Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng
2015-01-01
This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet. PMID:28793549
Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng
2015-09-10
This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu₂O film increased gradually. Its corrosion product was Cu₂(OH)₃Cl, which increased in quantity over time. Cl - was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e. , dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.
Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus.
Kusuya, Yoko; Hagiwara, Daisuke; Sakai, Kanae; Yaguchi, Takashi; Gonoi, Tohru; Takahashi, Hiroki
2017-08-01
Copper (Cu) is an essential metal for all living organisms, although it is toxic in excess. Filamentous fungus must acquire copper from its environment for growth. Despite its essentiality for growth, the mechanisms that maintain copper homeostasis are not fully understood in filamentous fungus. To gain insights into copper homeostasis, we investigated the roles of a copper transcription factor Afmac1 in the life-threatening fungus Aspergillus fumigatus, a homolog of the yeast MAC1. We observed that the Afmac1 deletion mutant exhibited not only significantly slower growth, but also incomplete conidiation including a short chain of conidia and defective melanin. Moreover, the expressions of the copper transporters, ctrA1, ctrA2, and ctrC, and metalloreductases, Afu8g01310 and fre7, were repressed in ∆Afmac1 cells, while those expressions were induced under copper depletion conditions in wild-type. The expressions of pksP and wetA, which are, respectively, involved in biosynthesis of conidia-specific melanin and the late stage of conidiogenesis, were decreased in the ∆Afmac1 strain under minimal media condition. Taken together, these results indicate that copper acquisition through AfMac1 functions in growth as well as conidiation.
Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola
2017-09-01
Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.
NASA Astrophysics Data System (ADS)
Wen-bo, LUO; Ji-kun, WANG; Yin, GAN
2018-01-01
Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.
1984-04-01
element, recovered from the working of many porphyry copper deposits. As copper capacity i» now far beyond requirements, molybdenum should not be in...Source» Cobalt is mostly recovered aa a by-product of copper and nickel mining but world production is highly localised. Total annual production is...aluminium alloy containing lithium, copper and magnesium is under test. Por corrosion resistance there can be an Interchange with niobium. However
Pathogenic adaptations to host-derived antibacterial copper
Chaturvedi, Kaveri S.; Henderson, Jeffrey P.
2014-01-01
Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598
Zang, Xiaodong; Huang, Hesuyuan; Zhuang, Zhulun; Chen, Runsen; Xie, Zongyun; Xu, Cheng; Mo, Xuming
2018-06-01
Copper is an essential element in human beings, alterations in serum copper levels could potentially have effect on human health. To date, no data are available regarding how serum copper affects cardiovascular disease (CVD) risk factors in children and adolescents. We examined the association between serum copper levels and CVD risk factors in children and adolescents. We analyzed data consisting of 1427 subjects from a nationally representative sample of the US population in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. The CVD risk factors included total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, fasting glucose, glycohemoglobin, fasting insulin, and blood pressure. Multivariate and generalized linear regressions were performed to investigate associations adjusted for age, gender, ethnicity, poverty:income ratio (PIR), BMI, energy intake, and physical activity. We found significant associations between serum copper and total cholesterol (coefficient = 0.132; 95% CI 0.081, 0.182; P for trend < 0.001), glycohemoglobin (coefficient = 0.044; 95% CI 0.020, 0.069; P < 0.001), and fasting insulin (coefficient = 0.730; 95% CI 0.410, 1.050; P < 0.001) among the included participants. Moreover, in the generalized linear models, subjects with the highest copper levels demonstrated a 0.83% (95% CI 0.44%, 1.24%) greater increase in serum total cholesterol (p for trend < 0.001) when compared to participants with the lowest copper concentrations. Our results provide the first epidemiological evidence that serum copper concentrations are associated with total cholesterol concentrations in children and adolescents. However, the underlying mechanisms still need further exploration.
"Stagnation curves" are the response of metal levels, particularly lead and copper, to time under conditions of no water flow. Research on lead pipe in the early 1980's in the United States, Germany, and in the United Kingdom suggested that they were characterized by rapid incre...
Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.
Brewer, George J
2015-01-01
Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.
Copper transport and regulation in Schizosaccharomyces pombe
Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon
2016-01-01
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4–Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis. PMID:24256274
Copper transport and regulation in Schizosaccharomyces pombe.
Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon
2013-12-01
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.
Wiemann, Philipp; Perevitsky, Adi; Lim, Fang Yun; Shadkchan, Yana; Knox, Benjamin P; Landero Figueora, Julio A; Choera, Tsokyi; Niu, Mengyao; Steinberger, Andrew J; Wüthrich, Marcel; Idol, Rachel A; Klein, Bruce S; Dinauer, Mary C; Huttenlocher, Anna; Osherov, Nir; Keller, Nancy P
2017-05-02
The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion
NASA Astrophysics Data System (ADS)
Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin
2018-02-01
Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.
NASA Astrophysics Data System (ADS)
Moosavi, Saeideh Sadat; Norouzbeigi, Reza; Velayi, Elmira
2017-11-01
In the present work, copper oxide superhydrophobic surface is fabricated on a copper foil via the chemical bath deposition (CBD) method. The effects of some influential factors such as initial concentrations of Cu (II) ions and the surface energy modifier, solution pH, reaction and modification steps time on the wettability property of copper oxide surface were evaluated using Taguchi L16 experimental design. Results showed that the initial concentration of Cu (II) has the most significant impact on the water contact angle and wettability characteristics. The XRD, SEM, AFM and FTIR analyses were used to characterize the copper oxide surfaces. The Water contact angle (WCA) and contact angle hysteresis (CAH) were also measured. The SEM results indicated the formation of a flower-like micro/nano dual-scale structure of copper oxide on the substrate. This structure composed of numerous nano-petals with a thickness of about 50 nm. As a result, a copper oxide hierarchical surface with WCA of 168.4°± 3.5° and CAH of 2.73° exhibited the best superhydrophobicity under proposed optimum condition. This result has been obtained just by 10 min hydrolysis reaction. Besides, this surface showed a good stability under acidic and saline conditions.
Canine Models for Copper Homeostasis Disorders.
Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille
2016-02-04
Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.
Canine Models for Copper Homeostasis Disorders
Wu, Xiaoyan; Leegwater, Peter A. J.; Fieten, Hille
2016-01-01
Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted. PMID:26861285
Arshadi, M; Mousavi, S M
2015-01-01
In this research simultaneous gold and copper recovery from computer printed circuit boards (CPCBs) was evaluated using central composite design of response surface methodology (CCD-RSM). To maximize simultaneous metals' extraction from CPCB waste four factors which affected bioleaching were selected to be optimized. A pure culture of Bacillus megaterium, a cyanogenic bacterium, was used to produce cyanide as a leaching agent. Initial pH 10, pulp density 2g/l, particle mesh#100 and glycine concentration 0.5g/l were obtained as optimal conditions. Gold and copper were extracted simultaneously at about 36.81 and 13.26% under optimum conditions, respectively. To decrease the copper effect as an interference agent in the leaching solution, a pretreatment strategy was examined. For this purpose firstly using Acidithiobacillus ferrooxidans copper in the CPCB powder was totally extracted, then the residual sediment was subjected to further experiments for gold recovery by B. megaterium. Using pretreated sample under optimal conditions 63.8% gold was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.
Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen
2017-08-15
While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. Copyright © 2017 American Society for Microbiology.
Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli
Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin
2017-01-01
ABSTRACT While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. PMID:28576762
Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin
2016-06-01
Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.
Improved estimates of environmental copper release rates from antifouling products.
Finnie, Alistair A
2006-01-01
The US Navy Dome method for measuring copper release rates from antifouling paint in-service on ships' hulls can be considered to be the most reliable indicator of environmental release rates. In this paper, the relationship between the apparent copper release rate and the environmental release rate is established for a number of antifouling coating types using data from a variety of available laboratory, field and calculation methods. Apart from a modified Dome method using panels, all laboratory, field and calculation methods significantly overestimate the environmental release rate of copper from antifouling coatings. The difference is greatest for self-polishing copolymer antifoulings (SPCs) and smallest for certain erodible/ablative antifoulings, where the ASTM/ISO standard and the CEPE calculation method are seen to typically overestimate environmental release rates by factors of about 10 and 4, respectively. Where ASTM/ISO or CEPE copper release rate data are used for environmental risk assessment or regulatory purposes, it is proposed that the release rate values should be divided by a correction factor to enable more reliable generic environmental risk assessments to be made. Using a conservative approach based on a realistic worst case and accounting for experimental uncertainty in the data that are currently available, proposed default correction factors for use with all paint types are 5.4 for the ASTM/ISO method and 2.9 for the CEPE calculation method. Further work is required to expand this data-set and refine the correction factors through correlation of laboratory measured and calculated copper release rates with the direct in situ environmental release rate for different antifouling paints under a range of environmental conditions.
Singh, Kamna; Senadheera, Dilani B.; Lévesque, Céline M.
2015-01-01
ABSTRACT In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans CopYAZ system in copper export and have further expanded knowledge on the importance of copper homeostasis and the CopYAZ system in modulating streptococcal physiology, including stress tolerance, membrane potential, genetic competence, and biofilm formation. IMPORTANCE S. mutans is best known for its role in the initiation and progression of human dental caries, one of the most common chronic diseases worldwide. S. mutans is also implicated in bacterial endocarditis, a life-threatening inflammation of the heart valve. The core virulence factors of S. mutans include its ability to produce and sustain acidic conditions and to form a polysaccharide-encased biofilm that provides protection against environmental insults. Here, we demonstrate that the addition of copper and/or deletion of copYAZ (the copper homeostasis system) have serious implications in modulating biofilm formation, stress tolerance, and genetic transformation in S. mutans. Manipulating the pathways affected by copper and the copYAZ system may help to develop potential therapeutics to prevent S. mutans infection in and beyond the oral cavity. PMID:26013484
Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean
NASA Astrophysics Data System (ADS)
Ward, Bess B.; Tuit, Caroline B.; Jayakumar, Amal; Rich, Jeremy J.; Moffett, James; Naqvi, S. Wajih A.
2008-12-01
Incubation experiments under trace metal clean conditions and ambient oxygen concentrations were used to investigate the response of microbial assemblages in oxygen minimum zones (OMZs) to additions of organic carbon and copper, two factors that might be expected to limit denitrification in the ocean. In the OMZs of the Eastern Tropical North and South Pacific, denitrification appeared to be limited by organic carbon; exponential cell growth and rapid nitrate and nitrite depletion occurred upon the addition of small amounts of carbon, but copper had no effect. In the OMZ of the Arabian Sea, neither carbon nor copper appeared to be limiting. We hypothesize that denitrification is variable in time and space in the OMZs in ways that may be predictable based on links to the episodic supply of organic substrates from overlying productive surface waters.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Forkapa, Mark J.; Cooper, Jill M.
1991-01-01
Graphite-copper composites are candidate materials for space based radiators. The thermal emittance of this material, however, is a factor of two lower than the desired emittance for these systems of greater than or equal to 0.85. Arc texturing was investigated as a surface modification technique for enhancing the emittance of the composite. Since the outer surface of the composite is copper, and samples of the composite could not be readily obtained for testing, copper was used for optimization testing. Samples were exposed to various frequencies and currents of arcs during texturing. Emittances near the desired goal were achieved at frequencies less than 500 Hz. Arc current did not appear to play a major role under 15 amps. Particulate carbon was observed on the surface, and was easily removed by vibration and handling. In order to determine morphology adherence, ultrasonic cleaning was used to remove the loosely adherent material. This reduced the emittance significantly. Emittance was found to increase with increasing frequency for the cleaned samples up to 500 Hz. The highest emittance achieved on these samples over the temperature range of interest was 0.5 to 0.6, which is approximately a factor of 25 increase over the untextured copper emittance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domek, M.J.; LeChevallier, M.W.; Cameron, S.C.
1984-08-01
Low levels of copper in chlorine-free distribution water caused injury of coliform populations. Monitoring of 44 drinking water samples indicated that 64% of the coliform population was injured. Physical and chemical parameters were measured, including three heavy metals (Cu, Cd, and Pb). Copper concentrations were important, ranging from 0.007 to 0.54 mg/liter. Statistical analyses of these factors were used to develop a model to predict coliform injury. The model predicted almost 90% injury with a copper concentration near the mean observed value (0.158 mg/liter) in distribution waters. Laboratory studies with copper concentrations of 0.025 and 0.050 mg/liter in an inorganicmore » carbon buffer under controlled conditions of temperature and pH caused over 90% injury within 6 and 2 days, respectively. Studies of the metabolism of injured Escherichia coli cells indicated that the respiratory chain is at least one site of damage in injured cells.« less
Is a high serum copper concentration a risk factor for implantation failure?
Matsubayashi, Hidehiko; Kitaya, Kotaro; Yamaguchi, Kohei; Nishiyama, Rie; Takaya, Yukiko; Ishikawa, Tomomoto
2017-08-10
Copper-containing contraceptive devices may deposit copper ions in the endometrium, resulting in implantation failure. The deposition of copper ions in many organs has been reported in patients with untreated Wilson's disease. Since these patients sometimes exhibit subfertility and/or early pregnancy loss, copper ions were also considered to accumulate in the uterine endometrium. Wilson's disease patients treated with zinc successfully delivered babies because zinc interfered with the absorption of copper from the gastrointestinal tract. These findings led to the hypothesis that infertile patients with high serum copper concentrations may have implantation failure due to the excess accumulation of copper ions. The relationship between implantation (pregnancy) rates and serum copper concentrations has not yet been examined. The Japanese government recently stated that actual copper intake was higher among Japanese than needed. Therefore, the aim of the present study was to investigate whether serum copper concentrations are related to the implantation (pregnancy) rates of human embryos in vivo. We included 269 patients (age <40 years old) who underwent vitrifying and warming single embryo transfer with a hormone replacement cycle using good blastocysts (3BB or more with Gardner's classification). Serum hCG, copper, and zinc concentrations were measured 16 days after the first date of progesterone replacement. We compared 96 women who were pregnant without miscarriage at 10 weeks of gestation (group P) and 173 women who were not pregnant (group NP). No significant differences were observed in age or BMI between the groups. Copper concentrations were significantly higher in group NP (average 193.2 μg/dL) than in group P (average 178.1 μg/dL). According to the area under the curve (AUC) on the receiver operating characteristic curve for the prediction of clinical pregnancy rates, the Cu/Zn ratio (AUC 0.64, 95% CI 0.54-0.71) was a better predictor than copper or zinc. When we set the cut-off as 1.59/1.60 for the Cu/Zn ratio, sensitivity, specificity, the positive predictive value, and negative predictive value were 0.98, 0.29, 0.71, and 0.88, respectively. Our single-center retrospective study suggests that high serum copper concentrations (high Cu/Zn ratio) are a risk factor for implantation failure.
Lenartowicz, Małgorzata; Starzyński, Rafał R.; Krzeptowski, Wojciech; Grzmil, Paweł; Bednarz, Aleksandra; Ogórek, Mateusz; Pierzchała, Olga; Staroń, Robert; Gajowiak, Anna; Lipiński, Paweł
2014-01-01
The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism. PMID:25247420
Włodarczyk, Agnieszka; Szymańska, Agata; Skłodowska, Aleksandra; Matlakowska, Renata
2016-04-01
The aim of this study was to investigate the bioweathering of copper minerals present in the alkaline, copper-bearing and organic-rich Kupferschiefer black shale through the action of a consortium of indigenous lithobiontic, heterotrophic, neutrophilic bacteria isolated from this sedimentary rock. The involvement of microorganisms in the direct/enzymatic bioweathering of fossil organic matter of the rock was confirmed. As a result of bacterial activity, a spectrum of various organic compounds such as urea and phosphoric acid tributyl ester were released from the rock. These compounds indirectly act on the copper minerals occurring in the rock and cause them to weather. This process was reflected in the mobilization of copper, iron and sulfur and in changes in the appearance of copper minerals observed under reflected light. The potential role of identified enzymes in biodegradation of fossil organic matter and role of organic compounds released from black shale as a result of this process in copper minerals weathering was discussed. The presented results provide a new insight into the role of chemical compounds released by bacteria during fossil organic matter bioweathering potentially important in the cycling of copper and iron deposited in the sedimentary rock. The originality of the described phenomenon lies in the fact that the bioweathering of fossil organic matter and, consequently, of copper minerals occur simultaneously in the same environment, without any additional sources of energy, electrons and carbon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanomolar Copper Enhances Mercury Methylation by Desulfovibrio desulfuricans ND132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xia; Johs, Alexander; Zhao, Linduo
Methylmercury (MeHg) is produced by certain anaerobic microorganisms, such as the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132, but environmental factors affecting inorganic mercury [Hg(II)] uptake and methylation remain unclear. We report that the presence of a small amount of copper ions [Cu(II), <100 nM] enhances Hg(II) uptake and methylation by washed cells of ND132, while Hg(II) methylation is inhibited at higher Cu(II) concentrations because of the toxicity of copper to the microorganism. The enhancement or inhibitory effect of Cu(II) is dependent on both time and concentration. The presence of nanomolar concentrations of Cu(II) facilitates rapid uptake of Hg(II) (within minutes) andmore » doubles MeHg production within a 24 h period, but micromolar concentrations of Cu(II) completely inhibit Hg(II) methylation. Metal ions such as zinc [Zn(II)] and nickel [Ni(II)] also inhibit but do not enhance Hg(II) methylation under the same experimental conditions. Furthermore, these observations suggest a synergistic effect of Cu(II) on Hg(II) uptake and methylation, possibly facilitated by copper transporters or metallochaperones in this organism, and highlight the fact that complex environmental factors affect MeHg production in the environment.« less
Nanomolar Copper Enhances Mercury Methylation by Desulfovibrio desulfuricans ND132
Lu, Xia; Johs, Alexander; Zhao, Linduo; ...
2018-05-29
Methylmercury (MeHg) is produced by certain anaerobic microorganisms, such as the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132, but environmental factors affecting inorganic mercury [Hg(II)] uptake and methylation remain unclear. We report that the presence of a small amount of copper ions [Cu(II), <100 nM] enhances Hg(II) uptake and methylation by washed cells of ND132, while Hg(II) methylation is inhibited at higher Cu(II) concentrations because of the toxicity of copper to the microorganism. The enhancement or inhibitory effect of Cu(II) is dependent on both time and concentration. The presence of nanomolar concentrations of Cu(II) facilitates rapid uptake of Hg(II) (within minutes) andmore » doubles MeHg production within a 24 h period, but micromolar concentrations of Cu(II) completely inhibit Hg(II) methylation. Metal ions such as zinc [Zn(II)] and nickel [Ni(II)] also inhibit but do not enhance Hg(II) methylation under the same experimental conditions. Furthermore, these observations suggest a synergistic effect of Cu(II) on Hg(II) uptake and methylation, possibly facilitated by copper transporters or metallochaperones in this organism, and highlight the fact that complex environmental factors affect MeHg production in the environment.« less
de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E.; Scrimshaw, Mark D.
2014-01-01
The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis. PMID:25272015
Kalidass, Bhagyalakshmi; Ul-Haque, Muhammad Farhan; Baral, Bipin S.; DiSpirito, Alan A.
2014-01-01
It is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that in Methylosinus trichosporium OB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced by M. trichosporium OB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and active in situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin. PMID:25416758
Kalidass, Bhagyalakshmi; Ul-Haque, Muhammad Farhan; Baral, Bipin S; DiSpirito, Alan A; Semrau, Jeremy D
2015-02-01
It is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that in Methylosinus trichosporium OB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced by M. trichosporium OB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and active in situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Celis-Plá, Paula S M; Brown, Murray T; Santillán-Sarmiento, Alex; Korbee, Nathalie; Sáez, Claudio A; Figueroa, Félix L
2018-03-01
Global scenarios evidence that contamination due to anthropogenic activities occur at different spatial-temporal scales, being important stressors: eutrophication, due to increased nutrient inputs; and metal pollution, mostly derived from industrial activities. In this study, we investigated ecophysiological and metabolic responses to copper and nutrient excess in the brown macroalga Cystoseira tamariscifolia. Whole plants were incubated in an indoor system under control conditions, two levels of nominal copper (0.5 and 2.0μM), and two levels of nutrient supply for two weeks. Maximal quantum yield (F v /F m ) and maximal electron transport rate (ETR max ) increased under copper exposure. Photosynthetic pigments and phenolic compounds (PC) increased under the highest copper levels. The intra-cellular copper content increased under high copper exposure in both nutrient conditions. C. tamariscifolia from the Atlantic displayed efficient metal exclusion mechanisms, since most of the total copper accumulated by the cell was bound to the cell wall. Copyright © 2018 Elsevier Ltd. All rights reserved.
Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.
Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin
2018-04-01
Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg 0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg 0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg 0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg 0 concentration and a high gas hourly space velocity of 128,000 h -1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg 0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg 0 in the presence of HCl. It is proposed that the Hg 0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg 0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg 0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R
2018-01-24
Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.
NASA Astrophysics Data System (ADS)
Drid, S.; Nait-Said, M.-S.; Tadjine, M.; Makouf, A.
2008-06-01
There is an increasing interest in electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved propulsion system for electric vehicles applications with minimal power losses. This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.
Role of copper oxides in contact killing of bacteria.
Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank
2013-12-31
The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.
Aliabadi, Hamidreza
2008-01-01
Copper deficiency plays a vital role in atherogenesis. To the long list of risk factors for atherosclerotic cardiovascular disease should be added the deleterious interaction between copper deficiency and carbohydrate consumption. Here we critically evaluate the role of copper in the diet and its role as a possible etiological factor in the development of cardiovascular disease. A possible mechanism for the development of heart disease due to copper deficiency is proposed. There are many known risk factors for the development of heart disease, including hyperlipidemia and hypertension; however, little emphasis has been placed on the role of copper on heart disease. Over the last couple of decades, dietary copper deficiency has been shown to cause a variety of metabolic changes, including hypercholesterolemia, hypertriglyceridemia, hypertension, and glucose intolerance. Interestingly, these changes are common in the United States population and they are known risk factors for heart disease. Further research in this field is warranted considering the profound implications to people in the United States and around the world who consume processed foods marginally deficient in copper and replete with sugar. The only nutritional condition with signs and symptoms of atherosclerotic cardiovascular disease may be copper deficiency. Improving levels of copper in the diet, by appropriate food selection or by addition of a daily multi-vitamin, is recommended.
Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes
Mao, Xuhui; Ciblak, Ali; Baek, Kitae; Amiri, Mohammad; Loch-Caruso, Rita; Alshawabkeh, Akram N.
2012-01-01
Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L−1 Na2SO4. This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds. PMID:22264798
Craven, Alison M.; Aiken, George R.; Ryan, Joseph N.
2012-01-01
The ratio of copper to dissolved organic matter (DOM) is known to affect the strength of copper binding by DOM, but previous methods to determine the Cu2+–DOM binding strength have generally not measured binding constants over the same Cu:DOM ratios. In this study, we used a competitive ligand exchange–solid-phase extraction (CLE-SPE) method to determine conditional stability constants for Cu2+–DOM binding at pH 6.6 and 0.01 M ionic strength over a range of Cu:DOM ratios that bridge the detection windows of copper-ion-selective electrode and voltammetry measurements. As the Cu:DOM ratio increased from 0.0005 to 0.1 mg of Cu/mg of DOM, the measured conditional binding constant (cKCuDOM) decreased from 1011.5 to 105.6 M–1. A comparison of the binding constants measured by CLE-SPE with those measured by copper-ion-selective electrode and voltammetry demonstrates that the Cu:DOM ratio is an important factor controlling Cu2+–DOM binding strength even for DOM isolates of different types and different sources and for whole water samples. The results were modeled with Visual MINTEQ and compared to results from the biotic ligand model (BLM). The BLM was found to over-estimate Cu2+ at low total copper concentrations and under-estimate Cu2+ at high total copper concentrations.
NASA Astrophysics Data System (ADS)
Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang
2015-07-01
A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.
Crowe, Andrew; Jackaman, Connie; Beddoes, Katie M.; Ricciardo, Belinda; Nelson, Delia J.
2013-01-01
Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes. PMID:24013775
Tu, Chen; Liu, Ying; Wei, Jing; Li, Lianzhen; Scheckel, Kirk G; Luo, Yongming
2018-06-22
In this paper, a highly copper-resistant fungal strain NT-1 was characterized by morphological, physiological, biochemical, and molecular biological techniques. Physiological response to Cu(II) stress, effects of environmental factors on Cu(II) biosorption, as well as mechanisms of Cu(II) biosorption by strain NT-1 were also investigated in this study. The results showed that NT-1 belonged to the genus Gibberella, which exhibited high tolerance to both acidic conditions and Cu(II) contamination in the environment. High concentrations of copper stress inhibited the growth of NT-1 to various degrees, leading to the decreases in mycelial biomass and colony diameter, as well as changes in morphology. Under optimal conditions (initial copper concentration: 200 mg L -1 , temperature 28 °C, pH 5.0, and inoculum dose 10%), the maximum copper removal percentage from solution through culture of strain NT-1 within 5 days reached up to 45.5%. The biosorption of Cu(II) by NT-1 conformed to quasi-second-order kinetics and Langmuir isothermal adsorption model and was confirmed to be a monolayer adsorption process dominated by surface adsorption. The binding of NT-1 to Cu(II) was mainly achieved by forming polydentate complexes with carboxylate and amide group through covalent interactions and forming Cu-nitrogen-containing heterocyclic complexes via Cu(II)-π interaction. The results of this study provide a new fungal resource and key parameters influencing growth and copper removal capacity of the strain for developing an effective bioremediation strategy for copper-contaminated acidic orchard soils.
NASA Astrophysics Data System (ADS)
Barache, Umesh B.; Shaikh, Abdul B.; Lokhande, Tukaram N.; Kamble, Ganesh S.; Anuse, Mansing A.; Gaikwad, Shashikant H.
2018-01-01
The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH 4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414 nm which remains stable for > 48 h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5 μg mL- 1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5 μg mL- 1 to 17.5 μg mL- 1. The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813 × 104 L mol- 1 cm- 1, 0.01996 μg cm- 2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy vegetables, and water samples. The results are compared with those obtained with a reference procedure. Good agreement was attained. All the obtained results are indicative of a convenient, fast method for the extraction and quantification of micro levels of copper(II) from various environmental matrices without use of sophisticated instrumentation and procedure. The method showed a relative standard deviation of 0.42%.
Barache, Umesh B; Shaikh, Abdul B; Lokhande, Tukaram N; Kamble, Ganesh S; Anuse, Mansing A; Gaikwad, Shashikant H
2018-01-15
The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414nm which remains stable for >48h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5μgmL -1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5μgmL -1 to 17.5μgmL -1 . The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813×10 4 Lmol -1 cm -1 , 0.01996μgcm -2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy vegetables, and water samples. The results are compared with those obtained with a reference procedure. Good agreement was attained. All the obtained results are indicative of a convenient, fast method for the extraction and quantification of micro levels of copper(II) from various environmental matrices without use of sophisticated instrumentation and procedure. The method showed a relative standard deviation of 0.42%. Copyright © 2017 Elsevier B.V. All rights reserved.
Stähli, Christoph; Muja, Naser; Nazhat, Showan N
2013-02-01
The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.
Copper Regulates Maturation and Expression of an MITF:Tryptase Axis in Mast Cells.
Hu Frisk, Jun Mei; Kjellén, Lena; Kaler, Stephen G; Pejler, Gunnar; Öhrvik, Helena
2017-12-15
Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation. Copyright © 2017 by The American Association of Immunologists, Inc.
Experimental Study of Solder/Copper Interface Failure Under Varying Strain Rates
2011-03-01
Factors Affecting Solder Joint Reliability Gu et al. [1] determined that during the life cycle of electronic assemblies, approximately 55 percent of...related to vibration and shock, with the remaining percentage associated with changes in 2 humidity. Research conducted by Ross et al. [2] adds...that creep strain is the most important time-dependent factor affecting the reliability of solder joints in electronic equipment. 2. Effects of
Guo, Pan; Wang, Ting; Liu, Yanli; Xia, Yan; Wang, Guiping; Shen, Zhenguo; Chen, Yahua
2014-01-01
A field investigation, field experiment, and hydroponic experiment were conducted to evaluate feasibility of using Oenothera glazioviana for phytostabilization of copper-contaminated soil. In semiarid mine tailings in Tongling, Anhui, China, O. glazioviana, a copper excluder, was a dominant species in the community, with a low bioaccumulation factor, the lowest copper translocation factor, and the lowest copper content in seed (8 mg kg(-1)). When O. glazioviana was planted in copper-polluted farmland soil in Nanjing, Jiangsu, China, its growth and development improved and the level of γ-linolenic acid in seeds reached 17.1%, compared with 8.73% in mine tailings. A hydroponic study showed that O. glazioviana had high tolerance to copper, low upward transportation capacity of copper, and a high γ-linolenic acid content. Therefore, it has great potential for the phytostabilization of copper-contaminated soils and a high commercial value without risk to human health.
Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.
Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger
2014-01-01
This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.
Brewer, George J
2015-12-02
It has become clear that copper toxicity is playing a major role in Alzheimer's disease; but why is the brain copper toxicity with cognition loss in Alzheimer's disease so much different clinically than brain copper toxicity in Wilson's disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer's is at least in part, a copper-2 toxicity disease, while Wilson's is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer's epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure.
Brewer, George J.
2015-01-01
It has become clear that copper toxicity is playing a major role in Alzheimer’s disease; but why is the brain copper toxicity with cognition loss in Alzheimer’s disease so much different clinically than brain copper toxicity in Wilson’s disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer’s is at least in part, a copper-2 toxicity disease, while Wilson’s is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer’s epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure. PMID:26633489
NASA Astrophysics Data System (ADS)
Kyrala, George; Zylstra, A.; Yi, S. A.; Klline, J. L.; Shah, R. C.; Lopez, F. E.; Batha, S. A.; Doppner, T.; Thorn, D. B.; MacLaren, S.; Masters, N.; Callahan, D.; Hurricane, O.; Rice, N.; Huang, H.; Krauland, C. M.; MacDonald, M.
2017-10-01
Using beryllium, as an ablator material for indirectly driven inertial fusion, requires the use of a Copper dopant to block preheat from the hohlraum M-band radiation. However, due to the microstructure and imperfections of the capsule, some of the copper may be injected into the core of the implosion, affecting the yield and performance. Alternatively, the copper dopant may blow into the ablated plasma affecting the hohlraum performance as well. We will present some of data on time integrated imaging of the copper dopant into the core of the capsule using either the 2-dimensional multiple monochromatic imaging of the implosion, as well as the 1D spectrally resolved imaging of the copper dopant emission. In either case we found that the copper did migrate to the hot core, while fewer copper ions ablated into the hohlraum. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396, and by LLNL under Contract DE-AC52-07NA27344.
The Features of Copper Metabolism in the Rat Liver during Development
2015-01-01
Strong interest in copper homeostasis is due to the fact that copper is simultaneously a catalytic co-factor of the vital enzymes, a participant in signaling, and a toxic agent provoking oxidative stress. In mammals, during development copper metabolism is conformed to two types. In embryonic type copper metabolism (ETCM), newborns accumulate copper to high level in the liver because its excretion via bile is blocked; and serum copper concentration is low because ceruloplasmin (the main copper-containing protein of plasma) gene expression is repressed. In the late weaning, the ETCM switches to the adult type copper metabolism (ATCM), which is manifested by the unlocking of copper excretion and the induction of ceruloplasmin gene activity. The considerable progress has been made in the understanding of the molecular basis of copper metabolic turnover in the ATCM, but many aspects of the copper homeostasis in the ETCM remain unclear. The aim of this study was to investigate the copper metabolism during transition from the ETCM (up to 12-days-old) to the ATCM in the rats. It was shown that in the liver, copper was accumulated in the nuclei during the first 5 days of life, and then it was re-located to the mitochondria. In parallel with the mitochondria, copper bulk bound with cytosolic metallothionein was increased. All compartments of the liver cells rapidly lost most of their copper on the 13th day of life. In newborns, serum copper concentration was low, and its major fraction was associated with holo-Cp, however, a small portion of copper was bound to extracellular metallothionein and a substance that was slowly eluted during gel-filtration. In adults, serum copper concentration increased by about a factor of 3, while metallothionein-bound copper level decreased by a factor of 2. During development, the expression level of Cp, Sod1, Cox4i1, Atp7b, Ctr1, Ctr2, Cox17, and Ccs genes was significantly increased, and metallothionein was decreased. Atp7a gene’s activity was fully repressed. The copper routes in newborns are discussed. PMID:26474410
Detachment of sprayed colloidal copper oxychloride-metalaxyl fungicides by a shallow water flow.
Pose-Juan, Eva; Paradelo-Pérez, Marcos; Rial-Otero, Raquel; Simal-Gándara, Jesus; López-Periago, José E
2009-06-01
Flow shear stress induced by rainfall promotes the loss of the pesticides sprayed on crops. Some of the factors influencing the losses of colloidal-size particulate fungicides are quantified by using a rotating shear system model. With this device it was possible to analyse the flow shear influencing washoff of a commercial fungicide formulation based on a copper oxychloride-metalaxyl mixture that was sprayed on a polypropylene surface. A factor plan with four variables, i.e. water speed and volume (both variables determining flow boundary stress in the shear device), formulation dosage and drying temperature, was set up to monitor colloid detachment. This experimental design, together with sorption experiments of metalaxyl on copper oxychloride, and the study of the dynamics of metalaxyl and copper oxychloride washoff, made it possible to prove that metalaxyl washoff from a polypropylene surface is controlled by transport in solution, whereas that of copper oxychloride occurs by particle detachment and transport of particles. Average losses for metalaxyl and copper oxychloride were, respectively, 29 and 50% of the quantity applied at the usual recommended dosage for crops. The key factors affecting losses were flow shear and the applied dosage. Empirical models using these factors provided good estimates of the percentage of fungicide loss. From the factor analysis, the main mechanism for metalaxyl loss induced by a shallow water flow is solubilisation, whereas copper loss is controlled by erosion of copper oxychloride particles.
Effect of copper on Mytilus californianus and Mytilus edulis. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-06
Mytilus edulis and Mytilus californianus have come into widespread use as valuable test animals in estimating the effects and extent of copper pollution, both naturally as indicators and under simulated conditions as bioassays. These mussels are known bioaccumulators of heavy metals. They have a broad distribution, and mutually exclusive habitats. How the mussel reacts to copper is directly related to how copper affects the physiology of the mussel. The filtration rate and oxygen consumption of Mytilus are known to decline by more than 50% under exposure to as low as 200 ppB Cu in the water. Decline in heart ratemore » (bradycardia) also occurs under exposure to copper. Byssus thread production suffers in copper concentrations of 500 ppB and higher. The ability of M. edulis to close its valves in the presence of copper has been documented by several researchers. Of all the physiological parameters, oxygen consumption, heart rate, and valve closure are basic physiological functions which are easily measured. Mortality of Mytilus edulis is known to occur at concentrations of copper 330 ppB and higher within four to five days. It would be advantageous to have a continuous monitoring of the heart, oxygen consumption, and valve gape during this period to determine the state of each and the contribution of each to the possible death of the mussel. This study involves monitoring the three above physiological functions under varying concentrations of copper. In both species, M. edulis and M. californianus, detailed toxicological response records were obtained for each function. These records were then used to compare the physiological responses of each species to different levels of ambient copper in order to explain the possibility of repeatable, species-specific, response patterns to copper. (ERB)« less
The Yeast Copper Response Is Regulated by DNA Damage
Dong, Kangzhen; Addinall, Stephen G.; Lydall, David
2013-01-01
Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798
Saraji, Mohammad; Ghani, Milad; Rezaei, Behzad; Mokhtarianpour, Maryam
2016-10-21
A new headspace liquid-phase microextraction technique based on using a copper foam nanostructure substrate followed by gas chromatography-flame ionization detection was developed for the determination of volatile organic compounds in water and wastewater samples. The copper foam with highly porous nanostructured walls was fabricated on the surface of a copper wire by a rapid and facile electrochemical process and used as the extractant solvent holder. Propyl benzoate was immobilized in the pores of the copper foam coating and used for the microextraction of benzene, toluene, ethylbenzene and xylenes. The experimental parameters such as the type of organic solvent, desorption temperature, desorption time, salt concentration, sample temperature, equilibrium time and extraction time, were investigated and optimized. Under the optimum conditions, the method detection limit was between 0.06 and 0.25μgL -1 . The relative standard deviation of the method for the analytes at 4-8μgL -1 concentration level ranged from 7.9 to 11%. The fiber-to-fiber reproducibility for three fibers prepared under the same condition was 9.3-12%. The enrichment factor was in the range of 615-744. Different water samples were analyzed for the evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and wastewater samples were in the range of 85-94%. Finally, the extraction efficiency of the method was compared with those of headspace single drop microextraction and headspace SPME with the commercial fibers. Copyright © 2016 Elsevier B.V. All rights reserved.
Xie, Feng; Wang, Wei
2017-08-01
The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.
Toxic effects of heavy metal Cu2+ on the pacific oyster Crassostrea gigas
NASA Astrophysics Data System (ADS)
Gao, Ceng; Zhang, Xinxin; Li, Xiumei; Tang, Xuexi
2017-05-01
The effects of different concentrations of heavy metal ions on the survival of the Pacific oyster Crassostrea gigas were studied by using experimental ecology method in 96 h. The results showed that the LC50 of copper ion was 21.748mg/L and the safe concentration was 2.1748mg/L mg/L. Under the condition of laboratory, under laboratory conditions, the research of Cu2+ Stress on the C. gigas gill and digestive gland and adductor muscle tissue SOD, GPx and the induction of CAT activity. The results showed that the activities of SOD, GPx and CAT in the C. gigas were significantly changed by copper ion + stress. The results showed that in the low concentration Cu2+ treatment could induce the three kinds of enzymes, in the high concentration Cu2+ treatment group, SOD and CAT and GPx on the inhibition of the effect. The sensitivity of the three antioxidant enzymes to copper ion showed a certain difference. The sensitivity of the three kinds of tissue enzymes to Cu2+ treatment was digestive gland> fascia> gill. The experimental results show that the single factor for copper in water pollutants, the C. gigas digestive gland tissue SOD, GPX and CAT activity has certain significance to it, but will it as index applied to the actual water need further study.
Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O
2011-12-01
This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.
One application of nanocopper is as a wood‐preserving pesticide in pressure‐treated lumber. Recent research has shown that pressure‐treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and ma...
Effects of ultrasound and temperature on copper electro reduction in Deep Eutectic Solvents (DES).
Mandroyan, Audrey; Mourad-Mahmoud, Mahmoud; Doche, Marie-Laure; Hihn, Jean-Yves
2014-11-01
This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride-ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV-visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and linear voltammetry were performed in the three solutions at three temperatures (25, 50 and 80°C) and under ultrasonic conditions (F=20kHz, PT=5.8W) to calculate the mass transfer diffusion coefficient kD and the standard rate coefficient k°. These parameters are used to determine that copper reduction is carried out via a mixed kinetic-diffusion control process. Temperature and ultrasound have the same effect on mass transfer for reduction of Cu(II)/Cu(I). On the other hand, temperature is more beneficial than ultrasound for mass transfer of Cu(I)/Cu. Standard rate constant improvement due to temperature increase is of the same order as that obtained with ultrasound. But, by combining higher temperature and ultrasound (F=20kHz, PT=5.6W at 50°C), reduction limiting current is increased by a factor of 10 compared to initial conditions (T=25°C, silent), because ultrasonic stirring is more efficient in lower viscosity fluid. These values can be considered as key-parameters in the design of copper recovery in global processes using ultrasound. Copyright © 2014 Elsevier B.V. All rights reserved.
Sugawa, Kosuke; Tamura, Takahiro; Tahara, Hironobu; Yamaguchi, Daisuke; Akiyama, Tsuyoshi; Otsuki, Joe; Kusaka, Yasuyuki; Fukuda, Nobuko; Ushijima, Hirobumi
2013-11-26
Ordered arrays of copper nanostructures were fabricated and modified with porphyrin molecules in order to evaluate fluorescence enhancement due to the localized surface plasmon resonance. The nanostructures were prepared by thermally depositing copper on the upper hemispheres of two-dimensional silica colloidal crystals. The wavelength at which the surface plasmon resonance of the nanostructures was generated was tuned to a longer wavelength than the interband transition region of copper (>590 nm) by controlling the diameter of the underlying silica particles. Immobilization of porphyrin monolayers onto the nanostructures was achieved via self-assembly of 16-mercaptohexadecanoic acid, which also suppressed the oxidation of the copper surface. The maximum fluorescence enhancement of porphyrin by a factor of 89.2 was achieved as compared with that on a planar Cu plate (CuP) due to the generation of the surface plasmon resonance. Furthermore, it was found that while the fluorescence from the porphyrin was quenched within the interband transition region, it was efficiently enhanced at longer wavelengths. It was demonstrated that the enhancement induced by the proximity of the fluorophore to the nanostructures was enough to overcome the highly efficient quenching effects of the metal. From these results, it is speculated that the surface plasmon resonance of copper has tremendous potential for practical use as high functional plasmonic sensor and devices.
The california poppy (eschscholtzia mexicana) as a copper indicator plant - a new example
Chaffee, M.A.; Gale, C.W.
1976-01-01
The abundance and distribution of the California poppy (Eschscholtzia mexicana) correlates closely with the copper-rich outcrop of a small porphyry-type deposit in Arizona. Chemical factors are probably more important than physical factors in determining why this species is sometimes found as a copper indicator plant. ?? 1976.
CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis
Marcus, Sarah A.; Sidiropoulos, Sarah W.; Steinberg, Howard; Talaat, Adel M.
2016-01-01
Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculosis as it faced copper and host stress. Growth under high levels of copper demonstrated that M. tuberculosis survives copper stress significantly better in the absence of csoR. Yet under minimal levels of copper, differential expression analysis revealed that the loss of csoR results in a cell wide hypoxia-type stress response with the induction of the DosR regulon. Despite the stress placed on M. tuberculosis by the loss of csoR, survival of the knockout strain was increased compared to wild type during the early chronic stages of mouse infection, suggesting that csoR could play an active role in modulating M. tuberculosis fitness within the host. Overall, analysis of CsoR provided an increased understanding of the M. tuberculosis copper response with implications for other intracellular pathogens harboring CsoR. PMID:26999439
Copper-granule-catalyzed microwave-assisted click synthesis of polyphenol dendrimers.
Lee, Choon Young; Held, Rich; Sharma, Ajit; Baral, Rom; Nanah, Cyprien; Dumas, Dan; Jenkins, Shannon; Upadhaya, Samik; Du, Wenjun
2013-11-15
Syringaldehyde- and vanillin-based antioxidant dendrimers were synthesized via microwave-assisted alkyne-azide 1,3-dipolar cycloaddition using copper granules as a catalyst. The use of Cu(I) as a catalyst resulted in copper contaminated dendrimers. To produce copper-free antioxidant dendrimers for biological applications, Cu(I) was substituted with copper granules. Copper granules were ineffective at both room temperature and under reflux conditions (<5% yield). However, they were an excellent catalyst when dendrimer synthesis was performed under microwave irradiation, giving yields up to 94% within 8 h. ICP-mass analysis of the antioxidant dendrimers obtained with this method showed virtually no copper contamination (9 ppm), which was the same as the background level. The synthesized antioxidants, free from copper contamination, demonstrated potent radical scavenging with IC50 values of less than 3 μM in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In comparison, dendrimers synthesized from Cu(I)-catalyzed click chemistry showed a high level of copper contamination (4800 ppm) and no detectable antioxidant activity.
Semisch, Annetta; Ohle, Julia; Witt, Barbara; Hartwig, Andrea
2014-02-13
Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive.
2014-01-01
Background Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. Methods The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Results Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. Conclusions The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive. PMID:24520990
NASA Astrophysics Data System (ADS)
Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng
2015-02-01
Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.
Higuchi, Yujiro; Mori, Hikari; Kubota, Takeo; Takegawa, Kaoru
2018-01-01
The molecular mechanism of tolerance to alkaline pH is well studied in model fungi Aspergillus nidulans and Saccharomyces cerevisiae. However, how fission yeast Schizosaccharomyces pombe survives under alkaline stress remains largely unknown, as the genes involved in the alkaline stress response pathways of A. nidulans and S. cerevisiae were not found in the genome of this organism. Since uptake of iron and copper into cells is important for alkaline tolerance in S. cerevisiae, here we examined whether iron and copper uptake processes were involved in conferring tolerance to alkaline stress in S. pombe. We first revealed that S. pombe wild-type strain could not grow at a pH higher than 6.7. We further found that the growths of mutants harboring disruption in the iron uptake-related gene frp1 + , fio1 + or fip1 + were severely inhibited under ambient pH stress condition. In contrast, derepression of these genes, by deletion of their repressor gene fep1 + , caused cells to acquire resistance to pH stress. Together, these results suggested that uptake of iron is essential for ambient pH tolerance in S. pombe. We also found that copper is required for the pH stress response because disruptants of ctr4 + , ctr5 + , ccc2 + and cuf1 + genes, all of which are needed for regulating intracellular Cu + , displayed ambient pH sensitivity. Furthermore, supplementing Fe 2+ and Cu 2+ ions to the culture media improved growth under ambient pH stress. Taken together, our results suggested that uptake of iron and copper is the crucial factor needed for the adaptation of S. pombe to ambient pH stress. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Dissolution of lead matte and copper slag upon exposure to rhizosphere-like conditions
NASA Astrophysics Data System (ADS)
Potysz, Anna; Kierczak, Jakub
2017-12-01
Metallurgical wastes displaying various chemical and mineralogical properties may reveal different behaviour under exposure to weathering conditions. The latter impact the stability of the wastes, which often results in metal release and subsequent pollution problems. The aim of this study was to compare the weathering of two types of metallurgical wastes (i.e., copper slag and lead matte) exposed to artificial root exudates organic solutions and demineralized water. The results of experimental weathering demonstrated that the extent of waste dissolution depends on the composition of weathering solution as well as on the waste properties. Artificial root exudates rich in organic acids were found to enhance elements release from sulphide rich lead matte and copper glassy slag relative to demineralized water control. The release of elements from the wastes exposed to artificial root exudates for 7 weeks reached 17.8% of Pb and 4.97% of Cu, for lead matte and granulated slag respectively. The most leachable elements may result from the dissolution of intermetallic phases hosting these elements. The fraction size ranging from 0.25-0.5 mm to 1-2 mm was found to be a minor factor in elements release under studied conditions.
Tait, Tara N; McGeer, James C; Smith, D Scott
2018-01-01
Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingtian; Luo, Deliang; Yang, Chengju
2013-07-15
Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a bandmore » gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup −1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper(II) imidazolate frameworks were first applied in the photo-reduction of CO{sub 2}. • The photocatalytic activities of the frameworks depend on their band gap and phase structures. • The photocatalytic activity of orthorhombic frameworks is 3 times that of monoclinic frameworks. • The degradation kinetics of MB over three photocatalysts followed the first-order rate equation. • The largest yield for reduction of CO{sub 2} into methanol on green framworks was 1712.7 μmol/g over 5 h.« less
Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.
Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung
2003-08-01
Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.
Peng, Cong; Chai, Liyuan; Tang, Chongjian; Min, Xiaobo; Song, Yuxia; Duan, Chengshan; Yu, Cheng
2017-01-01
Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process. Copyright © 2016. Published by Elsevier B.V.
Song, Han Byul; Baranek, Austin; Bowman, Christopher N.
2016-01-01
Photoinitiation of polymerizations based on the copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction enables spatio-temporal control and the formation of mechanically robust, highly glassy photopolymers. Here, we investigated several critical factors influencing photo-CuAAC polymerization kinetics via systematic variation of reaction conditions such as the physicochemical nature of the monomers; the copper salt and photoinitiator types and concentrations; light intensity; exposure time and solvent content. Real time Fourier transform infrared spectroscopy (FTIR) was used to monitor the polymerization kinetics in situ. Six different di-functional azide monomers and four different tri-functional alkyne monomers containing either aliphatic, aromatic, ether and/or carbamate substituents were synthesized and polymerized. Replacing carbamate structures with ether moieties in the monomers enabled an increase in conversion from 65% to 90% under similar irradiation conditions. The carbamate results in stiffer monomers and higher viscosity mixtures indicating that chain mobility and diffusion are key factors that determine the CuAAC network formation kinetics. Photoinitiation rates were manipulated by altering various aspects of the photo-reduction step; ultimately, a loading above 3 mol% per functional group for both the copper catalyst and the photoinitiator showed little or no rate dependence on concentration while a loading below 3 mol% exhibited 1st order rate dependence. Furthermore, a photoinitiating system consisting of camphorquinone resulted in 60% conversion in the dark after only 1 minute of 75 mW cm−2 light exposure at 400–500 nm, highlighting a unique characteristic of the CuAAC photopolymerization enabled by the combination of the copper(i)’s catalytic lifetime and the nature of the step-growth polymerization. PMID:27429650
Song, Han Byul; Baranek, Austin; Bowman, Christopher N
2016-01-21
Photoinitiation of polymerizations based on the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction enables spatio-temporal control and the formation of mechanically robust, highly glassy photopolymers. Here, we investigated several critical factors influencing photo-CuAAC polymerization kinetics via systematic variation of reaction conditions such as the physicochemical nature of the monomers; the copper salt and photoinitiator types and concentrations; light intensity; exposure time and solvent content. Real time Fourier transform infrared spectroscopy (FTIR) was used to monitor the polymerization kinetics in situ . Six different di-functional azide monomers and four different tri-functional alkyne monomers containing either aliphatic, aromatic, ether and/or carbamate substituents were synthesized and polymerized. Replacing carbamate structures with ether moieties in the monomers enabled an increase in conversion from 65% to 90% under similar irradiation conditions. The carbamate results in stiffer monomers and higher viscosity mixtures indicating that chain mobility and diffusion are key factors that determine the CuAAC network formation kinetics. Photoinitiation rates were manipulated by altering various aspects of the photo-reduction step; ultimately, a loading above 3 mol% per functional group for both the copper catalyst and the photoinitiator showed little or no rate dependence on concentration while a loading below 3 mol% exhibited 1 st order rate dependence. Furthermore, a photoinitiating system consisting of camphorquinone resulted in 60% conversion in the dark after only 1 minute of 75 mW cm -2 light exposure at 400-500 nm, highlighting a unique characteristic of the CuAAC photopolymerization enabled by the combination of the copper(i)'s catalytic lifetime and the nature of the step-growth polymerization.
Elguindi, Jutta; Alwathnani, Hend A; Rensing, Christopher
2012-04-01
Cronobacter spp. have been identified as the causative agent in meningitis and necrotizing enterocolitis in premature infants which can be linked to the bacterium's desiccation resistance and persistence in powdered infant formula. In this study we examined the efficacy of copper cast alloys in contact killing of Cronobacter sakazakii following periods of desiccation stress. Cronobacter sakazakii cells suspended in Tryptic Soy Broth (TSB) were killed within 10 min while kept moist on 99.9% copper alloys and within 1 min of drying on 99.9% copper alloys. Survival times were unchanged after cells suspended in TSB were desiccated for 33 days. Cronobacter sakazakii cells suspended in infant formula were killed within 30 min under moist conditions and within 3 min of drying on 99.9% copper alloys. However, when desiccated in infant formula for 45 days, survival times decreased to 10 and 1 min in moist and dry conditions, respectively. In contrast, no decrease in viable cells was noted on stainless steel surfaces under the experimental conditions employed in this study. Cronobacter sakazakii was rapidly killed on copper alloys under all testing conditions of this study indicating that desiccation and copper ion resistance do not prolong survival. These results could have important implications for the utilization of copper in the production and storage of powdered infant formula.
Song, Shaojuan; Zhang, Xueyao; Wu, Haihua; Han, Yan; Zhang, Jianzhen; Ma, Enbo; Guo, Yaping
2014-01-01
Antioxidant enzymes play a major role in defending against oxidative damage by copper. However, few studies have been performed to determine which antioxidant enzymes respond to and are necessary for copper detoxification. In this study, we examined both the activities and mRNA levels of SOD, CAT, and GPX under excessive copper stress in Caenorhabditis elegans, which is a powerful model for toxicity studies. Then, taking advantage of the genetics of this model, we assessed the lethal concentration (LC50) values of copper for related mutant strains. The results showed that the SOD, CAT, and GPX activities were significantly greater in treated groups than in controls. The mRNA levels of sod-3, sod-5, ctl-1, ctl-2, and almost all gpx genes were also significantly greater in treated groups than in controls. Among tested mutants, the sod-5, ctl-1, gpx-3, gpx-4, and gpx-6 variants exhibited hypersensitivity to copper. The strains with SOD or CAT over expression were reduced sensitive to copper. Mutations in daf-2 and age-1, which are involved in the insulin/insulin-like growth factor-1 signaling pathway, result in reduced sensitivity to stress. Here, we showed that LC50 values for copper in daf-2 and age-1 mutants were significantly greater than in N2 worms. However, the LC50 values in daf-16;daf-2 and daf-16;age-1 mutants were significantly reduced than in daf-2 and age-1 mutants, implying that reduced copper sensitivity is influenced by DAF-16-related functioning. SOD, CAT, and GPX activities and the mRNA levels of the associated copper responsive genes were significantly increased in daf-2 and age-1 mutants compared to N2. Additionally, the activities of SOD, CAT, and GPX were greater in these mutants than in N2 when treated with copper. Our results not only support the theory that antioxidant enzymes play an important role in copper detoxification but also identify the response and the genes involved in these processes. PMID:25243607
Bien, T N; Gul, W H; Bac, L H; Kim, J C
2014-11-01
Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.
Survey of IUD replacing status in Sichuan, PR China.
Xiaoqin, Chen; Li, Xie; Xiaoping, Pan; Chuanrong, Zhang; Shiyuan, Luo
2003-05-01
To investigate the status of copper-bearing intrauterine device (IUD) replacing inert IUD in Sichuan Province, cluster random sampling method was adopted for the survey. Questionnaires were completed and IUD were inspected through ultrasound among 12,804 subjects of 15 counties, who were inserted an IUD from 1994 to 1998. The insertion rate of copper-bearing IUD was 42.1%, in a gradually increasing trend; it was lower in mountain areas than in plain and hilly areas and increased after induced abortion and previous IUD failure. Some factors, such as lower pregnancy rate, lower expulsion rate and easy removal, etc., contributed to copper-bearing IUD use. On the other hand, other factors like longer contraception period, lower side effects and lower cost contributed to inert IUD use. The results show that the adoption of copper-bearing IUD is increasing, but those factors influencing copper-bearing IUD replacement should not be neglected.
Functional characterization of the copper transcription factor AfMac1 from Aspergillus fumigatus.
Park, Yong-Sung; Kim, Tae-Hyoung; Yun, Cheol-Won
2017-07-03
Although copper functions as a cofactor in many physiological processes, copper overload leads to harmful effects in living cells. Thus, copper homeostasis is tightly regulated. However, detailed copper metabolic pathways have not yet been identified in filamentous fungi. In this report, we investigated the copper transcription factor AfMac1 ( A spergillus f umigatus Mac1 homolog) and identified its regulatory mechanism in A. fumigatus AfMac1 has domains homologous to the DNA-binding and copper-binding domains of Mac1 from Saccharomyces cerevisiae , and AfMac1 efficiently complemented Mac1 in S. cerevisiae Expression of Afmac1 resulted in CTR1 up-regulation, and mutation of the DNA-binding domain of Afmac1 failed to activate CTR1 expression in S. cerevisiae The Afmac1 deletion strain of A. fumigatus failed to grow in copper-limited media, and its growth was restored by introducing ctrC We found that AfMac1 specifically bound to the promoter region of ctrC based on EMSA. The AfMac1-binding motif 5'-TGTGCTCA-3' was identified from the promoter region of ctrC , and the addition of mutant ctrC lacking the AfMac1-binding motif failed to up-regulate ctrC in A. fumigatus Furthermore, deletion of Afmac1 significantly reduced strain virulence and activated conidial killing activity by neutrophils and macrophages. Taken together, these results suggest that AfMac1 is a copper transcription factor that regulates cellular copper homeostasis in A. fumigatus . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Fabricating Copper Nanotubes by Electrodeposition
NASA Technical Reports Server (NTRS)
Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel
2009-01-01
Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.
Nallagangula, Madhu; Namitharan, Kayambu
2017-07-07
First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.
Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release.
Barralet, Jake; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J
2009-07-01
Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and=or vascular cells. It represents an important process during the formation and repair of tissue and is essential for nourishment and supply of reparative and immunological cells. Inorganic angiogenic factors, such as copper ions, are therefore of interest in the fields of regenerative medicine and tissue engineering due to their low cost, higher stability, and potentially greater safety compared with recombinant proteins or genetic engineering approaches. The purpose of this study was to compare tissue responses to 3D printed macroporous bioceramic scaffolds implanted in mice that had been loaded with either VEGF or copper sulfate. These factors were spatially localized at the end of a single macropore some 7 mm from the surface of the scaffold. Controls without angiogenic factors exhibited only poor tissue growth within the blocks; in contrast, low doses of copper sulfate led to the formation of microvessels oriented along the macropore axis. Further, wound tissue ingrowth was particularly sensitive to the quantity of copper sulfate and was enhanced at specific concentrations or in combination with VEGF. The potential to accelerate and guide angiogenesis and wound healing by copper ion release without the expense of inductive protein(s) is highly attractive in the area of tissue-engineered bone and offers significant future potential in the field of regenerative biomaterials.
Effect of copper chloride on the emissions of PCDD/Fs and PAHs from PVC combustion.
Wang, Dongli; Xu, Xiaobai; Zheng, Minghui; Chiu, Chung H
2002-09-01
The influences of temperature, air flow and the amount of copper chloride upon the types and amount of the toxic emissions such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) during combustion of polyvinyl chloride (PVC) were investigated. The mechanism concerning the effect of temperature and copper chloride on the PCDD/Fs and PAHs formation was discussed. The results shown that without copper chloride, trace amounts of PCDD/Fs and large amounts of PAHs were found in the emissions from the pure PVC combustion under various combustion conditions. The addition of copper chloride enhanced PCDD/Fs formation, but it seems that the formation of PAHs decreased with increasing amount of copper chloride, and greater total amount of PAHs were produced at the higher temperature under our experimental conditions.
NASA Astrophysics Data System (ADS)
Gregory, Melissa J.; Mathur, Ryan
2017-11-01
Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.
Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.
1986-07-15
A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.
Puértolas, B; Navlani-García, M; García, T; Navarro, M V; Lozano-Castelló, D; Cazorla-Amorós, D
2014-08-30
A key target to reduce current hydrocarbon emissions from vehicular exhaust is to improve their abatement under cold-start conditions. Herein, we demonstrate the potential of factorial analysis to design a highly efficient catalytic trap. The impact of the synthesis conditions on the preparation of copper-loaded ZSM-5 is clearly revealed by XRD, N2 sorption, FTIR, NH3-TPD, SEM and TEM. A high concentration of copper nitrate precursor in the synthesis improves the removal of hydrocarbons, providing both strong adsorption sites for hydrocarbon retention at low temperature and copper oxide nanoparticles for full hydrocarbon catalytic combustion at high temperature. The use of copper acetate precursor leads to a more homogeneous dispersion of copper oxide nanoparticles also providing enough catalytic sites for the total oxidation of hydrocarbons released from the adsorption sites, although lower copper loadings are achieved. Thus, synthesis conditions leading to high copper loadings jointly with highly dispersed copper oxide nanoparticles would result in an exceptional catalytic trap able to reach superior hydrocarbon abatement under highly demanding operational conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Perspectives on the Role and Relevance of Copper in Cardiac Disease.
Medeiros, Denis M
2017-03-01
Cardiac hypertrophy as a result of dietary copper deficiency has been studied for 40 plus years and is the subject of this review. While connective tissue anomalies occur, a hallmark pathology is cardiac hypertrophy, increased mitochondrial biogenesis, with disruptive cristae, vacuolization of mitochondria, and deposition of lipid droplets. Electrocardiogram abnormalities have been demonstrated along with biochemical changes especially as it relates to the copper-containing enzyme cytochrome c oxidase. The master controller of mitochondrial biogenesis, PGC1-α expression and protein, along with other proteins and transcriptional factors that play a role are upregulated. Nitric oxide, vascular endothelial growth factor, and cytochrome c oxidase all may enhance the upregulation of mitochondrial biogenesis. Marginal copper intakes reveal similar pathologies in the absence of cardiac hypertrophy. Reversibility of the copper-deficient rat heart with a copper-replete diet has resulted in mixed results, depending on both the animal model used and temporal relationships. New information has revealed that copper supplementation may rescue cardiac hypertrophy induced by pressure overload.
Solution-processed copper-nickel nanowire anodes for organic solar cells
NASA Astrophysics Data System (ADS)
Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.
2014-05-01
This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h
Ozumi, Kiyoshi; Sudhahar, Varadarajan; Kim, Ha Won; Chen, Gin-Fu; Kohno, Takashi; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D.; Ushio-Fukai, Masuko; Fukai, Tohru
2012-01-01
Extracellular superoxide dismutase (SOD3) is a secretory copper enzyme involved in protecting angiotensin II (Ang II)-induced hypertension. We previously found that Ang II upregulates SOD3 expression and activity as a counter-regulatory mechanism; however, underlying mechanisms are unclear. Antioxidant-1 (Atox1) is shown to act as a copper-dependent transcription factor as well as copper chaperone for SOD3 in vitro, but its role in Ang II-induced hypertension in vivo is unknown. Here we show that Ang II infusion increases Atox1 expression as well as SOD3 expression and activity in aortas of wild-type mice, which are inhibited in mice lacking Atox1. Accordingly, Ang II increases vascular O2•− production, reduces endothelium-dependent vasodilation and increases vasoconstriction in mesenteric arterioles to a greater extent in Atox1−/− than in wild-type mice. This contributes to augmented hypertensive response to Ang II in Atox1−/− mice. In cultured vascular smooth muscle cells, Ang II promotes translocation of Atox1 to the nucleus, thereby increasing SOD3 transcription by binding to Atox1 responsive element in the SOD3 promoter. Furthermore, Ang II increases Atox1 binding to the copper exporter ATP7A which obtains copper from Atox1 as well as translocation of ATP7A to plasma membranes where it colocalizes with SOD3. As its consequence, Ang II decreases vascular copper levels, which is inhibited in Atox1−/− mice. In summary, Atox1 functions to prevent Ang II-induced endothelial dysfunction and hyper-contraction in resistant vessels as well as hypertension in vivo by reducing extracellular O2•− levels via increasing vascular SOD3 expression and activity. PMID:22753205
NASA Astrophysics Data System (ADS)
Wang, Jinxiang; Yang, Rui; Jiang, Li; Wang, Xiaoxu; Zhou, Nan
2013-11-01
Nanocrystalline (NC) copper was fabricated by severe plastic deformation of coarse-grained copper at a high strain rate under explosive loading. The feasibility of grain refinement under different explosive loading and the influence of overall temperature rise on grain refinement under impact compression were studied in this paper. The calculation model for the macroscopic temperature rise was established according to the adiabatic shock compression theory. The calculation model for coarse-grained copper was established by the Voronoi method and the microscopic temperature rise resulted from severe plastic deformation of grains was calculated by ANSYS/ls-dyna finite element software. The results show that it is feasible to fabricate NC copper by explosively dynamic deformation of coarse-grained copper and the average grain size of the NC copper can be controlled between 200˜400 nm. The whole temperature rise would increase with the increasing explosive thickness. Ammonium nitrate fuel oil explosive was adopted and five different thicknesses of the explosive, which are 20 mm, 25 mm, 30 mm, 35 mm, 45 mm, respectively, with the same diameter using 20 mm to the fly plate were adopted. The maximum macro and micro temperature rise is up to 532.4 K, 143.4 K, respectively, which has no great effect on grain refinement due to the whole temperature rise that is lower than grain growth temperature according to the high pressure melting theory.
Migocka, Magdalena; Posyniak, Ewelina; Maciaszczyk-Dziubinska, Ewa; Papierniak, Anna; Kosieradzaka, Anna
2015-01-01
Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu+ (Km ∼1 or 0.5 μm, respectively) and similar affinity to Ag+ (Km ∼2.5 μm). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu+ transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess. PMID:25963145
Vargas, Ignacio T; Alsina, Marco A; Pavissich, Juan P; Jeria, Gustavo A; Pastén, Pablo A; Walczak, Magdalena; Pizarro, Gonzalo E
2014-06-01
Microbially influenced corrosion (MIC) is recognized as an unusual and severe type of corrosion that causes costly failures around the world. A microbial biofilm could enhance the copper release from copper plumbing into the water by forming a reactive interface. The biofilm increases the corrosion rate, the mobility of labile copper from its matrix and the detachment of particles enriched with copper under variable shear stress due to flow conditions. MIC is currently considered as a series of interdependent processes occurring at the metal-liquid interface. The presence of a biofilm results in the following effects: (a) the formation of localized microenvironments with distinct pH, dissolved oxygen concentrations, and redox conditions; (b) sorption and desorption of labile copper bonded to organic compounds under changing water chemistry conditions; (c) change in morphology by deposition of solid corrosion by-products; (d) diffusive transport of reactive chemical species from or towards the metal surface; and (e) detachment of scale particles under flow conditions. Using a multi-technique approach that combines pipe and coupon experiments this paper reviews the effects of microbial biofilms on the corrosion of copper plumbing systems, and proposes an integrated conceptual model for this phenomenon supported by new experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.
Migration of copper and some other metals from copper tableware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiwata, H.; Inoue, T.; Yoshihira, K.
Intake of heavy metals is an important problem in human health. Certain heavy metals are avoided with regard to their use for utensils or tableware coming into contact with food, although copper is widely used in food processing factories or at home. The use of copper products for the processing, cooking or serving of foods and beverages is considered to be a cause of a copper contamination. Although copper is essential element, its excess ingestion is undesirable. In this study, the migration of copper from tin-plated or non-plated copperware under several experimental conditions was investigated using food-simulating solvents.
Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.
Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi
2014-07-07
The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.
New Approach to Remove Metals from Chromated Copper Arsenate (CCA)-Treated Wood
Todd F. Shupe; Chung Y. Hse; Hui Pan
2012-01-01
Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated using binary acid solutions consisting of acetic, oxalic, and phosphoric acids in a microwave reactor. Formation of an insoluble copper oxalate complex in the binary solution containing oxalic acid was the major factor for low copper removal. Furthermore, the...
Development of Low Cost Contacts to Silicon Solar Cells
NASA Technical Reports Server (NTRS)
Iles, P. A.; Tanner, D. P.
1979-01-01
Different electroless plating systems were evaluated in conjunction with copper electroplating. All tests involved simultaneous deposition of front and back contacts using a standard cell materials. Cells with good adhesion and good curve fill factors were obtained using a palladium-chromium-copper metallization system. The final copper contact system was evaluated to determine if the copper would migrate at elevated temperatures. The copper migrated at elevated temperatures causing cell output degradation.
Tantalum-copper alloy and method for making
Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.
1984-11-06
A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.
Tantalum-copper alloy and method for making
Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.
1983-06-01
A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.
The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions
Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.
Method for providing uranium with a protective copper coating
Waldrop, Forrest B.; Jones, Edward
1981-01-01
The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.
Adaptation to copper stress influences biofilm formation in Alteromonas macleodii.
Cusick, Kathleen D; Dale, Jason R; Fitzgerald, Lisa A; Little, Brenda J; Biffinger, Justin C
2017-07-01
An Alteromonas macleodii strain was isolated from copper-containing coupons incubated in surface seawater (Key West, FL, USA). In addition to the original isolate, a copper-adapted mutant was created and maintained with 0.78 mM Cu 2+ . Biofilm formation was compared between the two strains under copper-amended and low-nutrient conditions. Biofilm formation was significantly increased in the original isolate under copper amendment, while biofilm formation was significantly higher in the mutant under low-nutrient conditions. Biofilm expression profiles of diguanylate cyclase (DGC) genes, as well as genes involved in secretion, differed between the strains. Comparative genomic analysis demonstrated that both strains possessed a large number of gene attachment harboring cyclic di-GMP synthesis and/or degradation domains. One of the DGC genes, induced at very high levels in the mutant, possessed a degradation domain in the original isolate that was lacking in the mutant. The genetic and transcriptional mechanisms contributing to biofilm formation are discussed.
NASA Astrophysics Data System (ADS)
Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.
2017-07-01
The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.
Corrosion Control 101: A Journey in Rediscovery
The presentation covers the general water chemistry of lead and copper, how contamination originates from home plumbing systems, what treatments are appropriate for controlling lead and copper to meet the Lead and Copper Rule, and what water quality and treatment factors directly...
Method of fabricating a catalytic structure
Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2009-09-22
A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.
Redox Sorption of Oxygen Dissolved in Water on Copper Nanoparticles in an Ion Exchange Matrix
NASA Astrophysics Data System (ADS)
Vakhnin, D. D.; Pridorogina, V. E.; Polyanskii, L. N.; Kravchenko, T. A.; Gorshkov, V. S.
2018-01-01
The redox sorption of molecular oxygen from water by a thin granular layer of a copper-ion exchanger nanocomposite in the currentless mode and under cathodic polarization is studied. The speed of propagation of the boundaries of the chemical reaction of stepwise oxidation of copper nanoparticles under the conditions of polarization slows considerably. At the same time, the amount of electrochemically regenerated copper from the resulting oxides that is capable of interacting with oxygen again grows. The stationarity of the redox sorption of oxygen is due to the equality of the rates of oxidation and reduction of the metallic component of the composite.
COPPER PITTING AND PINHOLE LEAK RESEARCH STUDY
Localized copper corrosion or pitting is a significant problem at many water utilities across the United States. Copper pinhole leak problems resulting from extensive pitting are widely under reported. Given the sensitive nature of the problem, extent of damage possible, costs o...
Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola
2013-05-01
Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.
Li, Yue Ru; Marschilok, Amy C.; Takeuchi, Esther S.; ...
2015-11-24
This report describes the first detailed electrochemical examination of a series of copper birnessite samples under lithium-based battery conditions, allowing a structure/function analysis of the electrochemistry and related material properties. To obtain the series of copper birnessite samples, a novel synthetic approach for the preparation of copper birnessite, Cu xMnO y·nH 2O is reported. The copper content (x) in Cu xMnO y·nH 2O, 0.28 >= x >= 0.20, was inversely proportional to crystallite size, which ranged from 12 to 19 nm. The electrochemistry under lithium-based battery conditions showed that the higher copper content (x = 0.28) and small crystallite sizemore » (similar to 12 nm) sample delivered similar to 194 mAh/g, about 20% higher capacity than the low copper content (x = 0.22) and larger crystallite size (similar to 19 nm) material. In addition, Cu xMnO y·nH 2O displays quasi-reversible electrochemistry in magnesium based electrolytes, indicating that copper birnessite could be a candidate for future application in magnesium-ion batteries.« less
Botta, Gabriela; Turn, Christina S; Quintyne, Nicholas J; Kirchman, Paul A
2011-10-01
We have previously shown that copper supplementation extends the replicative life span of Saccharomyces cerevisiae when grown under conditions forcing cells to respire. We now show that copper's effect on life span is through Fet3p, a copper containing enzyme responsible for high affinity transport of iron into yeast cells. Life span extensions can also be obtained by supplementing the growth medium with 1mM ferric chloride. Extension by high iron levels is still dependent on the presence of Fet3p. Life span extension by iron or copper requires growth on media containing glycerol as the sole carbon source, which forces yeast to respire. Yeast grown on glucose containing media supplemented with iron show no extension of life span. The iron associated with cells grown in media supplemented with copper or iron is 1.4-1.8 times that of cells grown without copper or iron supplementation. As with copper supplementation, iron supplementation partially rescues the life span of superoxide dismutase mutants. Cells grown with copper supplementation display decreased production of superoxide as measured by dihydroethidium staining. Copyright © 2011 Elsevier Inc. All rights reserved.
Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben
2012-01-01
Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972
NASA Astrophysics Data System (ADS)
Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.
2017-09-01
Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.
Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H
2017-11-01
Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Hong-Yan; Cui, Zhao-Jie; Yao, Ya-Wei
2010-12-01
A newly leaching method of copper from waste print circuit board was established by using hydrochloric acid-n-butylamine-copper sulfate mixed solution. The conditions of leaching were optimized by changing the hydrochloric acid, n-butylamine, copper sulfate,temperature and other conditions using copper as target mimics. The results indicated that copper could be leached completely after 8 h at 50 degrees C, hydrochloric acid concentration of 1.75 mol/L, n-butylamine concentration of 0.25 mol/L, and copper sulfate mass of 0.96 g. Under the conditions, copper leaching rates in waste print circuit board samples was up to 95.31% after 9 h. It has many advantages such as better effects, low cost, mild reaction conditions, leaching solution recycling.
SLC31 (CTR) Family of Copper Transporters in Health and Disease
Kim, Heejeong; Wu, Xiaobin; Lee, Jaekwon
2012-01-01
Copper is a vital mineral for many organisms, yet it is highly toxic as demonstrated by serious health concerns associated with its deficiency or excess accumulation. The SLC31 (CTR) family of copper transporters is a major gateway of copper acquisition in eukaryotes, ranging from yeast to humans. Characterization of the function, modes of action, and regulation of CTR and other molecular factors that functionally cooperate with CTR for copper transport, compartmentalization, incorporation into cuproproteins, and detoxification has revealed that organisms have evolved fascinating mechanisms for tight control of copper metabolism. This research progress further indicates the significance of copper in health and disease and opens avenues for therapeutic control of copper bioavailability and its metabolic pathways. PMID:23506889
Printed Nano Cu and NiSi Contacts and Metallization for Solar Cell Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmody, Michael John
There has long been a desire to replace the front-side silver contacts in silicon solar cells. There are two driving forces to do this. First, silver is an expensive precious metal. Secondly, the process to use silver requires that it be formulated into screen print pastes that need a lead-containing glass frit, and the use of lead is forbidden in many parts of the world. Because of the difficulty in replacing these pastes and the attendant processes, lead exemptions have granted to solar cells. Copper has been the replacement metal of choice because it is significantly cheaper than silver andmore » is very close to silver in electrical conductivity. Using processes which do not use lead, obviates it as an environmental contaminant. However, copper cannot be in contact with the silicon of the cell since it migrates through the silicon and causes defects which severely damage the efficiency of the cell. Hence, a conductive barrier must be placed between the copper and silicon and nickel, and especially nickel silicide, have been shown to be materials of choice. However, nickel must be sputtered and annealed to create the nickel silicide barrier, and copper has either been sputtered or plated. All of these processes require expensive, specialized equipment and plating uses environmentally unfriendly chemicals. Therefore, Intrinsiq proposed using printed nano nickel silicide ink (which we had previously invented) and printed nano copper ink to create these electrodes and barriers. We found that nano copper ink could be readily printed and sintered under a reducing atmosphere to give highly conductive grids. We further showed that nano nickel silicide ink could be readily jetted into grids on top of the silicon cell. It could then be annealed to create a barrier. However, it was found that the combination of printed NiSi and printed Cu did not give contact resistivity good enough to produce efficient cells. Only plated copper on top of the printed NiSi gave useful contact resistivity, and that proved to five to ten times less conductive than the commercial silver grids. Even so, the NiSi layer was a very good barrier to copper migration, even under harsh environmental conditions. Additionally, both plated copper and printed copper could be soldered to. While it may be possible to produce an all printed copper/nickel silicide top electrode for silicon cells, it was not easily demonstrated within the time and monetary constraints of the present project. Additionally, potential customers have told us that having to laser ablate the anti-reflection coating of cells to create a connection for NiSi, and the addition of two printing and annealing (sintering for copper) steps, adds too much expense to compensate for any potential cost savings from using copper. The cost benefits of copper have been further eroded by the facts that over the lifetime of this project, the cost of silver electrodes decreased due to manufacturers finding ways to use less and less silver, and inventing pastes which use less costly silver materials to begin with. All of these factors were considered and led to the decision to stop the program before actual manufacturing scale was attempted.« less
Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF
NASA Astrophysics Data System (ADS)
MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.
2017-10-01
Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.
Whitall, D.; Hively, W.D.; Leight, A.K.; Hapeman, C.J.; McConnell, L.L.; Fisher, T.; Rice, C.P.; Codling, E.; McCarty, G.W.; Sadeghi, A.M.; Gustafson, A.; Bialek, K.
2010-01-01
Restoration of the Chesapeake Bay, the largest estuary in the United States, is a national priority. Documentation of progress of this restoration effort is needed. A study was conducted to examine water quality in the Choptank River estuary, a tributary of the Chesapeake Bay that since 1998 has been classified as impaired waters under the Federal Clean Water Act. Multiple water quality parameters (salinity, temperature, dissolved oxygen, chlorophyll a) and analyte concentrations (nutrients, herbicide and herbicide degradation products, arsenic, and copper) were measured at seven sampling stations in the Choptank River estuary. Samples were collected under base flow conditions in the basin on thirteen dates between March 2005 and April 2008. As commonly observed, results indicate that agriculture is a primary source of nitrate in the estuary and that both agriculture and wastewater treatment plants are important sources of phosphorus. Concentrations of copper in the lower estuary consistently exceeded both chronic and acute water quality criteria, possibly due to use of copper in antifouling boat paint. Concentrations of copper in the upstream watersheds were low, indicating that agriculture is not a significant source of copper loading to the estuary. Concentrations of herbicides (atrazine, simazine, and metolachlor) peaked during early-summer, indicating a rapid surface-transport delivery pathway from agricultural areas, while their degradation products (CIAT, CEAT, MESA, and MOA) appeared to be delivered via groundwater transport. Some in-river processing of CEAT occurred, whereas MESA was conservative. Observed concentrations of herbicide residues did not approach established levels of concern for aquatic organisms. Results of this study highlight the importance of continued implementation of best management practices to improve water quality in the estuary. This work provides a baseline against which to compare future changes in water quality and may be used to design future monitoring programs needed to assess restoration strategy efficacy.
Sun, Xiangyu; Ma, Tingting; Han, Luyang; Huang, Weidong; Zhan, Jicheng
2017-05-03
The effects of copper pollution on the polyphenol content, color, and antioxidant activity of wine, as well as correlations among these factors, were investigated. Copper had clear influences on wine polyphenol content. At low copper concentrations, the concentrations of nearly all polyphenols increased, and the antioxidant activity values of the wine also increased. When the copper concentration reached the lowest level of the medium copper range (9.6~16 mg/L), most of the indices also improved. When the copper concentrations reached the latter part of the medium copper range (19.2 and 22.4 mg/L), many of the tested indices began to decrease. Furthermore, when the copper concentration reached the high ranges (32, 64, and 96 mg/L), the polyphenol content, CIELAB color parameters, and antioxidant activity of wine were substantially decreased, indicating the need to control increasing copper content in grape must.
A SIMPLE APPROACH TO ASSESSING COPPER PITTING CORROSION TENDENCIES AND DEVELOPING CONTROL STRATEGIES
Localized corrosion of copper premise plumbing in drinking water distribution systems can lead to pinhole leaks, which are a growing problem for many homeowners. Despite the fact that water quality is an important factor associated with localized copper corrosion, definitive appr...
Vest, Katherine E.; Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.
2013-01-01
Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria. PMID:23846699
Vest, Katherine E; Leary, Scot C; Winge, Dennis R; Cobine, Paul A
2013-08-16
Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.
Zhang, Shuang-Yuan; Guan, Guijian; Jiang, Shan; Guo, Hongchen; Xia, Jing; Regulacio, Michelle D; Wu, Mingda; Shah, Kwok Wei; Dong, Zhili; Zhang, Jie; Han, Ming-Yong
2015-09-30
Throughout history earth-abundant copper has been incorporated into textiles and it still caters to various needs in modern society. In this paper, we present a two-step copper metallization strategy to realize sequentially nondiffusive copper(II) patterning and rapid copper deposition on various textile materials, including cotton, polyester, nylon, and their mixtures. A new, cost-effective formulation is designed to minimize the copper pattern migration on textiles and to achieve user-defined copper patterns. The metallized copper is found to be very adhesive and stable against washing and oxidation. Furthermore, the copper-metallized textile exhibits excellent electrical conductivity that is ~3 times better than that of stainless steel and also inhibits the growth of bacteria effectively. This new copper metallization approach holds great promise as a commercially viable method to metallize an insulating textile, opening up research avenues for wearable electronics and functional garments.
Schneider, Julie M; Fujii, Mary L; Lamp, Catherine L; Lönnerdal, Bo; Zidenberg-Cherr, Sheri
2007-11-01
Iron and zinc share common food sources, and children at risk of iron deficiency may also develop zinc deficiency. We determined the prevalence of zinc and copper deficiency and examined factors associated with serum zinc and copper in young children from low-income families at risk of iron deficiency. A cross-sectional study design was used to assess serum zinc and copper, along with an interview-assisted survey to assess factors associated with serum zinc and copper in a convenience sample. Participants were 435 children aged 12 to 36 months recruited from select clinics of the Special Supplemental Nutrition Program for Women, Infants, and Children in Contra Costa and Tulare Counties, California. Frequencies were used to report prevalence. Multiple linear regressions were conducted to examine factors associated with serum zinc and copper, controlling for age, sex, and ethnicity. The prevalence of low serum zinc level (<70 microg/dL [<10.7 micromol/L]) was 42.8%, and low serum copper level (<90 microg/dL [<14.2 micromol/L]) was <1%. Mean+/-standard deviation of serum copper was 150+/-22 microg/dL (23.6+/-3.5 micromol/L) and 140+/-24 microg/dL (22.1+/-3.8 micromol/L) for anemic and non-anemic children, respectively (t test, P=0.026). In multiple linear regression consumption of sweetened beverages was negatively associated with serum zinc level, and consumption of >15 g/day meat was positively associated with serum zinc level, whereas current consumption of breast milk and >15 g/day beans were positively associated with serum copper level. The prevalence of low serum zinc concentration in the sample was high, and warrants further investigation amongst vulnerable populations.
Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc
2015-02-01
Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagatto, G.; Shorthouse, J.D.; Crowder, A.A.
1993-10-01
Ecosystems damaged by emissions from the copper-nickel smelters of Inco and Falconbridge Ltd. near Sudbury, Ontario, Canada have provided a unique opportunity to study the effects of metal particulates and sulphur dioxide fumigations on plant and animal communities. The most infamous terrain in the Sudbury region is nearest the smelters (two active and one closed), where nearly all vegetation has been destroyed and soils eroded and contaminated. However, over all the past twenty years, some species of plants have developed a tolerance to polluted soils and some denuded lands have been naturally and artificially revegetated. Furthermore, a series of uniquemore » anthropogenic forests have developed away from the smelters. Several studies on the accumulation of metals in plant tissues indicate the levels of metals are usually highest closest to the smelters. Consequently, several studies have reported high correlations between plant concentrations of certain metals with distance from the source of pollution. However, tissue metal burdens are not always correlated with distance from the emission source, suggesting that other biological and physico-chemical factors may influence tissue metal burdens in the Sudbury habitat. The present study provides information on the metal burdens in another plant, lowbush blueberry, growing both near and away from the smelters. This study assesses the apparent influence of the Sudbury smelting operations on plant tissue burdens of five additional elements, along with copper and nickel, by using a factor analytic approach. This approach will allow determination of underlying factors which govern tissue metal burdens in a polluted environment and helps to refine the future direction of research in the Sudbury ecosystem. 12 refs., 2 tabs.« less
Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A.; Puig, Sergi; Peñarrubia, Lola
2013-01-01
Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops. PMID:23487432
Barrett, Sophie E; Watmough, Shaun A
2015-11-01
The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Study on the Copper Effect on gold leaching in copper-ethanediamine-thiosulphate solutions
NASA Astrophysics Data System (ADS)
Liu, Qiong; Xiang, Pengzhi; Huang, Yao
2018-01-01
A simple, fast and sensitive square-wave voltammetry (SWV), cyclic voltammetry(CV) and tafel method for the determination of various factors of gold in thiosulphate solution in this paper. We present our study on the effect of copper(II) on the leaching of gold in thiosulphate solutions. The current study aims to establish the interaction of copper in the leaching process by electrochemical method.
Zhao, Xu; Zhang, Juanjuan; Qiao, Meng; Liu, Huijuan; Qu, Jiuhui
2015-04-07
Simultaneous photoelectrocatalytic (PEC) oxidation of cyanides and recovery of copper in a PEC reactor with a Bi(2)MoO(6) photoanode was investigated at alkaline conditions under visible light irradiation. The surface variation of the Bi(2)MoO(6) photoanode and titanium cathode was characterized. The Cu mass distribution onto the anode, in the solution, and onto the cathode was fully investigated. In the individual PEC oxidation of copper cyanides, the formation of a black copper oxide on the anode occurred. By keeping the initial cyanide concentration at 0.01 mM, the effect of EDTA/K(4)P(2)O(7) was examined at different molar ratios of EDTA/K(4)P(2)O(7) to cyanide. It was indicated that the oxidation of cyanides increased and simultaneous copper electrodeposition with zero value onto the cathode was feasible at pH 11. Under the optimal conditions, the total cyanide concentration was lowered from 250 to 5.0 mg/L, and the Cu recovery efficiency deposited onto the cathode was higher than 90%. Cyanate was the only product. The role of the photogenerated hole in the oxidation of cyanide ions was confirmed.
A SIMPLE APPROACH TO ASSESSING COPPER PITTING CORROSION TENDENCIES AND DEVELOPING CONTROL STRATEGIES
Localized corrosion of copper plumbing in drinking water distribution systems can lead to pinhole leaks, which are a growing problem for many homeowners. Although water quality is one factor that can be responsible for localized copper corrosion, there is not a good approach to ...
Application of Reactive Transport Modeling to Heap Bioleaching of Copper
NASA Astrophysics Data System (ADS)
Liu, W.
2017-12-01
Copper heap bioleaching is a complex industrial process that utilizes oxidative chemical leaching and microbial activities to extract copper from packed ore beds. Mathematical modelling is an effective tool for identifying key factors that determine the leaching performance. HeapSim is a modelling tool that incorporates all fundamental processes that occur in a heap under leach, such as the movement of leaching solution, chemical reaction kinetics, heat transfer, and microbial activities, to predict the leaching behavior of a heap. In this study, the HeapSim model was applied to simulate chalcocite heap bioleaching at Quebrada Blanca mine located in the Northern Chile. The main findings were that the model could be satisfactorily calibrated and validated to simulate chalcocite leaching. Heap temperature was sensitive to the changes in the raffinate temperature, raffinate flow rate, and the extent of pyrite oxidation. At high flow rates, heap temperature was controlled by the raffinate temperature. In contrast, heat removal by the raffinate solution flow was insignificant at low flow rates, leading to the accumulation of heat generated by pyrite reaction and therefore an increase in heap temperature.
Copper deficiency in Tule Elk at Point Reyes, California
Gogan, Peter J.P.; Jessup, David A.; Akeson, Mark
1989-01-01
Tule elk (Cervus elaphus nannodes) reintroduced to Point Reyes, Calif., in 1978 exhibited gross signs of copper deficiency by June 1979. Copper levels in liver (x=5.9 ppm) and serum (0.42 ppm) of elk in Point Reyes were below levels in adult tule elk from other locations in California (liver, x=80 ppm; serum, x=1.4 ppm). These levels were consistent with documented copper deficiencies in wild and domestic ruminants. Copper serum levels increased in response to copper enriched dietary supplements and declined after the elk stopped eating the supplements. Analysis of plant and soil samples showed both are deficient in copper and normal in molybdenum and sulfur-sulfates. Deficiency in plants and soils at Point Reyes are probably due to low copper levels in the underlying granitic parent material.
Essentiality of copper in humans.
Uauy, R; Olivares, M; Gonzalez, M
1998-05-01
The biochemical basis for the essentiality of copper, the adequacy of the dietary copper supply, factors that condition deficiency, and the special conditions of copper nutriture in early infancy are reviewed. New biochemical and crystallographic evidence define copper as being necessary for structural and catalytic properties of cuproenzymes. Mechanisms responsible for the control of cuproprotein gene expression are not known in mammals; however, studies using yeast as a eukaryote model support the existence of a copper-dependent gene regulatory element. Diets in Western countries provide copper below or in the low range of the estimated safe and adequate daily dietary intake. Copper deficiency is usually the consequence of decreased copper stores at birth, inadequate dietary copper intake, poor absorption, elevated requirements induced by rapid growth, or increased copper losses. The most frequent clinical manifestations of copper deficiency are anemia, neutropenia, and bone abnormalities. Recommendations for dietary copper intake and total copper exposure, including that from potable water, should consider that copper is an essential nutrient with potential toxicity if the load exceeds tolerance. A range of safe intakes should be defined for the general population, including a lower safe intake and an upper safe intake, to prevent deficiency as well as toxicity for most of the population.
Parks, Ashley N; Cantwell, Mark G; Katz, David R; Cashman, Michaela A; Luxton, Todd P; Ho, Kay T; Burgess, Robert M
2018-03-25
Little is known about the release of metal engineered nanomaterials (ENMs) from consumer goods, including lumber treated with micronized copper. Micronized copper is a recent form of antifouling wood preservative containing nanosized copper particles for use in pressure-treated lumber. The present study investigated the concentrations released and the release rate of total copper over the course of 133 d under freshwater, estuarine, and marine salinity conditions (0, 1, 10, and 30‰) for several commercially available pressure-treated lumbers: micronized copper azole (MCA) at 0.96 and 2.4 kg/m 3 , alkaline copper quaternary (ACQ) at 0.30 and 9.6 kg/m 3 , and chromated copper arsenate (CCA) at 40 kg/m 3 . Lumber was tested as blocks and as sawdust. Overall, copper was released from all treated lumber samples. Under leaching conditions, total release ranged from 2 to 55% of the measured copper originally in the lumber, with release rate constants from the blocks of 0.03 to 2.71 (units per day). Generally, measured release and modeled equilibrium concentrations were significantly higher in the estuarine conditions compared with freshwater or marine salinities, whereas rate constants showed very limited differences between salinities. Furthermore, organic carbon was released during the leaching and demonstrated a significant relationship with released copper concentrations as a function of salinity. The results indicate that copper is released into estuarine/marine waters from multiple wood treatments including lumber amended with nanoparticle-sized copper. Environ Toxicol Chem 2018;9999:1-13. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
NASA Astrophysics Data System (ADS)
Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.
2016-04-01
Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.
Leyland, Nigel S; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J; Quilty, Brid; Pillai, Suresh C
2016-04-21
Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.
Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.
2016-01-01
Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010
Wei, Hao; Beckman, Joseph S.; Zhang, Wei-Jian
2011-01-01
Redox-active transition metal ions, such as iron and copper, may play an important role in vascular inflammation, which is an etiologic factor in atherosclerotic vascular diseases. In this study, we investigated whether tetrathiomolybdate (TTM), a highly specific copper chelator, can act as an anti-inflammatory agent, preventing lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Female C57BL/6N mice were daily gavaged with TTM (30 mg/kg body wt) or vehicle control. After 3 wk, animals were injected intraperitoneally with 50 μg LPS or saline buffer and killed 3 h later. Treatment with TTM reduced serum ceruloplasmin activity by 43%, a surrogate marker of bioavailable copper, in the absence of detectable hepatotoxicity. The concentrations of both copper and molybdenum increased in various tissues, whereas the copper-to-molybdenum ratio decreased, consistent with reduced copper bioavailability. TTM treatment did not have a significant effect on superoxide dismutase activity in heart and liver. Furthermore, TTM significantly inhibited LPS-induced inflammatory gene transcription in aorta and heart, including vascular and intercellular adhesion molecule-1 (VCAM-1 and ICAM-1, respectively), monocyte chemotactic protein-1 (MCP-1), interleukin-6, and tumor necrosis factor (TNF)-α (ANOVA, P < 0.05); consistently, protein levels of VCAM-1, ICAM-1, and MCP-1 in heart were also significantly lower in TTM-treated animals. Similar inhibitory effects of TTM were observed on activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in heart and lungs. Finally, TTM significantly inhibited LPS-induced increases of serum levels of soluble ICAM-1, MCP-1, and TNF-α (ANOVA, P < 0.05). These data indicate that copper chelation with TTM inhibits LPS-induced inflammatory responses in aorta and other tissues of mice, most likely by inhibiting activation of the redox-sensitive transcription factors, NF-κB and AP-1. Therefore, copper appears to play an important role in vascular inflammation, and TTM may have value as an anti-inflammatory or anti-atherogenic agent. PMID:21724870
Bishop, West M; Lynch, Clayton L; Willis, Ben E; Cope, W Gregory
2017-09-01
Filamentous mat-forming cyanobacteria are increasingly impairing uses of freshwater resources. To effectively manage, a better understanding of control measures is needed. Copper (Cu)-based algaecide formulations are often applied to reactively control nuisance cyanobacterial blooms. This laboratory research assessed typical field exposure scenarios for the ability of Cu to partition to, and accumulate in Lyngbya wollei. Exposure factors (Cu concentration × duration) of 4, 8, 16, 24, 32 h were tested across three aqueous Cu concentrations (1, 2, 4 ppm). Results indicated that internally accumulated copper correlated with control of L. wollei, independent of adsorbed copper. L. wollei control was determined by filament viability and chlorophyll a concentrations. Similar exposure factors elicited similar internalized copper levels and consequent responses of L. wollei. Ultimately, a "concentration-exposure-time" (CET) model was created to assist water resource managers in selecting an appropriate treatment regime for a specific in-water infestation. By assessing the exposure concentration and duration required to achieve the internal threshold of copper (i.e., critical burden) that elicits control, water management objectives can be achieved while simultaneously decreasing the environmental loading of copper and potential for non-target species risks.
Markert, Agnieszka; Baumann, Ralf; Gerhards, Benjamin; Gube, Monika; Kossack, Veronika; Kraus, Thomas; Brand, Peter
2016-02-01
Recently, it has been shown that exposure to welding fumes containing both zinc and copper leads to asymptomatic systemic inflammation in humans as shown by an increase of blood C-reactive protein. In the present study, it was investigated which metal is responsible for this effect. Fifteen healthy male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc. For each exposure blood C-reactive protein increased. Copper- and zinc-containing welding fumes are able to induce systemic inflammation.
Yang, Yang; Yin, Jia; Liu, Jie; Xu, Qi; Lan, Tian; Ren, Fazheng; Hao, Yanling
2017-01-01
Transcriptional factors (TFs) play important roles in the responses to oxidative, acid, and other environmental stresses in Gram-positive bacteria, but the regulatory mechanism of TFs involved in oxidative stress remains unknown in lactic acid bacteria. In the present work, homologous overexpression strains with 43 TFs were constructed in the Lactobacillus plantarum CAUH2 parent strain. The strain overexpressing CopR displayed the highest sensitivity and a 110-fold decrease in survival rate under H2O2 challenge. The importance of CopR in the response to H2O2 stress was further confirmed by a 10.8-fold increase in the survival of a copR insertion mutant. In silico analysis of the genes flanking copR revealed putative CopR-binding “cop box” sequences in the promoter region of the adjacent gene copB encoding a Cu2+-exporting ATPase. Electrophoretic mobility shift assay (EMSA) analysis demonstrated the specific binding of CopR with copB in vitro, suggesting copB is a target gene of CopR in L. plantarum. The role of CopB involved in oxidative stress was verified by the significantly decreased survival in the copB mutant. Furthermore, a growth defect in copper-containing medium demonstrated that CopB functions as an export ATPase for copper ions. Furthermore, EMSAs revealed that CopR functions as a regulator that negatively regulates copB gene and Cu2+ serves as inducer of CopR to activate the expression of CopB in response to H2O2 stress in L. plantarum CAUH2. Our findings indicated that CopR plays an important role in enhancing oxidative resistance by regulating copB to modulate copper homeostasis. PMID:29089937
Development of Sediment Quality Values for Puget Sound. Volume 1.
1986-09-01
62 cadmium CHROMIUM,63 chromium COPPER ,64 copper IRON ,65 iron LEAD ,66 lead MANGANES ,67 manganese NICKEL ,68 nickel SELENIUM,69 selenium SILVER ,70...BERYLLIU beryllium 67. CADMIUM cadmium 68. CHROMIUM chromium 69. COPPER copper 70. IRON iron 71. LEAD lead 72. MANGANES manganese 73. NICKEL nickel 74...they can also be strongly influenced by iron and manganese oxide and hydrous oxide surfaces (these phases can scavenge metals under oxidizing
Roles of Copper-Binding Proteins in Breast Cancer.
Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla
2017-04-20
Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.
Copper activates HIF-1α/GPER/VEGF signalling in cancer cells
Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; De Marco, Paola; Cirillo, Francesca; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; De Francesco, Ernestina Marianna
2015-01-01
Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression. PMID:26415222
Copper activates HIF-1α/GPER/VEGF signalling in cancer cells.
Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; De Marco, Paola; Cirillo, Francesca; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; De Francesco, Ernestina Marianna
2015-10-27
Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression.
Copper effects on bacterial activity of estuarine silty sediments
NASA Astrophysics Data System (ADS)
Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda
2007-07-01
Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and, mainly, by the great intensification of bacterial biomass production and leucine turnover rate. We conclude that the bacterial community of silty estuarine sediments seems to withstand considerable concentrations of copper at the cost of reduced bacterial organic matter degradation and of the almost halting of bacterial production. The toxic effects elicited by copper on protein and carbohydrate degradation were not rapidly repaired by erosion and oxygenation of the sediment cells but, in contrast, bacterial biomass production and leucine turnover were rapidly and efficiently reactivated.
Copper chelators: chemical properties and bio-medical applications.
Tegoni, M; Valensin, D; Toso, L; Remelli, M
2014-01-01
Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Jayraj N.; Garcia-Gutierrez, Erika Y.; Moran, Colton M.
Functionalization of copper carboxylate groups on a series of UiO-66 metal organic framework (MOF) analogues and their corresponding impact on humid and dry ammonia adsorption behavior were studied. Relative locations of possible carboxylic acid binding sites for copper on the MOF analogues were varied on ligand and missing linker defect sites. Materials after copper incorporation exhibited increased water vapor and ammonia affinity during isothermal adsorption and breakthrough experiments, respectively. The introduction of copper markedly increased ammonia adsorption capacities for all adsorbents possessing carboxyl binding sites. In particular, the new MOF UiO-66-(COOCu)2 displayed the highest ammonia breakthrough capacities of 6.38 andmore » 6.84 mmol g–1 under dry and humid conditions, respectively, while retaining crystallinity and porosity. Relative carboxylic acid site locations were also found to impact sorbent stability, as missing linker defect functionalized materials degraded under humid conditions after copper incorporation. Postsynthetic metal insertion provides a method for adding sites that are analogous to open metal sites while maintaining good structural stability.« less
Enhancement of tribofilm formation from water lubricated PEEK composites by copper nanowires
NASA Astrophysics Data System (ADS)
Gao, Chuanping; Fan, Shuguang; Zhang, Shengmao; Zhang, Pingyu; Wang, Qihua
2018-06-01
A high-performance tribofilm is crucial to enhance the tribological performance of tribomaterials. In order to promote tribofilm formation under water lubrication conditions, copper nanowires as a functional nanomaterial were filled into neat polyetheretherketone (PEEK) and PEEK10SCF8Gr (i.e., PEEK filled with 10 vol.% short carbon fibers and 8 vol.% graphite flakes). The results show that the addition of copper nanowires and a greater applied load can enhance materials transfer and tribofilm formation during sliding process. Moreover, copper nanowires can share a part of applied load, and retard the fatigue effect to some extent. In addition, copper nanowires, carbon fibers and graphite can synergistically improve the tribological performance and the tribofilm formation under water lubrication and severe working conditions. In particular, only 0.5 vol.% copper nanowires can form a high-performance tribofilm, which endows superior lubricating property and wear resistance capacity of the PEEK10SCF8Gr. Furthermore, the surface analysis indicates that the tribofilm contains some transferred materials and the products from tribochemical reactions as well.
Oxidation-assisted graphene heteroepitaxy on copper foil.
Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François
2016-11-10
We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.
[Copper intake and blood levels as risk factors for atheromatous disease].
Albala, C; Salazar, G; Vío, F; Araya, F; Feuerhacke, W; Olivares, S; Alvarez, G
1997-08-01
Copper is part of antioxidant enzymes and could have a cardiovascular protective effect. A higher cardiovascular risk has been associated with high as well as low plasma copper levels. To search for differences in copper intake and plasma levels between patients with coronary artery or cerebrovascular diseases and normal subjects. Zinc and copper intake, plasma levels and serum lipid levels were measured in 20 patients with cerebrovascular disease, 20 patients with an acute myocardial infarction and 40 subjects hospitalized for elective surgery, that served as controls. Copper and zinc intake was below recommended allowances in all subjects. Serum zinc and copper levels did not differ in the three study groups. In patients with myocardial infarction a weak correlation was found between serum copper and total cholesterol (r = 0.24; p < 0.05) and LDL cholesterol (r = 0.31; p < 0.05). No differences in copper levels were found in subjects with atherosclerosis and controls. The correlation between serum copper and cholesterol deserves further investigation.
[Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].
Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia
2014-04-01
The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.
Ibrahim, Mohd Hafiz; Chee Kong, Yap; Mohd Zain, Nurul Amalina
2017-10-12
A randomized complete block (RCBD) study was designed to investigate the effects of cadmium (Cd) and copper (Cu) on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour.) Merr. Nine treatments including (1) control (no Cd and Cu); (2) Cd 2 = cadmium 2 mg/L; (3) Cd 4 = cadmium 4 mg/L; (4) Cu 70 = copper 70 mg/L; (5) Cu 140 = copper 140 mg/L); (6) Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L); (7) Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L); (8) Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9) Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L) were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter) were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL) activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.
Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Barycki, Joseph J.; Hart, P. John; Gohara, David W.; Di Cera, Enrico; Jung, Won Hee; Kosman, Daniel J.; Lee, Jaekwon
2016-01-01
Acquisition and distribution of metal ions support a number of biological processes. Here we show that respiratory growth of and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K+) compartmentalization to the trans-Golgi network via Kha1p, a K+/H+ exchanger. K+ in the trans-Golgi network facilitates binding of copper to the Fet3p multi-copper ferroxidase. The effect of K+ is not dependent on stable binding with Fet3p or alteration of the characteristics of the secretory pathway. The data suggest that K+ acts as a chemical factor in Fet3p maturation, a role similar to that of cations in folding of nucleic acids. Up-regulation of KHA1 gene in response to iron limitation via iron-specific transcription factors indicates that K+ compartmentalization is linked to cellular iron homeostasis. Our study reveals a novel functional role of K+ in the binding of copper to apoFet3p and identifies a K+/H+ exchanger at the secretory pathway as a new molecular factor associated with iron uptake in yeast. PMID:26966178
Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole
2013-01-01
Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700
Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei
2013-11-06
Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lewis, Ceri; Ellis, Robert P.; Vernon, Emily; Elliot, Katie; Newbatt, Sam; Wilson, Rod W.
2016-01-01
Ocean acidification (OA) is expected to indirectly impact biota living in contaminated coastal environments by altering the bioavailability and potentially toxicity of many pH-sensitive metals. Here, we show that OA (pH 7.71; pCO2 1480 μatm) significantly increases the toxicity responses to a global coastal contaminant (copper ~0.1 μM) in two keystone benthic species; mussels (Mytilus edulis) and purple sea urchins (Paracentrotus lividus). Mussels showed an extracellular acidosis in response to OA and copper individually which was enhanced during combined exposure. In contrast, urchins maintained extracellular fluid pH under OA by accumulating bicarbonate but exhibited a slight alkalosis in response to copper either alone or with OA. Importantly, copper-induced damage to DNA and lipids was significantly greater under OA compared to control conditions (pH 8.14; pCO2 470 μatm) for both species. However, this increase in DNA-damage was four times lower in urchins than mussels, suggesting that internal acid-base regulation in urchins may substantially moderate the magnitude of this OA-induced copper toxicity effect. Thus, changes in metal toxicity under OA may not purely be driven by metal speciation in seawater and may be far more diverse than either single-stressor or single-species studies indicate. This has important implications for future environmental management strategies. PMID:26899803
Bioavailable copper modulates oxidative phosphorylation and growth of tumors
Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas
2013-01-01
Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment. PMID:24218578
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan
Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; ...
2017-08-29
Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less
Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.
Farraj, Yousef; Grouchko, Michael; Magdassi, Shlomo
2015-01-31
Highly conductive copper patterns on low-cost flexible substrates are obtained by inkjet printing a metal complex based ink. Upon heating the ink, the soluble complex, which is composed of copper formate and 2-amino-2-methyl-1-propanol, decomposes under nitrogen at 140 °C and is converted to pure metallic copper. The decomposition process of the complex is investigated and a suggested mechanism is presented. The ink is stable in air for prolonged periods, with no sedimentation or oxidation problems, which are usually encountered in copper nanoparticle based inks.
High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film
Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo
2015-01-01
Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets. PMID:26509224
Wang, Lin; Ge, Yan
2016-01-01
Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267
Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2
Villafane, Aramis; Voskoboynik, Yekaterina; Cuebas, Mariola; Ruhl, Ilona; Bini, Elisabetta
2009-01-01
Copper is an essential micronutrient, but toxic in excess. Sulfolobus solfataricus cells have the ability to adapt to fluctuations of copper levels in their external environment. To better understand the molecular mechanism behind the organismal response to copper, the expression of the cluster of genes copRTA, which encodes the copper-responsive transcriptional regulator CopR, the copper-binding protein CopT, and CopA, has been investigated and the whole operon has been shown to be cotranscribed at low levels from the copR promoter under all conditions, whereas increased transcription from the copTA promoter occurs in the presence of excess copper. Furthermore, the expression of the copper-transporting ATPase CopA over a 27-hour interval has been monitored by quantitative real-time RT-PCR and compared to the pattern of cellular copper accumulation, as determined in a parallel analysis by Inductively Coupled Plasma Optical Emission spectrometry (ICP-OES). The results provide the basis for a model of the molecular mechanisms of copper homeostasis in Sulfolobus, which relies on copper efflux and sequestration. PMID:19427833
Harwood, V J; Gordon, A S
1994-01-01
Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss of both constitutive CuBP production and copper resistance in Cu40B3 indicates that constitutive CuBP production is necessary for copper resistance in this mutant. These data support the hypothesis that the extracellular, ca. 20-kDa protein(s) of V. alginolyticus is an important factor in survival and growth of the organism at elevated copper concentrations. The range of phenotypes observed in copper-resistant and copper-sensitive V. alginolyticus indicate that altered sensitivity to copper was mediated by a variety of physiological changes. Images PMID:8031076
Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions
NASA Technical Reports Server (NTRS)
Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.
1975-01-01
The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.
Juraniec, Michal; Lequeux, Hélène; Hermans, Christian; Willems, Glenda; Nordborg, Magnus; Schneeberger, Korbinian; Salis, Pietrino; Vromant, Maud; Lutts, Stanley; Verbruggen, Nathalie
2014-02-01
The exposure of plants to high concentrations of trace metallic elements such as copper involves a remodeling of the root system, characterized by a primary root growth inhibition and an increase in the lateral root density. These characteristics constitute easy and suitable markers for screening mutants altered in their response to copper excess. A forward genetic approach was undertaken in order to discover novel genetic factors involved in the response to copper excess. A Cu(2+) -sensitive mutant named copper modified resistance1 (cmr1) was isolated and a causative mutation in the CMR1 gene was identified by using positional cloning and next-generation sequencing. CMR1 encodes a plant-specific protein of unknown function. The analysis of the cmr1 mutant indicates that the CMR1 protein is required for optimal growth under normal conditions and has an essential role in the stress response. Impairment of the CMR1 activity alters root growth through aberrant activity of the root meristem, and modifies potassium concentration and hormonal balance (ethylene production and auxin accumulation). Our data support a putative role for CMR1 in cell division regulation and meristem maintenance. Research on the role of CMR1 will contribute to the understanding of the plasticity of plants in response to changing environments. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Spectroscopic properties and conformational stability of Concholepas concholepas hemocyanin.
Idakieva, Krassimira; Nikolov, Peter; Chakarska, Irena; Genov, Nicolay; Shnyrov, Valery L
2008-01-01
The structure in solution and conformational stability of the hemocyanin from the Chilean gastropod mollusk Concholepas concholepas (CCH) and its structural subunits, CCH-A and CCH-B, were studied using fluorescence spectroscopy and differential scanning calorimetry (DSC). The fluorescence properties of the oxygenated and apo-form (copper-deprived) of the didecamer and its subunits were characterized. Besides tryptophan residues buried in the hydrophobic interior of the protein molecule also exposed fluorophores determine the fluorescence emission of the oxy- and apo-forms of the investigated hemocyanins. The copper-dioxygen system at the binuclear active site quenches the tryptophan emission of the oxy-forms of CCH and its subunits. The removal of this system increases the fluorescence quantum yield and causes structural rearrangement of the microenvironment of the emitting tryptophan residues in the respective apo-forms. Time-resolved fluorescence measurements show that the oxygenated and copper-deprived forms of the CCH and its subunits exist in different conformations. The thermal denaturation of the hemocyanin is an irreversible process, under kinetic control. A successive annealing procedure was applied to obtain the experimental deconvolution of the irreversible thermal transitions. Arrhenius equation parameter for the two-state irreversible model of the thermal denaturation of oxy-CCH at pH 7.2 was estimated. Both factors, oligomerization and the copper-dioxygen system at the active site, are important for stabilizing the structure of the hemocyanin molecule.
NASA Technical Reports Server (NTRS)
Johnson, Robert L; Swikert, Max A; Bisson, Edmond E
1952-01-01
An investigation of wear and friction properties of a number of materials sliding against SAE 52100 steel was conducted. These materials included brass, bronze, beryllium copper, monel, nichrome v, 24s-t aluminum, nodular iron, and gray cast iron. The metals investigated may be useful as possible cage (separator or retainer) materials for rolling-contact bearings of high-speed turbine engines. The ability of materials to form surface films that prevent welding is a most important factor in both dry friction and boundary lubrication. On the basis of wear and resistance to welding only, the cast irons were the most promising materials investigated; they showed the least wear and the least tendency to surface failure when run dry, and when boundary lubricated they showed the highest load capacity. On the basis of mechanical properties, nodular iron is superior to gray cast iron. Bronze had the lowest friction coefficient under dry sliding conditions. The results with brass, beryllium copper, and aluminum were poor and these materials do not appear, with regard to friction and wear, to be suitable for cages.
Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun
2017-01-01
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans. Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. PMID:27881675
NASA Astrophysics Data System (ADS)
Zeng, Weizhi; Wang, Shijie; Free, Michael L.
2016-10-01
Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.
Ordax, Mónica; Marco-Noales, Ester; López, María M; Biosca, Elena G
2010-09-01
Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants very difficult to control. We demonstrated that copper, employed to control plant diseases, induces the "viable-but-nonculturable" (VBNC) state in E. amylovora. Moreover, it was previously reported that copper increases production of its main exopolysaccharide (EPS), amylovoran. In this work, the copper-complexing ability of amylovoran and levan, other major EPS of E. amylovora, was demonstrated. Following this, EPS-deficient mutants were used to determine the role of these EPSs in survival of this bacterium in AB mineral medium with copper, compared to their wild type strain and AB without copper. Total, viable and culturable counts of all strains were monitored for six months. With copper, a larger fraction of the viable population of EPS mutants entered into the VBNC state, and earlier than their wild type strain, showing the contribution of both EPSs to long-term survival in a culturable state. Further, we demonstrated that both EPSs can be used as carbon source by E. amylovora under deprivation conditions. Overall, these previously unreported functions of amylovoran and levan provide survival advantages for E. amylovora, which could contribute to its enhanced persistence in nature. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Copper induction and differential expression of laccase in Aspergillus flavus
Gomaa, Ola M.; Momtaz, Osama A.
2015-01-01
Aspergillus flavus was isolated from soil and exhibited laccase activity under both constitutive and copper induced conditions. Spiking the medium with 1 mM copper sulfate resulted in an increase in the activity which reached 51.84 U/mL, a distinctive protein band was detected at 60 kDa. The extracellular enzyme was purified 81 fold using gel filtration chromatography and resulted in two different laccase fractions L1 and L2, the latter had a higher enzymatic activity which reached 79.57 U/mL and specific activity of 64.17 U/μg protein. The analysis of the spectrum of the L2 fraction showed a shoulder at 330 nm which is characteristic for T2/T3 copper centers; both copper and zinc were detected suggesting that this is an unconventional white laccase. Primers of laccase gene were designed and synthesized to recover specific gene from A. flavus . Sequence analysis indicated putative laccase (Genbank ID: JF683612) at the amino acid level suggesting a close identity to laccases from other genera containing the copper binding site. Decolorization of textile waste water under different conditions showed possible application in bioremediation within a short period of time. The effect of copper on A. flavus was concentration dependent. PMID:26221119
Redox control of copper homeostasis in cyanobacteria.
López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J
2012-12-01
Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.
Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.
2015-01-01
Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490
Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho
2006-01-01
Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boon, G.T.; Bouwman, L.A.; Bloem, J.
1998-10-01
To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reducedmore » crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.« less
Target-specific copper hybrid T7 phage particles.
Dasa, Siva Sai Krishna; Jin, Qiaoling; Chen, Chin-Tu; Chen, Liaohai
2012-12-18
Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7 phage could be endocytosed by cancer cells in culture.
Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.
Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal
2018-02-01
Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of nanoparticles and sulfate salt of copper in M.posthuma inhabiting the soil of India, an agriculture based country. Copyright © 2017 Elsevier Inc. All rights reserved.
Hattori, Shigeki; Wada, Yuji; Yanagida, Shozo; Fukuzumi, Shunichi
2005-07-06
The electron self-exchange rate constants of blue copper model complexes, [(-)-sparteine-N,N'](maleonitriledithiolato-S,S')copper ([Cu(SP)(mmt)])(0/)(-), bis(2,9-dimethy-1,10-phenanthroline)copper ([Cu(dmp)(2)](2+/+)), and bis(1,10-phenanthroline)copper ([Cu(phen)(2)](2+/+)) have been determined from the rate constants of electron transfer from a homologous series of ferrocene derivatives to the copper(II) complexes in light of the Marcus theory of electron transfer. The resulting electron self-exchange rate constant increases in the order: [Cu(phen)(2)](2+/+) < [Cu(SP)(mmt)](0/)(-) < [Cu(dmp)(2)](2+/+), in agreement with the order of the smaller structural change between the copper(II) and copper(I) complexes due to the distorted tetragonal geometry. The dye-sensitized solar cells (DSSC) were constructed using the copper complexes as redox couples to compare the photoelectrochemical responses with those using the conventional I(3)(-)/I(-) couple. The light energy conversion efficiency (eta) values under illumination of simulated solar light irradiation (100 mW/cm(2)) of DSSCs using [Cu(phen)(2)](2+/+), [Cu(dmp)(2)](2+/+), and [Cu(SP)(mmt)](0/)(-) were recorded as 0.1%, 1.4%, and 1.3%, respectively. The maximum eta value (2.2%) was obtained for a DSSC using the [Cu(dmp)(2)](2+/+) redox couple under the light irradiation of 20 mW/cm(2) intensity, where a higher open-circuit voltage of the cell was attained as compared to that of the conventional I(3)(-)/I(-) couple.
Copper uptake by the water hyacinth. [Eichornia crassipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.A.; Hardy, J.K.
1987-01-01
Factors affecting Cu/sup +2/ uptake by the water hyacinth (Eichornia crassipes) were examined. Two phases of copper uptake were observed throughout the uptake range (1-1000 mg/1). An initial rapid uptake phase of 4 hours followed by a slower, near linear uptake phase extending past 48 hours was observed. Stirring the solution enhanced uptake, suggesting copper removal is partially diffusion limited. Variations in pH over the range of 3 to 10 did not significantly affect uptake. Increasing the root mass of the plant increased the amount of copper taken up. As solution volume was increased more copper was removed. The presencemore » of complexing agents during the uptake phase reduced copper uptake. The inability of complexing agents to recover all copper initially removed by a plant suggests a migration to sites within the plant.« less
Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher
2013-01-01
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951
Comstra, Heather S; McArthy, Jacob; Rudin-Rush, Samantha; Hartwig, Cortnie; Gokhale, Avanti; Zlatic, Stephanie A; Blackburn, Jessica B; Werner, Erica; Petris, Michael; D’Souza, Priya; Panuwet, Parinya; Barr, Dana Boyd; Lupashin, Vladimir; Vrailas-Mortimer, Alysia; Faundez, Victor
2017-01-01
Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival. DOI: http://dx.doi.org/10.7554/eLife.24722.001 PMID:28355134
Myhre, Oddvar; Utkilen, Hans; Duale, Nur; Brunborg, Gunnar; Hofer, Tim
2013-01-01
A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes. PMID:23710288
Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo
2017-11-01
The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; Hua, H.; Balamurugan, K.
2009-05-12
Drosophila melanogaster MTF-1 (dMTF-1) is a copper-responsive transcriptional activator that mediates resistance to Cu, as well as Zn and Cd. Here, we characterize a novel cysteine-rich domain which is crucial for sensing excess intracellular copper by dMTF-1. Transgenic flies expressing mutant dMTF-1 containing alanine substitutions of two, four or six cysteine residues within the sequence {sup 547}CNCTNCKCDQTKSCHGGDC{sup 565} are significantly or completely impaired in their ability to protect flies from copper toxicity and fail to up-regulate MtnA (metallothionein) expression in response to excess Cu. In contrast, these flies exhibit wild-type survival in response to copper deprivation thus revealing that themore » cysteine cluster domain is required only for sensing Cu load by dMTF-1. Parallel studies show that the isolated cysteine cluster domain is required to protect a copper-sensitive S. cerevisiae ace1 strain from copper toxicity. Cu(I) ligation by a Cys-rich domain peptide fragment drives the cooperative assembly of a polydentate [Cu{sub 4}-S{sub 6}] cage structure, characterized by a core of trigonally S{sub 3} coordinated Cu(I) ions bound by bridging thiolate ligands. While reminiscent of Cu{sub 4}-L{sub 6} (L = ligand) tetranuclear clusters in copper regulatory transcription factors of yeast, the absence of significant sequence homology is consistent with convergent evolution of a sensing strategy particularly well suited for Cu(I).« less
Mechanical tearing of graphene on an oxidizing metal surface.
George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu
2015-12-11
Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.
Xu, Canhui; Liao, Lifu; He, Yunfei; Wu, Rurong; Li, Shijun; Yang, Yanyan
2015-01-01
A Schiff base-type fluorescence probe was prepared for the detection of copper (II) in foodstuffs. The probe is N,N'-bis(pyridoxal phosphate)-o-phenylenediamine (BPPP). It was synthesized by utilizing the Schiff base condensation reaction of pyridoxal 5-phosphate with 1,2-phenylenediamine. BPPP has the properties of high fluorescence stability, good water solubility and low toxicity. Its maximum excitation wavelength and maximum fluorescence emission wavelength are at 389 and 448 nm, respectively. When BPPP coexists with copper (II), its fluorescence is dramatically quenched. Under a certain condition, the fluorescence intensity decreased proportionally to the concentration of copper (II) by the quenching effect. Based on this fact, we established a fluorescence quenching method for the determination of copper (II). Under optimal conditions a linear range was found to be 0.5-50 ng/mL with a detection limit of 0.2 ng/mL. The method has been applied to determine copper (II) in foodstuff samples and the analytical results show good agreement with that obtained from atomic absorption spectrometry method. Copyright © 2015 Elsevier B.V. All rights reserved.
Jayaprakash, K N; Peng, Chang Geng; Butler, David; Varghese, Jos P; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah
2010-12-03
Novel non-nucleoside alkyne monomers compatible with oligonucleotide synthesis were designed, synthesized, and efficiently incorporated into RNA and RNA analogues during solid-phase synthesis. These modifications allowed site-specific conjugation of ligands to the RNA oligonucleotides through copper-assisted (CuAAC) and copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reactions. The SPAAC click reactions of cyclooctyne-oligonucleotides with various classes of azido-functionalized ligands in solution phase and on solid phase were efficient and quantitative and occurred under mild reaction conditions. The SPAAC reaction provides a method for the synthesis of oligonucleotide-ligand conjugates uncontaminated with copper ions.
A base-metal conductor system for silicon solar cells
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Sparks, T. G.
1980-01-01
Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.
Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun
2017-01-06
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Shi, Hanzhi; Li, Qi; Chen, Wenli; Cai, Peng; Huang, Qiaoyun
2018-04-01
Copper contamination of soils is a global environmental problem. Soil components (organic matter, clay minerals, and microorganisms) and retention time can govern the adsorption, fixation, and distribution of copper. This study evaluated the interaction effects of soil components and aging on the distribution of exogenous copper. Three typical Chinese soils (Ultisol, Alfisol, and Histosol) were collected from Hunan, Henan, and Heilongjiang Provinces. Soils were incubated with rice straw (RS) and engineered bacteria (Pseudomonas putida X4/pIME) in the presence of exogenous copper for 12 months. Sequential extraction was employed to obtain the distribution of Cu species in soils, and the mobility factors of Cu were calculated. The relationships between soil properties and Cu fractions were analyzed with stepwise multiple linear regression. The results show that organic carbon plays a more important role in shaping the distribution of relatively mobile Cu, and iron oxides can be more critical in stabilizing Cu species in soils. Our results suggest that organic matter is the most important factor influencing copper partitioning in Ultisols, while iron oxides are more significant in Alfisols. The mobility of exogenous Cu in soils depends largely on organic carbon, amorphous Fe, and aging. The introduction of both rice straw and rice straw + engineered bacteria enhanced the stabilization of Cu in all the three soils during aging process. The introduction of bacteria could reduce copper mobility, which was indicated by the lowest mobility factors of Cu for the treatment with bacteria in Black, Red, and Cinnamon soils at the first 4, 8, and 8 months, respectively. Different measures should be taken into account regarding the content of organic matter and iron oxides depending on soil types for the risk assessment and remediation of Cu-contaminated soils.
Wolf-Brandstetter, Cornelia; Oswald, Steffen; Bierbaum, Susanne; Wiesmann, Hans-Peter; Scharnweber, Dieter
2014-01-01
Aim of this study was to combine the well-known biocompatibility and ostoeconductivity of thin calcium phosphate coatings on titanium with proangiogenic signals from codeposited copper species. Copper species could be integrated in mineral layers based on hydroxyapatite by means of electrochemically assisted deposition from electrolytes containing calcium, phosphate, and copper ions. Different combinations of duration and intensity of galvanostatic pulses result in different amounts of deposited calcium phosphate and of copper species even for the same applied total charge. Absolute amounts of copper varied between 2.1 and 6.9 μg/cm², and the copper was distributed homogeneously as shown by EDX mapping. The presence of copper did not change the crystalline phase of deposited calcium phosphate (hydroxyapatite) but provoked a significant decrease in deposited amounts by factor 3 to 4. The copper was deposited mainly as Cu(I) species with a minor fraction of basic copper phosphates. Reduction of copper occurred not only at the surface of titanium but also within the hydroxyapatite coating due to the reaction with hydrogen produced by the electrolysis of water during the cathodic polarization of the substrate. Copyright © 2013 Wiley Periodicals, Inc.
Karadaş, Cennet; Kara, Derya
2017-04-01
A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.
Zhou, Lan; Yan, Qimin; Yu, Jie; ...
2016-03-14
We discuss how deployment of solar fuels technology requires photoanodes and that long term stability, can be accomplished using light absorbers that self-passivate under operational conditions. We recently reported that several copper vanadates are promising photoanode materials, and their stability and self-passivation is demonstrated through a combination of Pourbaix calculations and combinatorial experimentation.
CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.
Radford, David S; Kihlken, Margaret A; Borrelly, Gilles P M; Harwood, Colin R; Le Brun, Nick E; Cavet, Jennifer S
2003-03-14
The structure of the hypothetical copper-metallochaperone CopZ from Bacillus subtilis and its predicted partner CopA have been studied but their respective contributions to copper export, -import, -sequestration and -supply are unknown. DeltacopA was hypersensitive to copper and contained more copper atoms cell(-1) than wild-type. Expression from the copA operator-promoter increased in elevated copper (not other metals), consistent with a role in copper export. A bacterial two-hybrid assay revealed in vivo interaction between CopZ and the N-terminal domain of CopA but not that of a related transporter, YvgW, involved in cadmium-resistance. Activity of copper-requiring cytochrome caa(3) oxidase was retained in deltacopZ and deltacopA. DeltacopZ was only slightly copper-hypersensitive but deltacopZ/deltacopA was more sensitive than deltacopA, implying some action of CopZ that is independent of CopA. Significantly, deltacopZ contained fewer copper atoms cell(-1) than wild-type under these conditions. CopZ makes a net contribution to copper sequestration and/or recycling exceeding any donation to CopA for export.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaoliang; Yan, Zhengguang, E-mail: yanzg2004@gmail.com; Han, Xiaodong, E-mail: xdhan@bjut.edu.cn
2014-02-01
Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: Inmore » situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhuqin; Yu, Fengxiang; Gong, Ping
2014-04-15
Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxicmore » concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation. - Highlights: • Subneurotoxic copper(II) triggers NF-κB-dependent microglial activation. • This activation leads to hippocampal neuronal death. • This activation may involve mitochondria-derived reactive oxygen species.« less
A Plasmodium falciparum copper-binding membrane protein with copper transport motifs
2012-01-01
Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769
Sorption of copper, zinc and cobalt by oat and oat products.
Górecka, Danuta; Stachowiak, Jadwiga
2002-04-01
We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.
NASA Astrophysics Data System (ADS)
Huttunen-Saarivirta, E.; Rajala, P.; Bomberg, M.; Carpén, L.
2017-02-01
Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu2S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu2O. Furthermore, in the absence of SRB, Cu2O provided slightly inferior protection against corrosion compared to that by Cu2S in the presence of SRB. The obtained results show that the presence of microorganisms may enhance the passivity of copper. In addition, the identification of key microbial species, such as SRB thriving on copper for long time periods, is important for successful prediction of the behaviour of copper.
Schmitt, Françoise; Podevin, Guillaume; Poupon, Joël; Roux, Jérôme; Legras, Pierre; Trocello, Jean-Marc; Woimant, France; Laprévote, Olivier; NGuyen, Tuan Huy; Balkhi, Souleiman El
2013-01-01
Background Wilson's disease (WD) is an inherited disorder of copper metabolism leading to liver failure and/or neurological impairment. Its diagnosis often remains difficult even with genetic testing. Relative exchangeable copper (REC) has recently been described as a reliable serum diagnostic marker for WD. Methodology/Principal Findings The aim of this study was to validate the use of REC in the Long Evans Cinnamon (LEC) rat, an animal model for WD, and to study its relevance under different conditions in comparison with conventional markers. Two groups of LEC rats and one group of Long-Evans (LE) rats were clinically and biologically monitored from 6 to 28 weeks of age. One group of LEC rats was given copper-free food. The other groups had normal food. Blood samples were collected each month and different serum markers for WD (namely ceruloplasmin oxidase activity, exchangeable copper (CuEXC), total serum copper and REC) and acute liver failure (serum transaminases and bilirubinemia) were tested. Every LEC rat under normal food developed acute liver failure (ALF), with 40% global mortality. Serum transaminases and bilirubinemia along with total serum copper and exchangeable copper levels increased with the onset of acute liver failure. A correlation was observed between CuEXC values and the severity of ALF. Cut-off values were different between young and adult rats and evolved because of age and/or liver failure. Only REC, with values >19%, was able to discriminate LEC groups from the LE control group at every time point in the study. REC sensitivity and specificity reached 100% in adults rats. Conclusions/Significance REC appears to be independent of demographic or clinical data in LEC rats. It is a very simple and reliable blood test for the diagnosis of copper toxicosis owing to a lack of ATP7B function. CuEXC can be used as an accurate biomarker of copper overload. PMID:24358170
Sulfur-induced structural motifs on copper and gold surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walen, Holly
The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence ofmore » metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.« less
Scoliosis in Chickens: Responsiveness of Severity and Incidence to Dietary Copper
NASA Astrophysics Data System (ADS)
Opsahl, William; Abbott, Ursula; Kenney, Cristina; Rucker, Robert
1984-07-01
The severity and incidence of spinal lesions were manipulated in a line of chickens susceptible to scoliosis by varying their dietary intake of copper. A decrease in expression of the lesion was related to increased intake of copper. The change in expression, however, appeared to be related only indirectly to the defects in collagen cross-linking, maturation, and deposition known to be associated with dietary copper deficiency. Thus, a dietary constituent in the range of normal intakes may act as an environmental factor in the expression of scoliosis.
Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation
NASA Astrophysics Data System (ADS)
Xue, Ping; Li, Guangqiang; Qin, Qingwei
Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.
Characterization of failure processes in tungsten copper composites under fatigue loading conditions
NASA Technical Reports Server (NTRS)
Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.
1989-01-01
A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.
Corrosion Control 101: A Journey in Rediscovery | Science ...
The presentation covers the general water chemistry of lead and copper, how contamination originates from home plumbing systems, what treatments are appropriate for controlling lead and copper to meet the Lead and Copper Rule, and what water quality and treatment factors directly impact the success and failure of corrosion control treatment. This talk re-introduces the overriding principles of corrosion control treatment to a water industry audience
Rodney. De Groot; Bessie. Woodward
1998-01-01
In laboratory experiments, Douglas-fir wood blocks that were treated with copper- based wood preservatives were challenged with two wood decay fungi known to be tolerant of copper. Factors influencing the amount of decay, as determined by loss of weight in the test blocks, were preservative, then fungus. Within those combinations, the relative importance of...
Modeling MIC copper release from drinking water pipes.
Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R
2014-06-01
Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.
Faucher, Stéphane; Cugnet, Cyril; Authier, Laurent; Lespes, Gaëtane
2014-02-01
The objective of the study is to evaluate modified-carbon screen-printed working electrodes (SPE) combined with square wave anodic stripping voltammetry (SWASV) to determine electrolabile and total copper in soils with the perspective to assess the environmental hazard resulting from copper anthropogenic contamination. The voltammetric method was investigated using a mineralized certified reference soil such that it can be assumed that the copper was totally under electrolabile form in the solution of mineralized soil. In optimal conditions, a copper recovery of 97% and a relative standard deviation (RSD) of 9% were found. The limits of detection and quantification for copper were 0.4 and 1.3 μg L(-1), respectively. Finally, the method was applied on soil leachates, which allowed evaluating the cupric transfer from the soil to the leachates and quantifying the electrolabile copper part in leachates.
Stabilization of Oxidized Copper Nanoclusters in Confined Spaces
Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang; ...
2018-01-04
Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less
Moderate Dilution of Copper Slag by Natural Gas
NASA Astrophysics Data System (ADS)
Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang
2018-01-01
To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.
Ngom, Baba; Liang, Yili; Liu, Xueduan
2014-01-01
A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575
Low nitric oxide: a key factor underlying copper-deficiency teratogenicity.
Yang, Soo Jin; Keen, Carl L; Lanoue, Louise; Rucker, Robert B; Uriu-Adams, Janet Y
2007-12-15
Copper (Cu)-deficiency-induced teratogenicity is characterized by major cardiac, brain, and vascular anomalies; however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity and increases superoxide anions, which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu-adequate (Cu+) or Cu-deficient (Cu-) dams were cultured for 48 h in Cu+ or Cu- medium, respectively. We report that NO levels were low in conditioned medium from Cu-/Cu- embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3',5'-monophosphate (cGMP) concentrations in the Cu-/Cu- group. The altered NO levels in Cu-deficient embryos are functionally significant, as the administration of the NO donor DETA/NONOate increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling, which contributes to abnormal embryo and yolk sac development.
Low nitric oxide: a key factor underlying copper deficiency teratogenicity
Yang, Soo Jin; Keen, Carl L.; Lanoue, Louise; Rucker, Robert B.; Uriu-Adams, Janet Y.
2008-01-01
Copper (Cu) deficiency-induced teratogenicity is characterized by major cardiac, brain and vascular anomalies, however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity, and increases superoxide anions which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu adequate (Cu+) or Cu deficient (Cu−) dams were cultured for 48 h in Cu+ or Cu− medium, respectively. We report that NO levels were low in conditioned media from Cu−/Cu− embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions, and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3′,5′-monophosphate (cGMP) concentrations in the Cu−/Cu− group. The altered NO levels in Cu deficient embryos are functionally significant, as the administration of the NO donor, DETA/NONOate, increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling which contributes to abnormal embryo and yolk sac development. PMID:18037129
Spray Deposition: A Fundamental Study of Droplet Impingement, Spreading and Consolidation
1989-12-01
low alloy (HSLA) steel. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened HSLA steel...manufacturing process. Specifically, HSLA-100, a copper precipitation strengthened high-strength, low - alloy steel was spray cast via the Osprey’ m process...by spray casting. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened steel, were spray cast under differing conditions
Cyanide and Copper Recovery from Barren Solution of the Merrill Crowe Process
NASA Astrophysics Data System (ADS)
Parga, José R.; Valenzuela, Jesús L.; Díaz, J. A.
This paper is a brief overview of the role of inducing the nucleated precipitation of copper and cyanide in a flashtube serpentine reactor, using sodium sulfide as the precipitate and sulfuric acid as pH control. The results showed that pH had a great effect on copper cyanide removal efficiency and the optimum pH was about 3 to 3.5. At this pH value copper cyanide removal efficiency could be achieved above 97 and 99 %, when influent copper concentration ions were 650 and 900 ppm respectively. In this process the cyanide associated with the copper, zinc, iron cyanide complexes are released as HCN gas under strong acidic conditions, allowing it to be recycled back to the cyanidation process as free cyanide.
Ma, Quan; Ying, Ming; Sui, Xiaojing; Zhang, Huimin; Huang, Haiyan; Yang, Linqing; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei
2015-01-01
Copper is an essential element for human growth and development; however, excessive intake of copper could contribute to neurotoxicity. Here we show that chronic exposure to copper in drinking water impaired spatial memory with simultaneous selective loss of hippocampal pre-synaptic protein synapsin 1, and post-synaptic density protein (PSD)-93/95 in mice. Copper exposure was shown to elevate the levels of nitrotyrosine and 8-hydroxydeoxyguanosine (8-OHdG) in hippocampus, two markers of oxidative stress. Concurrently, we also found that copper exposure activated double stranded RNA-dependent protein kinase (PKR) as evidenced by increased ratio of phosphorylated PKR at Thr451 and total PKR and increased the phosphorylation of its downstream signaling molecule eukaryotic initiation factor 2α (eIF2α) at Ser51 in hippocampus. Consistent with activation of PKR/eIF2α signaling pathway which was shown to mediate synaptic deficit and cognitive impairment, the levels of activating transcription factor 4 (ATF-4), a downstream signaling molecule of eIF2α and a repressor of CREB-mediated gene expression, were significantly increased, while the activity of cAMP response elements binding protein (CREB) was inactivated as suggested by decreased phosphorylation of CREB at Ser133 by copper exposure. In addition, the expression of the pro-apoptotic target molecule C/EBP homology protein (CHOP) of ATF-4 was upregulated and hippocampal neuronal apoptosis was induced by copper exposure. Taken together, we propose that chronic copper exposure might cause spatial memory impairment, selective loss of synaptic proteins, and neuronal apoptosis through the mechanisms involving activation of PKR/eIF2α signaling pathway.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.
Digital data base application to porphyry copper mineralization in Alaska; case study summary
Trautwein, Charles M.; Greenlee, David D.; Orr, Donald G.
1982-01-01
The purpose of this report is to summarize the progress in use of digital image analysis techniques in developing a conceptual model for assessing porphyry copper mineral potential. The study area consists of approximately the southern one-half of the 1? by 3? Nabesna quadrangle in east-central Alaska. The digital geologic data base consists of data compiled under the Alaskan Mineral Resource Assessment Program (AMRAP) as well as digital elevation data and Landsat spectral reflectance data from the Multispectral Scanner System. The digital data base used to develop and implement a conceptual model for porphyry-type copper mineralization consisted of 16 original data types and 18 derived data sets formatted in a grid-cell (raster) structure and registered to a map base in the Universal Transverse Mercator (UTM) projection. Minimum curvature and inverse distance squared interpolation techniques were used to generate continuous surfaces from sets of irregularly spaced data points. Processing requirements included: (1) merging or overlaying of data sets, (2) display and color coding of maps and images, (3) univariate and multivariate statistical analyses, and (4) compound overlaying operations. Data sets were merged and processed to create stereoscopic displays of continuous surfaces. The ratio of several data sets were calculated to evaluate relative variations and to enhance the display of surface alteration (gossans). Factor analysis and principal components analysis techniques were used to determine complex relationships and correlations between data sets. The resultant model consists of 10 parameters that identify three areas most likely to contain porphyry copper mineralization; two of these areas are known occurrences of mineralization and the third is not well known. Field studies confirmed that the three areas identified by the model have significant copper potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, B.; Parker, J.
1983-12-01
Properties of copper pastes did not reproduce earlier results in rheology and metallurgy. Electrodes made with pastes produced under the previous contract were analyzed and raw material characteristics were compared. A needle-like structure was observed on the earlier electroded solar cells, and was identified as eutectic copper-silicon. Experiments were conducted with variations in paste parameters, firing conditions, including gas ambients, furnace furniture, silicon surface and others to improve performance characteristics. Improved adhesion with copper pastes containing silver fluoride, as well as those containing fluorocarbon powder was obtained. Front contact experiments were done with silver fluoride activated pastes on bare silicon,more » silicon oxide and silicon nitride coated silicon wafers. Adhesion of pastes with AgF on silicon nitride coated wafers was good, but indications were that all cells were shunted and the conclusion was that these systems were unsuitable for front contacts. Experiments with aluminum back surfaces and screened contacts to that surface were begun. Low temperature firing tended to result in S shaped IV curves. This was attributed to a barrier formed at the silicon-copper interface. A cooperative experiment was initiated on the effect of heat-treatments in various atmospheres on the hydrogen profile of silicon surfaces. Contact theory was explored to determine the role of various parameters on tunneling and contact resistance. Data confirm that the presence of eutectic Al-Si additions are beneficial for low contact resistance and fill factors in back contacts. Copper pastes with different silver fluoride additions were utilized as front contacts at two temperatures. Data shows various degrees of shunting. Finally, an experiment was run with carbon monoxide gas used as the reducing ambient during firing.« less
NASA Astrophysics Data System (ADS)
Zhang, Danhui; Liu, Xiaoheng
2013-03-01
The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.
Zhang, Hong; Andrews, Susan A
2013-11-01
This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Konynenburg, R.A.; Kundig, K.J.A.; Lyman, W.S.
1990-06-01
This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.
Geochemical barriers for environment protection and recovery of nonferrous metals.
Chanturiya, Valentine; Masloboev, Vladimir; Makarov, Dmitriy; Nesterov, Dmitriy; Bajurova, Julia; Svetlov, Anton; Men'shikov, Yuriy
2014-01-01
A study of natural minerals, ore tailings and their products as materials for artificial geochemical barriers is presented. In particular, it focuses on interaction between calcite and dolomite and sulfate solutions containing nickel, copper and iron under static conditions. Calcite of -0.1 mm fraction has been shown to perform well as a barrier when added to water phases of tailing dumps and natural reservoirs. Experiments under dynamic conditions have revealed a high potential of thermally activated copper-nickel tailings as barriers. After a 500-day precipitating period on a geochemical barrier, the contents of nickel and copper in ore dressing tailings were found to increase 12- and 28-fold, respectively. An effective sorbent of copper, iron and nickel ions is a brucite-based product of hydrochloric acid treatment of vermiculite ore tailings. Its sorption capacity can be essentially increased through thermal activation.
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
NASA Astrophysics Data System (ADS)
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.
2017-10-01
Large, areal, brittle fracture of copper current collector foils has been observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture is hidden and non-catastrophic to a degree because the graphite layers deform plastically, and hold the materials together so that the cracks in the foils cannot be seen under optical and electron microscopy. The cracking of copper foils could not be immediately confirmed when the cell is opened for post-mortem examination. However, 3D XCT on the indented cell reveals ;mud cracks; within the copper layer and an X-ray radiograph on a single foil of the Cu anode shows clearly that the copper foil has broken into multiple pieces. This failure mode of anodes in Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. The fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.
Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A
2005-06-01
Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.
Wang, Jianguo; Zhu, Xiaoyan; Guo, Yazhou; Wang, Zhe; Zhao, Baoyu; Yin, Yunhou; Liu, Guowen
2016-07-01
To investigate the effect of dietary copper on serum growth-related hormones levels and growth performance, a total of 60 weanling pigs were randomly assigned to six groups each containing 10 pigs, fed on basal diets supplemented with 0 (control), 100, 150, 200, 250, and 300 mg/kg copper sulfate for 80 days, respectively. The average daily gain (ADG), feed to gain ratio (F/G), feed intake and serum growth hormone (GH), insulin (INS), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor-binding protein 3 (IGFBP-3) levels were detected at interval of 20 days. The results revealed that ADG, and serum GH, INS, IGF-1, and IGFBP-3 concentrations were increased significantly in the pigs fed on diets added with 100, 150, 200, 250, and 300 mg/kg copper sulfate. Meanwhile, in the pigs supplemented with 250 mg/kg copper sulfate, ADG was increased significantly from the 40th to the 60th day of the experiment (P < 0.01), and the levels of GH, INS, IGF-1, and IGFBP-3 in serum were elevated significantly from the 20th to the 40th day of the experiment (P < 0.01). It is concluded that effects of copper supplemented in the diet on the growth of pigs were related to the increasing levels of GH, INS, IGF-1, and IGFBP-3 in serum which were induced by copper. High dietary copper increase the concentrations of growth-related hormones in serum, resulting in improving the growth performance of weanling pigs.
NASA Astrophysics Data System (ADS)
Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank
2014-11-01
Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.
NASA Astrophysics Data System (ADS)
Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi
2014-06-01
This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.
Yuan, Yong-Jun; Yu, Zhen-Tao; Zhang, Ji-Yuan; Zou, Zhi-Gang
2012-08-28
A new copper(I) complex with the ability to bind to TiO(2) was synthesised and successfully employed as a solar cell sensitizer. Furthermore, we demonstrated that the copper(I) dye-sensitised TiO(2)-based photocatalyst exhibits impressive effectiveness for the selective photoreduction of CO(2) to CH(4) under visible light.
Aircraft Thermal Management Using Loop Heat Pipes
2009-03-01
flexible copper-water arterial wick heat pipe subjected to transverse acceleration using a centrifuge table. Evaporator heat loads up to Qin = 150 W and...acceleration. Yerkes and Beam (1992) examined the same flexible copper-water arterial wick heat pipe as Ponnappan et al. under transient transverse...examined the same flexible copper-water arterial wick heat pipe as Ponnappan et al. with evaporator heat loads from Qin = 75 to 150 W, condenser
Li, Mengmeng; Feng, Qiang; Yang, Dezhen
2018-01-01
In the degradation process, the randomness and multiplicity of variables are difficult to describe by mathematical models. However, they are common in engineering and cannot be neglected, so it is necessary to study this issue in depth. In this paper, the copper bending pipe in seawater piping systems is taken as the analysis object, and the time-variant reliability is calculated by solving the interference of limit strength and maximum stress. We did degradation experiments and tensile experiments on copper material, and obtained the limit strength at each time. In addition, degradation experiments on copper bending pipe were done and the thickness at each time has been obtained, then the response of maximum stress was calculated by simulation. Further, with the help of one kind of Monte Carlo method we propose, the time-variant reliability of copper bending pipe was calculated based on the stochastic degradation process and interference theory. Compared with traditional methods and verified by maintenance records, the results show that the time-variant reliability model based on the stochastic degradation process proposed in this paper has better applicability in the reliability analysis, and it can be more convenient and accurate to predict the replacement cycle of copper bending pipe under seawater-active corrosion. PMID:29584695
Quantitative genetic analysis of brain copper and zinc in BXD recombinant inbred mice.
Jones, Leslie C; McCarthy, Kristin A; Beard, John L; Keen, Carl L; Jones, Byron C
2006-01-01
Copper and zinc are trace nutrients essential for normal brain function, yet an excess of these elements can be toxic. It is important therefore that these metals be closely regulated. We recently conducted a quantitative trait loci (QTL) analysis to identify chromosomal regions in the mouse containing possible regulatory genes. The animals came from 15 strains of the BXD/Ty recombinant inbred (RI) strain panel and the brain regions analyzed were frontal cortex, caudate-putamen, nucleus accumbens and ventral midbrain. Several QTL were identified for copper and/or zinc, most notably on chromosomes 1, 8, 16 and 17. Genetic correlational analysis also revealed associations between these metals and dopamine, cocaine responses, saccharine preference, immune response and seizure susceptibility. Notably, the QTL on chromosome 17 is also associated with seizure susceptibility and contains the histocompatibility H2 complex. This work shows that regulation of zinc and copper is under polygenic influence and is intimately related to CNS function. Future work will reveal genes underlying the QTL and how they interact with other genes and the environment. More importantly, revelation of the genetic underpinnings of copper and zinc brain homeostasis will aid our understanding of neurological diseases that are related to copper and zinc imbalance.
Bobadilla-Fazzini, Roberto A; Cortés, Maria Paz; Maass, Alejandro; Parada, Pilar
2014-12-01
Currently more than 90% of the world's copper is obtained through sulfide mineral processing. Among the copper sulfides, chalcopyrite is the most abundant and therefore economically relevant. However, primary copper sulfide bioleaching is restricted due to high ionic strength raffinate solutions and particularly chloride coming from the dissolution of ores. In this work we describe the chalcopyrite bioleaching capacity of Sulfobacillus thermosulfidooxidans strain Cutipay (DSM 27601) previously described at the genomic level (Travisany et al. (2012) Draft genome sequence of the Sulfobacillus thermosulfidooxidans Cutipay strain, an indigenous bacterium isolated from a naturally extreme mining environment in Northern Chile. J Bacteriol 194:6327-6328). Bioleaching assays with the mixotrophic strain Cutipay showed a strong increase in copper recovery from chalcopyrite concentrate at 50°C in the presence of chloride ion, a relevant inhibitory element present in copper bioleaching processes. Compared to the abiotic control and a test with Sulfobacillus acidophilus DSM 10332, strain Cutipay showed an increase of 42 and 69% in copper recovery, respectively, demonstrating its high potential for chalcopyrite bioleaching. Moreover, a genomic comparison highlights the presence of the 2-Haloacid dehalogenase predicted-protein related to a potential new mechanism of chloride resistance in acidophiles. This novel and industrially applicable strain is under patent application CL 2013-03335.
Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li
2017-11-01
Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heffern, Marie C.; Park, Hyo Min; Au-Yeung, Ho Yu; Van de Bittner, Genevieve C.; Ackerman, Cheri M.; Stahl, Andreas; Chang, Christopher J.
2016-01-01
Copper is a required metal nutrient for life, but global or local alterations in its homeostasis are linked to diseases spanning genetic and metabolic disorders to cancer and neurodegeneration. Technologies that enable longitudinal in vivo monitoring of dynamic copper pools can help meet the need to study the complex interplay between copper status, health, and disease in the same living organism over time. Here, we present the synthesis, characterization, and in vivo imaging applications of Copper-Caged Luciferin-1 (CCL-1), a bioluminescent reporter for tissue-specific copper visualization in living animals. CCL-1 uses a selective copper(I)-dependent oxidative cleavage reaction to release d-luciferin for subsequent bioluminescent reaction with firefly luciferase. The probe can detect physiological changes in labile Cu+ levels in live cells and mice under situations of copper deficiency or overload. Application of CCL-1 to mice with liver-specific luciferase expression in a diet-induced model of nonalcoholic fatty liver disease reveals onset of hepatic copper deficiency and altered expression levels of central copper trafficking proteins that accompany symptoms of glucose intolerance and weight gain. The data connect copper dysregulation to metabolic liver disease and provide a starting point for expanding the toolbox of reactivity-based chemical reporters for cell- and tissue-specific in vivo imaging. PMID:27911810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benda, F.; Kouba, J.
1991-03-01
In this paper, the authors examined the accumulation of copper(II) in, and its toxic effect on, duckweed, a plant which exhibits extremely high concentration factors. The effect of copper(II) was investigated by adding it to the minimal medium in two forms: CuSO{sub 4} and (Cu(Gly){sub 2}). The neutral (2:1) tetracoordinated bis(glycinate)-copper(II) complex is constituted by two five-membered rings bonded to the central copper atom with the cis configuration. This complex was chosen to model the function of a neutral species (eliminating the charge effect) involving a nontoxic ligand, for which - in contrast to the hydrated Cu{sup 2+} species -more » direct permeation through the cell wall is conceivable.« less
Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells.
Li, Ying; Kang, Zhen-Long; Qiao, Na; Hu, Lian-Mei; Ma, Yong-Jiang; Liang, Xiao-Huan; Liu, Ji-Long; Yang, Zeng-Ming
2017-05-01
The aim of this study was to investigate the effects of copper ions on decidualization of human endometrial stromal cells (HESCs) cultured in vitro. Firstly, non-toxic concentrations of copper D-gluconate were screened in HESCs based on cell activity. Then, the effects of non-toxic concentrations of copper ions (0~250 μM) were examined on decidualization of human endometrial stromal cells. Our data demonstrated that the mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1were down-regulated during decidualization following the treatments with 100 or 250 μM copper ions. Meanwhile, the amount of malonaldehyde (MDA) in the supernatant of HESCs was increased. These results showed that in vitro decidualization of HESCs was impaired by copper treatment.
NASA Astrophysics Data System (ADS)
Cusick, K. D.; Dale, J.; Little, B.; Cockrell, A.; Biffinger, J.
2016-02-01
Alteromonas macleodii is a ubiquitous marine bacterium that clusters by molecular analyses into two ecotypes: surface and deep-water. Our group isolated a marine bacterium from copper coupons that generates nanoparticles (NPs) at elevated copper concentrations. Sequencing of the 16S rRNA gene identified it as an A. macleodii strain. In phylogenetic analyses based on the gyrB gene, it clustered with other surface isolates; however, it formed a unique cluster separate from that of other surface isolates based on rpoB gene sequences. Copper is commonly employed as an antifouling agent on the hulls of ships, and so copper tolerance and NP generation is under investigation in this strain. The overall goals of this study were: (1) to determine if copper tolerance is the result of changes at the genetic or transcriptional level and (2) to identify the genes involved in NP formation. Sub-cultures were established from the initial isolate in which copper concentrations were increased in .25 mM increments through multiple generations. These sub-cultures were assayed for NP formation in seawater medium supplemented with 3-4 mM copper. Scanning electron microscopy revealed large aggregates of NPs on the exterior surface of all sub-cultures. Additionally, a portion of the cells in all sub-cultures displayed an elongated morphology in comparison to the wild-type. No NPs were observed in wild-type controls grown without the addition of increased copper. Metagenomic sequencing of natural populations of A. macleodii revealed extreme divergence in several large genomic regions whose content includes genes coding for exopolysaccharide production and metal resistance. High-throughput sequencing is being used to determine whether copper tolerance and NP generation is the result of genetic or transcriptional changes. These results will be extended to natural communities to gain insights into the role of bacterial NPs during conditions of elevated metal concentrations in coastal systems.
Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra
2013-05-01
The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM brackets, more precise manufacturing technique should be improved to get a more smoother surface finish.
ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion.
Cater, Michael A; La Fontaine, Sharon; Shield, Kristy; Deal, Yolanda; Mercer, Julian F B
2006-02-01
The Wilson protein (ATP7B) regulates levels of systemic copper by excreting excess copper into bile. It is not clear whether ATP7B translocates excess intrahepatic copper directly across the canalicular membrane or sequesters this copper into exocytic vesicles, which subsequently fuse with canalicular membrane to expel their contents into bile. The aim of this study was to clarify the mechanism underlying ATP7B-mediated copper detoxification by investigating endogenous ATP7B localization in the HepG2 hepatoma cell line and its ability to mediate vesicular sequestration of excess intracellular copper. Immunofluorescence microscopy was used to investigate the effect of copper concentration on the localization of endogenous ATP7B in HepG2 cells. Copper accumulation studies to determine whether ATP7B can mediate vesicular sequestration of excess intracellular copper were performed using Chinese hamster ovary cells that exogenously expressed wild-type and mutant ATP7B proteins. In HepG2 cells, elevated copper levels stimulated trafficking of ATP7B to pericanalicular vesicles and not to the canalicular membrane as previously reported. Mutation of an endocytic retrieval signal in ATP7B caused the protein to constitutively localize to vesicles and not to the plasma membrane, suggesting that a vesicular compartment(s) is the final trafficking destination for ATP7B. Expression of wild-type and mutant ATP7B caused Chinese hamster ovary cells to accumulate copper in vesicles, which subsequently undergo exocytosis, releasing copper across the plasma membrane. This report provides compelling evidence that the primary mechanism of biliary copper excretion involves ATP7B-mediated vesicular sequestration of copper rather than direct copper translocation across the canalicular membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang
Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less
Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang
2016-05-01
Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lipatov, G Ia; Adrianovskiĭ, V I; Gogoleva, O I
2015-01-01
There are presented the results of hygienic researches of the harmful substances content in the air of the working area ofthe copper and nickel metallurgy. Sulfur-containing gases (primarily sulfur dioxide), to the effects of which there are exposed workers of drying, smelting, converter conversion, are shown to play a leading role among professional factors.
Han, Baisui; Altansukh, Batnasan; Haga, Kazutoshi; Stevanović, Zoran; Jonović, Radojka; Avramović, Ljiljana; Urosević, Daniela; Takasaki, Yasushi; Masuda, Nobuyuki; Ishiyama, Daizo; Shibayama, Atsushi
2018-06-15
Sulfide copper mineral, typically Chalcopyrite (CuFeS 2 ), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of un‒recovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of low‒grade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using high‒pressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS 2 as main copper mineral) by HPL in a H 2 O media in the presence of pyrite, whereas the iron was co‒dissolved with copper according to an equation given as C Cu = 38.40 × C Fe . To avoid co‒dissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPL‒solvent extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.
McAdams, Wm.A.; Foss, M.H.
1958-08-12
A method of testing containers for leaks is described, particularly the testing of containers or cans in which the uranium slugs for nuelear reactors are jacketed. This method involves the immersion of the can in water under l50 pounds of pressure, then removing, drying, and coating the can with anhydrous copper sulfate. Amy water absorbed by the can under pressure will exude and discolor the copper sulfate in the area about the leak.
Borylation of α,β-Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles
Wen, Wu; Han, Biao; Yan, Feng; Ding, Liang; Li, Bojie; Wang, Liansheng
2018-01-01
We describe here the preparation of copper nanoparticles stabilized on a chitosan/poly (vinyl alcohol) composite film. This material could catalyze the borylation of α,β-unsaturated acceptors in aqueous media under mild conditions. The corresponding organoboron compounds as well as their converted β-hydroxyl products were all obtained in good to excellent yields. It is noteworthy that this catalyst of copper nanoparticles can be easily recycled eight times and remained catalytically reactive. This newly developed methodology provides an efficient and sustainable pathway for the synthesis of organoboron compounds and application of copper nanoparticles. PMID:29757981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu; Tahara, Shuta
2016-09-07
The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.
Contributions of Stress and Oxidation on the Formation of Whiskers in Pb-free Solders
2016-01-29
environmental factors influencing formation of tin whiskers on electrodeposited lead free, tin coatings over copper (or copper containing) substrates is the...Oxidation on the Formation of Whiskers in Pb‐free Solders,” WP-1754 15. SUBJECT TERMS Tin Whiskers, Residual Stress, Environmental Degradation 16...showing the surface of a tin film with whisker .................... 2 Figure 2: SEM Micrograph of Tin film on Copper Substrate cross-sectioned by FIB
Anaconda Copper Mine, Yerington, NV; Proposed Settlement Agreement and Order on Consent
This notice announces the availability for review and comment of an administrative Settlement Agreement and Order on Consent under CERCLA between the EPA and Atlantic Richfield Company regarding the Anaconda Copper Mine Site in Yerington, Nevada.
Best Practices and Simultaneous Compliance
This wrap-up presentation to the workshop covers several topics concerning how lead and copper compliance under the Lead and Copper Rule should be integrated into an overall “simultaneous compliance” framework with other organizations. The LCR requires “optimization” of lead leve...
Ceruloplasmin and cardiovascular disease
NASA Technical Reports Server (NTRS)
Fox, P. L.; Mazumder, B.; Ehrenwald, E.; Mukhopadhyay, C. K.
2000-01-01
Transition metal ion-mediated oxidation is a commonly used model system for studies of the chemical, structural, and functional modifications of low-density lipoprotein (LDL). The physiological relevance of studies using free metal ions is unclear and has led to an exploration of free metal ion-independent mechanisms of oxidation. We and others have investigated the role of human ceruloplasmin (Cp) in oxidative processes because it the principal copper-containing protein in serum. There is an abundance of epidemiological data that suggests that serum Cp may be an important risk factor predicting myocardial infarction and cardiovascular disease. Biochemical studies have shown that Cp is a potent catalyst of LDL oxidation in vitro. The pro-oxidant activity of Cp requires an intact structure, and a single copper atom at the surface of the protein, near His(426), is required for LDL oxidation. Under conditions where inhibitory protein (such as albumin) is present, LDL oxidation by Cp is optimal in the presence of superoxide, which reduces the surface copper atom of Cp. Cultured vascular endothelial and smooth muscle cells also oxidize LDL in the presence of Cp. Superoxide release by these cells is a critical factor regulating the rate of oxidation. Cultured monocytic cells, when activated by zymosan, can oxidize LDL, but these cells are unique in their secretion of Cp. Inhibitor studies using Cp-specific antibodies and antisense oligonucleotides show that Cp is a major contributor to LDL oxidation by these cells. The role of Cp in lipoprotein oxidation and atherosclerotic lesion progression in vivo has not been directly assessed and is an important area for future studies.
Circulation of copper in the biotic compartments of a freshwater dammed reservoir.
Vinot, I; Pihan, J C
2005-01-01
This study concerns a chronic copper release in an aquatic ecosystem: Mirgenbach reservoir; which is characterized by high salinity, conductivity and hardness, a eutrophic state and a high temperature. To study the bioavailability of copper in the biotic compartments, the sampling covered the entire food chain (phyto- and zooplankton, macroalgae, aquatic plants, crustaceans, mollusks, and fish). Of the organisms present, the filter feeder Dreissena polymorpha, the detritivorous Bithynia tentaculata and Orconectes limosus were most contaminated by copper. The level of copper found in fish was the lowest. Body copper concentrations recorded in the present study show large variability between species even in some that are closely related. In most cases, however, the metal handling strategy, feeding habits, morphology and ecology can, at least partially, explain the metal content recorded. Pollution factors have been used to assess the state of contamination of the food chain. This study showed finally that the copper in the lake is bioavailable and bioaccumulated by organisms up to high levels and some effects of long-term toxicity of copper on benthic community and planktonic biomass were pointed out.
Tümer, Z; Petris, M; Zhu, S; Mercer, J; Bukrinski, J; Bilz, S; Baerlocher, K; Horn, N; Møller, L B
2017-11-01
Menkes disease (MD) is a lethal disorder characterized by severe neurological symptoms and connective tissue abnormalities; and results from malfunctioning of cuproenzymes, which cannot receive copper due to a defective intracellular copper transporting protein, ATP7A. Early parenteral copper-histidine supplementation may modify disease progression substantially but beneficial effects of long-term treatment have been recorded in only a few patients. Here we report on the eldest surviving MD patient (37 years) receiving early-onset and long-term copper treatment. He has few neurological symptoms without connective tissue disturbances; and a missense ATP7A variant, p.(Pro852Leu), which results in impaired protein trafficking while the copper transport function is spared. These findings suggest that some cuproenzymes maintain their function when sufficient copper is provided to the cells; and underline the importance of early initiated copper treatment, efficiency of which is likely to be dependent on the mutant ATP7A function. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao
2017-11-09
We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.
Kontoudakis, Nikolaos; Guo, Anque; Scollary, Geoffrey R; Clark, Andrew C
2017-08-15
Solid-phase extraction has previously been used to fractionate copper and iron into hydrophobic, cationic and residual forms. This study showed the change in fractionated copper and iron in Chardonnay wines with 1-year of bottle aging under variable oxygen and protein concentrations. Wines containing protein in low oxygen conditions induced a decrease (20-50%) in total copper and increased the proportion of the hydrophobic copper fraction, associated with copper(I) sulfide. In contrast, protein stabilised wines showed a lower proportion of the hydrophobic copper fraction after 1-year of aging. In oxidative storage conditions, the total iron decreased by 60% when at high concentration, and the concentration of the residual fraction of both copper and iron increased. The results show that oxidative storage increases the most oxidative catalytic form of the metal, whilst changes during reductive storage depend on the extent of protein stabilisation of the wine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clark, Andrew C; Kontoudakis, Nikolaos; Barril, Celia; Schmidtke, Leigh M; Scollary, Geoffrey R
2016-07-01
The presence of copper in wine is known to impact the reductive, oxidative and colloidal stability of wine, and techniques enabling measurement of different forms of copper in wine are of particular interest in understanding these spoilage processes. Electrochemical stripping techniques developed to date require significant pretreatment of wine, potentially disturbing the copper binding equilibria. A thin mercury film on a screen printed carbon electrode was utilised in a flow system for the direct analysis of labile copper in red and white wine by constant current stripping potentiometry with medium exchange. Under the optimised conditions, including an enrichment time of 500s and constant current of 1.0μA, the response range was linear from 0.015 to 0.200mg/L. The analysis of 52 red and white wines showed that this technique generally provided lower labile copper concentrations than reported for batch measurement by related techniques. Studies in a model system and in finished wines showed that the copper sulfide was not measured as labile copper, and that loss of hydrogen sulfide via volatilisation induced an increase in labile copper within the model wine system. Copyright © 2016 Elsevier B.V. All rights reserved.
Lingual dyskinesia and tics: a novel presentation of copper-metabolism disorder.
Goez, Helly R; Jacob, Francois D; Yager, Jerome Y
2011-02-01
Copper is a trace element that is required for cellular respiration, neurotransmitter biosynthesis, pigment formation, antioxidant defense, peptide amidation, and formation of connective tissue. Abnormalities of copper metabolism have been linked with neurologic disorders that affect movement, such as Wilson disease and Menkes disease; however, the diagnosis of non-Wilson, non-Menkes-type copper-metabolism disorders has been more elusive, especially in cases with atypical characteristics. We present here the case of an adolescent with a novel presentation of copper-metabolism disorder who exhibited acute severe hemilingual dyskinesia and prominent tics, with ballismus of the upper limbs, but had normal brain and spinal MRI results and did not show any signs of dysarthria or dysphagia. His serum copper and ceruloplasmin levels were low, but his urinary copper level was elevated after penicillamine challenge. We conclude that copper-metabolism disorders should be included in the differential diagnosis for movement disorders, even in cases with highly unusual presentations, because many of them are treatable. Moreover, a connection between copper-metabolism disorders and tics is presented, to our knowledge, for the first time in humans; further investigation is needed to better establish this connection and understand its underlying pathophysiology.
Structural and electronic properties of copper-doped chalcogenide glasses
NASA Astrophysics Data System (ADS)
Guzman, David M.; Strachan, Alejandro
2017-10-01
Using ab initio molecular dynamics based on density functional theory, we study the atomic and electronic structure, and transport properties of copper-doped germanium-based chalcogenide glasses. These mixed ionic-electronic conductor materials exhibit resistance or threshold switching under external electric field depending on slight variations of chemical composition. Understanding the origin of the transport character is essential for the functionalization of glassy chalcogenides for nanoelectronics applications. To this end, we generated atomic structures for GeX3 and GeX6 (X = S, Se, Te) at different copper concentrations and characterized the atomic origin of electronic states responsible for transport and the tendency of copper clustering as a function of metal concentration. Our results show that copper dissolution energies explain the tendency of copper to agglomerate in telluride glasses, consistent with filamentary conduction. In contrast, copper is less prone to cluster in sulfides and selenides leading to hysteresisless threshold switching where the nature of transport is dominated by electronic midgap defects derived from polar chalcogen bonds and copper atoms. Simulated I -V curves show that at least 35% by weight of copper is required to achieve the current demands of threshold-based devices for memory applications.
Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B
2016-01-01
The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois
2016-02-01
Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
NASA Astrophysics Data System (ADS)
Gorospe, A. B.; Herrera, M. U.
2017-04-01
Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.
Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois
2016-01-01
Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. PMID:26865661
Pérez-Rodríguez, Paula; Paradelo, Marcos; Rodríguez-Salgado, Isabel; Fernández-Calviño, David; López-Periago, José Eugenio
2013-01-01
Modeling the pesticide wash-off by raindrops is important for predicting pesticide losses and the subsequent transport of pesticides to soil and in soil run-off. Three foliar-applied copper-based fungicide formulations, specifically the Bordeaux mixture (BM), copper oxychloride (CO), and a mixture of copper oxychloride and propylene glycol (CO-PG), were tested on potato (Solanum tuberosum L.) leaves using a laboratory raindrop simulator. The losses in the wash-off were quantified as both copper in-solution loss and copper as particles detached by the raindrops. The efficiency of the raindrop impact on the wash-off was modeled using a stochastic model based on the pesticide release by raindrops. In addition, the influence of the raindrop size, drop falling height, and fungicide dose was analyzed using a full factorial experimental design. The average losses per dose after 14 mm of dripped water for a crop with a leaf area index equal to 1 were 0.08 kg Cu ha(-1) (BM), 0.3 kg Cu ha(-1) (CO) and 0.47 kg Cu ha(-1) (CO-PG). The stochastic model was able to simulate the time course of the wash-off losses and to estimate the losses of both Cu in solution and as particles by the raindrop impacts. For the Cu-oxychloride fungicides, the majority of the Cu was lost as particles that detached from the potato leaves. The percentage of Cu lost increased with the decreasing raindrop size in the three fungicides for the same amount of dripped water. This result suggested that the impact energy is not a limiting factor in the particle detachment rate of high doses. The dosage of the fungicide was the most influential factor in the losses of Cu for the three formulations studied. The results allowed us to quantify the factors that should be considered when estimating the losses by the wash-off of copper-based fungicides and the inputs of copper to the soil by raindrop wash-off.
Çoruh, Semra; Elevli, Sermin; Geyikçi, Feza
2012-01-01
Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5°C. PMID:22629194
Coruh, Semra; Elevli, Sermin; Geyikçi, Feza
2012-01-01
Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5 °C.
Copper emissions from a high volume air sampler
NASA Technical Reports Server (NTRS)
King, R. B.; Toma, J.
1975-01-01
High volume air samplers (hi vols) are described which utilize a brush-type electric motor to power the fans used for pulling air through the filter. Anomalously high copper values were attributed to removal of copper from the commutator into the air stream due to arcing of the brushes and recirculation through the filter. Duplicate hi vols were set up under three operating conditions: (1) unmodified; (2) gasketed to prevent internal recirculation; and (3) gasketed and provided with a pipe to transport the motor exhaust some 20 feet away. The results of 5 days' operation demonstrate that hi vols can suddenly start emitting increased amounts of copper with no discernible operational indication, and that recirculation and capture on the filter can take place. Copper levels found with hi vols whose exhaust was discharged at a distance downwind were among the lowest found, and apparently provides a satisfactory solution to copper contamination.
Immobilization and release of copper species from a microstructured polypyrrole matrix.
González, M B; Brugnoni, L I; Flamini, D O; Quinzani, L M; Saidman, S B
2017-01-01
Copper species immobilization in hollow rectangular-sectioned microtubes of polypyrrole (PPy) electrosynthesized on 316L stainless steel was carried out using two different methods. One of them involved the immobilization after the PPy electropolymerization and the other one during the electrosynthesis process. The electrodes modified with copper species were rotated at different speeds in well water under open-circuit potential conditions. The release of copper species from the PPy matrix and the antibacterial activity against Escherichia coli were analyzed. The obtained results demonstrate that the amount of copper species released as well as the bactericidal effects against E. coli increases with rotation speed. The PPy coating modified with copper species after the electropolymerization reaction exhibited the best performance in terms of antibacterial activity and corrosion protection. These electrodes were tested in a lab-scale continuous flow system for well water disinfection.
Sudha, V B Preethi; Singh, K Ojit; Prasad, S R; Venkatasubramanian, Padma
2009-08-01
Water inoculated with 500-1000 colony forming units/ml of Escherichia coli, Salmonella Typhi and Vibrio cholerae was stored overnight at room temperature in copper pots or in glass bottles containing a copper coil devised by us. The organisms were no longer recoverable when cultured on conventional media, by contrast with water stored in control glass bottles under similar conditions. The amount of copper leached into the water after overnight storage in a copper pot or a glass bottle with a copper device was less than 475 parts per billion, which is well within the safety limits prescribed by the WHO. The device is inexpensive, reusable, easy to maintain, durable, does not need energy to run and appears to be safe. It has the potential to be used as a household water purification method for removing enteric bacteria, especially in developing countries.
Fitzgerald, Jennifer A; Katsiadaki, Ioanna; Santos, Eduarda M
2017-03-01
Hypoxia is a global problem in aquatic systems and often co-occurs with pollutants. Despite this, little is known about the combined effects of these stressors on aquatic organisms. The objective of this study was to investigate the combined effects of hypoxia and copper, a toxic metal widespread in the aquatic environment. We used the three-spined stickleback (Gasterosteus aculeatus) as a model because of its environmental relevance and amenability for environmental toxicology studies. We focused on embryonic development as this is considered to be a sensitive life stage to environmental pollution. We first investigated the effects of hypoxia alone on stickleback development to generate the information required to design subsequent studies. Our data showed that exposure to low oxygen concentrations (24.7 ± 0.9% air saturation; AS) resulted in strong developmental delays and increased mortalities, whereas a small decrease in oxygen (75.0 ± 0.5%AS) resulted in premature hatching. Stickleback embryos were then exposed to a range of copper concentrations under hypoxia (56.1 ± 0.2%AS) or normoxia (97.6 ± 0.1%AS), continuously, from fertilisation to free swimming larvae. Hypoxia caused significant changes in copper toxicity throughout embryonic development. Prior to hatching, hypoxia suppressed the occurrence of mortalities, but after hatching hypoxia significantly increased copper toxicity. Interestingly, when exposures were conducted only after hatching, the onset of copper-induced mortalities was delayed under hypoxia compared to normoxia, but after 48 h, copper was more toxic to hatched embryos under hypoxia. This is the second species for which the protective effect of hypoxia on copper toxicity prior to hatching, followed by its exacerbating effect after hatching is demonstrated, suggesting the hypothesis that this pattern may be common for teleost species. Our research highlights the importance of considering the interactions between multiple stressors, as understanding these interactions is essential to facilitate the accurate prediction of the consequences of exposure to complex stressors in a rapidly changing environment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Placenta Copper Transport Proteins in Preeclampsia
USDA-ARS?s Scientific Manuscript database
Placental insufficiency underlying preeclampsia (PE) is associated with impaired placental angiogenesis. As copper (Cu) is essential to angiogenesis, we investigated differences in the expression of placental Cu transporters Menkes (ATP7A), Wilsons (ATP7B) and the Cu chaperone (CCS) for superoxide d...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... Lake County, UT. Kennecott Utah Copper LLC (KUC) has applied for a Department of the Army (DA) permit... identification number SPK-2009-01213. SUPPLEMENTARY INFORMATION: KUC has applied for a DA permit under Section...
Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness.
Garcia, S S; Du, Q; Wu, H
2016-12-01
The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA-binding repressor (CopY), the P1-ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept.
Bishop, W M; Rodgers, J H
2012-04-01
The formulation of a specific algaecide can greatly influence the bioavailability, uptake, and consequent control of the targeted alga. In this research, three copper-based algaecide formulations were evaluated in terms of copper sorption to a specific problematic alga and amount of copper required to achieve control. The objectives of this study were (1) to compare the masses of copper required to achieve control of Lyngbya wollei using the algaecide formulations Algimycin-PWF, Clearigate, and copper sulfate pentahydrate in laboratory toxicity experiments; (2) to relate the responses of L. wollei to the masses of copper adsorbed and absorbed (i.e., dose) as well as the concentrations of copper in the exposure water; and (3) to discern the relation between the mass of copper required to achieve control of a certain mass of L. wollei among different algaecide formulations. The critical burden of copper (i.e., threshold algaecide concentration that must be absorbed or adsorbed to achieve control) for L. wollei averaged 3.3 and 1.9 mg Cu/g algae for Algimycin-PWF and Clearigate, respectively, in experiments with a series of aqueous copper concentrations, water volumes, and masses of algae. With reasonable exposures in these experiments, control was not achieved with single applications of copper sulfate despite copper sorption >13 mg Cu/g algae in one experiment. Factors governing the critical burden of copper required for control of problematic cyanobacteria include algaecide formulation and concentration, volume of water, and mass of algae. By measuring the critical burden of copper from an algaecide formulation necessary to achieve control of the targeted algae, selection of an effective product and treatment rate can be calculated at a given field site.
NASA Astrophysics Data System (ADS)
Gryzunova, N. N.; Vikarchuk, A. A.; Gryzunov, A. M.; Denisova, A. G.
2017-10-01
The morphology of the electrolytic copper single crystals formed under the mechanical activation of a cathode is described. Pentagonal pyramids and conical microcrystals with high growth steps are shown to form during electrocrystallization under these conditions. It is experimentally found that microcrystals grow on disclination defects, in particular, at the sites of termination of twin growth boundaries, and mechanical activation causes the formation of such defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Andre T.; Lopes, Carlos; Martins, Ligia O.
2012-06-08
Highlights: Black-Right-Pointing-Pointer CotA-laccase unfolds with an intermediate state. Black-Right-Pointing-Pointer Copper stabilizes the native and the intermediate state. Black-Right-Pointing-Pointer Copper binding to the unfolded state prevents refolding through protein aggregation. Black-Right-Pointing-Pointer Copper incorporation in CotA-laccase occurs as a later step during folding. -- Abstract: Copper is a redox-active metal and the main player in electron transfer reactions occurring in multicopper oxidases. The role of copper in the unfolding pathway and refolding of the multicopper oxidase CotA laccase in vitro was solved using double-jump stopped-flow experiments. Unfolding of apo- and holo-CotA was described as a three-state process with accumulation of an intermediatemore » in between the native and unfolded state. Copper stabilizes the native holo-CotA but also the intermediate state showing that copper is still bound to this state. Also, copper binds to unfolded holo-CotA in a non-native coordination promoting CotA aggregation and preventing refolding to the native structure. These results gather information on unfolding/folding pathways of multicopper oxidases and show that copper incorporation in vivo should be a tight controlled process as copper binding to the unfolded state under native conditions promotes protein aggregation.« less
NASA Astrophysics Data System (ADS)
Sun, Zhongqing; Shang, Kun; Jia, Lingjun
2018-03-01
Remote sensing inversion of heavy metal in vegetation leaves is generally based on the physiological characteristics of vegetation spectrum under heavy metal stress, and empirical models with vegetation indices are established to inverse the heavy metal content of vegetation leaves. However, the research of inversion of heavy metal content in vegetation-covered soil is still rare. In this study, Pulang is chosen as study area. The regression model of a typical heavy metal element, copper (Cu), is established with vegetation indices. We mainly investigate the inversion accuracies of Cu element in vegetation-covered soil by different vegetation indices according to specific spectral resolutions of ASD (Analytical Spectral Device) and Hyperion data. The inversion results of soil copper content in the vegetation-covered area shows a good accuracy, and the vegetation indices under ASD spectral resolution correspond to better results.
Pousaneh, Elaheh; Korb, Marcus; Dzhagan, Volodymyr; Weber, Marcus; Noll, Julian; Mehring, Michael; Zahn, Dietrich R T; Schulz, Stefan E; Lang, Heinrich
2018-06-19
The synthesis of ketoiminato copper(ii) complexes [Cu(OCRCHC(CH3)NCH2CH2X)(μ-OAc)]2 (X = NMe2: 4a, R = Me; 4b, R = Ph. X = OMe: 5, R = Me) and [Cu(OCRCHCMeNCH2CH2NEt2)(OAc)] (6, R = Me) from RC(O)CHC(CH3)N(H)CH2CH2X (X = NMe2: 1a, R = Me; 1b, R = Ph. X = NEt2: 1c, R = Me. X = OMe: 2, R = Me) and [Cu(OAc)2·H2O] (3) is reported. The molecular solid-state structures of 4-6 were determined by single crystal X-ray diffraction studies, showing that 4a,b and 5 are dimers which are set up by two [{Cu(μ-OAc)L}] (L = ketoiminato ligand) units featuring a square-planar Cu2O2 core with a distorted square-pyramidal geometry at Cu(ii). In contrast, 6 is monomeric with a tridentate-coordinated OCMeCHCMeNCH2CH2NEt2 ligand and a σ-bonded acetate group, thus inducing a square-planar environment around Cu(ii). The thermal behavior of all complexes was studied by TG (Thermogravimetry) and DSC (Differential Scanning Calorimetry) under an atmosphere of Ar and O2. Complex 4b shows the highest first onset temperature at 213 °C (under O2) and 239 °C (Ar). PXRD studies confirmed the formation of CuO under an atmosphere of O2 and Cu/Cu2O under Ar. TG-MS studies, exemplarily carried out with 4a, indicate the elimination of the ketoiminato ligands with detectable fragments such as m/z = 15, 28, 43, 44, 45, and 60 at a temperature above 250 °C. Vapor pressure measurements displayed that 5 shows the highest volatility of 3.6 mbar at 70 °C (for comparison, 4a, 1.4; 4b, 1.3; 6, 0.4 mbar) and hence 4a and 5 were used as MOCVD precursors for Cu/Cu2O deposition on Si/SiO2 at substrate temperatures of 450 °C and 510 °C. The deposition experiments were carried out under an atmosphere of nitrogen as well as oxygen. The as-obtained layers were characterized by SEM, EDX, XPS, and PXRD, showing that with oxygen as the reactive gas a mixture of metallic copper and copper(i) oxide without carbon impurities was formed, while under N2 Cu films with 53-68 mol% C contamination were produced. In a deposition experiment using precursor 5 at 510 °C under N2 a pure copper film was obtained.
NASA Astrophysics Data System (ADS)
Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo
2018-03-01
The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.
Guo, Xiaoning; Hao, Caihong; Jin, Guoqiang; Zhu, Huai-Yong; Guo, Xiang-Yun
2014-02-10
Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm(-2) ) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hu, Xiang; Zhang, Hua; Sun, Zhirong
2017-01-01
In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g-1 (298 K), 196.1 mg g-1 (303 K) and 185.2 mg g-1 (308 K). It was much higher than that of AC-Fe and AC-Al. And the process was controlled by both film diffusion and intra particle mass transport. The results also showed that, the Freundlich and Temkin isotherm fit the adsorption well.
Shariati, Shahab; Golshekan, Mostafa
2011-06-01
In the present study, a simple and efficient extraction method based on dispersive liquid-liquid microextraction prior to UV-Vis spectrophotometry was developed for the preconcentration and determination of copper ions in environmental samples. Briefly, cupric ions (Cu II) were reduced to cuprous (Cu I) with addition of hydroxyl amine hydrochloride and formed hydrophobic chelates with neocuproine. Then, a proper mixture of acetonitrile (as dispersive solvent) and choloroform (as extraction solvent) was rapidly injected into the solution and a cloudy solution was formed. After centrifuging, choloroform was sedimented at the bottom of a conical tube and diluted with 100 µL of methanol for further UV-Vis spectrophotometry measurement. An orthogonal array design (OAD) was employed to study the effects of different parameters on the extraction efficiency. Under the optimum experimental conditions, a preconcentration factor up to 63.6 was achieved for extraction from 5.0 mL of sample solution. The limit of detection (LOD) based on S/N = 3 was 0.33 µg L-1 and the calibration curve was linear in the range of 1-200 µg L-1 with reasonable linearity (r2 > 0.997). Finally, the accuracy of the proposed method was successfully evaluated by determination of trace amounts of copper ions in different water samples and satisfactory results were obtained.
The role of insufficient copper in lipid synthesis and fatty-liver disease.
Morrell, Austin; Tallino, Savannah; Yu, Lei; Burkhead, Jason L
2017-04-01
The essential transition metal copper is important in lipid metabolism, redox balance, iron mobilization, and many other critical processes in eukaryotic organisms. Genetic diseases where copper homeostasis is disrupted, including Menkes disease and Wilson disease, indicate the importance of copper balance to human health. The severe consequences of insufficient copper supply are illustrated by Menkes disease, caused by mutation in the X-linked ATP7A gene encoding a protein that transports copper from intestinal epithelia into the bloodstream and across the blood-brain barrier. Inadequate copper supply to the body due to poor diet quality or malabsorption can disrupt several molecular level pathways and processes. Though much of the copper distribution machinery has been described and consequences of disrupted copper handling have been characterized in human disease as well as animal models, physiological consequences of sub-optimal copper due to poor nutrition or malabsorption have not been extensively studied. Recent work indicates that insufficient copper may be important in a number of common diseases including obesity, ischemic heart disease, and metabolic syndrome. Specifically, marginal copper deficiency (CuD) has been reported as a potential etiologic factor in diseases characterized by disrupted lipid metabolism such as non-alcoholic fatty-liver disease (NAFLD). In this review, we discuss the available data suggesting that a significant portion of the North American population may consume insufficient copper, the potential mechanisms by which CuD may promote lipid biosynthesis, and the interaction between CuD and dietary fructose in the etiology of NAFLD. © 2016 IUBMB Life, 69(4):263-270, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Abriata, Luciano A; Vila, Alejandro J; Dal Peraro, Matteo
2014-06-01
Cupredoxins perform copper-mediated long-range electron transfer (ET) in biological systems. Their copper-binding sites have evolved to force copper ions into ET-competent systems with decreased reorganization energy, increased reduction potential, and a distinct electronic structure compared with those of non-ET-competent copper complexes. The entatic or rack-induced state hypothesis explains these special properties in terms of the strain that the protein matrix exerts on the metal ions. This idea is supported by X-ray structures of apocupredoxins displaying "closed" arrangements of the copper ligands like those observed in the holoproteins; however, it implies completely buried copper-binding atoms, conflicting with the notion that they must be exposed for copper loading. On the other hand, a recent work based on NMR showed that the copper-binding regions of apocupredoxins are flexible in solution. We have explored five cupredoxins in their "closed" apo forms through molecular dynamics simulations. We observed that prearranged ligand conformations are not stable as the X-ray data suggest, although they do form part of the dynamic landscape of the apoproteins. This translates into variable flexibility of the copper-binding regions within a rigid fold, accompanied by fluctuations of the hydrogen bonds around the copper ligands. Major conformations with solvent-exposed copper-binding atoms could allow initial binding of the copper ions. An eventual subsequent incursion to the closed state would result in binding of the remaining ligands, trapping the closed conformation thanks to the additional binding energy and the fastening of noncovalent interactions that make up the rack.
A two-step approach for copper and nickel extracting and recovering by emulsion liquid membrane.
Bi, Qiang; Xue, Juanqin; Guo, Yingjuan; Li, Guoping; Cui, Haibin
2016-11-01
The recycling of copper and nickel from metallurgical wastewater using emulsion liquid membrane (ELM) was studied. P507 (2-ethylhexyl phosphonic acid-2-ethylhexyl ester) and TBP (tributyl phosphate) were used as carriers for the extraction of copper and nickel by ELMs, respectively. The influence of four emulsion composition variables, namely, the internal phase volume fraction (ϕ), surfactant concentration (Wsurf), internal phase stripping acid concentration (Cio) and the carrier concentration (Cc), and the process variable treat ratio on the extraction efficiencies of copper or nickel were studied. Under the optimum conditions, 98% copper and nickel were recycled by using ELM. The results indicated that ELM extraction is a promising industrial application technology to retrieve valuable metals in low concentration metallurgical wastewater.
Characterization of the yeast copper-inducible promoter system in Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Granger, C. L.; Cyr, R. J.
2001-01-01
Inducible promoters or gene-switches are used to both spatially and temporally regulate gene expression. Such regulation can provide information concerning the function of a gene in a developmental context as well as avoid potential harmful effects due to overexpression. A gfp construct under the control of a copper-inducible promoter was introduced into Arabidopsis thaliana (L.) Heynh. and the regulatory parameters of this inducible promoter were determined. Here, we describe the time-course of up- and down-regulation of GFP expression in response to copper level, the optimal regulatory levels of copper, and the tissue specificity of expression in three transgenic lines. We conclude that the copper-inducible promoter system may be useful in regulating the time and location of gene expression in A. thaliana.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, S.G.; Hardy, D.R.
1995-05-01
Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less
Endothelial Antioxidant-1: A key mediator of Copper-dependent wound healing in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Archita; Sudhahar, Varadarajan; Chen, Gin -Fu
Here, Copper (Cu), an essential nutrient, promotes wound healing, however, target of Cu action and underlying mechanisms remains elusive. Cu chaperone Antioxidant-1 (Atox1) in the cytosol supplies Cu to the secretory enzymes such as lysyl oxidase (LOX) while Atox1 in the nucleus functions as a Cu-dependent transcription factor. Using cutaneous wound healing model, here we show that Cu content (by X-ray Fluorescence Microscopy) and nuclear Atox1 are increased after wounding, and that wound healing with and without Cu treatment is impaired in Atox1 -/ - mice. Experiments using endothelial cell (EC)-specific Atox1 -/ - mice and gene transfer of nuclear-targetmore » Atox1 in Atox1 -/ - mice reveal that Atox1 in ECs as well as transcription factor function of Atox1 are required for wound healing. Mechanistically, Atox1 -/ - mice show reduced Atox1 target proteins such as p47phox NADPH oxidase and cyclin D1 as well as extracellular matrix Cu enzyme LOX activity in wound tissues. This in turn results in reducing O 2 - production in ECs, NFkB activity, cell proliferation and collagen formation, thereby inhibiting angiogenesis, macrophage recruitment and extracellular matrix maturation. Our findings suggest that Cu-dependent transcription factor/Cu chaperone Atox1 in ECs plays an essential role to sense Cu to accelerate wound angiogenesis and healing.« less
Endothelial Antioxidant-1: A key mediator of Copper-dependent wound healing in vivo
Das, Archita; Sudhahar, Varadarajan; Chen, Gin -Fu; ...
2016-09-26
Here, Copper (Cu), an essential nutrient, promotes wound healing, however, target of Cu action and underlying mechanisms remains elusive. Cu chaperone Antioxidant-1 (Atox1) in the cytosol supplies Cu to the secretory enzymes such as lysyl oxidase (LOX) while Atox1 in the nucleus functions as a Cu-dependent transcription factor. Using cutaneous wound healing model, here we show that Cu content (by X-ray Fluorescence Microscopy) and nuclear Atox1 are increased after wounding, and that wound healing with and without Cu treatment is impaired in Atox1 -/ - mice. Experiments using endothelial cell (EC)-specific Atox1 -/ - mice and gene transfer of nuclear-targetmore » Atox1 in Atox1 -/ - mice reveal that Atox1 in ECs as well as transcription factor function of Atox1 are required for wound healing. Mechanistically, Atox1 -/ - mice show reduced Atox1 target proteins such as p47phox NADPH oxidase and cyclin D1 as well as extracellular matrix Cu enzyme LOX activity in wound tissues. This in turn results in reducing O 2 - production in ECs, NFkB activity, cell proliferation and collagen formation, thereby inhibiting angiogenesis, macrophage recruitment and extracellular matrix maturation. Our findings suggest that Cu-dependent transcription factor/Cu chaperone Atox1 in ECs plays an essential role to sense Cu to accelerate wound angiogenesis and healing.« less
Body of Knowledge (BOK) for Copper Wire Bonds
NASA Technical Reports Server (NTRS)
Rutkowski, E.; Sampson, M. J.
2015-01-01
Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.
Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation
Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng
2015-01-01
At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864
Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.
Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori
2011-12-05
We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.
Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard
2015-05-19
With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that do not efficiently extract copper from soluble amyloids. We have designed and developed new tetradendate ligands such as 21 and PA1637 based on bis(8-aminoquinolines) that are specific for copper chelation and are able to extract copper(II) from amyloids and then can release copper ion upon reduction with a biological reducing agent. These studies contribute to the understanding of the physicochemical properties of the tetradentate copper ligands compared with bidentate ligands like clioquinol. One of these copper ligands, PA1637, after selection with a nontransgenic mouse model that is able to efficiently monitor the loss of episodic memory, is currently under preclinical development.
Besser, J M; Wang, N; Dwyer, F J; Mayer, F L; Ingersoll, C G
2005-02-01
Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at < or = 11 microg/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 microg/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern.
Besser, J.M.; Wang, N.; Dwyer, F.J.; Mayer, F.L.; Ingersoll, C.G.
2005-01-01
Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at ??? 11 ??g/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 ??g/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern. ?? 2005 Springer Science+Business Media, Inc.
1983-09-01
al. (1981) was conducted on Copper City No. 2 tailings embankment damn near Miami, Arizona . Due to the extreme topographic relief in the area of the...mode of behavior and scale. ThiL dependency is summarized in the factor R. For example, circular shear instability as in a copper porphyry slope...OF THE PROBABILISTIC SLOPE STABILITY MODEL. . 32 6.1 DESCRIPTION OF COPPER CITY NUMBER 2 TAILINGS DAM . . 32 6.2 SUBSURFACE INVESTIGATION
NASA Technical Reports Server (NTRS)
Potapovich, G. M.; Taneyeva, G. V.; Uteshev, A. B.
1980-01-01
It is shown that the content of total iron, copper and manganese in the liver of animals is altered depending on the intensity and duration of their swimming. Hypodynamia for 7 days does not alter the concentration of iron, but sufficiently increases the content of copper and manganese. The barometric factor effectively influences the maintenance of constancy in the content of microelements accumulated in the liver after intensive muscle activity.
NASA Astrophysics Data System (ADS)
Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant
2014-10-01
Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04719b
Mathews, Salima; Hans, Michael
2013-01-01
Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344
Toxic responses of bivalves to metal mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, P.; Menon, N.R.
Although there is a growing body of information on the toxicity of individual heavy metals to economically important on the toxicity of individual heavy metals to economically important species of bivalves, literature on the lethal toxicity of metal mixtures to bivalves under controlled conditions is rather limited. In the present investigation the toxic effects of combinations of copper - mercury and copper - mercury and copper - cadmium at lethal levels of two marine bivalve species, Perna indica and Donax incarnatus, have been delineated.
Ingrosso, Chiara; Curri, M Lucia; Fini, Paola; Giancane, Gabriele; Agostiano, Angela; Valli, Ludovico
2009-09-01
This article reports on an extensive investigation on a functionalized phthalocyanine, namely, copper(II) tetrakis-(isopropoxy-carbonyl)-phthalocyanine (TIPCuPc). The self-association of the molecules is extensively described in solution in different solvents (DMSO, DMF, CHCl(3), pyridine) by means of UV-vis steady state spectroscopy at the air/water interface by Brewster angle microscopy (BAM) and in thin films by using atomic force microscopy (AFM). We investigated the morphology of TIPCuPc as thin film by evaluating different factors: temperature, solvent, concentration, transferring procedure (spin-coating and Langmuir-Schafer technique), and nature of the substrate (mica and quartz). The behavior of the molecules under UV light irradiation and their thermal stability were studied as well. Such a detailed study can allow a suitable processing of this phthalocyanine derivative for future applications. Here the photoelectrochemical activity of the phthalocyanine was investigated when suitably combined as sensitizer with rodlike TiO(2) nanocrystals (NCs) in hybrid junctions integrated in a photoelectrochemical cell.
Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model.
Pereira, Talita Carneiro Brandão; Campos, Maria Martha; Bogo, Maurício Reis
2016-07-01
Copper is an essential micronutrient and a key catalytic cofactor in a wide range of enzymes. As a trace element, copper levels are tightly regulated and both its deficit and excess are deleterious to the organism. Under inflammatory conditions, serum copper levels are increased and trigger oxidative stress responses that activate inflammatory responses. Interestingly, copper dyshomeostasis, oxidative stress and inflammation are commonly present in several chronic diseases. Copper exposure can be easily modeled in zebrafish; a consolidated model in toxicology with increasing interest in immunity-related research. As a result of developmental, economical and genetic advantages, this freshwater teleost is uniquely suitable for chemical and genetic large-scale screenings, representing a powerful experimental tool for a whole-organism approach, mechanistic studies, disease modeling and beyond. Copper toxicological and more recently pro-inflammatory effects have been investigated in both larval and adult zebrafish with breakthrough findings. Here, we provide an overview of copper metabolism in health and disease and its effects on oxidative stress and inflammation responses in zebrafish models. Copper-induced inflammation is highlighted owing to its potential to easily mimic pro-oxidative and pro-inflammatory features that combined with zebrafish genetic tractability could help further in the understanding of copper metabolism, inflammatory responses and related diseases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The effect of copper pre-cleaning on graphene synthesis.
Kim, Soo Min; Hsu, Allen; Lee, Yi-Hsien; Dresselhaus, Mildred; Palacios, Tomás; Kim, Ki Kang; Kong, Jing
2013-09-13
Copper foil is the most common substrate to synthesize monolayer graphene by chemical vapor deposition (CVD). The surface morphology and conditions of the copper foil can be very different depending on the various suppliers or different batches. These surface properties of copper strongly affect the growth behavior of graphene, thus rendering the growth conditions irreproducible when different batches of Cu foil are used. Furthermore, the quality of the graphene is severely affected as well. In this work, we report a facile method of copper pre-cleaning to improve the graphene quality and the reproducibility of the growth process. We found that the commercial Ni etchant (based on nitric acid) or nitric acid is the most effective cleaning agent among various acidic or basic solutions. The graphene grown on thus-treated copper surfaces is very clean and mostly monolayer when observed under scanning electron microscopy (SEM) and optical imaging, as compared to the graphene grown on untreated copper foil. Different batches (but with the same catalog number) of copper foil from Alfa Aesar Company were examined to explore the effect of copper pre-cleaning; consistent growth results were obtained when pre-cleaning was used. This method overcomes a commonly encountered problem in graphene growth and could become one of the standard protocols for preparing the copper foil substrate for growing graphene or other 2D materials.
Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie
2014-01-01
An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.
Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate
NASA Astrophysics Data System (ADS)
Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji
2017-01-01
In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.
Characterization and recovery of copper values from discarded slag.
Das, Bisweswar; Mishra, Barada Kanta; Angadi, Shivakumar; Pradhan, Siddharth Kumar; Prakash, Sandur; Mohanty, Jayakrushna
2010-06-01
In any copper smelter large quantities of copper slag are discarded as waste material causing space and environmental problems. This discarded slag contains important amounts of metallic values such as copper and iron. The recovery of copper values from an Indian smelter slag that contains 1.53% Cu, 39.8% Fe and 34.65% SiO(2) was the focus of the present study. A complete investigation of the different phases present in the slag has been carried out by means of optical microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. It is observed that iron and silica are mostly associated with the fayalite phase whereas copper is present in both oxide and sulfide phases. These oxide and sulfide phases of copper are mostly present within the slag phase and to some extent the slag is also embedded inside the oxide and sulfide phases. The recovery of copper values from the discarded slag has been explored by applying a flotation technique using conventional sodium isopropyl xanthate (SIX) as the collector. The effects of flotation parameters such as pH and collector concentration are investigated. Under optimum flotation conditions, it is possible to achieve 21% Cu with more than 80% recovery.
Dutra, A J B; Rocha, G P; Pombo, F R
2008-04-01
Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs.
Photochemical Copper Coating on 3D Printed Thermoplastics
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-08-01
3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.
Photochemical Copper Coating on 3D Printed Thermoplastics
Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy. PMID:27501761
Photochemical Copper Coating on 3D Printed Thermoplastics.
Yung, Winco K C; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-08-09
3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.
Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor.
Carpio, Isis E Mejias; Machado-Santelli, Glaucia; Sakata, Solange Kazumi; Ferreira Filho, Sidney Seckler; Rodrigues, Debora Frigi
2014-10-01
A heavy-metal resistant bacterial consortium was obtained from a contaminated river in São Paulo, Brazil and utilized for the design of a fixed-bed column for the removal of copper. Prior to the design of the fixed-bed bioreactor, the copper removal capacity by the live consortium and the effects of copper in the consortium biofilm formation were investigated. The Langmuir model indicated that the sorption capacity of the consortium for copper was 450.0 mg/g dry cells. The biosorption of copper into the microbial biomass was attributed to carboxyl and hydroxyl groups present in the microbial biomass. The effect of copper in planktonic cells to form biofilm under copper rich conditions was investigated with confocal microscopy. The results revealed that biofilm formed after 72 h exposure to copper presented a reduced thickness by 57% when compared to the control; however 84% of the total cells were still alive. The fixed-bed bioreactor was set up by growing the consortium biofilm on granular activated carbon (GAC) and analyzed for copper removal. The biofilm-GAC (BGAC) column retained 45% of the copper mass present in the influent, as opposed to 17% in the control column that contained GAC only. These findings suggest that native microbial communities in sites contaminated with heavy metals can be immobilized in fixed-bed bioreactors and used to treat metal contaminated water. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Shoshani-Dror, Dana; Guillemin, Claire
High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy.more » Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and oxidative stress of liver.« less
Investigation of the possibility of copper recovery from the flotation tailings by acid leaching.
Antonijević, M M; Dimitrijević, M D; Stevanović, Z O; Serbula, S M; Bogdanovic, G D
2008-10-01
The flotation tailings pond of the Bor Copper Mine poses a great ecological problem not only for the town of Bor but also for the surrounding soils and watercourses. Since the old flotation tailings contain about 0.2% of copper on the average, we investigated their leaching with sulphuric acid in the absence and presence of an oxidant. The aim was to determine the leaching kinetics of copper and iron as affected by various factors such as: the pH value of the leach solution, stirring speed, pulp density, particle size, concentration of ferric ions, temperature and time for leaching. The average copper and iron recovery obtained was from 60% to 70% and from 2% to 3%, respectively. These results indicate that the old flotation tailings pond represents an important source of secondary raw material for the extraction of copper and that it should be valorized rather than land reclamation. At the end of the paper, a mechanism of dissolution of copper and iron minerals from the tailings was described.
NASA Astrophysics Data System (ADS)
Burtan, Zbigniew
2017-11-01
The current level of rockburst hazard in copper mines of the (LGOM) Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.
Dynamic Shock Compression of Copper to Multi-Megabar Pressure
NASA Astrophysics Data System (ADS)
Haill, T. A.; Furnish, M. D.; Twyeffort, L. L.; Arrington, C. L.; Lemke, R. W.; Knudson, M. D.; Davis, J.-P.
2015-11-01
Copper is an important material for a variety of shock and high energy density applications and experiments. Copper is used as a standard reference material to determine the EOS properties of other materials. The high conductivity of copper makes it useful as an MHD driver layer in high current dynamic materials experiments on Sandia National Laboratories Z machine. Composite aluminum/copper flyer plates increase the dwell time in plate impact experiments by taking advantage of the slower wave speeds in copper. This presentation reports on recent efforts to reinstate a composite Al/Cu flyer capability on Z and to extend the range of equation-of-state shock compression data through the use of hyper-velocity composite flyers and symmetric planar impact with copper targets. We will present results from multi-dimensional ALEGRA MHD simulations, as well as experimental designs and methods of composite flyer fabrication. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Mellett, T.; Parker, C.; Brown, M.; Coale, T.; Duckham, C.; Chappell, D.; Maldonado, M. T.; Bruland, K. W.; Buck, K. N.
2016-02-01
Two shipboard incubation experiments were carried out in July of 2014 to investigate potential sources and sinks of iron- and copper-binding organic ligands in the surface ocean. Seawater for the experiments was collected from the central California Current System (cCCS) and incubated under varying light conditions and in the presence and absence of natural phytoplankton communities. Incubation treatments were sampled over a period of up to 3 days for measurements of total dissolved copper and iron, and for the concentration and conditional stability constants of copper- and iron-binding organic ligands. Dissolved copper and iron were determined by inductively coupled plasma-mass spectrometry (ICP-MS) following preconcentration on a Nobias PA1 resin. Organic ligand characteristics for iron and copper were determined using a method of competitive ligand exchange-absorptive cathodic stripping voltammetry (CLE-ACSV) with the added competing ligand salicylaldoxime. Trends in ligand concentrations and conditional stability constants across the different treatments and over the course of the incubation experiments will be presented.
NASA Astrophysics Data System (ADS)
Liu, Xinfang; Zhang, Songlin; Ding, Yuqiang
2012-06-01
Three copper(I) complexes (2-4) containing dppf ancillary ligand (dppf = bis(diphenylphosphino)-ferrocene) were synthesized when chloride-bridged copper(I) complex 1 reacted with acetanilide and characterized by IR, element analysis and NMR spectrum. And the crystal structures of complexes 2 and 4 have been determined by X-ray diffraction method. Complex 2, an acetate-bridged copper(I) complex, was obtained under N2 atmosphere in un-dried solvent; the acetate ion came from the hydrolysis reaction of acetanilide due to residual water in solvent. Acetanilide was deprotonated and coordinated with the copper(I) centre to form a copper(I) amidate complex 3 when reacted in pre-dried solvent. In addition, a known complex 4, the oxidation product of dppf, was isolated from the same reaction system when reacted in air atmosphere. CV and TG experiments were carried out to check the electron transfer properties and thermal stabilities of complexes 2-3. Finally, the arylation reaction of complex 3 with iodobenzene was performed to study the reaction mechanism of copper(I) catalyzed Goldberg reaction.
A COMPARISON OF RESIDENTIAL COPPER PIPES CARRYING HOT AND COLD WATER
Each year, the U.S. EPA examines numerous lead, iron, and copper pipes pulled from active use in homes and drinking water distribution systems throughout the United States. The intent of the work is to better understand factors that influence the release of metals into drinking ...
Effects of copper-plasma deposition on weathering properties of wood surfaces
NASA Astrophysics Data System (ADS)
Gascón-Garrido, P.; Mainusch, N.; Militz, H.; Viöl, W.; Mai, C.
2016-03-01
Thin layers of copper micro-particles were deposited on the surfaces of Scots pine (Pinus sylvestris L.) micro-veneers using atmospheric pressure plasma to improve the resistance of the surfaces to weathering. Three different loadings of copper were established. Micro-veneers were exposed to artificial weathering in a QUV weathering tester for 0, 24, 48, 96 and 144 h following the standard EN 927-6 [1]. Mass losses after each exposure showed significant differences between copper coated and untreated micro-veneers. Tensile strength was assessed at zero span (z-strength) and finite span (f-strength) under dry conditions (20 °C, 65% RH). During 48 h, micro-veneers lost their z-strength progressively. In contrast, copper coating at highest loading imparts a photo-protective effect to wood micro-veneers during 144 h exhibiting z-strength retention of 95%. F-strength losses were similar in all copper treated and untreated micro-veneers up to 96 h. However, after 144 h, copper coated micro-veneers at highest loading showed significantly greater strength retention of 56%, while untreated micro-veneers exhibited only 38%. Infrared spectroscopy suggested that copper coating does not stabilize lignin. Inductively Coupled Plasma revealed that micro-veneers coated with the highest loading exhibited the lowest percentage of copper loss. Blue stain resistance of copper coated Scots pine following the guidelines of EN 152 [2] was performed. Additional test with different position of the coated surface was also assessed. Copper coating reduced fungal growth when coated surface is exposed in contact with vermiculite. Spores of Aureobasidium pullulans were not able to germinate on the copper coated surface positioned uppermost.
NASA Astrophysics Data System (ADS)
Kolchanova, Kseniia; Barsova, Natalia; Motuzova, Galina; Stepanov, Andrey; Karpukhin, Mikhail
2017-04-01
The aim of this study was to investigate the forms of copper and transformation of organic matter in the soil under the influence of humic substances (potassium humate, which was obtained from coal). The object of research was the top layer of soil model field experience. Field experiments were carried out in 10-liter plastic containers.The upper layers were constructed artificially as mixture of loam, sand and peat. Below it was a layer of loam, then gravel and under it we installed lysimeters. The experiment was conducted in 3 settings: 1) control, 2) control + Cu, and 3) control + Cu + potassium humate . Copper was deposited into upper layer at soil column construction as dry powder (CuSO4*5H2O), which is 1000mg per kg. Humic substance was introduced on surface as liquid form. The focus was the state of the copper and organic matter of solid and liquid phase. In the solid phase pH, carbon content, the molecular-mass distributions for the organic matter, total (HNO3 conc.+ H2O2; decomposition in a microwave oven) and acid-soluble (1H HNO3) copper content, sequential extraction of copper (1 M MgCl2, acetate buffer pH 4,8 (AAB), 1% EDTA) were determined. For liquid phase characteristics aqueous extract was obtained and identified therein: pH, total activity and copper content and water-soluble organic matter(WOM) amphiphilic properties. The introduction of copper is accompanied by a decrease in pH in soils from 7 to 6,3. The introduction of the humic substance softens this effect. Introducing humic preparation gives an increase in carbon at 0.5%. HS and copper has no significant effect on the molecular-mass distribution of solid organic matter. Only about 4% introduced copper accounted for the exchangeable form (MgCl2) for the variant only copper contaminated. Copper, mainly precipitated as hydroxides, moved in an AAB extract. And compared with the exchangeable forms its quantity increases by 10 times. Still more copper goes into an extract of EDTA, about half of the total. That is, the introduction of humic substances increases the amount of copper associated with organic matter in complexes with high stability constants. The total amount of copper of the results of extraction is 88-96% of the all total content. Water-soluble copper contains only 0.5% of the total. But the introduction of humic substances increases the amount of water-soluble copper is 3 times. This is due to the increase in the content of the WOM by 2.5-3 times, both due to the hydrophobic and hydrophilic factions of WOM. And this leads to a sharp reduction in the activity of copper in the liquid phase. Dual effect of introducing humic substances was obtained on the results of the work. On the one hand the introduction of humic substances contributes the immobilization of copper by increasing the fraction associated with organic matter in the solid phase. On the other hand the introduction of humic substances contributes the mobilization of copper in the liquid phase due to the increase of WOM.
Preparation of Semiconducting Materials in the Laboratory, Part 3: The One-Penny Photovoltaic Cell
ERIC Educational Resources Information Center
Ibanez, Jorge G.; Finck-Pastrana, Adolfo; Mugica-Barrera, Alejandra; Balderas-Hernandez, Patricia; Ibarguengoitia-Cervantes, Martha E.; Garcia-Pintor, Elizabeth; Hartasanchez-Frenk, Jose Miguel; Bonilla-Jaurez, Cesar E.; Maldonado-Cordero, Casandra; Struck-Garza, Adelwart; Suberbie-Rocha, Felipe
2011-01-01
Copper(I) oxide photoresponsive layers are prepared on copper surfaces (e.g., U.S. pre-1982 pennies) by simple thermal, chemical, and electrochemical procedures. An easily measurable photovoltage (up to 100 mV) is obtained in each case under visible light illumination. (Contains 2 figures.)
One-pot synthesis of magnetic silica supported copper catalyst has been described via in situ generated magnetic silica (Fe3O4@SiO2); the catalyst can be used for the efficacious amination of aryl halides in aqueous medium under microwave irradiation.
Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D; Maryon, Edward B; Kaplan, Jack H; Ushio-Fukai, Masuko; Fukai, Tohru
2010-09-17
Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.
NASA Astrophysics Data System (ADS)
Ochiai, Shojiro; Oki, Yuichiro; Sekino, Fumiaki; Ohno, Hiroaki; Hojo, Masaki; Moriai, Hidezumi; Sakai, Shuji; Koganeya, Masanobu; Hayashi, Kazuhiko; Yamada, Yuichi; Ayai, Naoki; Watanabe, Kazuo
2000-04-01
The influences of fatigue damage introduced at room temperature on critical current at 4.2 K and residual strength at room temperature of Ti-Nb superconducting composite wire with a low copper ratio (1.04) were studied. The experimental results were compared with those of Nb3 Al composite. The following differences between the composites were found: the fracture surface of the Ti-Nb filaments in the composite varies from a ductile pattern under static loading to a brittle one under cyclic loading, while the Nb3 Al compound always shows a brittle pattern under both loadings; the fracture strength of the Ti-Nb composite is given by the net stress criterion but that of Nb3 Al by the stress intensity factor criterion; in the Ti-Nb composite the critical current Ic decreases with increasing number of stress cycles simultaneously with the residual strength icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r , while in the Nb3 Al composite Ic decreases later than icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r . On the other hand, both composites have the following similarities: the filaments are fractured due to the propagation of the fatigue crack nucleated in the copper; with increasing number of stress cycles, the damage progresses in the order of stage I (formation of cracks in the clad copper), stage II (stable propagation of the fatigue crack into the inner core) and stage III (overall fracture), among which stage II occurs in the late stage beyond 85 to 90% of the fatigue life; at intermediate maximum stress, many large cracks grow into the core portion at different cross sections but not at high and low maximum stresses; accordingly, the critical current and residual strength of the portion apart from the main crack are low for the intermediate maximum stress but not for low and high maximum stresses.
Copper Status of Exposed Microorganisms Influences Susceptibility to Metallic Nanoparticles
Reyes, Vincent C.; Spitzmiller, Melissa R.; Hong-Hermesdorf, Anne; Kropat, Janette; Damoiseaux, Robert D.; Merchant, Sabeeha S.; Mahendra, Shaily
2017-01-01
Although interactions of metallic nanoparticles (NP) with various microorganisms have been previously explored, few studies have examined how metal sensitivity impacts NP toxicity. Herein, we investigated the effects of copper nanoparticles’ (Cu-NPs) exposure to the model alga, Chlamydomonas reinhardtii, in the presence and absence of the essential micronutrient copper. The toxic ranges for Cu-NPs and the ionic control, CuCl2, were determined using a high-throughput ATP-based fluorescence assay. Cu-NPs caused similar mortality in copper-replete and copper-deplete cells (IC50: 14–16 mg/L), but were less toxic than the ionic control, CuCl2 (IC50: 7 mg/L). Using this concentration range, we assessed Cu-NP impacts to cell morphology, copper accumulation, chlorophyll content, and expression of stress genes under both copper supply states. Osmotic swelling, membrane damage, and chloroplast and organelle disintegration were observed by transmission electron microscopy at both conditions. Despite these similarities, copper-deplete cells showed greater accumulation of loosely bound and tightly bound copper after exposure to Cu-NPs. Furthermore, copper-replete cells experienced greater loss of chlorophyll content, 19 % for Cu-NPs, compared to only an 11% net decrease in copper-deplete cells. The tightly bound copper was bioavailable as assessed by reverse-transcriptase quantitative PCR analysis of CYC6, a biomarker for Cu-deficiency. The increased resistance of copper-deplete cells to Cu-NPs suggests that these cells potentially metabolize excess Cu-NPs or better manage sudden influxes of ions. Our findings recommend that toxicity assessments must account for the nutritional status of impacted organisms and use toxicity models based on estimations of the bioavailable fractions. PMID:26387648
Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction
Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; ...
2016-12-16
Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO 2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stablemore » under the strongly reducing conditions found in CO 2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.« less
Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.; ...
2018-02-27
ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and cofactor composition, yet they all share a conserved heme-copper binuclear site within their catalytic subunit. In this study, we show that the copper atoms of the catalytic center of two similar cytochromecoxidases from this superfamily are provided by different copper uptake systems during their biogenesis. This finding illustrates different strategies by which organisms fine-tune the trafficking of copper, which is an essential but toxic micronutrient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.
ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and cofactor composition, yet they all share a conserved heme-copper binuclear site within their catalytic subunit. In this study, we show that the copper atoms of the catalytic center of two similar cytochromecoxidases from this superfamily are provided by different copper uptake systems during their biogenesis. This finding illustrates different strategies by which organisms fine-tune the trafficking of copper, which is an essential but toxic micronutrient.« less
Hybrid copper complex-derived conductive patterns printed on polyimide substrates
NASA Astrophysics Data System (ADS)
Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho
2012-06-01
We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.
Recovery of Pb-Sn Alloy and Copper from Photovoltaic Ribbon in Spent Solar Module
NASA Astrophysics Data System (ADS)
Lee, Jin-Seok; Ahn, Young-Soo; Kang, Gi-Hwan; Wang, Jei-Pil
2017-09-01
This research was attempted to recover metal alloy and copper from photovoltaic ribbon (PV ribbon) of spent solar module by means of thermal treatment. In this study, thermal method newly proposed was applied to remove coating layer composed of tin and lead and separate copper substrate. Using thermal treatment under reductive gas atmosphere with CH4 gas coating layer was easily melted down at the range of temperature of 700 °C to 800 °C. In the long run, metal alloy and copper substrate were successfully obtained and their chemical compositions were examined by inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and energy dispersive x-ray Spectroscopy (EDS).
Morisawa, Ayaka; Okui, Tatsuo; Shimo, Tsuyoshi; Ibaragi, Soichiro; Okusha, Yuka; Ono, Mitsuaki; Nguyen, Thi Thu Ha; Hassan, Nur Mohammad Monsur; Sasaki, Akira
2018-03-01
Head and neck squamous cell carcinoma (HNSCC) poses a significant challenge clinically where one of the mechanisms responsible for the invasion into facial bones occurs via the activation of osteoclasts. Copper has been demonstrated to play a key role in skeletal remodeling. However, the role of copper in cancer-associated bone destruction is thus far unknown. Lysyl oxidase (LOX) is a copper-dependent enzyme that promotes osteoclastogenesis. In the present study, we investigated the effects of copper on HNSCC with bone invasion by the copper chelator, ammonium tetrathiomolybdate (TM) in vitro and in vivo. We demonstrate that TM blocks the proliferation of HNSCC cells, inhibits LOX activation and decreases the expression of the receptor activator of nuclear factor-κB ligand (RANKL) in osteoblasts and osteocytes, subsequently suppressing bone destruction. These findings suggest that copper is a potential target for the treatment of HNSCCs associated with bone destruction.
Bottom–Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via
Sun, Fu-Long; Li, Cai-Fu; Zhu, Qing-Sheng; Zhang, Hao; Suganuma, Katsuaki
2018-01-01
This paper is the first to report a large-scale directcurrent electrodeposition of columnar nanotwinned copper within through silicon via (TSV) with a high aspect ratio (~4). With this newly developed technique, void-free nanotwinned copper array could be fabricated in low current density (30 mA/cm2) and convection conditions (300 rpm), which are the preconditions for copper deposition with a uniform deep-hole microstructure. The microstructure of a whole cross-section of deposited copper array was made up of (111) orientated columnar grains with parallel nanoscale twins that had thicknesses of about 22 nm. The hardness was also uniform along the growth direction, with 2.34 and 2.68 GPa for the top and bottom of the TSV, respectively. The gelatin additive is also first reported hereas a key factor in forming nanoscale twins by adsorbing on the cathode surface, in order to enhance the overpotential for cathodic reaction during the copper deposition process. PMID:29473865
NASA Astrophysics Data System (ADS)
Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Thanh-Quoc, Nguyen; Ha, Do Tuong
2018-04-01
Copper nanoparticles, due to their special properties, small dimensions and low-cost preparation, have many potential applications such as in optical, electronics, catalysis, sensors, antibacterial agents. In this study, copper nanoparticles were synthesized by chemical reduction method with different conditions in order to investigate the optimum conditions which gave the smallest (particle diameter) dimensions. The synthesis step used copper (II) acetate salt as precursor, ascorbic acid as reducing agent, glycerin and polyvinylpyrrolidone (PVP) as protector and stabilizer. The assistance of ultrasonic was were considered as the significant factor affecting the size of the synthesized particles. The results showed that the copper nanoparticles have been successfully synthesized with the diameter as small as 20-40 nm and the conditions of ultrasonic waves were 48 kHz of frequency, 20 minutes of treated time and 65-70 °C of temperature. The synthesized copper nanoparticles were characterized by optical absorption spectrum, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectrometry.
Bottom-Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via.
Sun, Fu-Long; Liu, Zhi-Quan; Li, Cai-Fu; Zhu, Qing-Sheng; Zhang, Hao; Suganuma, Katsuaki
2018-02-23
This paper is the first to report a large-scale directcurrent electrodeposition of columnar nanotwinned copper within through silicon via (TSV) with a high aspect ratio (~4). With this newly developed technique, void-free nanotwinned copper array could be fabricated in low current density (30 mA/cm²) and convection conditions (300 rpm), which are the preconditions for copper deposition with a uniform deep-hole microstructure. The microstructure of a whole cross-section of deposited copper array was made up of (111) orientated columnar grains with parallel nanoscale twins that had thicknesses of about 22 nm. The hardness was also uniform along the growth direction, with 2.34 and 2.68 GPa for the top and bottom of the TSV, respectively. The gelatin additive is also first reported hereas a key factor in forming nanoscale twins by adsorbing on the cathode surface, in order to enhance the overpotential for cathodic reaction during the copper deposition process.
Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang
2017-01-01
The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed. PMID:28772497
Rathi, Manohari; Nandabalan, Yogalakshmi Kadapakkam
2017-04-01
Remediation of heavy metal contaminated soil is a major problem or concern worldwide. Heavy metal accumulation in the soil is increasing day by day by industries, mines, agriculture, fuel combustion and municipal waste discharge. Such contaminated soils harbour a large number of resistant microbial populations. Screening and isolation of such microbes would be utilized for natural remediation of metal contaminated soils. Therefore, in the present study, highly copper-tolerant bacteria from rhizosphere soil of Cynodon dactylon grown in brass effluent contaminated soil were isolated and assessed for plant growth promoting factors. A total of 61 isolates were isolated from the rhizosphere of three contaminated sites. Six highly copper-tolerant isolates named as MYS1, MYS2, MYS3, MYS4, MYS5 and MYS6 were isolated through enrichment in copper containing nutrient broth. 16S rRNA analysis revealed that the isolates were from genera Stenotrophomonas and Brevundimonas and belong to classes Alpha Proteobacteriacea and Gamma Proteobacteriacea, respectively. Strain MYS1, MYS2 and MYS4 showed 95-99% similarity with Stenotrophomonas acidaminiphila, strain MYS3 and MYS5 showed 99 and 97% similarity with Stenotrophomonas maltophilia and Stenotrophomonas sp. Strain MYS6 showed 94% similarity with Brevundimonas diminuta. All the rhizobacteria showed plant growth promoting traits such as production of siderophores, indole acetic acid (IAA), phosphate solubilization and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. From this study, we can conclude that all the isolates possess copper resistance and potential for phytoremediation of copper polluted soils.
Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress.
Irazusta, Verónica; Estévez, Cristina; Amoroso, María Julia; de Figueroa, Lucía I C
2012-06-01
In order to understand the mechanism involved in Rhodotorula mucilaginosa RCL-11 resistance to copper a proteomic study was conducted. Atomic absorption spectroscopy showed that the copper concentration in the medium decreased from 0.5 to 0.19 mM 48 h after inoculation of the yeast. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed expression of differential bands between cells with and without copper. In order to study this difference, two-dimensional electrophoresis of R. mucilaginosa RCL-11 exposed to Cu for 16, 24, and 48 h was carried out. Identification of differentially expressed proteins was performed by MALDI-TOF/TOF. Ten of the 16 spots identified belonged to heat shock proteins. Superoxide dismutase, methionine synthase and beta-glucosidase were also found over-expressed at high copper concentrations. The results obtained in the present work show that when R. mucilaginosa RCL-11 is exposed to 0.5 mM copper, differential proteins, involved in cell resistance mechanisms, are expressed.
Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching.
Beşe, Ayşe Vildan
2007-09-01
This work presents the optimum conditions of dissolution of copper in copper converter slag in sulphuric acid ferric sulphate mixtures in the presence and absence of ultrasound. The Taguchi method was used to determine the optimum conditions. The parameters investigated were the reaction temperature, acid concentration, ferric sulphate concentration and reaction time. The optimum conditions for the maximum dissolution of copper were determined as follows: reaction temperature, 65 degrees C; acid concentration, 0.2M; ferric sulphate concentration, 0.15M; reaction time 180 min. Under these conditions, extraction efficiency of copper, zinc, cobalt, and iron from slag were 89.28%, 51.32%, 69.87%, and 13.73%, respectively, in the presence of ultrasound, while they are 80.41%, 48.28%, 64.52%, and 12.16%, respectively, in the absence of ultrasound. As seen from the above results, it is clear that ultrasound enhances on the dissolution of Cu, Zn, Co and Fe in the slag.
NASA Astrophysics Data System (ADS)
Gubin, S. A.; Maklashova, I. V.; Mel'nikov, I. N.
2018-01-01
The molecular dynamics (MD) method was used for prediction of properties of copper under shock-wave compression and clarification of the melting region of crystal copper. The embedded atom potential was used for the interatomic interaction. Parameters of Hugonoit adiabats of solid and liquid phases of copper calculated by the semiempirical Grüneisen equation of state are consistent with the results of MD simulations and experimental data. MD simulation allows to visualize the structure of cooper on the atomistic level. The analysis of the radial distribution function and the standard deviation by MD modeling allows to predict the melting area behind the shock wave front. These MD simulation data are required to verify the wide-range equation of state of metals. The melting parameters of copper based on MD simulations and semiempirical equations of state are consistent with experimental and theoretical data, including the region of the melting point of copper.
Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.
Rabah, Mahmoud A
2004-01-01
This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.
Alagić, Slađana Č; Stankov Jovanović, Vesna P; Mitić, Violeta D; Nikolić, Jelena S; Petrović, Goran M; Tošić, Snežana B; Stojanović, Gordana S
2017-06-01
Samples of roots and spatial soils of native Rubus fruticosus L. were collected from the spots positioned at different distances from the copper smelter and city heating plants in the industrial zone of the town of Bor (Serbia) and subjected to chemical analyses in order to determine the content of several heavy metals, and 15 priority polycyclic aromatic hydrocarbons (PAHs). In this study, the results for 9 low and medium molecular weight PAHs (LMW and MMW PAHs) are represented and processed using the calculation of bio-concentration factors and statistical methods such as hierarchical cluster analysis and Pearson's correlation study with the aim of investigating the plant capabilities for their uptake from the soil and later accumulation into the root tissue, under the hostile circumstances of multiple contamination. The obtained data revealed different accumulation rates for the investigated PAHs and showed that in several cases, the contents of root PAHs were under the strong influence of present contaminants such as soil copper and some soil PAHs, indicating at the same time that R. fruticosus can regulate the processes of LMW and MMW PAHs extraction/accumulation using different mechanisms, depending on the existing environmental circumstances. The used mechanisms could be exploited in phytoremediation methods based not only on the extraction and concentration of PAHs in plant roots but also on PAH degradation or stabilization in the soil. Also, the results of this study confirmed that, except in the case of naphthalene and fluoranthene, there was no PAH pollution, which originated solely from the industrial zone.
Balakumaran, Palanisamy Athiyaman; Förster, Jan; Zimmermann, Martin; Charumathi, Jayachandran; Schmitz, Andreas; Czarnotta, Eik; Lehnen, Mathias; Sudarsan, Suresh; Ebert, Birgitta E; Blank, Lars Mathias; Meenakshisundaram, Sankaranarayanan
2016-02-20
Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production.
Costa, Marcela Brandão; Tavares, Francesca Valêncio; Martinez, Claudia Bueno; Colares, Ioni Gonçalves; Martins, Camila de Martinez Gaspar
2018-07-15
This study investigated the ability of Potamogeton pectinatus L. to accumulate copper and its effects on plants. In accumulation tests, macrophytes were exposed (96 h) to different copper concentrations (0-1000 µM) and the metal was measured in media and plant tissues (roots, stems and leaves) to determine the bioconcentration factor (BCF). Plants accumulated high concentrations of copper in a dose-dependent manner and roots was the main organ for copper accumulation. However, the more copper increased in water, the more BCF values decreased. It may be due to either saturation of copper uptake or down-regulation of metal uptake by plants. In the physiological and morphological analyses, plants were kept (96 h) in Hoagland nutrient solution without copper, in full Hoagland solution (0.5 µM Cu) and in Hoagland medium with copper from 1 to 100 µM. The absence and the presence of copper above to 1 µM inhibited photosynthesis. Chlorophylls and carotenoid levels also decreased with the excess of copper, a fact that may have affected the photosystem II-dependent of chlorophyll and caused photosynthesis suppression. Only macrophytes at 10 µM Cu showed decrease in length and number of leaves on the 10th day of the test, when they died. Chlorosis and necrosis were observed in control groups and groups with extra copper, but not in Hoalgand group. Overall, the macrophyte P. pectinatus can be considered a suitable plant for monitoring environments contaminated by copper, based on results of copper accumulation in the plant, decrease in pigment concentration and presence of chlorosis and necrosis. However, values of BCF based on fresh water tissues was not proper to indicate the use of P. pectinatus for cleaning environments contaminated by copper. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young
2017-10-01
Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.
Zhan, Lu; Xu, Zhenming
2008-10-15
The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.
Jia, Bo; Liu, Xingyan; Zhan, Jicheng; Li, Jingyuan; Huang, Weidong
2015-06-01
Proanthocyanidins (PAs) derived from the grape skin, as well as from grape seeds, grape stems, are an important group of polyphenols in wine. The aim of this study was to understand the effect of PAs (0.1, 1.0 g/L) on growth and alcoholic fermentation of 2 strains of Saccharomyces cerevisiae (commercial strain FREDDO and newly selected strain BH8) during copper-stress fermentation, using a simple model fermentation system. Our results showed that both PAs and Cu(2+) could pose significant inhibition effects on the growth of yeast cells, CO2 release, sugar consumption, and ethanol production during the initial phase of the fermentation. Compared to PAs, Cu(2+) performed more obvious inhibition on the yeast growth and fermentation. However, adding 1.0 g/L PAs increased in the vitality and metabolism activity of yeast cells at the mid-exponential phase of fermentation in the mediums with no copper and 0.1 mM Cu(2+) added, shortened the period of wine fermentation, and decreased the copper residues. It indicated that PAs could improve the ability of wine yeast to resist detrimental effects under copper-stress fermentation condition, maintaining cells metabolic activity, and fermentation could be controlled by manipulating PAs supplementation. © 2015 Institute of Food Technologists®
Moravcová, Šárka; Tůma, Jiří; Dučaiová, Zuzana Kovalíková; Waligórski, Piotr; Kula, Monika; Saja, Diana; Słomka, Aneta; Bąba, Wojciech; Libik-Konieczny, Marta
2018-01-01
The study was focused on the influence of salicylic acid (SA) on maize seeds germination and on some physiological and biochemical processes in maize plants growing in the hydroponic culture under copper (Cu) stress. A significant influence of SA pretreatment on the advanced induction of the maize seeds metabolic activity and the level of the endogenous SA in germinated seeds and developing roots have been stated. Although, the ability of maize seeds to uptake SA and accumulate it in the germinated roots was confirmed, the growth inhibition of Cu-stressed maize seedlings was not ameliorated by SA seeds pretreatment. Cu-stressed plants exhibited a decrease in the photosynthetic pigment concentration and the increase in non-photochemical quenching (NPQ) - an indicator of an excess energy in PSII antenna assemblies lost as a heat. The amelioration effect of SA application was found only for carotenoids content which increased in stressed plants. It was also shown that maize roots growing in stress conditions significantly differed in the chemical composition in comparison to the roots of control plants, but the SA pretreatment did not affect these differences. On the other hand, it was found that SA seed pretreatment significantly influenced the ability of stressed plants to accumulate copper in the roots. It was stated that a higher level of exogenous SA application led to a lower accumulation of Cu ions in maize roots. Cu-stressed plants exhibited higher oxidative stress in roots than in leaves which was manifested as an increase in the concentration of hydrogen peroxide due to stress factor application. We observed an increase in catalase (CAT) activity in leaves of Cu-stressed plants which corresponded with a lower H 2 O 2 content when compared with roots where the hydrogen peroxide level was higher, and the inhibition of the CAT activity was found. Furthermore, we found that the SA seed pretreatment led to a decrease in the H 2 O 2 content in the roots of the Cu-stressed plants, but it did not influence the H 2 O 2 level in leaves. The increase in hydrogen peroxide content in the roots of Cu-stressed plants correlated with a higher activity of the MnSODI and MnSODII isoforms. It was found that SA pretreatment caused a decrease in MnSODII activity accompanied by the decrease in H 2 O 2 concentration. Achieved results indicated also that the changes in the chemical composition of the root tissue under copper stress constituted protection mechanisms of blocking copper flow into other plant organs. However, it might be assumed that the root tissue remodelling under Cu stress did not only prevent against the Cu ions uptake but also limited the absorption of minerals required for the normal growth leading to the inhibition of the plant development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS.
Leitch, Jeffry M; Jensen, Laran T; Bouldin, Samantha D; Outten, Caryn E; Hart, P John; Culotta, Valeria C
2009-08-14
Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.
Fung, Danny Ka Chun; Lau, Wai Yin; Chan, Wing Tat
2013-01-01
Adaptation to changing environments is essential to bacterial physiology. Here we report a unique role of the copper homeostasis system in adapting Escherichia coli to its host-relevant environment of anaerobiosis coupled with amino acid limitation. We found that expression of the copper/silver efflux pump CusCFBA was significantly upregulated during anaerobic amino acid limitation in E. coli without the supplement of exogenous copper. Inductively coupled plasma mass spectrometry analysis of the total intracellular copper content combined with transcriptional assay of the PcusC-lacZ reporter in the presence of specific Cu(I) chelators indicated that anaerobic amino acid limitation led to the accumulation of free Cu(I) in the periplasmic space of E. coli, resulting in Cu(I) toxicity. Cells lacking cusCFBA and another copper transporter, copA, under this condition displayed growth defects and reduced ATP production during fumarate respiration. Ectopic expression of the Fe-S cluster enzyme fumarate reductase (Frd), or supplementation with amino acids whose biosynthesis involves Fe-S cluster enzymes, rescued the poor growth of ΔcusC cells. Yet, Cu(I) treatment did not impair the Frd activity in vitro. Further studies revealed that the alternative Fe-S cluster biogenesis system Suf was induced during the anaerobic amino acid limitation, and ΔcusC enhanced this upregulation, indicating the impairment of the Fe-S cluster assembly machinery and the increased Fe-S cluster demands under this condition. Taken together, we conclude that the copper efflux system CusCFBA is induced during anaerobic amino acid limitation to protect Fe-S cluster enzymes and biogenesis from the endogenously originated Cu(I) toxicity, thus facilitating the physiological adaptation of E. coli. PMID:23893112
Sellaoui, Lotfi; Edi Soetaredjo, Felycia; Ismadji, Suryadi; Cláudio Lima, Éder; Dotto, Guilherme L; Ben Lamine, Abdelmottaleb; Erto, Alessandro
2017-10-04
Herein, adsorption isotherms of Pb(ii) and Cu(ii) ions on treated sea mango fruit in both single-compound and binary systems were experimentally realized at different temperatures in the range of 30-50 °C. Experimental results show that adsorption of Pb(ii) was more as compared to that of Cu(ii) ions; however, for both ions, a significant reduction in the adsorption capacity was observed in the binary system as compared to that in the single-compound systems. Moreover, under all the investigated conditions, adsorption seems to be promoted by an increase in temperature. To understand and interpret the experimental evidences, the Hill and competitive Hill models developed on the basis of the grand canonical ensemble were applied for the analysis of adsorption equilibrium data. These models contain some physicochemical parameters that allow an exhaustive analysis of the dynamics of single-compound and binary adsorptions. Based on the fitting results, in particular, through the evaluation of the number of ions bonded per site (n and n i ), it was found that lead and copper ions interacted by inclined and horizontal positions on treated sea mango in single-compound and binary systems, respectively. In addition, based on the same parameters, a significant interaction between ions was retrieved. A study focused on the saturation adsorption capacity in single-compound and binary systems affirmed that the adsorbent was more selective for lead than for copper. The reduction of the adsorbed capacity ratio between the binary and single-compound systems (i.e. Q b /Q s ) explained and confirmed that an inhibition effect between copper and lead ions at the same receptor site occurred. Finally, based on the energetic investigations, it was deduced that the adsorption energy represented the dominant factor promoting the greater adsorption of lead than that of copper in both systems.
Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo
2015-03-01
Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.
Radojevic, Ana A; Serbula, Snezana M; Kalinovic, Tanja S; Kalinovic, Jelena V; Steharnik, Mirjana M; Petrovic, Jelena V; Milosavljevic, Jelena S
2017-04-01
The town of Bor and its surroundings (Serbia) have been under environmental pollution for more than a century, due to exploitation of large copper deposits. Naturally present Corylus spp. were sampled in the surroundings of the mine and flotation tailings at 12 sites distributed in six zones with different pollution loads, under the assumption that all the zones were endangered except for the background. As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn inputs from soil and the air were evaluated in plant parts, in terms of absorption, accumulation and indication abilities of Corylus spp. The obtained results showed that As and Cu were the most enriched elements in soil, and their concentration exceeded the limit and remediation values proposed by the regulation. Plant parts (root, branch, leaf and catkin) also showed enrichment of most studied elements in wide ranges. According to the enrichment factor for plant, metal/metalloid inputs, particularly in leaves, were from anthropogenic origin. Plant absorption which occurred at the soil-root interface was low, based on the bioaccumulation factor, which could be indicative of resistance mechanisms of root to abiotic stress induced by a high content of elements in soil substrate. The values of bioaccumulation coefficient suggested weak and intermediate absorption and exclusion abilities of Corylus spp. to the studied elements. Element concentrations differ in unwashed and washed leaves, as well as pollution loads in plant and soil samples from the background, traffic and the sites with clear mining-metallurgical influence. Therefore, Corylus spp. could be promising in biomonitoring studies.
Iron concentrations in breast milk and selected maternal factors of human milk bank donors.
Mello-Neto, Julio; Rondó, Patrícia H C; Morgano, Marcelo A; Oshiiwa, Marie; Santos, Mariana L; Oliveira, Julicristie M
2010-05-01
The aim of this study was to evaluate the relationship between iron concentration in mature breast milk and characteristics of 136 donors of a Brazilian milk bank. Iron, vitamin A, zinc, and copper concentrations were assessed in human milk and maternal blood. Data were collected on maternal anthropometrics, obstetric, socioeconomic, demographic, and lifestyle factors. Iron, zinc, and copper in milk and zinc and copper in blood were detected by spectrophotometry. Vitamin A in milk and blood was determined by high-performance liquid chromatography. Hemoglobin was measured by electronic counting and serum iron and ferritin by colorimetry and chemoluminescence, respectively. Transferrin and ceruloplasmin were determined by nephelometry. According to multivariate linear regression analysis, iron in milk was positively associated with vitamin A in milk and with smoking but negatively associated with timing of breast milk donation (P < .001). These results indicate that iron concentration in milk of Brazilian donors may be influenced by nutritional factors and smoking.
Effect of Soil Amendments on Microbial Resilience Capacity of Acid Soil Under Copper Stress.
Mounissamy, Vassanda Coumar; Kundu, Samaresh; Selladurai, Rajendiran; Saha, Jayanta Kumar; Biswas, Ashish Kumar; Adhikari, Tapan; Patra, Ashok Kumar
2017-11-01
An incubation study was undertaken to study microbial resilience capacity of acid soil amended with farmyard manure (FYM), charcoal and lime under copper (Cu) perturbation. Copper stress significantly reduced enzymatic activities and microbial biomass carbon (MBC) in soil. Percent reduction in microbial activity of soil due to Cu stress was 74.7% in dehydrogenase activity, 59.9% in MBC, 48.2% in alkaline phosphatase activity and 15.1% in acid phosphatase activity. Soil treated with FYM + charcoal showed highest resistance index for enzymatic activities and MBC. Similarly, the highest resilience index for acid phosphatase activity was observed in soil amended with FYM (0.40), whereas FYM + charcoal-treated soil showed the highest resilience indices for alkaline, dehydrogenase activity and MBC: 0.50, 0.22 and 0.25, respectively. This investigation showed that FYM and charcoal application, either alone or in combination, proved to be better than lime with respect to microbial functional resistance and resilience of acid soil under Cu perturbation.
Optical and electrical stability of viral-templated copper sulfide (Cu1.8S) films
NASA Astrophysics Data System (ADS)
Shahriar Zaman, Mohammed; Bernard Grajeda, Gabriel; Haberer, Elaine D.
2014-04-01
The optical and electrical stabilities of viral-templated non-stoichiometric copper sulfide, digenite (Cu1.8S) films were investigated. The films were composed of large agglomerates of randomly aligned Cu1.8S-coated M13 filamentous phage. Free carrier optical absorption associated with localized surface plasmon resonance (LSPR) was observed in the near infrared spectral region, and the films were electrically active, displaying a linear current-voltage relationship. Under ambient conditions, the magnitude of the LSPR absorption increased, following a power law relationship with time, and the electrical resistance of viral-templated films decreased significantly. In contrast, the resistance of films stored under low oxygen, low humidity conditions experienced a smaller reduction in electrical resistance. Changes in optical and electrical film properties under ambient conditions were associated with an increase in free carrier concentration within the copper chalcogenide material due to oxygen exposure. X-ray photoelectron spectroscopy was used to relate this increase in free carrier concentration to compositional changes on the viral-templated material surface.
High resistance to sulfur poisoning of Ni with copper skin under electric field
NASA Astrophysics Data System (ADS)
Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian
2017-02-01
The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field.
Lathouri, Maria; Korre, Anna
2015-12-15
Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality parameters should be considered in setting appropriately protective environmental quality standards for metals. Copyright © 2015 Elsevier B.V. All rights reserved.
New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour
NASA Astrophysics Data System (ADS)
Tejado, E.; Dias, M.; Correia, J. B.; Palacios, T.; Carvalho, P. A.; Alves, E.; Pastor, J. Y.
2018-01-01
The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 °C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.
Rodriguez-Fernandez, Rodrigo; Rahajeng, Ekowati; Viliani, Francesca; Kushadiwijaya, Haripurnomo; Amiya, Rachel M; Bangs, Michael J
2015-10-01
Non-communicable diseases (NCDs) constitute an increasing slice of the global burden of disease, with the South-East Asia region projected to see the highest increase in NCD-related deaths over the next decade. Mining industry employees may be exposed to various factors potentially elevating their NCD risk. This study aimed to assess the distribution and 5-year longitudinal trends of key metabolic NCD risk factors in a cohort of copper-gold mining company workers in Papua, Indonesia. Metabolic indicators of NCD risk were assessed among employees (15 580 at baseline, 6496 prospectively) of a large copper-gold mining operation in Papua, Indonesia, using routinely collected 5-year medical surveillance data. The study cohort comprised individuals aged 18-68 years employed for ≥1 year during 2008-2013. Assessed risk factors were based on repeat measures of cholesterol, blood glucose, blood pressure and body weight, using WHO criteria. Metabolic risk indicator rates were markedly high and increased significantly from baseline through 5-year follow-up (p<0.001). Adjusting for gender and age, longer duration of employment (≥10 years) predicted raised cholesterol (adjusted OR (AOR)=1.13, p=0.003), raised blood pressure (AOR=1.16, p=0.009) and overweight/obesity (AOR=1.14, p=0.001) at baseline; and persistent raised cholesterol (AOR=1.26, p=0.003), and both incident (AOR=1.33, p=0.014) and persistent raised blood glucose (AOR=1.62, p=0.044) at 3-year follow-up. Individuals employed for longer periods in a mining operations setting in Papua, Indonesia, may face elevated NCD risk through various routes. Workplace health promotion interventions and policies targeting modifiable lifestyle patterns and environmental exposures present an important opportunity to reduce such susceptibilities and mitigate associated health risks. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Zhao, Lei; Cheng, Dongmei; Huang, Xiahe; Chen, Mei; Xing, Jiale; Gao, Liyan; Li, Lingyu; Wang, Yale; Peng, Lianwei; Wang, Yingchun
2017-01-01
Using a genetic approach, we have identified and characterized a novel protein, named Msf1 (Maintenance factor for photosystem I), that is required for the maintenance of specific components of the photosynthetic apparatus in the green alga Chlamydomonas reinhardtii. Msf1 belongs to the superfamily of light-harvesting complex proteins with three transmembrane domains and consensus chlorophyll-binding sites. Loss of Msf1 leads to reduced accumulation of photosystem I and chlorophyll-binding proteins/complexes. Msf1is a component of a thylakoid complex containing key enzymes of the tetrapyrrole biosynthetic pathway, thus revealing a possible link between Msf1 and chlorophyll biosynthesis. Protein interaction assays and greening experiments demonstrate that Msf1 interacts with Copper target homolog1 (CHL27B) and accumulates concomitantly with chlorophyll in Chlamydomonas, implying that chlorophyll stabilizes Msf1. Contrary to other light-harvesting complex-like genes, the expression of Msf1 is not stimulated by high-light stress, but its protein level increases significantly under heat shock, iron and copper limitation, as well as in stationary cells. Based on these results, we propose that Msf1 is required for the maintenance of photosystem I and specific protein-chlorophyll complexes especially under certain stress conditions. PMID:28637830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan
2007-07-15
Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barriermore » and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)« less
The effect of natural and anthropogenic factors on sorption of copper in chernozem
NASA Astrophysics Data System (ADS)
Bauer, Tatiana; Minkina, Tatiana; Mandzhieva, Saglara; Pinskii, David; Linnik, Vitaly; Sushkova, Svetlana
2016-04-01
The aim of this work was to study the effect of the attendant anions and particle-size distribution on the adsorption of copper by ordinary chernozem. Solutions of HM nitrates, acetates, chlorides, and sulfates were used to study the effect of the chemical composition of added copper salts on the adsorption of copper by an ordinary chernozem. Samples of the soil sieved through a 1-mm sieve in the natural ionic form and soil fraction with different particle size (clay - the particle with size < 1μm and physical clay < 10 μm) were treated with solutions of the corresponding copper salts at a soil : solution ratio of 1:10. The concentrations of the initial copper solutions were 0.02, 0.05, 0.08, 0.1, 0.3, 0.5, and 1.0 mM/L. The range of Cu2+ concentrations in the studied system covers different geochemical situations corresponding to the actual levels of soil contamination with the metal under study. The suspensions were shaken for 1 h, left to stand for 24 h, and then filtered. The contents of the HM in the filtrates were determined by atomic absorption spectrometry (AAS). The contents of the adsorbed copper cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions. The isotherms of copper adsorption from the metal nitrate, chloride, and sulfate solutions have near linear shapes and, hence, can be satisfactorily described by a Henry or Freundlich equation: Cads = KH •Ceq.(1) Cads = KF •Ceqn,(2) where Cadsis the content of the adsorbed cations, mM/kg soil;Ceq is the concentration of copper in the equilibrium solution, mM/L; KH and KF denote the Henry and Freundlich adsorption coefficients, respectively, kg/L. The isotherm of Cu2+ adsorption by ordinary chernozem from acetate solutions is described by the Langmuir equation: Cads = C∞ÊLC / (1 + ÊLC), (3) where Cadsis the content of the adsorbed cations, mM/kg soil;C∞ is the maximum adsorption of the HM, mM/kg soil; ÊL is the affinity constant, L/mM; C is the concentration of the HM in the equilibrium solution, mM/L. According to the values of KH, the binding strength of the copper cations adsorbed from different salt solutions decreases in the series: Cu(Ac)2(1880,5± 76,2) > CuCl2(1442,8±113,5) > Cu(NO3)2(911,4 ± 31,1) >> CuSO4(165,3 ± 12,9). Thus, copper is most strongly adsorbed from the acetate solution and least strongly from the sulfate solution. The adsorption of copper by clay and physical clay fractions from the ordinary chernozem was of limited character and followed the (3) equation. In the particle-size fractions separated from the soils, the concentrations of copper decreased with the decreasing particle size. The values of ÊL and C∞characterizing the HM adsorption by the chernozem and its particle-size fractions formed the following sequence: clay (80,20±20,29 and 28,45±0,46 > physical clay (58,20±14,54 and 22,15±1,22) > entire soil (38,80±12,33 and 17,58±3,038). This work was supported by the Russian Ministry of Education and Science, project no. 5.885.2014/K, Russian Foundation for Basic Research, projects no. 14-05-00586 À
Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.
2014-01-01
Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225
Transcriptional response of Erwinia amylovora to copper shock: in vivo role of the copA gene.
Águila-Clares, Begoña; Castiblanco, Luisa F; Quesada, José Miguel; Penyalver, Ramón; Carbonell, Juan; López, María M; Marco-Noales, Ester; Sundin, George W
2018-01-01
Fire blight is a devastating plant disease caused by the bacterium Erwinia amylovora, and its control is frequently based on the use of copper-based compounds whose mechanisms of action are not well known. Consequently, in this article, we investigate the response of E. amylovora to copper shock by a whole-genome microarray approach. Transcriptional analyses showed that, in the presence of copper, 23 genes were increased in expression; these genes were classified mainly into the transport and stress functional categories. Among them, the copA gene was strongly induced and regulated in a finely tuned manner by copper. Mutation of copA, soxS, arcB, yjcE, ygcF, yhhQ, galF and EAM_3469 genes revealed that tolerance to copper in E. amylovora can be achieved by complex physiological mechanisms, including: (i) the control of copper homeostasis through, at least, the extrusion of Cu(I) by a P-type ATPase efflux pump CopA; and (ii) the overcoming of copper toxicity caused by oxidative stress by the expression of several reactive oxygen species (ROS)-related genes, including the two major transcriptional factors SoxS and ArcB. Furthermore, complementation analyses demonstrated the important role of copA for copper tolerance in E. amylovora, not only in vitro, but also in inoculated pear shoots. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Jarrott, L. C.; McGuffey, C.; Beg, F. N.; ...
2017-10-24
Fast electron transport and spatial energy deposition are investigated in integrated cone-guided Fast Ignition experiments by measuring fast electron induced copper K-shell emission using a copper tracer added to deuterated plastic shells with a geometrically reentrant gold cone. Experiments were carried out at the Laboratory for Laser Energetics on the OMEGA/OMEGA-EP Laser where the plastic shells were imploded using 54 of the 60 OMEGA60 beams (3ω, 20 kJ), while the high intensity OMEGA-EP (BL2) beam (1 ω, 10 ps, 500 J, I peak > 10 19 W/cm 2) was focused onto the inner cone tip. Here, a retrograde analysis usingmore » the hybrid-PIC electron transport code, ZUMA, is performed to examine the sensitivity of the copper Kα spatial profile on the laser-produced fast electrons, facilitating the optimization of new target point designs and laser configurations to improve the compressed core areal density by a factor of 4 and the fast electron energy coupling by a factor of 3.5.« less
Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M
2011-12-01
To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.
Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli
Hong, Robert; Kang, Tae Y.; Michels, Corinne A.
2012-01-01
Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO4. In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death. PMID:22247141
In situ antimicrobial behavior of materials with copper-based additives in a hospital environment.
Palza, Humberto; Nuñez, Mauricio; Bastías, Roberto; Delgado, Katherine
2018-06-01
Copper and its alloys are effective antimicrobial surface materials in the laboratory and in clinical trials. Copper has been used in the healthcare setting to reduce environmental contamination, and thus prevent healthcare-associated infections, complementing traditional protocols. The addition of copper nanoparticles to polymer/plastic matrices can also produce antimicrobial materials, as confirmed under laboratory conditions. However, there is a lack of studies validating the antimicrobial effects of these nanocomposite materials in clinical trials. To satisfy this issue, plastic waiting room chairs with embedded metal copper nanoparticles, and metal hospital IV pools coated with an organic paint with nanostructured zeolite/copper particles were produced and tested in a hospital environment. These prototypes were sampled once weekly for 10 weeks and the viable microorganisms were analysed and compared with the copper-free materials. In the waiting rooms, chairs with copper reduced by around 73% the total viable microorganisms present, showing activity regardless of the microorganism tested. Although there were only low levels of microorganisms in the IV pools installed in operating rooms because of rigorous hygiene protocols, samples with copper presented lower total viable microorganisms than unfilled materials. Some results did not have statistical significance because of the low load of microorganisms; however, during at least three weeks the IV pools with copper had reduced levels of microorganisms by a statistically significant 50%. These findings show for the first time the feasibility of utilizing the antimicrobial property of copper by adding nanosized fillers to other materials in a hospital environment. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Mohammed, Faraz; Manohar, Vidya; Jose, Maji; Thapasum, Arishiya Fairozekhan; Mohamed, Shamaz; Shamaz, Bibi Halima; D'Souza, Neevan
2015-03-01
The purpose of this study was to estimate the copper levels in saliva of patients with oral submucous fibrosis (OSF) and different areca nut products and its correlation with different histological grades of OSF. The study comprised 60 individuals, 30 OSF patients and 30 non-OSF individuals. Unstimulated whole saliva was collected, and copper analysis was performed using colorimetric method. The commercial areca nut products used by the patients were acquired and subjected to copper analysis through the atomic absorption spectrophotometer method. Oral biopsies were performed for OSF patients for histopathological correlation. The mean salivary copper level was 27.023 μg/dl in OSF patients when compared with 8.393 μg/dl in non-OSF individuals (P < 0.005). The mean copper content in different areca nut products was 13.313 ppm (P < 0.005). Comparison of copper content in different areca nut products with salivary copper levels of OSF patients showed negative correlation (P < 0.853). Comparison of salivary copper levels between different histological grades of OSF yielded a statistically significant association between grades I and III (P < 0.005) and grades II and III OSF (P < 0.019). Comparison of copper content in areca nut products and different histological grades of OSF yielded weak negative statistical correlation (r = -0.116). Despite high copper content in areca nut products, the observations yielded a negative correlation with different histological grades of OSF. This further raises a doubt about the copper content in areca nut as an etiological factor for this crippling disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*
Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi
2014-01-01
Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322
Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration
NASA Astrophysics Data System (ADS)
Kowalska, Izabela; Klimonda, Aleksandra
2017-11-01
The aim of the study was to assess the usefulness of micellar-enhanced ultrafiltration (MEUF) for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi-pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration)). Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L), the average concentration of copper ions in the permeate ranged from 1.2-4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.
2015-01-01
Seaweed-herbivore interactions are often mediated by environmental conditions, yet the roles of emerging anthropogenic stressors on these interactions are poorly understood. For example, chemical contaminants have unknown consequences on seaweed inducible resistance and herbivore response to these defenses despite known deleterious effects of contaminants on animal inducible defenses. Here, we investigated the effect of copper contamination on the interactions between a snail herbivore and a brown seaweed that displays inducible resistance to grazing. We examined seaweed inducible resistance and its effectiveness for organisms exposed to copper at two time points, either during induction or after herbivores had already induced seaweed defenses. Under ambient conditions, non-grazed tissues were more palatable than grazed tissues. However, copper additions negated the preference for non-grazed tissues regardless of the timing of copper exposure, suggesting that copper decreased both how herbivores initiated these inducible defenses and their subsequent effectiveness. Copper decreased stimulation of defenses, at least in part, by suppressing snail grazing pressure—the cue that turns inducible defenses on. Copper decreased effectiveness of defenses by preventing snails from preferentially consuming non-grazed seaweed. Thus, contaminants can potentially stress communities by changing seaweed-herbivore interactions mediated via inducible defenses. Given the ubiquity of seaweed inducible resistance and their potential influence on herbivores, we hypothesize that copper contamination may change the impact of these resistant traits on herbivores. PMID:26274491
NASA Astrophysics Data System (ADS)
van Hullebusch, E.; Chatenet, P.; Deluchat, V.; Chazal, P. M.; Froissard, D.; Lens, P. N. L.; Baudu, M.
2003-05-01
Copper sulfate (CuSO4) addition to freshwater for phytoplankton control has been practiced for decades, and remains the most effective algicidal treatment for numerous managed water bodies. A reservoir in the centre of France was the site for an investigation of copper distribution in aquatic systems after a copper sulfate treatment Results of copper monitoring showed a rapid conversion of dissolved Cu to particulate forms, with significant accumulation in the sediments/83% of total copper added). Total sediment Cu content increasedfrom approximately 37.7 to 45.4 μg.g^{-1} dry weight after the first treatment. Sequential extraction suggested that a significanl portion of the sediment-borne Cu was associated with the organic fraction which may release Cu to the water column, although significant release would occur only under extreme changes in water chemistry. Based upon measured Cu concentrations, flows at the down-stream water, and known mass applied during treatment, mass balance calculations indicated that approximately 17% of the Cu was exported from the reservoir over a 70 day period following a 196 μg.L^{-l} Cu^{2+} (as CuSO4, 5 H2O) treatment. The largest amount of copper was probably adsorbed on downstream sediment or lost in running water, Copper bioaccumulation by a moss, Fontinalis antipyretica, in the down-stream water showed that it was possible to distinguish between a treated and an untreated area. The impact of copper treatment in the down-stream reservoir could be followed using mosses. The bioaccumulation data further showed that there is a distance effect which could be exploited to determine potential copper impact on receiving water bodies. Thirty days after copper sulfate addition, Fontinalis still indicated copper exposure.
In utero copper treatment for Menkes disease associated with a severe ATP7A mutation
Haddad, Marie Reine; Macri, Charles J.; Holmes, Courtney S.; Goldstein, David S.; Jacobson, Beryl E.; Centeno, Jose A.; Popek, Edwina J.; Gahl, Willam A.; Kaler, Stephen G.
2012-01-01
Menkes disease is a lethal X-linked recessive neurodegenerative disorder of copper transport caused by mutations in ATP7A, which encodes a copper-transporting ATPase. Early postnatal treatment with copper injections often improves clinical outcomes in affected infants. While Menkes disease newborns appear normal neurologically, analyses of fetal tissues including placenta indicate abnormal copper distribution and suggest a prenatal onset of the metal transport defect. In an affected fetus whose parents found termination unacceptable and who understood the associated risks, we began in utero copper histidine treatment at 31.5 weeks gestational age. Copper histidine (900 μg per dose) was administered directly to the fetus by intramuscular injection (fetal quadriceps or gluteus) under ultrasound guidance. Percutaneous umbilical blood sampling enabled serial measurement of fetal copper and ceruloplasmin levels that were used to guide therapy over a four-week period. Fetal copper levels rose from 17 μg/dL prior to treatment to 45 μg/dL, and ceruloplasmin levels from 39 mg/L to 122 mg/L. After pulmonary maturity was confirmed biochemically, the baby was delivered at 35.5 weeks and daily copper histidine therapy (250 μg sc b.i.d.) was begun. Despite this very early intervention with copper, the infant showed hypotonia, developmental delay, and electroencephalographic abnormalities and died of respiratory failure at 5.5 months of age. The patient’s ATP7A mutation, which severely disrupted mRNA splicing, resulted in complete absence of ATP7A protein on Western blots. These investigations suggest that prenatally initiated copper replacement is inadequate to correct Menkes disease caused by severe loss-of-function mutations, and that postnatal ATP7A gene addition represents a rational approach in such circumstances. PMID:22695177
46 CFR 114.600 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for Building and Classing Steel Vessels Under 61 Meters (200 Feet) in Length, 1983 116.300 Rules for...) Apparatus 114.400 ASTM B 122/B 122M-95, Standard Specification for Copper-Nickel-Tin Alloy , Copper-Nickel..., Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester 114.400 ASTM D 635-97, Standard...
Investigation and Synthesis of High Temperature and Increased Stiffness RSP Aluminum Alloys
1988-11-30
under argon atmosphere using a water cooled copper crucible and a non-consumable tungsten electrode. This pro- cedure was followed in previous studies... copper crucible and a non-consum- able tungsten electrode. This procedure was followed in previous studies of Al-Zr-V (5,7). * Presently with National
Copper phthalocyanine-based CMPs with various internal structures and functionalities.
Ding, Xuesong; Han, Bao-Hang
2015-08-18
Several kinds of copper phthalocyanine-based conjugated microporous polymers have been synthesized, which present enhanced long-wavelength photon absorption capability and high efficiency for singlet oxygen generation under low energy light irradiation. This strategy opens a facile avenue towards expanding the scope of phthalocyanine-based porous materials with various internal structures and functionalities.
Copper-catalyzed α-amination of aliphatic aldehydes.
Tian, Jie-Sheng; Loh, Teck-Peng
2011-05-21
A highly efficient copper-catalyzed α-amination of aliphatic aldehydes for the synthesis of α-amino acetals using secondary amines with readily removable protecting groups as a nitrogen source was developed. This reaction can be operated under very mild conditions, affording the desired products in moderate to good yields. © The Royal Society of Chemistry 2011
An extended X-Ray absorption fine structure (exafs) study of copper (II) sulphate pentahydrate
NASA Astrophysics Data System (ADS)
Joyner, Richard W.
1980-05-01
The EXAFS spectrum of copper (II) sulphate pentahydrate has been measured using synchrotron radiation. Comparison with the results of ab initio calculation gives a mean copper-oxygen distance of 1.95 Å, in reasonable agreement with the known value of 1.97 Å. The relation between the EXAFS Debye-Waller factor and thermal parameters measured by neutron diffraction is discussed. Absence in the EXAFS spectrum of evidence for the second-nearest neighbour oxygen atoms, at Cu-O ≈ 2.4 Å, is discussed.
Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
2016-02-16
The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less
Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram
2018-02-01
Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus.
Li, Xiaomin; Zhou, Suyang; Fan, Wenhong
2016-06-09
Nano-Al₂O₃ has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al₂O₃ is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al₂O₃ and heavy metals as well as the effect of nano-Al₂O₃ on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al₂O₃ towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al₂O₃ reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al₂O₃ decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al₂O₃. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al₂O₃. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.
Development of low cost contacts to silicon solar cells
NASA Technical Reports Server (NTRS)
Tanner, D. P.; Iles, P. A.
1980-01-01
A copper based contact system using plated Pd-Cr-Cu was developed. Good cells were made but cells degraded under low temperature (300 C) heat treatments. The degradation was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. An electroless nickel solution was substituted for the electroless chromium solution in the original process.
Beil, Andreas; Müller, Georgina; Käser, Debora; Hattendorf, Bodo; Li, Zhongshu; Krumeich, Frank; Rosenthal, Amos; Rana, Vijay Kumar; Schönberg, Hartmut; Benkő, Zoltán; Grützmacher, Hansjörg
2018-05-16
Bismesitoylphosphinic acid, (HO)PO(COMes) 2 (BAPO-OH), is an efficient photoinitiator for free-radical polymerizations of olefins in aqueous phase. Described here are the structures of various copper(II) and copper(I) complexes with BAPO-OH as the ligand. The complex Cu II (BAPO-O) 2 (H 2 O) 2 is photoactive, and under irradiation with UV light in aqueous phase, it serves as a source of metallic copper in high purity and yield (>80 %). Simultaneously, the radical polymerization of acrylates can be initiated and allows the preparation of nanoparticle/polymer nanocomposites in which the metallic Cu nanoparticles are protected against oxidation. The determination of the stoichiometry of the photoreductions suggests an almost quantitative conversion from Cu II into Cu 0 with half an equivalent of BAPO-OH, which serves as a four-electron photoreductant. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discrete Cu(i) complexes for azide-alkyne annulations of small molecules inside mammalian cells.
Miguel-Ávila, Joan; Tomás-Gamasa, María; Olmos, Andrea; Pérez, Pedro J; Mascareñas, José L
2018-02-21
The archetype reaction of "click" chemistry, namely, the copper-promoted azide-alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)-tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of "non-innocent" reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities.
Hydrocarbon-fuel/combustion-chamber-liner materials compatibility
NASA Technical Reports Server (NTRS)
Gage, Mark L.
1990-01-01
Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.
Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.
Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana
2017-11-08
Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.
Sorption of copper(II) from aqueous phase by waste biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagendra Rao, C.R.; Iyengar, L.; Venkobachar, C.
The objective of the present investigation is to compare three biomasses for copper uptake under different experimental conditions so as to choose the most suitable one for scaleup purposes. Ganoderma lucidum is a macrofungi, growing widely in tropical forests. Sorbent preparation requires its collection from the field. Asperigillus niger is obtained as a waste biomass from the fermentation industry. Activated sludge biomass is available from the biological waste treatment plants. The results of their potential to remove copper are presented. The copper uptake by biosorbents though, varied significantly, showed an increased trend in the range of pH 4 to 6.more » The increase in metal binding after alkali treatment was marginal for G. lucidum, significant for A. niger, and dramatic for sludge. Copper sorption capacities of M and M[sub c] were much higher than for other sorbents at pH 5.0. The effect of anionic ligands, like acetate and tartrate on copper uptake by raw and alkali treated biosorbents, was negligible as the predominant species in the presence of these ligands is divalent copper ion. Pyrophosphate, citrate, and EDTA had varying degrees of adverse effects on metal uptake. Thus, among the sorbents G. lucidum in its raw form is best suited for the practical application of copper removal from industrial effluents.« less
Deniz, Fatih; Ersanli, Elif Tezel
2018-03-21
In this study, the capacity of a natural macroalgae consortium consisting of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species for the removal of copper ions from aqueous environment was investigated at different operating conditions, such as solution pH, copper ion concentration and contact time. These environmental parameters affecting the biosorption process were optimized on the basis of batch experiments. The experimentally obtained data for the biosorption of copper ions onto the macroalgae-based biosorbent were modeled using the isotherm models of Freundlich, Langmuir, Sips and Dubinin-Radushkevich and the kinetic models of pseudo-first-order, pseudo-second-order, Elovich and Weber and Morris. The pseudo-first-order and Sips equations were the most suitable models to describe the copper biosorption from aqueous solution. The thermodynamic data revealed the feasibility, spontaneity and physical nature of biosorption process. Based on the data of Sips isotherm model, the biosorption capacity of biosorbent for copper ions was calculated as 105.370 mg g -1 under the optimum operating conditions. A single-stage batch biosorption system was developed to predict the real-scale-based copper removal performance of biosorbent. The results of this investigation showed the potential utility of macroalgae consortium for the biosorption of copper ions from aqueous medium.
Nassar, Muammar A Y; Eldien, Heba M Saad; Tawab, Hanem S Abdel; Saleem, Tahia H; Omar, Hossam M; Nassar, Ahmed Y; Hussein, Mahmoud Rezk Abdelwahed
2012-10-01
Thermal tissue injury is partly mediated by reactive oxygen metabolites. Oxygen free radicals are contributory to local tissue damage following thermal injury and accordingly an interventional therapy using antioxidants may be beneficial. Copper nicotinate complex can scavenge reactive oxygen species (i.e., has antioxidant activity). To examine time-related morphological and biochemical changes following skin thermal injury and their modulation by copper nicotinate complex. An animal model composed of 80 albino rats was established. Ten rats (nonburn group) served as a control group. Seventy rats (burn group) were anesthetized, given a 10% total body surface area, full-thickness burn. Ten rats (from the postburn group) were sacrificed after 24 h (without treatment, i.e., untreated-burn group). The remaining rats were divided into three subgroups (20 rats, each) and were treated topically either with soft paraffin, moist exposed burn ointment (MEBO, a standard therapeutic treatment for burns), or copper nicotinate complex. Five animals from each subgroup were sacrificed every week over a period of 4 weeks. The morphological and biochemical changes were evaluated and compared among the different groups. High levels of the plasma and skin nitiric oxide (marker of oxidative stress) were observed in the untreated-burn group. These levels were significantly low following the application of copper nicotinate complex. Low levels of plasma and skin superoxide dismutase (marker of oxidative stress) and plasma ceruloplasmin were observed in the untreated-burn group. These levels were significantly high following copper nicotinate complex treatment. The total and differential leukocyte counts were low following the onset of the thermal injury. They gradually returned to normal levels over a 4-week period following the application of MEBO or copper nicotinate complex. Compared to untreated-burn group, postburn-healing changes (resolution of the inflammatory reaction, reepithelization of the epidermis, angiogenesis, deposition of collagen fibers, and recovery of the subcellualr organelles) were significantly accelerated following the application of either MEBO or copper nicotinate complex. Application of copper nicotinate complex was associated with improved healing of the thermal burns of the skin. The underlying molecular changes underlying these effects await further investigations.
Johnson, D. Barrie; Hedrich, Sabrina; Pakostova, Eva
2017-01-01
Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed. PMID:28239375
Optical emission of directly contacted copper/sapphire interface under shock compression of megabar
NASA Astrophysics Data System (ADS)
Hao, G. Y.; Liu, F. S.; Zhang, D. Y.; Zhang, M. J.
2007-06-01
The shock-induced optical emission histories from copper/sapphire interface were measured under two different contact conditions, which simulated the typical situations of pyrometry experiments. Results showed that the "peak" feature of the radiation, previously interpreted as the appearance of so-called high-temperature layer, was nearly diminished by finely polishing and uniformly prepressing technique, and that it is possible to directly measure the equilibrium temperature of bulk metal/window interface. Study also demonstrated that the saturated value of the apparent temperature in nonideal contact situation is related to the color temperature of the shock-induced "bright spot" in sapphire window under megabar pressures.
Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten
2016-06-01
The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotope signatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudeck, P.J.; Harper, J.M.E.; Fryer, P.M.
The copper concentration in aluminum--copper alloys can be altered by ion bombardment during film deposition. We have measured the sputtering yields of aluminum and copper in Al--Cu alloys as a function of the Cu concentration (5--13 at. %) and the angle of ion incidence (0--40/sup 0/ from normal). During deposition, the films were partially resputtered by 500-eV Ar/sup +/ ion bombardment from a Kaufman ion source. We found that the Cu sputtering yield decreases by up to a factor of 10 in the alloy, relative to elemental Cu. The Al sputtering yield remains close to the elemental value. The netmore » effect is a strong preferential sputtering of Al relative to Cu, which enhances the Cu concentration in an ion bombarded film. The Al/Cu sputtering yield ratio for normal incidence ion bombardment ranges from 3 to 5 as a function of Cu concentration. This ratio decreases with increasing angle of incidence to as low as 2 for 40/sup 0/ incident ions. However, since a higher fraction of the film is resputtered from a sloping surface, a higher Cu concentration is found on a sloping surface relative to a flat surface. These results show that in multicomponent film deposition under ion bombardment, the film composition will vary as a function of the surface topography. We will also show how the level of argon left trapped in the films varies inversely with respect to the ion flux.« less
2014-01-01
Background Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. Methods Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student’s t-tests or ANOVA and p-values of < 0.05 have been considered significant. Results Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks’ diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of intracellular (IC) copper delivery via the copper chaperone for superoxide dismutase (CCS) to its target cuproenzyme, superoxide dismutase-1 (SOD1): this pathway was rectified by TETA treatment, which normalized SOD1 activity with consequent bolstering of anti-oxidant defenses. Furthermore, diabetes depressed levels of additional intracellular copper-transporting proteins, including antioxidant-protein-1 (ATOX1) and copper-transporting-ATPase-2 (ATP7B), whereas TETA elevated copper-transporting-ATPase-1 (ATP7A). Conclusions Myocardial copper deficiency and defective cellular copper transport/trafficking are revealed as key molecular defects underlying LV impairment in diabetes, and TETA-mediated restoration of copper regulation provides a potential new class of therapeutic molecules for DCM. PMID:24927960
Investigation of electroforming techniques, literature analysis report
NASA Technical Reports Server (NTRS)
Malone, G. A.
1975-01-01
A literature analysis is presented of reports, specifications, and documented experiences with the use of electroforming to produce copper and nickel structures for aerospace and other engineering applications. The literature period covered is from 1948 to 1974. Specific effort was made to correlate mechanical property data for the electrodeposited material with known electroforming solution compositions and operating conditions. From this survey, electrolytes are suggested for selection to electroform copper and nickel outer shells on regeneratively cooled thrust chamber liners, and other devices subject to thermal and pressure exposure, based on mechanical properties obtainable, performance under various thermal environments, and ease of process control for product reproducibility. Processes of potential value in obtaining sound bonds between electrodeposited copper and nickel and copper alloy substrates are also discussed.
Transformations of C2-C4 alcohols on the surface of a copper catalyst
NASA Astrophysics Data System (ADS)
Magaeva, A. A.; Lyamina, G. V.; Sudakova, N. N.; Shilyaeva, L. P.; Vodyankina, O. V.
2007-10-01
The interaction of monoatomic alcohols C2-C4 with the surface of a copper catalyst preliminarily oxidized under various conditions was studied by the temperature-programmed reaction method to determine the detailed mechanism of partial oxidation. The conditions of oxygen preadsorption on the surface of copper for the preparation of the desired products were determined. The selective formation of carbonyl compounds was shown to occur at the boundary between reduced and oxidized copper surface regions. The role played by Cu2O was the deep oxidation of alcohols to CO2. Alcohols with branched hydrocarbon structures experienced parallel partial oxidation and dehydrogenation, which was related to the high stability of intermediate keto-type compounds.
[Leaching of nonferrous metals from copper-smelting slag with acidophilic microorganisms].
Murav'ev, M I; Fomchenko, N V
2013-01-01
The leaching process of copper and zinc from copper converter slag with sulphuric solutions of trivalent iron sulphate obtained using the association of acidophilic chemolithotrophic microorganisms was investigated. The best parameters of chemical leaching (temperature 70 degrees C, an initial concentration of trivalent iron in the leaching solution of 10.1 g/L, and a solid-phase content in the suspension of 10%) were selected. Carrying out the process under these parameters resulted in the recovery of 89.4% of copper and 39.3% of zinc in the solution. The possibility of the bioregeneration of trivalent iron in the solution obtained after the chemical leaching of slag by iron-oxidizingacidophilic chemolithotrophic microorganisms without inhibiting their activity was demonstrated.
The influence of duckweed species diversity on ecophysiological tolerance to copper exposure.
Zhao, Zhao; Shi, Huijuan; Duan, Dongzhu; Li, Hongmei; Lei, Tingwen; Wang, Maolin; Zhao, Hai; Zhao, Yun
2015-07-01
In excess, copper is toxic to plants. In the plants, Landoltia punctata and Lemna minor grown in mixed and monoculture, the effects of exposure to varying concentrations of copper (0.01, 0.1, 0.5 and 1mgL(-1) Cu) for seven days were assessed by measuring changes in the chlorophyll, protein and malondialdehyde (MDA) content, catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity. According to results, Cu levels in plants increased with increasing Cu concentration. The level of photosynthetic pigments and crude proteins decreased only upon exposure to high Cu concentrations. However, the starch and malondialdehyde (MDA) content increased. These results suggested a stress alleviation that was possibly the result of antioxidants such as CAT and SOD, the activities of which increased with increasing Cu levels. APX activity increased in L. punctata, but decreased in L. minor, under monoculture or mixed culture conditions. In addition, the duckweed in mixed culture exhibited increased antioxidant enzyme activities which provide increased resistance to copper in moderate copper concentrations. As the copper concentration increased, the duckweed in the mixed culture limited the uptake of copper to avoid toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Xiangyu; Ma, Tingting; Yu, Jing; Huang, Weidong; Fang, Yulin; Zhan, Jicheng
2018-02-15
The copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China, were investigated. The results showed that the copper pollution status in vineyard soils, grapes and wines in the investigated area in China is under control, with only 4 surface soil (0-20cm) samples over maximum residue limits (MRL) and no grape or wine samples over MRL. Different vineyards, grape varieties, vine ages, and training systems all significantly influenced the copper contents in the vineyard soils, grape and wines. Additionally, the copper levels in the vineyard soils, grapes and wines all had some correlation. In wine samples, the copper contents ranged from 0.52 to 663μg/L, which is only approximately one percent the level found in grapes and one ten-thousandth that found in soils. Of the wine samples, red wines showed a significantly higher copper content than white wines, while in the red/white grape and soil samples, no significant differences were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wiemer, Matthias; Osiewacz, Heinz D.
2014-01-01
Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247
NASA Astrophysics Data System (ADS)
Rivera, I.; Chadwick, B.; Rosen, G.; Wang, P. F.; Paquin, P.; Santore, R.; Ryan, A.
2015-12-01
Understanding the bioavailability of metals in the aquatic environment is important for defining appropriate regulatory constraints. A failure to recognize the importance of bioavailability factors on metal toxicity can result in criteria that are over- or under-protective. USEPA addresses the tendency of the national Water Quality Criterion (WQC) for regulation of copper in marine waters to underestimate the natural attenuation of copper toxicity in harbors by the application of site-specific Water Quality Standards (WQS). Which provides the level of protection intended by the WQC, and establishes realistic regulatory objectives. However, development of site-specific WQS involves a long-term effort, and does not account for temporal variation. The toxicity model seawater-Biotic Ligand Model (BLM) was developed and integrated with the existing Curvilinear Hydrodynamics in 3 Dimensions (CH3D) transport & fate model to create an efficient tool for development of site-specific WQS in harbors. The integrated model was demonstrated at a harbor-wide scale in San Diego Bay and Pearl Harbor, and accounted for the natural physical, chemical, biological and toxicological characteristics of the harbor to achieve more scientifically based compliance. In both harbors the spatial and temporal distributions of copper species, toxic effects, and Water Effect Ratio predicted by the integrated model are comparable to previous data. The model was further demonstrated in Shelter Island Yacht Basin (SIYB) marina in San Diego Bay. The integrated model agreed with toxicological and chemical approaches by indicating negligible bioavailability as well as no toxicity; but for a single event, even though an increasing gradient in Cu was observed both horizontally and vertically, with concentrations that reached levels well above current regulatory thresholds. These results support the incorporation by USEPA of the seawater-BLM in a full-strength seawater criterion.
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Guan, Ming; Jin, Zexin; Li, Junmin; Pan, Xiaocui; Wang, Suizi; Li, Yuelin
2016-01-01
The aim of this study was to investigate the effects of temperature and Cu on the morphological and physiological traits of Elsholtzia haichowensis grown in soils amended with four Cu concentrations (0, 50, 500, and 1000 mg kg(-1)) under ambient temperature and slight warming. At the same Cu concentration, the height, shoot dry weight, total plant dry weight, and root morphological parameters such as length, surface area and tip number of E. haichowensis increased due to the slight warming. The net photosynthetic rate, stomatal conductance, transpiration, light use efficiency were also higher under the slight warming than under ambient temperature. The increased Cu concentrations, total Cu uptake, bioaccumulation factors and tolerance indexes of shoots and roots were also observed at the slight warming. The shoot dry weight, root dry weight, total plant dry weight and the bioaccumulation factors of shoots and roots at 50 mg Cu kg(-1) were significantly higher than those at 500 and 1000 mg Cu kg(-1) under the slight warming. Therefore, the climate warming may improve the ability of E. haichowensis to phytoremediate Cu-contaminated soil, and the ability improvement greatly depended on the Cu concentrations in soils.
Stucchi, Marta; Bianchi, Claudia L; Pirola, Carlo; Cerrato, Giuseppina; Morandi, Sara; Argirusis, Christos; Sourkouni, Georgia; Naldoni, Alberto; Capucci, Valentino
2016-07-01
The most important drawback of the use of TiO2 as photocatalyst is its lack of activity under visible light. To overcome this problem, the surface modification of commercial micro-sized TiO2 by means of high-energy ultrasound (US), employing CuCl2 as precursor molecule to obtain both metallic copper as well as copper oxides species at the TiO2 surface, is here. We have prepared samples with different copper content, in order to evaluate its impact on the photocatalytic performances of the semiconductor, and studied in particular the photodegradation in the gas phase of some volatile organic molecules (VOCs), namely acetone and acetaldehyde. We used a LED lamp in order to have only the contribution of the visible wavelengths to the TiO2 activation (typical LED lights have no emission in the UV region). We employed several techniques (i.e., HR-TEM, XRD, FT-IR and UV-Vis) in order to characterize the prepared samples, thus evidencing different sample morphologies as a function of the various copper content, with a coherent correlation between them and the photocatalytic results. Firstly, we demonstrated the possibility to use US to modify the TiO2, even when it is commercial and micro-sized as well; secondly, by avoiding completely the UV irradiation, we confirmed that pure TiO2 is not activated by visible light. On the other hand, we showed that copper metal and metal oxides nanoparticles strongly and positively affect its photocatalytic activity. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wolicka, Dorota; Borkowski, Andrzej
2014-03-01
Sulphidogenous microorganism communities were isolated from soil polluted by crude oil. The study was focused on determining the influence of 1) copper (II) concentration on the activity of selected microorganism communities and 2) the applied electron donor on the course and evolution of mineral-forming processes under conditions favouring growth of sulphate-reducing bacteria (SRB). The influence of copper concentration on the activity of selected microorganism communities and the type of mineral phases formed was determined during experiments in which copper (II) chloride at concentrations of 0.1, 0.2, 0.5 and 0.7 g/L was added to SRB cultures. The experiments were performed in two variants: with ethanol (4 g/L) or lactate (4 g/L) as the sole carbon source. In order to determine the taxonomic composition of the selected microorganism communities, the 16S rRNA method was used. Results of this analysis confirmed the presence of Desulfovibrio, Desulfohalobium, Desulfotalea, Thermotoga, Solibacter, Gramella, Anaeromyxobacter and Myxococcus sp. in the stationary cultures. The post-culture sediments contained covelline (CuS) and digenite (Cu9S5 ). Based on the results, it can be stated that the type of carbon source applied during incubation plays a crucial role in determining the mineral composition of the post-culture sediments. Thus, regardless of the amount of copper ion introduced to a culture with lactate as the sole carbon source, no copper sulphide was observed in the post-culture sediments. Cultures with ethanol as the sole carbon source, on the other hand, yielded covelline or digenite in all post-culture sediments.
NASA Astrophysics Data System (ADS)
Gorovei, M. C.; Benea, L.
2018-06-01
Corrosion means the degradation of the metals or their alloys, under the action of chemical or electrochemical agents from the environment. The complex corrosion phenomenon has a destructive action, generating undesirable economic consequences: metals and labor losses, appreciable reduction in the lifetime of various metal constructions, insecurity in the operation of industrial machinery. Under the current conditions of accelerated growth in the production of material goods, one of the most important issues is the economy of raw materials and materials, energy and labor force. Copper, having a purity of over 99%, is used in the manufacture of gas and water pipes, roofing materials, utensils and ornamental objects. Brass is used in the manufacture of flexible tubes, pipes, coils, cartridges, various electrochemical parts, jewelry, etc. The aim of this research work was to evaluate the corrosion resistance of copper and brass in various solutions: with different chloride ions as 35 g/L NaCl, waste water and tap water. The corrosion behavior of copper and brass was analyzed by electrochemical methods, such as: open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Pure copper exhibits more noble potential values than its alloy (brass), according to the evolution of free potential in all tested solutions. After performing the electrochemical assays, ex-situ investigations, by optical microscopy, were made and the results confirm that the chloride ions affect the corrosion behavior of copper and brass. Corrosion of materials is a very important process to consider when choosing a material that has to operate in a specific environment.
Saijo, Takanori; Nagasawa, Akitsu
2014-01-01
A newly developed copper-inducible gene expression system overcame the mixed results reported earlier, worked well both in cultured cells and a whole plant, and enabled to control flowering timing. Copper is one of the essential microelements and is readily taken up by plants. However, to date, it has rarely been used to control the expression of genes of interest, probably due to the inefficiency of the gene expression systems. In this study, we successfully developed a copper-inducible gene expression system that is based on the regulation of the yeast metallothionein gene. This system can be applied in the field and regulated at approximately one-hundredth of the rate used for registered copper-based fungicides. In the presence of copper, a translational fusion of the ACE1 transcription factor with the VP16 activation domain (VP16AD) of herpes simplex virus strongly activated transcription of the GFP gene in transgenic Arabidopsis. Interestingly, insertion of the To71 sequence, a 5'-untranslated region of the 130k/180k gene of tomato mosaic virus, upstream of the GFP gene reduced the basal expression of GFP in the absence of copper to almost negligible levels, even in soil-grown plants that were supplemented with ordinary liquid nutrients. Exposure of plants to 100 μM copper resulted in an over 1,000-fold induction ratio at the transcriptional level of GFP. This induction was copper-specific and dose-dependent with rapid and reversible responses. Using this expression system, we also succeeded in regulating floral transition by copper treatment. These results indicate that our newly developed copper-inducible system can accelerate gene functional analysis in model plants and can be used to generate novel agronomic traits in crop species.
Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P
2017-01-01
Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.
An efficient and benign protocol is reported for the synthesis of 4-methoxyaniline, medicinally important pyrazole derivatives, and Ullmann-type condensation reaction using magnetically separable and reusable magnetite-supported copper (nanocat-Fe-CuO) nanoparticles under mild co...
40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...
40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...
40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...
Electrical injuries due to theft of copper.
Curinga, Giuseppe; Pietramaggiori, Giorgio; Scherer, Sandra Saja; Masellis, Alessandro; Gherardini, Giulio; Brancato, Renato; Conte, Francesco; Bistoni, Giovanni
2010-01-01
This study shows that the theft of copper, mainly from electrical wires, is becoming a more frequent crime as the value of this metal rises. We have collected all the data from the Burn Centre of the Hospital of Palermo, Italy, from 1992 to 2007. Over the last two decades, we assisted to a dramatic increase of patients admitted to our hospital, reporting burn injuries while attempting to steal it in dangerous conditions. The circumstances of the injury, the clinical management of the case, and the long-term consequences are presented and discussed. We found that the electrical burn related to the theft of copper is often a life-threatening event because of the high-voltage electrical current passing through the patients. Patients, due to the type of activity, often requiring physical effort, were generally young and healthy. From a review of the literature on the subject, we have noticed that theft of copper is not reported as an important risk factor for electrical burns. Our report clearly shows that theft of copper-related electrical injury is becoming more frequent in the community and should be added as a "new" risk factor. The already high incidence reported here may actually be lower than the actual incidence because many patients tend not to come to the hospital because of the risk of being prosecuted by the police.
Islam, Faisal; Yasmeen, Tahira; Ali, Qasim; Mubin, Muhammad; Ali, Shafaqat; Arif, Muhammad Saleem; Hussain, Sabir; Riaz, Muhammad; Abbas, Farhat
2016-01-01
For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir
Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we havemore » shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. - Highlights: • Pro-oxidant properties of ferulic acid are enhanced in presence of copper. • Ferulic acid causes oxidative DNA damage in lymphocytes as observed by comet assay. • DNA damage was ameliorated by copper chelating agent neocuproine and ROS scavengers. • Endogenous copper is involved in ROS generation causing DNA damage. • Ferulic acid exerts cancer cell specific cytotoxicity as observed by MTT assay.« less
Accuracy of the radioactive copper incorporation test in the diagnosis of Wilson disease.
Członkowska, Anna; Rodo, Maria; Wierzchowska-Ciok, Agata; Smolinski, Lukasz; Litwin, Tomasz
2018-02-08
In Wilson disease (WD), copper accumulates in the liver and other tissues because of mutations in the ATP7B copper transporter gene. Early and effective anticopper treatment is crucial. However, routine diagnostic methods based on clinical findings, copper metabolism tests, liver biopsies and DNA analyses do not always provide a conclusive diagnosis. The aim was to evaluate radioactive copper incorporation as a diagnostic test. We included cases with a diagnosis of WD supported by radiocopper testing and later, when available, confirmed by DNA analysis. Incorporation of 64 Cu was measured at 2, 24 and 48 hours following intravenous injection. Diagnostic accuracy (area under the receiver operating characteristic curve [AUC]), sensitivity, specificity and predictive value were assessed for 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios and compared with serum measurements of ceruloplasmin, copper, non-ceruloplasmin-bound copper and urinary 24-hours copper excretion. Patients having two pathogenic ATP7B mutations (homozygotes/compound heterozygotes) (n = 74) had significantly lower 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios than heterozygote controls (n = 21) (mean 0.14 and 0.12 vs 0.49 and 0.63, respectively; both P < .001). Of note, 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios had excellent diagnostic accuracy, with AUCs approaching 1, and only 24-hours urinary copper excretion displayed similar positive features. Other copper metabolism tests studied had lower accuracy, specificity and sensitivity. The radioactive copper test had excellent diagnostic accuracy and may be useful in the evaluation of new therapies aimed at restoring ATP7B function. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost
2011-11-01
Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.
Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea.
Yu, Byeong-Woon; Jin, Guang-Zhu; Moon, Young-Hoon; Kim, Min-Kwan; Kyoung, Jong-Dai; Chang, Yoon-Seok
2006-01-01
The metallurgy industry and municipal waste incinerators are considered the main sources of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in many countries. This study investigated the emission factors and total emissions of PCDD/Fs and dioxin-like polychlorinated biphenyls (PCBs) emitted from metallurgy industries (including ferrous and nonferrous foundries) in Korea. The toxic equivalency (TEQ) emission factor of PCDD/Fs was the highest for secondary copper production, at 24451 ng I-TEQ/ton. The total estimated emissions of PCDD/Fs from these sources were 35.259 g I-TEQ/yr, comprising 0.088 g I-TEQ/yr from ferrous foundries, 31.713 g I-TEQ/yr from copper production, 1.716 g I-TEQ/yr from lead production, 0.111 g I-TEQ/yr from zinc production, and 1.631 g I-TEQ/yr from aluminum production. The total estimated annual amounts of dioxin-like PCBs emitted from these sources were 13.260 g WHO-TEQ/yr, comprising 0.014 g WHO-TEQ/yr from ferrous foundries, 12.675 g WHO-TEQ/yr from copper production, 0.170 g WHO-TEQ/yr from lead production, 0.017 g WHO-TEQ/yr from zinc production, and 0.384 g WHO-TEQ/yr from aluminum production. The highest emission factor was found for secondary copper smelting, at 9770 ng WHO-TEQ/ton.
O'Neill, P; Fielden, E M; Avigliano, L; Marcozzi, G; Ballini, A; Agrò, F
1984-08-15
The interaction of one-electron reduced metronidazole (ArNO2.-) with native and Type-2-copper-depleted ascorbate oxidase were studied in buffered aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. With ArNO2.-, reduction of Type 1 copper of the native enzyme and of the Type-2-copper-depleted ascorbate oxidase occurs via a bimolecular step and at the same rate. Whereas the native protein accepts, in the absence of O2, 6-7 reducing equivalents, Type-2-copper-depleted ascorbate oxidase accepts only 3 reducing equivalents with stoichiometric reduction of Type 1 copper. On reaction of O2.- with ascorbate oxidase under conditions of [O2.-] much greater than [ascorbate oxidase], removal of Type 2 copper results in reduction of all the Type 1 copper atoms, in contrast with reduction of the equivalent of only one Type 1 copper atom in the holoprotein. From observations at 610 nm, the rate of reduction of ascorbate oxidase by O2.- is not dependent on the presence of Type 2 copper. For the holoprotein, no significant optical-absorption changes were observed at 330 nm. It is proposed that electrons enter the protein via Type 1 copper in a rate-determining step followed by a fast intramolecular transfer of electrons within the protein. For the Type-2-copper-depleted protein, intramolecular transfer within the protein, however, is slow or does not occur. In the presence of O2, it is also suggested that re-oxidation of the partially reduced holoprotein occurs at steady state, as inferred from the observations at 330 nm and 610 nm. The role of Type 2 copper in ascorbate oxidase is discussed in terms of its involvement in redistribution of electrons within the protein or structural considerations.
Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P
2016-08-31
The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact and nondestructive measurement, such as RE, to extract key material parameters is beneficial for conveniently understanding the oxidation process that would ultimately enable copper oxide-based devices at manufacturing scales.
NASA Astrophysics Data System (ADS)
Hoppe, E. W.; Seifert, A.; Aalseth, C. E.; Bachelor, P. P.; Day, A. R.; Edwards, D. J.; Hossbach, T. W.; Litke, K. E.; McIntyre, J. I.; Miley, H. S.; Schulte, S. M.; Smart, J. E.; Warren, G. A.
2007-08-01
High-purity copper is an attractive material for constructing ultra-low-background radiation measurement devices. Many low-background experiments using high-purity copper have indicated surface contamination emerges as the dominant background. Radon daughters plate out on exposed surfaces, leaving a residual 210Pb background that is difficult to avoid. Dust is also a problem; even under cleanroom conditions, the amount of U and Th deposited on surfaces can represent the largest remaining background. To control these backgrounds, a copper cleaning chemistry has been developed. Designed to replace an effective, but overly aggressive concentrated nitric acid etch, this peroxide-based solution allows for a more controlled cleaning of surfaces. The acidified hydrogen peroxide solution will generally target the Cu +/Cu 2+ species which are the predominant surface participants, leaving the bulk of copper metal intact. This preserves the critical tolerances of parts and eliminates significant waste disposal issues. Accompanying passivation chemistry has also been developed that protects copper surfaces from oxidation. Using a high-activity polonium surface spike, the most difficult-to-remove daughter isotope of radon, the performance of these methods are quantified.
Uyeda, Christopher; Tan, Yichen; Fu, Gregory C; Peters, Jonas C
2013-06-26
Building on the known photophysical properties of well-defined copper-carbazolide complexes, we have recently described photoinduced, copper-catalyzed N-arylations and N-alkylations of carbazoles. Until now, there have been no examples of the use of other families of heteroatom nucleophiles in such photoinduced processes. Herein, we report a versatile photoinduced, copper-catalyzed method for coupling aryl thiols with aryl halides, wherein a single set of reaction conditions, using inexpensive CuI as a precatalyst without the need for an added ligand, is effective for a wide range of coupling partners. As far as we are aware, copper-catalyzed C-S cross-couplings at 0 °C have not previously been achieved, which renders our observation of efficient reaction of an unactivated aryl iodide at -40 °C especially striking. Mechanistic investigations are consistent with these photoinduced C-S cross-couplings following a SET/radical pathway for C-X bond cleavage (via a Cu(I)-thiolate), which contrasts with nonphotoinduced, copper-catalyzed processes wherein a concerted mechanism is believed to occur.
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo
2015-02-01
Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.
NASA Astrophysics Data System (ADS)
Malewski, Jerzy
2017-12-01
Geological and technological conditions of Cu production in the Polish copper mines of the Legnica-Glogów Copper Belt are presented. Cu production is recognized as a technological fractal consisting of subsystems for mineral exploration, ore extraction and processing, and metallurgical treatment. Qualitative and quantitative models of these operations have been proposed, including estimation of their costs of process production. Numerical calculations of such a system have been performed, which allow optimize the system parameters according to economic criteria under variable Cu mineralization in the ore deposit. The main objective of the study is to develop forecasting tool for analysis of production efficiency in domestic copper mines based on available sources of information. Such analyses are primarily of social value, allowing for assessment of the efficiency of management of local mineral resources in the light of current technological and market constraints. At the same time, this is a concept of the system analysis method to manage deposit exploitation on operational and strategic level.
Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia
2017-01-01
Recently, amorphous alloys have attracted many researchers’ attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil. PMID:28772886
Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia
2017-05-12
Recently, amorphous alloys have attracted many researchers' attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil.
Copper atomic-scale transistors.
Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.
Temporal aspects of copper homeostasis and its crosstalk with hormones
Peñarrubia, Lola; Romero, Paco; Carrió-Seguí, Angela; Andrés-Bordería, Amparo; Moreno, Joaquín; Sanz, Amparo
2015-01-01
To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalization, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signaling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signaling with developmental pathways to allow enhanced micronutrient acquisition efficiency. PMID:25941529
Koen, E
1975-01-01
Using the method of factor planning of the experiment, the author studies and demonstrates the influence exerted by the potential and time of electrolysis, and by the concentration of the background and elements on the heights of anodal peaks upon simultaneous determination of zinc, cadmium, lead and copper microconcentrations. On the ground of statistical elaboration of the results, the optimal condition for polarographic determination through anodal voltamperometry are outlined. According to the cyclic voltametry method, the electrod processes reversibility for zinc, cadmium and lead, as well as the incomplete reversibility for copper are established; the number of electrons participating in the electrochemical reaction are found using the method of gas coulometry. The possibility of simultaneous determination of the four elements' ultramicroconcentrations after the method of voltamperometry with enrichment is proved. The standard deviation is in the range 3.02 to 4.9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru; Markova, Tat’jana, E-mail: patriot-rf@mail.ru
2016-01-15
The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.
Metallic conductivity and air stability in copper chloride intercalated carbon fibers
NASA Astrophysics Data System (ADS)
Oshima, H.; Woollam, J. A.; Yavrouian, A.
1982-12-01
Carbon-copper chloride intercalation compounds have been obtained by using variously graphitized carbon fibers as host materials. The resultant conductors are air stable, thermally stable to 450 K, have electrical resistivities as low as 12.9 microohm cm at room temperature, and have metallic conductivity temperature dependencies. These intercalated fibers have tensile strengths of 160000 psi, and Young's moduli of 25 x 10 to the 6th psi. For aerospace use, 1/(resistivity x density) is a figure of merit. On this basis, a reduction in resistivity by a factor of two will make this conductor competitive with copper.
Transaction Design Specification Medical Exam Databases System (MED) update Transaction
1986-12-01
8217RECOFD IN 51) 73. CORONARY SFAS1 SITE ;CHAR X(6) IN 7:) 74* CORONARY FLAQUES (RECO D IN 51) 75. CCFONARY PLAOUE 3ITE ,CHAR K(60 IN 74) 76* FCT DIAMETER...KETOSTEROIDS YE HYDROXYCARTICOSTEROIDS YO 24 HR URINE TOTAL VOLUME MA URINE OSMOLALITY MB SERUM OSMOLALITY MC 24HR URINE TOTAL VOLUME ZE SERUM COPPER FBS TO...RHEUMATOID FACTOR PA N P -2 2 ANTINUCLEAR ANTIBODY PB N P -2 2 0 FREE FATTY ACIDS QA 5 9 57 200 MG% SERUM COPPER RA 30 70 130 300 JG% URINE COPPER RBM 10 30 90
Comparison of the Oxidation Rates of Some New Copper Alloys
NASA Technical Reports Server (NTRS)
Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.
2002-01-01
Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.
Chen, Mengjun; Huang, Jinxiu; Ogunseitan, Oladele A; Zhu, Nengming; Wang, Yan-min
2015-07-01
Waste printed circuit boards (WPCBs) are attracting increasing concerns because the recovery of its content of valuable metallic resources is hampered by the presence of hazardous substances. In this study, we used ionic liquids (IL) to leach copper from WPCBs. [BSO3HPy]OTf, [BSO3HMIm]OTf, [BSO4HPy]HSO4, [BSO4HMim]HSO4 and [MIm]HSO4 were selected. Factors that affect copper leaching rate were investigated in detail and their leaching kinetics were also examined with the comparison of [Bmim]HSO4. The results showed that all six IL acids could successfully leach copper out, with near 100% recovery. WPCB particle size and leaching time had similar influences on copper leaching performance, while IL acid concentration, hydrogen peroxide addition, solid to liquid ratio, temperature, showed different influences. Moreover, IL acid with HSO4(-) was more efficient than IL acid with CF3SO3(-). These six IL acids indicate a similar behavior with common inorganic acids, except temperature since copper leaching rate of some IL acids decreases with its increase. The results of leaching kinetics studies showed that diffusion plays a more important role than surface reaction, whereas copper leaching by inorganic acids is usually controlled by surface reaction. This innovation provides a new option for recovering valuable materials such as copper from WPCBs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus
Li, Xiaomin; Zhou, Suyang; Fan, Wenhong
2016-01-01
Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942
Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper.
Vieira, Marisa D M; Goedkoop, Mark J; Storm, Per; Huijbregts, Mark A J
2012-12-04
In the life cycle assessment (LCA) of products, the increasing scarcity of metal resources is currently addressed in a preliminary way. Here, we propose a new method on the basis of global ore grade information to assess the importance of the extraction of metal resources in the life cycle of products. It is shown how characterization factors, reflecting the decrease in ore grade due to an increase in metal extraction, can be derived from cumulative ore grade-tonnage relationships. CFs were derived for three different types of copper deposits (porphyry, sediment-hosted, and volcanogenic massive sulfide). We tested the influence of the CF model (marginal vs average), mathematical distribution (loglogistic vs loglinear), and reserve estimate (ultimate reserve vs reserve base). For the marginal CFs, the statistical distribution choice and the estimate of the copper reserves introduce a difference of a factor of 1.0-5.0 and a factor of 1.2-1.7, respectively. For the average CFs, the differences are larger for these two choices, i.e. respectively a factor of 5.7-43 and a factor of 2.1-3.8. Comparing the marginal CFs with the average CFs, the differences are higher (a factor 1.7-94). This paper demonstrates that cumulative grade-tonnage relationships for metal extraction can be used in LCA to assess the relative importance of metal extractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less
Effect of Ultrasonic on Copper Electroplating from the Non-Cyanide Alkaline Baths
NASA Astrophysics Data System (ADS)
Li, Minggang; Hu, Shuangshuang; Yang, Yejiong; Xu, Shuhan; Zhao, Xixi; Wei, Guoying
2014-06-01
Effects of the different ultrasonic powers on copper electrodeposition from non-cyanide alkaline baths by using pyrophosphate as complexing agent were investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements were used to characterize the nucleation and growth mechanism. It is very obvious that the reduction potential moves to more positive one as the ultrasonic power increases. The quartz crystal microbalance (QCM) and chronoamperometric method were used to study the relationship between the mass change and the deposition time. It was found that the current efficiency of electrolyte under 0, 60, 80 and 100 W is 91.95%, 92.14%, 89.25% and 96.11%, respectively measured by QCM measurements. The surface morphology of the electrodeposited Cu films is analyzed by scanning electron microscopy (SEM). The morphology of copper films electrodeposited under the power of 60 W and 80 W presents a compact surface and the grains are fine and uniform.
Powder-Derived High-Conductivity Coatings for Copper Alloys
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, Linus U.
2003-01-01
Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.
NASA Astrophysics Data System (ADS)
Nandi, Debkumar; Taher, Abu; Ul Islam, Rafique; Siwal, Samarjeet; Choudhary, Meenakshi; Mallick, Kaushik
2016-11-01
The composite framework of graphitic carbon nitride (gCN) supported copper nanoparticle can act as a high-performance photoreactor for the synthesis of 1,2,3-triazole derivatives under light irradiation in the absence of alkaline condition. The photoactivity of gCN originates from an electron transition from the valence band to the conduction band, in the presence of photon energy, and the hot electron acts as a scavenger of the terminal proton of the alkyne molecule to facilitate the formation of copper acetanilide complex. In this study, we have performed the experiment under a different photonic environment, including dark condition, and in the presence and absence of base. A comparative study was also executed using Cu-TiO2 system, as a reference material, in the support of our proposed mechanism. The recycling performance and the photocorrosion effect of the catalyst have also been reported in this study.
Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper-containing metal fumes.
Baumann, R; Gube, M; Markert, A; Davatgarbenam, S; Kossack, V; Gerhards, B; Kraus, T; Brand, P
2018-01-01
Zinc- and copper-containing welding fumes increase systemic C-reactive protein (CRP). The aim of this study was to investigate the performance of the biomarkers serum amyloid A (SAA) and soluble vascular cell adhesion molecule-1 (VCAM-1) in this regard. Fifteen male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc for 6 h. Plasma samples were collected before, 6 and 24 h after start of exposure and biomarkers therein were measured by electrochemiluminescent assay. For each exposure, systemic concentrations of systemic SAA, but not VCAM-1, increased significantly at 24 h after exposure start compared with baseline ("copper only": P=0.0005, "zinc only": P=0.027, "copper and zinc": P=0.001). SAA showed a wider range of concentrations than did CRP and its levels increased up to 19-fold after welding fume exposure. The recognition of copper as a potential harmful component in welding fumes, also independent from zinc, deserves further consideration. SAA might represent a new sensitive biomarker for potential subclinical sterile inflammation after inhalation of copper- and/or zinc-containing welding fumes. As elevations of CRP and SAA protein have both been linked to a higher risk for cardiovascular disease, these findings might particularly be important for long-term welders.
NASA Astrophysics Data System (ADS)
Yokoyama, Shun; Takahashi, Hideyuki; Itoh, Takashi; Motomiya, Kenichi; Tohji, Kazuyuki
2014-01-01
Surface oxides on small (2-5 μm) copper metal particles can be removed by chemical reaction with tris(2,3-dibromopropyl) isocyanurate (TIC) in diethylene glycol mono-n-hexyl ether (DGHE) solution under mild conditions where metal particles are not damaged. Surface oxides convert to copper bromide species and subsequently dissolve into the solvent. It was found that resultant surface species are resistant to re-oxidation due to remaining surface bromides. This finding opens up a possibility to create microclines based on cheap copper nanoparticles.
Osmium isotope constraints on ore metal recycling in subduction zones
McInnes; McBride; Evans; Lambert; Andrew
1999-10-15
Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.
NASA Astrophysics Data System (ADS)
Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.
2011-05-01
The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergeev, Victor P., E-mail: vserg@mail.tomsknet.ru, E-mail: kmp1980@mail.ru; Kalashnikov, Mark P., E-mail: vserg@mail.tomsknet.ru, E-mail: kmp1980@mail.ru; Rybalko, Evgeniya V., E-mail: evgeniaribka@yandex.com, E-mail: alfred-1972@mail.ru, E-mail: tehnovak@ispms.tsc.ru, E-mail: zhastas@mail.ru
2014-11-14
The structural-phase state of the treated sample surface was investigated by TEM. It was shown by the TEM and VIMS method that the improvement of tribological properties of the copper samples can be associated with an increase of relaxation ability due to a significant increase of the nitrogen concentration in it, which is accompanied by the refinement of fcc-Cu main phase grain structure and the formation of nanopores or gas bubbles in the ion-modified surface layer. A high-dose implantation of nitrogen ions and copper samples increases the wear resistance in 1.5-4.5 times together with a counterbody from the same materialmore » in the argon environment. The microhardness of the copper samples also increases.« less
Development of an all-metal thick film cost effective metallization system for solar cells
NASA Technical Reports Server (NTRS)
Ross, B.; Parker, J.
1982-01-01
Electrodes made with pastes produced under the previous contract were analyzed and compared with raw materials. A needle-like structure observed on the electroded solar cell was identified as eutectic copper-silicon, a phase considered to benefit the electrical and metallurgical properties of the contact. Electrodes made from copper fluorocarbon and copper silver fluoride also contained this phase but had poor adhesion. A liquid medium, intended to provide transport during carbon fluoride decomposition was incorporated into the paste resulting in better adhesion. The product survived preliminary environmental tests. A 2 cm by 2 cm solar cell made with fluorocarbon activated copper electrodes and gave 7% AMI efficiency (without AR coating). Both silver fluoride and fluorocarbon screened paste electrodes can be produced for approximately $0.04 per watt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan
Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO 2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stablemore » under the strongly reducing conditions found in CO 2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.« less
The derivation of water quality criteria of copper in Biliu River
NASA Astrophysics Data System (ADS)
Zheng, Hongbo; Jia, Xinru
2018-03-01
Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.
Metals, toxicity and oxidative stress.
Valko, M; Morris, H; Cronin, M T D
2005-01-01
Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.
[Various pathways leading to the progression of chronic liver diseases].
Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina
2016-02-21
As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression.
Optical and electrical stability of viral-templated copper sulfide (Cu{sub 1.8}S) films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahriar Zaman, Mohammed; Bernard Grajeda, Gabriel; Haberer, Elaine D., E-mail: haberer@ucr.edu
The optical and electrical stabilities of viral-templated non-stoichiometric copper sulfide, digenite (Cu{sub 1.8}S) films were investigated. The films were composed of large agglomerates of randomly aligned Cu{sub 1.8}S-coated M13 filamentous phage. Free carrier optical absorption associated with localized surface plasmon resonance (LSPR) was observed in the near infrared spectral region, and the films were electrically active, displaying a linear current-voltage relationship. Under ambient conditions, the magnitude of the LSPR absorption increased, following a power law relationship with time, and the electrical resistance of viral-templated films decreased significantly. In contrast, the resistance of films stored under low oxygen, low humidity conditionsmore » experienced a smaller reduction in electrical resistance. Changes in optical and electrical film properties under ambient conditions were associated with an increase in free carrier concentration within the copper chalcogenide material due to oxygen exposure. X-ray photoelectron spectroscopy was used to relate this increase in free carrier concentration to compositional changes on the viral-templated material surface.« less
Qu, Ying; Liu, Su-hong; Li, Xiao-wen
2012-05-01
The leaf-level solar-induced fluorescence changes when the typical crops are under Cu stress, which can be considered as a sensitive indicator to estimate the stress level. In the present study, wheat (Triticum aestivum L.), pea (Pisum sativum L.) and Chinese cabbage (Brassica campestris L.) were selected and cultured with copper solutions or copper polluted soil with different Cu stress. The apparent reflectance of leaves was measured by an ASD Fieldspec spectrometer and an integrating sphere. As the apparent reflectance was seldom affected by the fluorescence emission at 580-650 and 800-1000 nm, so the apparent solar-induced fluorescence can be separated from the apparent reflectance based on PROSPECT model. The re-absorption effect of chlorophyll was corrected by three methods, called GM (Gitelson et al.'s model), AM (Agati et al.'s model) and LM (Lagorio et al.'s model). After the re-absorption correction, the solar-induced fluorescence under different Cu stress was obtained, and a positive relationship was found between the height of far RED fluorescence (FRF) and the copper contents in leaves.
Characteristics and antimicrobial activity of copper-based materials
NASA Astrophysics Data System (ADS)
Li, Bowen
In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger antibacterial activity than copper vermiculite against E. coli. With 200 ppm exfoliated copper vermiculite in bacteria suspension (4.68 ppm of metal copper), the reduction of viable bacteria are 99.8% at 1 hour, and >99.9% at 2 hours. With 10 ppm exfoliated copper vermiculite in bacteria dilution (0.234 ppm of copper atoms), the reduction of viable E. coli reached 98.7% at 1 hour, and >95.6% at 2 hours. Molds have the potential to cause health problems, such as allergic reactions, irritations, and mycotoxins, and damage to buildings, historic relics, properties, etc. Since copper has better antifungal property, an initial antifungal activity of copper vermiculite was evaluated in this study. Fat-free milk was used to develop molds in the test samples by saturated samples. Incubated at 36°C for 48 hours, all of the surfaces of untreated control samples, including micron-sized vermiculite, exfoliated vermiculite, bentonite, and kaolin, have been covered by thick mold layers. However, there were no mold showed on copper vermiculite and exfoliated copper vermiculite. Even after the incubation was lasted for 10 days, copper vermiculite and exfoliated copper vermiculite did not show any mold on the surface. These results exhibited copper vermiculite has excellent antifungal activities against mold. Stability of copper ions in copper vermiculite was measured by aqueous leaching process. Copper vermiculite and exfoliated copper vermiculite were put into distilled water in a ratio of 2.0g/100ml, and then implemented leaching processes by continuously shaking (leaching) and statically storing (soaking) for desired periods of time, respectively. According to the analytic result by inductively coupled plasma spectroscopy (ICP), the major metals released were copper, magnesium, iron, silicon, and aluminum. The release rate of copper depends on the environmental conditions. Under the dynamic leaching condition, all the major elements had shown linear leaching rates, and slowly increases along with the leaching time. Copper concentration in 1 hour leached solutions had sufficient concentration to inhibit E. coli in aqueous solution. Lasting for 1 month, 1 gram of copper vermiculite only released 185mug of copper. At this velocity, 11.5 years are required to completely exhaust the copper atoms from copper vermiculite. A soaking process provided a lower release rate than leaching process. Comparably, exfoliated copper vermiculite had lower copper concentration, stronger antimicrobial effect, but faster release rate than copper vermiculite, due to their different structure characteristics. (Abstract shortened by UMI.)
Metals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms
Huertas, María José; López-Maury, Luis; Giner-Lamia, Joaquín; Sánchez-Riego, Ana María; Florencio, Francisco Javier
2014-01-01
Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803. PMID:25501581
ERIC Educational Resources Information Center
Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa
2016-01-01
In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…
Li, Xianwei; He, Li; Chen, Huoji; Wu, Wanqing; Jiang, Huanfeng
2013-04-19
A simple, practical, and highly efficient synthesis of pyrazoles and indazoles via copper-catalyzed direct aerobic oxidative C(sp(2))-H amination has been reported herein. This process tolerated a variety of functional groups under mild conditions. Further diversification of pyrazoles was also investigated, which provided its potential for drug discovery.
Chemoselective N-arylation of aminobenzamides via copper catalysed Chan-Evans-Lam reactions.
Liu, Shuai; Zu, Weisai; Zhang, Jinli; Xu, Liang
2017-11-15
Chemoselective N-arylation of unprotected aminobenzamides was achieved via Cu-catalysed Chan-Evans-Lam cross-coupling with aryl boronic acids for the first time. Simple copper catalysts enable the selective arylation of amino groups in ortho/meta/para-aminobenzamides under open-flask conditions. The reactions were scalable and compatible with a wide range of functional groups.
Copper nanoparticles impinging on a curved channel with compliant walls and peristalsis
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Maraj, E. N.; Butt, Adil Wahid
2014-08-01
In the present article peristaltic transport of copper nanofluids in a curved channel with compliant walls is analytically studied. The mathematical analysis is carried out under the low Reynolds number and long wavelenght approximation. The exact solutions are computed for fluid velocity and temperature profile. The effect of meaningful parameters are shown graphically in the last section.
NASA Astrophysics Data System (ADS)
Pushkareva, A. E.; Ponomarev, I. V.; Isaev, A. A.; Klyuchareva, S. V.
2018-02-01
A computer simulation technique was employed to study the selective heating of a tissue vessel using emission from a pulsed copper vapor laser and a pulsed dye laser. The depth and size of vessels that could be selectively and safely removed were determined for the lasers under examination.
Microwave enhanced recovery of nickel-copper ore: communition and floatability aspects.
Henda, R; Hermas, A; Gedye, R; Islam, M R
2005-01-01
A study describing the effect of microwave radiation, at a frequency of 2450 MHz, on the processes of communication and flotation of a complex sulphide nickel-copper ore is presented. Ore communication has been investigated under standard radiation-free conditions and after ore treatment in a radiated environment as a function of ore size, exposure time to radiation, and microwave power. The findings show that communication is tremendously improved by microwave radiation with values of the relative work index as low as 23% at a microwave power of 1.406 kW and after 10 s of exposure time. Communication is affected by exposure time and microwave power in a nontrivial manner. In terms of ore floatability, the experimental tests have been carried out on a sample of 75 microm in size under different exposure times. The results show that both ore concentrate recoveries and grades of nickel and copper are significantly enhanced after microwave treatment of the ore with relative increases in recovered concentrate, grade of nickel, and grade of copper of 26 wt%, 15 wt%, and 27%, respectively, at a microwave power of 1330 kW and after 30 s of exposure time.
Sanjini, N S; Winston, B; Velmathi, S
2017-01-01
Copper oxide nanoparticles have been successfully synthesized by microwave assisted precipitation method. Different precursors like copper chloride, copper nitrate and copper sulphate were used for synthesis of CuO nanoparticles with different shape, size and catalytic activity. Sodium hydroxide acts as a capping agent and ethanol as solvent for the synthesis. The XRD study was conducted to confirm the single phase monoclinic structure of as-synthesized and annealed CuO nano particles. The morphology of the as-synthesized and annealed CuO samples was analyzed by high resolution field emission scanning electron microscope. Fourier transform infrared spectroscopy was done for all the synthesized CuO nanoparticles for functional group characterization. The wide band gap and photocatalytic activity were studied by UV-Visible spectroscopy. The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) dyes in aqueous solution were investigated under UV light (254 nm). In all the cases annealed samples showed good catalytic activity compared to as-synthesized CuO nanoparticles. The CuO nanoparticles from CuCl2 precursor act as excellent photocatalyst for both MB and RhB compared to CuNO₃ and CuSO₄.
Wilson disease - currently used anticopper therapy.
Członkowska, Anna; Litwin, Tomasz
2017-01-01
Wilson disease (WD) is a genetic disorder of copper metabolism that can be treated successfully with pharmacologic treatment. Two groups of drugs are currently used: chelators (e.g., d-penicillamine and trientine), which increase urinary copper excretion, and zinc salts, which inhibit copper absorption in the digestive tract. The mechanisms of action lead to a negative copper balance, stopping pathologic accumulation of copper in the tissues and clearing affected organs of copper overload. Due to a lack of prospective clinical trials, the use of drugs depends mainly on center experience and the accessibility in different countries or regions. This chapter presents the different reports and recommendations regarding WD treatment. In addition to the different expert opinions on pharmacologic agents, there are a few axioms regarding WD treatment: treatment should start immediately after diagnosis, even in clinically presymptomatic cases; the patient should be treated for life, making compliance a key factor in treatment success; and the treatment should be monitored regularly via liver and hematologic tests, neurologic examination, and copper metabolism, modifying the treatment accordingly. Other drugs proposed for WD treatment (e.g., tetrathiomolybdate) are in clinical trials and lack current recommendations. Thus, only the currently available options for WD pharmacologic treatment are discussed. © 2017 Elsevier B.V. All rights reserved.
Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism.
Rehmani, Nida; Zafar, Atif; Arif, Hussain; Hadi, Sheikh Mumtaz; Wani, Altaf A
2017-04-01
Oxidative DNA damage has been implicated in the pathogenesis of neurological disorders, cancer and ageing. Owing to the established link between labile copper concentrations and neurological diseases, it is critical to explore the interactions of neurotransmitters and drug supplements with copper. Herein, we investigate the pro-oxidant DNA damage induced by the interaction of L-DOPA and dopamine (DA) with copper. The DNA binding affinity order of the compounds has been determined by in silico molecular docking. Agarose gel electrophoresis reveals that L-DOPA and DA are able to induce strand scission in plasmid pcDNA3.1 (+/-) in a copper dependent reaction. These metabolites also cause cellular DNA breakage in human lymphocytes by mobilizing endogenous copper, as assessed by comet assay. Further, L-DOPA and DA-mediated DNA breaks were detected by the appearance of post-DNA damage sensitive marker γH2AX in cancer cell lines accumulating high copper. Immunofluorescence demonstrated the co-localization of downstream repair factor 53BP1 at the damaged induced γH2AX foci in cancer cells. The present study corroborates and provides a mechanism to the hypothesis that suggests metal-mediated oxidation of catecholamines contributes to the pathogenesis of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D.; Maryon, Edward B.; Kaplan, Jack H.; Ushio-Fukai, Masuko; Fukai, Tohru
2010-01-01
Rationale Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1, but also by the copper exporter ATP7A (Menke ATPase) whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. Objective To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Methods and Results Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A siRNA or CTR siRNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor pro-lysyl oxidase (Pro-LOX) in lipid raft fraction as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based X-ray fluorescence microscopy at neointimal VSMCs in wire injury model. Conclusions These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis. PMID:20671235
Laboratory evolution of copper tolerant yeast strains
2012-01-01
Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds. PMID:22214286
Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling
Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland
2016-01-01
Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg−1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg−1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated. PMID:26975802
Integrated copper-containing wastewater treatment using xanthate process.
Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming
2002-09-02
Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.
Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling
NASA Astrophysics Data System (ADS)
Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland
2016-03-01
Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg-1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg-1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated.
NASA Astrophysics Data System (ADS)
Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.
1993-09-01
Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.
NASA Astrophysics Data System (ADS)
Qayyum Khan, Abdul; Yuan, Shuai; Niu, Sheng; Liu, Fengjiang; Feng, Guang; Jiang, Mengci; Zeng, Heping
2018-01-01
Photocatalytic methalyne blue dye degradation was carried out with copper (Cu)-titanium dioxide (TiO2) nanocomposites under sunlight and visible light irradiation. The Cu-TiO2 nanocomposites were fabricated via femtosecond laser ablation of pressed targets in water. The current method provides a facile route for Cu-TiO2 nanocomposites preparation, which is free from impurities on the catalysts surface. The Cu-TiO2 nanocomposites (with Cu content of 5 wt%) have shown 3 folds faster dye degradation kinetics compared with TiO2 nanoparticles under sunlight irradiation. While under visible light irradiation, the same nanocomposites exhibited 2.6 folds faster kinetics compared with TiO2 nanoparticles. The faster light harvesting efficiency of the catalysts is attributed to more hydroxyl radical generation.
Life cycle contributions of copper from vessel painting and maintenance activities
Earley, Patrick J.; Swope, Brandon L.; Barbeau, Katherine; Bundy, Randelle; McDonald, Janessa A.; Rivera-Duarte, Ignacio
2013-01-01
Copper-based epoxy and ablative antifouling painted panels were exposed in natural seawater to evaluate environmental loading parameters. In situ loading factors including initial exposure, passive leaching, and surface refreshment were measured utilizing two protocols developed by the US Navy: the dome method and the in-water hull cleaning sampling method. Cleaning techniques investigated included a soft-pile carpet and a medium duty 3M™ pad for fouling removal. Results show that the passive leach rates of copper peaked three days after both initial deployment and cleaning events (CEs), followed by a rapid decrease over about 15 days and a slow approach to asymptotic levels on approximately day 30. Additionally, copper was more bioavailable during a CE in comparison to the passive leaching that immediately followed. A paint life cycle model quantifying annual copper loading estimates for each paint and cleaning method based on a three-year cycle of painting, episodic cleaning, and passive leaching is presented. PMID:24199998
Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie
2014-08-01
Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.
Chandra, A P; Gerson, A R
2009-01-30
A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial resolution are needed to precisely verify surface structures formed after copper activation. Sphalerite and pyrite surfaces are characterised by varying amounts of steps and defects, and this heterogeneity suggests co-existence of more than one copper-sulfide structure after activation.
FIELD-SCALE LEACHING OF ARSENIC, CHROMIUM AND COPPER FROM WEATHERED TREATED WOOD
Hasan, A. Rasem; Hu, Ligang; Solo-Gabriele, Helena M.; Fieber, Lynne; Cai, Yong; Townsend, Timothy G.
2010-01-01
Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (<40 mg) in all CCA treated wood samples. Copper leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals’ leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers. PMID:20053493
Miguel-Ávila, Joan; Tomás-Gamasa, María; Olmos, Andrea
2018-01-01
The archetype reaction of “click” chemistry, namely, the copper-promoted azide–alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)–tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of “non-innocent” reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities. PMID:29675241
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu
2017-01-01
Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.
Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution
Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; ...
2015-03-16
One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchicalmore » porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.« less
Reis, A P; Costa, S; Santos, I; Patinha, C; Noack, Y; Wragg, J; Cave, M; Sousa, A J
2015-08-01
This study reports on data obtained from a pilot survey focusing on house dust and toenail metal(loids) concentrations in residents living in the industrial city of Estarreja. The study design hereby described aims at investigating relationships between human toenails and both copper and manganese levels in settled house dusts. A total of 21 households and 30 individuals were recruited for the pilot study: 19 households corresponding to 27 residents living near the industrial complex, forming the exposed group, plus 2 households and 3 residents from residential areas with no anticipated environmental contaminants that were used for comparison. Factorial analysis was used for source identification purposes. Investigation on the potential influence of environmental factors over copper and manganese levels in the toenails was carried out via questionnaire data and multiple correspondence analysis. The results show that copper concentrations are more elevated in the indoor dusts, while manganese concentrations are more elevated in the outdoor dust samples. The geometrical relationships in the datasets suggest that the backyard soil is a probable source of manganese to the indoor dust. Copper and manganese contents in the toenail clippings are more elevated in children than in adults, but the difference between the two age groups is not statistically significant (p > 0.05). Investigation of environmental factors influencing the exposure-biomarker association indicates a probable relationship between manganese contents in indoor dust and manganese levels in toenail clippings, a result that is partially supported by the bioaccessibility estimates. However, for copper, no relationship was found between indoor dusts and the biomarkers of exposure.
Olaifa, A K; Fadason, S T
2017-03-06
Wound healing remains a challenging clinical problem for which precise and efficient management is essential in order to curtail morbidity and mortality. Wound healing has been shown to depend upon the availability of appropriate trace elements like copper and zinc which serve as enzyme cofactors and structural components in tissue repair. This study aims at evaluating the distribution of zinc and copper found in the hair as well as skin during epidermal wound healing. Adult and healthy West African dwarf (WAD) goats of both sexes fed with concentrate, grass, cassava peel and water ad libitum were used. The animals were housed for three weeks before commencement of the experiments. Epidermal wounds were created on the trunks of all the goats using cardboard template of 1cm². Progressive changes in wound contraction were monitored grossly by placing clean and sterile venier calliper on the wound margin. Hair and skin elemental (copper and zinc) analyses were done using atomic absorption spectroscopy (AAS). Significant increases in Cu level were observed in the female hair compared with that of males. There were significant increases in the Zn levels of the females' hair compared with the males. The wound healed faster in female goat compared with the males. The ratio of copper to zinc is clinically more important than the concentration of either of these trace metals. The pattern of distribution between zinc and copper concentration in the skin and hair of the male and female goats observed in this study could be added factor responsible for early wound healing in female. Therefore, our findings suggest that the distribution in the Cu and Zinc level in skin and hair of both male and female goats could also be a factor for wound healing in the animals.
NASA Astrophysics Data System (ADS)
Luo, Xiangcheng
Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic/plastic deformation, oxidation, strain hardening, passive layer damage, fracture, etc.) with the electrical contact resistance, which was measured in real time for contacts under dynamic compression, thus allowing both reversible and irreversible changes to be observed. The materials studied included metals (carbon steel, stainless steel, aluminum and copper), carbon fiber reinforced polymer-matrix composite (nylon-6), ceramic (mortar) and graphite, due to their relevance to fastening, concrete structures, electric brushes and electrical pressure contacts.
Jung, Ha-il; Gayomba, Sheena R.; Rutzke, Michael A.; Craft, Eric; Kochian, Leon V.; Vatamaniuk, Olena K.
2012-01-01
Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma membrane and mediates copper accumulation when expressed in the Saccharomyces cerevisiae copper uptake mutant. Although the primary sequence of COPT6 contains the family conserved domains, including methionine-rich motifs in the extracellular N-terminal domain and a second transmembrane helix (TM2), it is different from the founding family member, S. cerevisiae Ctr1p. This conclusion was based on the finding that although the positionally conserved Met106 residue in the TM2 of COPT6 is functionally essential, the conserved Met27 in the N-terminal domain is not. Structure-function studies revealed that the N-terminal domain is dispensable for COPT6 function in copper-replete conditions but is important under copper-limiting conditions. In addition, COPT6 interacts with itself and with its homolog, COPT1, unlike Ctr1p, which interacts only with itself. Analyses of the expression pattern showed that although COPT6 is expressed in different cell types of different plant organs, the bulk of its expression is located in the vasculature. We also show that COPT6 expression is regulated by copper availability that, in part, is controlled by a master regulator of copper homeostasis, SPL7. Finally, studies using the A. thaliana copt6-1 mutant and plants overexpressing COPT6 revealed its essential role during copper limitation and excess. PMID:22865877
Single crystal growth and characterization of pure and sodium-modified copper tartrate
NASA Astrophysics Data System (ADS)
Quasim, I.; Firdous, A.; Want, B.; Khosa, S. K.; Kotru, P. N.
2008-12-01
Single crystal growth of pure and modified copper tartrate crystals bearing composition (Cu) x(Na) yC 4H 4O 6· nH 2O (where x=1, 0.77, 0.65; y=0, 0.23, 0.35) is achieved using gel technique. The optimum conditions required for the growth of these crystals are worked out. The morphological development of these crystals is studied using optical and scanning electron microscopy. The dominant habit faces of the grown copper tartrate crystals are (0 0 1) and (1 1 1). Calculation of the cell parameters using CRYSFIRE software suggests that the pure copper tartrate crystal belongs to orthorhombic system with space group P2 1/c whereas the modified copper tartrate falls under tetragonal system with the space group P4 2/nbc. The external morphological development is shown to remain unaffected in the modified copper tartrate. The stoichiometric composition of the crystals is established by EDAX analysis, CH analysis, FTIR spectroscopy and thermoanalytical techniques. Thermal analysis of the grown crystals suggests that pure copper tartrate is thermally stable up to 42.84 °C whereas the modified copper tartrate crystals are stable only up to 33.11 and 25.11 °C. Calculation of the percentage weight loss from the thermogram supplemented by EDAX/CH analysis and FTIR spectroscopy suggest that the chemical formula of pure copper tartrate crystal is CuC 4H 4O 6·3H 2O whereas the chemical formula for the modified copper tartrate crystals is (Cu) 0.77(Na) 0.23C 4H 4O 6·3H 2O and (Cu) 0.65(Na) 0.35 C 4H 4O 6·H 2O.
Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinxiu; Chen, Mengjun, E-mail: kyling@swust.edu.cn; Chen, Haiyan
2014-02-15
Highlights: • A Brønsted acidic ILs was used to leach Cu from WPCBs for the first time. • The particle size of WPCBs has significant influence on Cu leaching rate. • Cu leaching rate was higher than 99% under the optimum leaching conditions. • The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brønsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior ofmore » copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 °C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.« less
Casford, Michael T L; Davies, Paul B
2012-07-24
The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.
Photocatalytic antibacterial activity of copper-based nanoparticles under visible light illumination
NASA Astrophysics Data System (ADS)
Wu, Zong-Yan; Abdullah, Hairus; Kuo, Dong-Hau
2018-04-01
Copper oxide and sulfide nanoparticles after annealing treatment at 400 °Chave been characterized and tested for their bactericidal properties toward Staphylococcus aureus and Escherichia coli under the dark and LED light illuminated conditions. It was found that the nanoparticles with the formation of CuS/Cu2S/CuO nanoheterostructuresexhibited a great capability of killing Staphylococcus aureus and Escherichia coli with or without light illumination. The antibacterial activity of the nanoparticles was demonstrated and simply observed with colony counting method. A mechanism of the antibacterial behaviour had been proposed and elucidated in this work.
Copper Corrosion Under Non-uniform Magnetic Field in 0.5 M Hydrochloric Acid
NASA Astrophysics Data System (ADS)
Garcia-Ochoa, E.; Corvo, F.; Genesca, J.; Sosa, V.; Estupiñán, P.
2017-05-01
The influence of a magnetic field on the electrochemical reactions taking place at the surface of a copper electrode immersed in a 0.5 M HCl solution at room temperature has been studied. The symmetry axis of the magnetic field was lined up in the same direction of the ion flow to minimize the Lorentz forces. Measurements of potentiodynamic polarization curves, electrochemical impedance spectroscopy and electrochemical noise allow concluding that the magnetic field significantly affects the cathodic reactions, with corrosion rates increasing under the presence of oxygen in acid media and decreasing when oxygen is eliminated.
Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Khalaj, Mehdi
2015-09-01
In this paper, we report the preparation of Natrolite zeolite supported copper nanoparticles as a heterogeneous catalyst for 1,3-diploar cycloaddition and synthesis aryl nitriles from aryl iodides under ligand-free conditions. The catalyst was characterized using XRD, SEM, TEM, EDS and TG-DTA. The experimental procedure is simple, the products are formed in high yields and the catalyst can be recycled and reused several times without any significant loss of catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Harper, Cynthia C; Speidel, J Joseph; Drey, Eleanor A; Trussell, James; Blum, Maya; Darney, Philip D
2012-02-01
The copper intrauterine device (IUD) is the most effective emergency contraceptive available but is largely ignored in clinical practice. We examined clinicians' recommendations of the copper IUD for emergency contraception in a setting with few cost obstacles. We conducted a survey among clinicians (n=1,246; response rate 65%) in a California State family planning program, where U.S. Food and Drug Administration-approved contraceptives are available at no cost to low-income women. We used multivariable logistic regression to measure the association of intrauterine contraceptive training and evidence-based knowledge with having recommended the copper IUD for emergency contraception. The large majority of clinicians (85%) never recommended the copper IUD for emergency contraception, and most (93%) required two or more visits for an IUD insertion. Multivariable analyses showed insertion skills were associated with having recommended the copper IUD for emergency contraception, but the most significant factor was evidence-based knowledge of patient selection for IUD use. Clinicians who viewed a wide range of patients as IUD candidates were twice as likely to have recommended the copper IUD for emergency contraception. Although more than 93% of obstetrician-gynecologists were skilled in inserting the copper IUD, they were no more likely to have recommended it for emergency contraception than other physicians or advance practice clinicians. Recommendation of the copper IUD for emergency contraception is rare, despite its high efficacy and long-lasting contraceptive benefits. Recommendation would require clinic flow and scheduling adjustments to allow same-day IUD insertions. Patient-centered and high-quality care for emergency contraception should include a discussion of the most effective method. III.
Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon
2011-01-01
The copper-transporting P1B-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and toxicity disorders, Menkes and Wilson diseases, respectively. This report describes the interaction between the Cu-ATPases and clusterin and demonstrates a chaperone-like role for clusterin in facilitating their degradation. Clusterin interacted with both ATP7A and ATP7B in mammalian cells. This interaction increased under conditions of oxidative stress and with mutations in ATP7B that led to its misfolding and mislocalization. A Wilson disease patient mutation (G85V) led to enhanced ATP7B turnover, which was further exacerbated when cells overexpressed clusterin. We demonstrated that clusterin-facilitated degradation of mutant ATP7B is likely to involve the lysosomal pathway. The knockdown and overexpression of clusterin increased and decreased, respectively, the Cu-ATPase-mediated copper export capacity of cells. These results highlight a new role for intracellular clusterin in mediating Cu-ATPase quality control and hence in the normal maintenance of copper homeostasis, and in promoting cell survival in the context of disease. Based on our findings, it is possible that variations in clusterin expression and function could contribute to the variable clinical expression of Menkes and Wilson diseases. PMID:21242307
Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Zhang, Wei-Peng; Bajic, Vladimir
2014-01-01
ABSTRACT Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. PMID:25370493
Copper atomic-scale transistors
Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (U bias) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G 0 (G 0 = 2e2/h; with e being the electron charge, and h being Planck’s constant) or 2G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors. PMID:28382242
Zhang, Hong; Andrews, Susan A
2012-05-15
This study investigated the effect of copper corrosion products, including Cu(II), Cu(2)O, CuO and Cu(2)(OH)(2)CO(3), on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu(2)O, CuO, Cu(2)(OH)(2)CO(3)] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used. Copyright © 2012 Elsevier Ltd. All rights reserved.