e-beam exposures on TF11. The lithographic performance on NTAR5 att-PSM blanks with 3200 Å resist is also included for reference. This evaluation indicates that TF11 blanks with 2550 Å resist provide the best overall mask patterning performance obtained with the Sigma7500, showing a global CD uniformity below 4 nm (3s) and minimum feature resolution below 100 nm.

  17. Template-independent DNA synthesis activity associated with the reverse transcriptase of the long terminal repeat retrotransposon Tf1.

    PubMed

    Oz-Gleenberg, Iris; Herzig, Eytan; Hizi, Amnon

    2012-01-01

    Reverse transcriptases (RTs) possess a non-templated addition (NTA) activity while synthesizing DNA with blunt-ended DNA primer/templates. Interestingly, the RT of the long terminal repeat retrotransposon Tf1 has an NTA activity that is substantially higher than that of HIV-1 or murine leukemia virus RTs. By performing steady state kinetics, we found that the differences between the NTA activities of Tf1 and HIV-1 RTs can be explained by the substantially lower K(M) value for the incoming dNTP of Tf1 RT (while the differences between the apparent k(cat) values of these two RTs are relatively small). Furthermore, the K(M) values, calculated for both RTs with the same dNTP, are much lower for the template-dependent synthesis (TDS) than those of NTA. However, TDS of HIV-1 RT is higher than that of Tf1 RT. The overall relative order of the apparent k(cat)/K(M) values for dATP is: HIV-1 RT (TDS) > Tf1 RT (TDS) > Tf1 RT (NTA) > HIV-1 RT (NTA). Under the employed conditions, Tf1 RT can add up to seven nucleotides to the blunt-ended substrate, while the other RTs add mostly a single nucleotide. The NTA activity of Tf1 RT is restricted to DNA primers. Furthermore, the NTA activity of Tf1 and HIV-1 RTs is suppressed by ATP, as it competes with the incoming dATP (although ATP is not incorporated by the NTA activity of the RTs). The unusually high NTA activity of Tf1 RT can explain why, after completing cDNA synthesis, the in vivo generated Tf1 cDNA has relatively long extra sequences beyond the highly conserved CA at its 3'-ends. © 2011 The Authors Journal compilation © 2011 FEBS.

  18. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development

    PubMed Central

    2013-01-01

    Background Red coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits. Results In this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus

  19. The Art and Skill of Delivering Culturally Responsive TF-CBT in Tanzania and Kenya

    PubMed Central

    Kava, Christine M.; Akiba, Christopher F.; Lucid, Leah; Dorsey, Shannon

    2016-01-01

    Objective This study explored the facilitators, barriers, and strategies used to deliver a child mental health evidence-based treatment (EBT), trauma-focused cognitive behavioral therapy (TF-CBT), in a culturally responsive manner. In low- and middle-income countries most individuals with mental health problems do not receive treatment due to a shortage of mental health professionals. One approach to addressing this problem is task-sharing, in which lay counselors are trained to deliver mental health treatment. Combining this approach with a focus on EBT provides a strategy for bridging the mental health treatment gap. However, little is known how about western-developed EBTs are delivered in a culturally responsive manner. Method Semistructured qualitative interviews were conducted with 12 TF-CBT lay counselors involved in a large randomized controlled trial of TF-CBT in Kenya and Tanzania. An inductive approach was used to analyze the data. Results Lay counselors described the importance of being responsive to TF-CBT participants’ customs, beliefs, and socioeconomic conditions and highlighted the value of TF-CBT for their community. They also discussed the importance of partnering with other organizations to address unmet socioeconomic needs. Conclusion The findings from this study provide support for the acceptability and appropriateness of TF-CBT as a treatment approach for improving child mental health. Having a better understanding of the strategies used by lay counselors to ensure that treatment is relevant to the cultural and socioeconomic context of participants can help to inform the implementation of future EBTs. PMID:27414470

  20. Transcription Factor Activities Enhance Markers of Drug Sensitivity in Cancer.

    PubMed

    Garcia-Alonso, Luz; Iorio, Francesco; Matchan, Angela; Fonseca, Nuno; Jaaks, Patricia; Peat, Gareth; Pignatelli, Miguel; Falcone, Fiammetta; Benes, Cyril H; Dunham, Ian; Bignell, Graham; McDade, Simon S; Garnett, Mathew J; Saez-Rodriguez, Julio

    2018-02-01

    Transcriptional dysregulation induced by aberrant transcription factors (TF) is a key feature of cancer, but its global influence on drug sensitivity has not been examined. Here, we infer the transcriptional activity of 127 TFs through analysis of RNA-seq gene expression data newly generated for 448 cancer cell lines, combined with publicly available datasets to survey a total of 1,056 cancer cell lines and 9,250 primary tumors. Predicted TF activities are supported by their agreement with independent shRNA essentiality profiles and homozygous gene deletions, and recapitulate mutant-specific mechanisms of transcriptional dysregulation in cancer. By analyzing cell line responses to 265 compounds, we uncovered numerous TFs whose activity interacts with anticancer drugs. Importantly, combining existing pharmacogenomic markers with TF activities often improves the stratification of cell lines in response to drug treatment. Our results, which can be queried freely at dorothea.opentargets.io, offer a broad foundation for discovering opportunities to refine personalized cancer therapies. Significance: Systematic analysis of transcriptional dysregulation in cancer cell lines and patient tumor specimens offers a publicly searchable foundation to discover new opportunities to refine personalized cancer therapies. Cancer Res; 78(3); 769-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Factor VIII-bypassing activity of bovine tissue factor using the canine hemophilic model.

    PubMed Central

    O'Brien, D P; Giles, A R; Tate, K M; Vehar, G A

    1988-01-01

    The bleeding disorder of hemophilia A currently treated by replacement therapy of the missing coagulation factor, factor VIII, is frequently complicated by the development of neutralizing antibodies. The therapeutic potential of attenuated forms of the lipid-associated glycoprotein tissue factor, a known initiator of coagulation, was investigated as a factor VIII-by-passing activity. The protein moiety of tissue factor (Apo-TF) was partially purified and exhibited minimal procoagulant activity before relipidation in vitro. In pilot studies, Apo-TF injection into rabbits previously anticoagulated with an antibody to factor VIII was found to have a procoagulant effect. The efficacy of the material was further demonstrated when injection of Apo-TF in hemophilic dogs resulted in a normalization of the cuticle bleeding time. Little or no change in the blood parameters associated with disseminated intravascular coagulation was observed at lower doses, although mild to moderate effects were seen at higher doses. These data suggest a novel role for Apo-TF preparations as a potential therapeutic agent for hemophiliacs with antibodies to factor VIII once the potential thrombogenicity of such materials is evaluated. Images PMID:3134399

  2. Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa

    2004-02-01

    Through hardware based design and testing, the EFF-TF investigates fission power and propulsion component, subsystems, and integrated system design and performance. Through demonstration of systems concepts (designed by Sandia and Los Alamos National Laboratories) in relevant environments, previous non-nuclear tests in the EFF-TF have proven to be a highly effective method (from both cost and performance standpoint) to identify and resolve integration issues. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. This paper describes the current efforts for 2003.

  3. Erythro-megakaryocytic transcription factors associated with hereditary anemia

    PubMed Central

    Weiss, Mitchell J.

    2014-01-01

    Most heritable anemias are caused by mutations in genes encoding globins, red blood cell (RBC) membrane proteins, or enzymes in the glycolytic and hexose monophosphate shunt pathways. A less common class of genetic anemia is caused by mutations that alter the functions of erythroid transcription factors (TFs). Many TF mutations associated with heritable anemia cause truncations or amino acid substitutions, resulting in the production of functionally altered proteins. Characterization of these mutant proteins has provided insights into mechanisms of gene expression, hematopoietic development, and human disease. Mutations within promoter or enhancer regions that disrupt TF binding to essential erythroid genes also cause anemia and heritable variations in RBC traits, such as fetal hemoglobin content. Defining the latter may have important clinical implications for de-repressing fetal hemoglobin synthesis to treat sickle cell anemia and β thalassemia. Functionally important alterations in genes encoding TFs or their cognate cis elements are likely to occur more frequently than currently appreciated, a hypothesis that will soon be tested through ongoing genome-wide association studies and the rapidly expanding use of global genome sequencing for human diagnostics. Findings obtained through such studies of RBCs and associated diseases are likely generalizable to many human diseases and quantitative traits. PMID:24652993

  4. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    PubMed Central

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  5. Improved in vivo gene transfer into tumor tissue by stabilization of pseudodendritic oligoethylenimine-based polyplexes.

    PubMed

    Russ, Verena; Fröhlich, Thomas; Li, Yunqiu; Halama, Anna; Ogris, Manfred; Wagner, Ernst

    2010-02-01

    HD O is a low molecular weight pseudodendrimer containing oligoethylenimine and degradable hexanediol diacrylate diesters. DNA polyplexes display encouraging gene transfer efficiency in vitro and in vivo but also a limited stability under physiological conditions. This limitation must be overcome for further development into more sophisticated formulations. HD O polyplexes were laterally stabilized by crosslinking surface amines via bifunctional crosslinkers, bioreducible dithiobis(succimidyl propionate) (DSP) or the nonreducible analog disuccinimidyl suberate (DSS). Optionally, in a subsequent step, the targeting ligand transferrin (Tf) was attached to DSP-linked HD O polyplexes via Schiff base formation between HD O amino groups and Tf aldehyde groups, which were introduced into Tf by periodate oxidation of the glycosylation sites. Crosslinked DNA polyplexes showed an increased stability against exchange reaction by salt or heparin. Disulfide bond containing DSP-linked polyplexes were susceptible to reducing conditions. These polyplexes displayed the highest gene expression levels in vitro and in vivo (upon intratumoral application in mice), and these were significantly elevated and prolonged over standard or DSS-stabilized HD O formulations. DSP-stabilized HD O polyplexes with or without Tf coating were well-tolerated after intravenous application. High gene expression levels were found in tumor tissue, with negligible gene expression in any other organ. Lateral stabilization of HD O polyplexes with DSP crosslinker enhanced gene transfer efficacy and was essential for the incorporation of a ligand (Tf) into a stable particle formulation.

  6. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

    PubMed

    Catinot, Jérémy; Huang, Jing-Bo; Huang, Pin-Yao; Tseng, Min-Yuan; Chen, Ying-Lan; Gu, Shin-Yuan; Lo, Wan-Sheng; Wang, Long-Chi; Chen, Yet-Ran; Zimmerli, Laurent

    2015-12-01

    The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens. © 2015 John Wiley & Sons Ltd.

  7. The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection.

    PubMed

    Chatterjee, Atreyi Ghatak; Leem, Young Eun; Kelly, Felice D; Levin, Henry L

    2009-03-01

    The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDDelta, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDDelta caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting.

  8. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response.

    PubMed

    Son, Geon Hui; Wan, Jinrong; Kim, Hye Jin; Nguyen, Xuan Canh; Chung, Woo Sik; Hong, Jong Chan; Stacey, Gary

    2012-01-01

    Our recent work demonstrated that chitin treatment modulated the expression of 118 transcription factor (TF) genes in Arabidopsis. To investigate the potential roles of these TF in chitin signaling and plant defense, we initiated an interaction study among these TF proteins, as well as two chitin-activated mitogen-activated protein kinases (MPK3 and MPK6), using a yeast two-hybrid system. This study revealed interactions among the following proteins: three ethylene-responsive element-binding factors (ERF), five WRKY transcription factors, one scarecrow-like (SCL), and the two MPK, in addition to many other interactions, reflecting a complex TF interaction network. Most of these interactions were subsequently validated by other methods, such as pull-down and in planta bimolecular fluorescence complementation assays. The key node ERF5 was shown to interact with multiple proteins in the network, such as ERF6, ERF8, and SCL13, as well as MPK3 and MPK6. Interestingly, ERF5 appeared to negatively regulate chitin signaling and plant defense against the fungal pathogen Alternaria brassicicola and positively regulate salicylic acid signaling and plant defense against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Therefore, ERF5 may play an important role in plant innate immunity, likely through coordinating chitin and other defense pathways in plants in response to different pathogens.

  9. Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder

    NASA Astrophysics Data System (ADS)

    Zhang, Shanwen; Song, Yuntao; Lu, Kun; Wang, Zhongwei; Zhang, Jianfeng; Qin, Yongfa

    2017-04-01

    In Tokamaks, the toroidal field (TF) coil feeder is an important component that is used to supply the cryogens and electrical power for the TF coils. As a part of the TF feeder, the cryostat-feed through (CFT) is subject to low temperatures of 9 and 80 K inside and room temperature of 300 K outside. Based on the features of the International Thermonuclear Experimental Reactor TF feeder, the thermal performance of the CFT under the nominal conditions is studied. Taking into account the conductive, convective and radiation heat transfer, the finite element model of the CFT is built. Transient thermal analysis is performed to determine the temperatures of the CFT on the 9th day of cooldown. The model is assessed by comparing the cooling curves of the CFT after 9 days. If the simulation and experimental results are the same, the finite element model can be considered as calibrated. The model predicts that the cooling time will be approximately 26 days and the temperature distribution and heat load of the main components are obtained when the CFT reaches thermal equilibrium. This study provides a valid quantitative characterization of the CFT design.

  10. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.

    PubMed

    Jin, Jinpu; Tian, Feng; Yang, De-Chang; Meng, Yu-Qi; Kong, Lei; Luo, Jingchu; Gao, Ge

    2017-01-04

    With the goal of providing a comprehensive, high-quality resource for both plant transcription factors (TFs) and their regulatory interactions with target genes, we upgraded plant TF database PlantTFDB to version 4.0 (http://planttfdb.cbi.pku.edu.cn/). In the new version, we identified 320 370 TFs from 165 species, presenting a more comprehensive genomic TF repertoires of green plants. Besides updating the pre-existing abundant functional and evolutionary annotation for identified TFs, we generated three new types of annotation which provide more directly clues to investigate functional mechanisms underlying: (i) a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple types of regulatory elements identified from high-throughput sequencing data; (iii) regulatory interactions curated from literature and inferred by combining TF binding motifs and regulatory elements. In addition, we upgraded previous TF prediction server, and set up four novel tools for regulation prediction and functional enrichment analyses. Finally, we set up a novel companion portal PlantRegMap (http://plantregmap.cbi.pku.edu.cn) for users to access the regulation resource and analysis tools conveniently. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects.

    PubMed

    Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L

    2002-01-01

    A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.

  12. Treatment processes and demographic variables as predictors of dropout from trauma-focused cognitive behavioral therapy (TF-CBT) for youth.

    PubMed

    Yasinski, Carly; Hayes, Adele M; Alpert, Elizabeth; McCauley, Thomas; Ready, C Beth; Webb, Charles; Deblinger, Esther

    2018-05-22

    Premature dropout is a significant concern in trauma-focused psychotherapy for youth. Previous studies have primarily examined pre-treatment demographic and symptom-related predictors of dropout, but few consistent findings have been reported. The current study examined demographic, symptom, and in-session process variables as predictors of dropout from Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) for youth. Participants were a diverse sample of Medicaid-eligible youth (ages 7-17; n = 108) and their nonoffending caregivers (n = 86), who received TF-CBT through an effectiveness study in a community setting. In-session process variables were coded from audio-recorded sessions, and these and pre-treatment demographic variables and symptom levels were examined as predictors of dropout prior to receiving an adequate dose of TF-CBT (<7 sessions). Twenty-nine children were classified as dropouts and 79 as completers. Binary logistic regression analyses revealed that higher levels of child and caregiver avoidance expressed during early sessions, as well as greater relationship difficulties between the child and therapist, predicted dropout. Those children who were in foster care during treatment were less likely to drop out than children living with parents or relatives. No other demographic or symptom-related factors predicted dropout. These findings highlight the importance of addressing avoidance and therapeutic relationship difficulties in early sessions of TF-CBT to help reduce dropout, and they have implications for improving efforts to disseminate evidence-based trauma-focused treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis.

    PubMed

    Yang, Tongren; Hao, Lin; Yao, Sufei; Zhao, Yuanyuan; Lu, Wenjing; Xiao, Kai

    2016-07-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) comprise a large TF family and act as crucial regulators in various biological processes in plants. Here, we report the functional characterization of TabHLH1, a bHLH TF member in wheat (Triticum aestivum). TabHLH1 shares conserved bHLH domain and targets to nucleus with transactivation activity. Upon Pi and N deprivation, the expression of TabHLH1 was up-regulated in roots and leaves, showing a pattern to be gradually increased within 23-h treatment regimes. The lines with overexpression of TabHLH1 exhibited drastically improved tolerance to Pi and N deprivation, showing larger plant phenotype, more biomass, higher concentration and more accumulation of P and N than wild type (WT) upon the Pi- and N-starvation stresses. NtPT1 and NtNRT2.2, the genes encoding phosphate transporter (PT) and nitrate transporter (NRT) in tobacco, respectively, showed up-regulated expression in TabHLH1-overexpressing plants; knockdown expression of them led to deteriorated growth feature, lowered biomass, and decreased nutrient accumulation of plants under Pi- and N-deficient conditions. Compared with WT, the TabHLH1-overexpressing plants also showed lowered reactive oxygen species (ROS) accumulation and improved antioxidant enzyme (AE) activities, such as those of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). NtSOD1, NtCAT1, and NtPOD1;6 that encode SOD, CAT, and POD, respectively, were up-regulated in TabHLH1-overexpressing plants. Further knockdown of these AE gene expression caused reduced antioxidant enzymatic activities, indicative of their crucial roles in mediating cellular ROS homeostasis in Pi- and N-starvation conditions. Together, TabHLH1 plays an important role in mediating adaptation to the Pi- and N-starvation stresses through transcriptional regulation of a set of genes encoding PT, NRT and AEs that mediate the taken up of Pi and N and the cellular homeostasis of ROS initiated by the nutrient

  14. WISE TF: A MID-INFRARED, 3.4 {mu}m EXTENSION OF THE TULLY-FISHER RELATION USING WISE PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagattuta, David J.; Mould, Jeremy R.; Staveley-Smith, Lister

    2013-07-10

    We present a mid-infrared Tully-Fisher (TF) relation using photometry from the 3.4 {mu}m W1 band of the Wide-field Infrared Survey Explorer (WISE) satellite. The WISE TF relation is formed from 568 galaxies taken from the all-sky 2MASS Tully-Fisher (2MTF) galaxy catalog, spanning a range of environments including field, group, and cluster galaxies. This constitutes the largest mid-infrared TF relation constructed to date. After applying a number of corrections to galaxy magnitudes and line widths, we measure a master TF relation given by M{sub corr} = -22.24 - 10.05[log (W{sub corr}) - 2.5], with an average dispersion of {sigma}{sub WISE} =more » 0.686 mag. There is some tension between WISE TF and a preliminary 3.6 {mu}m relation, which has a shallower slope and almost no intrinsic dispersion. However, our results agree well with a more recent relation constructed from a large sample of cluster galaxies. We additionally compare WISE TF to the near-infrared 2MTF template relations, finding a good agreement between the TF parameters and total dispersions of WISE TF and the 2MTF K-band template. This fact, coupled with typical galaxy colors of (K - W1) {approx} 0, suggests that these two bands are tracing similar stellar populations, including the older, centrally-located stars in the galactic bulge which can (for galaxies with a prominent bulge) dominate the light profile.« less

  15. Small-Molecule Inhibitors of the SOX18 Transcription Factor.

    PubMed

    Fontaine, Frank; Overman, Jeroen; Moustaqil, Mehdi; Mamidyala, Sreeman; Salim, Angela; Narasimhan, Kamesh; Prokoph, Nina; Robertson, Avril A B; Lua, Linda; Alexandrov, Kirill; Koopman, Peter; Capon, Robert J; Sierecki, Emma; Gambin, Yann; Jauch, Ralf; Cooper, Matthew A; Zuegg, Johannes; Francois, Mathias

    2017-03-16

    Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Water-tunnel study results of a TF/A-18 and F/A-18 canopy flow visualization

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.; Fisher, David F.

    1990-01-01

    A water tunnel study examining the influence of canopy shape on canopy and leading edge extension flow patterns was initiated. The F/A-18 single-place canopy model and the TF/A-18 two place canopy model were the study subjects. Plan view and side view photographs showing the flow patterns created by injected colored dye are presented for 0 deg and 5 deg sideslip angles. Photographs taken at angle of attack and sideslip conditions correspond to test departure points found in flight test. Flight experience has shown that the TF/A-18 airplane departs in regions where the F/A-18 airplane is departure-resistant. The study results provide insight into the differences in flow patterns which may influence the resulting aerodynamics of the TF/A-18 and F/A-18 aircraft. It was found that at 0 deg sideslip, the TF/A-18 model has more downward flow on the sides of the canopy than the F/A-18 model. This could be indicative of flow from the leading edge extension (LEX) vortexes impinging on the sides of the wider TF/A-18 canopy. In addition, the TF/A-18 model has larger areas of asymmetric separated and unsteady flow on the LEXs and fuselage, possibly indicating a lateral and directional destabilizing effect at the conditions studied.

  17. Predicting the binding preference of transcription factors to individual DNA k-mers.

    PubMed

    Alleyne, Trevis M; Peña-Castillo, Lourdes; Badis, Gwenael; Talukder, Shaheynoor; Berger, Michael F; Gehrke, Andrew R; Philippakis, Anthony A; Bulyk, Martha L; Morris, Quaid D; Hughes, Timothy R

    2009-04-15

    Recognition of specific DNA sequences is a central mechanism by which transcription factors (TFs) control gene expression. Many TF-binding preferences, however, are unknown or poorly characterized, in part due to the difficulty associated with determining their specificity experimentally, and an incomplete understanding of the mechanisms governing sequence specificity. New techniques that estimate the affinity of TFs to all possible k-mers provide a new opportunity to study DNA-protein interaction mechanisms, and may facilitate inference of binding preferences for members of a given TF family when such information is available for other family members. We employed a new dataset consisting of the relative preferences of mouse homeodomains for all eight-base DNA sequences in order to ask how well we can predict the binding profiles of homeodomains when only their protein sequences are given. We evaluated a panel of standard statistical inference techniques, as well as variations of the protein features considered. Nearest neighbour among functionally important residues emerged among the most effective methods. Our results underscore the complexity of TF-DNA recognition, and suggest a rational approach for future analyses of TF families.

  18. BOREAS TF-9 SSA-OBS Branch Level Flux Data

    NASA Technical Reports Server (NTRS)

    Rayment, Mark B.; Jarvis, Paul G.; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOREAS TF-9 team collected data that describe carbon dioxide and water vapor fluxes from foliage at the BOREAS SSA-OBS site from 07-April through 23-November-1996. The data are available in tabular ASCII files.

  19. Determinants That Specify the Integration Pattern of Retrotransposon Tf1 in the fbp1 Promoter of Schizosaccharomyces pombe ▿ †

    PubMed Central

    Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Ripmaster, Tracy L.; Levin, Henry L.

    2011-01-01

    Long terminal repeat (LTR) retrotransposons are closely related to retroviruses and, as such, are important models for the study of viral integration and target site selection. The transposon Tf1 of Schizosaccharomyces pombe integrates with a strong preference for the promoters of polymerase II (Pol II)-transcribed genes. Previous work in vivo with plasmid-based targets revealed that the patterns of insertion were promoter specific and highly reproducible. To determine which features of promoters are recognized by Tf1, we studied integration in a promoter that has been characterized. The promoter of fbp1 has two upstream activating sequences, UAS1 and UAS2. We found that integration was targeted to two windows, one 180 nucleotides (nt) upstream and the other 30 to 40 nt downstream of UAS1. A series of deletions in the promoter showed that the integration activities of these two regions functioned autonomously. Integration assays of UAS2 and of a synthetic promoter demonstrated that strong promoter activity alone was not sufficient to direct integration. The factors that modulate the transcription activities of UAS1 and UAS2 include the activators Atf1p, Pcr1p, and Rst2p as well as the repressors Tup11p, Tup12p, and Pka1p. Strains lacking each of these proteins revealed that Atf1p alone mediated the sites of integration. These data indicate that Atf1p plays a direct and specific role in targeting integration in the promoter of fbp1. PMID:20980525

  20. BOREAS TF-1 SSA-OA Soil Characteristics Data

    NASA Technical Reports Server (NTRS)

    Black, T. Andrew; Chen, Z; Nesic, Z.; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TF-1 team collected several data sets in support of its efforts to characterize and interpret soil information at the SSA-OA tower site in 1994 as part of BOREAS. Data sets collected include soil respiration, temperature, moisture, and gravimetric data. The data are stored in tabular ASCII format.

  1. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.

    PubMed

    Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han

    2017-01-01

    Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The length of the linker between the epidermal growth factor-like domains in factor VIIa is critical for a productive interaction with tissue factor.

    PubMed

    Persson, Egon; Madsen, Jesper J; Olsen, Ole H

    2014-12-01

    Formation of the factor VIIa (FVIIa)-tissue factor (TF) complex triggers the blood coagulation cascade. Using a structure-based rationale, we investigated how the length of the linker region between the two epidermal growth factor (EGF)-like domains in FVIIa influences TF binding and the allosteric activity enhancement, as well as the interplay between the γ-carboxyglutamic acid (Gla)-containing and protease domains. Removal of two residues from the native linker was compatible with normal cofactor binding and accompanying stimulation of the enzymatic activity, as was extension by two (Gly-Ser) residues. In sharp contrast, truncation by three or four residues abolished the TF-mediated stabilization of the active conformation of FVIIa and abrogated TF-induced activity enhancement. In addition, FVIIa variants with short linkers associated 80-fold slower with soluble TF (sTF) as compared with wild-type FVIIa, resulting in a corresponding increase in the equilibrium dissociation constant. Molecular modeling suggested that the shortest FVIIa variants would have to be forced into a tense and energetically unfavorable conformation in order to be able to interact productively with TF, explaining our experimental observations. We also found a correlation between linker length and the residual intrinsic enzymatic activity of Ca(2+)-free FVIIa; stepwise truncation resulting in gradually higher activity with des(83-86)-FVIIa reaching the level of Gla-domainless FVIIa. The linker appears to determine the average distance between the negatively charged Gla domain and a structural element in the protease domain, presumably of opposite charge, and proximity has a negative impact on apo-FVIIa activity. © 2014 The Protein Society.

  3. Disruption of sex-hormone levels and steroidogenic-related gene expression on Mongolia Racerunner (Eremias argus) after exposure to triadimefon and its enantiomers.

    PubMed

    Li, Jitong; Chang, Jing; Li, Wei; Guo, Baoyuan; Li, Jianzhong; Wang, Huili

    2017-03-01

    Triadimefon (TF) is a widely used chiral fungicide with one chiral centre and two enantiomers (TF 1 and TF 2 ). However, little is reported about the ecological toxicity of reptiles on an enantioselective level. TF is a potential endocrine disruptor that may interfere with sex steroid hormones, such as testosterone (T) and 17beta-estradiol (E 2 ). In our study, the lizards Mongolia Racerunner (Eremias argus) were orally exposed to TF and its enantiomers for 21 days. Plasma sex steroid hormones and steroidogenic-related genes, including 17-beta-hydroxysteroid (hsd17β), cytochrome P450 enzymes (cyp19 and cyp17), and steroid hormone receptors (erα and Ar) were evaluated. After exposure, the plasma testosterone level in the 100 mg/kg bw group was elevated, while the oestradiol level was reduced. This phenomenon may be caused by the transformation of cyp19, which may inhibit the conversion of testosterone to oestradiol and affect sexual behaviour. In addition, the two enantiomers have different effects on hormone levels, which testified to the previously reported biotoxic dissimilarity between TF 1 and TF 2 in organisms. Furthermore, the cyp19 mRNA level in liver and gonad of the TF 2 and TF group (100 mg/kg bw ) were significantly down-regulated, while the cyp17 and hsd17β mRNA levels were up-regulated. The expression of erα and Ar mRNA levels were up-regulated in males but not in females, which may indicate that TF has sex differences on these two genes. As seen from the above results, TF and its enantiomers may have endocrine-disrupting effects on lizards (E. argus) by acting sensitively on sex steroid hormones and steroidogenic-related genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei.

    PubMed

    Salmon, D; Geuskens, M; Hanocq, F; Hanocq-Quertier, J; Nolan, D; Ruben, L; Pays, E

    1994-07-15

    In T. brucei, a transferrin-binding protein has been found to share sequence homology with pESAG-7 and -6, the products of two related genes present in the VSG gene polycistronic transcription unit. When expressed in Xenopus oocytes, they appear as N-glycosylated proteins secreted in the medium (pESAG-7) and GPI anchored to the membrane (pESAG-6). These proteins are able to homo- or heterodimerize, probably through association in the same orientation. Only heterodimers can bind Tf, possibly two molecules per dimer. A comparison of Tf binding to pESAG-7/6-expressing oocytes and trypanosomes suggests that pESAG-7/6 is the Tf receptor of the parasite. In trypanosomes, the majority of pESAG-7/6 is released from the membrane and associates, together with Tf, with a glycosylated matrix present in the lumen of the flagellar pocket. Both pESAG-7/6 and Tf are internalized via coated pits and vesicles. These observations suggest a novel mode of Tf binding and uptake in trypanosomes.

  5. The Chromodomain of Tf1 Integrase Promotes Binding to cDNA and Mediates Target Site Selection▿ †

    PubMed Central

    Chatterjee, Atreyi Ghatak; Leem, Young Eun; Kelly, Felice D.; Levin, Henry L.

    2009-01-01

    The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDΔ, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDΔ caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting. PMID:19109383

  6. Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF

    PubMed Central

    Cong, Yingnan; Chan, Yao-ban; Phillips, Charles A.; Langston, Michael A.; Ragan, Mark A.

    2017-01-01

    Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k. Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k. PMID:28154557

  7. Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF.

    PubMed

    Cong, Yingnan; Chan, Yao-Ban; Phillips, Charles A; Langston, Michael A; Ragan, Mark A

    2017-01-01

    Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k ) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k . Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k .

  8. The self primer of the long terminal repeat retrotransposon Tf1 is not removed during reverse transcription.

    PubMed

    Atwood-Moore, Angela; Yan, Kenneth; Judson, Robert L; Levin, Henry L

    2006-08-01

    The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5' end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer.

  9. In vitro evidence of a tissue factor-independent mode of action of recombinant factor VIIa in hemophilia.

    PubMed

    Augustsson, Cecilia; Persson, Egon

    2014-11-13

    Successful competition of activated factor VII (FVIIa) with zymogen factor VII (FVII) for tissue factor (TF) and loading of the platelet surface with FVIIa are plausible driving forces behind the pharmacological effect of recombinant FVIIa (rFVIIa) in hemophilia patients. Thrombin generation measurements in platelet-rich hemophilia A plasma revealed competition for TF, which potentially could reduce the effective (r)FVIIa:TF complex concentration and thereby attenuate factor Xa production. However, (auto)activation of FVII apparently counteracted the negative effect of zymogen binding; a small impact was observed at endogenous concentrations of FVII and FVIIa but was virtually absent at pharmacological amounts of rFVIIa. Moreover, corrections of the propagation phase in hemophilia A required rFVIIa concentrations above the range where a physiological level of FVII was capable to downregulate thrombin generation. These data strongly suggest that rFVIIa acts independently of TF in hemophilia therapy and that FVII displacement by rFVIIa is a negligible mechanistic component. © 2014 by The American Society of Hematology.

  10. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  11. A Method to Predict Compressor Stall in the TF34-100 Turbofan Engine Utilizing Real-Time Performance Data

    DTIC Science & Technology

    2015-06-01

    A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE...THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA THESIS Presented to the Faculty Department of Systems Engineering and...036 A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA Shuxiang ‘Albert’ Li, BS

  12. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  13. The Self Primer of the Long Terminal Repeat Retrotransposon Tf1 Is Not Removed during Reverse Transcription

    PubMed Central

    Atwood-Moore, Angela; Yan, Kenneth; Judson, Robert L.; Levin, Henry L.

    2006-01-01

    The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5′ end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer. PMID:16873283

  14. Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish

    PubMed Central

    Wang, Haifang; Du, Jiulin; Yan, Jun

    2013-01-01

    In the study of circadian rhythms, it has been a puzzle how a limited number of circadian clock genes can control diverse aspects of physiology. Here we investigate circadian gene expression genome-wide using larval zebrafish as a model system. We made use of a spatial gene expression atlas to investigate the expression of circadian genes in various tissues and cell types. Comparison of genome-wide circadian gene expression data between zebrafish and mouse revealed a nearly anti-phase relationship and allowed us to detect novel evolutionarily conserved circadian genes in vertebrates. We identified three groups of zebrafish genes with distinct responses to light entrainment: fast light-induced genes, slow light-induced genes, and dark-induced genes. Our computational analysis of the circadian gene regulatory network revealed several transcription factors (TFs) involved in diverse aspects of circadian physiology through transcriptional cascade. Of these, microphthalmia-associated transcription factor a (mitfa), a dark-induced TF, mediates a circadian rhythm of melanin synthesis, which may be involved in zebrafish's adaptation to daily light cycling. Our study describes a systematic method to discover previously unidentified TFs involved in circadian physiology in complex organisms. PMID:23468616

  15. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family.

    PubMed

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.

  16. Activated factor XI and tissue factor in aortic stenosis: Links with thrombin generation

    PubMed Central

    Luszczak, Joanna; Undas, Anetta; Gissel, Matthew; Olszowska, Maria; Butenas, Saulius

    2011-01-01

    Introduction In our previous studies we showed that a significant proportion of patients with various cardiovascular diseases have active tissue factor (TF) and factor (F)XIa in their plasma. Objective To evaluate these two proteins in plasma from patients with aortic stenosis (AS) and established their relationship with the severity of the disease. Methods Fifty-four consecutive patients with AS, including 38 (70.4%) severe AS patients, were studied. Plasma FXIa and TF activity were determined in clotting assays by measuring the response to inhibitory monoclonal antibodies. Results TF activity was detectible in plasma from 14 of 54 patients (25.9%), including 13 of 38 with severe AS (34.2%) and 1 of 16 (6.25%) with moderate AS (p=0.052). FXIa activity was found in 12 (22.2%) patients, mostly in individuals with severe AS (11 of 38, 28.9%, p=0.067). All 12 patients with circulating FXIa had active TF in their plasma as well. Severe AS patients with detectable TF had higher maximal (111±20 vs 97±16 mm Hg, p=0.02) and mean (61±12 vs 53±8 mm Hg, p=0.02) transvalvular gradient, compared with those without such activity in plasma. In severe AS patients with detectable active TF, prothrombin fragment 1.2, a thrombin generation marker, was higher than in patients without TF (375±122 vs. 207±64 pM, p<0.001). Conclusions Detectable FXIa and TF activity was observed for the first time in AS patients, primarily in severe ones. This activity correlates with thrombin generation in those patients. PMID:21519234

  17. Autism-like behavioral phenotypes in BTBR T+tf/J mice.

    PubMed

    McFarlane, H G; Kusek, G K; Yang, M; Phoenix, J L; Bolivar, V J; Crawley, J N

    2008-03-01

    Autism is a behaviorally defined neurodevelopmental disorder of unknown etiology. Mouse models with face validity to the core symptoms offer an experimental approach to test hypotheses about the causes of autism and translational tools to evaluate potential treatments. We discovered that the inbred mouse strain BTBR T+tf/J (BTBR) incorporates multiple behavioral phenotypes relevant to all three diagnostic symptoms of autism. BTBR displayed selectively reduced social approach, low reciprocal social interactions and impaired juvenile play, as compared with C57BL/6J (B6) controls. Impaired social transmission of food preference in BTBR suggests communication deficits. Repetitive behaviors appeared as high levels of self-grooming by juvenile and adult BTBR mice. Comprehensive analyses of procedural abilities confirmed that social recognition and olfactory abilities were normal in BTBR, with no evidence for high anxiety-like traits or motor impairments, supporting an interpretation of highly specific social deficits. Database comparisons between BTBR and B6 on 124 putative autism candidate genes showed several interesting single nucleotide polymorphisms (SNPs) in the BTBR genetic background, including a nonsynonymous coding region polymorphism in Kmo. The Kmo gene encodes kynurenine 3-hydroxylase, an enzyme-regulating metabolism of kynurenic acid, a glutamate antagonist with neuroprotective actions. Sequencing confirmed this coding SNP in Kmo, supporting further investigation into the contribution of this polymorphism to autism-like behavioral phenotypes. Robust and selective social deficits, repetitive self-grooming, genetic stability and commercial availability of the BTBR inbred strain encourage its use as a research tool to search for background genes relevant to the etiology of autism, and to explore therapeutics to treat the core symptoms.

  18. Expression of early growth response factor-1 in rats with cerulein-induced acute pancreatitis and its significance

    PubMed Central

    Gong, Lan-Bo; He, Li; Liu, Yang; Chen, Xue-Qing; Jiang, Bo

    2005-01-01

    AIM: To observe the expressions of early growth response factor-1 (Egr-1) and tissue factor (TF) in rats with cerulein-induced acute pancreatitis and to explore its significance. METHODS: A large dose of cerulein was used to create the experimental acute pancreatitis model in rats. The changes of Egr-1 mRNA and protein in rats were observed during 30 min to 4 h after the treatment and immunohistochemical method was used to observe the localized expression of Egr-1 in tissues. In addition to the mRNA expression of Egr-1 target gene, TF was also observed. A blank control group, and a bombesin-administered group were used for comparison. RESULTS: After the stimulation of a large dose of cerulein, the rats showed typical inflammatory changes of acute pancreatitis. Thirty minutes after the stimulation, the mRNA expression of Egr-1 in the pancreatic tissue reached its peak and then declined, while the expression of Egr-1 protein reached its peak 2 h after the stimulation. Histologically, 2 h after the stimulation, almost all pancreatic acinar cells had the expression of Egr-1 protein, which was focused in the nuclei. The mRNA expression of TF occurred 1 h after the stimulation and gradually increased within 4 h. However, a large dose of bombesin only stimulated the pancreatic tissue to produce a little mRNA expression of Egr-1 and no mRNA expression of Egr-1 protein and TF. CONCLUSION: Egr-1 as a pro-inflammatory transcription factor may play an important role in the pathogenesis of acute pancreatitis by modulating the expression of TF. PMID:16124058

  19. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription.

    PubMed

    Lin, J H; Levin, H L

    1997-01-15

    All retroviruses and LTR-containing retrotransposons are thought to require specific tRNA molecules to serve as primers of reverse transcription. An exception is the LTR-containing retrotransposon Tf1, isolated from Schizosaccharomyces pombe. Instead of requiring a tRNA, the reverse transcriptase of Tf1 uses the first 11 bases of the Tf1 transcript as the primer for reverse transcription. The primer is generated by a cleavage that occurs between bases 11 and 12 of the Tf1 mRNA. Sequence analysis of the 5' untranslated region of the Tf1 mRNA resulted in the identification of a region with the potential to form an RNA structure of 89 bases that included the primer binding site and the first 11 bases of the Tf1 mRNA. Systematic mutagenesis of this region revealed 34 single-point mutants in the structure that resulted in reduced transposition activity. The defects in transposition correlated with reduced level of Tf1 reverse transcripts as determined by DNA blot analysis. Evidence that the RNA structure did form in vivo included the result that strains with second site mutations that restored complementarity resulted in increased levels of reverse transcripts and Tf1 transposition. The majority of the mutants defective for reverse transcription were unable to cleave the Tf1 mRNA between bases 11 and 12. These data indicate that formation of an extensive RNA structure was required for the cleavage reaction that generated the primer for Tf1 reverse transcription.

  20. Photoaffinity labeling of the TF1-ATPase from the thermophilic bacterium PS3 with 3'-O-(4-benzoyl)benzoyl ADP.

    PubMed

    Bar-Zvi, D; Yoshida, M; Shavit, N

    1985-05-31

    3'-O-(4-Benzoyl)benzoyl ADP (BzADP) was used as a photoaffinity label for covalent binding of adenine nucleotide analogs to the nucleotide binding site(s) of the thermophilic bacterium PS3 ATPase (TF1). As with the CF1-ATPase (Bar-Zvi, D. and Shavit, N. (1984) Biochim. Biophys. Acta 765, 340-356) noncovalently bound BzADP is a reversible inhibitor of the TF1-ATPase. BzADP changes the kinetics of ATP hydrolysis from noncooperative to cooperative in the same way as ADP does, but, in contrast to the effect on the CF1-ATPase, it has no effect on the Vmax. In the absence of Mg2+ 1 mol BzADP binds noncovalently to TF1, while with Mg2+ 3 mol are bound. Photoactivation of BzADP results in the covalent binding of the analog to the nucleotide binding site(s) on TF1 and correlates with the inactivation of the ATPase. Complete inactivation of the TF1-ATPase occurs after covalent binding of 2 mol BzADP/mol TF1. Photoinactivation of TF1 by BzADP is prevented if excess of either ADP or ATP is present during irradiation. Analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the Bz[3H]ADP-labeled TF1-ATPase shows that all the radioactivity is incorporated into the beta subunit.

  1. A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles

    PubMed Central

    Stojnic, Robert; Fu, Audrey Qiuyan; Adryan, Boris

    2012-01-01

    Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM

  2. BOREAS TF-11 SSA-Fen 1996 Water Surface Film Capping Data

    NASA Technical Reports Server (NTRS)

    Billesbach, David P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. The data described in this document were made by the TF-11 team at the SSA-Fen site to quantify the effect that the films observed to form on open water surfaces had on the transfer of carbon dioxide and methane from the water to the air. Measurements of fluxes of carbon dioxide and methane were made in 1994 and in 1996 using the chamber flux method. A gas chromatograph and a LI-COR LI-6200 were used to measure concentrations and to calculate the fluxes. The data are stored in tabular ASCII files.

  3. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    PubMed

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes.

    PubMed

    Jacobs, Jelle; Atkins, Mardelle; Davie, Kristofer; Imrichova, Hana; Romanelli, Lucia; Christiaens, Valerie; Hulselmans, Gert; Potier, Delphine; Wouters, Jasper; Taskiran, Ibrahim I; Paciello, Giulia; González-Blas, Carmen B; Koldere, Duygu; Aibar, Sara; Halder, Georg; Aerts, Stein

    2018-06-04

    Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.

  5. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes

    PubMed Central

    Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B.

    2016-01-01

    Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5′→3′, 3′ →5′ or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically. Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm PMID:27515825

  6. The prokaryotic thermophilic TF1-ATPase is functionally compatible with the eukaryotic CFo-part of the chloroplast ATP-synthase.

    PubMed

    Galmiche, J M; Pezennec, S; Zhao, R; Girault, G; Baeuerlein, E

    1994-01-31

    The ATP synthase from chloroplasts, CFo.F1, was reconstituted into liposomes, from which most of CF1 was removed by a short treatment with guanidinium chloride. ATP-dependent proton uptake was restored with these CFo-liposomes even better by the addition of the bacterial TF1-than of the related CF1-part. This proton uptake was prevented by tentoxin, a specific inhibitor of the CF1-ATPase, in these CFo.F1-liposomes, but not in the hybrid CFo.TF1-liposomes. Venturicidin, a specific inhibitor of proton flow through CFo, was able to block it in both the hybrid CFo.TF1-liposomes and reconstituted CFo.F1-liposomes. These results indicate that the bacterial TF1-part binds to the eukaryotic CFo-part of four subunits forming a functional CFo.TF1-ATPase.

  7. PpTFDB: A pigeonpea transcription factor database for exploring functional genomics in legumes

    PubMed Central

    Singh, Akshay; Sharma, Ajay Kumar; Singh, Nagendra Kumar

    2017-01-01

    Pigeonpea (Cajanus cajan L.), a diploid legume crop, is a member of the tribe Phaseoleae. This tribe is descended from the millettioid (tropical) clade of the subfamily Papilionoideae, which includes many important legume crop species such as soybean (Glycine max), mung bean (Vigna radiata), cowpea (Vigna ungiculata), and common bean (Phaseolus vulgaris). It plays major role in food and nutritional security, being rich source of proteins, minerals and vitamins. We have developed a comprehensive Pigeonpea Transcription Factors Database (PpTFDB) that encompasses information about 1829 putative transcription factors (TFs) and their 55 TF families. PpTFDB provides a comprehensive information about each of the identified TFs that includes chromosomal location, protein physicochemical properties, sequence data, protein functional annotation, simple sequence repeats (SSRs) with primers derived from their motifs, orthology with related legume crops, and gene ontology (GO) assignment to respective TFs. (PpTFDB: http://14.139.229.199/PpTFDB/Home.aspx) is a freely available and user friendly web resource that facilitates users to retrieve the information of individual members of a TF family through a set of query interfaces including TF ID or protein functional annotation. In addition, users can also get the information by browsing interfaces, which include browsing by TF Categories and by, GO Categories. This PpTFDB will serve as a promising central resource for researchers as well as breeders who are working towards crop improvement of legume crops. PMID:28651001

  8. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    PubMed

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  9. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells.

    PubMed

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-12-15

    Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian cancer cells express fVII transcripts under normoxia and that this transcription is inducible under hypoxia. These findings led us to hypothesise that ovarian cancer cells are intrinsically associated with TF-fVIIa coagulation activity, which could result in thrombosis. In this study, we examined whether ectopically expressed fVII could cause thrombosis by means of immunohistochemistry, RT-PCR, western blotting and flow cytometry. Ectopic fVII expression occurs frequently in ovarian cancers, particularly in clear cell carcinoma. We further showed that ovarian cancer cells express TF-fVIIa on the cell surface under normoxia and that this procoagulant activity is enhanced by hypoxic stimuli. Moreover, we showed that ovarian cancer cells secrete microparticles (MPs) with TF-fVIIa activity. Production of this procoagulant secretion is enhanced under hypoxia. These results raise the possibility that cancer cell-derived TF-fVIIa could cause thrombotic events in ovarian cancer patients.

  10. A Transgenic Transcription Factor (TaDREB3) in Barley Affects the Expression of MicroRNAs and Other Small Non-Coding RNAs

    PubMed Central

    Hackenberg, Michael; Shi, Bu-Jun; Gustafson, Perry; Langridge, Peter

    2012-01-01

    Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley over-expressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log2| >1). Furthermore, TaDREB3-derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley. PMID:22870277

  11. Imaging dynamic and selective low-complexity domain interactions that control gene transcription.

    PubMed

    Chong, Shasha; Dugast-Darzacq, Claire; Liu, Zhe; Dong, Peng; Dailey, Gina M; Cattoglio, Claudia; Heckert, Alec; Banala, Sambashiva; Lavis, Luke; Darzacq, Xavier; Tjian, Robert

    2018-06-21

    Many eukaryotic transcription factors (TFs) contain intrinsically disordered low-complexity domains (LCDs), but how they drive transactivation remains unclear. Here, live-cell single-molecule imaging reveals that TF-LCDs form local high-concentration interaction hubs at synthetic and endogenous genomic loci. TF-LCD hubs stabilize DNA binding, recruit RNA polymerase II (Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic, display selectivity with binding partners, and are differentially sensitive to disruption by hexanediols. Under physiological conditions, rapid and reversible LCD-LCD interactions occur between TFs and the Pol II machinery without detectable phase separation. Our findings reveal fundamental mechanisms underpinning transcriptional control and suggest a framework for developing single-molecule imaging screens for novel drugs targeting gene regulatory interactions implicated in disease. Copyright © 2018, American Association for the Advancement of Science.

  12. Qualitative and Quantitative Assays of Transposition and Homologous Recombination of the Retrotransposon Tf1 in Schizosaccharomyces pombe.

    PubMed

    Sangesland, Maya; Atwood-Moore, Angela; Rai, Sudhir K; Levin, Henry L

    2016-01-01

    Transposition and homologous recombination assays are valuable genetic tools to measure the production and integration of cDNA from the long terminal repeat (LTR) retrotransposon Tf1 in the fission yeast (Schizosaccharomyces pombe). Here we describe two genetic assays, one that measures the transposition activity of Tf1 by monitoring the mobility of a drug resistance marked Tf1 element expressed from a multi-copy plasmid and another assay that measures homologous recombination between Tf1 cDNA and the expression plasmid. While the transposition assay measures insertion of full-length Tf1 cDNA mediated by the transposon integrase, the homologous recombination assay measures levels of cDNA present in the nucleus and is independent of integrase activity. Combined, these assays can be used to systematically screen large collections of strains to identify mutations that specifically inhibit the integration step in the retroelement life cycle. Such mutations can be identified because they reduce transposition activity but nevertheless have wild-type frequencies of homologous recombination. Qualitative assays of yeast patches on agar plates detect large defects in integration and recombination, while the quantitative approach provides a precise method of determining integration and recombination frequencies.

  13. A gene expression signature that correlates with CD8+T cell expansion in acute Epstein Barr virus infection1

    PubMed Central

    Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.

    2015-01-01

    Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268

  14. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines.

    PubMed

    Witter, Lauren E; Gruber, Erika J; Lean, Fabian Z X; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor-replete or specific coagulation factor-deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X-deficient plasma; residual thrombin generation in factor VII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma.

  15. BOREAS TF-5 SSA-OJP Tower Flux and Meteorological Data

    NASA Technical Reports Server (NTRS)

    Baldocchi, Dennis; Vogel, Christoph; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-5) team collected tower flux data at the BOREAS Southern Study Area Old Jack Pine (SSA-OJP) site through the growing season of 1994. The data are available in tabular ASCII files.

  16. Estimation of Theaflavins (TF) and Thearubigins (TR) Ratio in Black Tea Liquor Using Electronic Vision System

    NASA Astrophysics Data System (ADS)

    Akuli, Amitava; Pal, Abhra; Ghosh, Arunangshu; Bhattacharyya, Nabarun; Bandhopadhyya, Rajib; Tamuly, Pradip; Gogoi, Nagen

    2011-09-01

    Quality of black tea is generally assessed using organoleptic tests by professional tea tasters. They determine the quality of black tea based on its appearance (in dry condition and during liquor formation), aroma and taste. Variation in the above parameters is actually contributed by a number of chemical compounds like, Theaflavins (TF), Thearubigins (TR), Caffeine, Linalool, Geraniol etc. Among the above, TF and TR are the most important chemical compounds, which actually contribute to the formation of taste, colour and brightness in tea liquor. Estimation of TF and TR in black tea is generally done using a spectrophotometer instrument. But, the analysis technique undergoes a rigorous and time consuming effort for sample preparation; also the operation of costly spectrophotometer requires expert manpower. To overcome above problems an Electronic Vision System based on digital image processing technique has been developed. The system is faster, low cost, repeatable and can estimate the amount of TF and TR ratio for black tea liquor with accuracy. The data analysis is done using Principal Component Analysis (PCA), Multiple Linear Regression (MLR) and Multiple Discriminate Analysis (MDA). A correlation has been established between colour of tea liquor images and TF, TR ratio. This paper describes the newly developed E-Vision system, experimental methods, data analysis algorithms and finally, the performance of the E-Vision System as compared to the results of traditional spectrophotometer.

  17. Operational experience with the supercritical helium during the TF coils tests campaign of SST-1

    NASA Astrophysics Data System (ADS)

    Panchal, Rohitkumar Natvarlal; Patel, Rakesh; Tank, Jignesh; Mahesuria, Gaurang; Sonara, Dashrath; Tanna, Vipul; Patel, Jayant; Srikanth, G. L. N.; Singh, Manoj; Patel, Ketan; Christian, Dikens; Garg, Atul; Bairagi, Nitn; Gupta, Manoj Kumar; Nimavat, Hiren; Shah, Pankil; Sharma, Rajiv; Pradhan, Subrata

    2012-06-01

    Under the 'SST-1 mission mandate' recently, all the sixteen Steady State Superconducting Tokamak (SST-1) Toroidal Field (TF) magnets have been successfully tested at their nominal currents of 10000 A in cold under supercritical helium (SHe) flow conditions. The TF magnets test campaign have begun in an experimental cryostat since June 2010 with the SST-1 Helium cryogenics facility, which is a 1.3 kW at 4.5 K helium refrigerator-cum-liquefier (HRL) system. The HRL provides ~300 g-s-1supercritical helium (SHe) with cold circulator (CC) as well as ~ 60 g-s-1 without cold circulator to fulfill the forced flow cooling requirements of SST- 1 magnets. In case of single TF coil tests, we can adjust HRL process parameters such that an adequate amount of required supercritical helium is available without the cold circulator. In this paper, the complete process is describing the Process Flow Diagram (PFD) of 1.3 kW at 4.5 K HRL, techniques to generate supercritical helium without using the cold-circulator and the results of the cooldown, steady state characteristics and experience of supercritical helium operations during the TF coils test campaign have been discussed.

  18. Tissue factor expression by endothelial cells in sickle cell anemia.

    PubMed

    Solovey, A; Gui, L; Key, N S; Hebbel, R P

    1998-05-01

    The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that sickle CEC abnormally express TF antigen (expressed as percent CEC that are TF-positive), with 66+/-13% positive in sickle patients in steady-state, 83+/-19% positive in sickle patients presenting with acute vasoocclusive episodes, and only 10+/-13% positive in normal controls. Repeated samplings confirmed this impression that TF expression is greater when sickle patients develop acute vasoocclusive episodes. Sickle CEC are also positive for TF mRNA, with excellent concurrence between antigen and mRNA expression. The TF expressed on the antigen-positive CEC is functional, as demonstrated by a binding assay for Factor VIIa and a chromogenic assay sensitive to generation of Factor Xa. By establishing that endothelial cells in vivo can express TF, these data imply that the vast endothelial surface area does provide an important pathophysiologic trigger for coagulation activation.

  19. Detection of von Willebrand factor and tissue factor in platelets-fibrin rich coronary thrombi in acute myocardial infarction.

    PubMed

    Yamashita, Atsushi; Sumi, Takahiro; Goto, Shinya; Hoshiba, Yasunari; Nishihira, Kensaku; Kawamoto, Riichirou; Hatakeyama, Kinta; Date, Haruhiko; Imamura, Takuroh; Ogawa, Hisao; Asada, Yujiro

    2006-01-01

    The rapid closure of coronary arteries due to occlusive thrombi is the major cause of acute myocardial infarction. However, the mechanisms of coronary thrombus formation have not been elucidated. We immunohistochemically assessed the localizations and their changes over time of glycoprotein IIb/IIIa, fibrin, von Willebrand factor (vWF), and tissue factor (TF), after the onset of chest pain (<4, 4 to 6, or 6 to 12 hours), in fresh coronary thrombi causing acute myocardial infarction. The occlusive thrombi were consistently composed of platelets, fibrin, vWF, and TF from the early phase of onset, and glycoprotein IIb/IIIa and fibrin were closely associated with vWF and TF, respectively. vWF and/or TF may contribute to occlusive thrombus formation and be novel therapeutic candidates for treating patients with coronary thrombosis.

  20. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors

    PubMed Central

    Jin, Jinpu; Zhang, He; Kong, Lei; Gao, Ge; Luo, Jingchu

    2014-01-01

    With the aim to provide a resource for functional and evolutionary study of plant transcription factors (TFs), we updated the plant TF database PlantTFDB to version 3.0 (http://planttfdb.cbi.pku.edu.cn). After refining the TF classification pipeline, we systematically identified 129 288 TFs from 83 species, of which 67 species have genome sequences, covering main lineages of green plants. Besides the abundant annotation provided in the previous version, we generated more annotations for identified TFs, including expression, regulation, interaction, conserved elements, phenotype information, expert-curated descriptions derived from UniProt, TAIR and NCBI GeneRIF, as well as references to provide clues for functional studies of TFs. To help identify evolutionary relationship among identified TFs, we assigned 69 450 TFs into 3924 orthologous groups, and constructed 9217 phylogenetic trees for TFs within the same families or same orthologous groups, respectively. In addition, we set up a TF prediction server in this version for users to identify TFs from their own sequences. PMID:24174544

  1. Asymmetry of the three catalytic sites on beta subunits of TF1 from a thermophilic Bacillus strain PS3.

    PubMed

    Hisabori, T; Kobayashi, H; Kaibara, C; Yoshida, M

    1994-03-01

    F1-ATPase isolated from plasma membrane of a thermophilic Bacillus strain PS3 (TF1) has very little or no endogenously bound adenine nucleotides. However, it can bind one ADP per mol of the enzyme on one of three beta subunits to form a stable TF1.ADP complex when incubated with a high concentration of ADP [Yoshida, M. & Allison, W.S. (1986) J. Biol. Chem. 261, 5714-5721]. The same TF1.ADP complex was recovered after filling all ADP binding sites with [3H]ADP and repeated gel filtration. Direct binding assay revealed that the TF1.ADP complex had lost the highest affinity site for TNP-ADP. When a substoichiometric amount of TNP-ATP was added, the complex hydrolyzed TNP-ATP slowly (single site hydrolysis), like native TF1. However, this hydrolysis was not promoted by chase-addition of excess ATP. The optimal pH of the ATPase activity of TF1 or the TF1.ADP complex measured with a short reaction period, 6.5, was lower than the reported value, 9.0, under the steady-state condition. Although the bound ADP was released from the complex only when the enzyme underwent multiple catalytic turnover, the rate of this release was much slower than the turnover. These results suggest that when one ADP binds to a site on one of the beta subunits and stays there for a long time, the enzyme will change form and the bound ADP will become a special species which is not able to be directly involved in the enzyme catalysis. This binding site for ADP appears to be the first site responsible for the single-site catalysis reaction observed for native TF1.

  2. Quantitative PET Imaging of Tissue Factor Expression Using 18F-Labeled Active Site-Inhibited Factor VII.

    PubMed

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E; Jensen, Mette M; Kristensen, Lotte K; Madsen, Jacob; Petersen, Lars C; Kjaer, Andreas

    2016-01-01

    Tissue factor (TF) is upregulated in many solid tumors, and its expression is linked to tumor angiogenesis, invasion, metastasis, and prognosis. A noninvasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII is the natural ligand to TF. Here we report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of factor VII. Active site-inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4-(18)F-fluorobenzoate and purified. The corresponding product, (18)F-FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small-animal PET/CT imaging 1, 2, and 4 h after injection. Ex vivo biodistribution was performed after the last imaging session, and tumor tissue was preserved for molecular analysis. A blocking experiment was performed in a second set of mice. The expression pattern of TF in the tumors was visualized by immunohistochemistry and the amount of TF in tumor homogenates was measured by enzyme-linked immunosorbent assay and correlated with the uptake of (18)F-FVIIai in the tumors measured in vivo by PET imaging. The PET images showed high uptake of (18)F-FVIIai in the tumor regions, with a mean uptake of 2.5 ± 0.3 percentage injected dose per gram (%ID/g) (mean ± SEM) 4 h after injection of 7.3-9.3 MBq of (18)F-FVIIai and with an average maximum uptake in the tumors of 7.1 ± 0.7 %ID/g at 4 h. In comparison, the muscle uptake was 0.2 ± 0.01 %ID/g at 4 h. At 4 h, the tumors had the highest uptake of any organ. Blocking with FVIIai significantly reduced the uptake of (18)F-FVIIai from 2.9 ± 0.1 to 1.4 ± 0.1 %ID/g (P < 0.001). The uptake of (18)F-FVIIai measured in vivo by PET imaging correlated (r = 0.72, P < 0.02) with TF protein level measured ex vivo. (18)F-FVIIai is a promising PET tracer for

  3. Recursive random forest algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways.

    PubMed

    Deng, Wenping; Zhang, Kui; Busov, Victor; Wei, Hairong

    2017-01-01

    Present knowledge indicates a multilayered hierarchical gene regulatory network (ML-hGRN) often operates above a biological pathway. Although the ML-hGRN is very important for understanding how a pathway is regulated, there is almost no computational algorithm for directly constructing ML-hGRNs. A backward elimination random forest (BWERF) algorithm was developed for constructing the ML-hGRN operating above a biological pathway. For each pathway gene, the BWERF used a random forest model to calculate the importance values of all transcription factors (TFs) to this pathway gene recursively with a portion (e.g. 1/10) of least important TFs being excluded in each round of modeling, during which, the importance values of all TFs to the pathway gene were updated and ranked until only one TF was remained in the list. The above procedure, termed BWERF. After that, the importance values of a TF to all pathway genes were aggregated and fitted to a Gaussian mixture model to determine the TF retention for the regulatory layer immediately above the pathway layer. The acquired TFs at the secondary layer were then set to be the new bottom layer to infer the next upper layer, and this process was repeated until a ML-hGRN with the expected layers was obtained. BWERF improved the accuracy for constructing ML-hGRNs because it used backward elimination to exclude the noise genes, and aggregated the individual importance values for determining the TFs retention. We validated the BWERF by using it for constructing ML-hGRNs operating above mouse pluripotency maintenance pathway and Arabidopsis lignocellulosic pathway. Compared to GENIE3, BWERF showed an improvement in recognizing authentic TFs regulating a pathway. Compared to the bottom-up Gaussian graphical model algorithm we developed for constructing ML-hGRNs, the BWERF can construct ML-hGRNs with significantly reduced edges that enable biologists to choose the implicit edges for experimental validation.

  4. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  5. COPS: Detecting Co-Occurrence and Spatial Arrangement of Transcription Factor Binding Motifs in Genome-Wide Datasets

    PubMed Central

    Lohmann, Ingrid

    2012-01-01

    In multi-cellular organisms, spatiotemporal activity of cis-regulatory DNA elements depends on their occupancy by different transcription factors (TFs). In recent years, genome-wide ChIP-on-Chip, ChIP-Seq and DamID assays have been extensively used to unravel the combinatorial interaction of TFs with cis-regulatory modules (CRMs) in the genome. Even though genome-wide binding profiles are increasingly becoming available for different TFs, single TF binding profiles are in most cases not sufficient for dissecting complex regulatory networks. Thus, potent computational tools detecting statistically significant and biologically relevant TF-motif co-occurrences in genome-wide datasets are essential for analyzing context-dependent transcriptional regulation. We have developed COPS (Co-Occurrence Pattern Search), a new bioinformatics tool based on a combination of association rules and Markov chain models, which detects co-occurring TF binding sites (BSs) on genomic regions of interest. COPS scans DNA sequences for frequent motif patterns using a Frequent-Pattern tree based data mining approach, which allows efficient performance of the software with respect to both data structure and implementation speed, in particular when mining large datasets. Since transcriptional gene regulation very often relies on the formation of regulatory protein complexes mediated by closely adjoining TF binding sites on CRMs, COPS additionally detects preferred short distance between co-occurring TF motifs. The performance of our software with respect to biological significance was evaluated using three published datasets containing genomic regions that are independently bound by several TFs involved in a defined biological process. In sum, COPS is a fast, efficient and user-friendly tool mining statistically and biologically significant TFBS co-occurrences and therefore allows the identification of TFs that combinatorially regulate gene expression. PMID:23272209

  6. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction

    PubMed Central

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K.; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C.; Merk, Denis R.; Lyons, Jennifer K.; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N.; Ray, Pritha; Patel, Manishkumar; Chang, Ya-fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C.; Dash, Rajesh; Yang, Phillip C.; Brinton, Todd J.; Yock, Paul G.; McConnell, Michael V.

    2016-01-01

    Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow–derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. © RSNA, 2016 Online supplemental material is available for this article. PMID:27308957

  7. Molecular mechanism and structure of Trigger Factor bound to the translating ribosome

    PubMed Central

    Merz, Frieder; Boehringer, Daniel; Schaffitzel, Christiane; Preissler, Steffen; Hoffmann, Anja; Maier, Timm; Rutkowska, Anna; Lozza, Jasmin; Ban, Nenad; Bukau, Bernd; Deuerling, Elke

    2008-01-01

    Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome–nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors. PMID:18497744

  8. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    PubMed Central

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  9. A stele-enriched gene regulatory network in the Arabidopsis root

    PubMed Central

    Brady, Siobhan M; Zhang, Lifang; Megraw, Molly; Martinez, Natalia J; Jiang, Eric; Yi, Charles S; Liu, Weilin; Zeng, Anna; Taylor-Teeples, Mallorie; Kim, Dahae; Ahnert, Sebastian; Ohler, Uwe; Ware, Doreen; Walhout, Albertha J M; Benfey, Philip N

    2011-01-01

    Tightly controlled gene expression is a hallmark of multicellular development and is accomplished by transcription factors (TFs) and microRNAs (miRNAs). Although many studies have focused on identifying downstream targets of these molecules, less is known about the factors that regulate their differential expression. We used data from high spatial resolution gene expression experiments and yeast one-hybrid (Y1H) and two-hybrid (Y2H) assays to delineate a subset of interactions occurring within a gene regulatory network (GRN) that determines tissue-specific TF and miRNA expression in plants. We find that upstream TFs are expressed in more diverse cell types than their targets and that promoters that are bound by a relatively large number of TFs correspond to key developmental regulators. The regulatory consequence of many TFs for their target was experimentally determined using genetic analysis. Remarkably, molecular phenotypes were identified for 65% of the TFs, but morphological phenotypes were associated with only 16%. This indicates that the GRN is robust, and that gene expression changes may be canalized or buffered. PMID:21245844

  10. Identification of genes associated with renal cell carcinoma using gene expression profiling analysis.

    PubMed

    Yao, Ting; Wang, Qinfu; Zhang, Wenyong; Bian, Aihong; Zhang, Jinping

    2016-07-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and accounts for ~80% of all kidney cancer cases. However, the pathogenesis of RCC has not yet been fully elucidated. To interpret the pathogenesis of RCC at the molecular level, gene expression data and bio-informatics methods were used to identify RCC associated genes. Gene expression data was downloaded from Gene Expression Omnibus (GEO) database and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in RCC patients compared with controls. In addition, a regulatory network was constructed using the known regulatory data between transcription factors (TFs) and target genes in the University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) and the regulatory impact factor of each TF was calculated. A total of 258,0427 pairs of DCGs were identified. The regulatory network contained 1,525 pairs of regulatory associations between 126 TFs and 1,259 target genes and these genes were mainly enriched in cancer pathways, ErbB and MAPK. In the regulatory network, the 10 most strongly associated TFs were FOXC1, GATA3, ESR1, FOXL1, PATZ1, MYB, STAT5A, EGR2, EGR3 and PELP1. GATA3, ERG and MYB serve important roles in RCC while FOXC1, ESR1, FOXL1, PATZ1, STAT5A and PELP1 may be potential genes associated with RCC. In conclusion, the present study constructed a regulatory network and screened out several TFs that may be used as molecular biomarkers of RCC. However, future studies are needed to confirm the findings of the present study.

  11. Identification of genes associated with renal cell carcinoma using gene expression profiling analysis

    PubMed Central

    YAO, TING; WANG, QINFU; ZHANG, WENYONG; BIAN, AIHONG; ZHANG, JINPING

    2016-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and accounts for ~80% of all kidney cancer cases. However, the pathogenesis of RCC has not yet been fully elucidated. To interpret the pathogenesis of RCC at the molecular level, gene expression data and bio-informatics methods were used to identify RCC associated genes. Gene expression data was downloaded from Gene Expression Omnibus (GEO) database and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in RCC patients compared with controls. In addition, a regulatory network was constructed using the known regulatory data between transcription factors (TFs) and target genes in the University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) and the regulatory impact factor of each TF was calculated. A total of 258,0427 pairs of DCGs were identified. The regulatory network contained 1,525 pairs of regulatory associations between 126 TFs and 1,259 target genes and these genes were mainly enriched in cancer pathways, ErbB and MAPK. In the regulatory network, the 10 most strongly associated TFs were FOXC1, GATA3, ESR1, FOXL1, PATZ1, MYB, STAT5A, EGR2, EGR3 and PELP1. GATA3, ERG and MYB serve important roles in RCC while FOXC1, ESR1, FOXL1, PATZ1, STAT5A and PELP1 may be potential genes associated with RCC. In conclusion, the present study constructed a regulatory network and screened out several TFs that may be used as molecular biomarkers of RCC. However, future studies are needed to confirm the findings of the present study. PMID:27347102

  12. Research on aviation unsafe incidents classification with improved TF-IDF algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yanhua; Zhang, Zhiyuan; Huo, Weigang

    2016-05-01

    The text content of Aviation Safety Confidential Reports contains a large number of valuable information. Term frequency-inverse document frequency algorithm is commonly used in text analysis, but it does not take into account the sequential relationship of the words in the text and its role in semantic expression. According to the seven category labels of civil aviation unsafe incidents, aiming at solving the problems of TF-IDF algorithm, this paper improved TF-IDF algorithm based on co-occurrence network; established feature words extraction and words sequential relations for classified incidents. Aviation domain lexicon was used to improve the accuracy rate of classification. Feature words network model was designed for multi-documents unsafe incidents classification, and it was used in the experiment. Finally, the classification accuracy of improved algorithm was verified by the experiments.

  13. Transfer factor - hypotheses for its structure and function.

    PubMed

    Shifrine, M; Scibienski, R

    1975-01-01

    Transfer factor (TF) is a dialyzable extract from primed lymphocytes that is able to transfer specific delayed hypersensitivity from one animal to another. On the basis of available data we suggest that TF is a polypeptide with a molecular weight below 15,000 daltons. We hypothesize that TF is the variable light or heavy chain domain of immunoglobulin: such a molecule conforms with the accepted properties of TF and also has the necessary specificity requirements. We also hypothesize that TF is part of a receptor site. beta-2-microglobulin, a molecule that is an integral part of cell surfaces, could be the anchor for TF. beta-2-microglobulin has homologies with the constant portion of immunoglobulin light or heavy chain and thus would combine with the variable domain (TF) to form a complete receptor site for a specific antigen. The properties of TF suggest its mode of action, which is discussed in detail in the text. The biologic advantages of TF is its ability to confer immediate (immunologie specific) protection while the 'normal' immune response develops.

  14. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana

    2008-02-20

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defectivemore » clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication.« less

  15. The clinical value of tissue factor assays.

    PubMed

    Francis, J L; Carvalho, M; Francis, D A

    1995-06-01

    Tissue factor (TF) is now considered to be the primary physiologic activator of the blood coagulation system. Coupled with recent advances in our understanding of the biochemistry of TF this has heightened interest in measuring aspects of TF activity in disease states. Expression of TF by blood monocytes in various diseases is an established trigger for intravascular coagulation and there is now a considerable body of experience with its measurement. This has considerable clinical potential although more widespread application awaits a consensus on the most appropriate methodologic approach to its measurement. TF can be detected in urine and may reflect the activation state of renal macrophages. Urinary TF is increased in cancer and could have diagnostic and prognostic value in a variety of malignant diseases. Finally, it is now possible to measure soluble TF in plasma. One such assay is commercially available and is technically simple to perform. The clinical value of such assays, however, must await better understanding of the source and function of soluble TF in plasma.

  16. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer

    PubMed Central

    Uno, K; Homma, S; Satoh, T; Nakanishi, K; Abe, D; Matsumoto, K; Oki, A; Tsunoda, H; Yamaguchi, I; Nagasawa, T; Yoshikawa, H; Aonuma, K

    2007-01-01

    Ovarian cancer, and clear cell carcinoma in particular, reportedly increases the risk of venous thromboembolism (VTE). However, the mechanisms remain unclear. Tissue factor (TF) supposedly represents a major factor in the procoagulant activities of cancer cells. The present study examined the involvement of TF expression in VTE for patients with ovarian cancer. Subjects comprised 32 consecutive patients (mean age 49.8 years) with histologically confirmed ovarian cancer. Presence of VTE was examined using a combination of clinical features, D-dimer levels and venous ultrasonography. Immunohistochemical analysis was used to evaluate TF expression into 4 degrees. Venous thromboembolism was identified in 10 of the 32 patients (31%), including five of the 11 patients with clear cell carcinoma. Tissue factor expression was detected in cancer tissues from 24 patients and displayed significant correlations with VTE development (P=0.0003), D-dimer concentration (P=0.003) and clear cell carcinoma (P<0.05). Multivariate analysis identified TF expression as an independent predictive factor of VTE development (P<0.05). Tissue factor (TF) expression is a possible determinant of VTE development in ovarian cancer. In particular, clear cell carcinoma may produce excessive levels of TF and is more likely to develop VTE. PMID:17211468

  17. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII.

    PubMed

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K; Jensen, Mette M; El Ali, Henrik H; Madsen, Jacob; Wiinberg, Bo; Petersen, Lars C; Kjaer, Andreas

    2016-07-01

    Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF. The purpose of this study was to investigate the possibility of using active site-inhibited FVII (FVIIai) labeled with (64)Cu for PET imaging of TF expression. FVIIai was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (64)Cu ((64)Cu-NOTA-FVIIai). Longitudinal in vivo PET imaging was performed at 1, 4, 15, and 36 h after injection of (64)Cu-NOTA-FVIIai in mice with pancreatic adenocarcinomas (BxPC-3). The specificity of TF imaging with (64)Cu-NOTA-FVIIai was investigated in subcutaneous pancreatic tumor models with different levels of TF expression and in a competition experiment. In addition, imaging of orthotopic pancreatic tumors was performed using (64)Cu-NOTA-FVIIai and PET/MRI. In vivo imaging data were supported by ex vivo biodistribution, flow cytometry, and immunohistochemistry. Longitudinal PET imaging with (64)Cu-NOTA-FVIIai showed a tumor uptake of 2.3 ± 0.2, 3.7 ± 0.3, 3.4 ± 0.3, and 2.4 ± 0.3 percentage injected dose per gram at 1, 4, 15, and 36 h after injection, respectively. An increase in tumor-to-normal-tissue contrast was observed over the imaging time course. Competition with unlabeled FVIIai significantly (P < 0.001) reduced the tumor uptake. The tumor uptake observed in models with different TF expression levels was significantly different from each other (P < 0.001) and was in agreement with

  18. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.).

    PubMed

    Gahlaut, Vijay; Jaiswal, Vandana; Kumar, Anuj; Gupta, Pushpendra Kumar

    2016-11-01

    TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.

  19. Analysis of differentially co-expressed genes based on microarray data of hepatocellular carcinoma.

    PubMed

    Wang, Y; Jiang, T; Li, Z; Lu, L; Zhang, R; Zhang, D; Wang, X; Tan, J

    2017-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer related death worldwide. Although great progress in diagnosis and management of HCC have been made, the exact molecular mechanisms remain poorly understood. The study aims to identify potential biomarkers for HCC progression, mainly at transcription level. In this study, chip data GSE 29721 was utilized, which contains 10 HCC samples and 10 normal adjacent tissue samples. Differentially expressed genes (DEGs) between two sample types were selected by t-test method. Following, the differentially co-expressed genes (DCGs) and differentially co-expressed Links (DCLs) were identified by DCGL package in R with the threshold of q < 0.25. Afterwards, pathway enrichment analysis of the DCGs was carried out by DAVID. Then, DCLs were mapped to TRANSFAC database to reveal associations between relevant transcriptional factors (TFs) and their target genes. Quantitative real-time RT-PCR was performed for TFs or genes of interest. As a result, a total of 388 DCGs and 35,771 DCLs were obtained. The predominant pathways enriched by these genes were Cytokine-cytokine receptor interaction, ECM-receptor interaction and TGF-β signaling pathway. Three TF-target interactions, LEF1-NCAM1, EGR1-FN1 and FOS-MT2A were predicted. Compared with control, expressions of the TF genes EGR1, FOS and ETS2 were all up-regulated in the HCC cell line, HepG2; while LEF1 was down-regulated. Except NCAM1, all the target genes were up-regulated in HepG2. Our findings suggest these TFs and genes might play important roles in the pathogenesis of HCC and may be used as therapeutic targets for HCC management.

  20. Comparative Evaluation of Tubex TF (Inhibition Magnetic Binding Immunoassay) for Typhoid Fever in Endemic Area.

    PubMed

    Khanna, Ashish; Khanna, Menka; Gill, Karamjit Singh

    2015-11-01

    Typhoid fever remains a significant health problem in endemic countries like India. Various serological tests for the diagnosis of typhoid fever are available commercially. We assessed the usefulness of rapid test based on magnetic particle separation to detect Immunoglobulin against Salmonella typhi O9 lipopolysaccharide. Aim of this study was to compare the sensitivity and specificity of widal test, typhidot and tubex TF test for the diagnosis of typhoid fever in an endemic country like India. Serum samples collected from 50 patients of typhoid fever, 50 patients of non typhoid fever and 100 normal healthy individuals residing in Amritsar were subjected to widal test, typhidot test and tubex TF test as per manufacturer's instructions. Data collected was assessed to find sensitivity and specificity of these tests in an endemic area. Significant widal test results were found positive in 68% of patients of typhoid fever and only 4% of non typhoid fever patients. Typhidot (IgM or IgG) was positive in 72% of typhoid fever patients and 10% and 6% in non typhoid fever and normal healthy individuals respectively. Tubex TF showed higher sensitivity of 76% and specificity of 96-99% which was higher than typhidot and comparable to widal test. This was the first evaluation of rapid tubex TF test in northern India. In countries which can afford high cost of test, tubex TF should be recommended for the diagnosis in acute stage of the disease in clinical setting. However, there is urgent need for a highly specific and sensitive test for the diagnosis of typhoid fever in clinical settings in endemic areas.

  1. BOREAS TF-7 SSA-OBS Tower Flux and Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Pattey, Elizabeth; Desjardins, Raymond L.

    2000-01-01

    The BOREAS TF-7 team collected meteorological data as well as energy, carbon dioxide, water vapor, methane, and nitrous oxide flux data at the BOREAS SSA-OBS site. The data were collected from 24-May to 19-Sep-1994. The data are available in tabular ASCII files.

  2. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis

    PubMed Central

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  3. Improvements and applications of COBRA-TF for stand-alone and coupled LWR safety analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramova, M.; Cuervo, D.; Ivanov, K.

    2006-07-01

    The advanced thermal-hydraulic subchannel code COBRA-TF has been recently improved and applied for stand-alone and coupled LWR core calculations at the Pennsylvania State Univ. in cooperation with AREVA NP GmbH (Germany)) and the Technical Univ. of Madrid. To enable COBRA-TF for academic and industrial applications including safety margins evaluations and LWR core design analyses, the code programming, numerics, and basic models were revised and substantially improved. The code has undergone through an extensive validation, verification, and qualification program. (authors)

  4. Differential effects of somatostatin on circulating tissue factor procoagulant activity and protein.

    PubMed

    Boden, Guenther; Vaidyula, Vijender; Homko, Carol; Mozzoli, Maria; Rao, A Koneti

    2007-05-01

    The tissue factor (TF) pathway is the primary mechanism for initiation of blood coagulation. Circulating blood contains TF, which originates mainly from monocytes and is thrombogenic. The presence of somatostatin (SMS) receptors on monocytes suggests the possibility that SMS may regulate TF synthesis and/or release. Circulating TF procoagulant activity (TF-PCA), factor VIIa activity (FVIIa; clotting assays), TF antigen (TF-Ag; ELISA), prothrombin fragment 1.2 (F1.2), thrombin-antithrombin complexes (ELISAs), CD40 ligand expression on platelets, and monocyte-platelet aggregates (flow cytometry) were determined in blood from normal volunteers undergoing 24 h of basal glucose/basal insulin (BG/BI) clamps and high-glucose/high-insulin (HG/HI) clamps with and without SMS. Infusions of SMS under basal conditions (BG/BI) raised TF-PCA 1.8-fold (P < 0.03), TF-Ag 2.3-fold (P < 0.001), and TF expression on monocytes by 36% (P < 0.001) and decreased plasma levels of FVIIa by 30% (P < 0.001). Infusion of SMS reduced the 8.6-fold HG/HI-induced increase in TF-Ag by 26% and the 8.6-fold increase in TF-PCA by 100%. SMS also prevented the 60% increase in TF expression on monocytes, the 2.2-fold increase in F1.2, the 40% increase in CD40L expression on platelets, and the 17% increase in monocyte-platelet aggregates seen during HG/HI. We conclude that SMS completely prevented HG/HI-induced TF activation in normal volunteers and may be of use to reduce the procoagulant state and acute vascular events in hyperinsulinemic insulin-resistant patients with type 2 diabetes.

  5. Changes of gene expression of iron regulatory proteins during turpentine oil-induced acute-phase response in the rat.

    PubMed

    Sheikh, Nadeem; Dudas, Jozsef; Ramadori, Giuliano

    2007-07-01

    In the present study, turpentine oil was injected in the hind limb muscle of the rat to stimulate an acute-phase response (APR). The changes in the gene expression of cytokines and proteins known to be involved in the iron regulatory pathway were then studied in the liver and in extra-hepatic tissue. In addition to the strong upregulation of interleukin-6 (IL-6) and IL-1 beta observed in the inflamed muscle, an upregulation of the genes for IL1-beta and tumor necrosis factor-alpha, but not IL-6, were detectable in the liver. Hepatic Hepc gene expression increased to a maximum at 6 h after the onset of APR. An upregulation of transferrin, transferrin receptor 1 (TfR1), TfR2, ferritin-H, iron responsive element binding protein-1 (IRP1), IRP2 and divalent metal transporter gene expression was also found. Hemojuvelin (Hjv)-, ferroportin 1-, Dcytb-, hemochromatosis-gene- and hephaestin gene expression was downregulated. Hepcidin (Hepc) gene expression was not only detectable in extra-hepatic tissues such as heart, small intestine, colon, spleen and kidney but it was also upregulated under acute-phase conditions, with the Hjv gene being regulated antagonistically. Fpn-1 gene expression was downregulated significantly in heart, colon and spleen. Most of the genes of the known proteins involved in iron metabolism are expressed not only in the liver but also in extra-hepatic tissues. Under acute-phase conditions, acute-phase cytokines (eg IL-6) may modulate the gene expression of such proteins not only in the liver but also in other organs.

  6. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers.

    PubMed

    Bartlett, Thomas E; Jones, Allison; Goode, Ellen L; Fridley, Brooke L; Cunningham, Julie M; Berns, Els M J J; Wik, Elisabeth; Salvesen, Helga B; Davidson, Ben; Trope, Claes G; Lambrechts, Sandrina; Vergote, Ignace; Widschwendter, Martin

    2015-01-01

    We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.

  7. In Vivo MR Imaging of Dual MRI Reporter Genes and Deltex-1 Gene-modified Human Mesenchymal Stem Cells in the Treatment of Closed Penile Fracture.

    PubMed

    Guo, Ruomi; Li, Qingling; Yang, Fei; Hu, Xiaojun; Jiao, Ju; Guo, Yu; Wang, Jin; Zhang, Yong

    2018-06-01

    The purpose of this study was to investigate the feasibility of dual magnetic resonance imaging (MRI) reporter genes, including ferritin heavy subunit (Fth) and transferrin receptor (TfR), which provide sufficient MRI contrast for in vivo MRI tracking, and the Deltex-1 (DTX1) gene, which promotes human mesenchymal stem cell (hMSC) differentiation to smooth muscle cells (SMCs), to treat closed penile fracture (CPF). Multi-gene co-expressing hMSCs were generated. The expression of mRNA and proteins was assessed, and the original biological properties of hMSCs were determined and compared. The intracellular uptake of iron was evaluated, and the ability to differentiate into SMCs was detected. Fifty rabbits with CPF were randomly transplanted with PBS, hMSCs, Fth-TfR-hMSCs, DTX1-hMSCs, and Fth-TfR-DTX1-hMSCs. In vivo MRI was performed to detect the distribution and migration of the grafted cells and healing progress of CPF, and the results were correlated with histology. The mRNA and proteins of the multi-gene were highly expressed. The transgenes could not influence the original biological properties of hMSCs. The dual MRI reporter genes increased the iron accumulation capacity, and the DTX1 gene promoted hMSC differentiation into SMCs. The distribution and migration of the dual MRI reporter gene-modified hMSCs, and the healing state of CPF could be obviously detected by MRI and confirmed by histology. The dual MRI reporter genes could provide sufficient MRI contrast, and the distribution and migration of MSCs could be detected in vivo. The DTX1 gene can promote MSC differentiation into SMCs for the treatment of CPF and effectively inhibit granulation tissue formation.

  8. Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli.

    PubMed

    Ishihama, Akira; Kori, Ayako; Koshio, Etsuko; Yamada, Kayoko; Maeda, Hiroto; Shimada, Tomohiro; Makinoshima, Hideki; Iwata, Akira; Fujita, Nobuyuki

    2014-08-01

    The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index.

    PubMed

    Skikne, Barry S; Punnonen, Kari; Caldron, Paul H; Bennett, Michael T; Rehu, Mari; Gasior, Gail H; Chamberlin, Janna S; Sullivan, Linda A; Bray, Kurtis R; Southwick, Paula C

    2011-11-01

    Anemia of chronic disease (ACD) and iron deficiency anemia (IDA) are the most prevalent forms of anemia and often occur concurrently. Standard tests of iron status used in differential diagnosis are affected by inflammation, hindering clinical interpretation. In contrast, soluble transferrin receptor (sTfR) indicates iron deficiency and is unaffected by inflammation. Objectives of this prospective multicenter clinical trial were to evaluate and compare the diagnostic accuracy of sTfR and the sTfR/log ferritin index (sTfR Index) for differential diagnosis using the automated Access(®) sTfR assay (Beckman Coulter) and sTfR Index. We consecutively enrolled 145 anemic patients with common disorders associated with IDA and ACD. Subjects with IDA or ACD + IDA had significantly higher sTfR and sTfR Index values than subjects with ACD (P < 0.0001). ROC curves produced the following cutoffs for sTfR: 21 nmol/L (or 1.55 mg/L), and the sTfR Index: 14 (using nmol/L) (or 1.03 using mg/L). The sTfR Index was superior to sTfR (AUC 0.87 vs. 0.74, P < 0.0001). Use of all three parameters in combination more than doubled the detection of IDA, from 41% (ferritin alone) to 92% (ferritin, sTfR, sTfR Index). Use of sTfR and the sTfR Index improves detection of IDA, particularly in situations where routine markers provide equivocal results. Findings demonstrate a significant advantage in the simultaneous determination of ferritin, sTfR and sTfR Index. Obtaining a ferritin level alone may delay diagnosis of combined IDA and ACD. Copyright © 2011 Wiley-Liss, Inc.

  10. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  11. CicerTransDB 1.0: a resource for expression and functional study of chickpea transcription factors.

    PubMed

    Gayali, Saurabh; Acharya, Shankar; Lande, Nilesh Vikram; Pandey, Aarti; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-07-29

    Transcription factor (TF) databases are major resource for systematic studies of TFs in specific species as well as related family members. Even though there are several publicly available multi-species databases, the information on the amount and diversity of TFs within individual species is fragmented, especially for newly sequenced genomes of non-model species of agricultural significance. We constructed CicerTransDB (Cicer Transcription Factor Database), the first database of its kind, which would provide a centralized putatively complete list of TFs in a food legume, chickpea. CicerTransDB, available at www.cicertransdb.esy.es , is based on chickpea (Cicer arietinum L.) annotation v 1.0. The database is an outcome of genome-wide domain study and manual classification of TF families. This database not only provides information of the gene, but also gene ontology, domain and motif architecture. CicerTransDB v 1.0 comprises information of 1124 genes of chickpea and enables the user to not only search, browse and download sequences but also retrieve sequence features. CicerTransDB also provides several single click interfaces, transconnecting to various other databases to ease further analysis. Several webAPI(s) integrated in the database allow end-users direct access of data. A critical comparison of CicerTransDB with PlantTFDB (Plant Transcription Factor Database) revealed 68 novel TFs in the chickpea genome, hitherto unexplored. Database URL: http://www.cicertransdb.esy.es.

  12. A Homolog of Bacillus subtilis Trigger Factor in Listeria monocytogenes Is Involved in Stress Tolerance and Bacterial Virulence

    PubMed Central

    Bigot, Armelle; Botton, Eleonore; Dubail, Iharilalao; Charbit, Alain

    2006-01-01

    Molecular chaperones play an essential role in the folding of nascent chain polypeptides, as well as in the refolding and degradation of misfolded or aggregated proteins. They also assist in protein translocation and participate in stress functions. We identified a gene, designated tig, encoding a protein homologous to trigger factor (TF), a cytosolic ribosome-associated chaperone, in the genome of Listeria monocytogenes. We constructed a chromosomal Δtig deletion and evaluated the impact of the mutation on bacterial growth in broth under various stress conditions and on pathogenesis. The Δtig deletion did not affect cell viability but impaired survival in the presence of heat and ethanol stresses. We also identified the ffh gene, encoding a protein homologous to the SRP54 eukaryotic component of the signal recognition particle. However, a Δffh deletion was not tolerated, suggesting that Ffh is essential, as it is in Bacillus subtilis and Escherichia coli. Thus, although dispensable for growth, TF is involved in the stress response of L. monocytogenes. The Δtig mutant showed no or very modest intracellular survival defects in eukaryotic cells. However, in vivo it showed a reduced capacity to persist in the spleens and livers of infected mice, revealing that TF has a role in the pathogenicity of L. monocytogenes. PMID:17021213

  13. Genome-Wide Identification of Regulatory Elements and Reconstruction of Gene Regulatory Networks of the Green Alga Chlamydomonas reinhardtii under Carbon Deprivation

    PubMed Central

    Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd

    2013-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO 2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can

  14. Isolation and characterization of a R2R3-MYB transcription factor gene related to anthocyanin biosynthesis in the spathes of Anthurium andraeanum (Hort.).

    PubMed

    Li, Chonghui; Qiu, Jian; Yang, Guangsui; Huang, Surong; Yin, Junmei

    2016-10-01

    A R2R3-MYB gene AaMYB2 was isolated from Anthurium andraeanum (Hort.) and was functionally characterized to be a positive transcriptional regulator for anthocyanin biosynthesis in the spathes and leaves. Spathe coloration is an important Anthurium andraeanum (Hort.) characteristic, which is mainly contributed by anthocyanins. R2R3-MYB transcription factors (TFs) are important regulators of anthocyanin biosynthesis in plants. Here we describe the identification and characterization of AaMYB2, a member in subgroup 6 of the R2R3-MYB TFs family, which correlated with anthocyanin biosynthesis in A. andraeanum. AaMYB2 was a nuclear-localization protein with positive transcriptional activity, and prominently expressed in the red spathes. Ectopic expression of AaMYB2 in tobacco led to anthocyanin accumulation and up-regulation of the early and late anthocyanin pathway genes, particularly NtDFR, NtANS, and NtUFGT, and the endogenous TF genes NtAn2 and NtAn1 in leaves. In the developing red spathes of 'Tropical' and 'Vitara', the expression of AaMYB2 was closely linked to anthocyanin accumulation, and co-expressed with AaCHS, AaF3H, and AaANS, the latter two of which were regarded as the potential targets of the R locus encoding a TF controlling spathe colors inheritance in anthurium. In addition, the transcription level of AaMYB2 in various cultivars with different color phenotypes showed that AaMYB2 was drastically expressed in the spathes from the red, pink, and purple cultivars, but hardly detected in the spathes from the white and green ones. Besides, AaMYB2 also showed higher expression in newly developmental leaves when anthocyanin was actively biosynthesized. Taken together, AaMYB2 positively related to anthocyanin biosynthesis in anthurium spathes and leaves, and appeared to regulate the expression of AaF3H, AaANS, and possibly AaCHS.

  15. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    PubMed Central

    2012-01-01

    Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM). Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF). A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090), which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene). The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070) and constans-like (COL: At2g21320), were identified as positive regulators of starch synthase 4 (SS4: At4g18240). The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray analysis to discover

  16. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.

  17. Regulation of LPS-induced tissue factor expression in human monocytic THP-1 cells by curcumin

    USDA-ARS?s Scientific Manuscript database

    Tissue factor (TF) is a transmembrane receptor, which initiates thrombotic episodes associated with various diseases. In addition to membrane-bound TF, we have discovered an alternatively spliced form of human TF mRNA. It was later confirmed that this form of TF mRNA expresses a soluble protein circ...

  18. Different gene-specific mechanisms determine the 'revised-response' memory transcription patterns of a subset of A. thaliana dehydration stress responding genes.

    PubMed

    Liu, Ning; Ding, Yong; Fromm, Michael; Avramova, Zoya

    2014-05-01

    Plants that have experienced several exposures to dehydration stress show increased resistance to future exposures by producing faster and/or stronger reactions, while many dehydration stress responding genes in Arabidopsis thaliana super-induce their transcription as a 'memory' from the previous encounter. A previously unknown, rather unusual, memory response pattern is displayed by a subset of the dehydration stress response genes. Despite robustly responding to a first stress, these genes return to their initial, pre-stressed, transcript levels during the watered recovery; surprisingly, they do not respond further to subsequent stresses of similar magnitude and duration. This transcriptional behavior defines the 'revised-response' memory genes. Here, we investigate the molecular mechanisms regulating this transcription memory behavior. Potential roles of abscisic acid (ABA), of transcription factors (TFs) from the ABA signaling pathways (ABF2/3/4 and MYC2), and of histone modifications (H3K4me3 and H3K27me3) as factors in the revised-response transcription memory patterns are elucidated. We identify the TF MYC2 as the critical component for the memory behavior of a specific subset of MYC2-dependent genes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Tissue Factor promotes breast cancer stem cell activity in vitro.

    PubMed

    Shaker, Hudhaifah; Harrison, Hannah; Clarke, Robert; Landberg, Goran; Bundred, Nigel J; Versteeg, Henri H; Kirwan, Cliona C

    2017-04-18

    Cancer stem cells (CSCs) are a subpopulation of cells that can self-renew and initiate tumours. The clotting-initiating protein Tissue Factor (TF) promotes metastasis and may be overexpressed in cancer cells with increased CSC activity. We sought to determine whether TF promotes breast CSC activity in vitro using human breast cancer cell lines. TF expression was compared in anoikis-resistant (CSC-enriched) and unselected cells. In cells sorted into of TF-expressing and TF-negative (FACS), and in cells transfected to knockdown TF (siRNA) and overexpress TF (cDNA), CSC activity was compared by (i) mammosphere forming efficiency (MFE) (ii) holoclone colony formation (Hc) and (iii) ALDH1 activity. TF expression was increased in anoikis-resistant and high ALDH1-activity T47D cells compared to unselected cells. FACS sorted TF-expressing T47Ds and TF-overexpressing MCF7s had increased CSC activity compared to TF-low cells. TF siRNA cells (MDAMB231,T47D) had reduced CSC activity compared to control cells. FVIIa increased MFE and ALDH1 in a dose-dependent manner (MDAMB231, T47D). The effects of FVIIa on MFE were abrogated by TF siRNA (T47D). Breast CSCs (in vitro) demonstrate increased activity when selected for high TF expression, when induced to overexpress TF, and when stimulated (with FVIIa). Targeting the TF pathway in vivo may abrogate CSC activity.

  20. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Nanopore sensing of individual transcription factors bound to DNA

    PubMed Central

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-01-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes. PMID:26109509

  2. Nanopore sensing of individual transcription factors bound to DNA

    NASA Astrophysics Data System (ADS)

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-06-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.

  3. PreCisIon: PREdiction of CIS-regulatory elements improved by gene's positION.

    PubMed

    Elati, Mohamed; Nicolle, Rémy; Junier, Ivan; Fernández, David; Fekih, Rim; Font, Julio; Képès, François

    2013-02-01

    Conventional approaches to predict transcriptional regulatory interactions usually rely on the definition of a shared motif sequence on the target genes of a transcription factor (TF). These efforts have been frustrated by the limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices, which may match large numbers of sites and produce an unreliable list of target genes. To improve the prediction of binding sites, we propose to additionally use the unrelated knowledge of the genome layout. Indeed, it has been shown that co-regulated genes tend to be either neighbors or periodically spaced along the whole chromosome. This study demonstrates that respective gene positioning carries significant information. This novel type of information is combined with traditional sequence information by a machine learning algorithm called PreCisIon. To optimize this combination, PreCisIon builds a strong gene target classifier by adaptively combining weak classifiers based on either local binding sequence or global gene position. This strategy generically paves the way to the optimized incorporation of any future advances in gene target prediction based on local sequence, genome layout or on novel criteria. With the current state of the art, PreCisIon consistently improves methods based on sequence information only. This is shown by implementing a cross-validation analysis of the 20 major TFs from two phylogenetically remote model organisms. For Bacillus subtilis and Escherichia coli, respectively, PreCisIon achieves on average an area under the receiver operating characteristic curve of 70 and 60%, a sensitivity of 80 and 70% and a specificity of 60 and 56%. The newly predicted gene targets are demonstrated to be functionally consistent with previously known targets, as assessed by analysis of Gene Ontology enrichment or of the relevant literature and databases.

  4. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women’s Cancers

    PubMed Central

    Bartlett, Thomas E.; Jones, Allison; Goode, Ellen L.; Fridley, Brooke L.; Cunningham, Julie M.; Berns, Els M. J. J.; Wik, Elisabeth; Salvesen, Helga B.; Davidson, Ben; Trope, Claes G.; Lambrechts, Sandrina; Vergote, Ignace; Widschwendter, Martin

    2015-01-01

    We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes. PMID:26629914

  5. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines

    PubMed Central

    Witter, Lauren E.; Gruber, Erika J.; Lean, Fabian Z. X.; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor–replete or specific coagulation factor–deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X–deficient plasma; residual thrombin generation in FVII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma. PMID:28029283

  6. BOREAS TF-11 SSA-Fen Leaf Gas Exchange Data

    NASA Technical Reports Server (NTRS)

    Arkebauer, Timothy J.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. This data set contains single-leaf gas exchange data from the SSA-Fen site during 1994 and 1995. These leaf gas exchange properties were measured for the dominant vascular plants using portable gas exchange systems. The data are stored in tabular ASCII files.

  7. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants.

    PubMed

    Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A M; Sudhakar, Chinta

    2018-01-01

    Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram ( Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY 3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut ( Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H 2 O 2 ), and superoxide anion (O 2 ∙- ), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD , and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.

  8. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants

    PubMed Central

    Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A. M.; Sudhakar, Chinta

    2018-01-01

    Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2), and superoxide anion (O2∙-), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants. PMID:29616059

  9. Evidence for the evolutionary origin of human chromosome 21 from comparative gene mapping in the cow and mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Threadgill, D.S.; Womack, J.E.; Kraus, J.P.

    1991-01-01

    To determine the extent of conservation between bovine syntenic group U10, human chromosome 21 (HSA 21), and mouse chromosome 16(MMU 16), 11 genes were physically mapped by segregation analysis in a bovine-hamster hybrid somatic cell panel. The genes chosen for study span MMU 16 and represent virtually the entire q arm of HSA 21. Because the somatostatin gene (SST), an HSA 3/MMU 16 locus, was previously shown to be in U10, the transferrin gene (TF), an HSA 3/MMU 9 marker, was also mapped to determine whether U10 contains any HSA 3 genes not represented on MMU 16. With the exceptionmore » of the protamine gene PRM1 (HSA 16/MMU 16), all of the genes studies were syntenic on bovine U10. Thus, all homologous loci from HSA 21 that have been studied in the cow are on a single chromosome. The bovine homolog of HSA 21 also carries several HSA 3 genes, two of which have homologous loci on MMU 16. The syntenic association of genes from the q arm of HSA 3 with HSAS 21 genes in two mammalian species, the mouse and the cow, indicates that HSA 21 may have evolved from a larger ancestral mammalian chromosome that contained genes now residing on HSA 3. Additionally, the syntenic association of TF with SST in the cow permits the prediction that the rhodopsin gene (RHO) is proximal to TF on HSA 3q.« less

  10. DNA breathing dynamics distinguish binding from nonbinding consensus sites for transcription factor YY1 in cells.

    PubMed

    Alexandrov, Boian S; Fukuyo, Yayoi; Lange, Martin; Horikoshi, Nobuo; Gelev, Vladimir; Rasmussen, Kim Ø; Bishop, Alan R; Usheva, Anny

    2012-11-01

    The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.

  11. The retrotransposon Tf1 assembles virus-like particles that contain excess Gag relative to integrase because of a regulated degradation process.

    PubMed

    Atwood, A; Lin, J H; Levin, H L

    1996-01-01

    The retrotransposon Tf1, isolated from Schizosaccharomyces pombe, contains a single open reading frame with sequences encoding Gag, protease, reverse transcriptase, and integrase (IN). Tf1 has previously been shown to possess significant transposition activity. Although Tf1 proteins do assemble into virus-like particles, the assembly does not require readthrough of a translational reading frame shift or stop codon, common mechanisms used by retroelements to express Gag in molar excess of the polymerase proteins. This study was designed to determine if Tf1 particles contain equal amounts of Gag and polymerase proteins or whether they contain the typical molar excess of Gag. After using two separate methods to calibrate the strength of our antibodies, we found that both S. pombe extracts and partially purified Tf1 particles contained a 26-fold molar excess of Gag relative to IN. Knowing that Gag and IN are derived from the same Tf1 primary translation product, we concluded that the excess Gag most likely resulted from specific degradation of IN. We obtained evidence of regulated IN degradation in comparisons of Tf1 protein extracted from log-phase cells and that extracted from stationary-phase cells. The log-phase cells contained equal molar amounts of Gag and IN, whereas cells approaching stationary phase rapidly degraded IN, leaving an excess of Gag. Analysis of the reverse transcripts indicated that the bulk of reverse transcription occurred within the particles that possess a molar excess of Gag.

  12. Tissue Factor-Factor VIIa Complex Triggers Protease Activated Receptor 2-Dependent Growth Factor Release and Migration in Ovarian Cancer

    PubMed Central

    Chanakira, Alice; Westmark, Pamela R.; Ong, Irene M.; Sheehan, John P.

    2017-01-01

    Objective Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. Methods TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expression were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. Results Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4–10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. Conclusions Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation. PMID:28148395

  13. Cross-talk between the Tissue Factor/coagulation factor VIIa complex and the tyrosine kinase receptor EphA2 in cancer.

    PubMed

    Eriksson, Oskar; Thulin, Åsa; Asplund, Anna; Hegde, Geeta; Navani, Sanjay; Siegbahn, Agneta

    2016-05-31

    Tissue Factor (TF) forms a proteolytically active complex together with coagulation factor VIIa (FVIIa) and functions as the trigger of blood coagulation or alternatively activates cell signaling. We recently described that EphA2 of the Eph tyrosine kinase receptor family is cleaved directly by the TF/FVIIa complex. The aim of the present study was to further characterize the cross-talk between TF/FVIIa and EphA2 using in vitro model systems and human cancer specimens. Cleavage and phosphorylation of EphA2 was studied by Western blot. Subcellular localization of TF and EphA2 was investigated by a proximity ligation assay and confocal microscopy. Phalloidin staining of the actin cytoskeleton was used to study cell rounding and retraction fiber formation. Expression of TF and EphA2 in human colorectal cancer specimens was examined by immunohistochemistry. TF and EphA2 co-localized constitutively in MDA-MB-231 cells, and addition of FVIIa resulted in cleavage of EphA2 by a PAR2-independent mechanism. Overexpression of TF in U251 glioblastoma cells lead to co-localization with EphA2 at the leading edge and FVIIa-dependent cleavage of EphA2. FVIIa potentiated ephrin-A1-induced cell rounding and retraction fiber formation in MDA-MB-231 cells through a RhoA/ROCK-dependent pathway that did not require PAR2-activation. TF and EphA2 were expressed in colorectal cancer specimens, and were significantly correlated. These results suggest that TF/FVIIa-EphA2 cross-talk might potentiate ligand-dependent EphA2 signaling in human cancers, and provide initial evidence that it is possible for this interaction to occur in vivo.

  14. PF4/heparin-antibody complex induces monocyte tissue factor expression and release of tissue factor positive microparticles by activation of FcγRI

    PubMed Central

    Glover, Sam L.; Jonas, William; McEachron, Troy; Pawlinski, Rafal; Arepally, Gowthami M.; Key, Nigel S.; Mackman, Nigel

    2012-01-01

    Heparin-induced thrombocytopenia (HIT) is a potentially devastating form of drug-induced thrombocytopenia that occurs in patients receiving heparin for prevention or treatment of thrombosis. Patients with HIT develop autoantibodies to the platelet factor 4 (PF4)/heparin complex, which is termed the HIT Ab complex. Despite a decrease in the platelet count, the most feared complication of HIT is thrombosis. The mechanism of thrombosis in HIT remains poorly understood. We investigated the effects of the HIT Ab complex on tissue factor (TF) expression and release of TF-positive microparticles in peripheral blood mononuclear cells and monocytes. To model these effects ex vivo, we used a murine mAb specific for the PF4/heparin complex (KKO), as well as plasma from patients with HIT. We found that the HIT Ab complex induced TF expression in monocytes and the release of TF-positive microparticles. Further, we found that induction of TF is mediated via engagement of the FcγRI receptor and activation of the MEK1-ERK1/2 signaling pathway. Our data suggest that monocyte TF may contribute to the development of thrombosis in patients with HIT. PMID:22394597

  15. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model.

    PubMed

    Lösing, Pascal; Niturad, Cristina Elena; Harrer, Merle; Reckendorf, Christopher Meyer Zu; Schatz, Theresa; Sinske, Daniela; Lerche, Holger; Maljevic, Snezana; Knöll, Bernd

    2017-07-17

    A hallmark of temporal lobe epilepsy (TLE) is hippocampal neuronal demise and aberrant mossy fiber sprouting. In addition, unrestrained neuronal activity in TLE patients induces gene expression including immediate early genes (IEGs) such as Fos and Egr1.We employed the mouse pilocarpine model to analyze the transcription factor (TF) serum response factor (SRF) in epileptogenesis, seizure induced histopathology and IEG induction. SRF is a neuronal activity regulated TF stimulating IEG expression as well as nerve fiber growth and guidance. Adult conditional SRF deficient mice (Srf CaMKCreERT2 ) were more refractory to initial status epilepticus (SE) acquisition. Further, SRF deficient mice developed more spontaneous recurrent seizures (SRS). Genome-wide transcriptomic analysis uncovered a requirement of SRF for SE and SRS induced IEG induction (e.g. Fos, Egr1, Arc, Npas4, Btg2, Atf3). SRF was required for epilepsy associated neurodegeneration, mossy fiber sprouting and inflammation. We uncovered MAP kinase signaling as SRF target during epilepsy. Upon SRF ablation, seizure evoked induction of dual specific phosphatases (Dusp5 and Dusp6) was reduced. Lower expression of these negative ERK kinase regulators correlated with altered P-ERK levels in epileptic Srf mutant animals.Overall, this study uncovered an SRF contribution to several processes of epileptogenesis in the pilocarpine model.

  16. An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability

    PubMed Central

    Schütte, Judith; Wang, Huange; Antoniou, Stella; Jarratt, Andrew; Wilson, Nicola K; Riepsaame, Joey; Calero-Nieto, Fernando J; Moignard, Victoria; Basilico, Silvia; Kinston, Sarah J; Hannah, Rebecca L; Chan, Mun Chiang; Nürnberg, Sylvia T; Ouwehand, Willem H; Bonzanni, Nicola; de Bruijn, Marella FTR; Göttgens, Berthold

    2016-01-01

    Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes. DOI: http://dx.doi.org/10.7554/eLife.11469.001 PMID:26901438

  17. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook.

    PubMed

    Yao, Jie

    2017-01-06

    Regulation of eukaryotic transcription in vivo occurs at distinct stages. Previous research has identified many active or repressive transcription factors (TFs) and core transcription components and studied their functions in vitro and in vivo. Nonetheless, how individual TFs act in concert to regulate mRNA gene expression in a single cell remains poorly understood. Direct observation of TF assembly and disassembly and various biochemical reactions during transcription of a single-copy gene in vivo is the ideal approach to study this problem. Research in this area requires developing novel techniques for single-cell transcription imaging and integrating imaging studies into understanding the molecular biology of transcription. In the past decade, advanced cell imaging has enabled unprecedented capabilities to visualize individual TF molecules, to track single transcription sites, and to detect individual mRNA in fixed and living cells. These studies have raised several novel insights on transcriptional regulation such as the "hit-and-run" model and transcription bursting that could not be obtained by in vitro biochemistry analysis. At this point, the key question is how to achieve deeper understandings or discover novel mechanisms of eukaryotic transcriptional regulation by imaging transcription in single cells. Meanwhile, further technical advancements are likely required for visualizing distinct kinetic steps of transcription on a single-copy gene in vivo. This review article summarizes recent progress in the field and describes the challenges and opportunities ahead. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    PubMed

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  20. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus

    PubMed Central

    Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting

    2017-01-01

    Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391

  1. Transcription factor ThWRKY4 binds to a novel WLS motif and a RAV1A element in addition to the W-box to regulate gene expression.

    PubMed

    Xu, Hongyun; Shi, Xinxin; Wang, Zhibo; Gao, Caiqiu; Wang, Chao; Wang, Yucheng

    2017-08-01

    WRKY transcription factors play important roles in many biological processes, and mainly bind to the W-box element to regulate gene expression. Previously, we characterized a WRKY gene from Tamarix hispida, ThWRKY4, in response to abiotic stress, and showed that it bound to the W-box motif. However, whether ThWRKY4 could bind to other motifs remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ThWRKY4. In addition to the W-box core cis-element (termed W-box), we identified that ThWRKY4 could bind to two other motifs: the RAV1A element (CAACA) and a novel motif with sequence of GTCTA (W-box like sequence, WLS). The distributions of these motifs were screened in the promoter regions of genes regulated by some WRKYs. The results showed that the W-box, RAV1A, and WLS motifs were all present in high numbers, suggesting that they play key roles in gene expression mediated by WRKYs. Furthermore, five WRKY proteins from different WRKY subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the RAV1A and WLS motifs, indicating that they are recognized commonly by WRKYs. These findings will help to further reveal the functions of WRKY proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Improvement of COBRA-TF for modeling of PWR cold- and hot-legs during reactor transients

    NASA Astrophysics Data System (ADS)

    Salko, Robert K.

    COBRA-TF is a two-phase, three-field (liquid, vapor, droplets) thermal-hydraulic modeling tool that has been developed by the Pacific Northwest Laboratory under sponsorship of the NRC. The code was developed for Light Water Reactor analysis starting in the 1980s; however, its development has continued to this current time. COBRA-TF still finds wide-spread use throughout the nuclear engineering field, including nuclear-power vendors, academia, and research institutions. It has been proposed that extension of the COBRA-TF code-modeling region from vessel-only components to Pressurized Water Reactor (PWR) coolant-line regions can lead to improved Loss-of-Coolant Accident (LOCA) analysis. Improved modeling is anticipated due to COBRA-TF's capability to independently model the entrained-droplet flow-field behavior, which has been observed to impact delivery to the core region[1]. Because COBRA-TF was originally developed for vertically-dominated, in-vessel, sub-channel flow, extension of the COBRA-TF modeling region to the horizontal-pipe geometries of the coolant-lines required several code modifications, including: • Inclusion of the stratified flow regime into the COBRA-TF flow regime map, along with associated interfacial drag, wall drag and interfacial heat transfer correlations, • Inclusion of a horizontal-stratification force between adjacent mesh cells having unequal levels of stratified flow, and • Generation of a new code-input interface for the modeling of coolant-lines. The sheer number of COBRA-TF modifications that were required to complete this work turned this project into a code-development project as much as it was a study of thermal-hydraulics in reactor coolant-lines. The means for achieving these tasks shifted along the way, ultimately leading the development of a separate, nearly completely independent one-dimensional, two-phase-flow modeling code geared toward reactor coolant-line analysis. This developed code has been named CLAP, for

  3. Regulation of the Incorporation of Tissue Factor into Microparticles by Serine Phosphorylation of the Cytoplasmic Domain of Tissue Factor*

    PubMed Central

    Collier, Mary E. W.; Ettelaie, Camille

    2011-01-01

    The mechanisms that regulate the incorporation and release of tissue factors (TFs) into cell-derived microparticles are as yet unidentified. In this study, we have explored the regulation of TF release into microparticles by the phosphorylation of serine residues within the cytoplasmic domain of TF. Wild-type and mutant forms of TF, containing alanine and aspartate substitutions at Ser253 and Ser258, were overexpressed in coronary artery and dermal microvascular endothelial cells and microparticle release stimulated with PAR2 agonist peptide (PAR2-AP). The release of TF antigen and activity was then monitored. In addition, the phosphorylation state of the two serine residues within the released microparticles and the cells was monitored for 150 min. The release of wild-type TF as procoagulant microparticles peaked at 90 min and declined thereafter in both cell types. The TF within these microparticles was phosphorylated at Ser253 but not at Ser258. Aspartate substitution of Ser253 resulted in rapid release of TF antigen but not activity, whereas TF release was reduced and delayed by alanine substitution of Ser253 or aspartate substitution of Ser258. Alanine substitution of Ser258 prolonged the release of TF following PAR2-AP activation. The release of TF was concurrent with phosphorylation of Ser253 and was followed by dephosphorylation at 120 min and phosphorylation of Ser258. We propose a sequential mechanism in which the phosphorylation of Ser253 through PAR2 activation results in the incorporation of TF into microparticles, simultaneously inducing Ser258 phosphorylation. Phosphorylation of Ser258 in turn promotes the dephosphorylation of Ser253 and suppresses the release of TF. PMID:21310953

  4. A Novel Method to Predict Highly Expressed Genes Based on Radius Clustering and Relative Synonymous Codon Usage.

    PubMed

    Tran, Tuan-Anh; Vo, Nam Tri; Nguyen, Hoang Duc; Pham, Bao The

    2015-12-01

    Recombinant proteins play an important role in many aspects of life and have generated a huge income, notably in the industrial enzyme business. A gene is introduced into a vector and expressed in a host organism-for example, E. coli-to obtain a high productivity of target protein. However, transferred genes from particular organisms are not usually compatible with the host's expression system because of various reasons, for example, codon usage bias, GC content, repetitive sequences, and secondary structure. The solution is developing programs to optimize for designing a nucleotide sequence whose origin is from peptide sequences using properties of highly expressed genes (HEGs) of the host organism. Existing data of HEGs determined by practical and computer-based methods do not satisfy for qualifying and quantifying. Therefore, the demand for developing a new HEG prediction method is critical. We proposed a new method for predicting HEGs and criteria to evaluate gene optimization. Codon usage bias was weighted by amplifying the difference between HEGs and non-highly expressed genes (non-HEGs). The number of predicted HEGs is 5% of the genome. In comparison with Puigbò's method, the result is twice as good as Puigbò's one, in kernel ratio and kernel sensitivity. Concerning transcription/translation factor proteins (TF), the proposed method gives low TF sensitivity, while Puigbò's method gives moderate one. In summary, the results indicated that the proposed method can be a good optional applying method to predict optimized genes for particular organisms, and we generated an HEG database for further researches in gene design.

  5. A proximity-based graph clustering method for the identification and application of transcription factor clusters.

    PubMed

    Spadafore, Maxwell; Najarian, Kayvan; Boyle, Alan P

    2017-11-29

    Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell functioning and human health. While methods to establish where a TF binds to DNA are well established, these methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect relationships beyond motif similarity, or not applied to TF-TF interactions. Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for an example TF. We show that our method produces small, manageable clusters that encapsulate many known, experimentally validated transcription factor interactions and that our method is capable of capturing interactions that motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions. The interactions identified by our method correspond to biological reality and allow for fast exploration of TF clustering and regulatory dynamics.

  6. Tissue factor activity and ECM-related gene expression in human aortic endothelial cells grown on electrospun biohybrid scaffolds.

    PubMed

    Han, Jingjia; Gerstenhaber, Jonathan A; Lazarovici, Philip; Lelkes, Peter I

    2013-05-13

    All blood vessels are lined with a quiescent endothelium, which aids in regulating regular blood flow and avoiding thrombus formation. Current attempts at replacing diseased blood vessels frequently fail due to the intrinsic thrombogenicity of the materials used as vascular grafts. In extending our previous work where we introduced a new candidate scaffolds for vascular grafts electrospun from a blend solution of PLGA, gelatin, and elastin (PGE), this study aimed to evaluate the potential of PGE scaffolds to support nonthrombogenic monolayers of primary isolates of human aortic endothelial cells (HAECs), as assessed by a combination of biochemical, molecular, and bioinformatics-based analyses. After 24 h of culture on 3-D fibrous PGE scaffolds, HAECs formed a confluent, nonthrombogenic, and physiologically competent monolayer, as assessed by tissue factor (TF) gene expression and protein activity assays. The levels of TF mRNA/protein activity in HAECs grown on PGE scaffolds were similar to those on gelatin or collagen IV-coated 2-D surfaces. In addition, bioinformatics-based analysis of a focused microarray containing 84 ECM-related cDNA probes demonstrated that HAECs essentially expressed a histotypic ECM-related "transcriptome" on PGE scaffolds, where cells were more quiescent than cells cultured on 2-D coverslips coated with gelatin (a well-known "inert" substrate for conventional EC culture), but less so than on 2-D PGE films. These data suggest an important role for nanorough substrates (PGE films) in passivating endothelial cells and confirm the crucial effect of substrate composition in this process. Principal component analysis of microarray data on the above substrates (including collagen IV) implied that substrate composition plays a greater role than surface topography in affecting the endothelial ECM-related "transcriptome". Taken together, our findings suggest that electrospun PGE scaffolds are potentially suitable for application in small diameter

  7. YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity.

    PubMed

    Yu, Olivia M; Benitez, Jorge A; Plouffe, Steven W; Ryback, Daniel; Klein, Andrea; Smith, Jeff; Greenbaum, Jason; Delatte, Benjamin; Rao, Anjana; Guan, Kun-Liang; Furnari, Frank B; Chaim, Olga Meiri; Miyamoto, Shigeki; Brown, Joan Heller

    2018-06-11

    The role of YAP (Yes-associated protein 1) and MRTF-A (myocardin-related transcription factor A), two transcriptional co-activators regulated downstream of GPCRs (G protein-coupled receptors) and RhoA, in the growth of glioblastoma cells and in vivo glioblastoma multiforme (GBM) tumor development was explored using human glioblastoma cell lines and tumor-initiating cells derived from patient-derived xenografts (PDX). Knockdown of these co-activators in GSC-23 PDX cells using short hairpin RNA significantly attenuated in vitro self-renewal capability assessed by limiting dilution, oncogene expression, and neurosphere formation. Orthotopic xenografts of the MRTF-A and YAP knockdown PDX cells formed significantly smaller tumors and were of lower morbidity than wild-type cells. In vitro studies used PDX and 1321N1 glioblastoma cells to examine functional responses to sphingosine 1-phosphate (S1P), a GPCR agonist that activates RhoA signaling, demonstrated that YAP signaling was required for cell migration and invasion, whereas MRTF-A was required for cell adhesion; both YAP and MRTF-A were required for proliferation. Gene expression analysis by RNA-sequencing of S1P-treated MRTF-A or YAP knockout cells identified 44 genes that were induced through RhoA and highly dependent on YAP, MRTF-A, or both. Knockdown of F3 (tissue factor (TF)), a target gene regulated selectively through YAP, blocked cell invasion and migration, whereas knockdown of HBEGF (heparin-binding epidermal growth factor-like growth factor), a gene selectively induced through MRTF-A, prevented cell adhesion in response to S1P. Proliferation was sensitive to knockdown of target genes regulated through either or both YAP and MRTF-A. Expression of TF and HBEGF was also selectively decreased in tumors from PDX cells lacking YAP or MRTF-A, indicating that these transcriptional pathways are regulated in preclinical GBM models and suggesting that their activation through GPCRs and RhoA contributes to growth and

  8. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor.

    PubMed

    Amirkhosravi, A; Meyer, T; Warnes, G; Amaya, M; Malik, Z; Biggerstaff, J P; Siddiqui, F A; Sherman, P; Francis, J L

    1998-10-01

    Tissue factor (TF), the membrane glycoprotein that initiates blood coagulation, is constitutively expressed by many tumor cells and is implicated in peri-tumor fibrin deposition and hypercoagulability in cancer. Upregulation of tumor TF correlates with enhanced metastatic potential. Furthermore, TF has been colocalized with VEGF in breast cancer, specially at sites of early angiogenesis. There are no data on the effect of hypoxia on tumor cell TF expression. Since hypoxia is known to stimulate VEGF production, we studied whether this also induces tumor cell TF expression. Confluent monolayers of A375 melanoma, MCF-7 breast carcinoma and A549 lung carcinoma were cultured in either 95% air, 5% CO2 (normoxic) or 95% N2, 5% CO2 (hypoxic; 25-30 mmHg) for 24 h. Procoagulant activity (PCA) was measured by amidolytic and clotting assays, surface TF antigen by flow cytometry, early apoptosis by annexin V binding and VEGF levels in culture supernatants by ELISA. Hypoxia significantly increased tumor cell PCA in all three cell lines tested and TF antigen on A375 cells was increased four-fold (P <0.05). Pentoxifylline (PTX), a methylxanthine derivative, significantly inhibited the hypoxia-induced increase in PCA as well as VEGF release in all three cell lines tested. In A375 cells, PTX significantly inhibited TF antigen expression by both normoxic and hypoxic cells. Hypoxia induced a slight (5%) but not significant, increase in early apoptosis. Intravenous injection of hypoxic A375 cells into nude rats produced more pronounced thrombocytopenia (n = 5, P <0.01) and more lung metastases (n = 3, P <0.05) compared to normoxic cells. We conclude that hypoxia increases TF expression by malignant cells which enhances tumor cell-platelet binding and hematogenous metastasis. Hypoxia-induced upregulation of TF appears to parallel that of VEGF, although the mechanism remains unclear.

  9. Engineering an allosteric transcription factor to respond to new ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Noah D.; Garruss, Alexander S.; Moretti, Rocco

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. In this paper, we engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along withmore » multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). Finally, the ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.« less

  10. Engineering an allosteric transcription factor to respond to new ligands

    PubMed Central

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-01-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol or sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  11. Engineering an allosteric transcription factor to respond to new ligands

    DOE PAGES

    Taylor, Noah D.; Garruss, Alexander S.; Moretti, Rocco; ...

    2015-12-21

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. In this paper, we engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along withmore » multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). Finally, the ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.« less

  12. Factor IX gene haplotypes in Amerindians.

    PubMed

    Franco, R F; Araújo, A G; Zago, M A; Guerreiro, J F; Figueiredo, M S

    1997-02-01

    We have determined the haplotypes of the factor IX gene for 95 Indians from 5 Brazilian Amazon tribes: Wayampí, Wayana-Apalaí, Kayapó, Arára, and Yanomámi. Eight polymorphisms linked to the factor IX gene were investigated: MseI (at 5', nt -698), BamHI (at 5', nt -561), DdeI (intron 1), BamHI (intron 2), XmnI (intron 3), TaqI (intron 4), MspI (intron 4), and HhaI (at 3', approximately 8 kb). The results of the haplotype distribution and the allele frequencies for each of the factor IX gene polymorphisms in Amerindians were similar to the results reported for Asian populations but differed from results for other ethnic groups. Only five haplotypes were identified within the entire Amerindian study population, and the haplotype distribution was significantly different among the five tribes, with one (Arára) to four (Wayampí) haplotypes being found per tribe. These findings indicate a significant heterogeneity among the Indian tribes and contrast with the homogeneous distribution of the beta-globin gene cluster haplotypes but agree with our recent findings on the distribution of alpha-globin gene cluster haplotypes and the allele frequencies for six VNTRs in the same Amerindian tribes. Our data represent the first study of factor IX-associated polymorphisms in Amerindian populations and emphasizes the applicability of these genetic markers for population and human evolution studies.

  13. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development

    PubMed Central

    Schertel, Claus; Albarca, Monica; Rockel-Bauer, Claudia; Kelley, Nicholas W.; Bischof, Johannes; Hens, Korneel

    2015-01-01

    Transcription factors (TFs) are key regulators of cell fate. The estimated 755 genes that encode DNA binding domain-containing proteins comprise ∼5% of all Drosophila genes. However, the majority has remained uncharacterized so far due to the lack of proper genetic tools. We generated 594 site-directed transgenic Drosophila lines that contain integrations of individual UAS-TF constructs to facilitate spatiotemporally controlled misexpression in vivo. All transgenes were expressed in the developing wing, and two-thirds induced specific phenotypic defects. In vivo knockdown of the same genes yielded a phenotype for 50%, with both methods indicating a great potential for misexpression to characterize novel functions in wing growth, patterning, and development. Thus, our UAS-TF library provides an important addition to the genetic toolbox of Drosophila research, enabling the identification of several novel wing development-related TFs. In parallel, we established the chromatin landscape of wing imaginal discs by ChIP-seq analyses of five chromatin marks and RNA Pol II. Subsequent clustering revealed six distinct chromatin states, with two clusters showing enrichment for both active and repressive marks. TFs that carry such “bivalent” chromatin are highly enriched for causing misexpression phenotypes in the wing, and analysis of existing expression data shows that these TFs tend to be differentially expressed across the wing disc. Thus, bivalently marked chromatin can be used as a marker for spatially regulated TFs that are functionally relevant in a developing tissue. PMID:25568052

  14. Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data.

    PubMed

    Gong, Wuming; Koyano-Nakagawa, Naoko; Li, Tongbin; Garry, Daniel J

    2015-03-07

    Decoding the temporal control of gene expression patterns is key to the understanding of the complex mechanisms that govern developmental decisions during heart development. High-throughput methods have been employed to systematically study the dynamic and coordinated nature of cardiac differentiation at the global level with multiple dimensions. Therefore, there is a pressing need to develop a systems approach to integrate these data from individual studies and infer the dynamic regulatory networks in an unbiased fashion. We developed a two-step strategy to integrate data from (1) temporal RNA-seq, (2) temporal histone modification ChIP-seq, (3) transcription factor (TF) ChIP-seq and (4) gene perturbation experiments to reconstruct the dynamic network during heart development. First, we trained a logistic regression model to predict the probability (LR score) of any base being bound by 543 TFs with known positional weight matrices. Second, four dimensions of data were combined using a time-varying dynamic Bayesian network model to infer the dynamic networks at four developmental stages in the mouse [mouse embryonic stem cells (ESCs), mesoderm (MES), cardiac progenitors (CP) and cardiomyocytes (CM)]. Our method not only infers the time-varying networks between different stages of heart development, but it also identifies the TF binding sites associated with promoter or enhancers of downstream genes. The LR scores of experimentally verified ESCs and heart enhancers were significantly higher than random regions (p <10(-100)), suggesting that a high LR score is a reliable indicator for functional TF binding sites. Our network inference model identified a region with an elevated LR score approximately -9400 bp upstream of the transcriptional start site of Nkx2-5, which overlapped with a previously reported enhancer region (-9435 to -8922 bp). TFs such as Tead1, Gata4, Msx2, and Tgif1 were predicted to bind to this region and participate in the regulation of Nkx2

  15. Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds.

    PubMed

    Mariani, Luca; Weinand, Kathryn; Vedenko, Anastasia; Barrera, Luis A; Bulyk, Martha L

    2017-09-27

    Transcription factors (TFs) control cellular processes by binding specific DNA motifs to modulate gene expression. Motif enrichment analysis of regulatory regions can identify direct and indirect TF binding sites. Here, we created a glossary of 108 non-redundant TF-8mer "modules" of shared specificity for 671 metazoan TFs from publicly available and new universal protein binding microarray data. Analysis of 239 ENCODE TF chromatin immunoprecipitation sequencing datasets and associated RNA sequencing profiles suggest the 8mer modules are more precise than position weight matrices in identifying indirect binding motifs and their associated tethering TFs. We also developed GENRE (genomically equivalent negative regions), a tunable tool for construction of matched genomic background sequences for analysis of regulatory regions. GENRE outperformed four state-of-the-art approaches to background sequence construction. We used our TF-8mer glossary and GENRE in the analysis of the indirect binding motifs for the co-occurrence of tethering factors, suggesting novel TF-TF interactions. We anticipate that these tools will aid in elucidating tissue-specific gene-regulatory programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor.

    PubMed

    Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro

    2013-07-01

    Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.

  17. Effect of genomic distance on coexpression of coregulated genes in E. coli

    PubMed Central

    Merino, Enrique; Marchal, Kathleen; Collado-Vides, Julio

    2017-01-01

    In prokaryotes, genomic distance is a feature that in addition to coregulation affects coexpression. Several observations, such as genomic clustering of highly coexpressed small regulons, support the idea that coexpression behavior of coregulated genes is affected by the distance between the coregulated genes. However, the specific contribution of distance in addition to coregulation in determining the degree of coexpression has not yet been studied systematically. In this work, we exploit the rich information in RegulonDB to study how the genomic distance between coregulated genes affects their degree of coexpression, measured by pairwise similarity of expression profiles obtained under a large number of conditions. We observed that, in general, coregulated genes display higher degrees of coexpression as they are more closely located on the genome. This contribution of genomic distance in determining the degree of coexpression was relatively small compared to the degree of coexpression that was determined by the tightness of the coregulation (degree of overlap of regulatory programs) but was shown to be evolutionary constrained. In addition, the distance effect was sufficient to guarantee coexpression of coregulated genes that are located at very short distances, irrespective of their tightness of coregulation. This is partly but definitely not always because the close distance is also the cause of the coregulation. In cases where it is not, we hypothesize that the effect of the distance on coexpression could be caused by the fact that coregulated genes closely located to each other are also relatively more equidistantly located from their common TF and therefore subject to more similar levels of TF molecules. The absolute genomic distance of the coregulated genes to their common TF-coding gene tends to be less important in determining the degree of coexpression. Our results pinpoint the importance of taking into account the combined effect of distance and

  18. Non-nuclear Testing of Reactor Systems in the Early Flight Fission Test Facilities (EFF-TF)

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the &sign and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are "non-nuclear" in nature (e.g. system s nuclear operations are understood). For many systems. thermal simulators can he used to closely mimic fission heat deposition. Axial power profile, radial power profile. and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other NASA centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004.

  19. BOREAS TF-8 NSA-OJP Tower Flux, Meteorological, and Soil Temperature Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Moore, Kathleen E.; Fitzjarrald, David R.

    2000-01-01

    The BOREAS TF-8 team collected energy, CO2, and water vapor flux data at the BOREAS NSA-OJP site during the growing season of 1994 and most of the year for 1996. The data are available in tabular ASCII files.

  20. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  1. Control of developmentally primed erythroid genes by combinatorial co-repressor actions

    PubMed Central

    Stadhouders, Ralph; Cico, Alba; Stephen, Tharshana; Thongjuea, Supat; Kolovos, Petros; Baymaz, H. Irem; Yu, Xiao; Demmers, Jeroen; Bezstarosti, Karel; Maas, Alex; Barroca, Vilma; Kockx, Christel; Ozgur, Zeliha; van Ijcken, Wilfred; Arcangeli, Marie-Laure; Andrieu-Soler, Charlotte; Lenhard, Boris; Grosveld, Frank; Soler, Eric

    2015-01-01

    How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. PMID:26593974

  2. Measurement of microparticle tissue factor activity in clinical samples: A summary of two tissue factor-dependent FXa generation assays.

    PubMed

    Hisada, Yohei; Alexander, Wyeth; Kasthuri, Raj; Voorhees, Peter; Mobarrez, Fariborz; Taylor, Angela; McNamara, Coleen; Wallen, Hakan; Witkowski, Marco; Key, Nigel S; Rauch, Ursula; Mackman, Nigel

    2016-03-01

    Thrombosis is a leading cause of morbidity and mortality. Detection of a prothrombotic state using biomarkers would be of great benefit to identify patients at risk of thrombosis that would benefit from thromboprophylaxis. Tissue factor (TF) is a highly procoagulant protein that under normal conditions is not present in the blood. However, increased levels of TF in the blood in the form of microparticles (MPs) (also called extracellular vesicles) are observed under various pathological conditions. In this review, we will discuss studies that have measured MP-TF activity in a variety of diseases using two similar FXa generation assay. One of the most robust signals for MP-TF activity (16-26 fold higher than healthy controls) is observed in pancreatic cancer patients with venous thromboembolism. In this case, the TF+ MPs appear to be derived from the cancer cells. Surprisingly, cirrhosis and acute liver injury are associated with 17-fold and 38-fold increases in MP-TF activity, respectively. Based on mouse models, we speculate that the TF+ MPs are derived from hepatocytes. More modest increases are observed in patients with urinary tract infections (6-fold) and in a human endotoxemia model (9-fold) where monocytes are the likely source of the TF+ MPs. Finally, there is no increase in MP-TF activity in the majority of cardiovascular disease patients. These studies indicate that MP-TF activity may be a useful biomarker to identify patients with particular diseases that have an increased risk of thrombosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Short initial length quench on CICC of ITER TF coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of themore » voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.« less

  4. Voc Degradation in TF-VLS Grown InP Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yubo; Sun, Xingshu; Johnston, Steve

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the wholemore » sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.« less

  5. Targeting tissue factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor VIIa.

    PubMed

    Shoji, Mamoru; Sun, Aiming; Kisiel, Walter; Lu, Yang J; Shim, Hyunsuk; McCarey, Bernard E; Nichols, Christopher; Parker, Ernest T; Pohl, Jan; Mosley, Cara A; Alizadeh, Aaron R; Liotta, Dennis C; Snyder, James P

    2008-04-01

    Tissue factor (TF) is aberrantly expressed on tumor vascular endothelial cells (VECs) and on cancer cells in many malignant tumors, but not on normal VECs, making it a promising target for cancer therapy. As a transmembrane receptor for coagulation factor VIIa (fVIIa), TF forms a high-affinity complex with its cognate ligand, which is subsequently internalized through receptor-mediated endocytosis. Accordingly, we developed a method for selectively delivering EF24, a potent synthetic curcumin analog, to TF-expressing tumor vasculature and tumors using fVIIa as a drug carrier. EF24 was chemically conjugated to fVIIa through a tripeptide-chloromethyl ketone. After binding to TF-expressing targets by fVIIa, EF24 will be endocytosed along with the drug carrier and will exert its cytotoxicity. Our results showed that the conjugate inhibits vascular endothelial growth factor-induced angiogenesis in a rabbit cornea model and in a Matrigel model in athymic nude mice. The conjugate-induced apoptosis in tumor cells and significantly reduced tumor size in human breast cancer xenografts in athymic nude mice as compared with the unconjugated EF24. By conjugating potent drugs to fVIIa, this targeted drug delivery system has the potential to enhance therapeutic efficacy, while reducing toxic side effects. It may also prove to be useful for treating drug-resistant tumors and micro-metastases in addition to primary tumors.

  6. Computational Identification of Diverse Mechanisms Underlying Transcription Factor-DNA Occupancy

    PubMed Central

    Cheng, Qiong; Kazemian, Majid; Pham, Hannah; Blatti, Charles; Celniker, Susan E.; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh

    2013-01-01

    ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called “STAP,” to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed (“primary”) TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by ≤150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions

  7. Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma

    PubMed Central

    Sun, Jingchun; Gong, Xue; Purow, Benjamin; Zhao, Zhongming

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors (TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies, demonstrates that our network-based approach is promising for the identification of new and important

  8. The PathoYeastract database: an information system for the analysis of gene and genomic transcription regulation in pathogenic yeasts.

    PubMed

    Monteiro, Pedro Tiago; Pais, Pedro; Costa, Catarina; Manna, Sauvagya; Sá-Correia, Isabel; Teixeira, Miguel Cacho

    2017-01-04

    We present the PATHOgenic YEAst Search for Transcriptional Regulators And Consensus Tracking (PathoYeastract - http://pathoyeastract.org) database, a tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in the pathogenic yeasts Candida albicans and C. glabrata Upon data retrieval from hundreds of publications, followed by curation, the database currently includes 28 000 unique documented regulatory associations between transcription factors (TF) and target genes and 107 DNA binding sites, considering 134 TFs in both species. Following the structure used for the YEASTRACT database, PathoYeastract makes available bioinformatics tools that enable the user to exploit the existing information to predict the TFs involved in the regulation of a gene or genome-wide transcriptional response, while ranking those TFs in order of their relative importance. Each search can be filtered based on the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. Promoter analysis tools and interactive visualization tools for the representation of TF regulatory networks are also provided. The PathoYeastract database further provides simple tools for the prediction of gene and genomic regulation based on orthologous regulatory associations described for other yeast species, a comparative genomics setup for the study of cross-species evolution of regulatory networks. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Inhibitory activity of Lactobacillus plantarum TF711 against Clostridium sporogenes when used as adjunct culture in cheese manufacture.

    PubMed

    González, Lorena; Zárate, Victoria

    2015-05-01

    Bacteriocins produced by lactic acid bacteria are of great interest to the food-processing industry as natural preservatives. This work aimed to investigate the efficacy of bacteriocin-producing Lactobacillus plantarum TF711, isolated from artisanal Tenerife cheese, in controlling Clostridium sporogenes during cheese ripening. Cheeses were made from pasteurised milk artificially contaminated with 10(4) spores m/l C. sporogenes. Experimental cheeses were manufactured with Lb. plantarum TF711 added at 1% as adjunct to commercial starter culture. Cheeses made under the same conditions but without Lb. plantarum TF711 served as controls. Evolution of microbiological parameters, pH and NaCl content, as well as bacteriocin production was studied throughout 45 d of ripening. Addition of Lb. plantarum TF711 did not bring about any significant change in starter culture counts, NaCl content and pH, compared with control cheese. In contrast, clostridial spore count in experimental cheeses were significantly lower than in control cheeses from 7 d onwards, reaching a maximum reduction of 2·2 log units on day 21. Inhibition of clostridia found in experimental cheeses was mainly attributed to plantaricin activity, which in fact was recovered from these cheeses.

  10. Evaluation of speciated VOC emission factors for Air Force hush houses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, P.D.; Stevens, D.K.

    1997-12-31

    Data published in: ``Engine and Hush House Emissions from a TF30-P109 Jet Engine Tested at Cannon Air Force Base, NM`` by Radian Corporation and ``Aircraft Emissions. Characterization: TF41-A2, TF30-P103 , and TF30-P109 Engines`` by Battelle are reviewed and compared. Specifically CO, NO{sub x}, and VOC emission factors using EPA Method 19 are addressed, with comparisons between JP-4 and JP-8 jet fuels. CO and NO{sub x} emissions for JP-4 and JP-8 jet fuels were found to be essentially the same. VOC emission data exhibited high variability. Problems inherent in speciated VOC emission testing are discussed. A limiting of speciated VOC emissionmore » testing, with emission factor estimation based on fuel content is proposed.« less

  11. Transferrin Level Before Treatment and Genetic Polymorphism in HFE Gene as Predictive Markers for Response to Adalimumab in Crohn's Disease Patients.

    PubMed

    Repnik, Katja; Koder, Silvo; Skok, Pavel; Ferkolj, Ivan; Potočnik, Uroš

    2016-08-01

    Tumor necrosis factor α inhibitors (anti-TNF) have improved treatment of several complex diseases, including Crohn's disease (CD). However, the effect varies and approximately one-third of the patients do not respond. Since blood parameters as well as genetic factors have shown a great potential to predict response during treatment, the aim of the study was to evaluate response to anti-TNF treatment with adalimumab (ADA) between genes HFE and TF and haematological parameters in Slovenian refractory CD patients. Single nucleotide polymorphisms (SNPs) rs1799852 in gene TF and rs2071303 in gene HFE were genotyped in 68 refractory CD patients for which response has been measured using inflammatory bowel disease questionnaire (IBDQ) index. Haematological parameters and IBDQ index were determined before therapy and after 4, 12, 20 and 30 weeks. We found novel strong association between SNP rs2071303 in gene HFE and response to ADA treatment, particularly patients with G allele comparing to A allele had better response after 20 weeks (p = 0.008). Further, we found strong association between transferrin level at baseline and treatment response after 12, 20 and 30 weeks, where average transferrin level before therapy was lower in responders (2.38 g/L) compared to non-responders (2.89 g/L, p = 0.005). Association was found between transferrin level in week 30 and SNP rs1799852 (p = 0.023), and between MCHC level before treatment and SNP rs2071303 (p = 0.007). Our results suggest that SNP in gene HFE as well as haematological markers serve as promising prognostic markers of response to anti-TNF treatment in CD patients.

  12. Analysis of HFE and non-HFE gene mutations in Brazilian patients with hemochromatosis.

    PubMed

    Bittencourt, Paulo Lisboa; Marin, Maria Lúcia Carnevale; Couto, Cláudia Alves; Cançado, Eduardo Luiz Rachid; Carrilho, Flair José; Goldberg, Anna Carla

    2009-01-01

    Approximately one-half of Brazilian patients with hereditary hemochromatosis (HH) are neither homozygous for the C282Y mutation nor compound heterozygous for the H63D and C282Y mutations that are associated with HH in Caucasians. Other mutations have been described in the HFE gene as well as in genes involved in iron metabolism, such as transferrin receptor 2 (TfR2) and ferroportin 1 (SCL40A1). To evaluate the role of HFE, TfR2 and SCL40A1 mutations in Brazilian subjects with HH. Nineteen male subjects (median age 42 [range: 20-72] years) with HH were evaluated using the Haemochromatosis StripAssay A. This assay is capable of detecting twelve HFE mutations, which are V53M, V59M, H63D, H63H, S65C, Q127H, P160delC, E168Q, E168X, W169X, C282Y and Q283, four TfR2 mutations, which are E60X, M172K, Y250X, AVAQ594-597del, and two SCL40A1 mutations, which are N144H and V162del. In our cohort, nine (47%) patients were homozygous for the C282Y mutation, two (11%) were heterozygous for the H63D mutation, and one each (5%) was either heterozygous for C282Y or compound heterozygous for C282Y and H63D. No other mutations in the HFE, TfR2 or SCL40A1 genes were observed in the studied patients. One-third of Brazilian subjects with the classical phenotype of HH do not carry HFE or other mutations that are currently associated with the disease in Caucasians. This observation suggests a role for other yet unknown mutations in the aforementioned genes or in other genes involved in iron homeostasis in the pathogenesis of HH in Brazil.

  13. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine.

    PubMed

    Ramayo-Caldas, Yuliaxis; Ballester, Maria; Fortes, Marina R S; Esteve-Codina, Anna; Castelló, Anna; Noguera, Jose L; Fernández, Ana I; Pérez-Enciso, Miguel; Reverter, Antonio; Folch, Josep M

    2014-03-26

    Fatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular processes will aid technological development towards improvement of pork meat quality and increased knowledge of FA metabolism, underpinning metabolic diseases in humans. The results from genome-wide association studies (GWAS) across 15 phenotypes were subjected to an Association Weight Matrix (AWM) approach to predict a network of 1,096 genes related to intramuscular FA composition in pigs. To identify the key regulators of FA metabolism, we focused on the minimal set of transcription factors (TF) that the explored the majority of the network topology. Pathway and network analyses pointed towards a trio of TF as key regulators of FA metabolism: NCOA2, FHL2 and EP300. Promoter sequence analyses confirmed that these TF have binding sites for some well-know regulators of lipid and carbohydrate metabolism. For the first time in a non-model species, some of the co-associations observed at the genetic level were validated through co-expression at the transcriptomic level based on real-time PCR of 40 genes in adipose tissue, and a further 55 genes in liver. In particular, liver expression of NCOA2 and EP300 differed between pig breeds (Iberian and Landrace) extreme in terms of fat deposition. Highly clustered co-expression networks in both liver and adipose tissues were observed. EP300 and NCOA2 showed centrality parameters above average in the both networks. Over all genes, co-expression analyses confirmed 28.9% of the AWM predicted gene-gene interactions in liver and 33.0% in adipose tissue. The magnitude of this validation varied across genes, with up to 60.8% of the connections of NCOA2 in adipose tissue being validated via co-expression. Our

  14. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes

    PubMed Central

    Chandra, Sruti; Terragni, Jolyon; Zhang, Guoqiang; Pradhan, Sriharsa; Haushka, Stephen; Johnston, Douglas; Baribault, Carl; Lacey, Michelle; Ehrlich, Melanie

    2015-01-01

    Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes. PMID:26041816

  15. Engineering of a membrane-triggered activity switch in coagulation factor VIIa

    PubMed Central

    Nielsen, Anders L.; Sorensen, Anders B.; Holmberg, Heidi L.; Gandhi, Prafull S.; Karlsson, Johan; Buchardt, Jens; Lamberth, Kasper; Kjelgaard-Hansen, Mads; Ley, Carsten Dan; Sørensen, Brit B.; Ruf, Wolfram; Olsen, Ole H.; Østergaard, Henrik

    2017-01-01

    Recombinant factor VIIa (FVIIa) variants with increased activity offer the promise to improve the treatment of bleeding episodes in patients with inhibitor-complicated hemophilia. Here, an approach was adopted to enhance the activity of FVIIa by selectively optimizing substrate turnover at the membrane surface. Under physiological conditions, endogenous FVIIa engages its cell-localized cofactor tissue factor (TF), which stimulates activity through membrane-dependent substrate recognition and allosteric effects. To exploit these properties of TF, a covalent complex between FVIIa and the soluble ectodomain of TF (sTF) was engineered by introduction of a nonperturbing cystine bridge (FVIIa Q64C-sTF G109C) in the interface. Upon coexpression, FVIIa Q64C and sTF G109C spontaneously assembled into a covalent complex with functional properties similar to the noncovalent wild-type complex. Additional introduction of a FVIIa-M306D mutation to uncouple the sTF-mediated allosteric stimulation of FVIIa provided a final complex with FVIIa-like activity in solution, while exhibiting a two to three orders-of-magnitude increase in activity relative to FVIIa upon exposure to a procoagulant membrane. In a mouse model of hemophilia A, the complex normalized hemostasis upon vascular injury at a dose of 0.3 nmol/kg compared with 300 nmol/kg for FVIIa. PMID:29109275

  16. AC loss, interstrand resistance and mechanical properties of prototype EU DEMO TF conductors up to 30 000 load cycles

    NASA Astrophysics Data System (ADS)

    Yagotintsev, K.; Nijhuis, A.

    2018-07-01

    Two prototype Nb3Sn cable-in-conduit conductors conductors were designed and manufactured for the toroidal field (TF) magnet system of the envisaged European DEMO fusion reactor. The AC loss, contact resistance and mechanical properties of two sample conductors were tested in the Twente Cryogenic Cable Press under cyclic load up to 30 000 cycles. Though both conductors were designed to operate at 82 kA in a background magnetic field of 13.6 T, they reflect different approaches with respect to the magnet winding pack assembly. The first approach is based on react and wind technology while the second is the more common wind and react technology. Each conductor was tested first for AC loss in virgin condition without handling. The impact of Lorentz load during magnet operation was simulated using the cable press. In the press each conductor specimen was subjected to transverse cyclic load up to 30 000 cycles in liquid helium bath at 4.2 K. Here a summary of results for AC loss, contact resistance, conductor deformation, mechanical heat production and conductor stiffness evolution during cycling of the load is presented. Both conductors showed similar mechanical behaviour but quite different AC loss. In comparison with previously tested ITER TF conductors, both DEMO TF conductors possess very low contact resistance resulting in high coupling loss. At the same time, load cycling has limited impact on properties of DEMO TF conductors in comparison with ITER TF conductors.

  17. BOREAS TF-1 SSA-OA Tower Flux, Meteorological, and Soil Temperature Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Black, T. Andrew; Chen, Z.; Nesic, Zoran

    2000-01-01

    The BOREAS TF-1 team collected energy, carbon dioxide, and momentum flux data above the canopy along with meteorological and soils data at the BOREAS SSA-OA site from mid-April to the end of the year for 1996. The data are available in tabular ASCII files.

  18. Indications, usage, and dosage of the transfer factor.

    PubMed

    Berrón-Pérez, Renato; Chávez-Sánchez, Raúl; Estrada-García, Iris; Espinosa-Padilla, Sara; Cortez-Gómez, Rudyard; Serrano-Miranda, Ernestina; Ondarza-Aguilera, Rodolfo; Pérez-Tapia, Mayra; Pineda Olvera, Benjamín; Jiménez-Martínez, María del Carmen; Portugués, Abraham; Rodríguez, Azucena; Cano, Laura; Pacheco, Pedro Urcino; Barrientos, Javier; Chacón, Rommel; Serafín, Jeannet; Mendez, Patricia; Monges, Abelardo; Cervantes, Edgar; Estrada-Parra, Sergio

    2007-01-01

    The transfer factor (TF) was described in 1955 by S. Lawrence. In 1992 Kirkpatrick characterized the specific TF at molecular level. The TF is constituted by a group of numerous molecules, of low molecular weight, from 1.0 to 6.0 kDa. The 5 kDa fraction corresponds to the TF specific to antigens. There are a number of publications about the clinical indications of the TF for diverse diseases, in particular those where the cellular immune response is compromised or in those where there is a deficient regulation of the immune response. In this article we present our clinical and basic experiences, especially regarding the indications, usage and dosage of the TF. Our group demonstrated that the TF increases the expression of IFN-gamma and RANTES, while decreases the expression of osteopontine. Using animal models we have worked with M. tuberculosis, and with a model of glioma with good therapeutic results. In the clinical setting we have worked with herpes zoster, herpes simplex type I, herpetic keratitis, atopic dermatitis, osteosarcoma, tuberculosis, asthma, post-herpetic neuritis, anergic coccidioidomycosis, leishmaniasis, toxoplasmosis, mucocutaneous candidiasis, pediatric infections produced by diverse pathogen germs, sinusitis, pharyngitis, and otits media. All of these diseases were studied through protocols which main goals were to study the therapeutic effects of the TF, and to establish in a systematic way diverse dosage schema and time for treatment to guide the prescription of the TF.

  19. Classifying transcription factor targets and discovering relevant biological features

    PubMed Central

    Holloway, Dustin T; Kon, Mark; DeLisi, Charles

    2008-01-01

    Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs) and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved ranking method to reveal the biological features contributing to regulation. The classifiers combine 8 genomic datasets covering a broad range of measurements including sequence conservation, sequence overrepresentation, gene expression, and DNA structural properties. Principal Findings (1) Application of the method yields an amplification of information about yeast regulators. The ratio of total targets to previously known targets is greater than 2 for 11 TFs, with several having larger gains: Ash1(4), Ino2(2.6), Yaf1(2.4), and Yap6(2.4). (2) Many predicted targets for TFs match well with the known biology of their regulators. As a case study we discuss the regulator Swi6, presenting evidence that it may be important in the DNA damage response, and that the previously uncharacterized gene YMR279C plays a role in DNA damage response and perhaps in cell-cycle progression. (3) A procedure based on recursive-feature-elimination is able to uncover from the large initial data sets those features that best distinguish targets for any TF, providing clues relevant to its biology. An analysis of Swi6 suggests a possible role in lipid metabolism, and more specifically in metabolism of ceramide, a bioactive lipid currently being investigated for anti-cancer properties. (4) An analysis of global network properties highlights the transcriptional network hubs; the factors which control the most genes and the genes which are bound by the largest set of regulators. Cell-cycle and growth related

  20. Evidence for the packaging of multiple copies of Tf1 mRNA into particles and the trans priming of reverse transcription.

    PubMed

    Haag, A L; Lin, J H; Levin, H L

    2000-08-01

    Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA.

  1. Evidence for the Packaging of Multiple Copies of Tf1 mRNA into Particles and the trans Priming of Reverse Transcription

    PubMed Central

    Haag, Amanda Leigh; Lin, Jia-Hwei; Levin, Henry L.

    2000-01-01

    Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA. PMID:10888658

  2. Inferring genome-wide functional modulatory network: a case study on NF-κB/RelA transcription factor.

    PubMed

    Li, Xueling; Zhu, Min; Brasier, Allan R; Kudlicki, Andrzej S

    2015-04-01

    How different pathways lead to the activation of a specific transcription factor (TF) with specific effects is not fully understood. We model context-specific transcriptional regulation as a modulatory network: triplets composed of a TF, target gene, and modulator. Modulators usually affect the activity of a specific TF at the posttranscriptional level in a target gene-specific action mode. This action may be classified as enhancement, attenuation, or inversion of either activation or inhibition. As a case study, we inferred, from a large collection of expression profiles, all potential modulations of NF-κB/RelA. The predicted modulators include many proteins previously not reported as physically binding to RelA but with relevant functions, such as RNA processing, cell cycle, mitochondrion, ubiquitin-dependent proteolysis, and chromatin modification. Modulators from different processes exert specific prevalent action modes on distinct pathways. Modulators from noncoding RNA, RNA-binding proteins, TFs, and kinases modulate the NF-κB/RelA activity with specific action modes consistent with their molecular functions and modulation level. The modulatory networks of NF-κB/RelA in the context epithelial-mesenchymal transition (EMT) and burn injury have different modulators, including those involved in extracellular matrix (FBN1), cytoskeletal regulation (ACTN1), and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long intergenic nonprotein coding RNA, and tumor suppression (FOXP1) for EMT, and TXNIP, GAPDH, PKM2, IFIT5, LDHA, NID1, and TPP1 for burn injury.

  3. Selective tissue factor/factor VIIa Inhibitor, ER-410660, and its prodrug, E5539, have anti-venous and anti-arterial thrombotic effects with a low risk of bleeding.

    PubMed

    Nagakura, Tadashi; Tabata, Kimiyo; Kira, Kazunobu; Hirota, Shinsuke; Clark, Richard; Matsuura, Fumiyoshi; Hiyoshi, Hironobu

    2013-08-01

    Many anticoagulant drugs target factors common to both the intrinsic and extrinsic coagulation pathways, which may lead to bleeding complications. Since the tissue factor (TF)/factor VIIa complex is associated with thrombosis onset and specifically activates the extrinsic coagulation pathway, compounds that inhibit this complex may provide therapeutic and/or prophylactic benefits with a decreased risk of bleeding. The in vitro enzyme profile and anticoagulation selectivity of the TF/VIIa complex inhibitor, ER-410660, and its prodrug E5539 were assessed using enzyme inhibitory and plasma clotting assays. In vivo effects of ER-410660 and E5539 were determined using a TF-induced, thrombin generation rhesus monkey model; a stasis-induced, venous thrombosis rat model; a photochemically induced, arterial thrombosis rat model; and a rat tail-cut bleeding model. ER-410660 selectively prolonged prothrombin time, but had a less potent anticoagulant effect on the intrinsic pathway. It also exhibited a dose-dependent inhibitory effect on thrombin generation caused by TF-injection in the rhesus monkey model. ER-410660 also reduced venous thrombus weights in the TF-administered, stasis-induced, venous thrombosis rat model and prolonged the occlusion time induced by arterial thrombus formation after vascular injury. The compound was capable of doubling the total bleeding time in the rat tail-cut model, albeit with a considerably higher dose compared to the effective dose in the venous and arterial thrombosis models. Moreover, E5539, an orally available ER-410660 prodrug, reduced the thrombin-anti-thrombin complex levels, induced by TF-injection, in a dose-dependent manner. Selective TF/VIIa inhibitors have potential as novel anticoagulants with a lower propensity for enhancing bleeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. BOREAS TF-11 CO2 and CH4 Concentration Data from the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara (Editor); Valentine, David W.

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains temperature, pH, and concentration profiles of methane and carbon dioxide within the surface 50 cm of peat. The measurements were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitro-gen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. The data set covers the period from the first week of June 1994 through the second week of September 1994. The data are stored in tabular ASCII files.

  5. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid

    PubMed Central

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-01-01

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5′-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5′-TGTAAGCCCTAACA-3′) upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network. PMID:26581248

  6. BOREAS TF-3 NSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven; Sutton, Doug; Goulden, Mike; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-3) team collected tower flux, surface meteorological, and soil temperature data at the BOREAS Northern Study Area-Old Black Spruce (NSA-OBS) site continuously from the March 1994 through October 1996. The data are available in tabular ASCII files.

  7. BOREAS TF-1 SSA-OA Understory Flux, Meteorological, and Soil Temperature Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Black, T. Andrew; Chen, Z.; Nesic, Zoran

    2000-01-01

    The BOREAS TF-1 team collected energy, carbon dioxide, and momentum flux data under the canopy along with meteorological and soils data at the BOREAS SSA-OA site from mid-October to mid-November of 1993 and throughout all of 1994. The data are available in tabular ASCII files.

  8. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape.

    PubMed

    Dai, Hanjun; Umarov, Ramzan; Kuwahara, Hiroyuki; Li, Yu; Song, Le; Gao, Xin

    2017-11-15

    An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods. Our program is freely available at https://github.com/ramzan1990/sequence2vec. xin.gao@kaust.edu.sa or lsong@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  9. Purification and characterization of human mitochondrial transcription factor 1.

    PubMed Central

    Fisher, R P; Clayton, D A

    1988-01-01

    We purified to near homogeneity a transcription factor from human KB cell mitochondria. This factor, designated mitochondrial transcription factor 1 (mtTF1), is required for the in vitro recognition of both major promoters of human mitochondrial DNA by the homologous mitochondrial RNA polymerase. Furthermore, it has been shown to bind upstream regulatory elements of the two major promoters. After separation from RNA polymerase by phosphocellulose chromatography, mtTF1 was chromatographed on a MonoQ anion-exchange fast-performance liquid chromatography column. Analysis of mtTF1-containing fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single major polypeptide with an Mr of approximately 25,000. Centrifugation in analytical glycerol gradients indicated a sedimentation coefficient of approximately 2.5 S, consistent with a monomeric 25-kilodalton protein. Finally, when the 25-kilodalton polypeptide was excised from a stained sodium dodecyl sulfate-polyacrylamide gel and allowed to renature, it regained DNA-binding and transcriptional stimulatory activities at both promoters. Although mtTF1 is the only mitochondrial DNA-binding transcription factor to be purified and characterized, its properties, such as a high affinity for random DNA and a weak specificity for one of its target sequences, may typify this class of regulatory proteins. Images PMID:3211148

  10. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance.

    PubMed

    Agarwal, Pradeep K; Gupta, Kapil; Lopato, Sergiy; Agarwal, Parinita

    2017-04-01

    Dehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses. We also discuss existing issues in applications of DREB TFs for engineering of enhanced stress tolerance and improved performance under stress of transgenic crop plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.

    PubMed

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M; Remsberg, Jarrett R; Jager, Jennifer; Soccio, Raymond E; Steger, David J; Lazar, Mitchell A

    2015-06-26

    Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. Copyright © 2015, American Association for the Advancement of Science.

  12. Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Yingbo; Chang Guodong; Zhan Shunli

    2008-06-06

    The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, whichmore » implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.« less

  13. Identification of Putative Precursor Genes for the Biosynthesis of Cannabinoid-Like Compound in Radula marginata

    PubMed Central

    Hussain, Tajammul; Plunkett, Blue; Ejaz, Mahwish; Espley, Richard V.; Kayser, Oliver

    2018-01-01

    The liverwort Radula marginata belongs to the bryophyte division of land plants and is a prospective alternate source of cannabinoid-like compounds. However, mechanistic insights into the molecular pathways directing the synthesis of these cannabinoid-like compounds have been hindered due to the lack of genetic information. This prompted us to do deep sequencing, de novo assembly and annotation of R. marginata transcriptome, which resulted in the identification and validation of the genes for cannabinoid biosynthetic pathway. In total, we have identified 11,421 putative genes encoding 1,554 enzymes from 145 biosynthetic pathways. Interestingly, we have identified all the upstream genes of the central precursor of cannabinoid biosynthesis, cannabigerolic acid (CBGA), including its two first intermediates, stilbene acid (SA) and geranyl diphosphate (GPP). Expression of all these genes was validated using quantitative real-time PCR. We have characterized the protein structure of stilbene synthase (STS), which is considered as a homolog of olivetolic acid in R. marginata. Moreover, the metabolomics approach enabled us to identify CBGA-analogous compounds using electrospray ionization mass spectrometry (ESI-MS/MS) and gas chromatography mass spectrometry (GC-MS). Transcriptomic analysis revealed 1085 transcription factors (TF) from 39 families. Comparative analysis showed that six TF families have been uniquely predicted in R. marginata. In addition, the bioinformatics analysis predicted a large number of simple sequence repeats (SSRs) and non-coding RNAs (ncRNAs). Our results collectively provide mechanistic insights into the putative precursor genes for the biosynthesis of cannabinoid-like compounds and a novel transcriptomic resource for R. marginata. The large-scale transcriptomic resource generated in this study would further serve as a reference transcriptome to explore the Radulaceae family.

  14. ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product?

    PubMed

    Dinan, Adam M; Atkins, John F; Firth, Andrew E

    2017-10-16

    Programmed ribosomal frameshifting (PRF) is a gene expression mechanism which enables the translation of two N-terminally coincident, C-terminally distinct protein products from a single mRNA. Many viruses utilize PRF to control or regulate gene expression, but very few phylogenetically conserved examples are known in vertebrate genes. Additional sex combs-like (ASXL) genes 1 and 2 encode important epigenetic and transcriptional regulatory proteins that control the expression of homeotic genes during key developmental stages. Here we describe an ~150-codon overlapping ORF (termed TF) in ASXL1 and ASXL2 that, with few exceptions, is conserved throughout vertebrates. Conservation of the TF ORF, strong suppression of synonymous site variation in the overlap region, and the completely conserved presence of an EH[N/S]Y motif (a known binding site for Host Cell Factor-1, HCF-1, an epigenetic regulatory factor), all indicate that TF is a protein-coding sequence. A highly conserved UCC_UUU_CGU sequence (identical to the known site of +1 ribosomal frameshifting for influenza virus PA-X expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL1. Similarly, a highly conserved RG_GUC_UCU sequence (identical to a known site of -2 ribosomal frameshifting for arterivirus nsp2TF expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL2. Due to a lack of appropriate splice forms, or initiation sites, the most plausible mechanism for translation of the ASXL1 and 2 TF regions is ribosomal frameshifting, resulting in a transframe fusion of the N-terminal half of ASXL1 or 2 to the TF product, termed ASXL-TF. Truncation or frameshift mutants of ASXL are linked to myeloid malignancies and genetic diseases, such as Bohring-Opitz syndrome, likely at least in part as a result of gain-of-function or dominant-negative effects. Our hypothesis now indicates that these disease-associated mutant forms represent

  15. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow.

    PubMed

    Zhu, Shu; Travers, Richard J; Morrissey, James H; Diamond, Scott L

    2015-09-17

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) -bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm(2). Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm(2) and sensitive to O1A6 at 0 to 0.2 molecules per µm(2). However, neither antibody reduced fibrin generation at ∼2 molecules per µm(2) when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm(2)) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. © 2015 by The American Society of Hematology.

  16. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow

    PubMed Central

    Zhu, Shu; Travers, Richard J.; Morrissey, James H.

    2015-01-01

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) –bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm2. Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm2 and sensitive to O1A6 at 0 to 0.2 molecules per µm2. However, neither antibody reduced fibrin generation at ∼2 molecules per µm2 when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm2) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. PMID:26136249

  17. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway.

    PubMed

    Yang, Tongren; Yao, Sufei; Hao, Lin; Zhao, Yuanyuan; Lu, Wenjing; Xiao, Kai

    2016-11-01

    Wheat bHLH family gene TabHLH1 is responsive to drought and salt stresses, and it acts as one crucial regulator in mediating tolerance to aforementioned stresses largely through an ABA-associated pathway. Osmotic stresses are adverse factors for plant growth and crop productivity. In this study, we characterized TabHLH1, a gene encoding wheat bHLH-type transcription factor (TF) protein, in mediating plant adaptation to osmotic stresses. TabHLH1 protein contains a conserved basic-helix-loop-helix (bHLH) domain shared by its plant counterparts. Upon PEG-simulated drought stress, salt stress, and exogenous abscisic acid (ABA), the TabHLH1 transcripts in roots and leaves were induced. Under PEG-simulated drought stress and salt stress treatments, the tobacco seedlings with TabHLH1 overexpression exhibited improved growth and osmotic stress-associated traits, showing increased biomass and reduced leaf water loss rate (WLR) relative to wild type (WT). The transgenic lines also possessed promoted stomata closure under drought stress, salt stress, and exogenous ABA and increased proline and soluble sugar contents and reduced hydrogen peroxide (H 2 O 2 ) amount under osmotic stress conditions, indicating that TabHLH1-mediated osmolyte accumulation and cellular ROS homeostasis contributed to the drought stress and salt stress tolerance. NtPYL12 and NtSAPK2;1, the genes encoding ABA receptor and SnRK2 family kinase, respectively, showed up-regulated expression in lines overexpressing TabHLH1 under osmotic stress and exogenous ABA conditions; overexpression of them conferred plants modified stomata movement, leaf WLR, and growth feature under drought and high salinity, suggesting that these ABA-signaling genes are mediated by wheat TabHLH1 gene and involved in regulating plant responses to simulated drought and salt stresses. Our investigation indicates that the TabHLH1 gene plays critical roles in plant tolerance to osmotic stresses largely through an ABA-dependent pathway.

  18. Low-Energy Ultrasound Treatment Improves Regional Tumor Vessel Infarction by Retargeted Tissue Factor.

    PubMed

    Brand, Caroline; Dencks, Stefanie; Schmitz, Georg; Mühlmeister, Mareike; Stypmann, Jörg; Ross, Rebecca; Hintelmann, Heike; Schliemann, Christoph; Müller-Tidow, Carsten; Mesters, Rolf M; Berdel, Wolfgang E; Schwöppe, Christian

    2015-07-01

    To enhance the regional antitumor activity of the vascular-targeting agent truncated tissue factor (tTF)-NGR by combining the therapy with low-energy ultrasound (US) treatment. For the in vitro US exposure of human umbilical vein endothelial cells (HUVECs), cells were put in the focus of a US transducer. For analysis of the US-induced phosphatidylserine (PS) surface concentration on HUVECs, flow cytometry was used. To demonstrate the differences in the procoagulatory efficacy of TF-derivative tTF-NGR on binding to HUVECs with a low versus high surface concentration of PS, we performed factor X activation assays. For low-energy US pretreatment, HT1080 fibrosarcoma xenotransplant-bearing nude mice were treated by tumor-regional US-mediated stimulation (ie, destruction) of microbubbles. The therapy cohorts received the tumor vessel-infarcting tTF-NGR protein with or without US pretreatment (5 minutes after US stimulation via intraperitoneal injection on 3 consecutive days). Combination therapy experiments with xenotransplant-bearing nude mice significantly increased the antitumor activity of tTF-NGR by regional low-energy US destruction of vascular microbubbles in tumor vessels shortly before application of tTF-NGR (P < .05). Mechanistic studies proved the upregulation of anionic PS on the outer leaflet of the lipid bilayer of endothelial cell membranes by low-energy US and a consecutive higher potential of these preapoptotic endothelial cells to activate coagulation via tTF-NGR and coagulation factor X as being a basis for this synergistic activity. Combining retargeted tTF to tumor vessels with proapoptotic stimuli for the tumor vascular endothelium increases the antitumor effects of tumor vascular infarction. Ultrasound treatment may thus be useful in this respect for regional tumor therapy. © 2015 by the American Institute of Ultrasound in Medicine.

  19. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions

    NASA Astrophysics Data System (ADS)

    Kolthammer, Jeffrey A.; Su, Kuan-Hao; Grover, Anu; Narayanan, Manoj; Jordan, David W.; Muzic, Raymond F.

    2014-07-01

    This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2-2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8-5.1 mm FWHM), sensitivity (7.3 cps kBq-1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241-609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies.

  20. TfVPS32 Regulates Cell Division in the Parasite Tritrichomonas foetus.

    PubMed

    Iriarte, Lucrecia S; Midlej, Victor; Frontera, Lorena S; Moros Duarte, Daniel; Barbeito, Claudio G; de Souza, Wanderley; Benchimol, Marlene; de Miguel, Natalia; Coceres, Veronica M

    2018-01-01

    The flagellated protist Tritrichomonas foetus is a parasite that causes bovine trichomonosis, a major sexually transmitted disease in cattle. Cell division has been described as a key player in controlling cell survival in other cells, including parasites but there is no information on the regulation of this process in T. foetus. The regulation of cytokinetic abscission, the final stage of cell division, is mediated by members of the ESCRT (endosomal sorting complex required for transport) machinery. VPS32 is a subunit within the ESCRTIII complex and here, we report that TfVPS32 is localized on cytoplasmic vesicles and a redistribution of the protein to the midbody is observed during the cellular division. In concordance with its localization, deletion of TfVPS32 C-terminal alpha helices (α5 helix and/or α4-5 helix) leads to abnormal T. foetus growth, an increase in the percentage of multinucleated parasites and cell cycle arrest at G2/M phase. Together, these results indicate a role of this protein in controlling normal cell division. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  1. p27{sup Kip1} inhibits tissue factor expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitenstein, Alexander, E-mail: alexander.breitenstein@usz.ch; Cardiovascular Research, Physiology Institute, University of Zurich; Center for Integrative Human Physiology

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells wasmore » achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.« less

  2. Prostaglandin E2 Regulates Its Own Inactivating Enzyme, 15-PGDH, by EP2 Receptor-Mediated Cervical Cell-Specific Mechanisms

    PubMed Central

    Kishore, A. Hari; Owens, David

    2014-01-01

    Context: Prostaglandins play important roles in parturition and have been used to induce cervical ripening and labor. Prior to cervical ripening at term, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is highly expressed in the cervix and metabolizes cyclooxygenase-2-mediated increases in active prostaglandin E2 (PGE2) to inactive 15-keto PGE2. At term, 15-PGDH gene expression decreases and PGE2 accumulates, leading to cervical ripening and labor. Previously, we found that the cervical isoform of microphthalmia-associated transcription factor (MiTF-CX) serves as a progestational transcription factor that represses IL-8 and hypoxia-mediated increases in cyclooxygenase-2. Objective: We tested the hypothesis that PGE2 regulates its own inactivation through MiTF-CX. Design: We used human cervical stromal cells to investigate the regulation of 15-PGDH. Setting: This was a laboratory-based study using cells from clinical tissue samples. Main Outcome Measures: We evaluated the mechanisms by which PGE2 regulates 15-PGDH in human cervical stromal cells. Results: PGE2 repressed MiTF-CX and 15-PGDH, whereas ectopic overexpression of MiTF-CX induced 15-PGDH expression levels. Stabilization of HIF-1α by deferoxamine resulted in concomitant down-regulation of MiTF-CX and 15-PGDH. Ectopic overexpression of MiTF-CX abrogated PGE2- and deferoxamine-mediated loss of MiTF-CX and 15-PGDH. PGE2-induced loss of MiTF-CX and 15-PGDH was mediated through prostaglandin E2 receptor (EP2) receptors (PTGER2), but not cAMP. Conclusions: The 15-PGDH gene is a MiTF-CX target gene in cervical stromal cells and is down-regulated by PGE2 through EP2 receptors. The findings suggest that EP2 receptor-specific antagonists may be used as an adjunct to present clinical management for the prevention of preterm cervical ripening and preterm labor. PMID:24471568

  3. A Radish Basic Helix-Loop-Helix Transcription Factor, RsTT8 Acts a Positive Regulator for Anthocyanin Biosynthesis

    PubMed Central

    Lim, Sun-Hyung; Kim, Da-Hye; Kim, Jae K.; Lee, Jong-Yeol; Ha, Sun-Hwa

    2017-01-01

    The MYB-bHLH-WDR (MBW) complex activates anthocyanin biosynthesis through the transcriptional regulation. RsMYB1 has been identified as a key player in anthocyanin biosynthesis in red radish (Raphanus sativus L.), but its partner bHLH transcription factor (TF) remains to be determined. In this study, we isolated a bHLH TF gene from red radish. Phylogenetic analysis indicated that this gene belongs to the TT8 clade of the IIIF subgroup of bHLH TFs, and we thus designated this gene RsTT8. Subcellular localization analysis showed that RsTT8-sGFP was localized to the nuclei of Arabidopsis thaliana protoplasts harboring the RsTT8-sGFP construct. We evaluated anthocyanin biosynthesis and RsTT8 expression levels in three radish varieties (N, C, and D) that display different red phenotypes in the leaves, root flesh, and root skins. The root flesh of the C variety and the leaves and skins of the D variety exhibit intense red pigmentation; in these tissues, RsTT8 expression showed totally positive association with the expression of RsMYB1 TF and of five of eight tested anthocyanin biosynthesis genes (i.e., RsCHS, RsCHI, RsF3H, RsDFR, and RsANS). Heterologous co-expression of both RsTT8 and RsMYB1 in tobacco leaves dramatically increased the expression of endogenous anthocyanin biosynthesis genes and anthocyanin accumulation. Furthermore, a yeast two-hybrid assay showed that RsTT8 interacts with RsMYB1 at the MYB-interacting region (MIR), and a transient transactivation assay indicated that RsTT8 activates the RsCHS and RsDFR promoters when co-expressed with RsMYB1. Complementation of the Arabidopsis tt8-1 mutant, which lacks red pigmentation in the leaves and seeds, with RsTT8 restored red pigmentation, and resulted in high anthocyanin and proanthocyanidin contents in the leaves and seeds, respectively. Together, these results show that RsTT8 functions as a regulatory partner with RsMYB1 during anthocyanin biosynthesis. PMID:29167678

  4. Investigation of mechanisms of mesenchymal stem cells for treatment of diabetic nephropathy via construction of a miRNA-TF-mRNA network

    PubMed Central

    Yang, Hailing; Zhang, Xiaofei; Xin, Guangda

    2018-01-01

    Abstract Background: Recent studies have reported that mesenchymal stem cells (MSCs) exert therapeutic effects on the treatment of diabetic nephropathy (DN), but the underlying mechanisms remain unclear. Methods: A dataset GSE65561 was obtained from Gene Expression Omnibus (GEO) database, which contained four healthy control samples (group 1), four healthy controls samples co-cultured with MSCs (group 2), five DN samples (group 3) and five DN samples co-cultured with MSCs (group 4). The differentially expressed genes (DEGs) between group 3 vs. group 1 and group 4 vs. group 2 were constructed using Linear Models for Microarray (LIMMA) package package. Then, DAVID was used to analyze the functional enrichment of DEGs. Based on STRING database the protein-protein interaction (PPI) network was visualized by the Cytoscape plug-in CytoNCA. Besides, the hub miRNAs and transcription factors (TFs) regulating DEGs were predicted using Webgestalt. Results: Totally, 303 up-regulated and 88 down-regulated DEGs were shared in group 3 vs. group 1 and group 4 vs. group 2. Besides, the up-regulated DEGs were mainly enriched in ‘translation’ and ‘translational elongation’, while the down-regulated genes were only enriched in ‘protein kinase activity’. RPS27A and RPLP0 had a higher degree in the PPI network and they were regulated by EIF3M. In addition, ETF1 was predicted to be an important gene, which was regulated by miR-150, miR-134 and EIF2S1. Conclusions: RPS27A, RPLP0 and ETF1 may be potential targets for MSCs on the treatment of DN.HighlightsRPS27A and RPLP0 may be important genes in the treatment of MSCs for DN.TF EIF3M may play a key role in the treatment of MSCs for DN.MiR-150 and miR-134 may be essential microRNAs in the treatment of MSCs for DN. PMID:29532746

  5. Unusual solvatochromic absorbance probe behaviour within mixtures of poly(ethylene glycol)-400 + ionic liquid, [bmim][Tf2N

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Ali, Maroof; Malik, Nisar Ahmad; Uzair, Sahar

    2014-03-01

    The potentially green solvents made up of ionic liquids (ILs) and poly(ethylene glycols) may have wide range of the applications in many chemical and biochemical fields. In the present work, solvatochromic absorbance probe behaviour is used to assess the physicochemical properties of the mixtures composed of PEG-400 + IL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., ETN , indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][Tf2N] + PEG-400 mixtures to be even higher than that of neat [bmim][Tf2N], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (π∗) obtained separately from the electronic absorbance response of probe N,N-diethyl-4-nitroaniline, and the HBD acidity (α) of PEG-400 + [bmim][Tf2N] mixtures are also observed to be anomalously high. A comparative study of the PEG + IL mixtures has also been done with PEG-400 + molecular organic solvents (protic polar [methanol], aprotic polar [N,N-dimethylformamide], and non polar, [benzene]) mixtures, but these mixtures do not show this type of unusual behaviour. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within PEG-400 + different solvent mixtures.

  6. BOREAS TF-2 SSA-OA Tethersonde Meteorological and Ozone Data

    NASA Technical Reports Server (NTRS)

    Arnold, A. James; Mickle, Robert E.; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux-2 (BOREAS TF-2) team collected meteorological and ozone measurements from instruments mounted below a tethered balloon. These data were collected at the Southern Study Area Old Aspen (SSA-OA) site to extend meteorological and ozone measurements made from the flux tower to heights of 300 m. The tethersonde operated during the fall of 1993 and the spring, summer, and fall of 1994. The data are available in tabular ASCII files.

  7. Factors related to attrition from trauma-focused cognitive behavioral therapy.

    PubMed

    Wamser-Nanney, Rachel; Steinzor, Cazzie E

    2017-04-01

    Attrition from child trauma-focused treatments such as Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) is common; yet, the factors of children who prematurely terminate are unknown. The aim of the current study was to identify risk factors for attrition from TF-CBT. One hundred and twenty-two children (ages 3-18; M=9.97, SD=3.56; 67.2% females; 50.8% Caucasian) who received TF-CBT were included in the study. Demographic and family variables, characteristics of the trauma, and caregiver- and child-reported pretreatment symptoms levels were assessed in relation to two operational definitions of attrition: 1) clinician-rated dropout, and 2) whether the child received an adequate dose of treatment (i.e., 12 or more sessions). Several demographic factors, number of traumatic events, and children's caregiver-rated pretreatment symptoms were related to clinician-rated dropout. Fewer factors were associated with the adequate dose definition. Child Protective Services involvement, complex trauma exposure, and child-reported pretreatment trauma symptoms were unrelated to either attrition definition. Demographics, trauma characteristics, and level of caregiver-reported symptoms may help to identify clients at risk for premature termination from TF-CBT. Clinical and research implications for different operational definitions and suggestions for future work will be presented. Published by Elsevier Ltd.

  8. Bioinformatic analysis of the effects and mechanisms of decitabine and cytarabine on acute myeloid leukemia

    PubMed Central

    Zhou, Shiyong; Liu, Pengfei; Zhang, Huilai

    2017-01-01

    Acute myeloid leukemia (AML) is a frequently occurring malignant disease of the blood and may result from a variety of genetic disorders. The present study aimed to identify the underlying mechanisms associated with the therapeutic effects of decitabine and cytarabine on AML, using microarray analysis. The microarray datasets GSE40442 and GSE40870 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially methylated sites were identified in AML cells treated with decitabine compared with those treated with cytarabine via the Linear Models for Microarray Data package, following data pre-processing. Gene Ontology (GO) analysis of DEGs was performed using the Database for Annotation, Visualization and Integrated Analysis Discovery. Genes corresponding to the differentially methylated sites were obtained using the annotation package of the methylation microarray platform. The overlapping genes were identified, which exhibited the opposite variation trend between gene expression and DNA methylation. Important transcription factor (TF)-gene pairs were screened out, and a regulated network subsequently constructed. A total of 190 DEGs and 540 differentially methylated sites were identified in AML cells treated with decitabine compared with those treated with cytarabine. A total of 36 GO terms of DEGs were enriched, including nucleosomes, protein-DNA complexes and the nucleosome assembly. The 540 differentially methylated sites were located on 240 genes, including the acid-repeat containing protein (ACRC) gene that was additionally differentially expressed. In addition, 60 TF pairs and overlapped methylated sites, and 140 TF-pairs and DEGs were screened out. The regulated network included 68 nodes and 140 TF-gene pairs. The present study identified various genes including ACRC and proliferating cell nuclear antigen, in addition to various TFs, including TATA-box binding protein associated factor 1 and CCCTC

  9. Early Flight Fission Test Facilities (EFF-TF) and Concepts That Support Near-Term Space Fission Missions

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.

  10. Synthesis and characterization of (18)F-labeled active site inhibited factor VII (ASIS).

    PubMed

    Erlandsson, Maria; Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Jesper B; Petersen, Lars C; Madsen, Jacob; Kjaer, Andreas

    2015-05-15

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Effects of tissue factor, PAR-2 and MMP-9 expression on human breast cancer cell line MCF-7 invasion.

    PubMed

    Lin, Zeng-Mao; Zhao, Jian-Xin; Duan, Xue-Ning; Zhang, Lan-Bo; Ye, Jing-Ming; Xu, Ling; Liu, Yin-Hua

    2014-01-01

    This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR- 2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.

  12. Mimosa: Mixture Model of Co-expression to Detect Modulators of Regulatory Interaction

    NASA Astrophysics Data System (ADS)

    Hansen, Matthew; Everett, Logan; Singh, Larry; Hannenhalli, Sridhar

    Functionally related genes tend to be correlated in their expression patterns across multiple conditions and/or tissue-types. Thus co-expression networks are often used to investigate functional groups of genes. In particular, when one of the genes is a transcription factor (TF), the co-expression-based interaction is interpreted, with caution, as a direct regulatory interaction. However, any particular TF, and more importantly, any particular regulatory interaction, is likely to be active only in a subset of experimental conditions. Moreover, the subset of expression samples where the regulatory interaction holds may be marked by presence or absence of a modifier gene, such as an enzyme that post-translationally modifies the TF. Such subtlety of regulatory interactions is overlooked when one computes an overall expression correlation. Here we present a novel mixture modeling approach where a TF-Gene pair is presumed to be significantly correlated (with unknown coefficient) in a (unknown) subset of expression samples. The parameters of the model are estimated using a Maximum Likelihood approach. The estimated mixture of expression samples is then mined to identify genes potentially modulating the TF-Gene interaction. We have validated our approach using synthetic data and on three biological cases in cow and in yeast. While limited in some ways, as discussed, the work represents a novel approach to mine expression data and detect potential modulators of regulatory interactions.

  13. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements.

    PubMed

    Fisher, R P; Topper, J N; Clayton, D A

    1987-07-17

    Selective transcription of human mitochondrial DNA requires a transcription factor (mtTF) in addition to an essentially nonselective RNA polymerase. Partially purified mtTF is able to sequester promoter-containing DNA in preinitiation complexes in the absence of mitochondrial RNA polymerase, suggesting a DNA-binding mechanism for factor activity. Functional domains, required for positive transcriptional regulation by mtTF, are identified within both major promoters of human mtDNA through transcription of mutant promoter templates in a reconstituted in vitro system. These domains are essentially coextensive with DNA sequences protected from nuclease digestion by mtTF-binding. Comparison of the sequences of the two mtTF-responsive elements reveals significant homology only when one sequence is inverted; the binding sites are in opposite orientations with respect to the predominant direction of transcription. Thus mtTF may function bidirectionally, requiring additional protein-DNA interactions to dictate transcriptional polarity. The mtTF-responsive elements are arrayed as direct repeats, separated by approximately 80 bp within the displacement-loop region of human mitochondrial DNA; this arrangement may reflect duplication of an ancestral bidirectional promoter, giving rise to separate, unidirectional promoters for each strand.

  14. Intrinsic limits to gene regulation by global crosstalk

    NASA Astrophysics Data System (ADS)

    Friedlander, Tamar; Prizak, Roshan; Guet, Calin; Barton, Nicholas H.; Tkacik, Gasper

    Gene activity is mediated by the specificity of binding interactions between special proteins, called transcription factors, and short regulatory sequences on the DNA, where different protein species preferentially bind different DNA targets. Limited interaction specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to spurious interactions or remains erroneously inactive. Since each protein can potentially interact with numerous DNA targets, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyze the effects of global crosstalk on gene regulation, using statistical mechanics. We find that crosstalk in regulatory interactions puts fundamental limits on the reliability of gene regulation that are not easily mitigated by tuning proteins concentrations or by complex regulatory schemes proposed in the literature. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement Nr. 291734 (T.F.) and ERC Grant Nr. 250152 (N.B.).

  15. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula.

    PubMed

    Sinharoy, Senjuti; Torres-Jerez, Ivone; Bandyopadhyay, Kaustav; Kereszt, Attila; Pislariu, Catalina I; Nakashima, Jin; Benedito, Vagner A; Kondorosi, Eva; Udvardi, Michael K

    2013-09-01

    Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.

  16. The effects of small interfering RNA–targeting tissue factor on an in vitro model of neovascularization

    PubMed Central

    Peng, Wenyan; Yu, Ying; Li, Tiejun; Zhu, Yuanyuan

    2013-01-01

    Purpose Tissue factor (TF) plays an important role in neovascularization (NV). This study aimed to determine whether small interfering RNA–targeting TF (TF-siRNA) could knock down TF expression and inhibit cell proliferation, cell migration, and tube formation in an in vitro model of NV. Methods Lipopolysaccharide (LPS) was used to stimulate human umbilical vein endothelial cell (HUVEC) lines to express TF and mimic certain phenotypes of NV in vitro. HUVECs were transfected with TF-siRNAs and control siRNAs using LipofectamineTM 2000. The inhibitory effect of the siRNAs on the expression of TF mRNA and protein was evaluated by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and western blot analysis. The effects on the cell viability, migration, and tube formation of siRNA-treated cells were examined by MTT assay, wound-healing assay, and Matrigel-induced capillary tube formation. Results Lipopolysaccharide treatment increased the expression of TF. TF-siRNAs effectively knocked down TF expression, with the most efficient TF-siRNA reducing 78.9% of TF expression. TF protein was also notably curtailed by TF-siRNA. The MTT and wound-healing assays showed that the TF-siRNA substantially inhibited the proliferation and migration of HUVECs. Tube formation was decreased by 47.4% and 59.4% in cells treated with the TF-siRNA and vascular endothelial growth factor–siRNA, respectively, compared with the blank control. Conclusions TF-siRNA can knockdown TF expression and inhibit cell proliferation, migration, and tube formation in vitro. TF-siRNA may provide a novel therapeutic candidate for NV-related diseases. PMID:23805036

  17. Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmi, T.; Matsui, K.; Koizumi, N.

    2014-01-27

    The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricatedmore » using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.« less

  18. BOREAS TF-4 SSA-YJP Tower Flux, Meteorological, and Canopy Condition Data

    NASA Technical Reports Server (NTRS)

    Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-4) team collected energy, carbon dioxide, and water vapor flux data at the BOREAS Southern Study Area-Young Jack Pine (SSA-YJP) site during the growing season of 1994. In addition, meteorological data were collected both above and within the canopy. The data are available in tabular ASCII files.

  19. BOREAS TF-9 SSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Massheder, Jonathan M.; Moncrieff, John B.; Rayment, Mark B.; Jarvis, Paul G.

    2000-01-01

    The BOREAS TF-9 team collected energy, carbon dioxide, and water vapor flux data at the BOREAS SSA-OBS site during the growing season of 1994 and most of the year for 1996. From the winter of 1995 to 1996, soil temperature data were also collected and provided. The data are available in tabular ASCII files.

  20. BOREAS TF-11 CO2 and CH4 Flux Data from the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains fluxes of methane and carbon dioxide at the SSA-Fen site measured using static chambers. The measurements were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitrogen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. In addition to siting and treatment variables, it reports air temperature and water table height relative to the average peat surface during each measurement. The data set covers the period from the first week of June 1994 through the second week of September 1994. The data are stored in tabular ASCII files.

  1. Expression of Tissue Factor by Melanoma Cells Promotes Efficient Hematogenous Metastasis

    NASA Astrophysics Data System (ADS)

    Mueller, Barbara M.; Reisfeld, Ralph A.; Edgington, Thomas S.; Ruf, Wolfram

    1992-12-01

    Metastasis is a multistep process which requires highly adapted interactions of tumor cells with host target organs. Compared with nonmetastatic cells, metastatic human melanoma cells express 1000-fold higher levels of tissue factor (TF), the major cellular initiator of the plasma coagulation protease cascades. To explore whether TF may contribute to metastatic tumor dissemination, we analyzed the effect of specific inhibition of TF function on human melanoma metastasis in severe combined immunodeficient (SCID) mice. Using species-specific antibodies to TF, we demonstrate that initial adherence is insufficient for successful tumor cell implantation in a target organ. Rapid arrest of human tumor cells in the lungs of mice was not diminished by inhibition of TF. However, inhibition of TF receptor function and consequent reduction in local protease generation abolished prolonged adherence of tumor cells, resulting in significantly reduced numbers of tumor cells retained in the vasculature of the lungs. The growth of pulmonary metastases was also significantly inhibited by a blocking anti-TF monoclonal antibody and Fab fragments thereof, whereas a noninhibitory antibody lacked antimetastatic effects. Cell surface expression of functional TF thus contributes to melanoma progression by allowing metastatic cells to provide requisite signals for prolonged adhesive interactions and/or transmigration of tumor cells across the endothelium, resulting in successful metastatic tumor implantation.

  2. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

    PubMed Central

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J.; Chen, Chih-yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W.; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. PMID:26531826

  3. Large enhancement of functional activity of active site-inhibited factor VIIa due to protein dimerization: insights into mechanism of assembly/disassembly from tissue factor.

    PubMed

    Stone, Matthew D; Harvey, Stephen B; Martinez, Michael B; Bach, Ronald R; Nelsestuen, Gary L

    2005-04-26

    Active site-inhibited blood clotting factor VIIa (fVIIai) binds to tissue factor (TF), a cell surface receptor that is exposed upon injury and initiates the blood clotting cascade. FVIIai blocks binding of the corresponding enzyme (fVIIa) or zymogen (fVII) forms of factor VII and inhibits coagulation. Although several studies have suggested that fVIIai may have superior anticoagulation effects in vivo, a challenge for use of fVIIai is cost of production. This study reports the properties of dimeric forms of fVIIai that are cross-linked through their active sites. Dimeric wild-type fVIIai was at least 75-fold more effective than monomeric fVIIai in blocking fVIIa association with TF. The dimer of a mutant fVIIai with higher membrane affinity was 1600-fold more effective. Anticoagulation by any form of fVIIai differed substantially from agents such as heparin and showed a delayed mode of action. Coagulation proceeded normally for the first minutes, and inhibition increased as equilibrium binding was established. It is suggested that association of fVIIa(i) with TF in a collision-dependent reaction gives equal access of inhibitor and enzyme to TF. Assembly was not influenced by the higher affinity and slower dissociation of the dimer. As a result, anticoagulation was delayed until the reaction reached equilibrium. Properties of different dissociation experiments suggested that dissociation of fVIIai from TF occurred by a two-step mechanism. The first step was separation of TF-fVIIa(i) while both proteins remained bound to the membrane, and the second step was dissociation of the fVIIa(i) from the membrane. These results suggest novel actions of fVIIai that distinguish it from most of the anticoagulants that block later steps of the coagulation cascade.

  4. High-level secretion of tissue factor-rich extracellular vesicles from ovarian cancer cells mediated by filamin-A and protease-activated receptors.

    PubMed

    Koizume, Shiro; Ito, Shin; Yoshioka, Yusuke; Kanayama, Tomohiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Yamada, Roppei; Ochiya, Takahiro; Ruf, Wolfram; Miyagi, Etsuko; Hirahara, Fumiki; Miyagi, Yohei

    2016-01-01

    Thromboembolic events occur frequently in ovarian cancer patients. Tissue factor (TF) is often overexpressed in tumours, including ovarian clear-cell carcinoma (CCC), a subtype with a generally poor prognosis. TF-coagulation factor VII (fVII) complexes on the cell surface activate downstream coagulation mechanisms. Moreover, cancer cells secrete extracellular vesicles (EVs), which act as vehicles for TF. We therefore examined the characteristics of EVs produced by ovarian cancer cells of various histological subtypes. CCC cells secreted high levels of TF within EVs, while the high-TF expressing breast cancer cell line MDA-MB-231 shed fewer TF-positive EVs. We also found that CCC tumours with hypoxic tissue areas synthesised TF and fVII in vivo, rendering the blood of xenograft mice bearing these tumours hypercoagulable compared with mice bearing MDA-MB-231 tumours. Incorporation of TF into EVs and secretion of EVs from CCC cells exposed to hypoxia were both dependent on the actin-binding protein, filamin-A (filA). Furthermore, production of these EVs was dependent on different protease-activated receptors (PARs) on the cell surface. These results show that CCC cells could produce large numbers of TF-positive EVs dependent upon filA and PARs. This phenomenon may be the mechanism underlying the increased incidence of venous thromboembolism in ovarian cancer patients.

  5. [Effect of Leonurus Heterophyllus Sweet on tissue factor transcription and expression in human umbilical vein endothelial cells in vitro].

    PubMed

    Zheng, Lian; Fang, Chi-hua

    2007-06-01

    To investigate the effect of Leonurus Heterophyllus Sweet, (LHS) on tissue factor (TF) transcription and expression induced by thrombin in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with different concentrations of LHS and the TF mRNA expression was detected by reverse transcript-polymerase chain reaction (RT-PCR). LHS treatment of HUVECs at different concentrations and for different times resulted in significant differences in TF expression (Plt;0.01). The transcription of TF in LHS-treated cells was significantly different from that of the blank control group (Plt;0.01). LHS can decrease the expression of TF and intervene with TF transcription in HUVECs in vitro.

  6. Absence of social conditioned place preference in BTBR T+tf/J mice: relevance for social motivation testing in rodent models of autism

    PubMed Central

    Pearson, Brandon L.; Bettis, Jaclyn K.; Meyza, Ksenia Z.; Yamamoto, Lace Y.; Blanchard, D. Caroline; Blanchard, Robert J.

    2012-01-01

    A major goal of translation research in autism is to characterize the physiological and psychological processes underlying behavioral abnormalities. Since autism reflects impairments in social motivation, we modified the mouse three-chamber social approach apparatus for use as a social conditioned place preference arena. We paired one of two unique contexts with social interactions in juvenile mice for five or ten conditioning sessions in BTBR T+tf/J mice and a control strain with normal approach behaviors (C57BL/6J) since the BTBR T+tf/J inbred mouse strain displays a variety of behavioral alterations analogous to symptoms of autism spectrum disorders. While C57BL/6J mice formed a conditioned place preference to the context associated with social interactions, particularly those receiving ten days of conditioning, BTBR T+tf/J mice did not. Neither absence of social proximity nor avoidance due to high rates of autogrooming appeared to underlie the impaired positive incentive value of the unconditioned social stimulus in the BTBR T+tf/J strain. These data contribute to a growing body of evidence suggesting that the BTBR T+tf/J strain shows impairments in all diagnostic domains of autism including social motivation. Additionally, social conditioning testing might provide an important social motivation measure in other rodent models of neuropsychiatric disorders characterized by social abnormalities. PMID:22562042

  7. Digital implementation of the TF30-P-3 turbofan engine control

    NASA Technical Reports Server (NTRS)

    Cwynar, D. S.; Batterton, P. G.

    1975-01-01

    The standard hydromechanical control modes for TF30-P-3 engine were implemented on a digital process control computer. Programming methods are described, and a method is presented to solve stability problems associated with fast response dynamic loops contained within the exhaust nozzle control. A modification of the exhaust nozzle control to provide for either velocity or position servoactuation systems is discussed. Transient response of the digital control was evaluated by tests on a real time hybrid simulation of the TF30-P-3 engine. It is shown that the deadtime produced by the calculation time delay between sampling and final output is more significant to transient response than the effects associated with sampling rate alone. For the main fuel control, extended update and calculation times resulted in a lengthened transient response to throttle bursts from idle to intermediate with an increase in high pressure compressor stall margin. Extremely long update intervals of 250 msec could be achieved without instability. Update extension for the exhaust nozzle control resulted in a delayed response of the afterburner light-off detector and exhaust nozzle overshoot with resulting fan oversuppression. Long update times of 150 msec caused failure of the control due to a false indication by the blowout detector.

  8. Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence.

    PubMed

    Narula, Jatin; Williams, C J; Tiwari, Abhinav; Marks-Bluth, Jonathon; Pimanda, John E; Igoshin, Oleg A

    2013-07-15

    Interlinked gene regulatory networks (GRNs) are vital for the spatial and temporal control of gene expression during development. The hematopoietic transcription factors (TFs) Scl, Gata2 and Fli1 form one such densely connected GRN which acts as a master regulator of embryonic hematopoiesis. This triad has been shown to direct the specification of the hemogenic endothelium and emergence of hematopoietic stem cells (HSCs) in response to Notch1 and Bmp4-Smad signaling. Here we employ previously published data to construct a mathematical model of this GRN network and use this model to systematically investigate the network dynamical properties. Our model uses a statistical-thermodynamic framework to describe the combinatorial regulation of gene expression and reconciles, mechanistically, several previously published but unexplained results from different genetic perturbation experiments. In particular, our results demonstrate how the interactions of Runx1, an essential hematopoietic TF, with components of the Bmp4 signaling pathway allow it to affect triad activation and acts as a key regulator of HSC emergence. We also explain why heterozygous deletion of this essential TF, Runx1, speeds up the network dynamics leading to accelerated HSC emergence. Taken together our results demonstrate that the triad, a master-level controller of definitive hematopoiesis, is an irreversible bistable switch whose dynamical properties are modulated by Runx1 and components of the Bmp4 signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  10. Manipulation of a Senescence-Associated Gene Improves Fleshy Fruit Yield1[OPEN

    PubMed Central

    Gramegna, Giovanna; Trench, Bruna A.; Alves, Frederico R.R.; Silva, Eder M.; Silva, Geraldo F.F.; Thirumalaikumar, Venkatesh P.; Lupi, Alessandra C.D.; Demarco, Diego; Nogueira, Fabio T.S.; Freschi, Luciano

    2017-01-01

    Senescence is the process that marks the end of a leaf’s lifespan. As it progresses, the massive macromolecular catabolism dismantles the chloroplasts and, consequently, decreases the photosynthetic capacity of these organs. Thus, senescence manipulation is a strategy to improve plant yield by extending the leaf’s photosynthetically active window of time. However, it remains to be addressed if this approach can improve fleshy fruit production and nutritional quality. One way to delay senescence initiation is by regulating key transcription factors (TFs) involved in triggering this process, such as the NAC TF ORESARA1 (ORE1). Here, three senescence-related NAC TFs from tomato (Solanum lycopersicum) were identified, namely SlORE1S02, SlORE1S03, and SlORE1S06. All three genes were shown to be responsive to senescence-inducing stimuli and posttranscriptionally regulated by the microRNA miR164. Moreover, the encoded proteins interacted physically with the chloroplast maintenance-related TF SlGLKs. This characterization led to the selection of a putative tomato ORE1 as target gene for RNA interference knockdown. Transgenic lines showed delayed senescence and enhanced carbon assimilation that, ultimately, increased the number of fruits and their total soluble solid content. Additionally, the fruit nutraceutical composition was enhanced. In conclusion, these data provide robust evidence that the manipulation of leaf senescence is an effective strategy for yield improvement in fleshy fruit-bearing species. PMID:28710129

  11. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    PubMed Central

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  12. Isolation and characterization of GmMYBJ3, an R2R3-MYB transcription factor that affects isoflavonoids biosynthesis in soybean

    PubMed Central

    Zhao, Mingzhu; Wang, Tianliang; Wu, Ping; Guo, Wenyun; Su, Liantai; Wang, Ying; Liu, Yajing; Yan, Fan

    2017-01-01

    Isoflavonoids are secondary metabolites that play a variety of roles in plant-microbe interactions and plant defenses against abiotic stresses. Here we report a new MYB transcription factor (TF) gene, GmMYBJ3, that is involved in the isoflavonoids biosynthesis. The GmMYBJ3 gene is 1,002 bp long and encodes a protein of 333 amino acids. Amino acid sequence analysis showed that GmMYBJ3 is a typical R2R3 MYB TF. Yeast expression experiment demonstrated that GmMYBJ3 has its transcription activity in the nucleus and is transiently expressed in onion epidermal cells. The GmMYBJ3 gene was transformed into soybean and the expression activity of the GmMYBJ3 gene was significantly positively correlated with total isoflavonoid accumulation in soybean. Transient expression assays indicated that GmMYBJ3 can activate CHS8 expression. Furthermore, we analyzed the expressions of several genes known involved in the isoflavonoid biosynthesis, including CHS8, CHI1A, PAL1, IFS2 and F3H, in the GmMYBJ3 transgenic plants. The results showed that the expression levels of CHS8 and CHI1A were significantly increased in the transgenic plants compared to wild-type plants, but those of PAL1, IFS2 and F3H remained similar between the transgenic and wild-type plants. These results suggest that GmMYBJ3 participates in the isoflavonoid biosynthesis through regulation of CHS8 and CHI1A in soybean. PMID:28654660

  13. Thrombin generation and fibrin formation under flow on biomimetic tissue factor-rich surfaces.

    PubMed

    Onasoga-Jarvis, A A; Puls, T J; O'Brien, S K; Kuang, L; Liang, H J; Neeves, K B

    2014-01-01

    Blood flow regulates coagulation and fibrin assembly by controlling the rate of transport of zymogens, enzymes and plasma proteins to and from the site of an injury. The objective of this work was to define the hemodynamic conditions under which fibrin can form under flow on tissue factor (TF)-rich substrates. TF-coated silica beads (~ 800 nm) were patterned into 18-85-μm spots. Normal pooled plasma and factors VIII, IX and XI deficient plasmas were perfused over the beads coated with 0.08, 0.8 and 8 molecules-TF μm(-2) at shear rates of 50-1000 s(-1) . Fibrin deposition and thrombin generation were measured by fluorescence microscopy in a hydrodynamic focusing microfluidic device. Fibrin deposition was supported on patterned bead spots, but not planar TF substrates at the same surface TF concentration. There was a threshold spot size and a shear rate dependent TF concentration that was necessary to support fibrin polymerization. FVIII and FIX had minor effects on fibrin dynamics at 8 molecules-TF μm(-2) , but were essential at 0.8 molecules-TF μm(-2) . The absence of FXI influenced thrombin generation and fibrin deposition at both 0.8 and 8 molecules-TF μm(-2) . These results show that fibrin deposition requires perturbations in the flow field that protect reactions from dilution by flow under venous and arterial conditions. FVIII and FIX have a modest effect on fibrin deposition at high TF concentrations, but are necessary for fibrin deposition at low TF concentrations. FXI amplifies thrombin generation under flow at both low and high TF concentrations. © 2013 International Society on Thrombosis and Haemostasis.

  14. In-Session Caregiver Behavior Predicts Symptom Change in Youth Receiving Trauma-Focused Cognitive Behavioral Therapy (TF-CBT)

    PubMed Central

    Yasinski, Carly; Hayes, Adele; Ready, C. Beth; Cummings, Jorden A.; Berman, Ilana S.; McCauley, Thomas; Webb, Charles; Deblinger, Esther

    2016-01-01

    Objective Involving caregivers in trauma-focused treatments for youth has been shown to result in better outcomes, but it is not clear which in-session caregiver behaviors enhance or inhibit this effect. The current study examined the associations between caregiver behaviors during Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) and youth cognitive processes and symptoms. Method Participants were a racially diverse sample of Medicaid-eligible youth (ages 7–17) and their non-offending caregivers (N= 71 pairs) who received TF-CBT through an effectiveness study in a community setting. Caregiver and youth processes were coded from audio-recorded sessions, and outcomes were measured using the Child Behavior Checklist (CBCL) and UCLA PTSD Reaction Index for DSM-IV (UPID) at 3, 6, 9, and 12 months post-intake. Results Piecewise linear growth curve modeling revealed that during the trauma narrative phase of TF-CBT, caregivers’ cognitive-emotional processing of their own and their child's trauma-related reactions predicted decreases in youth internalizing and externalizing symptoms over treatment. Caregiver support predicted lower internalizing symptoms over follow-up. In contrast, caregiver avoidance and blame of the child predicted worsening of youth internalizing and externalizing symptoms over follow-up. Caregiver avoidance early in treatment also predicted worsening of externalizing symptoms over follow-up. During the narrative phase, caregiver blame and avoidance were correlated with more child overgeneralization of trauma beliefs, and blame was also associated with less child accommodation of balanced beliefs. Conclusions The association between in-session caregiver behaviors and youth symptomatology during and after TF-CBT highlights the importance of assessing and targeting these behaviors to improve clinical outcomes. PMID:27618641

  15. Genome wide predictions of miRNA regulation by transcription factors.

    PubMed

    Ruffalo, Matthew; Bar-Joseph, Ziv

    2016-09-01

    Reconstructing regulatory networks from expression and interaction data is a major goal of systems biology. While much work has focused on trying to experimentally and computationally determine the set of transcription-factors (TFs) and microRNAs (miRNAs) that regulate genes in these networks, relatively little work has focused on inferring the regulation of miRNAs by TFs. Such regulation can play an important role in several biological processes including development and disease. The main challenge for predicting such interactions is the very small positive training set currently available. Another challenge is the fact that a large fraction of miRNAs are encoded within genes making it hard to determine the specific way in which they are regulated. To enable genome wide predictions of TF-miRNA interactions, we extended semi-supervised machine-learning approaches to integrate a large set of different types of data including sequence, expression, ChIP-seq and epigenetic data. As we show, the methods we develop achieve good performance on both a labeled test set, and when analyzing general co-expression networks. We next analyze mRNA and miRNA cancer expression data, demonstrating the advantage of using the predicted set of interactions for identifying more coherent and relevant modules, genes, and miRNAs. The complete set of predictions is available on the supporting website and can be used by any method that combines miRNAs, genes, and TFs. Code and full set of predictions are available from the supporting website: http://cs.cmu.edu/~mruffalo/tf-mirna/ zivbj@cs.cmu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. BrWRKY65, a WRKY Transcription Factor, Is Involved in Regulating Three Leaf Senescence-Associated Genes in Chinese Flowering Cabbage.

    PubMed

    Fan, Zhong-Qi; Tan, Xiao-Li; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-06-08

    Plant-specific WRKY transcription factors (TFs) have been implicated to function as regulators of leaf senescence, but their association with postharvest leaf senescence of economically important leafy vegetables, is poorly understood. In this work, the characterization of a Group IIe WRKY TF, BrWRKY65, from Chinese flowering cabbage ( Brassica rapa var. parachinensis) is reported. The expression of BrWRKY65 was up-regulated following leaf chlorophyll degradation and yellowing during postharvest senescence. Subcellular localization and transcriptional activation assays showed that BrWRKY65 was localized in the nucleus and exhibited trans-activation ability. Further electrophoretic mobility shift assay (EMSA) and transient expression analysis clearly revealed that BrWRKY65 directly bound to the W-box motifs in the promoters of three senescence-associated genes ( SAGs ) such as BrNYC1 and BrSGR1 associated with chlorophyll degradation, and BrDIN1 , and subsequently activated their expressions. These findings demonstrate that BrWRKY65 may be positively associated with postharvest leaf senescence, at least partially, by the direct activation of SAGs . Taken together, these findings provide new insights into the transcriptional regulatory mechanism of postharvest leaf senescence in Chinese flowering cabbage.

  17. Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection.

    PubMed

    Zhang, Peter G Y; Yeung, Joanna; Gupta, Ishita; Ramirez, Miguel; Ha, Thomas; Swanson, Douglas J; Nagao-Sato, Sayaka; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; de Hoon, Michiel; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Goldowitz, Dan

    2018-06-01

    Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.

  18. Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell-cell interaction with activated cells.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji

    2014-10-01

    Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".

    PubMed

    Doidy, Joan; Li, Ying; Neymotin, Benjamin; Edwards, Molly B; Varala, Kranthi; Gresham, David; Coruzzi, Gloria M

    2016-02-03

    Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking. Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run"). Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the

  20. Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction and RNA-seq.

    PubMed

    Weber, Kristina L; Welly, Bryan T; Van Eenennaam, Alison L; Young, Amy E; Porto-Neto, Laercio R; Reverter, Antonio; Rincon, Gonzalo

    2016-01-01

    Improvement in feed conversion efficiency can improve the sustainability of beef cattle production, but genomic selection for feed efficiency affects many underlying molecular networks and physiological traits. This study describes the differences between steer progeny of two influential Angus bulls with divergent genomic predictions for residual feed intake (RFI). Eight steer progeny of each sire were phenotyped for growth and feed intake from 8 mo. of age (average BW 254 kg, with a mean difference between sire groups of 4.8 kg) until slaughter at 14-16 mo. of age (average BW 534 kg, sire group difference of 28.8 kg). Terminal samples from pituitary gland, skeletal muscle, liver, adipose, and duodenum were collected from each steer for transcriptome sequencing. Gene expression networks were derived using partial correlation and information theory (PCIT), including differentially expressed (DE) genes, tissue specific (TS) genes, transcription factors (TF), and genes associated with RFI from a genome-wide association study (GWAS). Relative to progeny of the high RFI sire, progeny of the low RFI sire had -0.56 kg/d finishing period RFI (P = 0.05), -1.08 finishing period feed conversion ratio (P = 0.01), +3.3 kg^0.75 finishing period metabolic mid-weight (MMW; P = 0.04), +28.8 kg final body weight (P = 0.01), -12.9 feed bunk visits per day (P = 0.02) with +0.60 min/visit duration (P = 0.01), and +0.0045 carcass specific gravity (weight in air/weight in air-weight in water, a predictor of carcass fat content; P = 0.03). RNA-seq identified 633 DE genes between sire groups among 17,016 expressed genes. PCIT analysis identified >115,000 significant co-expression correlations between genes and 25 TF hubs, i.e. controllers of clusters of DE, TS, and GWAS SNP genes. Pathway analysis suggests low RFI bull progeny possess heightened gut inflammation and reduced fat deposition. This multi-omics analysis shows how differences in RFI genomic breeding values can impact other