Sample records for factor vegf methods

  1. The Phosphorylation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) by Engineered Surfaces with Electrostatically or Covalently Immobilized VEGF

    PubMed Central

    Anderson, Sean M.; Chen, Tom T.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2010-01-01

    Growth factors are a class of signaling proteins that direct cell fate through interaction with cell surface receptors. Although a myriad of possible cell fates stem from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor – soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature. PMID:19540581

  2. Tuberculosis-diabetes co-morbidity is characterized by heightened systemic levels of circulating angiogenic factors

    PubMed Central

    Kumar, Nathella Pavan; Moideen, Kadar; Sivakumar, Shanmugam; Menon, Pradeep A; Viswanathan, Vijay; Kornfeld, Hardy; Babu, Subash

    2016-01-01

    Background Tuberculosis-diabetes co-morbidity (TB-DM) is characterized by increased inflammation with elevated circulating levels of inflammatory cytokines and other factors. Circulating angiogenic factors are intricately involved in the angiogenesis-inflammation nexus. Methods To study the association of angiogenic factors with TB-DM, we examined the systemic levels of VEGF-A, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2, VEGF-R3 in individuals with either TB-DM (n=44) or TB alone (n=44). Results Circulating levels of VEGF-A, C, D, R1, R2 and R3 were significantly higher in TB-DM compared to TB individuals. Moreover, the levels of VEGF-A, C, R2 and/or R3 were significantly higher in TB-DM with bilateral or cavitary disease or with hemoptysis, suggesing an association with both disease severity and adverse clinical presentation. The levels of these factors also exhibited a significant positive relationship with bacterial burdens and HbA1c levels. In addition, VEGF-A, C and R2 levels were signifantly higher (at 2 months of treatment) in culture positive compared to culture negative TB-DM individuals. Finally, the circulating levels of VEGF-A, C, D, R1, R2 and R3 were significantly reduced following successful chemotherapy at 6 months. Conclusion Our data demonstrate that TB-DM is associated with heightened levels of circulating angiogenic factors, possibly reflecting both dysregulated angiogenesis and exaggerated inflammation. PMID:27717783

  3. Vascular Endothelial Growth Factor and Angiopoietin are Required for Prostate Regeneration.

    PubMed Central

    Wang, Gui-min; Kovalenko, Bruce; Huang, Yili; Moscatelli, David

    2007-01-01

    BACKGROUND The regulation of the prostate size by androgens may be partly the result of androgen effects on the prostatic vasculature. We examined the effect of changes in androgen levels on the expression of a variety of angiogenic factors in the mouse prostate and determined if vascular endothelial growth factor (VEGF)-A and the angiopoietins are involved in the vascular response to androgens. METHODS Expression of angiogenic factors in prostate was quantitated using real-time PCR at different times after castration and after administration of testosterone to castrated mice. Angiopoietins were localized in prostate by immunohistochemistry and in situ hybridization. The roles of VEGF and the angiopoietins in regeneration of the prostate were examined in mice inoculated with cells expressing soluble VEGF receptor-2 or soluble Tie-2. RESULTS Castration resulted in a decrease in VEGF-A, VEGF-B, VEGF-C, placenta growth factor, FGF-2, and FGF-8 expression after one day. In contrast, VEGF-D mRNA levels increased. No changes in angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), hepatocyte growth factor, VEGF receptor-1, VEGF receptor-2 or tie-2 mRNA levels were observed. Administration of testosterone to castrated mice had the opposite effect on expression of these angiogenic factors. Ang-2 was expressed predominately in prostate epithelial cells whereas Ang-1 was expressed in epithelium and smooth muscle. Inoculation of mice with cells expressing soluble VEGF receptor-2 or Tie-2 blocked the increase in vascular density normally observed after administration of testosterone to castrated mice. The soluble receptors also blocked the increase in prostate weight and proliferation of prostatic epithelial cells. CONCLUSION VEGF-A and angiopoietins are required for the vascular response to androgens and for the ability of the prostate to regenerate in response to androgens. PMID:17221843

  4. Serum vascular endothelial growth factor in dogs with soft tissue sarcomas.

    PubMed

    de Queiroz, G Fernandes; Dagli, M Lúcia Zaidan; Meira, S Aparecida; Matera, J Maria

    2013-09-01

    This work aimed to evaluate serum vascular endothelial growth factor (VEGF) in 25 dogs with soft tissue sarcoma, and in 30 healthy dogs. Blood was collected once time from the control animals and three times, in the same way, from animals with sarcoma. Blood count was performed in the blood collected, and serum VEGF was measured by enzyme-linked immunosorbent assay quantitative method. Serum VEGF in control animals was similar to patients with soft tissue sarcoma. There was a reduction in serum VEGF after the sarcoma resection. There was positive correlation between serum VEGF and neutrophil counts, and negative between VEGF and hemoglobin content in animals with sarcoma. Animals with hemangiopericytoma showed higher serum VEGF levels compared to the patients with malignant peripheral nerve sheath. Circulating blood cells can contribute to elevate VEGF serum concentrations in dogs with soft tissue sarcomas and a possible role of VEGF in the angiogenesis of these tumors. © 2012 John Wiley & Sons Ltd.

  5. Novel Selective Detection Method of Tumor Angiogenesis Factors Using Living Nano-Robots.

    PubMed

    Al-Fandi, Mohamed; Alshraiedeh, Nida; Owies, Rami; Alshdaifat, Hala; Al-Mahaseneh, Omamah; Al-Tall, Khadijah; Alawneh, Rawan

    2017-07-14

    This paper reports a novel self-detection method for tumor cells using living nano-robots. These living robots are a nonpathogenic strain of E. coli bacteria equipped with naturally synthesized bio-nano-sensory systems that have an affinity to VEGF, an angiogenic factor overly-expressed by cancer cells. The VEGF-affinity/chemotaxis was assessed using several assays including the capillary chemotaxis assay, chemotaxis assay on soft agar, and chemotaxis assay on solid agar. In addition, a microfluidic device was developed to possibly discover tumor cells through the overexpressed vascular endothelial growth factor (VEGF). Various experiments to study the sensing characteristic of the nano-robots presented a strong response toward the VEGF. Thus, a new paradigm of selective targeting therapies for cancer can be advanced using swimming E. coli as self-navigator miniaturized robots as well as drug-delivery vehicles.

  6. The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    PubMed Central

    Appukuttan, Binoy; McFarland, Trevor J.; Stempel, Andrew; Kassem, Jean B.; Hartzell, Matthew; Zhang, Yi; Bond, Derek; West, Kelsey; Wilson, Reid; Stout, Andrew; Pan, Yuzhen; Ilias, Hoda; Robertson, Kathryn; Klein, Michael L.; Wilson, David; Smith, Justine R.; Stout, J. Timothy

    2012-01-01

    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases. PMID:22761647

  7. Novel Selective Detection Method of Tumor Angiogenesis Factors Using Living Nano-Robots

    PubMed Central

    Alshraiedeh, Nida; Owies, Rami; Alshdaifat, Hala; Al-Mahaseneh, Omamah; Al-Tall, Khadijah; Alawneh, Rawan

    2017-01-01

    This paper reports a novel self-detection method for tumor cells using living nano-robots. These living robots are a nonpathogenic strain of E. coli bacteria equipped with naturally synthesized bio-nano-sensory systems that have an affinity to VEGF, an angiogenic factor overly-expressed by cancer cells. The VEGF-affinity/chemotaxis was assessed using several assays including the capillary chemotaxis assay, chemotaxis assay on soft agar, and chemotaxis assay on solid agar. In addition, a microfluidic device was developed to possibly discover tumor cells through the overexpressed vascular endothelial growth factor (VEGF). Various experiments to study the sensing characteristic of the nano-robots presented a strong response toward the VEGF. Thus, a new paradigm of selective targeting therapies for cancer can be advanced using swimming E. coli as self-navigator miniaturized robots as well as drug-delivery vehicles. PMID:28708066

  8. Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model

    PubMed Central

    2013-01-01

    Background Alopecia areata is the hair loss usually reversible, in sharply defined areas. The treatment of alopecia using growth factors shows interesting activity in promoting hair growth. In this concept, VEGF (vascular endothelial growth factor) is a marker of angiogenesis, stimulating hair growth by facilitating the supply of nutrients to the hair follicle, increasing follicular diameter. The aim of this study was the evaluation of a topical gel enriched with VEGF liposomes on the hair growth stimulation and its toxicological aspects. Methods Mesocricetus auratus were randomly divided into three groups. Control group was treated with Aristoflex® gel, 1% group with the same gel but added 1% VEGF and 3% group with 3% VEGF. Biochemical, hematological and histological analyses were done. Results At the end of the experiment (15th day of VEGF treatment) efficacy was determined macroscopically by hair density dermatoscopy analysis, and microscopically by hair diameter analysis. They both demonstrated that hair of the VEGF group increased faster and thicker than control. On the other hand, biochemical and hematological results had shown that VEGF was not 100% inert. Conclusions VEGF increased hair follicle area, but more studies are necessary to confirm its toxicity. PMID:24168457

  9. [Expression of vascular endothelial growth factor and its significance in pulmonary bronchoalveolar carcinoma].

    PubMed

    Song, Weian; Li, Hui; Wang, Huasheng; Zhang, Weidong; Zhao, Xiaogang

    2004-02-20

    To study the relationship between the vascular endothelial growth factor (VEGF) and the clinicopathological characteristics of the patients with pulmonary bronchoalveolar carcinoma, and to research the possible role of VEGF in the malignant growth of pulmonary bronchoalveolar carcinoma. The expression of VEGF and MVD were detected in 38 pulmonary bronchoalveolar carcinoma and 20 normal lung tissues by immunohistochemical method. The positive rate of VEGF expression (73.68%,28/38) and MVD (63.81±19.26) in pulmonary bronchoalveolar carcinoma tissues were both remarkably higher than those in normal lung tissues (0, 18.44±6.53)( P < 0.005,P < 0.001). The positive rate of VEGF expression was significantly related to the size of tumor ( P < 0.05), lymphatic metastasis ( P < 0.025) and TNM stage ( P < 0.05), and so did the MVD ( P < 0.05, P < 0.05, P < 0.05). MVD was remarkably higher in VEGF (+) carcinoma tissues than that in VEGF (-) carcinoma tissues ( P < 0.05). VEGF correlates with the clinicopathological characteristics of pulmonary bronchoalveolar carcinoma. It may play an important role in the development of pulmonary bronchoalveolar carcinoma.

  10. Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions

    PubMed Central

    Li, Bo; Wang, Hai; Qiu, Guixing; Su, Xinlin

    2016-01-01

    Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration. PMID:28070506

  11. Elevated Levels of Serum Vascular Endothelial Growth Factor-A Are Not Related to NK Cell Parameters in Recurrent IVF Failure.

    PubMed

    Bansal, Rhea; Ford, Brian; Bhaskaran, Shree; Thum, Meenyau; Bansal, Amolak

    2017-01-01

    Vascular Endothelial Growth Factor and NK cells have an interrelated role in angiogenesis that is critical for placentation and success of in vitro fertilization. An attempt was made to assess a possible relationship between the two in this study. A case control study was performed comparing the serum levels of VEGF-A and its receptor VEGF-R1 with levels of NK cells, activated NK cells and NK cytotoxicity in 62 women with Repeated Implantation Failure (RIF). The healthy control group consisted of 72 women of similar age, without known issues in achieving pregnancy or evidence of autoimmunity. Levels of VEGF-A and VEGF-R1 were quantified by ELISA methods with standard curve interpolation. NK cell subsets were determined with flow cytometry using fluorescent-tagged anti-CD56, anti-CD16, anti-CD3 and anti-CD69. NK cytotoxicity was performed by incubating peripheral blood mononuclear cells and K562 cultured cells with propidium iodide, steroid, intralipid and intravenous immunoglobulin, using previously described methods. Statistical analysis involved Mann-Whitney-U and Spearman's rank correlation testing with p-values defined as <0.05. It was found that VEGF-A levels were significantly raised in women with RIF compared to healthy controls (362.9 vs . 171.6 pg/ml , p<0.0001), with no difference in VEGF-R1 levels between groups (1499 vs . 1202 pg/ml , p=0.4082). There was no correlation between VEGF-A or VEGF-R1 and the absolute levels of circulating NK cells, CD69 activated NK cells or NK cytotoxicity. The absence of correlation between VEGF-A or VEGF-R1 and NK cells suggests VEGF secretion and regulation is independent of NK cell activity in RIF.

  12. The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy

    PubMed Central

    Kuiper, Esther J.; Van Nieuwenhoven, Frans A.; de Smet, Marc D.; van Meurs, Jan C.; Tanck, Michael W.; Oliver, Noelynn; Klaassen, Ingeborg; Van Noorden, Cornelis J. F.; Goldschmeding, Roel; Schlingemann, Reinier O.

    2008-01-01

    Background In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. Methods/Principal Findings VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32), macular hole (N = 13) or macular pucker (N = 23) and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4) were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. Conclusions/Significance CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy. PMID:18628999

  13. Vascular endothelial growth factor (VEGF-634G/C) polymorphism and retinopathy of prematurity: a meta-analysis

    PubMed Central

    Malik, Manzoor Ahmad; Shukla, Swati; Azad, Shorya Vardhan; Kaur, Jasbir

    2014-01-01

    Purpose Vascular endothelial growth factor polymorphism (VEGF-634G/C, rs 2010963) has been considered a risk factor for the development of retinopathy of prematurity (ROP). However, the results remain controversial. Therefore, the aim of the present meta-analysis was to determine the association between VEGF-634G/C polymorphism and ROP risk. Methods Published literature from PubMed and other databases were retrieved. All studies evaluating the association between VEGF-634G/C polymorphism and ROP risk were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random or fixed effects model. A total of six case-control studies including 355 cases and 471 controls were included. Results By pooling all the studies, we found that VEGF-634G/C polymorphism was not associated with ROP risk at co-dominant and allele levels and no association was also found in dominant and recessive models. While stratifying on ethnicity level no association was observed in Caucasian and Asian population. Discussion This meta-analysis suggests that VEGF-634G/C polymorphism may not be associated with ROP risk, the association between single VEGF-634G/C polymorphism and ROP risk awaits further investigation. PMID:25473347

  14. Alginate Sulfates Mitigate Binding Kinetics of Proangiogenic Growth Factors with Receptors toward Revascularization.

    PubMed

    Schmidt, John; Lee, Min Kyung; Ko, Eunkyung; Jeong, Jae Hyun; DiPietro, Luisa A; Kong, Hyunjoon

    2016-07-05

    Ever since proangiogenic growth factors have been used as a vascular medicine to treat tissue ischemia, efforts have been increasingly made to develop a method to enhance efficacy of growth factors in recreating microvascular networks, especially at low dose. To this end, we hypothesized that polysaccharides substituted with sulfate groups would amplify growth factor receptor activation and stimulate phenotypic activities of endothelial cells involved in neovascularization. We examined this hypothesis by modifying alginate with a controlled number of sulfates and using it to derive a complex with vascular endothelial growth factor (VEGF), as confirmed with fluorescence resonance energy transfer (FRET) assay. Compared with the bare VEGF and with a mixture of VEGF and unmodified alginates, the VEGF complexed with alginate sulfates significantly reduced the dissociation rate with the VEGFR-2, elevated VEGFR-2 phosphorylation level, and increased the number of endothelial sprouts in vitro. Furthermore, the VEGF-alginate sulfate complex improved recovery of perfusion in an ischemic hindlimb of a mouse due to the increase of the capillary density. Overall, this study not only demonstrates an important cofactor of VEGF but also uncovers an underlying mechanism by which the cofactor mitigates the VEGF-induced signaling involved in the binding kinetics and activation of VEGFR. We therefore believe that the results of this study will be highly useful in improving the therapeutic efficacy of various growth factors and expediting their uses in clinical treatments of wounds and tissue defects.

  15. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    PubMed

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  16. Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.

    PubMed

    Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin

    2017-01-01

    The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (I Ca,L ) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). I Ca,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased I Ca,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced I Ca,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, I Ca,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.

    PubMed

    Lv, Jia; Xiu, Peng; Tan, Jie; Jia, Zhaojun; Cai, Hong; Liu, Zhongjun

    2015-06-24

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects.

  18. Immunohistochemical expression of vegf and her-2 proteins in osteosarcoma biopsies

    PubMed Central

    Becker, Ricardo Gehrke; Galia, Carlos Roberto; Morini, Sandra; Viana, Cristiano Ribeiro

    2013-01-01

    OBJECTIVES: To identify the prevalence of erbB-2 and vascular endothelial growth factor (VEGF) in osteosarcoma biopsies and to correlate them with possible prognosis factors. METHODS: Retrospective study conducted at the Hospital do Câncer de Barretos-SP including 27 osteosarcoma biopsies immunohistochemically stained for VEGF and erbB-2. The pathological characteristics were collected from medical records of patients to correlate with markers. RESULTS: In 27 biopsies, four overexpressed VEGF and three overexpressed erbB-2. Two thirds of patients had no metastases. Almost all patients with overexpression of VEGF showed metastases. Overexpression of erbB-2 was inversely related to the presence of metastases. There was no significant association between markers and prognosis. CONCLUSION: We identified a low prevalence of erbB-2 and VEGF in the sample. There was no significant association between overexpression of markers and pathological features. A larger sample and a longer follow-up, in addition to using new laboratory techniques can determine the real expression of VEGF and erbB-2 and its role in osteosarcoma. Level of Evidence III, Case-Control Study. PMID:24453675

  19. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    PubMed

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  20. Silencing of VEGF inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via VEGF/PI3K/AKT signaling pathway

    PubMed Central

    Peng, Ningning; Gao, Shuming; Guo, Xu; Wang, Guangya; Cheng, Cai; Li, Min; Liu, Kehun

    2016-01-01

    Background: Osteosarcoma is a kind of highly malignant tumor and the growth and metastasis is closely related to angiogenesis. Vascular endothelial growth factor (VEGF) is an important angiogenesis-promoting factor. In the current study, we investigated the effects of suppressed VEGF on osteosarcoma and its molecular mechanism provided for a basis by targeting angiogenesis. Material/Methods: We established bearing human osteosarcoma Wistar rats model by subcutaneous inoculation of human SaOS-2 cells and the adenovirus vector Ad-VEGF-siRNA was constructed for further study. We assessed the efficiency of VEGF silencing and its influence on SaOS-2 cells. The expression of mRNA and protein were detected by RT-PCR and western blotting, respectively. Intratumoral microvessel density (MVD), VEGF and CD31 were evaluated by immunohistochemistry. We detected the cell apoptotic rates by flow cytometry. Results: Our results indicated that Ad-VEGF-siRNA could effectively suppressed the expression of VEGF expression, inhibited the proliferation capability and promoted apoptosis of SaOS-2 cells in vitro. Silencing of VEGF expression also suppress osteosarcoma tumor growth and reduce osteosarcoma angiogenesis in the Wistar rats model in vivo. Furthermore, We found that phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) activation were considerably reduced while inhibition VEGF expression in SaOS-2 cells. Conclusion: Our data demonstrated that VEGF silencing could suppress cells proliferation, promote cells apoptosis and reduce osteosarcoma angiogenesis through inactivation of VEGF/PI3K/AKT signaling pathway. PMID:27158386

  1. Spider angiomas in patients with liver cirrhosis: Role of vascular endothelial growth factor and basic fibroblast growth factor

    PubMed Central

    Li, Chung-Pin; Lee, Fa-Yauh; Hwang, Shinn-Jang; Lu, Rei-Hwa; Lee, Wei-Ping; Chao, Yee; Wang, Sung-Sang; Chang, Full-Young; Whang-Peng, Jacqueline; Lee, Shou-Dong

    2003-01-01

    AIM: To investigate whether vascular endothelial growth factor (VEGF) and basic fibroblastic growth factor (bFGF) are associated with spider angiomas in patients with liver cirrhosis. METHODS: Eighty-six patients with liver cirrhosis were enrolled and the number and size of the spider angiomas were recorded. Fifty-three healthy subjects were selected as controls. Plasma levels of VEGF and bFGF were measured in both the cirrhotics and the controls. RESULTS: Plasma VEGF and bFGF were increased in cirrhotics compared with controls (122 ± 13 vs. 71 ± 11 pg/mL, P = 0.003 for VEGF; 5.1 ± 0.5 vs. 3.4 ± 0.5 pg/mL, P = 0.022 for bFGF). In cirrhotics, plasma VEGF and bFGF were also higher in patients with spider angiomas compared with patients without spider angiomas (185 ± 28 vs. 90 ± 10 pg/mL, P = 0.003 for VEGF; 6.8 ± 1.0 vs. 4.1 ± 0.5 pg/mL, P = 0.017 for bFGF). Multivariate logistic regression showed that young age and increased plasma levels of VEGF and bFGF were the most significant predictors for the presence of spider angiomas in cirrhotic patients (odds ratio [OR] = 6.64, 95% confidence interval [CI] = 2.02-21.79, P = 0.002; OR = 4.35, 95%CI = 1.35-14.01, P = 0.014; OR = 5.66, 95%CI = 1.72-18.63, P = 0.004, respectively). CONCLUSION: Plasma VEGF and bFGF are elevated in patients with liver cirrhosis. Age as well as plasma levels of VEGF and bFGF are significant predictors for spider angiomas in cirrhotic patients. PMID:14669345

  2. Myocardial expression of the vascular endothelial growth factor (VEGF) after endocardial laser revascularization (ELR)

    NASA Astrophysics Data System (ADS)

    Rommerscheid, Jan; Theisen, Dirk; Schmuecker, G.; Brinkmann, Ralf; Broll, R.

    2001-10-01

    Background. Endocardial laser revascularization (ELR) is a new technique to treat patients with severe coronary artery disease (CAD) in a percutaneous approach. The results show a significant improvement of symptoms, but the mechanism of action is still unknown. One main theory is the angiogenesis for which Vascular Endothelial Growth Factor (VEGF) is the keypromotor. We investigated immunohistochemically the VEGF-expression after ELR in porcine hearts over a timeperiod of four weeks. Methods. ELR was performed with a single-pulse Thulium:YAG laser. 15 pigs were treated with ELR and the hearts were harvested at five timeperiods: directly (group I), 3 days (group II), 1 week (group III), 2 weeks (group IV) and 4 weeks (group V) after ELR. Each group consisted of three pigs. Immunohistochemically the VEGF-expression was assessed by staining with a polyclonal antibody against VEGF and cellcounting using an expression index (VEGF-EI) Results. A maximum of VEGF-expression was found three days (group II) after ELR with a VEGF-EI of 97%. At 1 week (group III) the VEGF-EI was similar high with 93%. Along the timecourse the index decreased to 22% at 4 weeks (groupV). Conclusions. Our findings show that ELR leads to an local upregulation of VEGF around the channels. The resulting angiogenesis could be the mechanism for the relief of angina.

  3. Diagnostic Values of Vascular Endothelial Growth Factor and Epidermal Growth Factor Receptor for Benign and Malignant Hydrothorax

    PubMed Central

    Gu, Yan; Zhang, Min; Li, Guo-Hua; Gao, Jun-Zhen; Guo, Liping; Qiao, Xiao-Juan; Wang, Li-Hong; He, Lan; Wang, Mei-Ling; Yan, Li; Fu, Xiu-Hua

    2015-01-01

    Background: Hydrothorax, as one of the common complications of malignant tumors, still cannot be sensitively detected in clinical practice, thus requiring a sensitive, specific method for diagnosis. The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax. Methods: The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n = 35) and benign pleural effusion (n = 30) were detected by double antibody sandwich enzyme linked immunosorbent assay. The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH). The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum, and EGFR gene copy number in pleural effusion. Results: The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18), and (129.62 ± 46.35) ng/L, respectively, which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04), (63.49 ± 24.58) ng/L (P < 0.01). The sensitivity and specificity of detecting VEGF in pleural effusion were 80.0% and 96.7% (the boundary value was 297.06 ng/L), respectively for diagnosing benign and malignant hydrothorax. The sensitivity and specificity of serum were 74.3% and 96.7%, respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax. The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar. There was a significant correlation between EGFR and VEGF in hydrothorax (P < 0.01). Conclusions: VEGF and EGFR play important roles in the formation of pleural effusion. VEGF differed significantly in benign and malignant pleural effusions, which contributed to differential diagnosis results of benign and malignant pleural effusions. It is feasible to detect the gene copy number of the pleural effusion cell mass EGFR by FISH technique. Joint detection can improve the diagnostic sensitivity. PMID:25635424

  4. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) expression in colorectal cancer.

    PubMed

    Nagano, Hideki; Goi, Takanori; Koneri, Kenji; Hirono, Yasuo; Katayama, Kanji; Yamaguchi, Akio

    2007-12-01

    Vascular endothelial growth factor (VEGF) is known as an important factor in the growth and metastasis of cancer cells. In 2001, a novel angiogenesis factor, endocrine gland-derived vascular endothelial growth factor (EG-VEGF), was cloned. In this study, we investigated the expression of EG-VEGF in colorectal cancer, the relationship between its expression and clinicopathological factors, and the in vitro activity of EG-VEGF transfectants. We determined expression levels of EG-VEGF in 113 advanced colorectal cancers resected in our hospital by quantitative PCR, and compared the expression levels and clinicopathological findings by multivariate analyses. The expression of EG-VEGF mRNA was positive in 31 cancers and negative in 82 cancers. We found that compared with the negative expression of the EG-VEGF gene, its positive expression was more frequently associated with hematogenous metastasis, and was associated with a poorer survival rate. In addition, EG-VEGF transfectants showed a higher degree of in vitro tubular formation than control cells. We speculate that, in colorectal cancers, the EG-VEGF gene functions as an important factor in angiogenesis in primary and metastatic lesions, and consider that it is useful as a novel prognostic factor. EG-VEGF molecule-targeted therapy has the potential for improving survival rates.

  5. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  6. Lenticular cytoprotection. Part 1: The role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia

    PubMed Central

    Neelam, Sudha; Brooks, Morgan M.

    2013-01-01

    Purpose The prosurvival signaling cascades that mediate the unique ability of human lens epithelial cells to survive in their naturally hypoxic environment are not well defined. Hypoxia induces the synthesis of the hypoxia inducible factor HIF-1α that in turn, plays a crucial role in modulating a downstream survival scheme, where vascular endothelial growth factor (VEGF) also plays a major role. To date, no published reports in the lens literature attest to the expression and functionality of HIF-2α and the role it might play in regulating VEGF expression. The aim of this study was to identify the functional expression of the hypoxia inducible factors HIF-1α and HIF-2α and establish their role in regulating VEGF expression. Furthermore, we demonstrate a link between sustained VEGF expression and the ability of the hypoxic human lens epithelial cell to thrive in low oxygen conditions and resist mitochondrial membrane permeability transition (also referred to as lenticular cytoprotection). Methods Hypoxia inducible factor translation inhibitors were used to demonstrate the role of HIF-1α and HIF-2α and the simultaneous expression of both hypoxic inducible factors to determine their role in regulating VEGF expression. Axitinib, which inhibits lenticular cell autophosphorylation of its VEGF receptor, was employed to demonstrate a role for the VEGF–VEGFR2 receptor complex in regulating Bcl-2 expression. Specific antisera and western blot analysis were used to detect the protein levels of HIF-1α and HIF-2α, as well as the proapoptotic protein, BAX and the prosurvival protein, Bcl-2. VEGF levels were analyzed with enzyme-linked immunosorbent assay (ELISA). The potentiometric dye, 5,5′,6,6′-tetrachloro1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide, was used to determine the effect of the inhibitors on mitochondrial membrane permeability transition. Results Cultured human lens epithelial cells (HLE-B3) maintained under hypoxic condition (1% oxygen) displayed consistent accumulation of VEGF throughout the 72 h incubation period. Using hypoxia inducible factor translation inhibitors targeting HIF-1α or HIF-2α, the specific inhibition of each protein did not diminish VEGF synthesis. The combined inhibition of HIF-1α and HIF-2α expression, using a double hypoxia inducible factor translation inhibitor, markedly decreased the level of VEGF. The inhibition of VEGF synthesis was associated with a profound deficiency in the level of the prosurvival protein, Bcl-2. Axitinib also prevented the VEGF-mediated expression of Bcl-2. The loss of VEGF coupled with the decrease in intracellular Bcl-2 correlated with marked mitochondrial depolarization, an early predictor of cellular apoptosis. Conclusions Our data support a model in which the sustained synthesis of VEGF in human lens epithelial cells, maintained under hypoxic condition, is regulated by a compensatory inter-relationship between HIF-1α and HIF-2α. VEGF acts as a prosurvival factor in hypoxic lens epithelial cells by maintaining consistent expression of the prosurvival protein Bcl-2, which likely prevents the translocation of cytosolic BAX to the outer mitochondrial membrane, thus preventing the initiation of mitochondrial depolarization. PMID:23335846

  7. VEGF isoforms have differential effects on permeability of human pulmonary microvascular endothelial cells.

    PubMed

    Ourradi, Khadija; Blythe, Thomas; Jarrett, Caroline; Barratt, Shaney L; Welsh, Gavin I; Millar, Ann B

    2017-06-02

    Alternative splicing of Vascular endothelial growth factor-A mRNA transcripts (commonly referred as VEGF) leads to the generation of functionally differing isoforms, the relative amounts of which have potentially significant physiological outcomes in conditions such as acute respiratory distress syndrome (ARDS). The effect of such isoforms on pulmonary vascular permeability is unknown. We hypothesised that VEGF 165 a and VEGF 165 b isoforms would have differing effects on pulmonary vascular permeability caused by differential activation of intercellular signal transduction pathways. To test this hypothesis we investigated the physiological effect of VEGF 165 a and VEGF 165 b on Human Pulmonary Microvascular Endothelial Cell (HPMEC) permeability using three different methods: trans-endothelial electrical resistance (TEER), Electric cell-substrate impedance sensing (ECIS) and FITC-BSA passage. In addition, potential downstream signalling pathways of the VEGF isoforms were investigated by Western blotting and the use of specific signalling inhibitors. VEGF 165 a increased HPMEC permeability using all three methods (paracellular and transcellular) and led to associated VE-cadherin and actin stress fibre changes. In contrast, VEGF 165 b decreased paracellular permeability and did not induce changes in VE-cadherin cell distribution. Furthermore, VEGF 165 a and VEGF 165 b had differing effects on both the phosphorylation of VEGF receptors and downstream signalling proteins pMEK, p42/44MAPK, p38 MAPK, pAKT and peNOS. Interestingly specific inhibition of the pMEK, p38 MAPK, PI3 kinase and eNOS pathways blocked the effects of both VEGF 165 a and VEGF 165 b on paracellular permeability and the effect of VEGF 165 a on proliferation/migration, suggesting that this difference in cellular response is mediated by an as yet unidentified signalling pathway(s). This study demonstrates that the novel isoform VEGF 165 a and VEGF 165 b induce differing effects on permeability in pulmonary microvascular endothelial cells.

  8. Vascular endothelial growth factor and soft tissue sarcomas: tumor expression correlates with grade.

    PubMed

    Chao, C; Al-Saleem, T; Brooks, J J; Rogatko, A; Kraybill, W G; Eisenberg, B

    2001-04-01

    Vascular endothelial growth factor (VEGF), an endothelial-specific mitogen overexpressed in various epithelial malignancies is thought to be a potent regulator of angiogenesis. We hypothesized that some soft tissue sarcomas, due to their high propensity for hematogenous metastases (1) would overexpress VEGF, (2) that the degree of expression may represent a significant biologic predictor for disease-specific survival, and (3) that recurrent tumor would express as high or higher VEGF compared with the primary tumor. Selected paraffin-embedded tissue of surgical specimens from 79 patients with soft tissue sarcomas, treated between 1989 and 1995 were stained with a rabbit polyclonal anti-VEGF antibody at a concentration of 2 microg/ml. Slides were assessed for VEGF expression as high or low by two investigators blinded to the clinicopathologic data. Twelve patients had VEGF expression of their primary tumors, and their recurrent tumors were compared. The Fishers' exact test assessed for differences in VEGF expression; survival analyses were performed according to the methods of Kaplan and Meier. Seventy-eight percent (29 of 37) of patients who died of disease had high VEGF expression. However, VEGF expression was not an independent predictor of either overall or disease-free survival. Tumor grade correlated with VEGF expression significantly. For the low-grade tumors, 7 of 13 expressed low VEGF, whereas for high-grade tumors, 53 of 66 expressed high VEGF (P = .016). Seven of the 12 paired tumor samples expressed identical VEGF immunostaining. The majority of high-grade soft tissue sarcomas in this study have high intensity VEGF expression. This finding may provide useful information on individual soft tissue sarcomas and offer the basis for therapeutic and biologic targeting in high-risk patients using anti-angiogenesis strategies. However, in our analysis, after accounting for tumor grade, VEGF does not seem to be an independent predictor of clinical outcome.

  9. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygili, Erol, E-mail: erol.saygili@med.uni-duesseldorf.de; Noor-Ebad, Fawad; Schröder, Jörg W.

    2015-09-11

    Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal ratsmore » (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors for DCM. • DCM patients show high serum levels of VEGF. • Recent data indicate that VEGF is involved in cardiac remodeling processes. • Whether autoimmune processes in DCM are involved in VEGF signaling are unclear.« less

  10. No association between polymorphisms/haplotypes of the vascular endothelial growth factor gene and preeclampsia

    PubMed Central

    2011-01-01

    Background Preeclampsia (PE) is the first worldwide cause of death in pregnant women, intra-uterine growth retardation, and fetal prematurity. Some vascular endothelial grown factor gene (VEGF) polymorphisms have been associated to PE and other pregnancy disturbances. We evaluated the associations between VEGF genotypes/haplotypes and PE in Mexican women. Methods 164 pregnant women were enrolled in a case-control study (78 cases and 86 normotensive pregnant controls). The rs699947 (-2578C/A), rs1570360 (-1154G/A), rs2010963 (+405G/C), and rs25648 (-7C/T), VEGF variants were discriminated using Polymerase Chain Reaction - Restriction Fragment Length Polymorphism (PCR-RFLP) methods or Taqman single nucleotide polymorphism (SNP) assays. Results The proportions of the minor allele for rs699947, rs1570360, rs2010963, and rs25648 VEGF SNPs were 0.33, 0.2, 0.39, and 0.17 in controls, and 0.39, 0.23, 0.41, and 0.15 in cases, respectively (P values > 0.05). The most frequent haplotypes of rs699947, rs1570360, rs2010963, and rs25648 VEGF SNPs, were C-G-C-C and C-G-G-C with frequencies of 0.39, 0.21 in cases and 0.37, 0.25 in controls, respectively (P values > 0.05) Conclusion There was no evidence of an association between VEGF alleles, genotypes, or haplotypes frequencies and PE in our study. PMID:21575227

  11. A pilot study of psychosocial functioning and vascular endothelial growth factor in head and neck cancer patients

    PubMed Central

    Fang, Carolyn Y.; Egleston, Brian L.; Ridge, John A.; Lango, Miriam N.; Bovbjerg, Dana H.; Studts, Jamie L.; Burtness, Barbara A.; Einarson, Margret B.; Klein-Szanto, Andres J. P.

    2013-01-01

    Background Psychosocial functioning is associated with vascular endothelial growth factor (VEGF) in various patient populations. This study examined whether psychosocial functioning in patients with head and neck squamous cell carcinoma (HNSCC) is associated with tumor VEGF expression, a protein that stimulates angiogenesis and is associated with poor prognosis. Methods Forty-two newly diagnosed patients completed assessments of psychosocial functioning (i.e. depressive symptoms, perceived stress, anxiety, social support) prior to surgery. Tumor samples were obtained for VEGF analysis and HPV-typing. Results Poorer psychosocial functioning was associated with greater VEGF expression controlling for disease stage (OR=4.55, 95% CI = 1.72, 12.0, p < 0.01). When examined by HPV-status, the association between psychosocial functioning and VEGF remained significant among HPV-negative patients (OR=5.50, 95% CI = 1.68, 17.3, p < 0.01), but not among HPV-positive patients. Conclusions These findings inform our understanding of the biobehavioral pathways that may contribute to poor outcomes in non-HPV-associated HNSCCs. PMID:23804308

  12. Mechanism-related circulating proteins as biomarkers for clinical outcome in patients with unresectable hepatocellular carcinoma receiving sunitinib

    PubMed Central

    2011-01-01

    Background Several proteins that promote angiogenesis are overexpressed in hepatocellular carcinoma (HCC) and have been implicated in disease pathogenesis. Sunitinib has antiangiogenic activity and is an oral multitargeted inhibitor of vascular endothelial growth factor receptors (VEGFRs)-1, -2, and -3, platelet-derived growth factor receptors (PDGFRs)-α and -β, stem-cell factor receptor (KIT), and other tyrosine kinases. In a phase II study of sunitinib in advanced HCC, we evaluated the plasma pharmacodynamics of five proteins related to the mechanism of action of sunitinib and explored potential correlations with clinical outcome. Methods Patients with advanced HCC received a starting dose of sunitinib 50 mg/day administered orally for 4 weeks on treatment, followed by 2 weeks off treatment. Plasma samples from 37 patients were obtained at baseline and during treatment and were analyzed for vascular endothelial growth factor (VEGF)-A, VEGF-C, soluble VEGFR-2 (sVEGFR-2), soluble VEGFR-3 (sVEGFR-3), and soluble KIT (sKIT). Results At the end of the first sunitinib treatment cycle, plasma VEGF-A levels were significantly increased relative to baseline, while levels of plasma VEGF-C, sVEGFR-2, sVEGFR-3, and sKIT were significantly decreased. Changes from baseline in VEGF-A, sVEGFR-2, and sVEGFR-3, but not VEGF-C or sKIT, were partially or completely reversed during the first 2-week off-treatment period. High levels of VEGF-C at baseline were significantly associated with Response Evaluation Criteria in Solid Tumors (RECIST)-defined disease control, prolonged time to tumor progression (TTP), and prolonged overall survival (OS). Baseline VEGF-C levels were an independent predictor of TTP by multivariate analysis. Changes from baseline in VEGF-A and sKIT at cycle 1 day 14 or cycle 2 day 28, and change in VEGF-C at the end of the first off-treatment period, were significantly associated with both TTP and OS, while change in sVEGFR-2 at cycle 1 day 28 was an independent predictor of OS. Conclusions Baseline plasma VEGF-C levels predicted disease control (based on RECIST) and were positively associated with both TTP and OS in this exploratory analysis, suggesting that this VEGF family member may have utility in predicting clinical outcome in patients with HCC who receive sunitinib. Trial registration ClinicalTrials.gov: NCT00247676 PMID:21787417

  13. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakala, Rajbabu; Watanabe, Takuya; Benedict, Claude R

    2002-06-01

    Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [{sup 3}H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels inmore » the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors.« less

  14. Pro- and antiangiogenic VEGF and its receptor status for the severity of diabetic retinopathy

    PubMed Central

    Mondal, Lakshmi K.; Borah, Prasanta K.; Bhattacharya, Chandra K.; Mahanta, Jagadish

    2017-01-01

    Purpose Alteration of pro- and antiangiogenic homeostasis of vascular endothelial growth factor (VEGF) isoforms in patients with hyperglycemia seems crucial but substantially unexplored at least quantitatively for diabetic retinopathy (DR). Therefore, in the present study we aimed to estimate the difference between the pro- (VEGF165a) and antiangiogenic (VEGF165b) VEGF isoforms and its soluble receptors for severity of DR. Methods The study included 123 participants (diabetic retinopathy: 81, diabetic control: 20, non-diabetic control: 22) from the Regional Institute of Ophthalmology, Kolkata. The protein levels of VEGF165a (proangiogenic), VEGF165b (antiangiogenic), VEGF receptor 1 (VEGFR1), VEGFR2, and VEGFR3 in plasma were determined with enzyme-linked immunosorbent assay (ELISA). Results An imbalance in VEGF homeostasis, a statistically significant concomitant increase (p<0.0001) in the level of VEGF165a and a decrease in the level of VEGF165b, was observed with the severity of the disease. Increased differences between VEGF165a and VEGF165b i.e. VEGF165a-b concomitantly increased statistically significantly with the severity of the disease (p<0.0001), patients with diffuse diabetic macular edema (DME) with proliferative DR (PDR) had the highest imbalance. The plasma soluble form of VEGFR2 concentration consistently increased statistically significantly with the severity of the disease (p<0.0001). Conclusions The increased difference or imbalance between the pro- (VEGF165a) and antiangiogenic (VEGF165b) homeostasis of the VEGF isoforms, seems crucial for an adverse prognosis of DR and may be a better explanatory marker compared with either VEGF isoform. PMID:28680264

  15. Prognostic Relevance of the Expression of CA IX, GLUT-1, and VEGF in Ovarian Epithelial Cancers

    PubMed Central

    Kim, Kyungbin; Park, Won Young; Kim, Jee Yeon; Sol, Mee Young; Shin, Dong Hun; Park, Do Youn; Lee, Chang Hun; Lee, Jeong Hee

    2012-01-01

    Background Tumor hypoxia is associated with malignant progression and treatment resistance. Hypoxia-related factors, such as carbonic anhydrase IX (CA IX), glucose transporter-1 (GLUT-1), and vascular endothelial growth factor (VEGF) permit tumor cell adaptation to hypoxia. We attempted to elucidate the correlation of these markers with variable clinicopathological factors and overall prognosis. Methods Immunohistochemistry for CA IX, GLUT-1, and VEGF was performed on formalin-fixed, paraffin-embedded tissues from 125 cases of ovarian epithelial cancer (OEC). Results CA IX expression was significantly associated with an endometrioid and mucinous histology, nuclear grade, tumor necrosis, and mitosis. GLUT-1 expression was associated with tumor necrosis and mitosis. VEGF expression was correlated only with disease recurrence. Expression of each marker was not significant in terms of overall survival in OECs; however, there was a significant correlation between poor overall survival rate and high coexpression of these markers. Conclusions The present study suggests that it is questionable whether CA IX, GLUT-1, or VEGF can be used alone as independent prognostic factors in OECs. Using at least two markers helps to predict patient outcomes in total OECs. Moreover, the inhibition of two target gene combinations might prove to be a novel anticancer therapy. PMID:23323103

  16. High expression of SDF-1 and VEGF is associated with poor prognosis in patients with synovial sarcomas.

    PubMed

    Feng, Qi; Guo, Peng; Wang, Jin; Zhang, Xiaoyu; Yang, Hui-Chai; Feng, Jian-Gang

    2018-03-01

    Stromal cell-derived factor-1 (SDF-1) predicts poor clinical outcomes of certain types of cancer. Furthermore, vascular endothelial growth factor (VEGF) promotes the growth and metastasis of solid tumors. The aim of the present study was to examine the expression of SDF-1 and VEGF in patients with synovial sarcoma and to determine their expression is correlated with unfavorable outcomes. Levels of SDF-1 and VEGF proteins were evaluated in 54 patients with synovial sarcoma using immunohistochemical and immunofluorescence staining. Potential associations between the expression of SDF-1 and VEGF and various clinical parameters were analyzed using Pearson's χ 2 test and the Spearman-rho test. Additionally, univariate and multivariate Cox regression analyses were used to identify potential prognostic factors, and the Kaplan-Meier method was used to analyze the overall survival rates of patients. Low SDF-1 and VEGF expression was detected in 20.4% (11/54) and 22.2% (12/54) of patients with synovial sarcoma; moderate expression was detected in 35.2% (19/54) and 37.0% (20/54) of patients and high expression was detected in 44.4% (24 of 54) and 40.7% (22 of 54) of patients, respectively. Levels of SDF-1 and VEGF proteins were significantly associated with histological grade (P<0.05), metastasis (P<0.05) and American Joint Committee on Cancer staging (P<0.05). In addition, levels of SDF-1 and VEGF expression were positively correlated with each other (P<0.001). Univariate analysis also indicated that VEGF expression was associated with shorter overall survival rates in (P<0.05), whereas multivariate analysis demonstrated that SDF-1 expression was associated with shorter patient survival rates (P<0.05). Finally, both SDF-1 and VEGF expression were associated with various characteristics of synovial sarcoma. Therefore, SDF-1 expression may be a potential independent prognostic indicator in patients with synovial sarcomas.

  17. Effects of EG-VEGF, VEGF and TGF-β1 on pregnancy outcome in patients undergoing IVF-ET treatment.

    PubMed

    Gao, Min-zhi; Zhao, Xiao-ming; Lin, Yi; Sun, Zhao-gui; Zhang, Hui-qin

    2012-10-01

    To investigate the correlation of endocrine gland-derived vascular endothelial growth factor (EG-VEGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGF-β1) with the corresponding reproductive outcome in patients who received in vitro fertilization-embryo transfer (IVF-ET). Sixty-seven women undergoing IVF-ET at a university tertiary hospital were recruited for a prospective study. Concentrations of EG-VEGF, VEGF and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA) in follicular fluid (FF) collected during oocyte retrieval (OR) and in serum collected 2 days after OR. In FF, concentrations of both EG-VEGF and VEGF were negatively correlated with peak E2 and the number of MII oocytes retrieved, and positively correlated with each other. In serum, concentrations of all the three growth factors were positively correlated with the rate of good quality embryo, and with one another. Patients in the pregnancy group had lower peak E2 concentrations and higher serum EG-VEGF concentrations than those in the non-pregnancy group, but such tendency was not observed in the case of VEGF and TGF-β1. Both concentrations of EG-VEGF and VEGF in FF were negatively correlated with ovarian response and oocyte maturation. Concentrations of all the three growth factors in serum were positively correlated with embryo quality, but only serum concentrations of EG-VEGF were associated with the pregnancy outcome.

  18. RS3PE syndrome presenting as vascular endothelial growth factor associated disorder

    PubMed Central

    Arima, K; Origuchi, T; Tamai, M; Iwanaga, N; Izumi, Y; Huang, M; Tanaka, F; Kamachi, M; Aratake, K; Nakamura, H; Ida, H; Uetani, M; Kawakami, A; Eguchi, K

    2005-01-01

    Methods: Vascular endothelial growth factor165 (VEGF165), tumour necrosis factor α (TNFα), and interleukin 1ß (IL1ß) were measured by enzyme linked immunosorbent assay (ELISA) in serum samples from three patients with RS3PE syndrome. As controls, serum samples from 26 healthy volunteers, 12 patients with rheumatoid arthritis, 10 patients with systemic lupus erythematosus, 13 patients with polymyositis/dermatomyositis, 13 patients with vasculitis syndrome, and 6 patients with mixed connective tissue disease were also analysed. Synovial hypervascularity of patients with RS3PE syndrome was estimated by rate of enhancement (E-rate) in a dynamic MRI study. Results: Serum concentrations of VEGF165 (mean (SD) 2223.3 (156.3) pg/ml) were significantly higher in patients with active RS3PE syndrome than in controls before corticosteroid treatment. TNFα and IL1ß levels were similar in patients and controls. Synovial hypervascularity in affected joints and subcutaneous oedema decreased during corticosteroid treatment, in parallel with the fall in serum VEGF165. Conclusions: VEGF promotes synovial inflammation and vascular permeability in patients with RS3PE syndrome, suggesting that RS3PE can be classified as a VEGF associated disorder. PMID:16227418

  19. Association of vascular endothelial growth factor (VEGF) gene polymorphism and increased serum VEGF concentration with pancreatic adenocarcinoma.

    PubMed

    Sivaprasad, Siddapuram; Govardhan, Bale; Harithakrishna, Ramanujam; Venkat Rao, Guduru; Pradeep, Rebala; Kunal, Bharadhwaj; Ramakrishna, Nalla; Anuradha, Shekaran; Reddy, Duvvuru Nageshwar

    2013-01-01

    BACKGROUND &AIM: Pancreatic cancer is related to high mortality rate. The vascular endothelial growth factor (VEGF) has a strong influence in tumor-related angiogenesis having association with the grade of angiogenesis and the prognosis of different solid tumors including pancreatic cancer. The present study was aimed to analyze the genotype and haplotype distribution of VEGF gene single nucleotide polymorphisms (SNPs), -460T/C, +405G/C, +936C/T, in patients with pancreatic adenocarcinoma from South India, and the effect of these SNPs on serum VEGF level. Total 80 patients with pancreatic adenocarcinoma and 87 controls were recruited. The genotype of VEGF gene polymorphisms was determined in both patients and controls using polymerase chain reaction-restriction fragment length polymorphism method. The serum VEGF protein was estimated by standard enzyme-linked immunosorbent assay. The genotype, +405G/G of VEGF gene showed a significant association with the patients with pancreatic adenocarcinoma (P = 0.012, Odds ratio: 2.133), whereas no significant difference was found in the genotype distribution of SNPs, -460C/T and +936C/T between patient and control groups (P > 0.05). Serum VEGF level was found to be significantly high in patients (1315.10 pg/Ml, SD ± 230.79) when compared to controls (591.35 pg/mL, SD ± 92.48) (P < 0.0001), which showed a strong genotype-phenotype correlation between genotype +405G/G and serum VEGF level. Further, the haplotype C-G-T showed a strong association with the disease, and no specific haplotype was associated with increased serum VEGF level. The polymorphism, +405G/C but not -460T/C and +936C/T, of VEGF gene is strongly associated with pancreatic adenocarcinoma, and this SNP has significant influence on serum VEGF level. Copyright © 2013 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  20. Vascular endothelial growth factor (VEGF) inhibition--a critical review.

    PubMed

    Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-03-01

    Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.

  1. Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds.

    PubMed

    Yu, Yuanman; Chen, Jie; Chen, Rui; Cao, Lingyan; Tang, Wei; Lin, Dan; Wang, Jing; Liu, Changsheng

    2015-05-13

    Rapid and controlled vascularization within scaffolds remains one of the key limitations in tissue engineering applications. This study describes the fabrication and characterization of 2-N,6-O-sulfated chitosan (26SCS)-coated hierarchical scaffold composed of poly(lactic-co-glycolic acid) (PLGA) microspheres, as a desirable vehicle for vascular endothelial growth factor (VEGF) delivery and consequent angiogenic boosting in vitro. Owing to the hierarchical porous structure and high affinity between VEGF and 26SCS, the 26SCS-modified PLGA (S-PLGA) scaffold possesses excellent entrapment and sustained release of VEGF. Using human umbilical vein endothelial cells (HUVECs) as a cell model, the VEGF-loaded S-PLGA scaffold shows desirable cell viability and attachment. The bioactivity of released VEGF is validated by intracellular nitric oxide secretion and capillary tube formation, demonstrating the improved capacity of VEGF-mediated pro-angiogenesis ascribed to 26SCS incorporation. Such a strategy will afford an effective method to prepare a scaffold with promoted angiogenesis.

  2. [Effect of Bushen Huoxue Compound on Retinal Müller Cells in High Glucose or AGEs Conditions].

    PubMed

    Xie, Xue-jun; Song, Ming-xia; Zhang, Mei; Qin, Wei; Wan, Li; Fang, Yang

    2015-06-01

    To explore the effect of Bushen Huoxue Compound (BHC) on lactate dehydrogenase (LDH) leakage, expressions of vascular endothelial growth factor (VEGF) and VEGF mRNA in retinal Muller cells under high glucose condition or advanced glycosylation end products (AGEs) condition by using serum pharmacological method. The retinal Müller cells of 5-7 days post-natal Sprague Dawley (SD) rats were cultured with modified enzyme-digestion method. Purified retinal Muller cells were cultured in normal conditions, high glucose condition (50 mmol/L) or AGEs (50 mg/L and 100 mg/L) conditions, and BHC-containing serum was added to culture medium. The LDH leakage and VEGF expressions were measured by enzyme-linked immunosorbent assay (ELISA). In addition, the relative expression of VEGF mRNA was tested by reverse transcription polymerase chain reaction (RT-PCR). Compared with the normal control group, expressions of VEGF and VEGF mRNA were significantly increased in the high glucose group, the low dose AGEs group and the high dose AGEs group (all P < 0.01). The LDH leakage was obviously increased in the high dose AGEs group, when compared with the normal control group and the high glucose group (P < 0.01). The LDH leakage, expressions of VEGF and VEGF mRNA were obviously decreased by BHC-containing serum both in high glucose and AGEs conditions (P < 0.05, P < 0.01). BHC-containing serum had no significant effect on the LDH leakage and expressions of VEGF and VEGF mRNA in normal conditions (P > 0.05). AGEs intervention could obviously lower the stability of Müller cell membrane. Up-regulated expressions of VEGF and VEGF mRNA in cultured Müller cells could be induced by AGEs or high glucose. BHC-containing serum could stabilize the stability of Müller cell membrane, inhibit the transcription of VEGF mRNA and decrease the protein expression of VEGF, which might be one of important mechanisms for preventing and treating diabetic retinopathy.

  3. Serum Levels of Vascular Endothelial Growth Factor and Insulin-like Growth Factor Binding Protein-3 in Obstructive Sleep Apnea Patients: Effect of Continuous Positive Airway Pressure Treatment

    PubMed Central

    Archontogeorgis, Kostas; Nena, Evangelia; Papanas, Nikolaos; Xanthoudaki, Maria; Hatzizisi, Olga; Kyriazis, Georgios; Tsara, Venetia; Maltezos, Efstratios; Froudarakis, Marios; Steiropoulos, Paschalis

    2015-01-01

    Background and Aim: Hypoxia, a major feature of obstructive sleep apnea (OSA), modifies Vascular Endothelial Growth Factor (VEGF) and Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) levels, which contribute to atherogenesis and occurrence of cardiovascular (CV) events. We assessed and compared serum levels of VEGF and IGFBP-3 in newly diagnosed OSA patients and controls, to explore associations with anthropometric and sleep parameters and to study the effect of continuous positive airway pressure (CPAP) treatment on these levels. Materials and Methods: Serum levels of VEGF and IGFBP-3 were measured in 65 OSA patients and 31 age- and body mass index- matched controls. In OSA patients, measurements were repeated after 6 months of CPAP therapy. All participants were non-smokers, without any comorbidities or systemic medication use. Results: At baseline, serum VEGF levels in OSA patients were higher compared with controls (p<0.001), while IGFBP-3 levels were lower (1.41±0.56 vs. 1.61±0.38 μg/ml, p=0.039). VEGF levels correlated with apnea-hypopnea index (r=0.336, p=0.001) and oxygen desaturation index (r=0.282, p=0.007). After 6 months on CPAP treatment, VEGF levels decreased in OSA patients (p<0.001), while IGFBP-3 levels increased (p<0.001). Conclusion: In newly diagnosed OSA patients, serum levels of VEGF are elevated, while IGFBP-3 levels are low. After 6 months of CPAP treatment these levels change. These results may reflect an increased CV risk in untreated OSA patients, which is ameliorated after CPAP therapy. PMID:27006717

  4. Angiogenic Capacity of Periodontal Ligament Stem Cells Pretreated with Deferoxamine and/or Fibroblast Growth Factor-2

    PubMed Central

    Ratajczak, Jessica; Hilkens, Petra; Gervois, Pascal; Wolfs, Esther; Jacobs, Reinhilde; Lambrichts, Ivo; Bronckaers, Annelies

    2016-01-01

    Periodontal ligament stem cells (PDLSCs) represent a good source of multipotent cells for cell-based therapies in regenerative medicine. The success rate of these treatments is severely dependent on the establishment of adequate vasculature in order to provide oxygen and nutrients to the transplanted cells. Pharmacological preconditioning of stem cells has been proposed as a promising method to augment their therapeutic efficacy. In this study, the aim was to improve the intrinsic angiogenic properties of PDLSCs by in vitro pretreatment with deferoxamine (DFX; 100μM), fibroblast growth factor-2 (FGF-2; 10ng/mL) or both substances combined. An antibody array revealed the differential expression of several proteins, including vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). ELISA data confirmed a 1.5 to 1.8-fold increase in VEGF for all tested conditions. Moreover, 48 hours after the removal of DFX, VEGF levels remained elevated (1.8-fold) compared to control conditions. FGF-2 and combination treatment resulted in a 5.4 to 13.1-fold increase in PlGF secretion, whereas DFX treatment had no effect. Furthermore, both PDLSCs as pretreated PDLSCs induced endothelial migration. Despite the significant elevated VEGF levels of pretreated PDLSCs, the induced endothelial migration was not higher by pretreated PDLSCs. We find that the observed induced endothelial cell motility was not dependent on VEGF, since blocking the VEGFR1-3 with Axitinib (0.5nM) did not inhibit endothelial motility towards PDLSCs. Taken together, this study provides evidence that preconditioning with DFX and/or FGF-2 significantly improves the angiogenic secretome of PDLSCs, in particular VEGF and PlGF secretion. However, our data suggest that VEGF is not the only player when it comes to influencing endothelial behavior by the PDLSCs. PMID:27936076

  5. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF) and Her-2 Protein in the Genesis of Cervical Carcinoma

    PubMed Central

    Rahmani, Arshad H.; Babiker, Ali Yousif; Alsahli, Mohammed A.; Almatroodi, Saleh A.; Husain, Nazik Elmalaika O. S.

    2018-01-01

    BACKGROUND: Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. AIM: This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. METHODS: A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. RESULTS: Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p < 0.05). However, no significant difference in the expression pattern of VEGF protein was observed among the different grades and stages of tumours (p > 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p < 0.05). The expression level of Her-2 protein was not correlated with the stage of a tumour (p > 0.05). CONCLUSION: The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer. PMID:29531585

  6. Baicalin increases VEGF expression and angiogenesis by activating the ERRα/PGC-1α pathway

    PubMed Central

    Zhang, Keqiang; Lu, Jianming; Mori, Taisuke; Smith-Powell, Leslie; Synold, Timothy W.; Chen, Shiuan; Wen, Wei

    2011-01-01

    Aims Baicalin is the major component found in Scutellaria baicalensis root, a widely used herb in traditional Chinese medicine. Although it has been used for thousands of years to treat stroke, the mechanisms of action of S. baicalensis have not been clearly elucidated. In this report, we studied the modulation of angiogenesis as one possible mechanism by investigating the effects of these agents on expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. Methods and results The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1α (HIF-1α). The expression of reporter genes was also activated under the control of the VEGF promoter containing either a functional or a defective HIF response element (HRE). Only minimal effects were observed on reporter activation under the HRE promoter. Instead, both agents significantly induced oestrogen-related receptor (ERRα) expression as well as the activity of reporter genes under the control of ERRα-binding element. Their ability to induce VEGF expression was suppressed once ERRα expression was knocked down by siRNA or ERRα-binding sites were deleted in the VEGF promoter. We also found that both agents stimulated cell migration and vessel sprout formation from the aorta. Conclusion Our results implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRα pathway. These data may facilitate a better understanding of the potential health benefits of these agents in the treatment of cardiovascular diseases. PMID:20851810

  7. Vascular endothelial growth factor from Trimeresurus jerdonii venom specifically binds to VEGFR-2.

    PubMed

    Zhong, Shurong; Wu, Jianbo; Cui, Yunpeng; Li, Rui; Zhu, Shaowen; Rong, Mingqiang; Lu, Qiumin; Lai, Ren

    2015-09-01

    Vascular endothelial growth factors (VEGFs) play important roles in angiogenesis. In this study, a vascular endothelial growth factor named TjsvVEGF was purified from the venom of Trimeresurus jerdonii by gel filtration, affinity, ion-exchange and high-performance liquid chromatography. TjsvVEGF was a homodimer with an apparent molecular mass of 29 kDa. The cDNA encoding TjsvVEGF was obtained by PCR. The open reading frame of the cloned TjsvVEGF was composed of 432 bp coding for a signal peptide of 24 amino acid residues and a mature protein of 119 amino acid residues. Compared with other snake venom VEGFs, the nucleotide and deduced protein sequences of the cloned TjsvVEGF were conserved. TjsvVEGF showed low heparin binding activity and strong capillary permeability increasing activity. The KD of TjsvVEGF to VEFGR-2 is 413 pM. However, the binding of TjsvVEGF to VEGFR-1 is too weak to detect. Though TjsvVEGF had high sequence identities (about 90%) with Crotalinae VEGFs, the receptor preference of TjsvVEGF was similar to Viperinae VEGFs which had lower sequence identities (about 60%) with it. TjsvVEGF might serve as a useful tool for the study of structure-function relationships of VEGFs and their receptors. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Thicker carotid intima-media thickness and increased plasma VEGF levels suffered by post-acute thrombotic stroke patients.

    PubMed

    Yueniwati, Yuyun; Darmiastini, Ni Komang; Arisetijono, Eko

    2016-01-01

    Atherosclerosis causes reduction of the oxygen supply to structures in the far arterial wall, provoking the release of factors that drive angiogenesis of vasa vasorum, including VEGF. Other studies have revealed the inflammatory response in atherosclerosis and the role of platelet factor 4 (PF4) as an anti-angiogenic chemokine through the inhibition of VEGF. This cross-sectional study aims at measuring the effect of atherosclerosis assessed through carotid intima-media thickness (CIMT) against plasma VEGF levels in patients with post-acute thrombotic stroke. CIMT was assessed sonographically using GE Logiq S6 with 13 MHz frequency linear probe. VEGF-A plasma levels were measured using enzyme-linked immunosorbent assay (ELISA) method. Differences among variables were compared statistically. The data were analyzed using Pearson correlation. A total of 25 patients with post-acute thrombotic stroke were identified in days 7 to 90. CIMT thickening was indicated in 88% of patients (1.202 ± 0.312 mm), while an increase in plasma VEGF was identified in all patients (178.28 ± 93.96 ng/mL). There was no significant correlation between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke ( p =0.741). A significant correlation was recognized between CIMT and total cholesterol ( p =0.029) and low-density lipoprotein ( p =0.018). There were no significant correlations between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke. However, plasma VEGF increased in patients with thrombotic stroke. CIMT measurement is a promising noninvasive modality to assess the vascular condition of patients with stroke and diabetes, while plasma VEGF cannot specifically assess vascular condition as it can be triggered by ischemic conditions in tissues of the whole body.

  9. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration

    NASA Technical Reports Server (NTRS)

    Mukherjee, D.; Wong, J.; Griffin, B.; Ellis, S. G.; Porter, T.; Sen, S.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: In this study, the feasibility of delivering and enhancing the uptake of vascular endothelial growth factor (VEGF) into the intact endothelium by using ultrasound (US) facilitation was determined. BACKGROUND: A limitation of tissue-targeted drug delivery is the need for direct arterial cannulation. We postulate a mechanism by which agents injected intravenously may be targeted to a tissue using US and ultrasonic contrast agents. METHODS: We used a rat model to test the ability of US and an ultrasonic contrast agent perflurocarbon exposed sonicated dextrose albumin (PESDA) to increase uptake of VEGF in the myocardium. Continuous wave Doppler US (0.6 W/cm2 at 1 MHz for 15 min) was applied to the chest wall overlying the myocardium during intravenous injection with either VEGF (100 microg/kg) alone or a combination of VEGF and PESDA (0.1%). Control rats had VEGF infused without US or PESDA. The VEGF uptake was measured quantitatively in the heart, lung, liver and kidneys by enzyme-linked immunosorbent assay (ng/g of tissue) and morphologically by fluorescence microscopy. RESULTS: There was an eight-fold increase in VEGF uptake in the heart by US alone (16.86 +/- 1.56 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) and a 13-fold increase with US + PESDA (26.78 +/- 2.88 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) compared with control rats. Fluorescence microscopy revealed deposition of VEGF in the endothelium of small intramyocardial arterioles. CONCLUSIONS: These results show a marked increase in endothelial VEGF uptake with US and US + PESDA. Thus, US may be used to augment endothelial VEGF uptake 10-fold to 13-fold.

  10. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes.

    PubMed

    Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin

    2018-01-26

    Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  11. Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Amrita; Jones, Michael K.; Department of Medicine, University of California, Irvine, CA

    2013-08-09

    Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 andmore » VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is independent of its primary function in the induction of angiogenesis.« less

  12. Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients.

    PubMed

    Rozman, Ales; Silar, Mira; Kosnik, Mitja

    2012-12-01

    BACKGROUND.: Lung cancer is the leading cause of cancer deaths. Angiogenesis is crucial process in cancer growth and progression. This prospective study evaluated expression of two central regulatory molecules: angiogenin and vascular endothelial growth factor (VEGF) in patients with lung cancer. PATIENTS AND METHODS.: Clinical data, blood samples and broncho-alveolar lavage (BAL) from 23 patients with primary lung carcinoma were collected. BAL fluid was taken from part of the lung with malignancy, and from corresponding healthy side of the lung. VEGF and angiogenin concentrations were analysed by an enzyme-linked immunosorbent assay. Dilution of bronchial secretions in the BAL fluid was calculated from urea concentration ratio between serum and BAL fluid. RESULTS.: We found no statistical correlation between angiogenin concentrations in serum and in bronchial secretions from both parts of the lung. VEGF concentrations were greater in bronchial secretions in the affected side of the lung than on healthy side. Both concentrations were greater than serum VEGF concentration. VEGF concentration in serum was in positive correlation with tumour size (p = 0,003) and with metastatic stage of disease (p = 0,041). There was correlation between VEGF and angiogenin concentrations in bronchial secretions from healthy side of the lung and between VEGF and angiogenin concentrations in bronchial secretions from part of the lung with malignancy. CONCLUSION.: Angiogenin and VEGF concentrations in systemic, background and local samples of patients with lung cancer are affected by different mechanisms. Pro-angiogenic activity of lung cancer has an important influence on the levels of angiogenin and VEGF.

  13. Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients

    PubMed Central

    Rozman, Ales; Silar, Mira; Kosnik, Mitja

    2012-01-01

    Background. Lung cancer is the leading cause of cancer deaths. Angiogenesis is crucial process in cancer growth and progression. This prospective study evaluated expression of two central regulatory molecules: angiogenin and vascular endothelial growth factor (VEGF) in patients with lung cancer. Patients and methods. Clinical data, blood samples and broncho-alveolar lavage (BAL) from 23 patients with primary lung carcinoma were collected. BAL fluid was taken from part of the lung with malignancy, and from corresponding healthy side of the lung. VEGF and angiogenin concentrations were analysed by an enzyme-linked immunosorbent assay. Dilution of bronchial secretions in the BAL fluid was calculated from urea concentration ratio between serum and BAL fluid. Results. We found no statistical correlation between angiogenin concentrations in serum and in bronchial secretions from both parts of the lung. VEGF concentrations were greater in bronchial secretions in the affected side of the lung than on healthy side. Both concentrations were greater than serum VEGF concentration. VEGF concentration in serum was in positive correlation with tumour size (p = 0,003) and with metastatic stage of disease (p = 0,041). There was correlation between VEGF and angiogenin concentrations in bronchial secretions from healthy side of the lung and between VEGF and angiogenin concentrations in bronchial secretions from part of the lung with malignancy. Conclusion. Angiogenin and VEGF concentrations in systemic, background and local samples of patients with lung cancer are affected by different mechanisms. Pro-angiogenic activity of lung cancer has an important influence on the levels of angiogenin and VEGF. PMID:23412843

  14. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    PubMed

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  15. Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin.

    PubMed

    Pang, Vincent; Bates, David O; Leach, Lopa

    2017-12-01

    The human placenta nourishes and protects the developing foetus whilst influencing maternal physiology for fetal advantage. It expresses several members of the vascular endothelial growth factor (VEGF) family including the pro-angiogenic/pro-permeability VEGF-A 165 a isoform, the anti-angiogenic VEGF-A 165 b, placental growth factor (PIGF) and their receptors, VEGFR1 and VEGFR2. Alterations in the ratio of these factors during gestation and in complicated pregnancies have been reported; however, the impact of this on feto-placental endothelial barrier integrity is unknown. The present study investigated the interplay of these factors on junctional occupancy of VE-cadherin and macromolecular leakage in human endothelial monolayers and the perfused placental microvascular bed. Whilst VEGF-A 165 a (50 ng/ml) increased endothelial monolayer albumin permeability ( P <0.0001), equimolar concentrations of VEGF-A 165 b ( P >0.05) or PlGF ( P >0.05) did not. Moreover, VEGF-A 165 b (100 ng/ml; P <0.001) but not PlGF (100 ng/ml; P >0.05) inhibited VEGF-A 165 a-induced permeability when added singly. PlGF abolished the VEGF-A 165 b-induced reduction in VEGF-A 165 a-mediated permeability ( P >0.05); PlGF was found to compete with VEGF-A 165 b for binding to Flt-1 at equimolar affinity. Junctional occupancy of VE-cadherin matched alterations in permeability. In the perfused microvascular bed, VEGF-A 165 b did not induce microvascular leakage but inhibited and reversed VEGF-A 165 a-induced loss of junctional VE-cadherin and tracer leakage. These results indicate that the anti-angiogenic VEGF-A 165 b isoform does not increase permeability in human placental microvessels or HUVEC primary cells and can interrupt VEGF-A 165 a-induced permeability. Moreover, the interplay of these isoforms with PIGF (and s-flt1) suggests that the ratio of these three factors may be important in determining the placental and endothelial barrier in normal and complicated pregnancies. © 2017 The Author(s).

  16. Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator.

    PubMed

    Xu, Huifeng; Kou, Fangxia; Ye, Hongzhi; Wang, Zongwen; Huang, Suixin; Liu, Xianxiang; Zhu, Xi; Lin, Zhenyu; Chen, Guonan

    2017-12-01

    Vascular endothelial growth factor (VEGF) is a crucial signaling protein for the tumor growth and metastasis, which is also acted as the biomarkers for various diseases. In this research, we fabricate an aptamer-antibody sensor for point-of-care test of VEGF. Firstly, target VEGF is captured by antibody immobilized on the microplate, and then binds with aptamer to form the sandwich structure. Next, with the assist of glucose oxidase (GOx)-functionalized ssDNAs, hybridization chain reaction occurs using the aptamer as the primer. Thus, GOx are greatly gathered on the microplate, which catalyzes the oxidization of glucose, leading to the pH change. As a result, the detect limit at a signal-to-noise was estimated to be 0.5pg/mL of target by pH meter, and 1.6pg/mL of VEGF was able to be distinguished by naked eyes. Meanwhile, this method has been used assay VEGF in the serum with the satisfactory results. Copyright © 2017. Published by Elsevier B.V.

  17. Vascular endothelial growth factor (VEGF)-targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma

    PubMed Central

    Choueiri, Toni K.; Lim, Zita Dubauskas; Hirsch, Michelle S.; Tamboli, Pheroze; Jonasch, Eric; McDermott, David F.; Cin, Paola Dal; Corn, Paul; Vaishampayan, Ulka; Heng, Daniel Y.C.; Tannir, Nizar M.

    2015-01-01

    Introduction Adult “translocation” renal cell carcinoma (RCC), bearing TFE3 gene fusions at Xp11.2, is a recently recognized unique entity for which prognosis and therapy remain poorly understood. We investigated the effect of vascular-endothelial growth factor (VEGF)-targeted therapy in this distinct subtype of RCC. Patients and Methods We conducted a retrospective review to describe the clinical characteristics and outcome of adult patients with metastatic Xp11.2 RCC, who had strong TFE-3 nuclear immunostaining, and received anti-VEGF therapy. Tumor response to anti-VEGF therapy was evaluated by RECIST. Kaplan-Meier methods were used to estimate progression-free survival (PFS) and overall survival (OS) distributions. Results Fifteen patients were identified of which 10, 3, and 2 received sunitinib, sorafenib and monoclonal anti-VEGF antibodies, respectively. The median follow-up was 19.1 months, the median age of the patients was 41 years, and the female:male ratio was 4:1. Initial histologic description included clear cell (n=8), papillary (n=1) or mixed clear cell/papillary RCC (n=6). Five patients had prior systemic therapy. Five patients had FISH analysis and all demonstrated a translocation involving chromosome Xp11.2. When treated with VEGF-targeted therapy, 3 patients had a partial response, 7 patients had stable disease and 5 patients had progressive disease. The median PFS and OS of the entire cohort were 7.1 months and 14.3 months respectively. Conclusion Adult-onset translocation-associated metastatic RCC is an aggressive disease that affects a younger population of patients with a female predominance. VEGF-targeted agents demonstrated some efficacy in this small retrospective series. PMID:20665500

  18. ALA-induced photodynamic effect on vitality, apoptosis, and secretion of vascular endothelial growth factor (VEGF) by colon cancer cells in normoxic environment in vitro.

    PubMed

    Kawczyk-Krupka, A; Sieroń-Stołtny, K; Latos, W; Czuba, Z P; Kwiatek, B; Potempa, M; Wasilewska, K; Król, W; Stanek, A

    2016-03-01

    Cancer therapy is often based on combination of conventional methods of cancer treatment with immunotherapy. Photodynamic therapy (PDT) is one of the immunomodulating methods used in oncology. We examined how PDT influences the secretory activity of colon cancer cells in vitro, especially the secretion of vascular endothelial growth factor (VEGF) in aerobic conditions. We used two cancer cell lines with different malignancy potentials: a metastatic SW620 line and a non-metastatic SW480 line. In the first stage of the experiment, we exposed each cell line to three different concentrations of photosensitizer's precursor: 5-aminolevulinic acid (ALA) and varying levels of light radiation, after which we assessed cell viability and apoptosis induction in these lines, using the MTT and LDH assays. Then, we determined the secretion of VEGF by these cells in aerobic conditions and under the ALA-PDT parameters at which cells presented the highest viability. Photodynamic treatment with ALA did not influence on VEGF secretion by the non-metastatic SW480 cells, but caused a decrease in VEGF secretion by the metastatic SW 620 cell line by 29% (p<0.05). SW 620 cell line secreted more actively VEGF than the SW480 cells, both before and after photo dynamic therapy (p<0.05). The outcome of this in vitro study presented a beneficial effect of ALA-PDT, resulting in a decrease of VEGF secretion in the more malignant SW620 cell lines. Further studies should be considered to confirm the clinical relevance of this finding. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease.

    PubMed

    Henning, Robert J

    2016-09-01

    Stem cells encode vascular endothelial growth factors (VEGFs), fibroblastic growth factors (FGFs), stem cell factor, stromal cell-derived factor, platelet growth factor and angiopoietin that can contribute to myocardial vascularization. VEGFs and FGFs are the most investigated growth factors. VEGFs regulate angiogenesis and vasculogenesis. FGFs stimulate vessel cell proliferation and differentiation and are regulators of endothelial cell migration, proliferation and survival. Clinical trials of VEGF or FGF for myocardial angiogenesis have produced disparate results. The efficacy of therapeutic angiogenesis can be improved by: (1) identifying the most optimal patients; (2) increased knowledge of angiogenic factor pharmacokinetics and proper dose; (3) prolonging contact of angiogenic factors with the myocardium; (4) increasing the efficiency of VEGF or FGF gene transduction; and (5) utilizing PET or MRI to measure myocardial perfusion and perfusion reserve.

  20. Diagnostic values of vascular endothelial growth factor and epidermal growth factor receptor for benign and malignant hydrothorax.

    PubMed

    Gu, Yan; Zhang, Min; Li, Guo-Hua; Gao, Jun-Zhen; Guo, Liping; Qiao, Xiao-Juan; Wang, Li-Hong; He, Lan; Wang, Mei-Ling; Yan, Li; Fu, Xiu-Hua

    2015-02-05

    Hydrothorax, as one of the common complications of malignant tumors, still cannot be sensitively detected in clinical practice, thus requiring a sensitive, specific method for diagnosis. The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax. The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n = 35) and benign pleural effusion (n = 30) were detected by double antibody sandwich enzyme linked immunosorbent assay. The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH). The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum, and EGFR gene copy number in pleural effusion. The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18), and (129.62 ± 46.35) ng/L, respectively, which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04), (63.49 ± 24.58) ng/L (P < 0.01). The sensitivity and specificity of detecting VEGF in pleural effusion were 80.0% and 96.7% (the boundary value was 297.06 ng/L), respectively for diagnosing benign and malignant hydrothorax. The sensitivity and specificity of serum were 74.3% and 96.7%, respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax. The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar. There was a significant correlation between EGFR and VEGF in hydrothorax (P < 0.01). VEGF and EGFR play important roles in the formation of pleural effusion. VEGF differed significantly in benign and malignant pleural effusions, which contributed to differential diagnosis results of benign and malignant pleural effusions. It is feasible to detect the gene copy number of the pleural effusion cell mass EGFR by FISH technique. Joint detection can improve the diagnostic sensitivity.

  1. Platelet release of Vascular Endothelial Growth Factor (VEGF) in patients undergoing chemotherapy for breast cancer

    PubMed Central

    2009-01-01

    Background Venous thromboembolism (VTE) following breast cancer chemotherapy is common. Chemotherapy-induced alterations in markers of haemostasis occur during chemotherapy. In this study we investigated the changes in serum and plasma VEGF, together with platelet release of VEGF and related these to the development of VTE at 3 months. Methods Serum and plasma VEGF, together with platelet release of VEGF were measured prior to chemotherapy and at 24 hours; four-, eight days and three months following commencement of chemotherapy in early and advanced breast cancer patients and in age and sex matched controls. Duplex ultrasound imaging was performed after one month or if symptomatic. Results Of 123 patients 9.8% developed VTE within three months. Serum and plasma VEGF were increased in advanced breast cancer as was platelet release of VEGF. Prior to chemotherapy a 100 μg/ml increase in serum VEGF was associated with a 40% increased risk of VTE, while a 10 μg/ml increase in plasma VEGF was associated with a 20% increased risk of VTE. Serum VEGF showed a different response to chemotherapy in those who developed VTE. Conclusion A group of patients at risk of VTE could be identified, allowing targeted thrombopropylaxis. Whether or not the response in VEGF during chemotherapy has any angiogenic significance remains to be elucidated. PMID:20016693

  2. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF

    PubMed Central

    Anderson, Sean M.; Shergill, Bhupinder; Barry, Zachary T.; Manousiouthakis, Eleana; Chen, Tom T.; Botvinick, Elliot; Platt, Manu O.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2011-01-01

    Vascular endothelial growth factor (VEGF) is known to activate proliferation, migration, and survival pathways in endothelial cells through phosphorylation of VEGF receptor-2 (VEGFR-2). VEGF has been incorporated into biomaterials through encapsulation, electrostatic sequestration, and covalent attachment, but the effect of these immobilization strategies on VEGF signaling has not been thoroughly investigated. Further, although growth factor internalization along with the receptor generally occurs in a physiological setting, whether this internalization is needed for receptor phosphorylation is not entirely clear. Here we show that VEGF covalently bound through a modified heparin molecule elicits an extended response of pVEGFR-2 in human umbilical vein endothelial cells (HUVECs) and that the covalent linkage reduces internalization of the growth factor during receptor endocytosis. Optical tweezer measurements show that the rupture force required to disrupt the heparin-VEGF-VEGFR-2 interaction increases from 3–8 pN to 6–12 pN when a covalent bond is introduced between VEGF and heparin. Importantly, by covalently binding VEGF to a heparin substrate, the stability (half-life) of VEGF is extended over three-fold. Here, mathematical models support the biological conclusions, further suggesting that VEGF internalization is significantly reduced when covalently bound, and indicating that VEGF is available for repeated phosphorylation events. PMID:21826315

  3. Quantification of STAT3 and VEGF expression for molecular diagnosis of lymph node metastasis in breast cancer

    PubMed Central

    Chen, Yujuan; Liu, Ya; Wang, Yu; Li, Wen; Wang, Xiaolu; Liu, Xuejuan; Chen, Yao; Ouyang, Chibin; Wang, Jing

    2017-01-01

    Abstract Background: Axillary lymph node metastasis is associated with increased risk of regional recurrence, distant metastasis, and poor survival in breast malignant neoplasm. Expression of signal transducer and activator of transcription 3 (STAT3) is significantly associated with tumor formation, migration, and invasion in various cancers. In addition, vascular endothelial growth factor (VEGF) expression could promote angiogenesis and increase the risk of tumorigenesis. To determine correlations among STAT3 expression, VEGF, and clinicopathological data on lymph node involvement in breast cancer patients after surgery. Methods: The mRNA expression levels of STAT3 and VEGFs were measured in 45 breast invasive ductal carcinoma tissues, 45 peritumoral tissues, and 45 adjacent nontumor tissues by real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Postoperative pathological examination revealed explicit axillary lymph node involvement in all patients. Results: Average mRNA levels of STAT3 and VEGFs were the highest in breast invasive ductal carcinoma tissues, followed by peritumoral tissues. High expression of STAT3 showed significant positive correlation with high axillary lymph node involvement and progesterone receptor (PR), VEGF-C, VEGF-D, and vascular endothelial growth factor receptor (VEGFR)-3 expression. The expression levels of STAT3, VEGF-C, and VEGFR-3 were significantly higher in the tumor tissues of patients with axillary lymph node metastasis than in those of patients without the metastasis. Expression levels of VEGF-C and VEGFR-3 were also significantly higher in peritumoral tissues of patients with axillary lymph node metastasis. Positive correlations were found between STAT3 and VEGF-C/-D mRNA levels. Conclusion: These data suggest that STAT3/VEGF-C/VEGFR-3 signaling pathway plays an important role in carcinogenesis and lymph-angiogenesis. Our findings suggest that STAT3 may be a potential molecular biomarker for predicting the involvement of axillary lymph nodes in breast cancer, and therapies targeting STAT3 may be important for preventing breast cancer metastasis. PMID:29137038

  4. Adeno-associated virus type 8 vector–mediated expression of siRNA targeting vascular endothelial growth factor efficiently inhibits neovascularization in a murine choroidal neovascularization model

    PubMed Central

    Igarashi, Tsutomu; Miyake, Noriko; Fujimoto, Chiaki; Yaguchi, Chiemi; Iijima, Osamu; Shimada, Takashi; Takahashi, Hiroshi

    2014-01-01

    Purpose To assess the feasibility of a gene therapeutic approach to treating choroidal neovascularization (CNV), we generated an adeno-associated virus type 8 vector (AAV2/8) encoding an siRNA targeting vascular endothelial growth factor (VEGF), and determined the AAV2/8 vector’s ability to inhibit angiogenesis. Methods We initially transfected 3T3 cells expressing VEGF with the AAV2/8 plasmid vector psiRNA-VEGF using the H1 promoter and found that VEGF expression was significantly diminished in the transfectants. We next injected 1 μl (3 × 1014 vg/ml) of AAV2/8 vector encoding siRNA targeting VEGF (AAV2/8/SmVEGF-2; n = 12) or control vector encoding green fluorescent protein (GFP) (AAV2/8/GFP; n = 14) into the subretinal space in C57BL/6 mice. One week later, CNV was induced by using a diode laser to make four separate choroidal burns around the optic nerve in each eye. After an additional 2 weeks, the eyes were removed for flat mount analysis of the CNV surface area. Results Subretinal delivery of AAV2/8/SmVEGF-2 significantly diminished CNV at the laser lesions, compared to AAV8/GFP (1597.3±2077.2 versus 5039.5±4055.9 µm2; p<0.05). Using an enzyme-linked immunosorbent assay, we found that VEGF levels were reduced by approximately half in the AAV2/8/SmVEGF-2 treated eyes. Conclusions These results suggest that siRNA-VEGF can be expressed across the retina and that long-term suppression of CNV is possible through the use of stable AAV2/8-mediated siRNA-VEGF expression. In vivo gene therapy may thus be a feasible approach to the clinical management of CNV in conditions such as age-related macular degeneration. PMID:24744609

  5. The targeting expression of the vascular endothelial growth factor gene in endothelial cells regulated by HRE.ppET-1.

    PubMed

    Zheng, Xiangrong; Zhang, Shangshang; Yang, Yujia; Wang, Xia; Zhong, Le; Yu, Xiaohe

    2008-11-01

    The success of gene therapy depends largely on the efficacy of gene delivery vector systems that can deliver genes to target organs or cells selectively and efficiently with minimal toxicity. Here, we show that by using the HRE.ppET-1 regulatory element, we were able to restrict expression of the transgene of vascular endothelial growth factor (VEGF) to endothelial cells exclusively in hypoxic conditions. Eukaryotic expression vectors such as pEGFP-HRE.ppET-1, pcDNA3.1-VEGF+Pa, pcDNA3.1-ppET-1+ EGF+Pa, and pcDNA3.1-HRE.ppET-1+VEGF+Pa were constructed by using a series of nuclear molecule handling methods like PCR, enzyme digestion. The recombinant vectors were transfected into HUVEC cells and HL7702 cells by the lipofectin method. GFP expression was observed with a fluorescence microscope to validate the specificity of expression in endothelial cells under the regulation of HRE.ppET-1 element. Cobalt chloride (final concentration 100 mumol/L) was added to the medium to mimic hypoxia in vitro. After transfection of vectors, the expression of VEGF mRNA was detected by RT-PCR, and the expression of VEGF was detected by Western blotting and ELISA methods under normoxia and hypoxia, respectively. The cell proliferation rate was detected by the MTT test. The expression of GFP revealed that the exterior gene was transcripted effectively in endothelial cells regulated by the HRE.ppET-1 element, while the expression of GFP was very weak in nonendothelial cells. The results of RT-PCR, Western blotting and ELISA showed that VEGF gene expression in the pcDNA3.1-HRE.ppET-1+VEGF+Pa group and in the pcDNA3.1-ppET-1+VEGF+Pa group was higher in hypoxia than it was in normoxia (P<0.05). The MTT test showed that the proliferation rate of HUVEC transfected with HPVA under hypoxia exceeded that of the control group. We conclude that the HRE.ppET-1 element was expressed specifically in endothelial cells, and can increase the expression of VEGF in hypoxia and stimulate proliferation of endothelial cells. Taking advantage of these facts could greatly improve the efficiency of gene therapy. The vector would be valuable for various gene transfer studies targeting endothelial cells.

  6. Effect of Intravitreal Bevacizumab on Vascular Endothelial Growth Factor Expression in Patients with Proliferative Diabetic Retinopathy

    PubMed Central

    Chung, Eun Jee; Kang, Shin Jeong; Koo, Ja Seung; Choi, Yoon Jung; Grossniklaus, Hans E.

    2011-01-01

    Purpose To investigate the effect of bevacizumab (Avastin; Genentech, San Francisco, CA, USA) on vascular endothelial growth factor (VEGF) expression and inflammation in fibrovascular membranes in patients with proliferative diabetic retinopathy (PDR). Materials and Methods Fibrovascular membranes from 19 eyes of 18 patients with PDR were studied using immunohistochemistry and analyzed in the following 3 groups; group 1: 4 inactive PDR eyes, group 2: 10 active PDR eyes treated preoperatively with adjunctive intravitreal bevacizumab, group 3: five active PDR eyes not treated preoperatively with bevacizumab. Immunohistochemical staining for VEGF, CD31 and CD68 were done. Results The immunoreactivity to VEGF and CD 31-positive blood vessels was significantly higher in membranes from group 3 than group 1 (p = 0.007 for VEGF, 0.013 for CD 31-positive vessels). Intravitreal bevacizumab caused a reduction in VEGF expression and vascular densities in 4 out of 10 (40%) excised membranes from eyes with PDR. However, six membranes (60%) in group 2 still demonstrated relatively strong VEGF expression and high vascular density. Infiltration of macrophages was observed in 16 out of the 19 membranes, and the density of macrophages was increased in group 2 compared with group 1 (p = 0.043). Conclusion Intravitreal bevacizumab injections caused some reduction in VEGF expression and vascular densities in a limited number of active PDR patients. A single intravitreal bevacizumab injection may not be enough to induce complete blockage of VEGF and pathologic neovascularization in active PDR patients. Repeated injections, panretinal photocoagulation and/or PPV may be necessary following intravitreal bevacizumab to reinforce the anti-VEGF effect of the drug. PMID:21155048

  7. Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells.

    PubMed

    Yokomori, Hiroaki; Oda, Masaya; Yoshimura, Kazunori; Nagai, Toshihiro; Ogi, Mariko; Nomura, Masahiko; Ishii, Hiromasa

    2003-12-01

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and vascular permeability. Hepatic sinusoidal endothelial cells (SECs) possess sieve-like pores that form an anastomosing labyrinth structure by the deeply invaginated plasma membrane. Caveolin is the principal structural protein in caveolae. In this study, we examined the role of VEGF on the fenestration and permeability of SECs and the relation with caveolin-1. SECs isolated from rat livers by collagenase infusion method were cultured for 24 h with (10 or 100 ng/ml) or without VEGF. The cells were then examined by transmission and scanning electron microscopy (EM). The expression of caveolin was investigated by confocal immunofluorescence, immunogold EM, and Western blot. Endocytosis and intracellular traffic was studied using horseradish peroxidase (HRP) reaction as a marker of fluid phase transport in SECs. Both transmission and scanning EM showed an increased number of sinusoidal endothelial fenestrae (SEF) in SECs cultured with VEGF. By confocal immunofluorescence, SECs cultured with VEGF displayed prominent caveolin-l-positive aggregates in the cytoplasm, especially surrounding the nucleus region. Immunogold EM depicted increased caveolin-1 reactivity on vesicles and vacuoles of VEGF-treated SECs compared with VEGF-nontreated cells. However, there was no change in the level of caveolin-1 protein expression on Western blot. After HRP injection, an increase of electron-dense tracer filled the SEF in cells treated with VEGF. Our results suggested that VEGF induced fenestration in SECs, accompanied by an increased number of caveolae-like vesicles. Increased caveolin-1 might be associated with vesicle formation but not with fenestration. Increased fenestration may augment hepatic sinusoidal permeability and transendothelial transport.

  8. Significance of CEA and VEGF as Diagnostic Markers of Colorectal Cancer in Lebanese Patients.

    PubMed

    Dbouk, Hashem A; Tawil, Ayman; Nasr, Fahd; Kandakarjian, Loucine; Abou-Merhi, Raghida

    2007-11-08

    Carcinoembryonic antigen and vascular endothelial growth factors are among the most important prognostic markers of colorectal cancer. Testing for these markers independently has been of limited value in screening for this tumor. The aim of this study is to determine the importance of simultaneous blood CEA and VEGF level determinations in diagnosis of colorectal cancer. Thirty-six patients diagnosed with colorectal cancer along with eight healthy controls were tested by ELISA for CEA and VEGF levels in serum and plasma, respectively. The positive predictive value of these markers was 95.4% for CEA and 89.5% for VEGF, and for combined CEA and VEGF was also high at 88%. Combined CEA and VEGF blood level assay constitutes a useful panel in detecting patients with colorectal cancer. Positive results allow selection of a subgroup of patients with a high tumor risk; therefore, such tests comprise valuable tumor diagnostic tests to add to current detection methods.

  9. Loss of epigenetic Kruppel-like factor 4 histone deacetylase (KLF-4-HDAC)-mediated transcriptional suppression is crucial in increasing vascular endothelial growth factor (VEGF) expression in breast cancer.

    PubMed

    Ray, Alpana; Alalem, Mohamed; Ray, Bimal K

    2013-09-20

    Vascular endothelial growth factor (VEGF) is recognized as an important angiogenic factor that promotes angiogenesis in a series of pathological conditions, including cancer, inflammation, and ischemic disorders. We have recently shown that the inflammatory transcription factor SAF-1 is, at least in part, responsible for the marked increase of VEGF levels in breast cancer. Here, we show that SAF-1-mediated induction of VEGF is repressed by KLF-4 transcription factor. KLF-4 is abundantly present in normal breast epithelial cells, but its level is considerably reduced in breast cancer cells and clinical cancer tissues. In the human VEGF promoter, SAF-1- and KLF-4-binding elements are overlapping, whereas SAF-1 induces and KLF-4 suppresses VEGF expression. Ectopic overexpression of KLF-4 and RNAi-mediated inhibition of endogenous KLF-4 supported the role of KLF-4 as a transcriptional repressor of VEGF and an inhibitor of angiogenesis in breast cancer cells. We show that KLF-4 recruits histone deacetylases (HDACs) -2 and -3 at the VEGF promoter. Chronological ChIP assays demonstrated the occupancy of KLF-4, HDAC2, and HDAC3 in the VEGF promoter in normal MCF-10A cells but not in MDA-MB-231 cancer cells. Co-transfection of KLF-4 and HDAC expression plasmids in breast cancer cells results in synergistic repression of VEGF expression and inhibition of angiogenic potential of these carcinoma cells. Together these results identify a new mechanism of VEGF up-regulation in cancer that involves concomitant loss of KLF-4-HDAC-mediated transcriptional repression and active recruitment of SAF-1-mediated transcriptional activation.

  10. Vascular endothelial growth factor-C (VEGF-C) expression predicts lymph node metastasis of transitional cell carcinoma of the bladder.

    PubMed

    Suzuki, Kazumi; Morita, Tatsuo; Tokue, Akihiko

    2005-02-01

    It has been found that expression of vascular endothelial growth factor-C (VEGF-C) in several carcinomas is significantly associated with angiogenesis, lymphangiogenesis and regional lymph node metastasis. However, VEGF-C expression in bladder transitional cell carcinoma (TCC) has not yet been reported. To elucidate the role of VEGF-C in bladder TCC, we examined VEGF-C expression in bladder TCC and pelvic lymph node metastasis specimens obtained from patients who underwent radical cystectomy. Eighty-seven patients who underwent radical cystectomy for clinically organ-confined TCC of the bladder were enrolled in the present study. No neoadjuvant treatments, except transurethral resection of the tumor, were given to these patients. The VEGF-C expressions of 87 bladder tumors and 20 pelvic lymph node metastasis specimens were examined immunohistochemically and the association between VEGF-C expression and clinicopathological factors, including angiogenesis as evaluated by microvessel density (MVD), was also examined. Vascular endothelial growth factor-C expression was found in the cytoplasm of tumor cells, but not in the normal transitional epithelium. Vascular endothelial growth factor-C expression was significantly associated with the pathological T stage (P = 0.0289), pelvic lymph node metastasis (P < 0.0001), lymphatic involvement (P = 0.0008), venous involvement (P = 0.0002) and high MVD (P = 0.0043). The multivariate analysis demonstrated that VEGF-C expression and high MVD in bladder TCC were independent risk factors influencing the pelvic lymph node metastasis. Moreover, the patients with VEGF-C-positive tumors had significantly poorer prognoses than those with the VEGF-C-negative tumors (P = 0.0087) in the univariate analysis. The multivariate analysis based on Cox proportional hazard model showed that the independent prognostic factors were patient age (P = 0.0132) and pelvic lymph node metastasis (P = 0.0333). The present study suggests that VEGF-C expression is an important predictive factor of pelvic lymph node metastasis in bladder cancer patients.

  11. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  12. H pylori status and angiogenesis factors in human gastric carcinoma

    PubMed Central

    Mangia, Anita; Chiriatti, Annalisa; Ranieri, Girolamo; Abbate, Ines; Coviello, Maria; Simone, Giovanni; Zito, Francesco Alfredo; Montemurro, Severino; Rucci, Antonello; Leo, Alfredo Di; Tommasi, Stefania; Berloco, Pasquale; Xu, Jian Ming; Paradiso, Angelo

    2006-01-01

    AIM: To investigate H pylori expression in gastric cancer patients in relation to primary tumor angiogenic markers, such as microvessel density (MVD), thymidine phosphorylase (TP), vascular endothelial growth factor receptor-1 (VEGF-R1), p53 and circulating VEGF levels. METHODS: Angiogenic markers were analyzed immunohistochemically in 56 primary gastric cancers. H pylori cytotoxin (vacA) and the cytotoxin-associated gene (cagA) amplification were evaluated using PCR assay. Serum H pylori IgG antibodies and serum/plasma circulating VEGF levels were detected in 39 and 38 patients by ELISA, respectively. RESULTS: A total of 69% of patients were positive for circulating IgG antibodies against H pylori. cagA-positive H pylori strains were found in 41% of gastric patients. vacA was found in 50% of patients; s1 strains were more highly expressed among vacA-positive patients. The presence of the s1 strain was significantly associated with cagA (P = 0.0001). MVD was significantly correlated with both tumor VEGF expression (r = 0.361, P = 0.009) and serum VEGF levels (r = -0.347, P = 0.041). Conversely, neither VEGF-R1 expression nor MVD was related to p53 expression. However, H pylori was not related to any angiogenic markers except for the plasma VEGF level (P = 0.026). CONCLUSION: H pylori antigen is related to higher plasma VEGF levels, but not to angiogenic characteristics. It can be hypothesized that the toxic effects of H pylori on angiogenesis occurs in early preclinical disease phase or in long-lasting aggressive infections, but only when high H pylori IgG levels are persistent. PMID:17006982

  13. VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy.

    PubMed

    Amato, Rosario; Biagioni, Martina; Cammalleri, Maurizio; Dal Monte, Massimo; Casini, Giovanni

    2016-06-01

    Growing evidence indicates neuroprotection as a therapeutic target in diabetic retinopathy (DR). We tested the hypothesis that VEGF is released and acts as a survival factor in the retina in early DR. Ex vivo mouse retinal explants were exposed to stressors similar to those characterizing DR, that is, high glucose (HG), oxidative stress (OS), or advanced glycation end-products (AGE). Neuroprotection was provided using octreotide (OCT), a somatostatin analog, and pituitary adenylate cyclase activating peptide (PACAP), two well-documented neuroprotectants. Data were obtained with real-time RT-PCR, Western blot, ELISA, and immunohistochemistry. Apoptosis was induced in the retinal explants by HG, OS, or AGE treatments. At the same time, explants also showed increased VEGF expression and release. The data revealed that VEGF is released shortly after exposure of the explants to stressors and before the level of cell death reaches its maximum. Retinal cell apoptosis was inhibited by OCT and PACAP. At the same time, OCT and PACAP also reduced VEGF expression and release. Vascular endothelial growth factor turned out to be a protective factor for the stressed retinal explants, because inhibiting VEGF with a VEGF trap further increased cell death. These data show that protecting retinal neurons from diabetic stress also reduces VEGF expression and release, while inhibiting VEGF leads to exacerbation of apoptosis. These observations suggest that the retina in early DR releases VEGF as a prosurvival factor. Neuroprotective agents may decrease the need of VEGF production by the retina, therefore limiting the risk, in the long term, of pathologic angiogenesis.

  14. Triple Inhibition of EGFR, Met, and VEGF Suppresses Regrowth of HGF-Triggered, Erlotinib-Resistant Lung Cancer Harboring an EGFR Mutation

    PubMed Central

    Nakade, Junya; Takeuchi, Shinji; Nakagawa, Takayuki; Ishikawa, Daisuke; Sano, Takako; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Matsumoto, Kunio; Yonekura, Kazuhiko

    2014-01-01

    Introduction: Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer. Methods: Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene–transfected PC-9 (PC-9/HGF) cells were examined. Results: Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment. Conclusion: These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis. PMID:24828661

  15. Expression of Vascular Endothelial Growth Factor in Odontogenic Cysts: Is There Any Impression on Clinical Outcome?

    PubMed

    Sadri, Donia; Farhadi, Sareh; Shahabi, Zahra; Sarshar, Samaneh

    2016-01-01

    The recent scientific reports have shown that angiogenesis can affect biological behavior of pathologic lesions. Regarding unique clinical outcome of Odontogenic keratocyst (OKC), the present study was aimed to compare angiogenesis in Odontogenic keratocyst and Dentigerous cyst (DC). In this experimental study, tissue sections of 46 samples of OKC and DC were stained through immunohistochemical method using Vascular Endothelial Growth Factor (VEGF) antibody. VEGF expression was evaluated in epithelial cells, fibroblasts and endothelial cells. The average percentage of stained cells in any samples was categorized to 3 groups as follows: SCORE 0: 10% of cells or less are positive. SCORE 1: 10 to 50% of cells are positive. SCORE 2: more than 50% of cells are positive. Mann-U-Whitney, T-test and chi-square was used for statistical analysis. The average of VEGF expression in 24 samples of DC was 20.2% and in 22 samples of OKC was 52.6%, respectively. The average of VEGF expression in these two cysts had statistical significant differences. (PV= 0.045). There was significant statistical differences between two cysts in the terms of VEGF SCORE (PV= 0.000). OKC samples had significantly higher SCORE for the purpose of VEGF incidence than DC. Also, there were no differences between VEGF expression in epithelial cells of two cysts (PV= 0.268) there were significant statistical differences between two cysts in terms of endothelial cell staining. The endothelial cell staining was significantly higher in OKC than DC (PV= 0.037%). Regarding higher expression of Vascular Endothelial Growth factor in OKC than DC, it seems that angiogenesis may have great impression on clinical outcome of OKC.

  16. Simultaneous EGFR and VEGF Alterations in Non-Small Cell Lung Carcinoma Based on Tissue Microarrays

    PubMed Central

    Tsiambas, Evangelos; Stamatelopoulos, Athanasios; Karameris, Andreas; Panagiotou, Ioannis; Rigopoulos, Dimitrios; Chatzimichalis, Antonios; Bouros, Demosthenes; Patsouris, Efstratios

    2007-01-01

    Background: Epidermal growth factor receptor (EGFR) overexpression is observed in significant proportions of non-small cell lung carcinomas (NSCLC). Furthermore, overactivation of vascular endothelial growth factor (VEGF) leads to increased angiogenesis implicated as an important factor in vascularization of those tumors. Patients and Methods: Using tissue microarray technology, forty-paraffin (n = 40) embedded, histologically confirmed primary NSCLCs were cored and re-embedded into a recipient block. Immunohistochemistry was performed for the determination of EGFR and VEGF protein levels which were evaluated by the performance of computerized image analysis. EGFR gene amplification was studied by chromogenic in situ hybridization based on the use of EGFR gene and chromosome 7 centromeric probes. Results: EGFR overexpression was observed in 23/40 (57.5%) cases and was correlated to the stage of the tumors (p = 0.001), whereas VEGF was overexpressed in 35/40 (87.5%) cases and was correlated to the stage of the tumors (p = 0.005) and to the smoking history of the patients (p = 0.016). Statistical significance was assessed comparing the protein levels of EGFR and VEGF (p = 0.043, k = 0.846). EGFR gene amplification was identified in 2/40 (5%) cases demonstrating no association to its overall protein levels (p = 0.241), whereas chromosome 7 aneuploidy was detected in 7/40 (17.5%) cases correlating to smoking history of the patients (p = 0.013). Conclusions: A significant subset of NSCLC is characterized by EGFR and VEGF simultaneous overexpression and maybe this is the eligible target group for the application of combined anti-EGFR/VEGF targeted therapies at the basis of genetic deregulation (especially gene amplification for EGFR). PMID:19455247

  17. Tumor necrosis factor-α promotes the lymphangiogenesis of gallbladder carcinoma through nuclear factor-κB-mediated upregulation of vascular endothelial growth factor-C

    PubMed Central

    Du, Qiang; Jiang, Lei; Wang, Xiaoqian; Wang, Meiping; She, Feifei; Chen, Yanling

    2014-01-01

    Vascular endothelial growth factor (VEGF)-C is an important lymphangiogenic factor involved in the lymphangiogenesis of gallbladder carcinoma (GBC) and the lymph node metastasis of the tumor. Tumor necrosis factor (TNF)-α, a key inflammatory cytokine responding to chronic inflammation of GBC, has been reported to stimulate the expression of VEGF-C in some nonneoplastic cells. But whether TNF-α promotes the expression of VEGF-C in GBC has yet to be determined. Therefore, in the present study, the concentration of TNF-α and VEGF-C and the lymphatic vessel density (LVD) in the clinical GBC specimens were analyzed, and a linear correlation was found between the concentration of TNF-α and that of VEGF-C, the lymphatic vessel density (LVD); The transcription and protein level of VEGF-C in NOZ cell line were detected by real-time polymerase chain reaction (PCR) and enzyme linked immunosorbent assay (ELISA), and TNF-α enhanced the expression of VEGF-C in NOZ cell lines in a dose and time-dependent manner. Lymphatic tube formation in vitro was observed in a three-dimensional coculture system consisting of HDLECs and NOZ cell lines, and lymphatic vessels of GBC in nude mice model was detected by immunohistochemistry. TNF-α promoted the tube formation of lymphatic endothelial cells in vitro and the lymphangiogenesis of GBC in nude mice; The nuclear factor (NF)-κB binding site on the VEGF-C promoter was identified using Site-directed mutagenesis, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Taken together, TNF-α can upregulate the expression of VEGF-C and promote the lymphangiogenesis of GBC via NF-κB combining with the promoter of VEGF-C. PMID:25154789

  18. [Effects of basic fibroblast growth factor and vascular endothelial growth factor on the proliferation, migration and adhesion of human periodontal ligament stem cells in vitro].

    PubMed

    Zhang, Rong; Zhang, Mian; Li, Cheng-hua; Wang, Peng-cheng; Chen, Fang; Wang, Qin-tao

    2013-05-01

    To evaluate the effects of basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF) on the proliferation, migration, and adhesion of human periodontal ligament stem cells (PDLSC) in vitro. Human PDLSC were cultured in vitro using tissue culture method.The cells were cultured and incubated with various concentrations of FGF-2 and VEGF [A:α-MEM with 2% fetal bovine serum (FBS) (control 1); B:A supplemented with 20 µg/L FGF-2; C:A supplemented with 10 µg/L VEGF; D:A supplemented with 20 µg/L FGF-2 and 10 µg/L VEGF; E:α-MEM with 10% FBS (control 2); F:E supplemented with 20 µg/L FGF-2; G:E supplemented with 10 µg/L VEGF; H:E supplemented with 20 µg/L FGF-2 and 10 µg/L VEGF]. Soluble tetrazolium salts assay was used to evaluate the proliferative capacity on the 1st, 3rd, 5th and 7th d. Then the groups were changed according to result of the proliferation assay (control:α-MEM with 2% FBS; FGF-2 group:control supplemented with 20 µg/L FGF-2; VEGF:control supplemented with 10 µg/L VEGF; Combination group:control supplemented with 20 µg/L FGF-2 and 10 µg/L VEGF). The cell cycle, migration and adhesion capacities were evaluated using flow cytometer, soluble tetrazolium salts assay, cell adhesion assay and scratch wound-healing motility assay. In 2% volume fraction serum containing medium, FGF-2 and VEGF did not stimulate the cell proliferation. However, in 10% serum condition, in groups treated with FGF-2 for 3,5 or 7 d, the A value was (1.22 ± 0.17, 2.15 ± 0.19, 2.72 ± 0.11) respectively, which were significantly higher than that in the control group (0.76 ± 0.16, 1.25 ± 0.06, 1.64 ± 0.09) (P < 0.01) while lower than that in the group treated with FGF-2 and VEGF in combination on the 5 th and 7 th d (2.46 ± 0.17, 3.18 ± 0.27) ( P < 0.05). The A value in the VEGF group on the 5 th and 7 th d is higher than the control group while lower than the FGF-2 group (1.66 ± 0.05, 2.13 ± 0.13) (P < 0.05). Flow cytometer showed that the proliferation index in VEGF group [(34.3 ± 2.0)% ] were significantly lower than those in FGF-2 [(46.8 ± 3.2)%] group and (FGF-2+ VEGF) group [(45.0 ± 4.0)%] but higher than in the control group [(14.5 ± 1.7)%] (P < 0.01). The cell migration assay indicated that the group stimulated with FGF-2 showed no migration promoted effect. Cell adhesion assay showed that the ratio of the adhesive cells number to the original cells number is greater in the FGF-2 group (79 ± 4) than in the VEGF group (62 ± 4) (P < 0.05). Light microscope identified a better cellular morphology on the adhesive surface in the group with FGF-2 than groups without FGF-2. Both FGF-2 and VEGF could simulate the proliferation of PDLSC in a dose dependent manner, and showed an synergistic effect. FGF-2 was more effective to promote the adhesive capacity of PDLSC compared with VEGF. VEGF could facilitate the migration of PDLSC to the wound side.

  19. Association of a single-nucleotide polymorphism in the promoter region of the VEGF gene with the risk of renal cell carcinoma.

    PubMed

    Ajaz, Sadia; Khaliq, Shagufta; Abid, Aiysha; Hassan, Asad Shehzad; Hashmi, Altaf; Sultan, Gauhar; Mohsin, Rehan; Mubarrak, Mohammad; Naqvi, Syed Ali Anwar; Rizvi, Syed Adib-ul-Hasan; Mehdi, Syed Qasim

    2011-09-01

    Vascular endothelial growth factor (VEGF) protein plays an important role in tumor development and progression. Polymorphisms in the VEGF gene may lead to over- or underexpression of the protein and may be associated with either risk or progression of malignancy. The aim of this case-control study is to identify and quantify the correlation between VEGF polymorphisms and renal cell carcinoma (RCC). Restriction fragment length polymorphism methods were used for the analysis of VEGF polymorphisms at -2578 and +936 positions in the promoter and 3'-untranslated regions, respectively. The VEGF -2578 A-allele was associated with an increased risk of RCC (odds ratio: 1.6; 95% CI: 1.2-2.3) and A-carrier genotypes were strongly correlated (odds ratio: 2.7; 95% CI: 1.5-4.7) with higher risk. Comparison of VEGF +936 C/T polymorphism between patient and control groups revealed no association with renal carcinoma. Both VEGF -2578 C/A and VEGF +936 C/T polymorphisms showed no significant association with the histopathological parameters of RCC. This study shows that VEGF -2578 A-allele and A-carrier genotypes are associated with an increased risk of RCC. In groups with higher incidence of RCC, a screening test for this polymorphism may be recommended in conjunction with other established markers.

  20. The expression and underlying angiogenesis effect of DPC4 and VEGF on the progression of cervical carcinoma

    PubMed Central

    A, Yanni; Li, Ying; Zhao, Shuping

    2018-01-01

    The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (−)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (−), VEGF (+) and TSP-1 (−) groups was significantly increased compared with that of the DPC4 (+), VEGF (−), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4. PMID:29434970

  1. The expression and underlying angiogenesis effect of DPC4 and VEGF on the progression of cervical carcinoma.

    PubMed

    A, Yanni; Li, Ying; Zhao, Shuping

    2018-02-01

    The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (-)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (-), VEGF (+) and TSP-1 (-) groups was significantly increased compared with that of the DPC4 (+), VEGF (-), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4.

  2. Novel vascular endothelial growth factor blocker improves cellular viability and reduces hypobaric hypoxia-induced vascular leakage and oedema in rat brain.

    PubMed

    Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad

    2015-05-01

    Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.

  3. Expression Pattern of HIF-1α and VEGF Supports Circumferential Application of Scatter Laser for Proliferative Sickle Retinopathy

    PubMed Central

    Rodrigues, Murilo; Kashiwabuchi, Fabiana; Deshpande, Monika; Jee, Kathleen; Goldberg, Morton F.; Lutty, Gerard; Semenza, Gregg L.; Montaner, Silvia; Sodhi, Akrit

    2016-01-01

    Purpose Retinal vascular occlusions in sickle cell anemia patients cause tissue ischemia and the release of angiogenic mediators that promote the development of retinal neovascularization, initiating proliferative sickle retinopathy (PSR). Laser photocoagulation (LPC) has emerged as the most common treatment for PSR. Nonetheless, only two randomized controlled clinical trials have evaluated the use of LPC for PSR, and both failed to definitively demonstrate efficacy of this approach. This may be due to a lack of knowledge regarding the appropriate location for placement of laser coagulations in PSR eyes. To help address this question, we examined the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) in PSR eyes. Methods The expression pattern of HIF-1α and VEGF in PSR (n = 5) and control (n = 3) eyes was examined by immunohistochemistry in different retinal regions defined by the presence or absence of retinal vessels. Results Hypoxia-inducible factor 1α and VEGF were expressed in the inner retina of 5/5 untreated PSR eyes adjacent to retinal neovascularization; expression of HIF-1α was not detected (and VEGF only lightly detected) in normal retinal and choroidal vasculature of 3/3 control eyes. Hypoxia-inducible factor 1α and VEGF were strongly expressed in retinal cells within avascular (nonperfused) retina, anterior to the boundary between perfused and nonperfused retina, as well as in posterior ischemic retina in the presence or absence of neovascular sea fans. Conclusions If the goal of LPC in PSR is to quench the expression of HIF-1–driven angiogenic mediators, our results support broad application of peripheral laser for its treatment. PMID:27951596

  4. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis.

    PubMed

    Alahakoon, Thushari I; Zhang, Weiyi; Arbuckle, Susan; Zhang, Kewei; Lee, Vincent

    2018-05-01

    To localize, quantify and compare angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor (PlGF), as well as their receptors fms-like tyrosine kinase receptor (Flt-1) and kinase insert domain receptor (KDR) in the placentas of normal pregnancy and complications of preeclampsia (PE), intrauterine fetal growth restriction (IUGR) and PE + IUGR. In a prospective cross-sectional case-control study, 30 pregnant women between 24-40 weeks of gestation, were recruited into four clinical groups. Representative placental samples were stained for VEGF, PlGF, Flt-1 and KDR. Analysis was performed using semiquantitative methods and digital image analysis. The overall VEGF and Flt-1 were strongly expressed and did not show any conclusive difference in the expression between study groups. PlGF and KDR were significantly reduced in expression in the placentas from pregnancies complicated by IUGR compared with normal and preeclamptic pregnancies. The lack of PlGF and KDR may be a cause for the development of IUGR and may explain the loss of vasculature and villous architecture in IUGR. Automated digital image analysis software is a viable alternative method to the manual reading of placental immunohistochemical staining. © 2018 Japan Society of Obstetrics and Gynecology.

  5. Plasma and platelet-derived vascular endothelial growth factor and angiopoietin-1 in hypertension: effects of antihypertensive therapy.

    PubMed

    Nadar, S K; Blann, A D; Lip, G Y H

    2004-10-01

    Platelets carry angiogenic growth factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1). Although platelet-derived growth factors are important in the pathogenesis and metastasis of malignancy, their role in the pathogenesis of complications and the response to treatment in hypertension is less known. To test the hypotheses that there are differences in VEGF and Ang-1 in the plasma and within platelets from patients with hypertension, and that levels change with successful treatment. We recruited 42 previously untreated patients with hypertension (25 male; mean age 53 years) and 30 age- and sex-matched controls. Plasma VEGF, Ang-1 and soluble P-selectin (sPsel, an index of platelet activation), and total platelet [platelet VEGF (pVEGF) and platelet Ang-1 (pAng-1)] were measured by ELISA. The patients were then treated for 6 months with amlodipine-based antihypertensive therapy, achieving a mean blood pressure below 140/80 mmHg. Patients with hypertension had significantly higher levels of plasma sPsel (P =0.01), VEGF (P < 0.001) and Ang-1 (P = 0.01), as well as pVEGF (P < 0.001) and pAng-1 (P =0.02). The levels of plasma and platelet angiogenic growth factors were significantly reduced after antihypertensive treatment (VEGF, P = 0.01; pVEGF, P < 0.001; Ang-1, P < 0.001; pAng-1, P = 0.04). There were no correlations with blood pressure or the levels of sPsel. Levels of plasma and intra-platelet VEGF and Ang-1 are increased in hypertension and are decreased with treatment. Platelet levels of VEGF and Ang-1 may be related to platelet activation but may also involve other mechanisms (for example, the general vascular and haemodynamic changes) that are seen in hypertension.

  6. Identification of functional VEGF receptors on human platelets.

    PubMed

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  7. Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis.

    PubMed

    Catena, Raul; Muniz-Medina, Vanessa; Moralejo, Beatriz; Javierre, Biola; Best, Carolyn J M; Emmert-Buck, Michael R; Green, Jeffrey E; Baker, Carl C; Calvo, Alfonso

    2007-05-15

    Vascular endothelial growth factor (VEGF) is a proangiogenic factor upregulated in many tumors. The alternative splicing of VEGF mRNA renders 3 major isoforms of 121, 165 and 189 amino-acids in humans (1 less amino-acid for each mouse VEGF isoform). We have designed isoform specific real time QRT-PCR assays to quantitate VEGF transcripts in mouse and human normal and malignant prostates. In the human normal prostate, VEGF(165) was the predominant isoform (62.8% +/- 5.2%), followed by VEGF(121) (22.5% +/- 6.3%) and VEGF(189) (p < 0.001) (14.6% +/- 2.1%). Prostate tumors showed a significant increase in the percentage of VEGF(121) and decreases in VEGF(165) (p < 0.01) and VEGF(189) (p < 0.05). However, the amount of total VEGF mRNA was similar between normal and malignant prostates. VEGF(164) was the transcript with the highest expression in the mouse normal prostate. Unlike human prostate cancer, tumors from TRAMP mice demonstrated a significant increase in total VEGF mRNA levels and in each of the VEGF isoforms, without changes in the relative isoform ratios. Morpholino phosphorodiamide antisense oligonucleotide technology was used to increase the relative amount of VEGF(121) while proportionally decreasing VEGF(165) and VEGF(189) levels in human prostate cell lines, through the modification of alternative splicing, without changing transcription levels and total amount of VEGF. The increase in the VEGF(121)/VEGF(165-189) ratio in PC3 cells resulted in a dramatic increase in prostate tumor angiogenesis in vivo. Our results underscore the importance of VEGF(121) in human prostate carcinoma and demonstrate that the relative expression of the different VEGF isoforms has an impact on prostate carcinogenesis. (c) 2007 Wiley-Liss, Inc.

  8. Characterization of two types of vascular endothelial growth factor from Litopenaeus vannamei and their involvements during WSSV infection.

    PubMed

    Wang, Zhiwei; Li, Shihao; Li, Fuhua; Yang, Hui; Yang, Fusheng; Xiang, Jianhai

    2015-12-01

    Vascular endothelial growth factors (VEGFs) are important signaling proteins in VEGF signaling pathway which play key roles in inducing endothelial cell proliferation, migration, angiogenesis, vascular permeability, inhibition of apoptosis and virus infection. In the present study, we isolated and characterized two VEGF genes, LvVEGF1 and LvVEGF2 from Litopenaeus vannamei. The deduced amino acid sequences of both LvVEGF1 and LvVEGF2 contained a signal peptide, a typical PDGF/VEGF domain and a cysteine knot motif (CXCXC). Tissue distribution analysis showed that LvVEGF1 was predominantly expressed in lymphoid organ (Oka) while LvVEGF2 was mainly detected in gill and hemocytes. The transcriptional levels of LvVEGF1 in Oka and LvVEGF2 in gill or hemocytes were apparently up-regulated during WSSV infection. Double-stranded RNA interference was used for further functional studies. The data showed that silencing of LvVEGF1 and LvVEGF2 caused a decrease of the copy numbers of the virus in WSSV infected shrimp and a reduction of the cumulative mortality rate of shrimp during WSSV infection. The present study indicated that LvVEGF1 and LvVEGF2 might facilitate WSSV infection, which provided new evidence to understand the function of VEGF signaling pathway during WSSV infection in shrimp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Synaptic loss and firing alterations in Axotomized Motoneurons are restored by vascular endothelial growth factor (VEGF) and VEGF-B.

    PubMed

    Calvo, Paula M; de la Cruz, Rosa R; Pastor, Angel M

    2018-06-01

    Vascular endothelial growth factor (VEGF), also known as VEGF-A, was discovered due to its vasculogenic and angiogenic activity, but a neuroprotective role for VEGF was later proven for lesions and disorders. In different models of motoneuronal degeneration, VEGF administration leads to a significant reduction of motoneuronal death. However, there is no information about the physiological state of spared motoneurons. We examined the trophic role of VEGF on axotomized motoneurons with recordings in alert animals using the oculomotor system as the experimental model, complemented with a synaptic study at the confocal microscopy level. Axotomy leads to drastic alterations in the discharge characteristics of abducens motoneurons, as well as to a substantial loss of their synaptic inputs. Retrograde delivery of VEGF completely restored the discharge activity and synaptically-driven signals in injured motoneurons, as demonstrated by correlating motoneuronal firing rate with motor performance. Moreover, VEGF-treated motoneurons recovered a normal density of synaptic boutons around motoneuronal somata and in the neuropil, in contrast to the low levels of synaptic terminals found after axotomy. VEGF also reduced the astrogliosis induced by axotomy in the abducens nucleus to control values. The administration of VEGF-B produced results similar to those of VEGF. This is the first work demonstrating that VEGF and VEGF-B restore the normal operating mode and synaptic inputs on injured motoneurons. Altogether these data indicate that these molecules are relevant synaptotrophic factors for motoneurons and support their clinical potential for the treatment of motoneuronal disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. VEGF is a chemoattractant for FGF-2–stimulated neural progenitors

    PubMed Central

    Zhang, Huanxiang; Vutskits, Laszlo; Pepper, Michael S.; Kiss, Jozsef Z.

    2003-01-01

    Mmigration of undifferentiated neural progenitors is critical for the development and repair of the nervous system. However, the mechanisms and factors that regulate migration are not well understood. Here, we show that vascular endothelial growth factor (VEGF)-A, a major angiogenic factor, guides the directed migration of neural progenitors that do not display antigenic markers for neuron- or glia-restricted precursor cells. We demonstrate that progenitor cells express both VEGF receptor (VEGFR) 1 and VEGFR2, but signaling through VEGFR2 specifically mediates the chemotactic effect of VEGF. The expression of VEGFRs and the chemotaxis of progenitors in response to VEGF require the presence of fibroblast growth factor 2. These results demonstrate that VEGF is an attractive guidance cue for the migration of undifferentiated neural progenitors and offer a mechanistic link between neurogenesis and angiogenesis in the nervous system. PMID:14691144

  11. Cyclooxygenase-2 expression after preoperative chemoradiotherapy correlates with more frequent esophageal cancer recurrence

    PubMed Central

    Yoshikawa, Reigetsu; Fujiwara, Yoshinori; Koishi, Kenji; Kojima, Syoudou; Matsumoto, Tomohiro; Yanagi, Hidenori; Yamamura, Takehira; Hashimoto-Tamaoki, Tomoko; Nishigami, Takashi; Tsujimura, Tohru

    2007-01-01

    AIM: To investigate the relationship between cycloo-xygenase-2 (COX-2), and vascular endothelial growth factor (VEGF), and to determine the clinical significance of this relationship in esophageal cancer patients undergoing chemoradiotherapy (CRT). METHODS: Immunohistochemical staining was used to evaluate COX-2 and VEGF expression in 40 patients with histologically-confirmed esophageal squamous carcinoma (ESCC) who were undergoing preoperative CRT. RESULTS: Fourteen out of 40 ESCC patients showed a pathological complete response (CR) after CRT. COX-2 and VEGF protein expressions were observed in the cytoplasm of 17 and 13 tumors, respectively, with null expression in 9 and 13 tumors, respectively. COX-2 expression was strongly correlated with VEGF expression (P < 0.05). There were also significant associations between COX-2 expression, tumor recurrence, and lymph-node involvement (P = 0.0277 and P = 0.0095, respectively). COX-2 expression and VEGF expression had significant prognostic value for disease-free survival (log-rank test; P = 0.0073 and P = 0.0341, respectively), but not for overall survival, as assessed by univariate analysis. CONCLUSION: Our results suggest that COX-2 expression correlates with VEGF expression and might be a useful prognostic factor for more frequent tumor recurrence in ESCC patients undergoing neoadjuvant CRT. These findings support the use of anti-angiogenic COX-2 inhibitors in the treatment of ESCC. PMID:17511025

  12. Vascular endothelial growth factor levels in tears of patients with retinal vein occlusion.

    PubMed

    Kasza, M; Balogh, Z; Biro, L; Ujhelyi, B; Damjanovich, J; Csutak, A; Várdai, J; Berta, A; Nagy, V

    2015-09-01

    We measured vascular endothelial growth factor (VEGF) levels in tear fluid and serum in patients with retinal vein occlusion (RVO). Eight patients with RVO due to secondary macular oedema were examined. VEGF levels were measured by enzyme-linked immunosorbent assay. All patients had a full ophthalmic examination (visual acuity, slit lamp biomicroscopy, perimetry, and fluorescein angiography). Central retinal thickness (CRT) was examined using optical coherence tomography (OCT). Tear and serum samples were collected and examinations were performed at diagnosis and 1 and 4 weeks later. VEGF levels in the tears of RVO eyes were significantly higher than in fellow eyes at diagnosis and after both 1 and 4 weeks (paired t test, p1 = 0.01, p2 = 0.02, p3 = 0.006). We found a weak but significant positive correlation between VEGF levels in tear fluid and serum of patients with RVO (r = 0.21), while this correlation tended to be stronger between the fellow eyes and serum levels (r = 0.33). To the best of our knowledge, we are the first to report an increased level of VEGF in the tear fluid of patients with RVO. Alterations of VEGF levels in tears may be useful for determining stages of RVO. This non-invasive and objective method may also be helpful for estimating the severity of macular oedema and efficacy of treatment.

  13. [Investigation of mechanisms of action of growth factors of autologous platelet-rich plasma used to treat erectile dysfunction].

    PubMed

    Epifanova, M V; Chalyi, M E; Krasnov, A O

    2017-09-01

    To determine the quantitative and qualitative composition of growth factors (PDGF-AA, PDGF-BB, VEGF, VEGF-D, FGF-acid, FGF-basic) and platelets in various modifications of APRP. Blood of 12 male volunteers (control group) and 12 patients with ED was used to prepare APRP and the subsequently determine the concentration of growth factors. The growth factor concentrations (FGF acid, FGF basic, PDGF-AA, PDGF-BB, VEGF, VEGF-D) was determined using a flow cytometry-based xMAP Luminex (Gen-Probe) system. Concentration of platelets in APRP obtained by two stage centrifugation, reached 1480 (1120-1644) in the control group and 1232 (956-1502) in patients with ED. The concentration of growth factors in the samples prepared without preliminary freezing was: PDGF-AA 842 (22-3700), PDGF-BB 2837 (1460-4100), FGF-basic 7.9 (0.28-127), FGF-acid 3, 4 (0.14-11), VEGF 19 (4.6-46), VEGF-D 21 (14-38). After thawing, the concentration of all growth factors in the samples increased. The study findings suggest that the mechanism of erectile function recovery following the use of APRP is through the active substances detected in APRP, i.e. FGF-basic, PDGF-AA, PDGF-BB, VEGF, VEGF-D and FGF-acid. Also, the study showed that the content of growth factors in APRP after of freezing/thawing is higher than in APRP that has not been frozen. This is due to the cell membrane destruction at extremely low temperatures during freezing.

  14. Elevated circulating endothelial cell-derived microparticle levels in patients with liver cirrhosis: a preliminary report

    PubMed Central

    Simon, Krzysztof Adam; Pazgan-Simon, Monika

    2015-01-01

    Aim of the study To determine plausible associations between liver cirrhosis and circulating endothelial cell-derived microparticles (EMPs), vascular endothelial growth factor (VEGF) levels and plasma nitric oxide (NO) metabolites. Material and methods Sixty patients with cirrhosis and 20 healthy control subjects were enrolled in the study. Circulating EMPs from platelet-poor plasma samples were examined by flow cytometry. These microparticles were categorized into endothelial cell-derived activated MPs (EMP-ac) (CD31+ CD42b– AN-V–) and endothelial cell-derived apoptotic MPs (EMP-ap) (CD31+ CD42b– AN-V+). Plasma VEGF levels were measured by enzyme-linked immunosorbent assay. Plasma NO metabolites (NOx–) levels were determined using a Greiss reaction method. Results Compared with the healthy control subjects, the patients with cirrhosis showed a significant increase in plasma levels of both phenotypes of EMPs. When the presence of ascites was considered, the plasma levels of EMP-ap were higher (p < 0.01), as well as NOx– (p < 0.05). EMP-ap positively correlated with VEGF level in all cirrhotic patients and this correlation was stronger in decompensated cirrhotic patients. In multivariate logistic regression analysis, the independent factors associated with the presence of ascites were high EMP-ap levels and elevated VEGF levels. Conclusions Elevated plasma levels of EMP-ap in addition to high levels of VEGF might be considered as valuable parameters for predicting the occurrence of ascites in cirrhotic patients. PMID:28856256

  15. Lenticular cytoprotection. Part 1: the role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia.

    PubMed

    Neelam, Sudha; Brooks, Morgan M; Cammarata, Patrick R

    2013-01-01

    The prosurvival signaling cascades that mediate the unique ability of human lens epithelial cells to survive in their naturally hypoxic environment are not well defined. Hypoxia induces the synthesis of the hypoxia inducible factor HIF-1α that in turn, plays a crucial role in modulating a downstream survival scheme, where vascular endothelial growth factor (VEGF) also plays a major role. To date, no published reports in the lens literature attest to the expression and functionality of HIF-2α and the role it might play in regulating VEGF expression. The aim of this study was to identify the functional expression of the hypoxia inducible factors HIF-1α and HIF-2α and establish their role in regulating VEGF expression. Furthermore, we demonstrate a link between sustained VEGF expression and the ability of the hypoxic human lens epithelial cell to thrive in low oxygen conditions and resist mitochondrial membrane permeability transition (also referred to as lenticular cytoprotection). Hypoxia inducible factor translation inhibitors were used to demonstrate the role of HIF-1α and HIF-2α and the simultaneous expression of both hypoxic inducible factors to determine their role in regulating VEGF expression. Axitinib, which inhibits lenticular cell autophosphorylation of its VEGF receptor, was employed to demonstrate a role for the VEGF-VEGFR2 receptor complex in regulating Bcl-2 expression. Specific antisera and western blot analysis were used to detect the protein levels of HIF-1α and HIF-2α, as well as the proapoptotic protein, BAX and the prosurvival protein, Bcl-2. VEGF levels were analyzed with enzyme-linked immunosorbent assay (ELISA). The potentiometric dye, 5,5',6,6'-tetrachloro1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine iodide, was used to determine the effect of the inhibitors on mitochondrial membrane permeability transition. Cultured human lens epithelial cells (HLE-B3) maintained under hypoxic condition (1% oxygen) displayed consistent accumulation of VEGF throughout the 72 h incubation period. Using hypoxia inducible factor translation inhibitors targeting HIF-1α or HIF-2α, the specific inhibition of each protein did not diminish VEGF synthesis. The combined inhibition of HIF-1α and HIF-2α expression, using a double hypoxia inducible factor translation inhibitor, markedly decreased the level of VEGF. The inhibition of VEGF synthesis was associated with a profound deficiency in the level of the prosurvival protein, Bcl-2. Axitinib also prevented the VEGF-mediated expression of Bcl-2. The loss of VEGF coupled with the decrease in intracellular Bcl-2 correlated with marked mitochondrial depolarization, an early predictor of cellular apoptosis. Our data support a model in which the sustained synthesis of VEGF in human lens epithelial cells, maintained under hypoxic condition, is regulated by a compensatory inter-relationship between HIF-1α and HIF-2α. VEGF acts as a prosurvival factor in hypoxic lens epithelial cells by maintaining consistent expression of the prosurvival protein Bcl-2, which likely prevents the translocation of cytosolic BAX to the outer mitochondrial membrane, thus preventing the initiation of mitochondrial depolarization.

  16. Effect of centrifugation time on growth factor and MMP release of an experimental platelet-rich fibrin-type product.

    PubMed

    Eren, Gülnihal; Gürkan, Ali; Atmaca, Harika; Dönmez, Ayhan; Atilla, Gül

    2016-07-01

    Platelet-rich fibrin (PRF) has a controlled release of growth factors due to the fibrin matrix structure. Different centrifugation protocols were suggested for PRF preparation. Since the derivation method of PRF can alter its contents, in the present study it is aimed to investigate the cell contents and transforming growth factor beta-1 (TGF-β1), platelet-derived growth factor (PDGF-AB), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and-8 release from experimental PRF-type membranes obtained with different centrifugation times at 400 gravity. Three blood samples were collected from 20 healthy non-smoker volunteers. One tube was used for whole blood analyses. The other two tubes were centrifuged at 400 g for 10 minutes (group A) or 12 minutes (group B). Each experimental PRF-type membrane was placed in Dulbecco's Modified Eagle's Medium (DMEM)and at 1, 24 and 72 hours, TGF-β1, PDGF-AB, VEGF, MMP-1 and -8 release amounts were analysed by enzyme-linked immunosorbent assay (ELISA). The blood cell count of membranes was determined by subtracting plasma supernatant and red blood cell (RBC) mixture from the whole blood cell counts. At 72 hours, the VEGF level of group B was statistically higher than that of group A (p = 0.040). The centrifugation time was not found to influence the release of other growth factors, enzymes and cell counts. Within the limits of the present study, it might be suggested that centrifugation time at a constant gravity has a significant effect on the VEGF levels released from experimental PRF-type membrane. It can be concluded that due to the importance of VEGF in the tissue healing process, membranes obtained at 12-minute centrifugation time may show a superior potential in wound healing.

  17. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  18. The Regulation of Vascular Endothelial Growth Factor by Hypoxia and Prostaglandin F2α during Human Endometrial Repair

    PubMed Central

    Maybin, Jacqueline A.; Hirani, Nikhil; Brown, Pamela; Jabbour, Henry N.

    2011-01-01

    Context: The human endometrium has an exceptional capacity for repeated repair after menses, but its regulation remains undefined. Premenstrually, progesterone levels fall and prostaglandin (PG) F2α synthesis increases, causing spiral arteriole constriction. We hypothesized that progesterone withdrawal, PGF2α, and hypoxia increase vascular endothelial growth factor (VEGF), an endometrial repair factor. Design and Results: Endometrial biopsies were collected (n = 47) with ethical approval and consent. VEGF mRNA, quantified by quantitative RT-PCR, was increased during menstruation (P < 0.01).VEGF protein was maximally secreted from proliferative endometrial explants. Treatment of an endometrial epithelial cell line and primary human endometrial stromal cells with 100 nm PGF2α or hypoxia (0.5% O2) resulted in significant increases in VEGF mRNA and protein. VEGF was maximal when cells were cotreated with PGF2α and hypoxia simultaneously (P < 0.05–0.001). Secretory-phase endometrial explants also showed an increase in VEGF with cotreatment (P < 0.05). However, proliferative-phase explants showed no increase in VEGF on treatment with PGF2α and/or hypoxia. Proliferative tissue was induced to increase VEGF mRNA expression when exposed to progesterone and its withdrawal in vitro but only in the presence of hypoxia and PG. Hypoxia-inducible factor-1α (HIF-1α) silencing with RNA interference suppressed hypoxia-induced VEGF expression in endometrial cells but did not alter PGF2α-induced VEGF expression. Conclusions: Endometrial VEGF is increased at the time of endometrial repair. Progesterone withdrawal, PGF2α, and hypoxia are necessary for this perimenstrual VEGF expression. Hypoxia acts via HIF-1α to increase VEGF, whereas PGF2α acts in a HIF-1α-independent manner. Hence, two pathways regulate the expression of VEGF during endometrial repair. PMID:21677035

  19. The Association Between PD-L1 Expression and the Clinical Outcomes to Vascular Endothelial Growth Factor-Targeted Therapy in Patients With Metastatic Clear Cell Renal Cell Carcinoma

    PubMed Central

    Shin, Su-Jin; Jeon, Yoon Kyung; Cho, Yong Mee; Lee, Jae-Lyun; Chung, Doo Hyun; Park, Ji Young

    2015-01-01

    Background. Vascular endothelial growth factor pathway (VEGF)-tyrosine kinase inhibitors (TKIs) are used as the first-line treatment for patients with metastatic clear cell renal cell carcinoma (mCCRCC). Recently, programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) blockade emerged as promising therapy for renal cell carcinoma. However, the expression pattern and prognostic implication of programmed death-ligands (PD-Ls) in mCCRCC patients receiving VEGF-TKI remain unclear. Patients and Methods. PD-L1 and PD-L2 expression in tumor cells and the quantities of PD-1+ tumor-infiltrating lymphocytes were immunohistochemically evaluated in 91 mCCRCC patients treated with VEGF-TKI, and their associations with VEGF-TKI responsiveness and clinical outcome were analyzed. Results. PD-L1 immunopositivity was observed in 17.6% and significantly associated with a high International Society of Urological Pathology grade (p = .031) and sarcomatoid features (p = .014). PD-L2 immunopositivity was observed in 39.6% and was not associated with any of the assessed clinicopathological variables. PD-L1-positive cases showed poor VEGF-TKI responsiveness (p = .012) compared with PD-L1-negative cases. In univariate survival analysis, PD-L1 immunopositivity was significantly associated with shorter overall survival (OS) (p = .037) and progression-free survival (PFS) (p = .043). Multivariate survival analysis revealed that PD-L1 expression was independently associated with poor OS (p = .038) and PFS (p = .013) in addition to tumor necrosis (p = .006; p = .029, respectively) and Memorial Sloan Kettering Cancer Center score (p = .018; p = .032, respectively). PD-L2 expression was neither associated with VEGF-TKI responsiveness nor patients’ outcome. Conclusion. PD-L1 expression was significantly related to lack of VEGF-TKI responsiveness and independently associated with shorter survival in mCCRCC patients after VEGF-TKI treatment. PD-L1 may have a predictive and prognostic value for determining the value of VEGF-TKI treatment in patients with mCCRCC. Implications for Practice: Vascular endothelial growth factor pathway (VEGF)-tyrosine kinase inhibitors (TKIs) are essential for the treatment of metastatic renal cell carcinoma patients, but the treatment suffers from a lack of predictive markers. This study demonstrates that PD-L1 expression is a predictor for unfavorable response to VEGF-TKI and a prognostic indicator for poor overall survival and progression-free survival in patients with metastatic clear cell renal cell carcinoma receiving VEGF-TKI. PMID:26424759

  20. VEGF: A critical driver for angiogenesis and subsequent tumor growth: An IHC study

    PubMed Central

    Kapoor, Prakhar; Deshmukh, RS

    2012-01-01

    Background: Tumors require blood supply for their growth and dissemination. It is a well accepted paradigm that tumors recruit new blood vessels from the existing circulation (angiogenesis) and this participates in tumor invasion and metastasis. Studies in the literature provide evidence for expression of Vascular Endothelial Growth Factor (VEGF) by the tumor for neo-angiogenesis, which is not only required for the tumor growth but also its metastasis. Based on the literary evidences we carried out an Immuno-Histochemical (IHC) study for VEGF in Oral Squamous Cell Carcinoma (OSCC) tissues to provide a strong link between the factor and oral cancer. Aim: To analyze the expression of VEGF in OSCC tissues of different histological grades, clinical sizes and lymph node status and to use this as an indicator for disease progression by helping in delineating a risk population, that may benefit from an attractive adjuvant therapeutic strategy for OSCC. Settings and Design: Studies published from 1990 till 2010 have only seen the association of VEGF with tumor angiogenesis and its possible role in metastasis. This is the first study that takes into account the clinical status of the lymph nodes and VEGF expressivity in a sample size of 30 cases. Materials and Methods: 30 oral squamous cell carcinoma tissue slides were stained using Hematoxylin and Eosin stain (to confirm the diagnosis) and immunohistochemically using VEGF antibody. IHC stained slides were thereafter evaluated for the positivity and intensity. Statistical Analysis: The result was subjected to statistical analysis using Chi-square test Results and Conclusion: VEGF positivity was seen in approximately. 90% of cases which was independent of histological grade of OSCC. However the intensity increased with the clinical size of cancer and from palpable lymph node to a tender and hard lymph node. PMID:23248460

  1. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    PubMed Central

    López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander

    2012-01-01

    We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429

  2. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    PubMed

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.

  3. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    PubMed

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  4. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Fang; Li, Xiuli; Kong, Jian

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarianmore » cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.« less

  5. Role of EG-VEGF in human placentation: Physiological and pathological implications.

    PubMed

    Hoffmann, Pascale; Saoudi, Yasmina; Benharouga, Mohamed; Graham, Charles H; Schaal, Jean-Patrick; Mazouni, Chafika; Feige, Jean-Jacques; Alfaidy, Nadia

    2009-08-01

    Pre-eclampsia (PE), the major cause of maternal morbidity and mortality, is thought to be caused by shallow invasion of the maternal decidua by extravillous trophoblasts (EVT). Data suggest that a fine balance between the expressions of pro- and anti-invasive factors might regulate EVT invasiveness. Recently, we showed that the expression of the new growth factor endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is high in early pregnancy but falls after 11 weeks, suggesting an essential role for this factor in early pregnancy. Using human villous explants and HTR-8/SVneo, a first trimester extravillous trophoblast cell line, we showed differential expression of EG-VEGF receptors, PKR1 and PKR2, in the placenta and demonstrated that EG-VEGF inhibits EVT migration, invasion and tube-like organisation. EG-VEGF inhibitory effect on invasion was supported by a decrease in matrix metalloproteinase (MMP)-2 and MMP-9 production. Interference with PKR2 expression, using specific siRNAs, reversed the EG-VEGF-induced inhibitory effects. Furthermore, we determined EG-VEGF circulating levels in normal and PE patients. Our results showed that EG-VEGF levels were highest during the first trimester of pregnancy and decreased thereafter to non-pregnant levels. More important, EG-VEGF levels were significantly elevated in PE patients compared with age-matched controls. These findings identify EG-VEGF as a novel paracrine regulator of trophoblast invasion. We speculate that a failure to correctly down-regulate placental expression of EG-VEGF at the end of the first trimester of pregnancy might lead to PE.

  6. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    PubMed

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  7. Combined treatment in punctate inner choroidopathy

    PubMed Central

    Terelak-Borys, Barbara; Zagajewska, Katarzyna; Jankowska-Lech, Irmina; Tesla, Piotr; Grabska-Liberek, Iwona

    2016-01-01

    Purpose The purpose of this study was to describe a combination treatment for choroidal neovascular (CNV) membrane, secondary to punctate inner choroidopathy (PIC). Patient and methods A 44-year-old female patient was diagnosed with PIC complicated by the development of recurrent juxtafoveal neovascular membrane. The treatment included a sequence of monotherapy regimens: systemic steroid therapy, photodynamic therapy, and intravitreal injections of vascular endothelial growth factor (VEGF) inhibitor (anti-VEGF). Owing to the CNV membrane resistance to various types of monotherapy, a combination treatment consisting of local injections of steroid underneath the Tenon’s capsule and intravitreal anti-VEGF injections was used. Results Systemic steroid therapy resulted in rapid local improvement with a very short remission period. No positive effects of photodynamic therapy were observed. Sequential anti-VEGF injections led to remission periods of several months. Permanent regression of CNV membrane was achieved following combined local application of steroid and intravitreal anti-VEGF injections. Conclusion A combination treatment including steroid and anti-VEGF medication characterized by anti-inflammatory and antiangiogenic effects may be a very beneficial option for the treatment of recurrent CNV membrane as a complication of PIC. PMID:27729795

  8. Restraint of angiogenesis by zinc finger transcription factor CTCF-dependent chromatin insulation

    PubMed Central

    Tang, Ming; Chen, Bo; Pardo, Carolina; Pampo, Christine; Chen, Jing; Lien, Ching-Ling; Wu, Lizi; Wang, Heiman; Yao, Kai; Oh, S. Paul; Seto, Edward; Smith, Lois E. H.; Siemann, Dietmar W.; Kladde, Michael P.; Cepko, Constance L.; Lu, Jianrong

    2011-01-01

    Angiogenesis is meticulously controlled by a fine balance between positive and negative regulatory activities. Vascular endothelial growth factor (VEGF) is a predominant angiogenic factor and its dosage is precisely regulated during normal vascular formation. In cancer, VEGF is commonly overproduced, resulting in abnormal neovascularization. VEGF is induced in response to various stimuli including hypoxia; however, very little is known about the mechanisms that confine its induction to ensure proper angiogenesis. Chromatin insulation is a key transcription mechanism that prevents promiscuous gene activation by interfering with the action of enhancers. Here we show that the chromatin insulator-binding factor CTCF binds to the proximal promoter of VEGF. Consistent with the enhancer-blocking mode of chromatin insulators, CTCF has little effect on basal expression of VEGF but specifically affects its activation by enhancers. CTCF knockdown cells are sensitized for induction of VEGF and exhibit elevated proangiogenic potential. Cancer-derived CTCF missense mutants are mostly defective in blocking enhancers at the VEGF locus. Moreover, during mouse retinal development, depletion of CTCF causes excess angiogenesis. Therefore, CTCF-mediated chromatin insulation acts as a crucial safeguard against hyperactivation of angiogenesis. PMID:21896759

  9. Immunoexpression of vascular endothelial growth factor in periapical granulomas, radicular cysts, and residual radicular cysts.

    PubMed

    Nonaka, Cassiano Francisco Weege; Maia, Alexandre Pinto; Nascimento, George João Ferreira do; de Almeida Freitas, Roseana; Batista de Souza, Lélia; Galvão, Hébel Cavalcanti

    2008-12-01

    Our aim was to assess and compare the immunoexpression of vascular endothelial growth factor (VEGF) in periapical granulomas (PGs), radicular cysts (RCs), and residual radicular cysts (RRCs), relating it to the angiogenic index and the intensity of the inflammatory infiltrate. Twenty PGs, 20 RCs, and 10 RRCs were evaluated by immunohistochemistry using anti-VEGF antibody. Angiogenic index was determined by microvessel count (MVC) using anti-von Willebrand factor antibody. The PGs and RCs showed higher expression of VEGF than the RRCs. Lesions presenting few inflammatory infiltrate revealed the lowest immunoexpression of VEGF (P < .05). Irrespective of the intensity of the inflammatory infiltrate, most of the RCs and RRCs showed moderate to strong epithelial expression of VEGF. Lesions showing dense inflammatory infiltrate presented higher MVC indices (P < .05). VEGF expression and MVC did not reveal a significant correlation (P > .05). VEGF is present in periapical inflammatory lesions but at a lower level in RRCs. The expression of this proangiogenic factor is closely related to the intensity of the inflammatory infiltrate in these lesions.

  10. The roles of vascular endothelial growth factor in bone repair and regeneration

    PubMed Central

    Hu, Kai; Olsen, Bjorn R.

    2016-01-01

    Vascular endothelial growth factor-A (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. Since bone is a highly vascularized organ and angiogenesis plays an important role in osteogenesis, VEGF also influences skeletal development and postnatal bone repair. Compromised bone repair and regeneration in many patients can be attributed to impaired blood supply; thus, modulation of VEGF levels in bones represents a potential strategy for treating compromised bone repair and improving bone regeneration. This review (i) summarizes the roles of VEGF at different stages of bone repair, including the phases of inflammation, endochondral ossification, intramembranous ossification during callus formation and bone remodeling; (ii) discusses different mechanisms underlying the effects of VEGF on osteoblast function, including paracrine, autocrine and intracrine signaling during bone repair; (iii) summarizes the role of VEGF in the bone regenerative procedure, distraction osteogenesis; and (iv) reviews evidence for the effects of VEGF in the context of repair and regeneration techniques involving the use of scaffolds, skeletal stem cells and growth factors. PMID:27353702

  11. Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model.

    PubMed

    Gnann, Laís Angelo; Castro, Rafael Ferreira; Azzalis, Ligia Ajaime; Feder, David; Perazzo, Fabio Ferreira; Pereira, Edimar Cristiano; Rosa, Paulo César Pires; Junqueira, Virginia Berlanga Campos; Rocha, Katya Cristina; Machado, Carlos D' Aparecida; Paschoal, Francisco Camargo; de Abreu, Luiz Carlos; Valenti, Vitor Engrácia; Fonseca, Fernando Luiz Affonso

    2013-10-29

    Alopecia areata is the hair loss usually reversible, in sharply defined areas. The treatment of alopecia using growth factors shows interesting activity in promoting hair growth. In this concept, VEGF (vascular endothelial growth factor) is a marker of angiogenesis, stimulating hair growth by facilitating the supply of nutrients to the hair follicle, increasing follicular diameter. The aim of this study was the evaluation of a topical gel enriched with VEGF liposomes on the hair growth stimulation and its toxicological aspects. Mesocricetus auratus were randomly divided into three groups. Control group was treated with Aristoflex® gel, 1% group with the same gel but added 1% VEGF and 3% group with 3% VEGF. Biochemical, hematological and histological analyses were done. At the end of the experiment (15th day of VEGF treatment) efficacy was determined macroscopically by hair density dermatoscopy analysis, and microscopically by hair diameter analysis. They both demonstrated that hair of the VEGF group increased faster and thicker than control. On the other hand, biochemical and hematological results had shown that VEGF was not 100% inert. VEGF increased hair follicle area, but more studies are necessary to confirm its toxicity.

  12. Impact of type 2 diabetes on the plasma levels of vascular endothelial growth factor and its soluble receptors type 1 and type 2 in patients with peripheral arterial disease.

    PubMed

    Wieczór, Radosław; Gadomska, Grażyna; Ruszkowska-Ciastek, Barbara; Stankowska, Katarzyna; Budzyński, Jacek; Fabisiak, Jacek; Suppan, Karol; Pulkowski, Grzegorz; Rość, Danuta

    2015-11-01

    Type 2 diabetes coexistent with lower extremity artery disease (peripheral arterial disease (PAD)) can be observed in numerous patients. The mechanism compensating for ischemia and contributing to healing is angiogenesis-the process of forming new blood vessels. The purpose of this study was to assess the likely impact of type 2 diabetes on the plasma levels of proangiogenic factor (vascular endothelial growth factor A (VEGF-A)) and angiogenesis inhibitors (soluble VEGF receptors type 1 and type 2 (sVEGFR-1 and sVEGFR-2)) in patients with PAD. Among 46 patients with PAD under pharmacological therapy (non-invasive), we identified, based on medical history, a subgroup with coexistent type 2 diabetes (PAD-DM2+, n=15) and without diabetes (PAD-DM2-, n=31). The control group consisted of 30 healthy subjects. Plasma levels of VEGF-A, sVEGFR-1, and sVEGFR-2 were measured using the enzyme-linked immunosorbent assay (ELISA) method. The subgroups of PAD-DM2+ and PAD-DM2- revealed significantly higher concentrations of VEGF-A (P=0.000 007 and P=0.000 000 1, respectively) and significantly lower sVEGFR-2 levels (P=0.02 and P=0.000 01, respectively), when compared with the control group. Patients with PAD and coexistent diabetes tended to have a lower level of VEGF-A and higher levels of sVEGFR-1 and sVEGFR-2 comparable with non-diabetic patients. The coexistence of type 2 diabetes and PAD is demonstrated by a tendency to a lower plasma level of proangiogenic factor (VEGF-A) and higher levels of angiogenesis inhibitors (sVEGFR-1 and sVEGFR-2) at the same time. Regardless of the coexistence of type 2 diabetes, hypoxia appears to be a crucial factor stimulating the processes of angiogenesis in PAD patients comparable with healthy individuals, whereas hyperglycemia may have a negative impact on angiogenesis in lower limbs.

  13. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hye

    Hydrogel systems for controlled delivery therapeutic growth factors have been developed in a wide spectrum of strategies: these systems aim for the release of growth factors via a passive diffusion, electrostatic interaction, degradation of hydrogels, and responsiveness to external stimuli. Heparin, a highly sulfated glycosaminoglycan (GAG), was employed for a targeted delivery system of vascular endothelial growth factor (VEGF) to endothelial cells overexpressing a relevant receptor VEGFR-2. Addition of dimeric VEGF to 4-arm star-shaped poly(ethylene glycol) (PEG) immobilized with low-molecular weight heparin (LMWH) afforded a non-covalently assembled hydrogel via interaction between heparin and VEGF, with storage modulus 10 Pa. The release of VEGF and hydrogel erosion reached maximum 100 % at day 4 in the presence of VEGFR-2 overexpressing pocine aortic endothelial cell (PAE/KDR), while those of 80% were achieved via passive release at day 5 in the presence of PAE cell lacking VEGFR-2 or in the absence of cell, indicating that the release of VEGF was in targeted manner toward cell receptor. The proliferation of PAE/KDR in the presence of [PEG-LMWH/VEGF] hydrogel was greater by ca. 30% at day 4 compared to that of PAE, confirming that the release of VEGF was in response to the cellular demand. The phosphorylation fraction of VEGFR-2 on PAE/KDR was greater in the presence of [PEG-LMWH/VEGF] hydrogel, increasing from 0.568 at day 1 to 0.790 at day 4, whereas it was maintained at 0.230 at day 4 in the presence of [PEG-LMWH] hydrogel. This study has proven that this hydrogel, assembled via bio-inspired non-covalent interaction, liberating VEGFon celluar demand to target cell, eroding upon VEGF release, and triggering endothelial cell proliferation, could be used in multiple applications including targeted delivery and angiogenesis. Heparin has been widely exploited in growth factor delivery systems owing to its ability to bind many growth factors through the flexible patterns of functional groups. However, heterogeneity in the composition and in the polydispersity of heparin has been problematic in controlled delivery system and thus motivated the development of homogeneous heparin mimics. Peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in select applications. Studied was the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for VEGF; these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in select cases, isothermal titration calorimetry (ITC). The shortest peptide, SPa, showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SPa and PF4ZIP was indicated via SPR ( KD = 5.27 muM) and confirmed via ITC (KD = 8.09 muM). The binding by SPa of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications. Hydrogel consisting of SPa was formed via a covalent Michael Addition reaction between maleimide- and thiol-terminated multi-arm PEGs and Cys-SPa. The mechanical property of hydrogel was tunable from ca. 186 to 1940 Pa. by varing the cross-linking density, suggesting its flexible applications depending on matrix needs. The non-anti-coagulative property of SPa, assessed via activated partial thromboplastin time (APTT) and HeptestRTM in comparison to LMWH, implied its usefulness in applications without excessive bleeding. The VEGF released from [PEG-SPa] hydrogel showed up to ca. 400% greater bioactivity on proliferation of human umbilical vein endothelical cell (HUVEC) compared to the VEGF incubated in solution for the same period: this was significantly higher than that of [PEG] hydrogel (ca. 280%), suggesting the SPa may protect the bioactivity of VEGF when bound. The release of dual growth factor, i.e. VEGF and fibroblast growth factor-2 (FGF-2), were investigated on [PEG-SPa] hydrogel: the release of bFGF was lower than that of VEGF due to weaker binding affinity to matrix-bound SPa. The HUVEC culture on dual growth factor loaded [PEG-SPa] showed that the synergistic effects of dual system in select concentrations, suggesting the opportunity of manipulating cell responses. Given that sulfated peptides for various binding targets with desired affinity can be identified, applications are suggested in multiple growth factors delivery where an integrated action of multiple growth factors is required, such as angiogenesis.

  14. Placental expression of EG-VEGF and its receptors PKR1 (prokineticin receptor-1) and PKR2 throughout mouse gestation.

    PubMed

    Hoffmann, P; Feige, J-J; Alfaidy, N

    2007-10-01

    Compelling evidence indicates that vascular endothelial growth factor (VEGF) is an important mediator of placental angiogenesis and appears to be disregulated in pre-eclampsia (PE). Recently, we characterised the expression of EG-VEGF (endocrine gland-derived vascular endothelial growth factor), also known as prokineticin 1 (PK1) in human placenta during the first trimester of pregnancy and showed that this factor is likely to play an important role in human placentation. However, because it is impossible to prospectively study placentation in humans, it has been impossible to further characterise EG-VEGF expression throughout complete gestation and especially at critical gestational ages for PE development. In the present study, we used mouse placenta to further characterise EG-VEGF expression throughout gestation. We investigated the pattern of expression of EG-VEGF and its receptors, PKR1 and PKR2 at the mRNA and protein levels. Our results show that EG-VEGF and VEGF exhibit different patterns of expression and different localisations in the mouse placenta. EG-VEGF was mainly localised in the labyrinth whereas VEGF was mainly present in glycogen and giant cells. EG-VEGF mRNA and protein levels were highest before 10.5days post coitus (dpc) whereas those of VEGF showed stable expression throughout gestation. PKR1 protein was localised to the labyrinth layer and showed the same pattern of expression as EG-VEGF whereas PKR2 expression was maintained over 10.5dpc with both trophoblastic and endothelial cell localisations. Altogether these findings suggest that EG-VEGF may have a direct effect on both endothelial and trophoblastic cells and is likely to play an important role in mouse placentation.

  15. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Tomlinson, Darren C.; Harrison, Michael A.; Ponnambalam, Sreenivasan

    2015-01-01

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. PMID:26285805

  16. VEGF-A165b Is Cytoprotective and Antiangiogenic in the Retina

    PubMed Central

    Magnussen, Anette L.; Rennel, Emma S.; Hua, Jing; Bevan, Heather S.; Long, Nicholas Beazley; Lehrling, Christina; Gammons, Melissa; Floege, Juergen; Harper, Steven J.; Agostini, Hansjürgen T.; Bates, David O.; Churchill, Amanda J.

    2010-01-01

    Purpose. A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A165, the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A165b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF165b and its effect on retinal epithelial and endothelial cell survival. Methods. VEGF-A165b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A165b. Results. VEGF-A165b dose dependently inhibited angiogenesis (IC50, 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A165 across monolayers in culture (IC50, 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A165b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC50, 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A165b. Conclusions. The survival effects of VEGF-A165b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A165b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells. PMID:20237249

  17. Differential regulation of ANG2 and VEGF-A in human granulosa lutein cells by choriogonadotropin.

    PubMed

    Pietrowski, D; Keck, C

    2004-04-01

    The growth and development of the corpus luteum after rupture of the follicle is a highly regulated process characterised by a rapid vascularization of the follicle surrounding granulosa cells. Vascularization is regulated by a large number of growth factors and cytokines whereas members of the angiopoietin family and VEGF-A are reported to play a principal role. The gonadotropic hormones luteinizing hormone and choriogonadotropin are reported to be essential for corpus luteum formation. In this study we investigated by RT PCR if the growth factors PGF, PDGF-A, PDGF-B, VEGF-A, VEGF-B, VEGF-C, VEGF-D, ANG1, ANG2, ANG3 and ANG4 are expressed in granulosa cells. We show the expression of VEGF-A, VEGF-B, PDGF-A, ANG1 and ANG2 in granulosa cells. Using RT-PCR and Real-Time PCR we demonstrate that angiopoietin 2 is downregulated in human granulosa cells in vitro after choriogonadotropin treatment whereas the expression of angiopoietin 1 is not significantly altered. The expression of VEGF on the RNA- and on the protein level was determined. It was shown that in granulosa cells VEGF is upregulated after choriogonadotropin treatment on the RNA level and that increasing concentrations of choriogonadotropin from 0 to 10 U/ml leads to an increasing amount of VEGF in the cell culture supernatants. The amount of VEGF in the supernatants reaches a plateau at 0.5 U/ml and is increased only slightly and not significantly after treatment of the cells with 10 U/ml choriogonadotropin compared to 0.5 U/ml. In total these findings suggests that in granulosa cells the mRNA of various growth factors is detectable by RT-PCR and that VEGF-A and ANG2 is regulated by the gonadotropic hormone choriogonadotropin. These findings may add impact on the hypothesis of choriogonadotropin as a novel angiogenic factor.

  18. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1.

    PubMed

    Thurston, G; Suri, C; Smith, K; McClain, J; Sato, T N; Yancopoulos, G D; McDonald, D M

    1999-12-24

    Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) are endothelial cell-specific growth factors. Direct comparison of transgenic mice overexpressing these factors in the skin revealed that the VEGF-induced blood vessels were leaky, whereas those induced by Ang1 were nonleaky. Moreover, vessels in Ang1-overexpressing mice were resistant to leaks caused by inflammatory agents. Coexpression of Ang1 and VEGF had an additive effect on angiogenesis but resulted in leakage-resistant vessels typical of Ang1. Ang1 therefore may be useful for reducing microvascular leakage in diseases in which the leakage results from chronic inflammation or elevated VEGF and, in combination with VEGF, for promoting growth of nonleaky vessels.

  19. Serum BDNF and VEGF levels are associated with Risk of Stroke and Vascular Brain Injury: Framingham Study

    PubMed Central

    Pikula, Aleksandra; Beiser, Alexa S.; Chen, Tai C.; Preis, Sarah R.; Vorgias, Demetrios; DeCarli, Charles; Au, Rhoda; Kelly-Hayes, Margaret; Kase, Carlos S.; Wolf, Philip A.; Vasan, Ramachandran S.; Seshadri, Sudha

    2013-01-01

    Background and Purpose BDNF, a major neurotrophin and VEGF, an endothelial growth factor have a documented role in neurogenesis, angiogenesis and neuronal survival. In animal experiments they impact infarct size and functional motor recovery after an ischemic brain lesion. We sought to examine the association of serum BDNF and VEGF with the risk of clinical stroke or subclinical vascular brain injury in a community-based sample. Methods In 3440 stroke/TIA-free FHS participants (mean age 65±11yrs, 56%W), we related baseline BDNF and logVEGF to risk of incident stroke/TIA. In a subsample with brain MRI and with neuropsychological (NP) tests available (N=1863 and 2104, respectively; mean age 61±9yrs, 55%W, in each) we related baseline BDNF and logVEGF to log-white matter hyperintensity volume (lWMHV) on brain MRI, and to visuospatial memory and executive function tests. Results During a median follow-up of 10 years, 193 participants experienced incident stroke/TIA. In multivariable analyses adjusted for age-, sex- and traditional stroke risk factors, lower BDNF and higher logVEGF levels were associated with an increased risk of incident stroke/TIA (HR comparing BDNF Q1 versus Q2–4:1.47, 95%CI:1.09–2.00, p=0.012; and HR/SD increase in logVEGF:1.21, 95%CI:1.04–1.40, p=0.012). Persons with higher BDNF levels had less lWMHV (β±SE=−0.05±0.02; p=0.025), and better visual memory (β±SE=0.18±0.07; p=0.005). Conclusions Lower serum BDNF and higher VEGF concentrations were associated with increased risk of incident stroke/TIA. Higher levels of BDNF were also associated with less white matter hyperintensity and better visual memory. Our findings suggest that circulating BDNF and VEGF levels modify risk of clinical and subclinical vascular brain injury. PMID:23929745

  20. Antisense oligodeoxynucleotide inhibits vascular endothelial growth factor expression in U937 foam cells.

    PubMed

    Yang, Peng-Yuan; Rui, Yao-Cheng; Jin, You-Xin; Li, Tie-Jun; Qiu, Yan; Zhang, Li; Wang, Jie-Song

    2003-06-01

    To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liporotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. U937 cells were incubated with ox-LDL 80 mg/L for 48 h, then, the foam cells were treated with asODN (0, 5, 10, and 20 micromol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markedly inhibited the increase of VEGF. After treatment with asODN 20 micromol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.

  1. Immunohistochemical expression of vascular endothelial growth factor in canine oral squamous cell carcinomas.

    PubMed

    Martano, Manuela; Restucci, Brunella; Ceccarelli, Dora Maria; Lo Muzio, Lorenzo; Maiolino, Paola

    2016-01-01

    Angiogenesis is crucial for the growth and metastasis of malignant tumours, and various proangiogenic factors promote this process. One of these factors is vascular endothelial growth factor (VEGF), which appears to play a key role in tumour angiogenesis. The aim of the present study was to assess whether VEGF expression is associated with angiogenesis, disease progression and neoplastic proliferation in canine oral squamous cell carcinoma (OSCC) tissue. VEGF immunoreactivity was quantified by immunohistochemistry in 30 specimens, including normal oral mucosa and OSCC tissues graded as well, moderately or poorly differentiated. VEGF expression was correlated with tumour cell proliferation, as assessed using the proliferating cell nuclear antigen (PCNA) marker and microvessel density (data already published). The present results revealed that VEGF and PCNA expression increased significantly between normal oral tissue and neoplastic tissue, and between well and moderately/poorly differentiated tumours. In addition, VEGF expression was strongly correlated with PCNA expression and microvessel density. It was concluded that VEGF may promote angiogenesis through a paracrine pathway, stimulating endothelial cell proliferation and, similarly, may induce tumour cell proliferation through an autocrine pathway. The present results suggest that the evaluation of VEGF may be a useful additional criterion for estimating malignancy and growth potential in canine OSCCs.

  2. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy.

    PubMed

    Dong, Lijie; Nian, Hong; Shao, Yan; Zhang, Yan; Li, Qiutang; Yi, Yue; Tian, Fang; Li, Wenbo; Zhang, Hong; Zhang, Xiaomin; Wang, Fei; Li, Xiaorong

    2015-05-01

    Pathological retinal neovascularization, including retinopathy of prematurity and age-related macular degeneration, is the most common cause of blindness worldwide. Insulin-like growth factor-1 (IGF-1) has a direct mitogenic effect on endothelial cells, which is the basis of angiogenesis. Vascular endothelial growth factor (VEGF) activation in response to IGF-1 is well documented; however, the molecular mechanisms responsible for the termination of IGF-1 signaling are still not completely elucidated. Here, we show that the polypyrimidine tract-binding protein-associated splicing factor (PSF) is a potential negative regulator of VEGF expression induced by IGF stimulation. Functional analysis demonstrated that ectopic expression of PSF inhibits IGF-1-stimulated transcriptional activation and mRNA expression of the VEGF gene, whereas knockdown of PSF increased IGF-1-stimulated responses. PSF recruited Hakai to the VEGF transcription complex, resulting in inhibition of IGF-1-mediated transcription. Transfection with Hakai siRNA reversed the PSF-mediated transcriptional repression of VEGF gene transcription. In summary, these results show that PSF can repress the transcriptional activation of VEGF stimulated by IGF-1 via recruitment of the Hakai complex and delineate a novel regulatory mechanism of IGF-1/VEGF signaling that may have implications in the pathogenesis of neovascularization in ocular diseases.

  3. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair

    PubMed Central

    Johnson, Kelly E.; Wilgus, Traci A.

    2014-01-01

    Significance: Angiogenesis, the growth of new blood vessels from existing vessels, is an important aspect of the repair process. Restoration of blood flow to damaged tissues provides oxygen and nutrients required to support the growth and function of reparative cells. Vascular endothelial growth factor (VEGF) is one of the most potent proangiogenic growth factors in the skin, and the amount of VEGF present in a wound can significantly impact healing. Recent Advances: The activity of VEGF was once considered to be specific for endothelial cells lining the inside of blood vessels, partly because VEGF receptor (VEGFR) expression was believed to be restricted to endothelial cells. It is now known, however, that VEGFRs can be expressed by a variety of other cell types involved in wound repair. For example, keratinocytes and macrophages, which both carry out important functions during wound healing, express VEGFRs and are capable of responding directly to VEGF. Critical Issues: The mechanisms by which VEGF promotes angiogenesis are well established. Recent studies, however, indicate that VEGF can directly affect the activity of several nonendothelial cell types present in the skin. The implications of these extra-angiogenic effects of VEGF on wound repair are not yet known, but they suggest that this growth factor may play a more complex role during wound healing than previously believed. Future Directions: Despite the large number of studies focusing on VEGF and wound healing, it is clear that the current knowledge of how VEGF contributes to the repair of skin wounds is incomplete. Further research is needed to obtain a more comprehensive understanding of VEGF activities during the wound healing process. PMID:25302139

  4. Peroxynitrite Upregulates Angiogenic Factors VEGF-A, BFGF, and HIF-1α in Human Corneal Limbal Epithelial Cells

    PubMed Central

    Ashki, Negin; Chan, Ann M.; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K.

    2014-01-01

    Purpose. Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2−), which react together to form the highly toxic molecule peroxynitrite (ONOO−). The role of ONOO− in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Methods. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO− donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO−-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Results. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO−. HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO− exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO− (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO− treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Conclusions. Exposure to elevated extracellular concentrations of ONOO− results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO− could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV. PMID:24398102

  5. Protective Effect of Ad-VEGF-Bone Mesenchymal Stem Cells on Cerebral Infarction.

    PubMed

    Chen, Bo; Zhang, Feng; Li, Qiao-Yu; Gong, Aihua; Lan, Qing

    2016-01-01

    To understand the mechanism of intracerebroventricular transplantation of vascular endothelial growth factor (VEGF) genemodified bone mesenchymal stem cells (BMSCs) in rats after cerebral infarction. The middle cerebral artery occlusion ischemia/reperfusion (MCAO I/R) model was established in rats using the Zea-Longa suture method. A recombinant adenovirus (Ad-VEGF) was engineered to express VEGF. The rats were divided into 3 groups. Control BMSC infected with control adenovirus (BMSC-Ad), BMSC infected by Ad-VEGF (BMSC-Ad-VEGF), and phosphate buffered saline (PBS) suspension were injected into the intracerebroventricular system of the rats in groups 1, 2 and 3 respectively, 24 hours after middle cerebral artery occlusion (MCAO). The neurological function of rats was evaluated with the modified Neurological Severity Scores (mNSS). The infarct volume of brain in rats was determined using 2,3,5-triphenyltetrazolium chloride (TTC) stain at 14 days. GFAP and pGSK3β expression of ischemic penumbra was determined using immunohistochemical method. GFAP, pAKT, AKT, and pGSK3β expressions were determined with Western blot. Functional improvement was accelerated in animals receiving BMSC-Ad, while improvement at all times between 7 days and 28 days post MCAO was significantly greater in animals transplanted with BMSC-Ad-VEGF than for other treated animals. The number of GFAP-labeled cells was prevented by post-ischemic BMSC-Ad-VEGF treatment; pMCAO activate the PI3K/AKT/GSK3β pathway to reduce reactive gliosis. Our findings demonstrate that PI3K/AKT/GSK3β pathway could reduce reactive gliosis, ameliorate neurological deficit, diminish the percentage of cerebral infarction volume in rats, and facilitate angiogenesis.

  6. The power of VEGF (vascular endothelial growth factor) family molecules.

    PubMed

    Thomas, Jean-Leon; Eichmann, Anne

    2013-05-01

    Vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors (VEGFRs) are key regulators of both angiogenesis and neurogenesis. The current issue of CMLS discusses recent literature and work implementing these signals in nervous system development, maintenance and disease pathology.

  7. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours.

    PubMed

    Shiomitsu, K; Johnson, C L; Malarkey, D E; Pruitt, A F; Thrall, D E

    2009-06-01

    Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signalling pathways play a role in carcinogenesis. Inhibition of EGF receptor (EGFR) and of VEGF is effective in increasing the radiation responsiveness of neoplastic cells both in vitro and in human trials. In this study, immunohistochemical evaluation was employed to determine and characterize the potential protein expression levels and patterns of EGFR and VEGF in a variety of canine malignant epithelial nasal tumours. Of 24 malignant canine nasal tumours, 13 (54.2%) were positive for EGFR staining and 22 (91.7%) were positive for VEGF staining. The intensity and percentage of immunohistochemically positive neoplastic cells for EGFR varied. These findings indicate that EGFR and VEGF proteins were present in some malignant epithelial nasal tumours in the dogs, and therefore, it may be beneficial to treat canine patients with tumours that overexpress EGFR and VEGF with specific inhibitors in conjunction with radiation.

  8. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nuclear Localization of Vascular Endothelial Growth Factor-D and Regulation of c-Myc–Dependent Transcripts in Human Lung Fibroblasts

    PubMed Central

    Pacheco-Rodriguez, Gustavo; Malide, Daniela; Meza-Carmen, Victor; Kato, Jiro; Cui, Ye; Padilla, Philip I.; Samidurai, Arun; Gochuico, Bernadette R.

    2014-01-01

    Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor–binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors. PMID:24450584

  10. A positive circuit of VEGF increases Glut-1 expression by increasing HIF-1α gene expression in human retinal endothelial cells.

    PubMed

    Choi, Yoon Kyung

    2017-12-01

    Treatment of human retinal microvascular endothelial cells (HRMECs) with vascular endothelial growth factor 165 (VEGF 165 ) increased hypoxia-inducible factor 1α (HIF-1α), VEGF, and glucose transporter 1 (Glut-1) mRNA expression and Glut-1 protein localization to the membrane. In contrast, treatment of human retinal pigment epithelium cells with VEGF 165 did not induce HIF-1α, VEGF, and Glut-1 gene expression. Microvascular endothelial cells are surrounded by astrocytic end feet in the retina. Astrocyte-derived A-kinase anchor protein 12 overexpression during hypoxia downregulated VEGF secretion, and this conditioned medium reduced VEGF and Glut-1 expression in HRMECs, suggesting that communications between astrocytes and endothelial cells may be the determinants of the blood vessel network. In HRMECs, HIF-1α small interfering RNA transfection blocked the VEGF 165 -mediated increase in VEGF and Glut-1 gene expression. Inhibition of protein kinase C (PKC) with inhibitor GF109203X or with a small interfering RNA targeting PKCζ attenuated the VEGF 165 -induced Glut-1 protein expression and VEGF and Glut-1 mRNA expression. In addition, results of an immunoprecipitation assay imply an interaction between VEGF receptor 2 (VEGFR2) and PKCζ in HRMECs. Therefore, VEGF secretion by hypoxic astrocytes may upregulate HIF-1α gene expression, inducing VEGF and Glut-1 expression via the VEGFR2-PKCζ axis in HRMECs.

  11. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets

    PubMed Central

    Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin

    1997-01-01

    We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growth factor (VEGF). Megakaryocytes (CD41a+) were generated by ex vivo expansion of hematopoietic progenitor cells with kit-ligand and thrombopoietin for 10 days and further purified with immunomagnetic microbeads. Using reverse transcription–PCR, we showed that megakaryocytic cell lines (Dami, HEL) and purified megakaryocytes expressed mRNA of the three VEGF isoforms (121, 165, and 189 amino acids). Large quantities of VEGF (>1 ng/106 cells/3 days) were detected in the supernatant of Dami cells, ex vivo-generated megakaryocytes, and CD41a+ cells isolated from bone marrow. The constitutive secretion of VEGF by CD41a+ cells was stimulated by growth factors of the megakaryocytic lineage (interleukin 3, thrombopoietin). Western blotting of heparin–Sepharose-enriched supernatant mainly detected the isoform VEGF165. In addition, immunohistochemistry showed intracytoplasmic VEGF in polyploid megakaryocytes. Thrombin stimulation of megakaryocytes and platelets resulted in rapid release of VEGF within 30 min. We conclude that human megakaryocytes produce and secrete VEGF in an inducible manner. Within the bone marrow microenvironment, VEGF secreted by megakaryocytes may contribute to the proliferation of endothelial cells. VEGF delivered to sites of vascular injury by activated platelets may initiate angiogenesis. PMID:9012841

  12. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  13. The prognosis was poorer in colorectal cancers that expressed both VEGF and PROK1 (No correlation coefficient between VEGF and PROK1).

    PubMed

    Goi, Takanori; Nakazawa, Toshiyuki; Hirono, Yasuo; Yamaguchi, Akio

    2015-10-06

    The angiogenic proteins vascular endothelial growth factor (VEGF) and prokineticin1 (PROK1) proteins are considered important in colorectal cancer, the relationship between their simultaneous expression and prognosis was investigated in the present study. VEGF and PROK1 expression in 620 primary human colorectal cancer lesions was confirmed via immunohistochemical staining with anti-VEGF and anti-PROK1 antibodies, and the correlation between the expression of these 2 proteins and recurrence/prognosis were investigated. VEGF protein was expressed in 329 (53.1%) and PROK1 protein was expressed in 223 (36.0%). PROK1 and VEGF were simultaneously expressed in 116 (18.7%) of the 620 cases. The correlation coefficient between VEGF expression and PROK1 expression was r = 0.11, and therefore correlation was not observed. Clinical pathology revealed that substantially lymphnode matastasis, hematogenous metastasis, or TMN advanced-stage IV was significantly more prevalent in cases that expressed both VEGF and PROK1 than in the cases negative for both proteins or those positive for only 1 of the proteins. Also the cases positive for both proteins exhibited the worst recurrence and prognosis. In the Cox proportional hazards model, VEGF and PROK1 expression was an independent prognostic factor. The prognosis was poorer in colorectal cancers that expressed both PROK1 and VEGF relative to the cases that expressed only 1 protein, and the expression of both proteins was found to be an independent prognostic factor.

  14. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.

    PubMed

    Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L

    1998-03-01

    The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.

  15. Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D*

    PubMed Central

    Davydova, Natalia; Harris, Nicole C.; Roufail, Sally; Paquet-Fifield, Sophie; Ishaq, Musarat; Streltsov, Victor A.; Williams, Steven P.; Karnezis, Tara; Stacker, Steven A.; Achen, Marc G.

    2016-01-01

    VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93–Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo. This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C. PMID:27852824

  16. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides

    PubMed Central

    Zhao, Wenjing; McCallum, Scott A.; Xiao, Zhongping; Zhang, Fuming; Linhardt, Robert J.

    2011-01-01

    Heparin and heparan sulphate (HS) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS-binding to vascular endothelial growth factor (VEGF) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and that a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that VEGF binding affinity likely depends on the specific structural features of these oligosaccharides including their degree of sulphation and sugar ring stereochemistry and conformation. Notably, the unique 3-O-sulpho group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs. PMID:21658003

  17. Retinal Pigment Epithelial Tears in the Era of Intravitreal Pharmacotherapy: Risk Factors, Pathogenesis, Prognosis and Treatment (An American Ophthalmological Society Thesis)

    PubMed Central

    Sarraf, David; Joseph, Anthony; Rahimy, Ehsan

    2014-01-01

    Purpose: To describe the risk factors, pathogenesis, and prognosis of retinal pigment epithelial (RPE) tears and to demonstrate our hypothesis that continued anti–vascular endothelial growth factor (VEGF) therapy after an RPE tear has occurred correlates with improved long-term visual and anatomical outcomes. Methods: We searched a database of 10,089 patients and retrospectively identified a large case series of 56 eyes with neovascular age-related macular degeneration (AMD) complicated by an RPE tear over an 8-year period. Baseline visual acuity (VA) was tabulated and analysis of the RPE tear was performed with multimodal imaging. Follow-up VA, progression of the tear, and severity of fibrosis were evaluated, and each was correlated with number of anti-VEGF injections. Results: Average follow-up for the 56 eyes was 42 months, and mean logMAR VA at baseline was 0.88 (Snellen VA 20/150) with minimal decline over 3 years. LogMAR VA plotted against number of anti-VEGF injections demonstrated that more frequent and cumulative injections correlated with better VA (P<.0001). A greater number of anti-VEGF injections was associated with minimal progression of the RPE tear, reduced fibrosis, and lower risk of a large, end-stage exudative disciform scar. Conclusions: Fifteen to 20% of vascularized pigment epithelial detachments (PEDs) may develop RPE tears after anti-VEGF therapy due to progressive contraction of the type 1 choroidal neovascular membrane in a PED at risk. Continued monitoring of RPE tears for exudative changes warranting anti-VEGF therapy may stabilize VA, improve anatomical outcomes, reduce fibrosis, and decrease the risk of developing a large blinding end-stage exudative disciform scar. PMID:25646033

  18. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy.

    PubMed

    Woitek, Felix; Zentilin, Lorena; Hoffman, Nicholas E; Powers, Jeffery C; Ottiger, Isabel; Parikh, Suraj; Kulczycki, Anna M; Hurst, Marykathryn; Ring, Nadja; Wang, Tao; Shaikh, Farah; Gross, Polina; Singh, Harinder; Kolpakov, Mikhail A; Linke, Axel; Houser, Steven R; Rizzo, Victor; Sabri, Abdelkarim; Madesh, Muniswamy; Giacca, Mauro; Recchia, Fabio A

    2015-07-14

    Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies

    PubMed Central

    Sharma, Ajaykumar N.; da Costa e Silva, Bruno Fernando Borges; Soares, Jair C.; Carvalho, André F.; Quevedo, Joao

    2016-01-01

    Rationale The neurotrophin hypothesis of major depressive disorder (MDD) postulates that this illness results from aberrant neurogenesis in brain regions that regulates emotion and memory. Notwithstanding this theory has primarily implicated BDNF in the neurobiology of MDD. Recent evidence suggests that other trophic factors namely GDNF, VEGF and IGF-1 may also be involved. Purpose The present review aimed to critically summarize evidence regarding changes in GDNF, IGF-1 and VEGF in individuals with MDD compared to healthy controls. In addition, we also evaluated the role of these mediators as potential treatment response biomarkers for MDD. Methods A comprehensive review of original studies studies measuring peripheral, central or mRNA levels of GDNF, IGF-1 or VEGF in patients with MDD was conducted. The PubMed/MEDLINE database was searched for peer-reviewed studies published in English through June 2nd, 2015. Results Most studies reported a reduction in peripheral GDNF and its mRNA levels in MDD patients versus controls. In contrast, IGF-1 levels in MDD patients compared to controls were discrepant across studies. Finally, most studies reported high peripheral VEGF levels and mRNA expression in MDD patients compared to healthy controls. Conclusions GDNF, IGF-1 and VEGF levels and their mRNA expression appear to be differentially altered in MDD patients compared to healthy individuals, indicating that these molecules might play an important role in the pathophysiology of depression and antidepressant action of therapeutic interventions. PMID:26956384

  20. Inhibition of c-Met reduces lymphatic metastasis in RIP-Tag2 transgenic mice

    PubMed Central

    Sennino, Barbara; Ishiguro-Oonuma, Toshina; Schriver, Brian J.; Christensen, James G.; McDonald, Donald M.

    2013-01-01

    Inhibition of vascular endothelial growth factor (VEGF) signaling can promote lymph node metastasis in preclinical models, but the mechanism is not fully understood, and successful methods of prevention have not been found. Signaling of hepatocyte growth factor (HGF) and its receptor c-Met can promote the growth of lymphatics and metastasis of some tumors. We sought to explore the contributions of c-Met signaling to lymph node metastasis after inhibition of VEGF signaling. In particular, we examined whether c-Met is upregulated in lymphatics in or near pancreatic neuroendocrine tumors in RIP-Tag2 transgenic mice and whether lymph node metastasis can be reduced by concurrent inhibition of VEGF and c-Met signaling. Inhibition of VEGF signaling by anti-VEGF antibody or sunitinib in mice from age 14 to 17 weeks was accompanied by more intratumoral lymphatics, more tumor cells inside lymphatics, and more lymph node metastases. Under these conditions, lymphatic endothelial cells - like tumor cells - had strong immunoreactivity for c-Met and phospho-c-Met. c-Met blockade by the selective inhibitor PF-04217903 significantly reduced metastasis to local lymph nodes. Together, these results indicate that inhibition of VEGF signaling in RIP-Tag2 mice upregulates c-Met expression in lymphatic endothelial cells, increases the number of intratumoral lymphatics and number of tumor cells within lymphatics, and promotes metastasis to local lymph nodes. Prevention of lymph node metastasis by PF-04217903 in this setting implicates c-Met signaling in tumor cell spread to lymph nodes. PMID:23576559

  1. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    PubMed Central

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n = 14; VEGF, odds ratio 1.28, P = 0.01; effusion size, odds ratio 1.01, P = 0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC = 0.985, P < 0.001). Conclusions. Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE. PMID:25884029

  2. Protein Kinase D-dependent Phosphorylation and Nuclear Export of Histone Deacetylase 5 Mediates Vascular Endothelial Growth Factor-induced Gene Expression and Angiogenesis*S⃞

    PubMed Central

    Ha, Chang Hoon; Wang, Weiye; Jhun, Bong Sook; Wong, Chelsea; Hausser, Angelika; Pfizenmaier, Klaus; McKinsey, Timothy A.; Olson, Eric N.; Jin, Zheng-Gen

    2008-01-01

    Vascular endothelial growth factor (VEGF) is essential for normal and pathological angiogenesis. However, the signaling pathways linked to gene regulation in VEGF-induced angiogenesis are not fully understood. Here we demonstrate a critical role of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) in VEGF-induced gene expression and angiogenesis. We found that VEGF stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a VEGF receptor 2-phospholipase Cγ-protein kinase C-PKD-dependent pathway. We further showed that the PKD-HDAC5 pathway mediated myocyte enhancer factor-2 transcriptional activation and a specific subset of gene expression in response to VEGF, including NR4A1, an orphan nuclear receptor involved in angiogenesis. Specifically, inhibition of PKD by overexpression of the PKD kinase-negative mutant prevents VEGF-induced HDAC5 phosphorylation and nuclear export as well as NR4A1 induction. Moreover, a mutant of HDAC5 specifically deficient in PKD-dependent phosphorylation inhibited VEGF-mediated NR4A1 expression, endothelial cell migration, and in vitro angiogenesis. These findings suggest that the PKD-HDAC5 pathway plays an important role in VEGF regulation of gene transcription and angiogenesis. PMID:18332134

  3. [Role of VEGF in diseases of the retina].

    PubMed

    Barquet, Luis Arias

    2015-03-01

    Angiogenesis is the process through which new blood vessels are formed, based on preexisting vessels, and is the paradigm of diseases such as cancer and exudative ageassociated macular degeneration (ARMD). Several proangiogenic factors have been identified, such as vascular endothelial growth factor (VEGF), especially VEGF-A, which activates endothelial cells and promotes cell proliferation, migration, and an increase in vascular permeability. VEGF is also involved in the etiopathogenesis of other retinal diseases, such as diabetic macular edema and macular edema secondary to retinal vein occlusion. Likewise, there is increasing evidence that placental growth factor (PIGF) acts recepsynergetically with VEGF in promoting these diseases. Currently, the main treatment for these diseases are the anti-VEGF drugs, aflibercept, ranibizumab and bevacizumab. These agents differ in their molecular structure and mechanism of action. Copyright © 2015 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  4. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners

    PubMed Central

    Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong

    2016-01-01

    The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756

  5. EG-VEGF: a key endocrine factor in placental development.

    PubMed

    Brouillet, Sophie; Hoffmann, Pascale; Feige, Jean-Jacques; Alfaidy, Nadia

    2012-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF), also named prokineticin 1, is the canonical member of the prokineticin family. Numerous reports suggest a direct involvement of this peptide in normal and pathological reproductive processes. Recent advances propose EG-VEGF as a key endocrine factor that controls many aspects of placental development and suggest its involvement in the development of preeclampsia (PE), the most threatening pathology of human pregnancy. This review describes the finely tuned action and regulation of EG-VEGF throughout human pregnancy, argues for its clinical relevance as a potential diagnostic marker of the onset of PE, and discusses future research directions for therapeutic targeting of EG-VEGF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Differential Expression of VEGF-Axxx Isoforms Is Critical for Development of Pulmonary Fibrosis.

    PubMed

    Barratt, Shaney L; Blythe, Thomas; Jarrett, Caroline; Ourradi, Khadija; Shelley-Fraser, Golda; Day, Michael J; Qiu, Yan; Harper, Steve; Maher, Toby M; Oltean, Sebastian; Hames, Thomas J; Scotton, Chris J; Welsh, Gavin I; Bates, David O; Millar, Ann B

    2017-08-15

    Fibrosis after lung injury is related to poor outcome, and idiopathic pulmonary fibrosis (IPF) can be regarded as an exemplar. Vascular endothelial growth factor (VEGF)-A has been implicated in this context, but there are conflicting reports as to whether it is a contributory or protective factor. Differential splicing of the VEGF-A gene produces multiple functional isoforms including VEGF-A 165 a and VEGF-A 165 b, a member of the inhibitory family. To date there is no clear information on the role of VEGF-A in IPF. To establish VEGF-A isoform expression and functional effects in IPF. We used tissue sections, plasma, and lung fibroblasts from patients with IPF and control subjects. In a bleomycin-induced lung fibrosis model we used wild-type MMTV mice and a triple transgenic mouse SPC-rtTA +/- TetoCre +/- LoxP-VEGF-A +/+ to conditionally induce VEGF-A isoform deletion specifically in the alveolar type II (ATII) cells of adult mice. IPF and normal lung fibroblasts differentially expressed and responded to VEGF-A 165 a and VEGF-A 165 b in terms of proliferation and matrix expression. Increased VEGF-A 165 b was detected in plasma of progressing patients with IPF. In a mouse model of pulmonary fibrosis, ATII-specific deficiency of VEGF-A or constitutive overexpression of VEGF-A 165 b inhibited the development of pulmonary fibrosis, as did treatment with intraperitoneal delivery of VEGF-A 165 b to wild-type mice. These results indicate that changes in the bioavailability of VEGF-A sourced from ATII cells, namely the ratio of VEGF-A xxx a to VEGF-A xxx b, are critical in development of pulmonary fibrosis and may be a paradigm for the regulation of tissue repair.

  7. Triiodothyronine stimulates VEGF expression and secretion via steroids and HIF-1α in murine Leydig cells.

    PubMed

    Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand

    2018-06-01

    Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.

  8. Optical Coherence Tomography and the Development of Antiangiogenic Therapies in Neovascular Age-Related Macular Degeneration

    PubMed Central

    Rosenfeld, Philip J.

    2016-01-01

    Purpose To explain the pivotal role optical coherence tomography (OCT) imaging had in the development of antiangiogenic therapies for the treatment of neovascular age-related macular degeneration (nvAMD). Methods A historical literature review was combined with personal perspectives from the introduction of OCT imaging and the early clinical use of vascular endothelial growth factor (VEGF) inhibitors. Results At the time that OCT emerged, the gold standard for imaging of nvAMD was fluorescein angiography (FA), a time-consuming, dye-based, invasive technique that provided en face images of the retina and was used to characterize leakage, perfusion status, and the types of macular neovascularization (MNV). In comparison, OCT imaging was a fast, safe, noninvasive technique that complemented FA imaging by providing cross-sectional images of the macula. OCT was able to visualize and quantify the macular fluid that was associated with the presence of excess VEGF, which was identified by intraretinal fluid, subretinal fluid, and fluid under the retinal pigment epithelium (RPE). Clinicians quickly appreciated the benefits of OCT imaging for following macular fluid after anti-VEGF therapy. By observing the qualitative and quantitative changes in macular fluid depicted by OCT imaging, clinicians were empowered to compare anti-VEGF drugs and move from fixed-dosing regimens to patient-specific dosing strategies requiring fewer injections. Conclusions Optical coherence tomography imaging was adopted as a VEGF-meter, a method to detect excess VEGF, and evolved to become the gold standard imaging strategy for diagnosing nvAMD, assessing treatment responses to anti-VEGF drugs, deciding when to re-treat, and evaluating disease progression. PMID:27409464

  9. Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented-AU pyramid superstructure.

    PubMed

    Zhao, Sen; Ma, Wei; Xu, Liguang; Wu, Xiaoling; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-06-15

    For the first time, we demonstrated the fabrication of silver nanoparticle ornamented-gold nanoparticle pyramids (Ag-Au Pys) using an aptamer-based self-assembly process and investigated their surface-enhanced Raman scattering (SERS) properties in the detection of vascular endothelial growth factor (VEGF). Under optimized conditions, the SERS signal was negatively related to VEGF concentration over the range 0.01-1.0 fM and the limit of detection (LOD) was as low as 22.6 aM. The matrix effect and the specificity of this developed method were further examined, and the results showed that the superstructure sensor was ultrasensitive and highly selective. This developed aptamer-based SERS detection method suggests that it may be a promising strategy for a variety of sensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes.

    PubMed

    Na, Yong-Jin; Yang, Seung-Hong; Baek, Dae-Won; Lee, Dong-Hyung; Kim, Ki-Hyung; Choi, Young-Min; Oh, Sung-Tack; Hong, Young-Seoub; Kwak, Jong-Young; Lee, Kyu-Sup

    2006-07-01

    An increase in the level of the vascular endothelial growth factor (VEGF) production has been reported in the peritoneal fluid (PF) of endometriosis patients. This suggests that changes in the vascular permeability and angiogenesis play an important role in the pathophysiology of this disease. This study examined the effects of the PF obtained from endometriosis patients on the release of VEGF by neutrophils and monocytes. Neutrophils and monocytes were obtained from young healthy volunteers and cultured with the PF obtained from either endometriosis patients (EPF) (n=18) or a control group (CPF) (n=4). A human monocyte/macrophage cell line, THP-1, was cultured with either 10% EPF or 10% CPF. The PF and culture supernatants were assayed for VEGF using ELISA. Real-time PCR and Western blotting were used to measure the VEGF mRNA and protein expression level, respectively. The VEGF levels were higher in the EPF than in the CPF (591+/-75 versus 185+/-31 pg/ml, P<0.05). However, the level of VEGF released by THP-1 cells in CPF and EPF was similar. The EPF induced the release of VEGF by neutrophils, but no VEGF was released by monocytes. The VEGF mRNA expression levels in the neutrophils were higher in the EPF, which was abrogated by cycloheximide, suggesting that the EPF induces the production of VEGF in neutrophils. Neutralizing antibodies against IL-8 and TNF-alpha did not completely prevent the EPF-induced release of VEGF by the neutrophils, even though these growth factors stimulated the release of VEGF by neutrophils. There was a positive correlation between the VEGF and IL-10 concentrations in the EPF (correlation coefficient=0.549, P=0.012, n=18), but the neutralizing antibody of IL-10 did not affect the release of VEGF by the EPF-treated neutrophils. The EPF induced the production and release of VEGF by neutrophils, suggesting that neutrophils may be a source of peritoneal VEGF. In addition, neutrophil-derived VEGF might be a marker for diagnosing endometriosis.

  11. Conditional Switching of Vascular Endothelial Growth Factor (VEGF) Expression in Tumors: Induction of Endothelial Cell Shedding and Regression of Hemangioblastoma-Like Vessels by VEGF Withdrawal

    NASA Astrophysics Data System (ADS)

    Benjamin, Laura E.; Keshet, Eli

    1997-08-01

    We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously ``on,'' tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

  12. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway

    PubMed Central

    Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Background Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. Methods The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. Results TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental for TNF-α-mediated NF-κB activation in GBC cells and can regulate TNF-α-mediated VEGF-C expression at the protein and transcriptional levels through the NF-κB pathway. RIP1 can regulate TNF-α-mediated lymphatic tube formation and metastasis in GBC cells both in vitro and vivo. The average optical density of RIP1 was linearly related to that of TNF-α protein and the lymphatic vessel density in GBC tissues. Conclusion We conclude that RIP1 regulates TNF-α-mediated lymphangiogenesis and lymph node metastasis in GBC by modulating the NF-κB-VEGF-C pathway. PMID:29844685

  13. Effect of Intravitreal Anti-Vascular Endothelial Growth Factor Therapy on the Risk of Arterial Thromboembolic Events: A Meta-Analysis

    PubMed Central

    Lu, Guo-Cai; Wei, Rui-Li

    2012-01-01

    Background Intravitreal anti-vascular endothelial growth factor (VEGF) monoclonal antibodies are used in ocular neovascular diseases. A consensus has emerged that intravenous anti-VEGF can increase the risk of arterial thromboembolic events. However, the role of intravitreal anti-VEGF in arterial thromboembolism is controversial. Therefore, we did a systematic review and meta-analysis to investigate the effects of intravitreal anti-VEGF on the risk of arterial thromboembolic events. Methods Electronic databases were searched to identify relevant randomized clinical trials comparing intravitreal anti-VEGF with controls. Criteria for inclusion in our meta-analysis included a study duration of no less than 12 months, the use of a randomized control group not receiving any intravitreal active agent, and the availability of outcome data for arterial thromboembolic events, myocardial infarction, cerebrovascular accidents, and vascular death. The risk ratios and 95% CIs were calculated using a fixed-effects or random-effects model, depending on the heterogeneity of the included studies. Results A total of 4942 patients with a variety of ocular neovascular diseases from 13 randomized controlled trials were identified and included for analysis. There was no significant difference between intravitreal anti-VEGF and control in the risk of all events, with risk ratios of 0.87 (95% CI, 0.64 to 1.19) for arterial thromboembolic events, 0.96 (95% CI, 0.55–1.68) for cerebrovascular accidents, 0.69 (95% CI 0.40–1.21) for myocardial infarctions, and 0.68 (95% CI, 0.37–1.27) for vascular death. Conclusions The strength evidence suggests that the intravitreal use of anti-VEGF antibodies is not associated with an increased risk of arterial thromboembolic events. PMID:22829940

  14. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    PubMed

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-11-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors like vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1) and its receptor, IGF-1R, have been implicated in CNV. We have previously shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in-vivo model. In this study we investigated the effect of PPP on VEGF expression both in vitro and in vivo and whether this effect has anti-angiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in choroids and retinal pigment epithelial cells (APRE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed 22-32% (p = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroids were significantly reduced. In cultured APRE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. We could confirm that PPP reduced the level of transcriptional activity of VEGF promoter. PPP reduces IGF-1 dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the therapy of conditions associated with CNV including neovascular AMD.

  15. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    PubMed

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-06-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-1 and its receptor, IGF-1R, have been implicated in CNV. A prior study has shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in vivo model. In this study we investigated the effect of PPP on VEGF expression, both in vitro and in vivo, and whether this effect has antiangiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in the choroid and retinal pigment epithelial cells (ARPE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed a 22% to 32% (P = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroid were significantly reduced. In cultured ARPE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. PPP reduced the level of transcriptional activity of the VEGF promoter. PPP reduces IGF-1-dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the treatment of conditions associated with CNV, including neovascular AMD.

  16. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2.

    PubMed

    Incio, Joao; Ligibel, Jennifer A; McManus, Daniel T; Suboj, Priya; Jung, Keehoon; Kawaguchi, Kosuke; Pinter, Matthias; Babykutty, Suboj; Chin, Shan M; Vardam, Trupti D; Huang, Yuhui; Rahbari, Nuh N; Roberge, Sylvie; Wang, Dannie; Gomes-Santos, Igor L; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Tolaney, Sara M; Krop, Ian E; Duda, Dan G; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K

    2018-03-14

    Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas

    PubMed Central

    Fontanini, G; Boldrini, L; Chinè, S; Pisaturo, F; Basolo, F; Calcinai, A; Lucchi, M; Mussi, A; Angeletti, C A; Bevilacqua, G

    1999-01-01

    The vascular endothelial growth factor (VEGF) has been shown to be strictly related to vascular permeability and endothelial cell growth under physiological and pathological conditions. In tumour development and progression, VEGF plays a pivotal role in the development of the tumoral vascular network, and useful information in the progression of human cancer can be obtained by analysing the vascular endothelial growth factor expression of the tumours. In this study, we investigated the vascular endothelial growth factor transcript expression in non-small-cell lung carcinomas to evaluate the significance of this factor in a group of cancers in which the vascular pattern has been shown to significantly affect progression. Surgical samples of 42 patients with NSCLC were studied using reverse transcription polymerase chain reaction (PCR) analysis and in situ hybridization. Thirty-three out of 42 cases (78.6%) showed VEGF transcript expression predominantly as transcripts for the secretory forms of VEGF (isoforms 121 and 165). In situ hybridization, performed on 24 out of 42 samples, showed that the VEGF transcript expression was in several cases present in the cytoplasm both of neoplastic and normal cells, even if the VEGF mRNA was less expressed in the corresponding non-tumoral part. The VEGF 121 expression was associated with hilar and/or mediastinal nodal involvement (P = 0.02), and, taken together, the VEGF isoforms were shown to significantly influence overall (P = 0.02) and disease-free survival (P = 0.03). As a regulator of tumour angiogenesis, VEGF may represent a useful indicator of progression and poor prognosis in non-small-cell lung carcinomas. © 1999 Cancer Research Campaign PMID:9888482

  18. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation.

    PubMed

    Dikov, Mikhail M; Ohm, Joyce E; Ray, Neelanjan; Tchekneva, Elena E; Burlison, Jared; Moghanaki, Drew; Nadaf, Sorena; Carbone, David P

    2005-01-01

    Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.

  19. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    PubMed Central

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  20. Association of polymorphisms in the vascular endothelial growth factor gene and its serum levels with diabetic retinopathy in Chinese patients with type 2 diabetes: a cross-sectional study.

    PubMed

    Fan, Xiaohong; Wu, Qunhong; Li, Yuan; Hao, Yanhua; Ning, Ning; Kang, Zheng; Cui, Yu; Liu, Ruohong; Han, Liyuan

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a major mediator of angiogenesis, and plays a key role in the pathogenesis of diabetic retinopathy (DR). This study was designed to identify the possible role of VEGF gene polymorphisms in the development of DR in type 2 diabetic patients in Chinese and clarify the relationship between VEGF serum levels and the risk of DR. This cross-sectional study included 1 040 Chinese subjects with type 2 diabetes mellitus. There were 372 patients diagnosed with DR in the case group and 668 patients without DR in the control group. DNA from each patient was analyzed for VEGF polymorphisms of -2578A/C (rs699947), -1154G/A (rs1570360), -460C/T (rs833061), +405C/G (rs2010963), and +936C/T (rs3025039) using MassARRAY compact analyzer. The VEGF serum levels were quantified by enzyme-linked immunosorbent assay (ELISA). No evidence of association was observed between -2578 A/C (rs699947), +405C/G (rs2010963), +936C/T (rs3025039), and DR risk under stringent Bonferroni's correction. However, VEGF serum levels were significantly higher in DR patients than those of control group. The genetic variation of VEGF polymorphisms influenced VEGF serum levels; subjects carrying the VEGF -2578 C/C (rs699947) genotype had greater VEGF serum levels than those carrying the C/A genotype and VEGF serum levels were significantly higher in CC genotype of the +405C/G (rs2010963) compared with those of the other genotypes. The data did not suggest significant association between the VEGF polymorphisms and DR risk under stringent Bonferroni's correction. However, our study indicated that DR patients have higher VEGF levels than diabetic patients without retinopathy, and -2578A/C (rs699947) and +405C/G (rs2010963) may be important factors in determining serum VEGF levels.

  1. Taspine downregulates VEGF expression and inhibits proliferation of vascular endothelial cells through PI3 kinase and MAP kinase signaling pathways.

    PubMed

    Zhao, Jing; Zhao, Le; Chen, Wei; He, Langchong; Li, Xu

    2008-01-01

    Taspine is an active component isolated from Radix et Rhizoma Leonticis with inhibiting tumor angiogenic properties. The molecular mechanism(s) of taspine on tumor angiogenic inhibition have not been well documented. The aim of this study was to elucidate in detail the effects of taspine on genetic expressions of VEGF in human umbilical vein endothelial cells, and on VEGFR2-mediated intracellular signaling of human umbilical vein endothelial cells. The genetic expression of vascular endothelial growth factor (VEGF) in the human umbilical vein endothelial cells (HUVECs) treated with taspine in vitro was measured by the ELISA and RT-PCR methods. The effects of taspine on cell proliferation of HUVECs and HUVECs induced by VEGF165 were considered by using MTT assay. And also, a western blot was used to detect Akt and Erk1/2 expressions and their phosphorylation levels in HUVECs treated with taspine. Our results show that VEGF protein and mRNA expressions in the cells treated with taspine were significantly decreased. Taspine also significantly inhibited cell proliferation of HUVECs induced by VEGF165. HUVECs treated with taspine showed decreased Akt and Erk1/2 activities.

  2. Ovarian hyperstimulation syndrome is correlated with a reduction of soluble VEGF receptor protein level and a higher amount of VEGF-A.

    PubMed

    Pietrowski, D; Szabo, L; Sator, M; Just, A; Egarter, C

    2012-01-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening condition associated with increased vascular permeability. The vascular endothelial growth factor (VEGF) system and its receptors have been identified as the main angiogenic factors responsible for increased capillary permeability and are therefore discussed as crucial for the occurrence of OHSS. Recently, a number of soluble receptors for the VEGFs have been detected (sVEGF-Rs) and it has been shown that these sVEGF-Rs compete with the membrane-standing VEGF-R to bind VEGFs. We analyzed the serum levels of soluble VEGF-R1, -R2 and -R3 in 34 patients suffering from OHSS and in 34 controls without this disease. In a subgroup analysis, we correlated the severity of the OHSS with the detected amounts of VEGF-R1, -R2 and -R3. In addition, we determined the amount of total VEGF-A in the samples. All the three soluble VEGF receptors tended to be higher in the control group compared with that in the OHSS group but this difference only reached significance for sVEGF-R2 (mean ± SEM: 15.5 ± 0.6 versus 13.8 ± 0.5 ng/ml, respectively, P< 0.05). In the subgroup analysis, sVEGF-R2 levels decreased as the severity of OHSS increased (OHSS-I: 16.8 ± 1.9 ng/ml and OHSS-III: 12.7 ± 1.0 ng/ml, P< 0.05) Moreover, the serum levels of total VEGF-A were higher in the OHSS group than those in the controls (537.7 ± 38.9 versus 351 ± 53.4 pg/ml, respectively P< 0.05). We propose that VEGF-A plays a role in the occurrence of OHSS, that the amount of biologically available VEGF-A is modulated by sVEGF-Rs and that different combinations of VEGF-A and sVEGF-R levels might contribute to the severity of OHSS.

  3. Evaluation of Vascular Endothelial Growth Factor as a Prognostic Marker for Local Relapse in Early-Stage Breast Cancer Patients Treated With Breast-Conserving Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, Meena S., E-mail: meena.moran@yale.edu; Yang Qifeng; Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China

    2011-12-01

    Purpose: Vascular endothelial growth factor (VEGF) is an important protein involved in the process of angiogenesis that has been found to correlate with relapse-free and overall survival in breast cancer, predominantly in locally advanced and metastatic disease. A paucity of data is available on the prognostic implications of VEGF in early-stage breast cancer; specifically, its prognostic value for local relapse after breast-conserving therapy (BCT) is largely unknown. The purpose of our study was to assess VEGF expression in a cohort of early-stage breast cancer patients treated with BCT and to correlate the clinical and pathologic features and outcomes with overexpressionmore » of VEGF. Methods and Materials: After obtaining institutional review board approval, the paraffin specimens of 368 patients with early-stage breast cancer treated with BCT between 1975 and 2005 were constructed into tissue microarrays with twofold redundancy. The tissue microarrays were stained for VEGF and read by a trained pathologist, who was unaware of the clinical details, as positive or negative according the standard guidelines. The clinical and pathologic data, long-term outcomes, and results of VEGF staining were analyzed. Results: The median follow-up for the entire cohort was 6.5 years. VEGF expression was positive in 56 (15%) of the 368 patients. Although VEGF expression did not correlate with age at diagnosis, tumor size, nodal status, histologic type, family history, estrogen receptor/progesterone receptor status, or HER-2 status, a trend was seen toward increased VEGF expression in the black cohort (26% black vs. 13% white, p = .068). Within the margin-negative cohort, VEGF did not predict for local relapse-free survival (RFS) (96% vs. 95%), nodal RFS (100% vs. 100%), distant metastasis-free survival (91% vs. 92%), overall survival (92% vs. 97%), respectively (all p >.05). Subset analysis revealed that VEGF was highly predictive of local RFS in node-positive, margin-negative patients (86% vs. 100%, p = .029) on univariate analysis, but it did not retain its significance on multivariate analysis (hazard ratio, 2.52; 95% confidence interval, 0.804-7.920, p = .113). No other subgroups were identified in which a correlation was found between VEGF expression and local relapse. Conclusion: To our knowledge, our study is the first to assess the prognostic value of VEGF with the endpoint of local relapse in early-stage breast cancer treated with BCT, an important question given the recent increased use of targeted antiangiogenic agents in early-stage breast cancer. Our study results suggest that VEGF is not an independent predictor of local RFS after BCT, but additional, larger studies specifically analyzing the endpoint of VEGF and local relapse are warranted.« less

  4. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering.

    PubMed

    Gnavi, S; di Blasio, L; Tonda-Turo, C; Mancardi, A; Primo, L; Ciardelli, G; Gambarotta, G; Geuna, S; Perroteau, I

    2017-02-01

    Hydrogels are promising materials in regenerative medicine applications, due to their hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a controlled manner. In this study, biocompatible and biodegradable hydrogels based on blends of natural polymers were used in in vitro and ex vivo experiments as a tool for VEGF-controlled release to accelerate the nerve regeneration process. Among different candidates, the angiogenic factor VEGF was selected, since angiogenesis has been long recognized as an important and necessary step during tissue repair. Recent studies have pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance the growth of regenerating peripheral nerve fibres. The hydrogel preparation process was optimized to allow functional incorporation of VEGF, while preventing its degradation and denaturation. VEGF release was quantified through ELISA assay, whereas released VEGF bioactivity was validated in human umbilical vein endothelial cells (HUVECs) and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants cultured on VEGF-releasing hydrogels displayed increased neurite outgrowth, providing confirmation that released VEGF maintained its effect, as also confirmed in a tubulogenesis assay. In conclusion, a gelatin-based hydrogel system for bioactive VEGF delivery was developed and characterized for its applicability in neural tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells

    PubMed Central

    Hattori, Koichi; Dias, Sergio; Heissig, Beate; Hackett, Neil R.; Lyden, David; Tateno, Masatoshi; Hicklin, Daniel J.; Zhu, Zhenping; Witte, Larry; Crystal, Ronald G.; Moore, Malcolm A.S.; Rafii, Shahin

    2001-01-01

    Tyrosine kinase receptors for angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) are expressed not only by endothelial cells but also by subsets of hematopoietic stem cells (HSCs). To further define their role in the regulation of postnatal hematopoiesis and vasculogenesis, VEGF and Ang-1 plasma levels were elevated by injecting recombinant protein or adenoviral vectors expressing soluble VEGF165, matrix-bound VEGF189, or Ang-1 into mice. VEGF165, but not VEGF189, induced a rapid mobilization of HSCs and VEGF receptor (VEGFR)2+ circulating endothelial precursor cells (CEPs). In contrast, Ang-1 induced delayed mobilization of CEPs and HSCs. Combined sustained elevation of Ang-1 and VEGF165 was associated with an induction of hematopoiesis and increased marrow cellularity followed by proliferation of capillaries and expansion of sinusoidal space. Concomitant to this vascular remodeling, there was a transient depletion of hematopoietic activity in the marrow, which was compensated by an increase in mobilization and recruitment of HSCs and CEPs to the spleen resulting in splenomegaly. Neutralizing monoclonal antibody to VEGFR2 completely inhibited VEGF165, but not Ang-1–induced mobilization and splenomegaly. These data suggest that temporal and regional activation of VEGF/VEGFR2 and Ang-1/Tie-2 signaling pathways are critical for mobilization and recruitment of HSCs and CEPs and may play a role in the physiology of postnatal angiogenesis and hematopoiesis. PMID:11342585

  6. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration.

    PubMed

    Hussain, Rehan M; Ciulla, Thomas A

    2017-09-01

    Evolving anti-vascular endothelial growth factor (VEGF) treatments for neovascular age-related macular degeneration (nAMD) include long acting agents, combination strategies involving new pathways, topical agents, sustained-release, and genetic therapy strategies. Areas covered: Brolucizumab and abicipar pegol have smaller molecular size, facilitating higher concentrations and potentially longer duration than current anti-VEGF agents. Agents being combined with anti-VEGFs include OPT-302 (to inhibit VEGF-C and VEGF-D); pegpleranib and rinucumab (to inhibit platelet derived growth factor, PDGF - but both failed to show consistently improved visual outcomes compared to anti-VEGF monotherapy); and RG7716, ARP-1536 and nesvacumab (to activate the Tie-2 tyrosine kinase receptor, which reduces permeability). X-82 is an oral anti-VEGF and anti-PDGF being tested in phase 2 studies. Topical anti-VEGF ± anti-PDGF drugs under study include pazopanib, PAN-90806, squalamine lactate, regorafinib, and LHA510. Sustained-release anti-VEGF delivery treatments, such as the ranibizumab Port Delivery System, GB-102, NT-503, hydrogel depot, Durasert, and ENV1305 aim to reduce the burden of frequent injections. Gene therapies with new viral vectors hold the potential to induce sustained expression of anti-angiogenic proteins via the retina's cellular apparatus, and include AVA-101/201, ADVM-202/302, AAV2-sFLT01, RGX314, and Retinostat. Expert opinion: There are many emerging anti-VEGF treatments that aim to improve visual outcomes and reduce the treatment burden of nAMD.

  7. VEGF and VEGFB Play Balancing Roles in Adipose Differentiation, Gene Expression, and Function.

    PubMed

    Jin, Honghong; Li, Dan; Wang, Xutong; Jia, Jia; Chen, Yang; Yao, Yapeng; Zhao, Chunlan; Lu, Xiaodan; Zhang, Shujie; Togo, Jacques; Ji, Yan; Zhang, Luqing; Feng, Xuechao; Zheng, Yaowu

    2018-05-01

    Obesity is the result of abnormal adipose development and energy metabolism. Using vascular endothelial growth factor (VEGF) B-knockout and inducible VEGF downregulation mouse models, we have shown that VEGFB inactivation caused expansion of white adipose, whitening of brown adipose, an increase in fat accumulation, and a reduction in energy consumption. At the same time, expression of the white adipose-associated genes was increased and brown adipose-associated genes decreased. VEGF repression, in contrast, induced brown adipose expansion and brown adipocyte development in white adipose, increased energy expenditure, upregulated brown adipose-associated genes, and downregulated white adipose-associated genes. When VEGFB-knockout and VEGF-repressed mice are crossed together, VEGF and VEGFB can counteractively regulate large numbers of genes and efficiently reverse each other's roles. These genes, under counteractive VEGF and VEGFB regulations, include transcription factors, adhesion molecules, and metabolic enzymes. This balancing role is confirmed by morphologic and functional changes. This study reports that VEGF and VEGFB counteractively regulate adipose development and function in energy metabolism.

  8. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy

    PubMed Central

    Chattopadhyay, M; Krisky, D; Wolfe, D; Glorioso, JC; Mata, M; Fink, DJ

    2005-01-01

    We examined the utility of herpes simplex virus (HSV) vector-mediated gene transfer of vascular endothelial growth factor (VEGF) in a mouse model of diabetic neuropathy. A replication-incompetent HSV vector with VEGF under the control of the HSV ICP0 promoter (vector T0VEGF) was constructed. T0VEGF expressed and released VEGF from primary dorsal root ganglion (DRG) neurons in vitro, and following subcutaneous inoculation in the foot, expressed VEGF in DRG and nerve in vivo. At 2 weeks after induction of diabetes, subcutaneous inoculation of T0VEGF prevented the reduction in sensory nerve amplitude characteristic of diabetic neuropathy measured 4 weeks later, preserved autonomic function measured by pilocarpine-induced sweating, and prevented the loss of nerve fibers in the skin and reduction of neuropeptide calcitonin gene-related peptide and substance P in DRG neurons of the diabetic mice. HSV-mediated transfer of VEGF to DRG may prove useful in treatment of diabetic neuropathy. PMID:15843809

  9. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species.

    PubMed

    Monaghan-Benson, Elizabeth; Burridge, Keith

    2009-09-18

    Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.

  10. Tristetraprolin Inhibits Ras-dependent Tumor Vascularization by Inducing Vascular Endothelial Growth Factor mRNA Degradation

    PubMed Central

    Essafi-Benkhadir, Khadija; Onesto, Cercina; Stebe, Emmanuelle; Moroni, Christoph

    2007-01-01

    Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors. PMID:17855506

  11. Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain.

    PubMed

    Pichiule, P; Chávez, J C; Xu, K; LaManna, J C

    1999-12-10

    This study examined vascular endothelial growth factor (VEGF) expression in rat brain after reversible global cerebral ischemia produced by cardiac arrest and resuscitation. Three alternative splicing forms, VEGF(188), VEGF(164) and VEGF(120), were observed in cortex, hippocampus and brainstem by RT-PCR analysis. After 24 h of recovery from cardiac arrest, mRNA levels corresponding to VEGF(188) and VEGF(164) were significantly increased by about double in all the regions analyzed. These mRNA levels remained elevated at 24 and 48 h of recovery but returned to basal expression after 7 days of recovery. Changes in VEGF(120) expression after cardiac arrest did not reach statistical significance. VEGF protein expression measured by Western blot was also increased by about double at 24 and 48 h of recovery but returned to control levels after 7 days of recovery. VEGF immunohistochemistry localized this increased expression mostly associated with astrocytes. Considering its biological activity, VEGF induction after cardiac arrest and resuscitation may be responsible for the increased vascular permeability and the resultant vasogenic edema, found 24-48 h after reversible global ischemia.

  12. Serum vascular endothelial growth factor A levels reflect itch severity in mycosis fungoides and Sézary syndrome.

    PubMed

    Sakamoto, Minami; Miyagaki, Tomomitsu; Kamijo, Hiroaki; Oka, Tomonori; Takahashi, Naomi; Suga, Hiraku; Yoshizaki, Ayumi; Asano, Yoshihide; Sugaya, Makoto; Sato, Shinichi

    2018-01-01

    Angiogenesis is an important step to support progression of malignancies, including mycosis fungoides (MF) and Sézary syndrome (SS). Vascular endothelial growth factor (VEGF)-A, a key player in angiogenesis, is secreted by tumor cells of MF/SS and its expression levels in lesional skin correlated with disease severity. In this study, we examined serum VEGF-A levels in MF/SS patients. Serum VEGF-A levels were elevated in patients with erythrodermic MF/SS and the levels decreased after treatment. Importantly, serum VEGF-A levels positively correlated with markers for pruritus. We also found that VEGF-A upregulated mRNA expression of thymic stromal lymphopoietin by keratinocytes. Taken together, our study suggests that VEGF-A can promote progression and pruritus in MF/SS. Inhibition of VEGF-A signaling can be a therapeutic strategy for patients with erythrodermic MF/SS. © 2017 Japanese Dermatological Association.

  13. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.

    PubMed

    Yamashita, Hiromichi; Kamada, Daichi; Shirasuna, Koumei; Matsui, Motozumi; Shimizu, Takashi; Kida, Katsuya; Berisha, Bajram; Schams, Dieter; Miyamoto, Akio

    2008-09-01

    Active angiogenesis and progesterone (P) synthesis occur in parallel during development of the corpus luteum (CL). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis and P synthesis in vitro. The aim of the present study was to investigate the impact of bFGF or VEGF on the CL development in the cow by using a specific antibody against bFGF or VEGF. bFGF antibody, VEGF antibody, or saline as a control (n = 4 cows/treatment) were injected directly into the CL immediately after ovulation (Day 1), and the treatment was continued for 3 times/day over 7 days. Luteal biopsies were applied on Day 8 of the estrous cycle to determine the expression of genes associated with P synthesis and angiogenesis. Intraluteal injections with the bFGF antibody or the VEGF antibody markedly decreased the CL volume, plasma P concentration and StAR mRNA expression. bFGF antibody treatment decreased the mRNA expression of bFGF, FGF receptor-1, VEGF120, and angiopoietin (ANPT)-1, and increased ANPT-2/ANPT-1 ratio. However, VEGF antibody treatment decreased ANPT-2 mRNA expression and ANPT-2/ANPT-1 ratio. These results indicate that local neutralization of bFGF or VEGF changes genes regulating angiogenesis and P synthesis, and remarkably suppresses the CL size and P secretion during the development of CL in the cow, supporting the concept that bFGF and VEGF control the CL formation and function.

  14. TNF-alpha and endotoxin increase hypoxia-induced VEGF production by cultured human nasal fibroblasts in synergistic fashion.

    PubMed

    Sun, Dong; Matsune, Shoji; Ohori, Junichiro; Fukuiwa, Tatsuya; Ushikai, Masato; Kurono, Yuichi

    2005-09-01

    Vascular endothelial growth factor (VEGF) promotes angiogenesis and is associated with the invasion and metastasis of malignant tumors. It enhances vascular permeability and is expressed in inflammatory nasal as well as middle-ear mucosa. As the mechanism of VEGF induction during chronic inflammation, such as chronic paranasal sinusitis (CPS) remains to be clarified, we studied the factors regulating the production of VEGF in cultured human nasal fibroblasts and discussed the role of VEGF in the pathogenesis of CPS. We used ELISA to quantify VEGF levels in paranasal sinus effusions, nasal secretions, and serum from patients with CPS. In addition, we cultured human nasal fibroblasts isolated from nasal polyps of CPS patients and studied the effects of hypoxia, TNF-alpha, and endotoxin on their production of VEGF using ELISA and PCR. The VEGF concentration was significantly higher in paranasal sinus effusions than in nasal secretions and serum. Nasal fibroblasts produced high levels of VEGF, when cultured under hypoxic condition and this production was remarkably enhanced in the presence of TNF-alpha or endotoxin. VEGF is locally produced in paranasal sinuses as well as nasal mucosa and its production is increased in patients with CPS. Hypoxia is associated with the production of VEGF by nasal fibroblasts and TNF-alpha and endotoxin may act synergistically to enhance VEGF production in paranasal sinuses under hypoxic condition.

  15. Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension: relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)].

    PubMed

    Nadar, S K; Blann, A; Beevers, D G; Lip, G Y H

    2005-10-01

    The increased risk of target organ damage (TOD) in hypertension may be related to a prothrombotic or hypercoagulable state, with abnormalities in platelet activation. Altered angiogenesis, possibly related to increased plasma vascular endothelial growth factor (VEGF) is also a feature of hypertension. We hypothesized a link between altered angiogenesis and TOD in hypertension. Accordingly, the angiogenic growth factors VEGF, angiopoietin 1 and 2 (Ang 1 & 2) and soluble angiopoietin receptor Tie-2 in plasma and in platelets were assessed in terms of the presence or absence of hypertensive TOD. We studied 199 patients (75% men; mean age 68 years) with hypertension. Of these, 125 had evidence of hypertensive TOD (stroke, previous myocardial infarction, angina, left ventricular hypertrophy and mild renal failure). Patients were compared with 74 healthy normotensive controls (69% men; mean age 68 years). Plasma VEGF, Ang 1 & 2 and Tie-2, and total platelet levels of VEGF and Ang-1 (obtained by lysing a known number of platelets with 0.5% Tween) were measured by an enzyme-linked immunosorbent assay. Hypertensive patients had higher levels of plasma VEGF, Ang-1, Ang-2, Tie-2 and platelet VEGF (all P

  16. Differential Regulation of Angiogenesis using Degradable VEGF-Binding Microspheres

    PubMed Central

    Belair, David G.; Miller, Michael J.; Wang, Shoujian; Darjatmokon, Soesiawati R.; Binder, Bernard Y.K.; Sheibani, Nader; Murphy, William L.

    2016-01-01

    Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications. PMID:27061268

  17. High VEGF-D and Low MMP-2 Serum Levels Predict Nodal-Positive Disease in Invasive Bladder Cancer

    PubMed Central

    Benoit, Tobias; Keller, Etienne X.; Wolfsgruber, Pirmin; Hermanns, Thomas; Günthart, Michele; Banzola, Irina; Sulser, Tullio; Provenzano, Maurizio; Poyet, Cédric

    2015-01-01

    Background To investigate stromal variables including angiogenesis, lymphangiogenesis, and matrix metalloproteinase (MMP) in the serum of patients with urothelial carcinoma of the bladder (UCB) and to evaluate their association with histopathological characteristics and clinical outcome. Material/Methods Protein levels of vascular endothelial growth factors-A, -C, -D (VEGF-A/-C/-D), their receptors- VEGF-R2 and -R3 (VEGF-R2/-R3), and matrix metalloproteinases 2, -3, and -7 (MMP-2, MMP-3, MMP-7) were quantified in the blood serum samples of 71 patients with UCB before radical cystectomy (RC). Samples of patients with non-invasive UCB or no history of UCB were investigated as controls (n=20). Protein levels in the serum were measured using a flow cytometric cytokine assay. Results A positive association for VEGF-D (p<0.001) and an inverse association for MMP-2 (p=0.017) were observed in patients with positive lymph node (LN) status at the time of RC. VEGF-A (p<0.001), VEGF-C (p<0.001), MMP-2 (p<0.001), and MMP-7 (p=0.005) serum levels were different in serum of patients with invasive UCB compared with non-invasive UCB or healthy individuals. None of the serum markers were associated with disease progression. Conclusions High VEGF-D and low MMP-2 serum levels predict LN metastasis in patients with UCB at the time of RC. VEGF-A, VEGF-C, MMP-2, and MMP-7 serum levels varied significantly between invasive and non-invasive disease as well as in comparison with healthy individuals. Clinical implementation of these marker serum measurements may be valuable to select high-risk patients with more invasive or nodal-positive disease. PMID:26241709

  18. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head

    PubMed Central

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy. PMID:29399103

  19. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head.

    PubMed

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.

  20. Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer

    PubMed Central

    Xu, Lixia; Zhang, Xinhua; Peng, Sui; He, Yulong; Cai, Shirong; Zeng, Zhirong; Chen, Minhu

    2017-01-01

    Background Tumor cells produce vascular endothelial growth factor (VEGF) which interact with the membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth in an angiogenesis-independent fashion. Apatinib, a highly selective VEGFR2 inhibitor, is the only effective drug for patients with terminal gastric cancer (GC) who have no other chemotherapeutic options. However, its treatment efficacy is still controversy and the mechanism behind remains undetermined. In this study, we aimed to investigate the role of autocrine VEGF signaling in the growth of gastric cancer cells and the efficacy of Apatinib treatment. Methods The expression of phosphor VEGFR2 in gastric cancer cell lines was determined by real-time PCR, immunofluorescence, and Western blot. The gastric cancer cells were administrated with or without recombination human VEGF (rhVEGF), VEGFR2 neutralizing antibody, U73122, SU1498, and Apatinib. The nude mice were used for xenograft tumor model. Results we found that autocrine VEGF induced high VEGFR2-expression, promoted phosphorylation of VEGFR2, and further enhanced internalization of pVEGFR2 in gastric cancer cells. The autocrine VEGF was self-sustained through increasing VEGF mRNA and protein expression. It exerted pro-proliferative effect through a PLC-ERK1/2 dependent pathway. Furthermore, we demonstrated that in VEGFR2 overexpressing gastric cancer cells, Apatinib inhibited cell proliferation in vitro and delayed xenograft tumor growth in vivo. However, these effects were not observed in VEGFR2 low expressing gastric cancer cells. Conclusion These results suggested that autocrine VEGF signaling promotes gastric cancer cell proliferation and enhances Apatinib treatment outcome in VEGFR2 overexpression gastric cancer cells both in vitro and in vivo. This study would enable better stratification of gastric cancer patients for clinical treatment decision. PMID:28061477

  1. Minimal Effects of VEGF and Anti-VEGF Drugs on the Permeability or Selectivity of RPE Tight Junctions

    PubMed Central

    Peng, Shaomin; Adelman, Ron A.

    2010-01-01

    Purpose. Bevacizumab and ranibizumab are currently used to treat age-related macular degeneration by neutralizing vascular endothelial growth factor (VEGF). In this study, the potential side effects on the outer blood–retinal barrier were examined. Methods. Human fetal RPE (hfRPE) cells were used because they are highly differentiated in culture. The claudin composition of RPE tight junctions was determined by RT-PCR, immunoblot analysis, and immunofluorescence. ELISA assays monitored the secretion and trafficking of VEGF and a fluid-phase marker, methylpolyethylene glycol (mPEG). Tight junction functions were assessed by the conductance of K+ and Na+ (derived from the transepithelial electrical resistance, TER) and the flux of NaCl and mPEG. Results. Claudin-3, claudin-10, and claudin-19 were detected in RPE tight junctions. VEGF was secreted in equal amounts across the apical and basolateral membranes, but the apical membrane was more active in endocytosing and degrading VEGF. Exogenous VEGF and mPEG crossed the RPE monolayer by transcytosis, predominantly in the apical-to-basal direction. RPE tight junctions were selective for K+, but did not discriminate between Na+ and Cl−. VEGF, bevacizumab, and ranibizumab had minimal effects on TER, permeation of mPEG, and selectivity for K+, Na+, and Cl−. They had minimal effects on the expression and distribution of the claudins. Conclusions. RPE has mechanisms for maintaining low concentrations of VEGF in the subretinal space that include endocytosis and degradation and fluid-phase transcytosis in the apical-to-basal direction. RPE tight junctions are selective for K+ over Na+ and Cl−. Permeability and selectivity of the junctions are not affected by VEGF, bevacizumab, or ranibizumab. PMID:20042644

  2. Modified model of VX2 tumor overexpressing vascular endothelial growth factor.

    PubMed

    Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre

    2012-06-01

    To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  3. Expression pattern of vascular endothelial growth factor 2 during sea urchin development.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Kulakova, Milana A; Odintsova, Nelly A

    2013-12-01

    The VEGF family in the sea urchin is comprised of three members designated Vegf1 through Vegf3. In this study, we found a high level of similarity between the PDGF/VEGF domain of the predicted gene Sp-Vegf2 in the sea urchin Strongylocentrotus purpuratus and the same domain of a gene that we found in a closely related sea urchin, Strongylocentrotus intermedius. The sequence of the Si-Vegf2 cDNA was determined, and the expression of the Si-Vegf2 mRNA throughout early sea urchin development was studied by RT-PCR and in situ hybridization. Also we analyzed phylogenetic relationships of Si-Vegf2 and other members of the PDGF and VEGF families. We have found that the Si-Vegf2 present during the time span from the egg to the 4-arm pluteus stage. This mRNA is uniformly distributed in eggs, cleaving embryos and early blastulae. At the gastrula stage, the Si-Vegf2 transcripts are localized in the ventrolateral clusters of primary mesenchyme cells, and later, at the prism stage, they are detected in the forming apex. At the early pluteus stage, Si-Vegf2 mRNAs are found in two groups of mesenchyme cells in the scheitel region on the apical pole. We have determined that Si-Vegf2 is a mesenchyme-expressed factor but its developmental function is unknown. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A Systematic Review and Meta-Analysis on the Safety of Vascular Endothelial Growth Factor (VEGF) Inhibitors for the Treatment of Retinopathy of Prematurity

    PubMed Central

    Pertl, Laura; Steinwender, Gernot; Mayer, Christoph; Hausberger, Silke; Pöschl, Eva-Maria; Wackernagel, Werner; Wedrich, Andreas; El-Shabrawi, Yosuf; Haas, Anton

    2015-01-01

    Introduction Laser photocoagulation is the current gold standard treatment for proliferative retinopathy of prematurity (ROP). However, it permanently reduces the visual field and might induce myopia. Vascular endothelial growth factor (VEGF) inhibitors for the treatment of ROP may enable continuing vascularization of the retina, potentially allowing the preservation of the visual field. However, for their use in infants concern remains. This meta-analysis explores the safety of VEGF inhibitors. Methods The Ovid Interface was used to perform a systematic review of the literature in the databases PubMed, EMBASE and the Cochrane Library. Results This meta-analysis included 24 original reports (including 1.457 eyes) on VEGF inhibitor treatment for ROP. The trials were solely observational except for one randomized and two case-control studies. We estimated a 6-month risk of retreatment per eye of 2.8%, and a 6-month risk of ocular complication without the need of retreatment of 1.6% per eye. Systemic complications were only reported as isolated incidents. Discussion VEGF inhibitors seem to be associated with low recurrence rates and ocular complication rates. They may have the benefit of potentially allowing the preservation of visual field and lower rates of myopia. Due to the lack of data, the risk of systemic side effects cannot be assessed. PMID:26083024

  5. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-03-10

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathologicalmore » angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.« less

  6. Endocrine gland-derived endothelial growth factor (EG-VEGF) is a potential novel regulator of human parturition.

    PubMed

    Dunand, C; Hoffmann, P; Sapin, V; Blanchon, L; Salomon, A; Sergent, F; Benharouga, M; Sabra, S; Guibourdenche, J; Lye, S J; Feige, J J; Alfaidy, N

    2014-09-01

    EG-VEGF is an angiogenic factor that we identified as a new placental growth factor during human pregnancy. EG-VEGF is also expressed in the mouse fetal membrane (FM) by the end of gestation, suggesting a local role for this protein in the mechanism of parturition. However, injection of EG-VEGF to gravid mice did not induce labor, suggesting a different role for EG-VEGF in parturition. Here, we searched for its role in the FM in relation to human parturition. Human pregnant sera and total FM, chorion, and amnion were collected during the second and third trimesters from preterm no labor, term no labor, and term labor patients. Primary human chorion trophoblast and FM explants cultures were also used. We demonstrate that circulating EG-VEGF increased toward term and significantly decreased at the time of labor. EG-VEGF production was higher in the FM compared to placentas matched for gestational age. Within the FM, the chorion was the main source of EG-VEGF. EG-VEGF receptors, PROKR1 and PROKR2, were differentially expressed within the FM with increased expression toward term and an abrupt decrease with the onset of labor. In chorion trophoblast and FM explants collected from nonlaboring patients, EG-VEGF decreased metalloproteinase-2 and -9 activities and increased PGDH (prostaglandin-metabolizing enzyme) expression. Altogether these data demonstrate that EG-VEGF is a new cytokine that acts locally to ensure FM protection in late pregnancy. Its fine contribution to the initiation of human labor is exhibited by the abrupt decrease in its levels as well as a reduction in its receptors. © 2014 by the Society for the Study of Reproduction, Inc.

  7. The immunohistochemical expression of endocrine gland-derived-VEGF (EG-VEGF) as a prognostic marker in ovarian cancer.

    PubMed

    Bălu, Sevilla; Pirtea, L; Gaje, Puşa; Cîmpean, Anca Maria; Raica, M

    2012-01-01

    Ovarian cancer-related angiogenesis is a complex process orchestrated by many positive and negative regulators. Many growth factors are involved in the development of the tumor-associated vasculature, and from these, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) seems to play a crucial role. EG-VEGF is the first organ-specific angiogenic factor and its effects are restricted to the endothelial cells of the endocrine glands. Although EG-VEGF was detected in both normal and neoplastic ovaries, its clinical significance remains controversial. In the present study, we analyzed 30 patients with epithelial ovarian cancer, and the immunohistochemical expression of EG-VEGF was compared with the conventional clinico-pathological parameters of prognosis. Neoplastic cells of the ovarian carcinoma expressed EG-VEGF in 73.33% of the cases, as a cytoplasmic granular product of reaction. We found a strong correlation between the expression of EG-VEGF at protein level and tumor stage, grade, and microscopic type. The expression of EG-VEGF was found in patients with stage III and IV, but not in stage II. The majority of serous adenocarcinoma, half of the cases with clear cell carcinoma and two cases with endometrioid carcinoma showed definite expression in tumor cells. No positive reaction was found in the cases with mucinous carcinoma. Our results showed that EG-VEGF expression is an indicator not only of the advanced stage, but also of ovarian cancer progression. Based on these data, we concluded that EG-VEGF expression in tumor cells of the epithelial ovarian cancer is a good marker of unfavorable prognosis and could be an attractive therapeutic target in patients with advanced-stage tumors, refractory conventional chemotherapy.

  8. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    PubMed

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  9. Maternal/newborn VEGF-C936T interaction and its influence on the risk, severity and prognosis of preeclampsia, as well as on the maternal angiogenic profile.

    PubMed

    Procopciuc, Lucia Maria; Caracostea, Gabriela; Zaharie, Gabriela; Stamatian, Florin

    2014-11-01

    To analyze the influence of maternal/newborn vascular endothelial growth factor (VEGF)-CT936 interaction as a modulating factor in preeclampsia as well as its influence on the maternal angiogenic balance. Seventy pairs of preeclamptic women/newborns and 94 pairs of normal pregnant mothers/newborns were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Serum VEGF and soluble VEGF receptor-1 (sVEGFR-1) levels were measured using ELISA. The risk to develop mild (odds ratio; OR: 3.79, p = 0.008) and severe (OR: 2.94, p = 0.037) preeclampsia being increased in association with the CT936-VEGF genotype and increased in severe preeclampsia to 6.07 (p = 0.03) if the women were carriers of the homozygous TT936-VEGF genotype. The presence of the VEGF-T936 allele in both the mother and the newborn significantly increases the risk of pregnancy-induced hypertension (PIH), mild and severe preeclampsia. If both the mothers and newborns were carriers of the VEGF-T936 allele, significantly lower VEGF and higher sVEGFR-1 levels were observed for all types of preeclampsia. Pregnant women with PIH and severe preeclampsia delivered at a significantly earlier gestational age neonates with a significantly lower birth weight if both the preeclamptic mothers and their newborns were carriers of the VEGF-T936 allele. Our study suggests the role of maternal/fetal VEGF-CT936 polymorphism as a modulating factor in preeclampsia, which affects the angiogenic balance in preeclamptic mothers, as well as their pregnancy outcome.

  10. Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule

    PubMed Central

    Sugahara, Kazuyuki; Thimmaiah, Kuntebommanahalli N.; Bid, Hemant K.; Houghton, Peter J.; Rangappa, Kanchugarakoppal S.

    2012-01-01

    The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor. PMID:22916091

  11. Peripheral blood mononuclear cells from patients with rheumatoid arthritis spontaneously secrete vascular endothelial growth factor (VEGF): specific up-regulation by tumour necrosis factor-alpha (TNF-α) in synovial fluid

    PubMed Central

    BOTTOMLEY, MJ; WEBB, NJA; WATSON, CJ; HOLT, PJL; FREEMONT, AJ; BRENCHLEY, PEC

    1999-01-01

    This study was designed to investigate VEGF production from peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) compared with healthy controls and to identify the predominant cellular source in PBMC isolated from RA patients. The regulation of PBMC VEGF production by cytokines and synovial fluid (SF) was studied. PBMC were isolated from RA patients and healthy controls and stimulated with lipopolysaccharide (LPS), IL-1β, IL-4, IL-6, IL-8, IL-10, TNF-α and transforming growth factor-beta (TGF-β) isoforms for varying time points up to 72 h at 37°C/5% CO2. The effect of SF on VEGF secretion by PBMC was also studied. Supernatant VEGF levels were measured using a flt-1 receptor capture ELISA. RA patients had significantly higher spontaneous production of VEGF compared with controls, and monocytes were identified as the predominant cellular source. RA PBMC VEGF production was up-regulated by TGF-β isoforms and TNF-α and down-regulated by IL-4 and IL-10, with no effect observed with IL-1β, IL-6 and IL-8. Antibody blocking experiments confirmed that TNF-α and not TGF-β isoforms in SF increased VEGF secretion by RA PBMC. These results emphasize the importance of monocytes as a source of VEGF in the pathophysiology of RA. Several cytokines known to be present in SF can modulate the level of VEGF secretion, but the predominant effect of SF in VEGF up-regulation is shown to be dependent on TNF-α. PMID:10403932

  12. Vascular endothelial growth factor A (VEGF-A) decreases expression and secretion of pleiotrophin in a VEGF receptor-independent manner.

    PubMed

    Poimenidi, Evangelia; Theodoropoulou, Christina; Koutsioumpa, Marina; Skondra, Lamprini; Droggiti, Eirini; van den Broek, Marloes; Koolwijk, Pieter; Papadimitriou, Evangelia

    2016-05-01

    Vascular endothelial growth factor A (VEGF-A) is a key molecule in angiogenesis acting through VEGF receptors (VEGFRs), ανβ3 integrin, receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and cell surface nucleolin (NCL). Pleiotrophin (PTN) stimulates endothelial cell migration and limits the angiogenic effects of VEGF-A165 to the levels of its own effect, possibly acting as a VEGF-A165 modifier. Since PTN and VEGF-A165 share receptors and actions on endothelial cells, in the present work we studied whether and how VEGF-A165 affects PTN expression or secretion. VEGF-A165 decreased PTN mRNA and protein levels acting at the transcriptional level. Bevacizumab, a selective VEGFR2 tyrosine kinase inhibitor and down-regulation of VEGFR2 expression by siRNA did not affect this decrease, suggesting that it is VEGFR-independent. VEGF-A121 also decreased PTN mRNA and protein levels, suggesting that heparin binding of VEGF-A165 is not involved. Blockage of cell surface NCL, lack of expression or mutation of β3 integrin and down-regulation of RPTPβ/ζ abolished the inhibitory effect of VEGF-A165 on PTN expression and secretion. Down-regulation of endogenous PTN in endothelial cells enhanced VEGF-A165-induced increase in migration and tube formation on matrigel. Collectively, these data suggest that VEGF-A down-regulates PTN expression and secretion through the RPTPβ/ζ-ανβ3-NCL axis to enhance its own effect on cell migration and further highlight the role of RPTPβ/ζ in VEGF-A actions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Orbital angiogenesis and lymphangiogenesis in thyroid eye disease: an analysis of vascular growth factors with clinical correlation

    PubMed Central

    Wong, Lindsay L.; Lee, Nahyoung Grace; Amarnani, Dhanesh; Choi, Catherine J.; Bielenberg, Diane R.; Freitag, Suzanne K.; D’Amore, Patricia A.; Kim, Leo A.

    2017-01-01

    Purpose The human orbit is an environment that is vulnerable to inflammation and edema in the setting of autoimmune thyroid disease. Our study investigated the tenet that orbital adipose tissue lacks lymphatic vessels and analyzed the clinicopathologic differences between patients with acute and chronic thyroid eye disease (TED). The underlying molecular mediators of blood and lymphatic vessel formation within the orbital fat were also evaluated. Design Retrospective cohort study Participants The study included fat specimens from 26 orbits of 15 patients with TED undergoing orbital decompression. Orbital fat specimens from patients without TED as well as cadaveric orbital fat served as controls. Methods Tissue specimens were processed as formalin-fixed paraffin-embedded sections (FFPE) or frozen cryosections for immunohistochemistry. Total RNA was extracted and analyzed via quantitative (real-time) reverse transcription polymerase chain reaction (qRT-PCR). Clinicopathological correlation was made by determining the Clinical Activity Score (CAS) of each patient with TED. Main Outcome Measures Samples were examined for vascular and lymphatic markers including podoplanin, LYVE-1, and CD31 by immunohistochemistry, as well as for mRNA levels of VEGF, VEGF receptors, SEMA-3F, NRP-1, NRP-2, podoplanin and LYVE-1 by qRT-PCR. Results Clinicopathological correlation revealed increased staining of CD31-positive blood vessels in patients with acute TED with CAS > 4, as well as rare staining of podoplanin-positive lymphatic vessels within acutely inflamed orbital fat tissue. Additionally, qRT-PCR analysis demonstrated increased expression of vascular endothelial growth factor receptor 2 (VEGFR-2) as well as VEGF signaling molecules: VEGF-A, VEGF-C, and VEGF-D. Conclusions In acute TED, compared to chronic TED and control orbital fat, there is increased blood vessel density suggesting neovascularization and rare lymphatic vessels suggestive of limited lymphangiogenesis. This pro-angiogenic and pro-lymphangiogenic microenvironment is likely due to the increased expression of VEGFR-2 and VEGF-A, VEGF-C, and VEGF-D. These findings imply that orbital edema in acute TED may be mediated, in part, by both the formation of new, immature blood vessels and the formation of lymphatic capillaries that are functionally incapable of draining interstitial fluid. PMID:27423310

  14. Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF121 Expressed in E. coli Origami B (DE3) with Molecular Chaperones.

    PubMed

    Kaplan, Ondřej; Zárubová, Jana; Mikulová, Barbora; Filová, Elena; Bártová, Jiřina; Bačáková, Lucie; Brynda, Eduard

    2016-01-01

    We describe the production of a highly-active mutant VEGF variant, α2-PI1-8-VEGF121, which contains a substrate sequence for factor XIIIa at the aminoterminus designed for incorporation into a fibrin gel. The α2-PI1-8-VEGF121 gene was synthesized, cloned into a pET-32a(+) vector and expressed in Escherichia coli Origami B (DE3) host cells. To increase the protein folding and the solubility, the resulting thioredoxin-α2-PI1-8-VEGF121 fusion protein was co-expressed with recombinant molecular chaperones GroES/EL encoded by independent plasmid pGro7. The fusion protein was purified from the soluble fraction of cytoplasmic proteins using affinity chromatography. After cleavage of the thioredoxin fusion part with thrombin, the target protein was purified by a second round of affinity chromatography. The yield of purified α2-PI1-8-VEGF121 was 1.4 mg per liter of the cell culture. The α2-PI1-8-VEGF121 expressed in this work increased the proliferation of endothelial cells 3.9-8.7 times in comparison with commercially-available recombinant VEGF121. This very high mitogenic activity may be caused by co-expression of the growth factor with molecular chaperones not previously used in VEGF production. At the same time, α2-PI1-8-VEGF121 did not elicit considerable inflammatory activation of human endothelial HUVEC cells and human monocyte-like THP-1 cells.

  15. Imatinib mesylate (STI571) decreases the vascular endothelial growth factor plasma concentration in patients with chronic myeloid leukemia.

    PubMed

    Legros, Laurence; Bourcier, Christine; Jacquel, Arnaud; Mahon, François-Xavier; Cassuto, Jill-Patrice; Auberger, Patrick; Pagès, Gilles

    2004-07-15

    Increased angiogenesis in bone marrow (BM) is one of the characteristics of chronic myeloid leukemia (CML), a clonal myeloproliferative disorder that expresses a chimeric Bcr/Abl protein. Recently, the therapeutic strategy in CML has been totally modified with the development of a new drug: imatinib mesylate (STI571), a specific inhibitor of Bcr/Abl tyrosine kinase activity. The aim of our study was to determine, in patients with CML, the capacity of imatinib mesylate to modulate one of the most potent regulators of angiogenesis, the vascular endothelial growth factor (VEGF). In newly diagnosed CML, we observed significantly increased VEGF secretion by CML BM cells and significantly increased VEGF plasma concentrations. We showed that low plasma VEGF concentrations could be one of the characteristics of complete cytogenetic remission. To understand the molecular mechanisms leading to the inhibition of VEGF production by imatinib, we focused our experiments on the human cell line K562, which is Bcr/Abl positive. We demonstrated that imatinib inhibits VEGF gene transcription by targeting the Sp1 and Sp3 transcription factors. Taken together, our results highlight the potential prognostic value of VEGF concentrations in evaluating the evolution of CML patients treated with imatinib.

  16. Essential roles of angiotensin II in vascular endothelial growth factor expression in sleep apnea syndrome.

    PubMed

    Takahashi, Susumu; Nakamura, Yutaka; Nishijima, Tsuguo; Sakurai, Shigeru; Inoue, Hiroshi

    2005-09-01

    Hypoxia-induced endothelial cell dysfunction has been implicated in increased cardiovascular disease associated with obstructive sleep apnea syndrome (OSAS). OSAS mediates hypertension by stimulating angiotensin II (Ang II) production. Hypoxia and Ang II are the major stimuli of vascular endothelial growth factor (VEGF), which is a potent angiogenic cytokine and also contributes to the atherogenic process itself. We observed serum Ang II and VEGF levels and peripheral blood mononuclear cell (PBMC) and neutrophil VEGF expression. Compared to controls, subjects with OSAS had significantly increased levels of serum Ang II and VEGF and VEGF mRNA expression in their leukocytes. To examine whether Ang II stimulates VEGF expression in OSAS, we treated PBMCs obtained from control subjects with Ang II and with an Ang II receptor type 1 (AT(1)) blocker, olmesartan. We observed an increased expression of VEGF in the Ang II-stimulated PBMCs and decreased in VEGF mRNA and protein expression in the PBMCs treated with olmesartan. These findings suggest that the Ang II-AT(1) receptors pathway potentially are involved in OSAS and VEGF-induced vascularity and that endothelial dysfunction might be linked to this change in Ang II activity within leukocytes of OSAS patients.

  17. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube lengthmore » by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.« less

  18. Circulating plasma vascular endothelial growth factor and microvascular complications of type 1 diabetes mellitus: the influence of ACE inhibition.

    PubMed

    Chaturvedi, N; Fuller, J H; Pokras, F; Rottiers, R; Papazoglou, N; Aiello, L P

    2001-04-01

    To determine whether circulating plasma vascular endothelial growth factor (VEGF) is elevated in the presence of diabetic microvascular complications, and whether the impact of angiotensin-converting enzyme (ACE) inhibitors on these complications can be accounted for by changes in circulating VEGF. Samples (299/354 of those with retinal photographs) from the EUCLID placebo-controlled clinical trial of the ACE inhibitor lisinopril in mainly normoalbuminuric non-hypertensive Type 1 diabetic patients were used. Albumin excretion rate (AER) was measured 6 monthly. Geometric mean VEGF levels by baseline retinopathy status, change in retinopathy over 2 years, and by treatment with lisinopril were calculated. No significant correlation was observed between VEGF at baseline and age, diabetes duration, glycaemic control, blood pressure, smoking, fibrinogen and von Willebrand factor. Mean VEGF concentration at baseline was 11.5 (95% confidence interval 6.0--27.9) pg/ml in those without retinopathy, 12.9 (6.0--38.9) pg/ml in those with non-proliferative retinopathy, and 16.1 (8.1--33.5) pg/ml in those with proliferative retinopathy (P = 0.06 for trend). Baseline VEGF was 15.2 pg/ml in those who progressed by at least one level of retinopathy by 2 years compared to 11.8 pg/ml in those who did not (P = 0.3). VEGF levels were not altered by lisinopril treatment. Results were similar for AER. Circulating plasma VEGF concentration is not strongly correlated with risk factor status or microvascular disease in Type 1 diabetes, nor is it affected by ACE inhibition. Changes in circulating VEGF cannot account for the beneficial effect of ACE inhibition on retinopathy.

  19. Vascular endothelial growth factor C promotes cervical cancer cell invasiveness via regulation of microRNA-326/cortactin expression.

    PubMed

    Cheng, Yang; Jiang, Shuyi; Yuan, Jin; Liu, Junxiu; Simoncini, Tommaso

    2018-04-16

    Vascular endothelial growth factor C (VEGF-C) accelerates cervical cancer metastasis, while the detailed mechanism remains largely unknown. Recent evidence indicates that microRNA play a crucial role in controlling cancer cell invasiveness. In the present study, we investigated the role of miR-326 in VEGF-C-induced cervical cancer cell invasion. VEGF-C expression was higher and miR-326 was much lower in primary cervical cancer specimens than that in non-cancerous specimens, and a negative correlation between VEGF-C and miR-326 was found. On cervical carcinoma cell line SiHa cells, treatment with VEGF-C downregulated miR-326 level and increased cortactin protein expression. Transfection with miR-326 mimic reversed cortactin expression induced by VEGF-C, suggesting that VEGF-C increased cortactin via downregulation of miR-326. VEGF-C activated c-Src and c-Src inhibitor PP2 abolished VEGF-C effect on miR-326 and cortactin expression, implying that VEGF-C regulated miR-326/cortactin via c-Src signaling. VEGF-C promoted SiHa cell invasion index, which was largely inhibited by transfection with miR-326 antagonist or by siRNA against cortactin. In conclusion, our findings implied that VEGF-C reduced miR-326 expression and increased cortactin expression through c-Src signaling, leading to enhanced cervical cancer invasiveness. This may shed light on potential therapeutic strategies for cervical cancer therapy.

  20. Effects of antibodies to EG-VEGF on angiogenesis in the chick embryo chorioallantoic membrane.

    PubMed

    Feflea, Stefana; Cimpean, Anca Maria; Ceausu, Raluca Amalia; Gaje, Pusa; Raica, Marius

    2012-01-01

    Endocrine gland-related vascular endothelial growth factor (EG-VEGF), is an angiogenic factor specifically targeting endothelial cells derived from endocrine tissues. The inhibition of the EG-VEGF/prokineticin receptor pathway could represent a selective antiangiogenic and anticancer strategy. to evaluate the impact of an antibody to EG-VEGF on the rapidly growing capillary plexus of the chick embryo chorioallantoic membrane (CAM). The in ovo CAM assay was performed for the humanized EG-VEGF antibody. Hemorrhagic damage was induced in the capillaries, which led to early death of the embryos. Upon morphological staining, there was evidence of vascular disruption and extravasation of red blood cells in the chorion. Signs of vacuolization of the covering epithelium were also observed. Blocking endogenous EG-VEGF might represent a valuable approach of impairing or inhibiting angiogenesis in steroidogenic-derived embryonic tissues.

  1. Vascular Repair After Menstruation Involves Regulation of Vascular Endothelial Growth Factor-Receptor Phosphorylation by sFLT-1

    PubMed Central

    Graubert, Michael D.; Asuncion Ortega, Maria; Kessel, Bruce; Mortola, Joseph F.; Iruela-Arispe, M. Luisa

    2001-01-01

    Regeneration of the endometrium after menstruation requires a rapid and highly organized vascular response. Potential regulators of this process include members of the vascular endothelial growth factor (VEGF) family of proteins and their receptors. Although VEGF expression has been detected in the endometrium, the relationship between VEGF production, receptor activation, and endothelial cell proliferation during the endometrial cycle is poorly understood. To better ascertain the relevance of VEGF family members during postmenstrual repair, we have evaluated ligands, receptors, and activity by receptor phosphorylation in human endometrium throughout the menstrual cycle. We found that VEGF is significantly increased at the onset of menstruation, a result of the additive effects of hypoxia, transforming growth factor-α, and interleukin-1β. Both VEGF receptors, FLT-1 and KDR, followed a similar pattern. However, functional activity of KDR, as determined by phosphorylation studies, revealed activation in the late menstrual and early proliferative phases. The degree of KDR phosphorylation was inversely correlated with the presence of sFLT-1. Endothelial cell proliferation analysis in endometrium showed a peak during the late menstrual and early proliferative phases in concert with the presence of VEGF, VEGF receptor phosphorylation, and decrease of sFLT-1. Together, these results suggest that VEGF receptor activation and the subsequent modulation of sFLT-1 in the late menstrual phase likely contributes to the onset of angiogenesis and endothelial repair in the human endometrium. PMID:11290558

  2. Expression of vascular endothelial growth factor in third-trimester placentas is not increased in growth-restricted fetuses.

    PubMed

    Tse, J Y; Lao, T T; Chan, C C; Chiu, P M; Cheung, A N

    2001-01-01

    Vascular endothelial growth factor (VEGF) is considered the growth factor that stimulates vasculogenesis and angiogenesis. Recent studies have demonstrated its role in regulating placental growth and invasion. Its expression can be upregulated by hypoxia. Intrauterine growth restriction (IUGR) is thought to be associated with inadequate placental perfusion, which might result from a failure in the development of the villous vascular network. Our present study was undertaken to examine the relationship between VEGF expression and IUGR in pregnancies with preserved umbilical artery end-diastolic flow. VEGF Expression was determined by immunohistochemical analysis of placentas from 17 pregnancies with normal infant birth weight and 17 pregnancies complicated by IUGR. We found no significant differences in the expression of VEGF in villous syncytiotrophoblasts and intermediate trophoblasts in maternal decidua between IUGR and normal pregnancies. However, in both groups there was a strong correlation in the expression of VEGF with villous syncytiotrophoblasts and intermediate trophoblasts. In normal and IUGR pregnancies the infants' Apgar scores at birth were significantly correlated with VEGF staining in both syncytiotrophoblasts and intermediate trophoblasts (P < .05). A strong correlation also was found between cord hematocrit and VEGF staining in villous syncytiotrophoblasts (P < .05), but VEGF staining in intermediate trophoblasts was not correlated with cord hemoglobin or hematocrit. Our results suggest that VEGF acts in an autocrine and paracrine fashion in both normal and IUGR placentas, and its expression can have an effect on the well being of the infant at birth.

  3. Is There a Relationship Between Use of Anti-Vascular Endothelial Growth Factor Agents and Atrophic Changes in Age-Related Macular Degeneration Patients?

    PubMed

    Kaynak, Süleyman; Kaya, Mahmut; Kaya, Derya

    2018-04-01

    Choroidal neovascularization due to age-related macular degeneration (AMD) is currently treated successfully with anti-vascular endothelial growth factor (VEGF) intravitreal agents. Emerging evidence suggests that anti-VEGF treatment may potentially increase development of geographic atrophy. However, there is not yet direct proof of a causal relationship between geographic atrophy and use of anti-VEGF agents in neovaskuler AMD. The aim of this review is to discuss the evidence concerning the association between anti-VEGF therapy and progression of geographic atrophy.

  4. Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB.

    PubMed

    Parajó, Yolanda; D'Angelo, Ivana; Welle, Alexander; Garcia-Fuentes, Marcos; Alonso, María José

    2010-11-01

    The development of a vascular network in tissue-engineered constructs is a fundamental bottleneck of bioregenerative medicine, particularly when the size of the implant exceeds a certain limit given by diffusion lengths and/or if the host tissue shows a very active metabolism. One of the approaches to achieve the vascularization of tissue constructs is generating a sustained release of proangiogenic factors from the ischemic site. This work describes the formation and characterization of hyaluronic acid-chitosan (HA/CS) nanoparticles for the delivery of two pro-angiogenic growth factors: vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF-BB). These nanoparticles were prepared by an ionic gelification technique, and different formulations were developed by encapsulating the growth factors in association with two stabilizing agents: bovine serum albumin or heparin sodium salt. These carriers were characterized with regard to their physicochemical properties, their stability in biological media, and their cytotoxicity in the C3a hepatoma cell line. The results show that nanoparticles around 200 nm can be prepared by this method. HA/CS nanoparticles were stable when incubated in EMEM cell culture medium or in water at 37°C for 24 h. Cell culture tests confirmed that HA/CS nanoparticles are not cytotoxic within the concentration range used for growth factor delivery. Moreover, HA/CS nanoparticles were able to entrap efficiently both growth factors, reaching association values of 94% and 54% for VEGF and PDGF, respectively. In vitro release studies confirm that PDGF-BB is released from HA/CS nanoparticles in a sustained manner over approximately 1 week. On the other hand, VEGF is completely released within the first 24 h.

  5. Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Schofer, Markus D.; Fuchs-Winkelmann, S.; Wack, C.; Rudisile, M.; Dersch, R.; Leifeld, I.; Wendorff, J.; Greiner, A.; Paletta, J. R. J.; Boudriot, U.

    2009-01-01

    Growth factors like bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF) play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid) (PLLA) nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC) differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers. PMID:19412560

  6. [Pathogenetic and Prognostic Role of Growth Factors in the Development of Chronic Heart Failure].

    PubMed

    Teplyakov, A T; Berezikova, E N; Shilov, S N; Efremova, A V; Pustovetova, M G; Popova, A A; Grakova, E V; Torim, Y Y; Safronov, I D; Andriyanova, A V

    2017-10-01

    To study the role of growth factors ((vascular endothelial growth factor (VEGF), platelet derived growth factor AB (PDGF-AB) and basic fibroblast growth factor (FGF-basic)) in the development and progression of chronic heart failure (CHF) in patients with ishcemic heart disease (IHD). We included in this study 94 patients with CHF. The control group comprised 32 persons. Blood serum levels of growth factors were determined at baseline and after 12 months of observation by enzyme-linked immunosorbent assay. VEGF, PDGF-AB and FGF-basic play an important role in the pathogenesis and progression of heart failure in patients with IHD, determining the increased risk of adverse cardiovascular events in this pathology. Serum activity of growth factors characterizes the severity and course of CHF: with disease progression levels of VEGF and FGF-basic decrease and PDGF-AB concentration increases. Initial low level of VEGF expression regardless of the sex of the patient's sex, significantly low level of FGF-basic and significantly high PDGF-AB in men characterizes unfavorable course of CHF. A correlation has been established between blood serum levels of VEGF, PDGF-AB and FGF-basic and severity and course of CHF.

  7. Ocular Angiogenesis: Vascular Endothelial Growth Factor and Other Factors.

    PubMed

    Rubio, Roman G; Adamis, Anthony P

    2016-01-01

    Systematic study of the mechanisms underlying pathological ocular neovascularization has yielded a wealth of knowledge about pro- and anti-angiogenic factors that modulate diseases such as neovascular age-related macular degeneration. The evidence implicating vascular endothelial growth factor (VEGF) in particular has led to the development of a number of approved anti-VEGF therapies. Additional proangiogenic targets that have emerged as potential mediators of ocular neovascularization include hypoxia-inducible factor-1, angiopoietin-2, platelet-derived growth factor-B and components of the alternative complement pathway. As for VEGF, knowledge of these factors has led to a product pipeline of many more novel agents that are in various stages of clinical development in the setting of ocular neovascularization. These agents are represented by a range of drug classes and, in addition to novel small- and large-molecule VEGF inhibitors, include gene therapies, small interfering RNA agents and tyrosine kinase inhibitors. In addition, combination therapy is beginning to emerge as a strategy to improve the efficacy of individual therapies. Thus, a variety of agents, whether administered alone or as adjunctive therapy with agents targeting VEGF, offer the promise of expanding the range of treatments for ocular neovascular diseases. © 2016 S. Karger AG, Basel.

  8. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  9. Interactions between the vascular endothelial growth factor gene polymorphism and life events in susceptibility to major depressive disorder in a Chinese population.

    PubMed

    Han, Dong; Qiao, Zhengxue; Chen, Lu; Qiu, Xiaohui; Fang, Deyu; Yang, Xiuxian; Ma, Jingsong; Chen, Mingqi; Yang, Jiarun; Wang, Lin; Zhu, Xiongzhao; Zhang, Congpei; Yang, Yanjie; Pan, Hui

    2017-08-01

    Recent studies suggest that vascular endothelial growth factor (VEGF) is involved in the development of major depressive disorder. The aim of this study is to investigate the interaction between vascular endothelial growth factor (VEGF) polymorphism (+405G/C, rs2010963) and negative life events in the pathogenesis of major depressive disorder (MDD). DNA genotyping was performed on peripheral blood leukocytes in 274 patients with MDD and 273 age-and sex-matched controls. The frequency and severity of negative life events were assessed by the Life Events Scale (LES). A logistics method was employed to assess the gene-environment interaction (G×E). Differences in rs2010963 genotype distributions were observed between MDD patients and controls. Significant G×E interactions between allelic variation of rs2010963 and negative life events were observed. Individuals carrying the C alleles were susceptible to MDD only when exposed to high-negative life events. These results indicate that interactions between the VEGF rs2010963 polymorphism and environment increases the risk of developing MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Prostaglandins induce vascular endothelial growth factor in a human monocytic cell line and rat lungs via cAMP.

    PubMed

    Höper, M M; Voelkel, N F; Bates, T O; Allard, J D; Horan, M; Shepherd, D; Tuder, R M

    1997-12-01

    Prostaglandins have emerged as a therapeutic option for patients with peripheral vascular disease as well as pulmonary hypertension as a means to increase blood flow. We tested the hypothesis that prostaglandins regulate vascular endothelial growth factor (VEGF) expression in the human monocytic THP-1 cell line and in isolated perfused rat lungs. Our data show that the stable PGI2-analogue iloprost induces VEGF gene expression (predominantly VEGF121, but also VEGF165 isoforms) and VEGF protein synthesis in THP-1 cells. This effect is abolished by dexamethasone and by Rp-cAMP, a specific inhibitor of cAMP-dependent protein kinase (PKA) activation. The calcium channel blocker diltiazem has no effect on the iloprost-induced VEGF gene expression, and depletion of intracellular Ca2+ stores by long-term exposure (16 h) of THP-1 cells to thapsigargin does not inhibit iloprost-induced VEGF gene expression, suggesting that an increase in intracellular Ca2+ is not essential for VEGF gene induction by iloprost. However, an increase of intracellular Ca2+ by a short-term (2 h) exposure of THP-1 cells to thapsigargin or to the calcium-ionophore A23187 increases VEGF mRNA levels, indicating that a change in intracellular Ca2+ by itself can alter VEGF gene expression. The effects of thapsigargin or A23187 on VEGF gene expression are also mediated via cAMP-PKA since they are inhibited by Rp-cAMP. In isolated perfused rat lungs, PGI2 and PGE2 increases VEGF mRNA abundance whereas Rp-cAMP inhibits the prostaglandin-induced VEGF gene activation. Thus, our data suggest that prostaglandins stimulate VEGF gene expression in monocytic cells and in rat lungs via a cAMP-dependent mechanism.

  11. Platelet Vascular Endothelial Growth Factor is a Potential Mediator of Transfusion-Related Acute Lung Injury.

    PubMed

    Maloney, James P; Ambruso, Daniel R; Voelkel, Norbert F; Silliman, Christopher C

    The occurrence of non-hemolytic transfusion reactions is highest with platelet and plasma administration. Some of these reactions are characterized by endothelial leak, especially transfusion related acute lung injury (TRALI). Elevated concentrations of inflammatory mediators secreted by contaminating leukocytes during blood product storage may contribute to such reactions, but platelet-secreted mediators may also contribute. We hypothesized that platelet storage leads to accumulation of the endothelial permeability mediator vascular endothelial growth factor (VEGF), and that intravascular administration of exogenous VEGF leads to extensive binding to its lung receptors. Single donor, leukocyte-reduced apheresis platelet units were sampled over 5 days of storage. VEGF protein content of the centrifuged supernatant was determined by ELISA, and the potential contribution of VEGF from contaminating leukocytes was quantified. Isolated-perfused rat lungs were used to study the uptake of radiolabeled VEGF administered intravascularly, and the effect of unlabeled VEGF on lung leak. There was a time-dependent release of VEGF into the plasma fraction of the platelet concentrates (62 ± 9 pg/ml on day one, 149 ± 23 pg/ml on day 5; mean ± SEM, p<0.01, n=8) and a contribution by contaminating leukocytes was excluded. Exogenous 125I-VEGF bound avidly and specifically to the lung vasculature, and unlabeled VEGF in the lung perfusate caused vascular leak. Rising concentrations of VEGF occur during storage of single donor platelet concentrates due to platelet secretion or disintegration, but not due to leukocyte contamination. Exogenous VEGF at these concentrations rapidly binds to its receptors in the lung vessels. At higher VEGF concentrations, VEGF causes vascular leak in uninjured lungs. These data provide further evidence that VEGF may contribute to the increased lung permeability seen in TRALI associated with platelet products.

  12. Vascular Endothelial Growth Factor in Eye Disease

    PubMed Central

    Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Hartnett, M.E.

    2012-01-01

    Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the U.S., for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that vascular endothelial growth factor (VEGF), a 40 kDa dimeric glycoprotein, promotes angiogenesis in each of these conditions, making it a highly significant therapeutic target. However, VEGF is pleiotropic, affecting a broad spectrum of endothelial, neuronal and glial behaviors, and confounding the validity of anti-VEGF strategies, particularly under chronic disease conditions. In fact, among other functions VEGF can influence cell proliferation, cell migration, proteolysis, cell survival and vessel permeability in a wide variety of biological contexts. This article will describe the roles played by VEGF in the pathogenesis of retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. The potential disadvantages of inhibiting VEGF will be discussed, as will the rationales for targeting other VEGF-related modulators of angiogenesis. PMID:18653375

  13. Vascular endothelial growth factor and amyotrophic lateral sclerosis: the interplay with exercise and noninvasive ventilation.

    PubMed

    Carilho, Rita; de Carvalho, Mamede; Swash, Michael; Pinto, Susana; Pinto, Anabela; Costa, Júlia

    2014-04-01

    We evaluated plasma vascular endothelial growth factor (VEGF) levels in patients with amyotrophic lateral sclerosis (ALS) with reference to the effects of respiratory failure, noninvasive ventilation (NIV), and exercise. We studied plasma VEGF levels in 83 ALS patients, 20 healthy controls, and 10 patients with other disorders. There were 4 groups of ALS patients: G1, 27 patients without respiratory problems; G2, 14 patients stabilized on nocturnal NIV; G3, 30 patients presenting with respiratory failure; G4, 12 patients on an aerobic exercise protocol. VEGF plasma levels did not differ significantly between ALS patients and controls, or between ALS groups. In G3, the mean VEGF levels increased 75% during NIV. In G4, the mean VEGF level increased by 300% during the exercise program. VEGF levels did not change during the course of the disease. VEGF levels in ALS depend on changes in ventilation and exercise but are probably not affected by the disease process itself. Copyright © 2013 Wiley Periodicals, Inc.

  14. Systemic pretreatment with dimethyloxalylglycine increases myocardial HIF-1α and VEGF production and improves functional recovery after acute ischemia/reperfusion.

    PubMed

    Poynter, Jeffrey A; Manukyan, Mariuxi C; Wang, Yue; Brewster, Benjamin D; Herrmann, Jeremy L; Weil, Brent R; Abarbanell, Aaron M; Meldrum, Daniel R

    2011-08-01

    Stem cells protect the heart from ischemic damage in part by the release of cytoprotective growth factors, particularly vascular endothelial growth factor (VEGF). Production of VEGF is regulated in part by levels of the transcription factor hypoxia inducible factor 1-α (HIF-1α). Dimethyloxalylglycine (DMOG) prevents the deactivation of HIF-1α and increases VEGF production. However, the effects of systemic DMOG treatment on myocardial tolerance for ischemia are unknown. We hypothesized that systemic pretreatment with DMOG would improve myocardial ischemic tolerance. To study this hypothesis, adult male rats were randomly given an intraperitoneal injection of DMOG (40 mg/kg in 1 mL saline, n = 5) or saline (1 mL, n = 6) 24 h before cardiectomy and isolated heart perfusion. All hearts were subjected to 15 min equilibration, 25 min ischemia and 40 min reperfusion. Myocardial function was continuously monitored. Following reperfusion, myocardial homogenates were analyzed for HIF-1α and VEGF production. We observed that hearts in the DMOG group exhibited greater recovery of left ventricular developed pressure LVDP, +dP/dt and -dP/dt. Myocardial HIF-1α and VEGF levels were increased by DMOG therapy. In conclusion, systemic pretreatment with DMOG augments post-ischemic myocardial functional recovery through increased HIF-1α levels and greater VEGF production. Copyright © 2011 Mosby, Inc. All rights reserved.

  15. Placental growth factor neutralising antibodies give limited anti-angiogenic effects in an in vitro organotypic angiogenesis model.

    PubMed

    Brave, Sandra R; Eberlein, Cath; Shibuya, Masabumi; Wedge, Stephen R; Barry, Simon T

    2010-12-01

    Vascular Endothelial Growth Factor Receptor (VEGFR) mediated signalling drives angiogenesis. This is predominantly attributed to the activity of VEGFR-2 following binding of VEGF-A. Whether other members of the VEGFR and ligand families such as VEGFR-1 and its ligand Placental Growth Factor (PlGF) can also contribute to developmental and pathological angiogenesis is less clear. We explored the function of PlGF in VEGF-A dependent angiogenesis using an in vitro co-culture assay in which endothelial cells are cultured on a fibroblast feeder layer. In the presence of 2% FS MCDB media (containing limited growth factors) in vitro endothelial tube formation is driven by endogenous angiogenic stimuli which are produced by the fibroblast and endothelial cells. Under these conditions independent sequestration of either free VEGF-A or PlGF with polyclonal and monoclonal antibodies inhibited tube formation suggesting that both ligands are required to drive an angiogenic response. Endothelial tube formation could only be driven within this assay by the addition of exogenous VEGF-A, VEGF-E or VEGF-A/PlGF heterodimer, but not by PlGF alone, implying that activation of either VEGFR-2/VEGFR-1 heterodimers or VEGFR-2 homodimers were responsible for eliciting an angiogenic response directly, but not VEGFR-1 homodimers. In contrast to results obtained with an endogenous angiogenic drive, sequestration of PlGF did not affect endothelial tube formation when the assay was driven by 1 ng/ml exogenous VEGF-A. These data suggest that although neutralising PlGF can be shown to reduce endothelial tube formation in vitro, this effect is only observed under restricted culture conditions and is influenced by VEGF-A. Such data questions whether neutralising PlGF would have a therapeutic benefit in vivo in the presence of pathological concentrations of VEGF-A.

  16. Expression of VEGF₁₆₅b, VEGFR1, VEGFR2 and CD34 in benign and malignant tumors of parotid glands.

    PubMed

    Błochowiak, Katarzyna J; Sokalski, Jerzy; Bodnar, Magdalena B; Trzybulska, Dorota; Marszałek, Andrzej K; Witmanowski, Henryk

    2018-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic factor and could be involved in the pathogenesis of salivary gland tumors. VEGF exerts its biological function by binding to its receptors, VEGFR1 and VEGFR2. An alternative splice variant of VEGF (VEGFxxxb) is an anti-angiogenic factor. Binding VEGF165b with VEGFR2 results in an impaired angiogenic response. The imbalance of VEGFxxx and VEGFxxxb isoforms can underpin pathological angiogenesis. The purpose of this study was to evaluate and compare the expression of VEGF165b, VEGFR1, VEGFR2, and CD34 in benign and malignant parotid gland tumors and to explore the possible correlations between their expression and clinicopathological features of tumors. The study was performed on archived paraffin-embedded tissue samples derived from 70 patients with benign and malignant parotid gland tumors (25 with malignant tumors, 23 with pleomorphic adenoma and 22 with Warthin's tumor). Immunohistochemical staining of selected tissue sections was performed using monoclonal antibodies. Immunohistochemical staining of selected molecules was used for evaluation of their expression in tissue sections. There were no statistically significant differences in the expression of the selected proteins localized in the tumor and surgical margin taken from the same patient. Expression of VEGFR2 correlated with VEGF165b in mixed tumors. There was a statistically significant difference in the expression of VEGFR1 in malignant tumors between females and males, and between the expression of VEGFR1 and the score of T classification in malignant tumors. VEGF165b cannot be treated as a prognostic factor. VEGF receptors correlated with selected clinicopathological data of malignant tumors, indicating their possible role as a prognostic marker. The balance of VEGF isoforms have a limited influence on the development of parotid glands tumors. The correlation between VEGF165b and VEGFR2 in mixed tumors suggests the existence of an additional antiangiogenic pathway in poorly vascularized mixed tumors.

  17. Involvement of Vascular Endothelial Growth Factor in Kaposi's Sarcoma Associated with Acquired Immunodeficiency Syndrome

    PubMed Central

    Sakurada, Shinsaku; Kato, Tetsuji; Mashiba, Kohichi; Mori, Shigeo

    1996-01-01

    To examine the role of vascular endothelial growth factor (VEGF) in the development of edema associated with Kaposi's sarcoma (KS) in acquired immunodeficiency syndrome (AIDS), we exploited animal model systems to detect the activity that induces vascular hyper‐permeability (VHP) using cultured AIDS‐KS spindle cells. Cultured AIDS‐KS spindle cells and conditioned medium (AIDS‐KS‐CM) that had been semi‐purified through a heparin affinity column were tested for the ability to induce VHP in animals. The AIDS‐KS spindle cells and AIDS‐KS‐CM induced VHP that was histamine‐independent. The VHP‐inducing activity was detected in the 0.5 M NaCl fraction from the heparin affinity column and was blocked by anti‐VEGF neutralizing antibody. In addition, the production of VEGF was demonstrated in fresh AIDS‐KS tissue as well as in cultured AIDS‐KS cells, while control cells were negative for VEGF production. From these observations, we concluded that AIDS‐KS cells produce a factor(s) that promotes VHP, and this factor could be VEGF. PMID:9045943

  18. The -2549 insertion/deletion polymorphism in the promoter region of VEGF is associated with the risk of recurrent spontaneous abortion.

    PubMed

    Hashemi, Mohammad; Danesh, Hiva; Bizhani, Fatemeh; Mokhtari, Mojgan; Bahari, Gholamreza; Tabasi, Farhad; Taheri, Mohsen

    2018-03-01

    Recurrent spontaneous abortion (RSA) is a common health problem affecting women of reproductive age. Altered expression of vascular endothelial growth factor ( VEGF ) has been associated with spontaneous abortion. The present case-control study aimed to evaluate the impact of the 18-bp insertion/deletion (ins/del) polymorphism (rs35569394) in the promoter region of the VEGF gene on idiopathic RSA. Genomic DNA from 93 patients with RSA and 93 healthy fertile women of southeastern Iran was isolated using the salting-out method. Genotyping of the rs35569394 variant was performed by a polymerase chain reaction (PCR) method. The findings indicated that the VEGF 18-bp ins/del variant significantly increased the risk of RSA under codominant (ins/ins vs. del/del; OR=2.85, 95% CI=1.31-6.22, P=0.019), dominant (del/ins+ins/ins vs. del/del; OR=2.19, 95% CI=1.20-4.01, P=0.015) and allelic (ins vs. del; OR=1.90, 95% CI=1.25-2.88, P=0.003) inheritance models. In summary, the findings propose a significant association between the VEGF 18-bp ins/del polymorphism and risk of RSA in a sample of the southeast Iranian population. Further studies on larger sample sizes and different ethnicities are required to validate the present findings.

  19. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  20. Association of Vascular Endothelial Growth Factor Expression with Tumor Angiogenesis and with Early Relapse in Primary Breast Cancer

    PubMed Central

    Hoshina, Seigo; Takayanagi, Toshiaki; Tominaga, Takeshi

    1994-01-01

    Angiogenesis is an independent prognostic indicator in breast cancer. In this report, the relationship between expression of vascular endothclial growth factor (VEGF; a selective mitogen for endothelial cells) and the microvessel density was examined in 103 primary breast cancers. The expression of VEGF was evaluated by immunocytochemical staining using anti‐VEGF antibody. The microvessel density, which was determined by immunostaining for factor VIII antigen, in VEGF‐rich tumors was clearly higher than that in VEGF‐poor tumors (P<0.01). There was a good correlation between VEGF expression and the increment of microvessel density. Furthermore, postoperative survey demonstrated that the relapse‐free survival rate of VEGF‐rich tumors was significantly worse than that of VEGF‐poor tumors. It was suggested that the expression of VEGF is closely associated with the promotion of angiogenesis and with early relapse in primary breast cancer. PMID:7525523

  1. Quantitation of Vascular Endothelial Growth Factor and Interleukin-6 in Different Stages of Breast Cancer.

    PubMed

    Raghunathachar Sahana, Kabbathi; Akila, Prashant; Prashant, Vishwanath; Sharath Chandra, Bellekere; Nataraj Suma, Maduvanahalli

    2017-10-01

    Determination of the impact of angiogenesis on tumor development and progression is essential. This study aimed to determine the serum levels of Vascular endothelial growth factor (VEGF) and Interleukin 6 (IL-6) in breast carcinoma, and to correlate them with tumor size, lymph node involvement, and cancer stage. Under aseptic precautions 5 ml of venous blood was collected from 37 breast cancer patients and 20 healthy females after obtaining due consent and ethical committee clearance. Serum levels of VEGF and IL-6 were determined by enzyme-linked immunosorbent assay (ELISA). Serum IL-6 and VEGF levels were both significantly greater in patients than controls (P = 0.001, P = 0.001, respectively). The serum IL-6 and VEGF levels also significantly correlated with TNM staging (P = 0.001, P = 0.001). Serum IL-6 and VEGF positively correlated with each other (r 2 = 0.668, P = 0.01). Serum IL-6 and VEGF levels did not correlate with tumor size (P = 0.45, P = 0.17) or lymph node metastasis (P = 0.95, P = 0.68). Serum IL-6 and VEGF were greater in breast cancer patients than controls. The levels increased with advanced tumor, nodes, metastasis (TNM) staging, thus correlating with the patients' prognoses. Serum IL-6 and VEGF levels can be used as diagnostic tools and prognostic factors in breast cancer.

  2. Serum levels, and bone marrow immunohistochemical expression of, vascular endothelial growth factor in patients with chronic myeloproliferative diseases.

    PubMed

    Panteli, Katerina; Bai, Maria; Hatzimichael, Eleftheria; Zagorianakou, Nektaria; Agnantis, Niki John; Bourantas, Konstantinos

    2007-12-01

    Current data suggest that angiogenesis plays a significant role in the pathogenesis and progression of chronic myeloproliferative diseases (cMPDs). In the present study, we evaluated serum levels of vascular endothelial growth factor (VEGF) in 83 patients with cMPDs [myelofibrosis with myeloid metaplasia (MMM, n = 25), essential thrombocythaemia (ET, n = 40), polycythaemia vera (PV, n = 8) and chronic myeloid leukemia (CML, n = 10)] and in 27 healthy individuals. Serum VEGF levels were significantly increased in patients with cMPDs compared to healthy individuals (all p values were < or = 0.05) and were significantly correlated with bone marrow microvessel density (MVD) (p = 0.0013). In addition, the immunohistochemical expression of VEGF protein in bone marrow biopsy specimens were analyzed in 61 patients with cMPDs, (ET, n = 36 and MMM, n = 25) and in 27 healthy individuals. The cellular distribution of VEGF expression was similar in bone marrow specimens of patients and healthy individuals. VEGF protein was detected mainly in erythroid cells, whereas myeloid cells and megakaryocytes exhibited a variable expression of the protein. The percentage of bone marrow VEGF positive cells was positively correlated with serum levels of VEGF (p = 0.001). The results of the present study suggest that, VEGF is a major angiogenetic factor in patients with cMPDs and contributes to the pathogenesis of these diseases.

  3. Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer.

    PubMed

    Yonemura, Yutaka; Endo, Yoshio; Tabata, Kayoko; Kawamura, Taiichi; Yun, Hyo-Yung; Bandou, Etsurou; Sasaki, Takuma; Miura, Masahiro

    2005-10-01

    The molecular mechanisms of lymphangiogenesis induced by vascular endothelial growth factor (VEGF)-C and VEGF-D in gastric cancer were studied. VEGF-C and VEGF-D gene expression vectors were transfected into the gastric cancer cell line KKLS, which did not originally express VEGF-C and VEGF-D, and stable transfectants (KKLS/VEGF-C and KKLS/VEGF-D) were established. The cell lines were inoculated into the subserosal layer of the stomach and subcutaneous tissue of nude mice. VEGF-C and VEGF-D expression in KKLS/VEGF-C and KKLS/VEGF-D cells was found by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Expression of mouse VEGF receptor (VEGFR)-2 and mouse VEGFR-3 mRNA was detected in the KKLS/VEGF-C and KKLS/VEGF-D gastric tumors. Newly formed lymphatic vessels were detected not only in the periphery but also in the center of the tumors. The intratumor lymphatic vessels connected with the preexisting lymphatic vessels in the muscularis mucosa. The average numbers of lymphatic vessels in KKLS/VEGF-C (52.0 +/- 9.5) and KKLS/VEGF-D (16.4 +/- 0.6) gastric tumors were significantly higher than that in the KKLS/control vector tumors (4.0 +/- 1.4). VEGF-C and VEGF-D may induce neoformation of lymphatic vessels in experimental gastric tumors by the induction of VEGFR-3 expression.

  4. Placental growth factor expression is reversed by antivascular endothelial growth factor therapy under hypoxic conditions.

    PubMed

    Zhou, Ai-Yi; Bai, Yu-Jing; Zhao, Min; Yu, Wen-Zhen; Huang, Lv-Zhen; Li, Xiao-Xin

    2014-08-01

    Clinical trials have revealed that the antivascular endothelial growth factor (VEGF) therapies are effective in retinopathy of prematurity (ROP). But the low level of VEGF was necessary as a survival signal in healthy conditions, and endogenous placental growth factor (PIGF) is redundant for development. The purpose of this study was to elucidate the PIGF expression under hypoxia as well as the influence of anti-VEGF therapy on PIGF. CoCl2-induced hypoxic human umbilical vein endothelial cells (HUVECs) were used for an in vitro study, and oxygen-induced retinopathy (OIR) mice models were used for an in vivo study. The expression patterns of PIGF under hypoxic conditions and the influence of anti-VEGF therapy on PIGF were evaluated by quantitative reverse transcription-polymerase chain reaction (RTPCR). The retinal avascular areas and neovascularization (NV) areas of anti-VEGF, anti-PIGF and combination treatments were calculated. Retina PIGF concentration was evaluated by ELISA after treatment. The vasoactive effects of exogenous PIGF on HUVECs were investigated by proliferation and migration studies. PIGF mRNA expression was reduced by hypoxia in OIR mice, in HUVECs under hypoxia and anti-VEGF treatment. However, PIGF expression was reversed by anti-VEGF therapy in the OIR model and in HUVECs under hypoxia. Exogenous PIGF significantly inhibited HUVECs proliferation and migration under normal conditions, but it stimulated cell proliferation and migration under hypoxia. Anti-PIGF treatment was effective for neovascular tufts in OIR mice (P<0.05). The finding that PIGF expression is iatrogenically up-regulated by anti-VEGF therapy provides a consideration to combine it with anti-PIGF therapy.

  5. Vascular endothelial growth factor-targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma.

    PubMed

    Choueiri, Toni K; Lim, Zita Dubauskas; Hirsch, Michelle S; Tamboli, Pheroze; Jonasch, Eric; McDermott, David F; Dal Cin, Paola; Corn, Paul; Vaishampayan, Ulka; Heng, Daniel Y C; Tannir, Nizar M

    2010-11-15

    Adult "translocation" renal cell carcinoma (RCC), bearing transcription factor E3 (TFE3) gene fusions at Xp11.2, is a recently recognized, unique entity for which prognosis and therapy remain poorly understood. In the current study, the authors investigated the effect of vascular endothelial growth factor (VEGF)-targeted therapy in this distinct subtype of RCC. A retrospective review was conducted to describe the clinical characteristics and outcome of adult patients with metastatic Xp11.2 RCC who had strong TFE3 nuclear immunostaining and received anti-VEGF therapy. Tumor response to anti-VEGF therapy was evaluated using Response Evaluation Criteria in Solid Tumors (RECIST) criteria. The Kaplan-Meier method was used to estimate progression-free survival (PFS) and overall survival (OS) distributions. Fifteen patients were identified, of whom 10, 3, and 2 received sunitinib, sorafenib, and monoclonal anti-VEGF antibodies, respectively. The median follow-up was 19.1 months, the median age of the patients was 41 years, and the female:male ratio was 4:1. Initial histologic description included clear cell (n = 8 patients), papillary (n = 1 patient), or mixed clear cell/papillary RCC (n = 6 patients). Five patients had received prior systemic therapy. Five patients had undergone fluorescent in situ hybridization analysis and all demonstrated a translocation involving chromosome Xp11.2. When treated with VEGF-targeted therapy, 3 patients achieved a partial response, 7 patients had stable disease, and 5 patients developed progressive disease. The median PFS and OS of the entire cohort were 7.1 months and 14.3 months, respectively. Adult-onset, translocation-associated metastatic RCC is an aggressive disease that affects a younger population of patients with a female predominance. In the current study, VEGF-targeted agents appeared to demonstrate some efficacy. Copyright © 2010 American Cancer Society.

  6. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    PubMed Central

    2012-01-01

    Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and enhanced VEGF content may be associated with visceral hyperalgesia, abdominal discomfort, and/or pelvic pain. PMID:23249422

  7. Early Growth Response-1 Induces and Enhances Vascular Endothelial Growth Factor-A Expression in Lung Cancer Cells

    PubMed Central

    Shimoyamada, Hiroaki; Yazawa, Takuya; Sato, Hanako; Okudela, Koji; Ishii, Jun; Sakaeda, Masashi; Kashiwagi, Korehito; Suzuki, Takehisa; Mitsui, Hideaki; Woo, Tetsukan; Tajiri, Michihiko; Ohmori, Takahiro; Ogura, Takashi; Masuda, Munetaka; Oshiro, Hisashi; Kitamura, Hitoshi

    2010-01-01

    Vascular endothelial growth factor-A (VEGF-A) is crucial for angiogenesis, vascular permeability, and metastasis during tumor development. We demonstrate here that early growth response-1 (EGR-1), which is induced by the extracellular signal–regulated kinase (ERK) pathway activation, activates VEGF-A in lung cancer cells. Increased EGR-1 expression was found in adenocarcinoma cells carrying mutant K-RAS or EGFR genes. Hypoxic culture, siRNA experiment, luciferase assays, chromatin immunoprecipitation, electrophoretic mobility shift assays, and quantitative RT-PCR using EGR-1–inducible lung cancer cells demonstrated that EGR-1 binds to the proximal region of the VEGF-A promoter, activates VEGF-A expression, and enhances hypoxia inducible factor 1α (HIF-1α)-mediated VEGF-A expression. The EGR-1 modulator, NAB-2, was rapidly induced by increased levels of EGR-1. Pathology samples of human lung adenocarcinomas revealed correlations between EGR-1/HIF-1α and VEGF-A expressions and relative elevation of EGR-1 and VEGF-A expression in mutant K-RAS- or EGFR-carrying adenocarcinomas. Both EGR-1 and VEGF-A expression increased as tumors dedifferentiated, whereas HIF-1α expression did not. Although weak correlation was found between EGR-1 and NAB-2 expressions on the whole, NAB-2 expression decreased as tumors dedifferentiated, and inhibition of DNA methyltransferase/histone deacetylase increased NAB-2 expression in lung cancer cells despite no epigenetic alteration in the NAB-2 promoter. These findings suggest that EGR-1 plays important roles on VEGF-A expression in lung cancer cells, and epigenetic silencing of transactivator(s) associated with NAB-2 expression might also contribute to upregulate VEGF-A expression. PMID:20489156

  8. Human telomerase reverse transcriptase regulates vascular endothelial growth factor expression via human papillomavirus oncogene E7 in HPV-18-positive cervical cancer cells.

    PubMed

    Li, Fang; Cui, Jinquan

    2015-07-01

    Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.

  9. Expression and localization of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in human pancreas and pancreatic adenocarcinoma.

    PubMed

    Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente

    2007-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) was recently identified as the first tissue-specific angiogenic molecule. EG-VEGF (the gene product of PROK-1) appears to be expressed exclusively in steroid-producing organs such as the ovary, testis, adrenals and placenta. Since the human pancreatic cells retain steroidogenic activity, in the present study we ascertained whether this angiogenic factor is expressed in normal pancreas and pancreatic adenocarcinoma. Tissue samples from normal males (n=5), normal females (n=5) and from surgically resected adenocarcinomas (n=2) were processed for RT-PCR and immunohistochemical studies. Results from semi-quantitative analysis by RT-PCR suggest a distinct expression level for EG-VEGF in the different tissue samples. The relative amount of EG-VEGF mRNA in pancreas was more abundant in female adenocarcinoma (0.89) followed by male adenocarcinoma (0.71), than normal female (0.64) and normal male (0.38). The expression of mRNA for EG-VEGF in normal tissue was significantly higher in females than in males. All samples examined showed specific immunostaining for EG-VEGF. In male preparations, the positive labeling was localized predominantly within the pancreatic islets while in female preparations the main staining was detected towards the exocrine portion. Specific immunolabeling was also observed in endothelial cells of pancreatic blood vessels. Our data provide evidence that the human pancreas expresses the EG-VEGF, a highly specific mitogen which regulates proliferation and differentiation of the vascular endothelium. The significance of this finding could be interpreted as either, EG-VEGF is not exclusive of endocrine organs, or the pancreas should be considered as a functional steroidogenic tissue. The extent of the expression of EG-VEGF appears to have a dimorphic pattern in normal and tumoral pancreatic tissue.

  10. Cigarette smoke and α,β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts

    PubMed Central

    Volpi, Giorgia; Facchinetti, Fabrizio; Moretto, Nadia; Civelli, Maurizio; Patacchini, Riccardo

    2011-01-01

    BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is an angiogenic factor known to be elevated in the sputum of asymptomatic smokers as well as smokers with bronchitis type of chronic obstructive pulmonary disease. The aim of this study was to investigate whether acute exposure to cigarette smoke extract altered VEGF production in lung parenchymal cells. EXPERIMENTAL APPROACH We exposed human airway smooth muscle cells (ASMC), normal human lung fibroblasts (NHLF) and small airways epithelial cells (SAEC) to aqueous cigarette smoke extract (CSE) in order to investigate the effect of cigarette smoke on VEGF expression and release. KEY RESULTS Vascular endothelial growth factor release was elevated by sub-toxic concentrations of CSE in both ASMC and NHLF, but not in SAEC. CSE-evoked VEGF release was mimicked by its component acrolein at concentrations (10–100 µM) found in CSE, and prevented by the antioxidant and α,β-unsaturated aldehyde scavenger, N-acetylcysteine (NAC). Both CSE and acrolein (30 µM) induced VEGF mRNA expression in ASMC cultures, suggesting an effect at transcriptional level. Crotonaldehyde and 4-hydroxy-2-nonenal, an endogenous α,β-unsaturated aldehyde, stimulated VEGF release, as did H2O2. CSE-evoked VEGF release was accompanied by rapid and lasting phosphorylation of p38 MAPK (mitogen-activated protein kinase), which was abolished by NAC and mimicked by acrolein. Both CSE- and acrolein-evoked VEGF release were blocked by selective inhibition of p38 MAPK signalling. CONCLUSIONS AND IMPLICATIONS α,β-Unsaturated aldehydes and possibly reactive oxygen species contained in cigarette smoke stimulate VEGF expression and release from pulmonary cells through p38 MAPK signalling. PMID:21306579

  11. Effects of aspirin on intra-platelet vascular endothelial growth factor, angiopoietin-1, and p-selectin levels in hypertensive patients.

    PubMed

    Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H

    2006-09-01

    Although aspirin is useful in reducing platelet activation and cardiovascular events, its effects on platelet levels of angiogenic factors, such as vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1), and markers of platelet activation in hypertension are unknown. The aim of this study was to study the effects of aspirin on the platelet morphology, plasma and platelet levels of VEGF (sVEGF and pVEGF respectively), Ang-1 (sAng-1 and pAng-1 respectively), and P-selectin (sPsel and pPsel respectively) in patients with well controlled hypertension. A total of 35 aspirin-naive, hypertensive patients (29 male and six female; mean age 64 years) were compared with 30 (23 male, seven female, mean age 59 years) normotensive control subjects. Blood was collected for plasma VEGF, P-selectin, and Ang-1 (enzyme-linked immunoassay), intra-platelet levels of VEGF, Ang-1, and P-selectin, and platelet volume and mass. Research indices in hypertensive patients were studied before and after 3 months treatment with aspirin 75 mg daily. Hypertensive patients had significantly higher plasma levels of VEGF (P=.04), Ang-1 (P<.001), as well as pVEGF (P=.008), pAng-1(P=.001), sPsel (P=.02), pPsel (P<.001), and mean platelet mass (P=.01) when compared with control subjects. After treatment with aspirin for 3 months, there were significant reductions in plasma VEGF (P=.01), pAng-1 (P=.04), sPsel (P=.001), and pPsel (P<.001) levels, but not levels of platelet VEGF and plasma Ang-1. Neither pVEGF nor pAng-1 correlated with blood pressure or with their respective plasma levels. The use of aspirin in high-risk hypertensive patients leads to a reduction in intra-platelet angiogenic growth factors and platelet activation. This may have implications for the use of aspirin in conditions (such as vascular disease) that have been associated with an increase in angiogenesis and platelet activation.

  12. Localization of vascular endothelial growth factor in the zona pellucida of developing ovarian follicles in the rat: a possible role in destiny of follicles.

    PubMed

    Celik-Ozenci, Ciler; Akkoyunlu, Gokhan; Kayisli, Umit Ali; Arici, Aydin; Demir, Ramazan

    2003-11-01

    There is increasing evidence that in many species angiogenic factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), may have important roles in folliculogenesis. The aim of this study is to determine the localization of VEGF and its receptors, Flt-1 and KDR, and bFGF expression in the rat ovary and to evaluate their distributions throughout the different follicular stages. Out of 20 virginal female rats, 10 were studied during the natural ovarian cycle without any ovulation induction. The other 10 were superovulated and their ovaries were studied by western analysis and immunohistochemistry. Granulosa cells (GC) and oocytes of primordial follicles were negative for VEGF. In early primary follicles, VEGF was present in the oocyte but its immunoreactivity was weak, while newly developing zona pellucida (ZP) of primary follicles was negative for VEGF. Subsequently, with the commencement of antral spaces between GC of the secondary follicle, ZP of some secondary follicles became strongly positive for VEGF, forming a continuous ring around the oocyte. In preovulatory mature follicles granulosa and theca interna (TI) cells showed a weak immunoreactivity for VEGF. Western blot analyses have also demonstrated that VEGF, a 26-kDa protein, was present in follicles. Moreover, in ovulated cumulus-oocyte complex we observed a halo-like immunoreactivity of VEGF around the fully mature oocyte. The immunoreactivity for Flt-1 and KDR receptors in growing follicles was mostly limited to GC and TI cells. Anti-bFGF did not exhibit any immunoreactivity in ZP of follicles at any stage. Its expression was weak in GC of the follicles at different stages, whereas, it could be localized to some extent in the blood capillaries of TI of antral follicles and in blood vessels localized in the stroma. Interestingly, VEGF immunoreactivity in the ZP of some secondary follicles is very striking. Accordingly, the possibility that VEGF may be an important regulatory molecule for the dominant follicle selection or atresia should be considered.

  13. Expression levels of seven candidate genes in human peripheral blood mononuclear cells and their association with preeclampsia

    PubMed Central

    Garza-Veloz, I.; Carrillo-Sanchez, K.; Martinez-Gaytan, V.; Cortes-Flores, R.; Ochoa-Torres, M. A.; Guerrero, G. G.; Rodriguez-Sanchez, I. P.; Cancela-Murrieta, C. O.; Zamudio-Osuna, M.; Badillo-Almaraz, J. I.; Castruita-De la Rosa, C.

    2014-01-01

    Objective To evaluate the peripheral blood mononuclear cell (PBMC) expression levels of hemeoxygenase 1 (HMOX-1), superoxide dismutase 1 (SOD-1), vascular endothelial growth factor A (VEGF-A), transforming growth factor beta 1 (TGF-β1), interleukin (IL)-6, IL-15 and AdipoQ genes to study their association with preeclampsia (PE). Methods A total of 177 pregnant women were recruited: 108 cases and 69 controls. Quantification of gene expression was measured by quantitative real-time polymerase chain reaction (PCR) using TaqMan probes. Results Underexpression of VEGF-A and TGF-β1 was a constant in most of the cases (80.91% and 76.36%, respectively) and their expression was associated with onset and/or severity of disease (p values < 0.05). IL-6, IL-15 and AdipoQ, showed low or no expression in PBMC samples evaluated. Conclusion PBMC underexpression of VEGF-A and TGF-β1 is a hallmark of PE in the study population. PMID:24295154

  14. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs ormore » VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.« less

  15. Vascular endothelial growth factor inhibitor-induced hypertension: from pathophysiology to prevention and treatment based on long-acting nitric oxide donors.

    PubMed

    Kruzliak, Peter; Novák, Jan; Novák, Miroslav

    2014-01-01

    Hypertension is the most common adverse effect of the inhibitors of vascular endothelial growth factor (VEGF) pathway-based therapy (VEGF pathway inhibitors therapy, VPI therapy) in cancer patients. VPI includes monoclonal antibodies against VEGF, tyrosine kinase inhibitors, VEGF Traps, and so-called aptamers that may become clinically relevant in the future. All of these substances inhibit the VEGF pathway, which in turn causes a decrease in nitric oxide (NO) and an increase in blood pressure, with the consequent development of hypertension and its final events (e.g., myocardial infarction or stroke). To our knowledge, there is no current study on how to provide an optimal therapy for patients on VPI therapy with hypertension. This review summarizes the roles of VEGF and NO in vessel biology, provides an overview of VPI agents, and suggests a potential treatment procedure for patients with VPI-induced hypertension.

  16. VEGF signaling mediates bladder neuroplasticity and inflammation in response to BCG

    PubMed Central

    2011-01-01

    Background This work tests the hypothesis that increased levels of vascular endothelial growth factor (VEGF) observed during bladder inflammation modulates nerve plasticity. Methods Chronic inflammation was induced by intravesical instillations of Bacillus Calmette-Guérin (BCG) into the urinary bladder and the density of nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) or pan-neuronal marker PGP9.5 was used to quantify alterations in peripheral nerve plasticity. Some mice were treated with B20, a VEGF neutralizing antibody to reduce the participation of VEGF. Additional mice were treated systemically with antibodies engineered to specifically block the binding of VEGF to NRP1 (anti-NRP1B) and NRP2 (NRP2B), or the binding of semaphorins to NRP1 (anti-NRP1 A) to diminish activity of axon guidance molecules such as neuropilins (NRPs) and semaphorins (SEMAs). To confirm that VEGF is capable of inducing inflammation and neuronal plasticity, another group of mice was instilled with recombinant VEGF165 or VEGF121 into the urinary bladder. Results The major finding of this work was that chronic BCG instillation resulted in inflammation and an overwhelming increase in both PGP9.5 and TRPV1 immunoreactivity, primarily in the sub-urothelium of the urinary bladder. Treatment of mice with anti-VEGF neutralizing antibody (B20) abolished the effect of BCG on inflammation and nerve density. NRP1A and NRP1B antibodies, known to reduce BCG-induced inflammation, failed to block BCG-induced increase in nerve fibers. However, the NRP2B antibody dramatically potentiated the effects of BCG in increasing PGP9.5-, TRPV1-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactivity (IR). Finally, instillation of VEGF121 or VEGF165 into the mouse bladder recapitulated the effects of BCG and resulted in a significant inflammation and increase in nerve density. Conclusions For the first time, evidence is being presented supporting that chronic BCG instillation into the mouse bladder promotes a significant increase in peripheral nerve density that was mimicked by VEGF instillation. Effects of BCG were abolished by pre-treatment with neutralizing VEGF antibody. The present results implicate the VEGF pathway as a key modulator of inflammation and nerve plasticity, introduces a new animal model for investigation of VEGF-induced nerve plasticity, and suggests putative mechanisms underlying this phenomenon. PMID:22059553

  17. Co-delivery of vascular endothelial growth factor and angiopoietin-1 using injectable microsphere/hydrogel hybrid systems for therapeutic angiogenesis.

    PubMed

    Shin, Seung-Hwa; Lee, Jangwook; Ahn, Dong-Gyun; Lee, Kuen Yong

    2013-08-01

    We hypothesized that combined delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) using microsphere/hydrogel hybrid systems could enhance mature vessel formation compared with administration of each factor alone. Hybrid delivery systems composed of alginate hydrogels and poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres containing angiogenic factors were prepared. The release behavior of angiogenic factors from hybrid systems was monitored in vitro. The hybrid systems were injected into an ischemic rodent model, and blood vessel formation at the ischemic site was evaluated. The sustained release over 4 weeks of both VEGF and Ang-1 from hybrid systems was achieved in vitro. Co-delivery of VEGF and Ang-1 was advantageous to retain muscle tissues and significantly induced vessel enlargement at the ischemic site, compared to mice treated with either VEGF or Ang-1 alone. Sustained and combined delivery of VEGF and Ang-1 significantly enhances vessel enlargement at the ischemic site, compared with sustained delivery of either factor alone. Microsphere/hydrogel hybrid systems may be a promising vehicle for delivery of multiple drugs for many therapeutic applications.

  18. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head.

    PubMed

    Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin

    2016-03-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Systemic Hypoxia Changes the Organ-Specific Distribution of Vascular Endothelial Growth Factor and Its Receptors

    NASA Astrophysics Data System (ADS)

    Marti, Hugo H.; Risau, Werner

    1998-12-01

    Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

  20. Systemic administration of vascular endothelial growth factor monoclonal antibody reduces the growth of papillary thyroid carcinoma in a nude mouse model.

    PubMed

    Bauer, Andrew J; Patel, Aneeta; Terrell, Richard; Doniparthi, Krishna; Saji, Motoyasu; Ringel, Matthew; Tuttle, R Michael; Francis, Gary L

    2003-01-01

    Papillary thyroid carcinomas (PTC) are the most common thyroid cancers in children. Most are successfully treated with surgery and radioactive iodine, but some persist. PTC express high levels of vascular endothelial growth factor (VEGF) and VEGF receptor (Flt-1). PTC with the most intense expression of VEGF have the greatest recurrence risk. We hypothesized that blockade of VEGF would inhibit PTC growth. To test this, we used systemic VEGF monoclonal antibody (VEGF-MAb) to treat PTC xenografts in nude mice. Treated animals (n = 9) received 200 microg VEGF-MAb by daily i.p. injection for 10 wk, while control animals (n = 9) received vehicle alone. Tumor size was significantly reduced in the treatment group (0.28 +/- 0.06 vs 1.05 +/- 0.25 g, p = 0.008). VEGF immunostaining was more intense (2.57 +/- 0.30 vs 1.75 +/- 0.25, p = 0.06) and the number of p53 positive cells was increased (1.66 +/- 0.24 vs 0.83 +/- 0.31, p = 0.048) in treated tumors. Animal weight was similar in both groups (29.1 +/- 1.1 vs 27.4 +/- 1.1 g, p = 0.30). In conclusion, systemic VEGF-MAb significantly reduced the growth of PTC, suggesting that VEGF-MAb might be useful for treatment of resistant PTC.

  1. Extracorporeal shock wave therapy combined with vascular endothelial growth factor-C hydrogel for lymphangiogenesis.

    PubMed

    Kim, In Gul; Lee, Ji Youl; Lee, David S; Kwon, Jeong Yi; Hwang, Ji Hye

    2013-01-01

    Lymphedema is a clinically incurable disease that occurs commonly after lymph node dissection and/or irradiation. Several studies have recently demonstrated that extracorporeal shock wave therapy (ESWT) could promote lymphangiogenesis associated with expression of vascular endothelial growth factor (VEGF)-C. This research concerned primarily the synergistic effect of ESWT combined with VEGF-C incorporated hydrogel (VEGF-C hydrogel) combination therapy for promoting lymphangiogenesis and ultimately alleviating lymphedema. The VEGF-C hydrogel was applied to the injury site in a mouse model of lymphedema and then regularly underwent ESWT (0.05 mJ/mm(2), 500 shots) every 3 days for 4 weeks. Four weeks after the treatment, mice treated with VEGF-C hydrogel and ESWT showed signs of the greatest decrease in edema/collagenous deposits when compared with the other experimental group. LYVE-1-positive vessels also revealed that the VEGF-C/ESWT group had significantly induced the growth of new lymphatic vessels compared to the other groups. Western blot analysis showed that expression of VEGF-C (1.24-fold) and VEGF receptor-3 (1.41-fold) was significantly increased in the VEGF-C/ESWT group compared to the normal group. These results suggested that VEGF-C and ESWT had a synergistic effect and were very effective in alleviating the symptoms of lymphedema and promoting lymphangiogenesis. Copyright © 2012 S. Karger AG, Basel.

  2. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture.more » VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human keratinocytes (NHKs). • Chemical allergens stimulate NHKs to produce VEGF. • VEGF production is preceded by IL-8 production in NHKs. • IFNγ, DNCB and formaldehyde increase lymphangiogenic VEGF-C gene transcription. • VEGF production in NHKs may be a biomarker for the prediction of potential contact allergens.« less

  3. Comparative analysis of COX-2, vascular endothelial growth factor and microvessel density in human renal cell carcinomas.

    PubMed

    Hemmerlein, B; Galuschka, L; Putzer, N; Zischkau, S; Heuser, M

    2004-12-01

    Cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are frequently up-regulated in malignant tumours and play a role in proliferation, apoptosis, angiogenesis and tumour invasion. In the present study, the expression of COX-2 and VEGF in renal cell carcinoma (RCC) was analysed and correlated with the microvessel density (MVD). COX-2 and VEGF were analysed by realtime reverse transcriptase-polymerase chain reaction and immunohistochemistry. The MVD was assessed by CD31 immunohistochemistry. The expression of COX-2 and VEGF was determined in the RCC cell lines A498 and Caki-1 under short-term hypoxia and in multicellular tumour cell aggregates. COX-2 was expressed in RCC by tumour epithelia, endothelia and macrophages in areas of cystic tumour regression and tumour necrosis. COX-2 protein in RCC was not altered in comparison with normal renal tissue. VEGF mRNA was up-regulated in RCC and positively correlated with MVD. RCC with high up-regulation of VEGF mRNA showed weak intracytoplasmic expression of VEGF in tumour cells. Intracytoplasmic VEGF protein expression was negatively correlated with MVD. In RCC with necrosis the MVD was reduced in comparison with RCC without necrosis. A498 RCC cells down-regulated COX-2 and up-regulated VEGF under conditions of hypoxia. In Caki-1 cells COX-2 expression remained stable, whereas VEGF was significantly up-regulated. In multicellular A498 cell aggregates COX-2 and VEGF were up-regulated centrally, whereas no gradient was found in Caki-1 cells. COX-2 and VEGF are potential therapeutic targets because COX-2 and VEGF are expressed in RCC and associated cell populations such as endothelia and monocytes/macrophages.

  4. Effect of trapping vascular endothelial growth factor-A in a murine model of dry eye with inflammatory neovascularization

    PubMed Central

    Kwon, Jin Woo; Choi, Jin A; Shin, Eun Young; La, Tae Yoon; Jee, Dong Hyun; Chung, Yeon Woong; Cho, Yang Kyung

    2016-01-01

    AIM To evaluate whether trapping vascular endothelial growth factor A (VEGF-A) would suppress angiogenesis and inflammation in dry eye corneas in a murine corneal suture model. METHODS We established two groups of animals, one with non-dry eyes and the other with induced dry eyes. In both groups, a corneal suture model was used to induce inflammation and neovascularization. Each of two groups was again divided into three subgroups according to the treatment; subgroup I (aflibercept), subgroup II (dexamethasone) and subgroup III (phosphate buffered saline, PBS). Corneas were harvested and immunohistochemical staining was performed to compare the extents of neovascularization and CD11b+ cell infiltration. Real-time polymerase chain reaction was performed to quantify the expression of inflammatory cytokines and VEGF-A in the corneas. RESULTS Trapping VEGF-A with aflibercept resulted in significantly decreased angiogenesis and inflammation compared with the dexamethasone and PBS treatments in the dry eye corneas (all P<0.05), but with no such effects in non-dry eyes. The anti-inflammatory and anti-angiogenic effects of VEGF-A trapping were stronger than those of dexamethasone in both dry eye and non-dry eye corneas (all P<0.05). The levels of RNA expression of VEGF-A, TNF-alpha, and IL-6 in the aflibercept subgroup were significantly decreased compared with those in the PBS subgroup in the dry eye group. CONCLUSION Compared with non-dry eye corneas, dry eye corneas have greater amounts of inflammation and neovascularization and also have a more robust response to anti-inflammatory and anti-angiogenic agents after ocular surface surgery. Trapping VEGF-A is effective in decreasing both angiogenesis and inflammation in dry eye corneas after ocular surface surgery. PMID:27990354

  5. Gender hormones and the progression of experimental polycystic kidney disease.

    PubMed

    Stringer, Kenneth D; Komers, Radko; Osman, Shukri A; Oyama, Terry T; Lindsley, Jessie N; Anderson, Sharon

    2005-10-01

    Male gender is a risk factor for progression of autosomal-dominant polycystic kidney disease (ADPKD), clinically and in the Han:SPRD rat model. Orchiectomy limits progression, but mechanisms of the detrimental effect of androgen, and/or beneficial effects of estrogen, are not known. This protocol tested the hypothesis that male gender (intact androgen status) promotes progression, while female gender (intact estrogen status) is protective; and that these disease-modifying effects are due to changes in expression of known fibrotic mediators. Studies were performed in male and female noncystic control (+/+) and cystic (+/-) rats subjected to orchiectomy, ovariectomy, or sham operation. At 12 weeks of age, renal function was measured. Blood and kidneys were taken for measurement of plasma and renal renin, endothelin (ET-1), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF), using biochemical, protein expression, and immunohistochemical methods. Cystic male rats exhibited significantly reduced glomerular filtration (GFR) and effective renal plasma flow (ERPF) rates, with suppression of plasma and renal renin, up-regulation of renal ET-1 and eNOS, and down-regulation of renal VEGF expression. Orchiectomy attenuated the fall in GFR and ERPF, while numerically limiting changes in eNOS and VEGF. Female rats exhibited less cystic growth, with normal renin status, lesser elevation of renal ET-1, and proportionately lesser changes in VEGF and eNOS. Ovariectomy led to higher blood pressure and reduced GFR and ERPF, with a trend toward upregulation of ET-1, and significant down-regulation of VEGF and eNOS. Female gender is protective, but ovariectomy attenuates the protective effect of female gender, in association with changes in renal expression of ET-1, VEGF, and eNOS. The accelerated disease in male rats can be attenuated by orchiectomy and consequent changes in expression of disease mediators.

  6. Serum placental growth factor, vascular endothelial growth factor, soluble vascular endothelial growth factor receptor-1 and -2 levels in periodontal disease, and adverse pregnancy outcomes.

    PubMed

    Sert, Tuba; Kırzıoğlu, F Yeşim; Fentoğlu, Ozlem; Aylak, Firdevs; Mungan, Tamer

    2011-12-01

    The aim of this study is the evaluation of levels of serum interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and soluble VEGF receptor (sVEGFR)-1 and -2 in the association between periodontal disease and adverse pregnancy outcomes. One hundred and nine mothers, who recently gave birth, and 51 women who were not recently pregnant, aged 18 to 35 years, were included in this study. The mothers were classified as term birth, preterm birth (PTB), and preterm low birth weight (PLBW) in respect to their gestational age and baby's birth weight. The birth mothers were grouped as having gingivitis or periodontitis. The non-pregnant group also included periodontally healthy patients. Venous blood samples were collected to evaluate serum IL-1β, IL-6, IL-10, TNF-α, VEGF, PIGF, and sVEGFR-1 and -2 levels. Mother's weight, education, and income level were significantly associated with pregnancy outcomes. Serum levels of IL-1β, TNF-α, IL-6, VEGF, and sVEGFR-1 and -2 showed an increase in significance when related to pregnancy. Whereas in the PLBW group IL-1β, VEGF, and sVEGFR-2 levels were increased, in the PTB group sVEGFR-1 levels were increased. Additionally, the patients in the PLBW group with periodontitis had higher serum levels of IL-1β, VEGF, sVEGFR-2, and IL-1β/IL-10. The serum levels of IL-1β, VEGF, and sVEGFR-1 and -2 may have a potential effect on the mechanism of the association between periodontal disease and adverse pregnancy outcomes.

  7. Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice

    PubMed Central

    Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao

    2016-01-01

    Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931

  8. A Phase II Safety and Efficacy Study of the Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor Pazopanib in Patients With Metastatic Urothelial Cancer

    PubMed Central

    Pili, Roberto; Qin, Rui; Flynn, P.J.; Picus, Joel; Millward, Michael; Ho, Wing Ming; Pitot, Henry; Tan, Winston; Miles, Kiersten M.; Erlichman, Charles; Vaishampayan, Ulka

    2013-01-01

    Vascular endothelial growth factor (VEGF) is expressed in human bladder tumors. A phase II study was conducted to assess the VEGF inhibitor pazopanib in patients with metastatic, urothelial carcinoma. Nineteen patients with one prior systemic therapy were enrolled. No objective responses were observed and median progression-free survival was 1.9 months. The role of anti-VEGF therapies in urothelial carcinoma remains to be determined. Background Vascular endothelial growth factor (VEGF) is produced by bladder cancer cell lines in vitro and expressed in human bladder tumor tissues. Pazopanib is a vascular endothelial receptor tyrosine kinase inhibitor with anti-angiogenesis and anti-tumor activity in several preclinical models. A 2-stage phase II study was conducted to assess the activity and toxicity profile of pazopanib in patients with metastatic, urothelial carcinoma. Methods Patients with one prior systemic therapy for metastatic urothelial carcinoma were eligible. Patients received pazopanib at a dose of 800 mg orally for a 4-week cycle. Results Nineteen patients were enrolled. No grade 4 or 5 events were experienced. Nine patients experienced 11 grade 3 adverse events. Most common toxicities were anemia, thrombocytopenia, leucopenia, and fatigue. For stage I, none of the first 16 evaluable patients were deemed a success (complete response or partial response) by the Response Evaluation Criteria In Solid Tumors criteria during the first four 4-week cycles of treatment. Median progression-free survival was 1.9 months. This met the futility stopping rule of interim analysis, and therefore the trial was recommended to be permanently closed. Conclusions Pazopanib did not show significant activity in patients with urothelial carcinoma. The role of anti-VEGF therapies in urothelial carcinoma may need further evaluation in rational combination strategies. PMID:23891158

  9. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats.

    PubMed

    Tado, Masahiro; Mori, Tatsuro; Fukushima, Masamichi; Oshima, Hideki; Maeda, Takeshi; Yoshino, Atsuo; Aizawa, Shin; Katayama, Yoichi

    2014-04-01

    To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (p<0.003). Increases in cerebrovascular permeability and water content, however, became maximal within 24 h (p<0.001) after injury (p<0.01), respectively. Administration of bevacizumab did not influence these changes in cerebrovascular permeability and water content, but led to a significant rise in the neurological deficits at 72 h-14 days (p<0.05 or 0.01) and the volume of contusion necrosis at 21 days (p<0.001) after injury. These findings suggest that increased expression of VEGF after injury does not contribute to the formation of contusion edema, but attenuates the formation of contusion necrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion.

  10. Vascular endothelial growth factor and the kidney: something of the marvellous.

    PubMed

    Advani, Andrew

    2014-01-01

    The vascular endothelial growth factor (VEGF) system is a multifarious network and an exemplar of an intraglomerular signalling pathway. Here, we review recent advances that highlight the subtle nature of the renal VEGF system and its influencers. The VEGF system is no longer considered as a simple paracrine, ligand-receptor interaction under the regulatory control of a soluble 'decoy', soluble fms-like tyrosine kinase-1 (sFLT1). Rather, the abundantly expressed, podocyte-derived VEGF isoform, VEGF-A, is now recognized to mediate both paracrine effects across the filtration barrier and autocrine actions, functioning to preserve the integrity of the cells from which it arises. Autocrine actions of the podocyte VEGF system extend beyond those of the VEGF-A isoform, however, with sFLT1 itself now appreciated as regulating podocyte morphology by binding to lipid microdomains. These and other functions of the VEGF system are profoundly affected by the presence, nature and abundance of influencers both intrinsic and extrinsic to the pathway, the latter most readily exemplified by the role of the cytokine in the diabetic kidney. The glomerular VEGF system plays a delicate, yet critical, role in preserving renal homeostasis. It may be intricate, but 'in all things of nature there is something of the marvellous'.

  11. [Polymorphism in the regulatory regions -С2578A and +C936T of the vascular endothelial growth factor (VEGF-A) gene in Russian women with rheumatoid arthritis].

    PubMed

    Shevchenko, A V; Prokofyev, V F; Korolev, M A; Banshchikova, N E; Konenkov, V I

    To analyze polymorphism in the regulatory regions of the vascular endothelial growth factor (VEGF) gene in female patients with rheumatoid arthritis (RA). The investigation enrolled 257 female patients with RA. A control group consisted of 297 women without chronic diseases. The investigators examined the single-nucleotide polymorphism of VEGF-А2578С in the promoter region (rs699947) and that of VEGF+С936Т 3 in the retranslated region (rs3025039) of the gene. Genotyping was performed by restriction fragment length polymorphism analysis. There was an increase in the frequency of VEGF+936 CT and a reduction in that of the VEGF+936СС genotypes in the seronegative patients as compared to the healthy women. The VEGF+936СС genotype frequency was higher in the patients with seropositive RA than in the subgroup of seronegative patients. The frequency of the VEGF-2578СС genotype was increased in the patients with RA and rheumatoid nodules, as compared to the healthy women. The data presented suggest that the presence of certain VEGF gene variants located in the regulatory regions may reflect the nature of immunopathological mechanisms in RA.

  12. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension.

    PubMed

    Li, Liwen; Pan, Hao; Wang, Handong; Li, Xiang; Bu, Xiaomin; Wang, Qiang; Gao, Yongyue; Wen, Guodao; Zhou, Yali; Cong, Zixiang; Yang, Youqing; Tang, Chao; Liu, Zhengwei

    2016-11-21

    Venous hypertension(VH) plays an important role in the pathogenesis of cerebral arteriovenous malformations (AVMs) and is closely associated with the HIF-1α/VEGF signaling pathway. Nuclear factor erythroid 2-related factor 2(Nrf2) significantly influences angiogenesis; however, the interplay between Nrf2 and VEGF under VH in brain AVMs remains unclear. Therefore, our study aimed to investigate the interplay between Nrf2 and VEGF due to VH in brain AVMs. Immunohistochemistry indicated that Nrf2 and VEGF were highly expressed in human brain AVM tissues. In vivo, we established a VH model in both wild-type (WT) and siRNA-mediated Nrf2 knockdown rats. VH significantly increased the expression of Nrf2 and VEGF. Loss of Nrf2 markedly inhibited the upregulation of VEGF, as determined by Western blot analysis and qRT-PCR. In vitro, primary brain microvascular endothelial cells (BMECs) were isolated from WT and Nrf2 -/- mice, and a VEGF-Nrf2 positive feed-back loop was observed in BMECs. By trans well assay and angiogenesis assay, Nrf2 knockout significantly inhibited the migration and vascular tube formation of BMECs. These findings suggest that the interplay between Nrf2 and VEGF can contribute to VH-induced angiogenesis in brain AVMs pathogenesis.

  13. Novel Function for Vascular Endothelial Growth Factor Receptor-1 on Epidermal Keratinocytes

    PubMed Central

    Wilgus, Traci A.; Matthies, Annette M.; Radek, Katherine A.; Dovi, Julia V.; Burns, Aime L.; Shankar, Ravi; DiPietro, Luisa A.

    2005-01-01

    Vascular endothelial growth factor (VEGF-A), a potent stimulus for angiogenesis, is up-regulated in the skin after wounding. Although studies have shown that VEGF is important for wound repair, it is unclear whether this is based solely on its ability to promote angiogenesis or if VEGF can also promote healing by acting directly on non-endothelial cell types. By immunohistochemistry and reverse transcriptase-polymerase chain reaction, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was detected in murine keratinocytes during wound repair and in normal human epidermal keratinocytes (NHEKs). The presence of VEGF receptors on NHEKs was verified by binding studies with 125I-VEGF. In vitro, VEGF stimulated the proliferation of NHEKs, an effect that could be blocked by treatment with neutralizing VEGFR-1 antibodies. A role for VEGFR-1 in keratinocytes was also shown in vivo because treatment of excisional wounds with neutralizing VEGFR-1 antibodies delayed re-epithelialization. Treatment with anti-VEGFR-1 antibodies also reduced the number of proliferating keratinocytes at the leading edge of the wound, suggesting that VEGF sends a proliferative signal to these cells. Together, these data describe a novel role for VEGFR-1 in keratinocytes and suggest that VEGF may play several roles in cutaneous wound repair. PMID:16251410

  14. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis.

    PubMed

    Rosmorduc, O; Wendum, D; Corpechot, C; Galy, B; Sebbagh, N; Raleigh, J; Housset, C; Poupon, R

    1999-10-01

    We tested the potential role of vascular endothelial growth factor (VEGF) and of fibroblast growth factor-2 (FGF-2) in the angiogenesis associated with experimental liver fibrogenesis induced by common bile duct ligation in Sprague-Dawley rats. In normal rats, VEGF and FGF-2 immunoreactivities were restricted to less than 3% of hepatocytes. One week after bile duct ligation, hypoxia was demonstrated by the immunodetection of pimonidazole adducts unevenly distributed throughout the lobule. After 2 weeks, hypoxia and VEGF expression were detected in >95% of hepatocytes and coexisted with an increase in periportal vascular endothelial cell proliferation, as ascertained by Ki67 immunolabeling. Subsequently, at 3 weeks the density of von Willebrand-labeled vascular section in fibrotic areas significantly increased. Semiquantitative reverse transcription polymerase chain reaction showed that VEGF(120) and VEGF(164) transcripts, that correspond to secreted isoforms, increased within 2 weeks, while VEGF(188) transcripts remained unchanged. FGF-2 mainly consisting of a 22-kd isoform, according to Western blot, was identified by immunohistochemistry in 49% and 100% of hepatocytes at 3 and 7 weeks, respectively. Our data provide evidence that in biliary-type liver fibrogenesis, angiogenesis is stimulated primarily by VEGF in response to hepatocellular hypoxia while FGF-2 likely contributes to the maintenance of angiogenesis at later stages.

  15. Development of a molecularly imprinted polymer tailored on disposable screen-printed electrodes for dual detection of EGFR and VEGF using nano-liposomal amplification strategy.

    PubMed

    Johari-Ahar, Mohammad; Karami, Pari; Ghanei, Mostafa; Afkhami, Abbas; Bagheri, Hasan

    2018-06-01

    This work demonstrates the development of a gold screen-printed electrode (Au-SPE)-based biosensor modified with a molecularly imprinted polymer and amplified using antibody-conjugated nano-liposomes. The developed biosensor was utilized for dual determination of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) as cancer biomarkers. To prepare this biosensor, Au-SPE was modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) via self-assembly method and then the target proteins (EGFR and VEGF) were covalently attached to the modified SPE. To synthesize the molecularly imprinted polymer, monomers of acrylamide and N,N'-methylenebis(acrylamide) were polymerized around the EGFR and VEGF templates, and to characterize the prepared biosensor, electrochemical impedance spectroscopy was used for analyses of surface changes in the engineered electrodes. To produce reliable electrochemical signals, nano-liposomes which were loaded with Cd(II) and Cu(II) cations and decorated with antibodies specific for EGFR and VEGF were used as an efficient tool for detection of target biomarkers. In the analysis step, potentiometric striping analysis (PSA), as an electrochemical technique, was utilized for sensitive determination of these cations. The limits of detection (LODs) of EGFR and VEGF analyses were found to be 0.01 and 0.005 pg mL -1 with the linear dynamic ranges (LDRs) of 0.05-50000 and 0.01-7000 pg mL -1 , respectively. Moreover, the proposed biosensor was successfully used for sensitive, reproducible, and specific detection of EGFR and VEGF in real samples. Due to the SPE nature of the developed biosensor, we envision that this sensing tool has capability of being integrated with lab-on-a-chip (LOC), microfluidics, and micro total analysis systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Vascular endothelial growth factor in systemic lupus erythematosus - correlations with disease activity and nailfold capillaroscopy changes.

    PubMed

    Bărbulescu, Andreea Lili; Vreju, Ananu Florentin; Bugă, Ana Maria; Sandu, Raluca Elena; Criveanu, Cristina; Tudoraşcu, Diana Rodica; Gheonea, Ioana Andreea; Ciurea, Paulina Lucia

    2015-01-01

    Our study aimed to quantify serum VEGF (vascular endothelial growth factor) and its inter-relation with the severity of microvascular damage, assessed by nailfold capillaroscopy (NC), and to establish the possible relationship with disease activity score. We included 18 patients, diagnosed with systemic lupus erythematosus (SLE) and 17 gender and age-matched control subjects. For determining serum VEGF, we used a Human VEGF Assay kit-IBL. NC was performed, according to the standard method, using a video-capillaroscope Videocap 3.0, DS Medica, by the same examiner, blinded to clinical and laboratory data. Serum VEGF registered a mean value of 68.99±71.06 pg/mL for SLE patients and 31.84±11.74 pg/mL for controls, differences statistically significant; depending on disease activity, we found a mean value of 60.11±57.74 pg/mL, for patients with moderate disease activity vs. 30.96±11.51 pg/mL for the ones with a low activity (p=0.014). We found a moderately positive correlation, statistically significant (p=0.015), between serum level of VEGF and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Performing NC, we found changes in 88.88% of the patients; the most frequent were increased tortuosity, dilated capillaries, an increased length and a prominent subpapillary plexus. The presence of nailfold capillaroscopy changes and serum level of VEGF, correlated moderately, positive. Since serum levels of VEGF are higher in SLE patients, compared to controls, significantly different according to disease activity degree, and directly inter-related to abnormal NC patterns and a more active disease, we can include these accessible parameters in the routine evaluation, in order to better quantify the systemic damage, individualize the treatment, improve the outcome and life quality for these patients.

  17. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo

    PubMed Central

    Cartland, Siân P.; Genner, Scott W.; Zahoor, Amna; Kavurma, Mary M.

    2016-01-01

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people. PMID:27918462

  18. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo.

    PubMed

    Cartland, Siân P; Genner, Scott W; Zahoor, Amna; Kavurma, Mary M

    2016-12-02

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  19. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua.

    PubMed

    Wheeler, Karen C; Jena, Manoj K; Pradhan, Bhola S; Nayak, Neha; Das, Subhendu; Hsu, Chaur-Dong; Wheeler, David S; Chen, Kang; Nayak, Nihar R

    2018-01-01

    It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition of VEGF signaling may contribute to the shift in macrophage polarity observed in different pregnancy disorders, including preeclampsia.

  20. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua

    PubMed Central

    Nayak, Neha; Das, Subhendu; Hsu, Chaur-Dong; Wheeler, David S.; Chen, Kang; Nayak, Nihar R.

    2018-01-01

    It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition of VEGF signaling may contribute to the shift in macrophage polarity observed in different pregnancy disorders, including preeclampsia. PMID:29324807

  1. Investigation of hypoxia-inducible factor-1α in hippocampal sclerosis: a postmortem study.

    PubMed

    Feast, Alexandra; Martinian, Lillian; Liu, Joan; Catarino, Claudia B; Thom, Maria; Sisodiya, Sanjay M

    2012-08-01

    Hypoxia-inducible factor-1α (HIF-1α) is involved in critical aspects of cell survival in response to hypoxia and regulates vascular endothelial growth factor (VEGF) expression. Previous experimental and human studies in epilepsy show up-regulation of VEGF following seizures, although expression of HIF-1α as its potential regulator has not been explored. We used a postmortem (PM) series from patients with epilepsy and hippocampal sclerosis (HS) to investigate patterns of expression of HIF-1α and VEGF and their potential contribution to neuroprotection. In 33 PMs (17 cases with unilateral HS, 3 with bilateral HS, 3 with No-HS, and 10 controls), we quantified neuronal immunolabeling for HIF-1α and VEGF in hippocampal subfields. HIF-1α- and VEGF-immunopositive hippocampal neurones were observed in HS, No-HS, and also in control cases; there was no significant difference in overall labeling between epilepsy cases and controls. In positive cases, HIF-1α and VEGF neuronal labeling localized primarily in CA1, CA4, and CA3 subfields in all groups; significantly more positive neurons were seen in the entorhinal cortex in epilepsy cases (p < 0.05). Labeling lateralized to the side of sclerosis in unilateral HS cases, with significant differences between hemispheres (p < 0.05). There was a trend for high HIF-1α labeling scores in patients with Dravet syndrome without HS and sudden unexpected death in epilepsy (SUDEP) cases, and lower scores with long seizure-free periods prior to death. Hippocampal HIF-1α and VEGF labeling showed a significant correlation. There was neuronal colocalization of HIF-1α and VEGF. Regional expression patterns are in keeping with seizure-related activation of HIF-1α and VEGF. The prominent expression in non-HS cases could support an overall neuroprotective effect. Correlation between HIF-1α and VEGF neuronal immunolabeling supports HIF-1α-mediated induction of VEGF in epilepsy. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  2. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    PubMed Central

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases. PMID:19917137

  3. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer.

    PubMed

    Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M

    1996-03-01

    Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.

  4. Growth factor-functionalized silk membranes support wound healing in vitro.

    PubMed

    Bienert, M; Hoss, M; Bartneck, M; Weinandy, S; Böbel, M; Jockenhövel, S; Knüchel, R; Pottbacker, K; Wöltje, M; Jahnen-Dechent, W; Neuss, S

    2017-08-16

    Chronic wounds represent a serious problem in daily medical routine requiring improved wound care. Silk of the domesticated silkworm (Bombyx mori) has been used to form a variety of biomaterials for medical applications. We genetically engineered B. mori to produce silk functionalized with growth factors to promote wound healing in vitro. In this study FGF-, EGF-, KGF-, PDGF- or VEGF-functionalized silk membranes were compared to native B. mori silk membranes without growth factors for their ability to support wound healing in vitro. All silk membranes were cytocompatible and supported macrophage secretion of neutrophil recruiting factor CXCL1 and monocyte chemoattractant protein 1 (MCP-1). VEGF-functionalized silk significantly outperformed other growth factor-functionalized silk membranes, but not native silk in angiogenesis assays. In addition, EGF- and VEGF-functionalized silk membranes slightly enhanced macrophage adhesion compared to silk without growth factors. In wound healing assays in vitro (reduction of wound lesion), dermal equivalents showed a higher wound healing capacity when covered with EGF-, FGF- or VEGF-functionalized silk membranes compared to native, KGF- or PDGF-functionalized silk membranes. Keratinocyte migration and growth is overstimulated by KGF- and VEGF-functionalized silk membranes. In conclusion, growth factor-functionalized silk membranes prepared from genetically engineered silk worm glands are promising wound dressings for future wound healing therapies.

  5. Pathophysiological consequences of VEGF-induced vascular permeability

    NASA Astrophysics Data System (ADS)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  6. Correlation between increasing tissue ischemia and circulating levels of angiogenic growth factors in peripheral artery disease.

    PubMed

    Jalkanen, Juho; Hautero, Olli; Maksimow, Mikael; Jalkanen, Sirpa; Hakovirta, Harri

    2018-04-21

    The aim of the present study was to assess the circulating levels of vascular endothelial growth factor (VEGF) and other suggested therapeutic growth factors with the degree of ischemia in patients with different clinical manifestations of peripheral arterial disease (PAD) according to the Rutherford grades. The study cohort consists of 226 consecutive patients admitted to a Department of Vascular Surgery for elective invasive procedures. PAD patients were grouped according to the Rutherford grades after a clinical assessment. Ankle-brachial pressure indices (ABI) and absolute toe pressure (TP) values were measured. Serum levels of circulating VEGF, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF) were measured from serum and analysed against Rutherford grades and peripheral hemodynamic measurements. The levels of VEGF (P = 0.009) and HGF (P < 0.001) increased significantly as the ischaemic burden became more severe according to the Rutherford grades. PDGF behaved in opposite manner and declined along increasing Rutherford grades (P = 0.004). A significant, inverse correlations between Rutherford grades was detected as follows; VEGF (Pearson's correlation = 0.183, P = 0.004), HGF (Pearson's correlation = 0.253, P < 0.001), bFGF (Pearson's correlation = 0.169, P = 0.008) and PDGF (Pearson's correlation = 0.296, P < 0.001). In addition, VEGF had a clear direct negative correlation with ABI (Pearson's correlation -0.19, P = 0.009) and TP (Pearson's correlation -0.20, P = 0.005) measurements. Our present observations show that the circulating levels of VEGF and other suggested therapeutic growth factors are significantly increased along with increasing ischemia. These findings present a new perspective to anticipated positive effects of gene therapies utilizing VEGF, HGF, and bFGF, because the levels of these growth factors are endogenously high in end-stage PAD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Nicotine promotes vascular endothelial growth factor secretion by human trophoblast cells under hypoxic conditions and improves the proliferation and tube formation capacity of human umbilical endothelial cells.

    PubMed

    Zhao, Hongbo; Wu, Lanxiang; Wang, Yahui; Zhou, Jiayi; Li, Ruixia; Zhou, Jiabing; Wang, Zehua; Xu, Congjian

    2017-04-01

    Pre-eclampsia, characterized as defective uteroplacental vascularization, remains the major cause of maternal and fetal mortality and morbidity. Previous epidemiological studies demonstrated that cigarette smoking reduced the risk of pre-eclampsia. However, the molecular mechanism remains elusive. In the present study, it is demonstrated that a low dose of nicotine decreased soluble vascular endothelial growth factor receptor 1 (sFlt1) secretion in human trophoblast cells under hypoxic conditions. Nicotine was then observed to promote vascular endothelial growth factor (VEGF) secretion by reducing sFlt1 secretion and increasing VEGF mRNA transcription. Further data showed that nicotine enhanced hypoxia-mediated hypoxia-inducible factor-1α (HIF-1α) expression and HIF-1α small interfering RNA abrogated nicotine-induced VEGF secretion, indicating that HIF-1α may be responsible for nicotine-mediated VEGF transcription under hypoxic conditions. Moreover, conditioned medium from human trophoblast cells treated with nicotine under hypoxic conditions promoted the proliferation and tube formation capacity of human umbilical endothelial cells (HUVEC) by promoting VEGF secretion. These findings indicate that nicotine may promote VEGF secretion in human trophoblast cells under hypoxic conditions by reducing sFlt1 secretion and up-regulating VEGF transcription and improve the proliferation and tube formation of HUVEC cells, which may contribute to elucidate the protective effect of cigarette smoking against pre-eclampsia. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Mapping of Fab-1:VEGF Interface Using Carboxyl Group Footprinting Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wecksler, Aaron T.; Kalo, Matt S.; Deperalta, Galahad

    2015-12-01

    A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes.

  9. VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma.

    PubMed

    Park, Seongyeol; Nam, Soo Jeong; Keam, Bhumsuk; Kim, Tae Min; Jeon, Yoon Kyung; Lee, Se-Hoon; Hah, J Hun; Kwon, Tack-Kyun; Kim, Dong-Wan; Sung, Myung-Whun; Heo, Dae Seog; Bang, Yung-Jue

    2016-04-01

    The purpose of this study was to evaluate potential prognostic factors in patients with adenoid cystic carcinoma (ACC). A total of 68 patients who underwent curative surgery and had available tissue were enrolled in this study. Their medical records and pathologic slides were reviewed and immunohistochemistry for basic fibroblast growth factor, fibroblast growth factor receptor (FGFR) 2, FGFR3, c-kit, Myb proto-oncogene protein, platelet-derived growth factor receptor beta, vascular endothelial growth factor (VEGF), and Ki-67 was performed. Univariate and multivariate analysis was performed for determination of disease-free survival (DFS) and overall survival (OS). In univariate analyses, primary site of nasal cavity and paranasal sinus (p=0.022) and Ki-67 expression of more than 7% (p=0.001) were statistically significant factors for poor DFS. Regarding OS, perineural invasion (p=0.032), high expression of VEGF (p=0.033), and high expression of Ki-67 (p=0.007) were poor prognostic factors. In multivariate analyses, primary site of nasal cavity and paranasal sinus (p=0.028) and high expression of Ki-67 (p=0.004) were independent risk factors for poor DFS, and high expression of VEGF (p=0.011) and Ki-67 (p=0.011) showed independent association with poor OS. High expression of VEGF and Ki-67 were independent poor prognostic factors for OS in ACC.

  10. The endocrine-gland-derived vascular endothelial growth factor (EG-VEGF)/prokineticin 1 and 2 and receptor expression in human prostate: Up-regulation of EG-VEGF/prokineticin 1 with malignancy.

    PubMed

    Pasquali, Daniela; Rossi, Valentina; Staibano, Stefania; De Rosa, Gaetano; Chieffi, Paolo; Prezioso, Domenico; Mirone, Vincenzo; Mascolo, Massimo; Tramontano, Donatella; Bellastella, Antonio; Sinisi, Antonio Agostino

    2006-09-01

    A new family of angiogenic factors named endocrine-gland-derived vascular endothelial growth factors (EG-VEGF)/prokineticins (PK) have been recently described as predominantly expressed in steroidogenic tissues. Whether the normal and malignant epithelial prostate cells and tissues express EG-VEGF/PK1 and PK2 and their receptors is still unknown. We studied the expression of EG-VEGF/PK1 and PK2 and their receptors (PK-R1 and PK-R2) in human prostate and their involvement in cancer. Using immunohistochemistry, Western blot, and RT-PCR, we determined the expression of EG-VEGF/PK1 in normal prostate (NP) and malignant prostate tissues (PCa), in epithelial cell primary cultures from normal prostate (NPEC) and malignant prostate (CPEC) and in a panel of prostate cell lines. In NPEC, CPEC, and in EPN, a nontransformed human prostate epithelial cell line, EG-VEGF/PK1, PK2, PK-R1, and PK-R2 mRNA levels were evaluated by quantitative RT-PCR. EG-VEGF/PK1 transcript was found in PCa, in CPEC, in EPN, and in LNCaP, whereas it was detected at low level in NP and in NPEC. EG-VEGF/PK1 was absent in androgen-independent PC3 and DU-145 cell lines. Immunochemistry confirmed that EG-VEGF/PK1 protein expression was restricted to hyperplastic and malignant prostate tissues, localized in the glandular epithelial cells, and progressively increased with the prostate cancer Gleason score advancement. EG-VEGF/PK1 and PK2 were weakly expressed in NPEC and EPN. On the other hand, their transcripts were highly detected in CPEC. PK-R1 and PK-R2 were found in NPEC, EPN, and CPEC. Interestingly, CPEC showed a significantly (P < 0.05) higher expression of EG-VEGF/PK1, PK2, PK-R1, and PK-R2 compared with NPEC and EPN. We demonstrated that PKs and their receptors are expressed in human prostate and that their levels increased with prostate malignancy. It may imply that EG-VEGF/PK1 could be involved in prostate carcinogenesis, probably regulating angiogenesis. Thus, the level of EG-VEGF/PK1 could be useful for prostate cancer outcome evaluation and as a target for prostate cancer treatment in the future.

  11. Local over-expression of VEGF-DΔNΔC in the uterine arteries of pregnant sheep results in long-term changes in uterine artery contractility and angiogenesis.

    PubMed

    Mehta, Vedanta; Abi-Nader, Khalil N; Shangaris, Panicos; Shaw, S W Steven; Filippi, Elisa; Benjamin, Elizabeth; Boyd, Michael; Peebles, Donald M; Martin, John; Zachary, Ian; David, Anna L

    2014-01-01

    The normal development of the uteroplacental circulation in pregnancy depends on angiogenic and vasodilatory factors such as vascular endothelial growth factor (VEGF). Reduced uterine artery blood flow (UABF) is a common cause of fetal growth restriction; abnormalities in angiogenic factors are implicated. Previously we showed that adenovirus (Ad)-mediated VEGF-A165 expression in the pregnant sheep uterine artery (UtA) increased nitric oxide synthase (NOS) expression, altered vascular reactivity and increased UABF. VEGF-D is a VEGF family member that promotes angiogenesis and vasodilatation but, in contrast to VEGF-A, does not increase vascular permeability. Here we examined the effect of Ad.VEGF-DΔNΔC vector encoding a fully processed form of VEGF-D, on the uteroplacental circulation. UtA transit-time flow probes and carotid artery catheters were implanted in mid-gestation pregnant sheep (n = 5) to measure baseline UABF and maternal haemodynamics respectively. 7-14 days later, after injection of Ad.VEGF-DΔNΔC vector (5×10(11) particles) into one UtA and an Ad vector encoding β-galactosidase (Ad.LacZ) contralaterally, UABF was measured daily until scheduled post-mortem examination at term. UtAs were assessed for vascular reactivity, NOS expression and endothelial cell proliferation; NOS expression was studied in ex vivo transduced UtA endothelial cells (UAECs). At 4 weeks post-injection, Ad.VEGF-DΔNΔC treated UtAs showed significantly lesser vasoconstriction (Emax144.0 v/s 184.2, p = 0.002). There was a tendency to higher UABF in Ad.VEGF-DΔNΔC compared to Ad.LacZ transduced UtAs (50.58% v/s 26.94%, p = 0.152). There was no significant effect on maternal haemodynamics. An increased number of proliferating endothelial cells and adventitial blood vessels were observed in immunohistochemistry. Ad.VEGF-DΔNΔC expression in cultured UAECs upregulated eNOS and iNOS expression. Local over-expression of VEGF-DΔNΔC in the UtAs of pregnant mid-gestation sheep reduced vasoconstriction, promoted endothelial cell proliferation and showed a trend towards increased UABF. Studies in cultured UAECs indicate that VEGF-DΔNΔC may act in part through upregulation of eNOS and iNOS.

  12. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction.

    PubMed

    Szentpéteri, Imre; Rab, Attila; Kornya, László; Kovács, Péter; Joó, József Gábor

    2013-07-01

    In this study, we describe changes in gene expression pattern of vascular endothelial growth factor (VEGF)-A in human placenta obtained from pregnancies with intrauterine growth restriction using placenta from normal pregnancies as control. We compared gene expression of VEGF-A in placental samples from Intrauterine growth restriction (IUGR) pregnancies versus placenta obtained from normal pregnancies. Among potential confounders, important clinical informations were also analyzed. In the IUGR group, the VEGF-A gene was overexpressed compared to the normal pregnancy group (Ln 2(α)β-actin: 1.32; Ln 2(α)GADPH: 1.56). There was no correlation between the degree of growth restriction and VEGF-A gene expression (Ln 2(α)(0-5)percentile: 0.58; Ln 2(α)(5-10)percentile: 0.64). Within the IUGR group, there was a trend toward a positive correlation between placental VEGF-A gene activity and gestational age at delivery (Ln 2(α)< 33 weeks: 1.09; Ln 2(α)33-37 weeks: 1.27; Ln 2(α)> 37 weeks: 1.35). Our findings suggest that the increase in placental expression of the VEGF-A gene and the resultant stimulation of angiogenesis are a response to hypoxic environment developing in the placental tissue in IUGR. Thus, it appears to be a secondary event rather than a primary factor in the development of IUGR There is a trend toward a positive correlation between gestational age and placental VEGF-A gene activity.

  13. Smad4 Inhibits VEGF-A and VEGF-C Expressions via Enhancing Smad3 Phosphorylation in Colon Cancer.

    PubMed

    Li, Xuemei; Li, Xinlei; Lv, Xiaohong; Xiao, Jianbing; Liu, Baoquan; Zhang, Yafang

    2017-09-01

    Smad4 is a critical factor in the TGF-β pathway and is involved in tumor progression and metastasis, but the role of Smad4 in colon cancer cells is unclear. The aim of this study is to explore the effect and the underlying mechanism of Smad4 on the growth, migration and apoptosis of colon cancer cells as well as vascular endothelial growth factor (VEGF)-A and VEGF-C secreted by these cells. In this study, we showed that Smad4, VEGF-A, and VEGF-C are independent prognostic factors of colon cancer, and Smad4 expression was negatively correlated with VEGF-A and -C in samples. We found that Smad4 mRNA and protein levels in colon cancer cells, particularly in HCT-116 cells, were significantly lower than those in the human intestinal epithelial cell line (HIEC). Smad4 overexpression promoted tumor cell apoptosis, inhibited VEGF-A and -C expression in vitro and in vivo, but had no effect on cell proliferation and migration. Tail vein injection of the virus inhibited xenograft growth in nude mice. Importantly, we also demonstrated that Smad4 could increase the phosphorylation level of Smad3, but not Smad2, which may be one of the mechanisms underlying these effects of Smad4 in colon cancer. Therefore, Smad4 may be a new target for the treatment of colon cancer. Anat Rec, 300:1560-1569, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    PubMed

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  15. Suppression of tumor-induced angiogenesis by taspine isolated from Radix et Rhizoma Leonticis and its mechanism of action in vitro.

    PubMed

    Zhang, Yanmin; He, Langchong; Meng, Liang; Luo, Wenjuan; Xu, Xuemei

    2008-04-08

    The present study was to demonstrate the effect of taspine isolated from Radix et Rhizoma Leonticis on tumor angiogenesis and its mechanism of action. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model and CAM transplantation tumor model. Taspine exerted inhibitory influence on CAM angiogenesis and the growth and microvessel density (MVD) of CAM transplantation tumor at concentrations of 0.5-2μg/egg. The mechanism was demonstrated through detecting vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) protein secretion by enzyme-linked immunosorbent assay (ELISA), as well as mRNA expression of VEGF, Flt-1 and Flk-1/KDR by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that taspine down-regulated the VEGF and bFGF secretion in human non-small cell lung cancer cell (A549 cell) and human umbilical vein endothelial cell (HUVEC), and the VEGF and Flk-1/KDR mRNA expression in HUVEC. Additionally, the effect of taspine on HUVEC migration was detected with the method of cell scrape. The result indicated that taspine inhibited HUVEC migration in a dose-dependent manner. These findings suggest that taspine might be a promising candidate as angiogenesis inhibitors.

  16. Induction of vascular endothelial growth factor expression in human pulp fibroblasts stimulated with black-pigmented Bacteroides.

    PubMed

    Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C

    2004-09-01

    To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.

  17. [Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis].

    PubMed

    Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V

    2017-01-01

    Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.

  18. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells.

    PubMed Central

    Ferrara, N; Winer, J; Burton, T; Rowland, A; Siegel, M; Phillips, H S; Terrell, T; Keller, G A; Levinson, A D

    1993-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen with a specificity for endothelial cells in vitro and an angiogenic inducer in vivo. We tested the hypothesis that VEGF may confer on expressing cells a growth advantage in vivo. Dihydrofolatereductase--Chinese hamster ovary cells were transfected with expression vectors which direct the constitutive synthesis of VEGF. Neither the expression nor the exogenous administration of VEGF stimulated anchorage-dependent or anchorage-independent growth of Chinese hamster ovary cells in vitro. However, VEGF-expressing clones, unlike control cells, demonstrated an ability to proliferate in nude mice. Histologic examination revealed that the proliferative lesions were compact, well vascularized, and nonedematous. Ultrastructural analysis revealed that capillaries within the lesions were of the continuous type. These findings indicate that the expression of VEGF may confer on cells the ability to grow in vivo in the absence of transformation by purely paracrine mechanisms. Since VEGF is a widely distributed protein, this property may have relevance for a variety of physiological and pathological proliferative processes. Images PMID:8423215

  19. Imaging vascular endothelial growth factor (VEGF) receptors in turpentine-induced sterile thigh abscesses with radiolabeled single-chain VEGF.

    PubMed

    Levashova, Zoia; Backer, Marina; Backer, Joseph M; Blankenberg, Francis G

    2009-12-01

    Angiogenesis plays a central role in the pathogenesis of chronic inflammatory disorders. Vascular endothelial growth factor (VEGF) and its receptors are the most important regulators of angiogenesis. We wished to determine whether labeled forms of single-chain VEGF (scVEGF) could be used to image VEGF receptors in a well-characterized model of sterile soft-tissue inflammation induced by intramuscular injection of turpentine. Anesthetized adult male Swiss-Webster mice received a 20-microL intramuscular injection of turpentine into the right thigh. At 4, 7, or 10 d later, groups of 3-5 mice were injected via the tail vein with 50 microg of either scVEGF that had been site specifically labeled with Cy5.5 (scVEGF/Cy) or inactivated scVEGF/Cy (inVEGF/Cy) and then examined by fluorescence imaging. At 3, 4, 6, 7, 9, 10, or 12 d, additional groups of 3-5 mice were injected via the tail vein with 74-111 MBq of (99m)Tc-scVEGF (or (99m)Tc-inVEGF) and then examined by SPECT imaging. On days 3 through 10, both forms of scVEGF (scVEGF/Cy and (99m)Tc-scVEGF) showed significantly higher uptake (P < 0.05) in the right (abscessed) thigh than in the contralateral thigh (and higher uptake than the inactivated tracer). Peak uptake occurred on day 7 (3.67 +/- 1.79 [ratio of uptake in abscessed thigh to uptake in normal thigh, mean +/- SD] and 0.72 +/- 0.01 for scVEGF/Cy and inVEGF/Cy, respectively, and 3.49 +/- 1.22 and 1.04 +/- 0.41 for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively) and slowly decreased thereafter. Autoradiography revealed peak tracer uptake in the thick irregular angiogenic rim of the abscess cavity on day 9 (5.83 x 10(-7) +/- 9.22 x 10(-8) and 5.85 x 10(-8) +/- 5.95 x 10(-8) percentage injected dose per pixel for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively); in comparison, a thin circumscribed rim of uptake was seen with (99m)Tc-inVEGF. Immunostaining revealed that VEGFR-2 (VEGF receptor) colocalized with CD31 (endothelial cell marker) at all time points in the abscess rim, whereas F4/80 (macrophage) immunostaining reached a maximum at day 7 and decreased by day 10. The uptake of scVEGF in turpentine-induced abscesses was specific and directly related to VEGFR-2 expression in the neovasculature of the angiogenic rim. Peak tracer uptake coincided with maximum macrophage infiltration, suggesting that scVEGF imaging may be useful for the detection, localization, and monitoring of chronic inflammation in bone, joints, or soft tissues.

  20. Serum VEGF levels in the early diagnosis and severity assessment of non-small cell lung cancer

    PubMed Central

    Lai, Yanzhen; Wang, Xueping; Zeng, Tao; Xing, Shan; Dai, Shuqin; Wang, Junye; Chen, Shulin; Li, Xiaohui; Xie, Ying; Zhu, Yuanying; Liu, Wanli

    2018-01-01

    Background: Effective biomarkers are essential to the differential diagnosis and severity assessment of non-small cell lung cancer (NSCLC). This study explored the use of the serum vascular endothelial growth factor (VEGF) levels as a biomarker with the aim of achieving better management of NSCLC. Methods: Serum VEGF levels were assayed via enzyme-linked immunosorbent assay in 180 patients with NSCLC, 136 patients with benign pulmonary nodules, and 119 healthy controls. We additionally detected the serum concentration of three traditional biomarkers—carcinoembryonic antigen (CEA), cancer antigen (CA)-125, and cytokeratin 19 fragments (Cyfra 21-1)—to comparatively evaluate the efficiency and diagnostic value of VEGF in patients with NSCLC. We further evaluated the relationship between serum VEGF levels and clinicopathologic parameters. VEGF levels were compared between pro- and post-surgical patients using the Wilcoxon matched-pairs signed-rank test. DNA was isolated from the primary tumors. EGFR mutations were detected by Scorpions amplification refractory mutation system (ARMS). Results: Patients with NSCLC had significantly higher serum concentration of VEGF, compared to those with benign pulmonary nodules and healthy controls (P <0.0001). As a diagnostic biomarker of NSCLC, VEGF had area under the curve values of 0.824 and 0.839, sensitivities of 75.0% and 75.0%, and specificities of 93.3% and 95.6% when compared with healthy people and patients with benign pulmonary nodules, respectively; notably, these values were greater than those of CA125, Cyfra 21-1 and CEA. Furthermore, a model in which VEGF was combined with CEA, CA125, and Cyfra 21-1 was more effective for NSCLC diagnosis than VEGF alone (sensitivity, 85.0% and 84.4; specificity, 90.0% and 91.9% vs. healthy controls and patients with benign pulmonary nodules, respectively). When use to identify early-stage NSCLC, VEGF showed a better diagnostic efficacy than other biomarkers. The pro-surgical VEGF levels were significantly higher than those measured 25-30 days after surgery. Moreover, VEGF concentration differed significantly among cases according to TNM stages and malignant grades (P <0.0001). EGFR mutations and the size of benign pulmonary nodules did not affect the level of serum VEGF significantly. Conclusion: The serum VEGF levels exhibited relatively high sensitivity and specificity for NSCLC, and may therefore be a useful diagnostic biomarker. Furthermore, the serum VEGF levels could be used to assess prognosis and curative effects. PMID:29760791

  1. EG-VEGF controls placental growth and survival in normal and pathological pregnancies: case of fetal growth restriction (FGR).

    PubMed

    Brouillet, S; Murthi, P; Hoffmann, P; Salomon, A; Sergent, F; De Mazancourt, P; Dakouane-Giudicelli, M; Dieudonné, M N; Rozenberg, P; Vaiman, D; Barbaux, S; Benharouga, M; Feige, J-J; Alfaidy, N

    2013-02-01

    Identifiable causes of fetal growth restriction (FGR) account for 30 % of cases, but the remainders are idiopathic and are frequently associated with placental dysfunction. We have shown that the angiogenic factor endocrine gland-derived VEGF (EG-VEGF) and its receptors, prokineticin receptor 1 (PROKR1) and 2, (1) are abundantly expressed in human placenta, (2) are up-regulated by hypoxia, (3) control trophoblast invasion, and that EG-VEGF circulating levels are the highest during the first trimester of pregnancy, the period of important placental growth. These findings suggest that EG-VEGF/PROKR1 and 2 might be involved in normal and FGR placental development. To test this hypothesis, we used placental explants, primary trophoblast cultures, and placental and serum samples collected from FGR and age-matched control women. Our results show that (1) EG-VEGF increases trophoblast proliferation ([(3)H]-thymidine incorporation and Ki67-staining) via the homeobox-gene, HLX (2) the proliferative effect involves PROKR1 but not PROKR2, (3) EG-VEGF does not affect syncytium formation (measurement of syncytin 1 and 2 and β hCG production) (4) EG-VEGF increases the vascularization of the placental villi and insures their survival, (5) EG-VEGF, PROKR1, and PROKR2 mRNA and protein levels are significantly elevated in FGR placentas, and (6) EG-VEGF circulating levels are significantly higher in FGR patients. Altogether, our results identify EG-VEGF as a new placental growth factor acting during the first trimester of pregnancy, established its mechanism of action, and provide evidence for its deregulation in FGR. We propose that EG-VEGF/PROKR1 and 2 increases occur in FGR as a compensatory mechanism to insure proper pregnancy progress.

  2. Identification and characterization of VEGF and FGF from Hydra.

    PubMed

    Krishnapati, Lakshmi-Surekha; Ghaskadbi, Surendra

    2013-01-01

    Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) play important roles in the formation of the blood vascular system and in axon guidance, nervous system development and function. Here, we report isolation and characterization of VEGF and FGF homologues from Hydra vulgaris Ind-Pune, a Cnidarian which exhibits an organized nervous system and primitive epithelio-muscular cells. VEGF expression was prominent in the endoderm of the peduncle region and tentacles, as evident from in situ hybridization of whole polyps and its transverse sections. High levels of FGF were detected in the ectoderm of the budding region. The expression of VEGF in endodermal and FGF in interstitial cells was confirmed using sf-1 hydra, a temperature-sensitive mutant strain of Hydra magnipapillata. Tissue-specific expression of VEGF and FGF was confirmed by semi quantitative RT-PCR for ectodermal and endodermal tissues in H. vulgaris Ind-Pune. Treatment with SU5416, a specific inhibitor of the VEGF receptor, did not affect the whole polyp, but did delay both budding and head regeneration, suggesting a possible role of VEGF in nerve cell development, tube formation and/or in branching. FGF expression in the ectoderm of budding region, where the majority of interstitial stem cells reside suggests its role in interstitial stem cell maintenance. Further, activation of canonical Wnt signalling with the glycogen synthase kinase-3β (GSK-3β) inhibitor alsterpaullone caused down-regulation of VEGF and FGF, suggesting an antagonistic relationship between the Wnt and VEGF/FGF pathways. Our results indicate that VEGF and FGF evolved early in evolution, before the development of the blood vascular system, and open up the possibility of elucidating the evolutionarily ancient functions of VEGF and FGF.

  3. Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo.

    PubMed

    Proulx, Steven T; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J; Huggenberger, Reto; Leroux, Jean-Christophe; Detmar, Michael

    2013-07-01

    Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models.

  4. Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo

    PubMed Central

    Proulx, Steven T.; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J.; Huggenberger, Reto

    2013-01-01

    Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models. PMID:23325334

  5. Intraocular Vascular Endothelial Growth Factor Levels in Pachychoroid Neovasculopathy and Neovascular Age-Related Macular Degeneration.

    PubMed

    Hata, Masayuki; Yamashiro, Kenji; Ooto, Sotaro; Oishi, Akio; Tamura, Hiroshi; Miyata, Manabu; Ueda-Arakawa, Naoko; Takahashi, Ayako; Tsujikawa, Akitaka; Yoshimura, Nagahisa

    2017-01-01

    To investigate the difference in intraocular vascular endothelial growth factor (VEGF) concentration between pachychoroid neovasculopathy and neovascular age-related macular degeneration (nAMD) and its associations with responses to three monthly anti-VEGF injections as an initial treatment for the two conditions. This study included nine eyes with treatment-naïve pachychoroid neovasculopathy and 21 eyes with treatment-naïve nAMD. Before the initial intravitreal anti-VEGF injection, aqueous humor samples were collected and the concentration of VEGF was measured using enzyme-linked immunosorbent assay. The concentration was compared between the two conditions, and its associations with responses to anti-VEGF therapy were investigated. The mean VEGF concentration in pachychoroid neovasculopathy was significantly lower than that in nAMD (63.4 ± 17.8 pg/ml and 89.8 ± 45.0 pg/ml, respectively; P = 0.035). The VEGF concentration was associated with the presence or absence of drusen (β = 0.503, P = 0.004). After anti-VEGF therapy, 6 (66.7%) of 9 eyes with pachychoroid neovasculopathy and 17 (81.0%) of 21 eyes with nAMD achieved dry macula (P = 0.640). Dry macula at 3 months and 12 months was significantly associated with a low VEGF concentration in pachychoroid neovasculopathy (P = 0.013 and P = 0.042, respectively), but not in nAMD (P = 0.108 and P = 0.219). The mean VEGF concentration in pachychoroid neovasculopathy was lower than that in nAMD, suggesting that the way in which VEGF is involved in angiogenesis may differ between pachychoroid neovasculopathy and nAMD.

  6. Severity-Related Increase and Cognitive Correlates of Serum VEGF Levels in Alzheimer's Disease ApoE4 Carriers.

    PubMed

    Alvarez, X Anton; Alvarez, Irene; Aleixandre, Manuel; Linares, Carlos; Muresanu, Dafin; Winter, Stefan; Moessler, Herbert

    2018-01-01

    Vascular endothelial growth factor (VEGF) is an angioneurin involved in the regulation of vascular and neural functions relevant for the pathophysiology of Alzheimer's disease (AD), but the influence of AD severity and ApoE4 status on circulating VEGF and its relationship with cognition has not been investigated. We assessed serum VEGF levels and cognitive performance in AD, amnestic mild cognitive impairment (MCI), and control subjects. VEGF levels were higher in AD patients than in MCI cases and controls (p < 0.05) and showed a progressive increase with clinical severity in the whole study population (p < 0.01). Among AD patients, severity-related VEGF elevations were significant in ApoE4 carriers (p < 0.05), but not in non-carriers. Increased VEGF levels were associated with disease severity and showed mild correlations with cognitive impairment that were only consistent for the ADAS-cog+ items remembering test instructions (memory) and maze task (executive functions) in the group of AD patients (p < 0.05). On the other hand, higher VEGF values were related to better memory and language performance in ApoE4 carriers with moderately-severe AD. According to these results showing severity- and ApoE4-related differences in serum VEGF and its cognitive correlates, it is suggested that increases in VEGF levels might represent an endogenous response driven by pathological factors and could entail cognitive benefits in AD patients, particularly in ApoE4 carriers. Our findings support the notion that VEGF constitutes a relevant molecular target to be further explored in AD pathology and therapy.

  7. NGF/anti-VEGF combined exposure protects RCS retinal cells and photoreceptors that underwent a local worsening of inflammation.

    PubMed

    Rocco, Maria Luisa; Balzamino, Bijorn Omar; Esposito, Graziana; Petrella, Carla; Aloe, Luigi; Micera, Alessandra

    2017-03-01

    Our previous study highlighted the potential nerve growth factor (NGF) effect on damaged photoreceptors from a rat model of spontaneous Retinitis Pigmentosa (RP). Herein, we tested the combined NGF/anti-vascular endothelial growth factor (αVEGF) effect on cultured retinal cells isolated from Royal College of Surgeons (RCS) rats receiving an intravitreal VEGF injection (iv-VEGF) to exacerbate retinal inflammation/neovascularization. RCS (n = 75) rats were equally grouped as untreated (n = 25), iv-saline (single saline intravitreal injection; n = 25) and iv-VEGF (single VEGF intravitreal injection; n = 25). Morphological and biochemical analysis or in vitro stimulations with the biomolecular investigation were carried out on explanted retinas. Isolated retinal cells were treated with NGF and αVEGF, either alone or in combination, for 6 days and cells were harvested for morphological and biomolecular analyses. Infiltrating inflammatory cells were detected in iv-VEGF exposed RCS retinas, indicative of exacerbated inflammation and neovascularization. In cell cultures, NGF/αVEGF significantly increased retinal cell survival as well as rhodopsin expression and neurite outgrowth in photoreceptors. Particularly, NGF/αVEGF upregulated Bcl-2 mRNA, downregulated Bax mRNA, upregulated trkA NGFR mRNA and finally upregulated both NGF mRNA and protein. These data confirm and extend our previous findings on NGF-photoreceptor crosstalk, highlighting that the NGF/αVEGF combination might be an interesting approach for improving neuroprotection of RCS retinal cells and likewise photoreceptors in the presence of neovascularization. Further studies are required to translate this in vitro approach into clinical practice.

  8. Clinical Evaluation of Insulin like Growth Factor-I and Vascular Endothelial Growth Factor with Alloplastic Bone Graft Material in the Management of Human Two Wall Intra-Osseous Defects

    PubMed Central

    Dixit, Jaya

    2016-01-01

    Introduction In recent years, emphasis on the use of growth factors for periodontal healing is gaining great momentum. Several growth factors showed promising results in periodontal regeneration. Aim This study was designed to compare the clinical outcomes of 0.8μg recombinant human Vascular Endothelial Growth Factor (rh-VEGF) and 10μg recombinant human Insulin Like Growth Factor-I (rh-IGF-I) with β-Tricalcium Phosphate (β-TCP) and Polylactide-Polyglycolide Acid (PLGA) membrane in two wall intra-osseous defects. Materials and Methods A total of 29 intra-osseous defects in 27 subjects were randomly divided into 3 test and 1 control group. Test group I (n=8) received rh-VEGF+ rh-IGF-I, Test group II (n=7) rh-VEGF, Test group III (n=7) rh-IGF-I and control group (n=7) with no growth factor, β-TCP and PLGA membrane was used in all the groups. Baseline soft tissue parameters including Probing Pocket Depth (PPD), Clinical Attachment Level (CAL), and Gingival Recession (GR) at selected sites were recorded at baseline and at 6 months. Intrasurgically, intra-osseous component was calculated as a) Cemento-Enamel Junction to Bone Crest (CEJ to BC), b) Bone Crest to Base of the Defect (BC to BD) at baseline and at re-entry. The mean changes at baseline and after 6 months within each group were compared using Wilcoxon Signed Rank Test. The mean changes for each parameter between groups were compared using Mann-Whitney U test. Results After 6 months, maximum mean PPD reduction occurred in test group I followed by test group II, III and control group. Similar trend was observed in CAL gain. Non-significant GR was present in test group I and control group whereas in test group II and III GR was absent. The use of rh-VEGF+ rhIGF-I exhibited 95.8% osseous fill as compared to 54.8% in test group II, 52.7% in test group III and 41.1 % in the control group. Conclusion Within the limitations of this study, it can be concluded that, rh-IGF-I+rh-VEGF treated sites resulted in greater improvement in PPD reduction, CAL gain as well as in osseous fill after 6 months when compared with rh-VEGF, rh-IGF-I and control sites. PMID:27790578

  9. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells

    PubMed Central

    Lin, Chih-Yang; Liu, Shih-Chia; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-01-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma. PMID:27166194

  10. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells.

    PubMed

    Wang, Li-Hong; Lin, Chih-Yang; Liu, Shih-Chia; Liu, Guan-Ting; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-06-14

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma.

  11. Serum vascular endothelial growth factor B is elevated in women with polycystic ovary syndrome and can be decreased with metformin treatment.

    PubMed

    Cheng, Feifei; Zhao, Lu; Wu, Yuanyuan; Huang, Tiantian; Yang, Gangyi; Zhang, Zhanyu; Wu, Yijia; Jia, Fang; Wu, Jinlin; Chen, Chen; Liu, Dongfang

    2016-03-01

    To determine serum vascular endothelial growth factor B (VEGF-B) levels in polycystic ovary syndrome, their association with insulin resistance and β-cell dysfunction, and the effect of metformin on serum VEGF-B levels. A cross-sectional, interventional study. We recruited 103 women with polycystic ovary syndrome and 96 age-matched healthy controls. Serum VEGF-B levels were determined in all participants, and 44 polycystic ovary syndrome patients randomly received metformin. We measured VEGF-B levels in healthy controls and women with polycystic ovary syndrome before and after metformin treatment. Women with polycystic ovary syndrome had higher serum VEGF-B levels, which decreased with metformin treatment. In the lean and overweight/obese groups, patients with polycystic ovary syndrome had higher plasma VEGF-B levels than did healthy controls (P < 0·05). VEGF-B levels were correlated with body mass index, body fat percentage, M values, homeostasis model assessment of insulin resistance and β-cell function indices. A multiple linear regression analysis showed that VEGF-B level was associated with M values after adjusting for age, body mass index, serum sex hormones and serum lipids in women with polycystic ovary syndrome. Serum VEGF-B is significantly higher in women with polycystic ovary syndrome and is closely and positively related to insulin resistance. Metformin treatment reduces VEGF-B levels and ameliorates insulin resistance. © 2015 John Wiley & Sons Ltd.

  12. The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease.

    PubMed

    Hohman, Timothy J; Bell, Susan P; Jefferson, Angela L

    2015-05-01

    A subset of older adults present post mortem with Alzheimer disease (AD) pathologic features but without any significant clinical manifestation of dementia. Vascular endothelial growth factor (VEGF) has been implicated in staving off AD-related neurodegeneration. To evaluate whether VEGF levels are associated with brain aging outcomes (hippocampal volume and cognition) and to further evaluate whether VEGF modifies relations between AD biomarkers and brain aging outcomes. Biomarker analysis using neuroimaging and neuropsychological outcomes from the Alzheimer's Disease Neuroimaging Initiative. This prospective longitudinal study across North America included individuals with normal cognition (n = 90), mild cognitive impairment (n = 130), and AD (n = 59) and began in October 2004, with follow-up ongoing. Cerebrospinal fluid VEGF was cross-sectionally related to brain aging outcomes (hippocampal volume, episodic memory, and executive function) using a general linear model and longitudinally using mixed-effects regression. Alzheimer disease biomarker (cerebrospinal fluid β-amyloid 42 and total tau)-by-VEGF interactions evaluated the effect of VEGF on brain aging outcomes in the presence of enhanced AD biomarkers. Vascular endothelial growth factor was associated with baseline hippocampal volume (t277 = 2.62; P = .009), longitudinal hippocampal atrophy (t858 = 2.48; P = .01), and longitudinal decline in memory (t1629 = 4.09; P < .001) and executive function (t1616 = 3.00; P = .003). Vascular endothelial growth factor interacted with tau in predicting longitudinal hippocampal atrophy (t845 = 4.17; P < .001), memory decline (t1610 = 2.49; P = .01), and executive function decline (t1597 = 3.71; P < .001). Vascular endothelial growth factor interacted with β-amyloid 42 in predicting longitudinal memory decline (t1618 = -2.53; P = .01). Elevated cerebrospinal fluid VEGF was associated with more optimal brain aging in vivo. The neuroprotective effect appeared strongest in the presence of enhanced AD biomarkers, suggesting that VEGF may be particularly beneficial in individuals showing early hallmarks of the AD cascade. Future work should evaluate the interaction between VEGF expression in vitro and pathologic burden to address potential mechanisms.

  13. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    PubMed

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  14. Regulation of vascular endothelial growth factor-C by tumor necrosis factor-α in the conjunctiva and pterygium.

    PubMed

    Dong, Yoko; Kase, Satoru; Dong, Zhenyu; Fukuhara, Junichi; Tagawa, Yoshiaki; Ishizuka, Erdal Tan; Murata, Miyuki; Shinmei, Yasuhiro; Ohguchi, Takeshi; Kanda, Atsuhiro; Noda, Kousuke; Ishida, Susumu

    2016-08-01

    Vascular endothelial growth factor C (VEGF-C) plays an important role in the development of a pterygium through lymphangiogenesis. We examined the association between VEGF-C and tumor necrosis factor-α (TNF-α) in the pathogenesis of pterygia. Cultured conjunctival epithelial cells were treated with TNF-α, and the gene expression levels of VEGFC were evaluated by quantitative polymerase chain reaction (qPCR) and VEGF-C protein expression levels were measured using an enzyme-linked immunosorbent assay (ELISA). In addition, using ELISA, we evaluated the VEGF-C protein expression in the supernatants of cultured conjunctival epithelial cells, in which we neutralized TNF-α using anti‑TNF-α antibody. The gene expression of tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A), known as TNF receptor 1 (TNFR1), was confirmed using reverse transcription PCR in cultured conjunctival epithelial cells. Immunofluorescence microscopy was used to examine the localization of VEGF-C and TNFR1 in pterygium tissues and TNFR1 expression in cultured conjunctival epithelial cells. Immunohistochemistry was used to examine the localization of TNFR1 in pterygia and normal conjunctival tissues. VEGFC gene expression increased in cultured conjunctival epithelial cells 24 h after the addition of TNF-α. The secretion of VEGF-C protein was significantly increased 48 h after the stimulation of cultured conjunctival epithelial cells with TNF-α. Increased VEGF-C protein secretion stimulated by TNF-α was significantly reduced by anti-TNF-α neutralizing antibody treatment. In cultured conjunctival epithelial cells, TNFRSF1A and TNFR1 were expressed. TNFR1 was immunolocalized in normal conjunctival tissues and in human pterygium tissues as well as in VEGF‑C‑positive epithelial cells from human pterygia. Our data demonstrate that TNF-α mediates VEGF-C expression, which plays a critical role in the pathogenesis of pterygia.

  15. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro.

    PubMed

    Guiducci, Serena; Manetti, Mirko; Romano, Eloisa; Mazzanti, Benedetta; Ceccarelli, Claudia; Dal Pozzo, Simone; Milia, Anna Franca; Bellando-Randone, Silvia; Fiori, Ginevra; Conforti, Maria Letizia; Saccardi, Riccardo; Ibba-Manneschi, Lidia; Matucci-Cerinic, Marco

    2011-11-01

    To characterise bone marrow-derived mesenchymal stem cells (MSCs) from patients with systemic sclerosis (SSc) for the expression of factors implicated in MSC recruitment at sites of injury, angiogenesis and fibrosis. The study also analysed whether the production/release of bioactive mediators by MSCs were affected by stimulation with cytokines found upregulated in SSc serum and tissues, and whether MSCs could modulate dermal microvascular endothelial cell (MVEC) angiogenesis. MSCs obtained from five patients with early severe diffuse SSc (SSc-MSCs) and five healthy donors (H-MSCs) were stimulated with vascular endothelial growth factor (VEGF), transforming growth factor β (TGFβ) or stromal cell-derived factor-1 (SDF-1). Transcript and protein levels of SDF-1 and its receptor CXCR4, VEGF, TGFβ(1) and receptors TβRI and TβRII were evaluated by quantitative real-time PCR, western blotting and confocal microscopy. VEGF, SDF-1 and TGFβ(1) secretion in culture supernatant was measured by ELISA. MVEC capillary morphogenesis was performed on Matrigel with the addition of MSC-conditioned medium. In SSc-MSCs the basal expression of proangiogenic SDF-1/CXCR4 and VEGF was significantly increased compared with H-MSCs. SSc-MSCs constitutively released higher levels of SDF-1 and VEGF. SDF-1/CXCR4 were upregulated after VEGF stimulation and CXCR4 redistributed from the cytoplasm to the cell surface. VEGF was increased by SDF-1 challenge. VEGF, TGFβ and SDF-1 stimulation upregulated TGFβ(1), TβRI and TβRII in SSc-MSCs. TβRII redistributed from the cytoplasm to focal adhesion contacts. SSc-MSC-conditioned medium showed a greater proangiogenic effect on MVECs than H-MSCs. Experiments with blocking antibodies showed that MSC-derived cytokines were responsible for this potent proangiogenic effect. SSc-MSCs constitutively overexpress and release bioactive mediators/proangiogenic factors and potentiate dermal MVEC angiogenesis.

  16. Localization and signaling patterns of vascular endothelial growth factors and receptors in human periapical lesions.

    PubMed

    Virtej, Anca; Løes, Sigbjørn S; Berggreen, Ellen; Bletsa, Athanasia

    2013-05-01

    Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key players in vasculogenesis and are also involved in pathologic conditions with bone destruction. Vasculogenesis is critical for disease progression, and bone resorption is a hallmark of apical periodontitis. However, the localization of VEGFs and VEGFRs and their gene signaling pathways in human apical periodontitis have not been thoroughly investigated. The aim of this study was to localize VEGFs and VEGFRs and analyze their gene expression as well as signaling pathways in human periapical lesions. Tissue was collected after endodontic surgery from patients diagnosed with chronic apical periodontitis. Periodontal ligament samples from extracted healthy wisdom teeth was also collected and used as control tissue. In lesion cryosections, VEGFs/VEGFRs were identified by immunohistochemistry/double immunofluorescence by using specific antibodies. A human VEGF signaling polymerase chain reaction array system was used for gene expression analysis comparing lesions with periodontal ligament samples. The histologic evaluation revealed heterogeneous morphology of the periapical lesions with various degrees of inflammatory infiltrates. In the lesions, all investigated factors and receptors were identified in blood vessels and various immune cells. No lymphatic vessels were detected. Gene expression analysis revealed up-regulation of VEGF-A and VEGFR-3, although not significant. Phosphatidylinositol-3-kinases, protein kinase C, mitogen-activated protein kinases, and phospholipases, all known to be involved in VEGF-mediated angiogenic activity, were significantly up-regulated. The cellular and vascular expressions of VEGFs and VEGFRs in chronic apical periodontitis, along with significant alterations of genes mediating VEGF-induced angiogenic responses, suggest ongoing vascular remodeling in established chronic periapical lesions. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Hypoxia preconditioning protection of corneal stromal cells requires HIF1alpha but not VEGF.

    PubMed

    Xing, Dongmei; Bonanno, Joseph A

    2009-05-18

    Hypoxia preconditioning protects corneal stromal cells from stress-induced death. This study determined whether the transcription factor HIF-1alpha (Hypoxia Inducible Factor) is responsible and whether this is promulgated by VEGF (Vascular Endothelial Growth Factor). Cultured bovine stromal cells were preconditioned with hypoxia in the presence of cadmium chloride, a chemical inhibitor of HIF-1alpha, and HIF-1alpha siRNA to test if HIF-1alpha activity is needed for hypoxia preconditioning protection from UV-irradiation induced cell death. TUNEL assay was used to detect cell apoptosis after UV-irradiation. RT-PCR and western blot were used to detect the presence of HIF-1alpha and VEGF in transcriptional and translational levels. During hypoxia (0.5% O2), 5 muM cadmium chloride completely inhibited HIF-1alpha expression and reversed the protection by hypoxia preconditioning. HIF-1alpha siRNA (15 nM) reduced HIF-1alpha expression by 90% and produced a complete loss of protection provided by hypoxia preconditioning. Since VEGF is induced by hypoxia, can be HIF-1alpha dependent, and is often protective, we examined the changes in transcription of VEGF and its receptors after 4 h of hypoxia preconditioning. VEGF and its receptors Flt-1 and Flk-1 are up-regulated after hypoxia preconditioning. However, the transcription and translation of VEGF were paradoxically increased by siHIF-1alpha, suggesting that VEGF expression in stromal cells is not down-stream of HIF-1alpha. These findings demonstrate that hypoxia preconditioning protection in corneal stromal cells requires HIF-1alpha, but that VEGF is not a component of the protection.

  18. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    PubMed Central

    Yum, Soohwan; Jeong, Seongkeun; Kim, Dohoon; Lee, Sunyoung; Kim, Wooseong; Yoo, Jin-Wook; Kwon, Oh Sang; Kim, Dae-Duk; Min, Do Sik; Jung, Yunjin

    2017-01-01

    The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1. PMID:29295567

  19. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor

    PubMed Central

    Zhang, Wenjie; Wang, Xiuli; Wang, Shaoyi; Zhao, Jun; Xu, Lianyi; Zhu, Chao; Zeng, Deliang; Chen, Jake; Zhang, Zhiyuan; Kaplan, David L.; Jiang, Xinquan

    2011-01-01

    Sonication-induced silk hydrogels were previously prepared as an injectable bone replacement biomaterial, with a need to improve osteogenic features. Vascular endothelial growth factor (VEGF165) and bone morphogenic protein-2 (BMP-2) are key regulators of angiogenesis and osteogenesis, respectively, during bone regeneration. Therefore, the present study aimed at evaluating in situ forming silk hydrogels as a vehicle to encapsulate dual factors for rabbit maxillary sinus floor augmentation. Sonication-induced silk hydrogels were prepared in vitro and the slow release of VEGF165 and BMP-2 from these silk gels was evaluated by ELISA. For in vivo studies for each time point (4 and 12 weeks), 24 sinus floors elevation surgeries were made bilaterally in 12 rabbits for the following four treatment groups: silk gel (group Silk gel), silk gel/VEGF165 (group VEGF), silk gel/BMP-2 (group BMP-2), silk gel/VEGF165/BMP-2 (group V+B) (n=6 per group). Sequential florescent labeling and radiographic observations were used to record new bone formation and mineralization, along with histological and histomorphometric analysis. At week 4, VEGF165 promoted more tissue infiltration into the gel and accelerated the degradation of the gel material. At this time point, the bone area in group V+B was significantly larger than those in the other three groups. At week 12, elevated sinus floor heights of groups BMP-2 and V+B were larger than those of the Silk gel and VEGF groups, and the V+B group had the largest new bone area among all groups. In addition, a larger blood vessel area formed in the remaining gel areas in groups VEGF and V+B. In conclusion, VEGF165 and BMP-2 released from injectable and biodegradable silk gels promoted angiogenesis and new bone formation, with the two factors demonstrating an additive effect on bone regeneration. These results indicate that silk hydrogels can be used as an injectable vehicle to deliver multiple growth factors in a minimally invasive approach to regenerate irregular bony cavities. PMID:21889205

  20. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target

    PubMed Central

    Sitohy, Basel; Nagy, Janice A.; Dvorak, Harold F.

    2012-01-01

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed anti-angiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor/vascular endothelial growth factor (VEGF-A) as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and we here call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least six well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All six types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A164. Once formed, four of the six types lose their VEGF-A dependency and so their responsiveness to anti-VEGF/VEGFR therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels. PMID:22508695

  1. Extraocular motoneurons of the adult rat show higher levels of vascular endothelial growth factor and its receptor Flk-1 than other cranial motoneurons.

    PubMed

    Silva-Hucha, Silvia; Hernández, Rosendo G; Benítez-Temiño, Beatriz; Pastor, Ángel M; de la Cruz, Rosa R; Morcuende, Sara

    2017-01-01

    Recent studies show a relationship between the deficit of vascular endothelial growth factor (VEGF) and motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). VEGF delivery protects motoneurons from cell death and delayed neurodegeneration in animal models of ALS. Strikingly, extraocular motoneurons show lesser vulnerability to neurodegeneration in ALS compared to other cranial or spinal motoneurons. Therefore, the present study investigates possible differences in VEGF and its main receptor VEGFR-2 or Flk-1 between extraocular and non-extraocular brainstem motoneurons. We performed immunohistochemistry and Western blot to determine the presence of VEGF and Flk-1 in rat motoneurons located in the three extraocular motor nuclei (abducens, trochlear and oculomotor) and to compare it to that observed in two other brainstem nuclei (hypoglossal and facial) that are vulnerable to degeneration. Extraocular motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem motoneurons, and thus these molecules could be participating in their higher resistance to neurodegeneration. In conclusion, we hypothesize that differences in VEGF availability and signaling could be a contributing factor to the different susceptibility of extraocular motoneurons, when compared with other motoneurons, in neurodegenerative diseases.

  2. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor.

    PubMed Central

    Cheng, S Y; Huang, H J; Nagane, M; Ji, X D; Wang, D; Shih, C C; Arap, W; Huang, C M; Cavenee, W K

    1996-01-01

    The development of new capillary networks from the normal microvasculature of the host appears to be required for growth of solid tumors. Tumor cells influence this process by producing both inhibitors and positive effectors of angiogenesis. Among the latter, the vascular endothelial growth factor (VEGF) has assumed prime candidacy as a major positive physiological effector. Here, we have directly tested this hypothesis in the brain tumor, glioblastoma multiforme, one of the most highly vascularized human cancers. We introduced an antisense VEGF expression construct into glioblastoma cells and found that (i) VEGF mRNA and protein levels were markedly reduced, (ii) the modified cells did not secrete sufficient factors so as to be chemoattractive for primary human microvascular endothelial cells, (iii) the modified cells were not able to sustain tumor growth in immunodeficient animals, and (iv) the density of in vivo blood vessel formation was reduced in direct relation to the reduction of VEGF secretion and tumor formation. Moreover, revertant cells that recovered the ability to secrete VEGF regained each of these tumorigenic properties. These results suggest that VEGF plays a major angiogenic role in glioblastoma. Images Fig. 1 Fig. 4 PMID:8710899

  3. Effects of nerve growth factor (NGF) on blood vessels area and expression of the angiogenic factors VEGF and TGFbeta1 in the rat ovary

    PubMed Central

    Julio-Pieper, Marcela; Lara, Hernán E; Bravo, Javier A; Romero, Carmen

    2006-01-01

    Background Angiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary. Results In cultured neonatal rat ovaries, NGF increased VEGF mRNA and protein levels, whereas TGFbeta1 expression did not change. Sectioning of the superior ovarian nerve, which increases ovarian NGF protein content, augmented VEGF immunoreactivity and the area of capillary vessels in ovaries of prepubertal rats compared to control ovaries. Conclusion Results indicate that NGF may be important in the maintenance of the follicular and luteal vasculature in adult rodents, either indirectly, by increasing the expression of VEGF in the ovary, or directly via promoting the proliferation of vascular cells. This data suggests that a disruption on NGF regulation could be a component in ovarian disorders related with impaired angiogenesis. PMID:17096853

  4. Imbalance between vascular endothelial growth factor and endostatin correlates with the prognosis of operable non-small cell lung cancer.

    PubMed

    Hu, Y; Hu, M-m; Shi, G-L; Han, Y; Li, B-L

    2014-09-01

    Angiogenesis is regulated by a balance of pro-angiogenic and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) and endostatin respectively represents a frequent component of inducers and inhibitors in the process of angiogenesis. The ratio of VEGF/endostatin may reflect the balance of angiogenic switch. This study aimed to determine whether an imbalance between VEGF/endostatin exists in operable non-small cell lung cancer (NSCLC) patients and to assess the correlation, if any, between the imbalance and the prognosis. Preoperative serum levels of VEGF and endostatin were simultaneously determined by quantitiative enzyme-linked immunosorbent assay (ELISA) and the ratio of them was calculated among 98 NSCLC patients and 51 healthy controls. The relationship between these factors and clinicopathological features, including prognosis, was examined. The ratio of VEGF/endostatin levels was significantly higher in operable NSCLC patients [median, 10.4; interquartile range (IQR), 5.9-19.8] than in normal controls [median, 5.1; IQR, 3.3-9.7] (P = 0.002). While the ratio in patients who were still alive for more than 60 months was 8.3 (IQR, 4.3-17.9), the ratio in those who died was 12.9 (IQR, 8.0-22.1) (p = 0.017). In subgroup analysis of patients with pathological stage N0, there was a statistically significant increase of the survival time in the group with a lower ratio than in the group with a higher ratio (p = 0.032). Multivariate analysis confirmed that the VEGF/endostatin ratio was an independent prognostic factor (p = 0.018). There was an imbalance between VEGF and endostatin in serum of operable NSCLC patients. The imbalance correlated with the prognosis of operable NSCLC. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. In vivo and in vitro characteristic of HIF-1α and relative genes in ischemic femoral head necrosis

    PubMed Central

    Zhang, Wanglin; Yuan, Zhe; Pei, Xinhong; Ma, Ruixue

    2015-01-01

    Background: Legg-Calvé-Perthes Disease (Perthes’ disease) is a childhood hip disorder initiated by ischemic necrosis of the growing femoral head. So far, the etiology and pathogenesis of Perthes’ disease is poorly understood. Materials and methods: Avascular osteonecrosis rat model was established to mimic the pathophysiological changes of femoral head necrosis. The chondrocytes of newborn Sprague-Dawley rats were isolated and cultured in hypoxic and normoxic condition. The expression characteristic of the hypoxia-inducible factor-1 alpha (HIF-1α) was evaluated both in vivo and in vitro models. Vascular endothelial growth factor (VEGF) and apoptotic genes in chondrocytes treated with normoxia and hypoxia were also studied. Results: HIF-1α expression increased greatly after ischemic operation and kept at relative high level in the arthromeningitis stage and declined in the stages of osteonecrosis and reconstruction. The HIF-1α mRNA levels of chondrocytes incubated at hypoxia were significantly higher than the cells treated with normoxia at 24 and 72 hours. Hypoxia inhibited VEGF expression; chondrocytes could oppose this inhibition manifested by the increasing of VEGF mRNA level after 72 hours hypoxia. The expression of apoptotic genes, Casp3, Casp8 and Casp9, elevated in chondrocytes after hypoxia with time differences. Conclusion: Hypoxia might be an etiological factor for femoral head necrosis, HIF-1α, VEGF as well as apoptotic genes participated the pathophysiological process of ischemic osteonecrosis. PMID:26261616

  6. Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells.

    PubMed

    Brouillet, Sophie; Hoffmann, Pascale; Benharouga, Mohamed; Salomon, Aude; Schaal, Jean-Patrick; Feige, Jean-Jacques; Alfaidy, Nadia

    2010-08-15

    Endocrine gland derived vascular endothelial growth factor (EG-VEGF) also called prokineticin (PK1), has been identified and linked to several biological processes including angiogenesis. EG-VEGF is abundantly expressed in the highest vascularized organ, the human placenta. Here we characterized its angiogenic effect using different experimental procedures. Immunohistochemistry was used to localize EG-VEGF receptors (PROKR1 and PROKR2) in placental and umbilical cord tissue. Primary microvascular placental endothelial cell (HPEC) and umbilical vein-derived macrovascular EC (HUVEC) were used to assess its effects on proliferation, migration, cell survival, pseudovascular organization, spheroid sprouting, permeability and paracellular transport. siRNA and neutralizing antibody strategies were used to differentiate PROKR1- from PROKR2-mediated effects. Our results show that 1) HPEC and HUVEC express both types of receptors 2) EG-VEGF stimulates HPEC's proliferation, migration and survival, but increases only survival in HUVECs. and 3) EG-VEGF was more potent than VEGF in stimulating HPEC sprout formation, pseudovascular organization, and it significantly increases HPEC permeability and paracellular transport. More importantly, we demonstrated that PROKR1 mediates EG-VEGF angiogenic effects, whereas PROKR2 mediates cellular permeability. Altogether, these data characterized angiogenic processes mediated by EG-VEGF, depicted a new angiogenic factor in the placenta, and suggest a novel view of the regulation of angiogenesis in placental pathologies.

  7. VEGF-Trap: a VEGF blocker with potent antitumor effects.

    PubMed

    Holash, Jocelyn; Davis, Sam; Papadopoulos, Nick; Croll, Susan D; Ho, Lillian; Russell, Michelle; Boland, Patricia; Leidich, Ray; Hylton, Donna; Burova, Elena; Ioffe, Ella; Huang, Tammy; Radziejewski, Czeslaw; Bailey, Kevin; Fandl, James P; Daly, Tom; Wiegand, Stanley J; Yancopoulos, George D; Rudge, John S

    2002-08-20

    Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors. The highest-affinity VEGF blocker described to date is a soluble decoy receptor created by fusing the first three Ig domains of VEGF receptor 1 to an Ig constant region; however, this fusion protein has very poor in vivo pharmacokinetic properties. By determining the requirements to maintain high affinity while extending in vivo half life, we were able to engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties. This VEGF-Trap effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors. VEGF-Trap-mediated blockade may be superior to that achieved by other agents, such as monoclonal antibodies targeted against the VEGF receptor.

  8. Placenta growth factor not vascular endothelial growth factor A or C can predict the early recurrence after radical resection of hepatocellular carcinoma.

    PubMed

    Ho, Ming-Chih; Chen, Chiung-Nien; Lee, Hsinyu; Hsieh, Fon-Jou; Shun, Chia-Tung; Chang, Chi-Lun; Lai, Yeun-Tyng; Lee, Po-Huang

    2007-06-08

    The purpose of this study was to evaluate the relationship between the expression of PlGF in tumor tissue and clinical outcomes in HCC patients. Tumor PlGF and vascular endothelial growth factor (VEGF)-A and VEGF-C mRNA were analyzed. Results demonstrated that patients with PlGF expression levels higher than median tended to have early recurrence compared to patients with PlGF expression lower than median (P=.031). In patients with AJCC stage II-III disease, this difference was even more significant (P=.002). In contrast, VEGF-A and VEGF-C could not predict early recurrence-free survival. Since PlGF expression correlated with early recurrence of HCC, PlGF may be an important prognostic indicator in HCC.

  9. Cord blood biomarkers of vascular endothelial growth (VEGF and sFlt-1) and postnatal growth: a preterm birth cohort study

    PubMed Central

    Voller, Stephannie Baehl; Chock, Susanne; Ernst, Linda M.; Su, Emily; Liu, Xin; Farrow, Kathryn N.; Mestan, Karen K.

    2014-01-01

    Background Preterm infants are at risk for postnatal growth failure (PGF). Identification of biomarkers that are associated with neonatal growth may help reduce PGF and associated long-term morbidity. Objective To investigate the associations between cord blood vascular endothelial growth factor (VEGF) and its soluble receptor (sFlt-1) with birth weight (BW) and postnatal growth in premature infants. Study Design and Methods From an ongoing birth cohort, 123 premature infants from 23 to 36 weeks gestational age (GA) were studied. Cord blood plasma VEGF and sFlt-1 were measured via enzyme-linked immunoassay. Growth parameters and nutritional information were evaluated. Multivariate logistic regression models were constructed to evaluate the associations of VEGF and sFlt-1 on PGF, defined as weight < 10th percentile at 36 weeks corrected age or discharge. Results VEGF was positively correlated, and sFlt-1 was negatively correlated with BW and BW-for-GA percentiles. Higher cord blood VEGF levels were associated with reduced risk of PGF (OR=0.7; 95% CI=0.5–0.9), while higher sFlt-1 levels appeared to increase the risk of PGF (OR=1.6; 95% CI=1.1–2.4). The above biomarker associations were attenuated after adjustment for maternal preeclampsia, fetal growth restriction and related neonatal characteristics, and when taking into account placental vascular pathologies. Longitudinal growth patterns by mean weight and length percentiles were consistently lower among infants with low VEGF/sFlt-1 ratios. Conclusions Our data support that intrauterine regulation of angiogenesis is an important mechanism of fetal and postnatal growth. Cord blood VEGF and sFlt-1 are useful in elucidating how intrauterine processes may have long-standing effects on developing premature infants. PMID:24480606

  10. Serum levels of vascular endothelial growth factor in chronic obstructive pulmonary disease.

    PubMed

    Farid Hosseini, Reza; Jabbari Azad, Farahzad; Yousefzadeh, Hadis; Rafatpanah, Houshang; Hafizi, Saeed; Tehrani, Homan; Khani, Masoud

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a third leading cause of death. In this case control study, we prepared 5 cc bloods from the antecubital vein of 100 COPD patients and 40 healthy individuals as control group. Vascular endothelial growth factor (VEGF) expression protein level was measured by ELISA in both groups. We found that concentration of VEGF in blood serum of patients with COPD (189.9±16pg/ml) was significantly higher than the control group (16.4±3.48pg/ml) (p<0.001). While VEGF serum level in emphysematous patients wasn't significantly different with control group (p=0.07). Furthermore VEGF serum level in COPD patients was proportionally increased with severity of disease (p<0.001). Besides all COPD patients, regardless of their smoking status, were experienced significantly higher levels of VEGF than healthy ones (p=0.001; z=4.3). Our results suggest VEGF serum concentration as the sensitive index for severity and activity of COPD and its prognosis.

  11. Expression of ATF4 and VEGF in chorionic villus tissue in early spontaneous abortion.

    PubMed

    Chai, Luwei; Ling, Kang; He, Xiaoxi; Yang, Rong

    2013-10-01

    To explore the relationship between early spontaneous abortion (SA) and the expression of activating transcription factor 4 (ATF4) and vascular endothelial growth factor (VEGF). The expression of ATF4 and VEGF protein and mRNA in villi from first trimester spontaneous abortion (SA, n=30) and normal pregnancy (NP, n=30) were detected by immunohistochemistry and fluorescent quantitative polymerase chain reaction (FQ-PCR). Both protein and mRNA expressions of ATF4 and VEGF in the SA group were significantly lower than in the NP group (P<0.01). Their proteins are expressed mainly in syncytiotrophoblast, cytotrophoblast and villous stromal cells. Correlation analysis showed that the expression of ATF4 was positively correlated with that of VEGF in the SA group (r=0.717, P<0.01). Lower expression of ATF4 and VEGF genes in chorionic villus tissue may participate in the pathogenesis of spontaneous abortion. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways

    PubMed Central

    ZHU, Xia; OKUBO, Aya; IGARI, Naoki; NINOMIYA, Kentaro; EGASHIRA, Yukari

    2016-01-01

    Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling. PMID:28439487

  13. VEGF-A clinical significance in gastric cancers: immunohistochemical analysis of a wide Italian cohort.

    PubMed

    Lastraioli, E; Boni, L; Romoli, M R; Crescioli, S; Taddei, A; Beghelli, S; Tomezzoli, A; Vindigni, C; Saragoni, L; Messerini, L; Bernini, M; Bencini, L; Giommoni, E; Freschi, G; Di Costanzo, F; Scarpa, A; Morgagni, P; Farsi, M; Roviello, F; De Manzoni, G; Bechi, P; Arcangeli, A

    2014-10-01

    The clinical significance of VEGF-A expression in gastric cancer (GC) has been reported with contradicting results. We analyzed the expression and clinical significance of VEGF-A in a wide Italian cohort of GC specimens. VEGF-A expression was tested by immunohistochemistry in 507 patients with GC of all clinical stages. The impact of VEGF-A on overall survival (OS) was evaluated in conjunction with clinical and pathological parameters. In the Italian cohort we studied VEGF-A was not an independent prognostic factor neither at the univariate nor at multivariate analysis. Although frequently expressed, in our study VEGF-A was not able to discriminate between groups of patients with different risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Targeting VEGF/VEGFRs Pathway in the Antiangiogenic Treatment of Human Cancers by Traditional Chinese Medicine.

    PubMed

    Zhang, Cheng; Wang, Ning; Tan, Hor-Yue; Guo, Wei; Li, Sha; Feng, Yibin

    2018-05-01

    Bearing in mind the doctrine of tumor angiogenesis hypothesized by Folkman several decades ago, the fundamental strategy for alleviating numerous cancer indications may be the strengthening application of notable antiangiogenic therapies to inhibit metastasis-related tumor growth. Under physiological conditions, vascular sprouting is a relatively infrequent event unless when specifically stimulated by pathogenic factors that contribute to the accumulation of angiogenic activators such as the vascular endothelial growth factor (VEGF) family and basic fibroblast growth factor (bFGF). Since VEGFs have been identified as the principal cytokine to initiate angiogenesis in tumor growth, synthetic VEGF-targeting medicines containing bevacizumab and sorafenib have been extensively used, but prominent side effects have concomitantly emerged. Traditional Chinese medicines (TCM)-derived agents with distinctive safety profiles have shown their multitarget curative potential by impairing angiogenic stimulatory signaling pathways directly or eliciting synergistically therapeutic effects with anti-angiogenic drugs mainly targeting VEGF-dependent pathways. This review aims to summarize ( a) the up-to-date understanding of the role of VEGF/VEGFR in correlation with proangiogenic mechanisms in various tissues and cells; ( b) the elaboration of antitumor angiogenesis mechanisms of 4 representative TCMs, including Salvia miltiorrhiza, Curcuma longa, ginsenosides, and Scutellaria baicalensis; and ( c) circumstantial clarification of TCM-driven therapeutic actions of suppressing tumor angiogenesis by targeting VEGF/VEGFRs pathway in recent years, based on network pharmacology.

  15. Can anti-vascular endothelial growth factor antibody reverse radiation necrosis? A preclinical investigation.

    PubMed

    Duan, Chong; Perez-Torres, Carlos J; Yuan, Liya; Engelbach, John A; Beeman, Scott C; Tsien, Christina I; Rich, Keith M; Schmidt, Robert E; Ackerman, Joseph J H; Garbow, Joel R

    2017-05-01

    Anti-vascular endothelial growth factor (anti-VEGF) antibodies are a promising new treatment for late time-to-onset radiation-induced necrosis (RN). We sought to evaluate and validate the response to anti-VEGF antibody in a mouse model of RN. Mice were irradiated with the Leksell Gamma Knife Perfexion™ and then treated with anti-VEGF antibody, beginning at post-irradiation (PIR) week 8. RN progression was monitored via anatomic and diffusion MRI from weeks 4-12 PIR. Standard histology, using haematoxylin and eosin (H&E), and immunohistochemistry staining were used to validate the response to treatment. After treatment, both post-contrast T1-weighted and T2-weighted image-derived lesion volumes decreased (P < 0.001), while the lesion volumes for the control group increased. The abnormally high apparent diffusion coefficient (ADC) for RN also returned to the ADC range for normal brain following treatment (P < 0.001). However, typical RN pathology was still present histologically. Large areas of focal calcification were observed in ~50% of treated mouse brains. Additionally, VEGF and hypoxia-inducible factor 1-alpha (HIF-1α) were continually upregulated in both the anti-VEGF and control groups. Despite improvements observed radiographically following anti-VEGF treatment, lesions were not completely resolved histologically. The subsequent calcification and the continued upregulation of VEGF and HIF-1α merit further preclinical/clinical investigation.

  16. Can anti-Vascular Endothelial Growth Factor Antibody Reverse Radiation Necrosis? A Preclinical Investigation

    PubMed Central

    Duan, Chong; Perez-Torres, Carlos J; Yuan, Liya; Engelbach, John A; Beeman, Scott C; Tsien, Christina I; Rich, Keith M; Schmidt, Robert E; Ackerman, Joseph JH; Garbow, Joel R

    2017-01-01

    Anti-vascular endothelial growth factor (anti-VEGF) antibodies are a promising new treatment for late time-to-onset radiation-induced necrosis (RN). We sought to evaluate and validate the response to anti-VEGF antibody in a mouse model of RN. Mice were irradiated with the Leksell Gamma Knife PerfexionTM and then treated with anti-VEGF antibody, beginning at post-irradiation (PIR) week 8. RN progression was monitored via anatomic and diffusion MRI from weeks 4 to 12 PIR. Standard histology, using haematoxylin and eosin (H&E), and immunohistochemistry staining were used to validate the response to treatment. After treatment, both post-contrast T1-weighted and T2-weighted image-derived lesion volumes decreased (P<0.001), while the lesion volumes for the control group increased. The abnormally high apparent diffusion coefficient (ADC) for RN also returned to the ADC range for normal brain following treatment (P<0.001). However, typical RN pathology was still present histologically. Large areas of focal calcification were observed in ~50% of treated mouse brains. Additionally, VEGF and hypoxia-inducible factor 1-alpha (HIF-1α) were continually upregulated in both the anti-VEGF and control groups. Despite improvements observed radiographically following anti-VEGF treatment, lesions were not completely resolved histologically. The subsequent calcification and the continued upregulation of VEGF and HIF-1α merit further preclinical/clinical investigation. PMID:28425047

  17. Intracellular cysteine oxidation is modulated by aquaporin-8-mediated hydrogen peroxide channeling in leukaemia cells.

    PubMed

    Vieceli Dalla Sega, Francesco; Prata, Cecilia; Zambonin, Laura; Angeloni, Cristina; Rizzo, Benedetta; Hrelia, Silvana; Fiorentini, Diana

    2017-03-01

    The modulation of H 2 O 2 production by NADPH oxidase (Nox), on vascular endothelial growth factor (VEGF) stimulation, affects the redox signaling linked to cancer cell proliferation. H 2 O 2 signal transduction involves reversible oxidation of thiol proteins, leading to the formation of cysteine sulfenic acids, responsible for the temporary inactivation of many phosphatases. These events imply that H 2 O 2 reaches its intracellular targets. As Aquaporin-8 (AQP8) has been demonstrated to funnel Nox-produced H 2 O 2 across the plasma membrane, this study aims to elucidate the role of AQP8 in the redox signaling occurring in human leukaemia B1647 cells that constitutively produce VEGF. AQP8 overexpression or silencing resulted in the modulation of VEGF ability of increasing or decreasing, respectively, H 2 O 2 intracellular level. Moreover, data obtained by a dimedone-based immunochemical method for sulfenic acid detection demonstrate that the expression of AQP8 can modulate the amplitude of downstream events, altering the activity of redox-sensitive targets. In particular, AQP8 affected VEGF-induced redox signaling by increasing the sulfenation of the tumor suppressor PTEN, which resulted in its inactivation and, in turn, caused Akt activation. Therefore, the dimedone-based method for easily monitoring cellular protein sulfenation allowed to demonstrate, for the first time, the role of AQP8 on the fine tune of cysteine oxidation in target proteins involved in leukaemia cell proliferation pathways. © 2016 BioFactors, 43(2):232-242, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  18. Mesenchymal Stem Cells and Cardiomyocytes Interplay to Prevent Myocardial Hypertrophy

    PubMed Central

    Tan, Xueying; Zhang, Yong; Li, Xingda; Wang, Xinyue; Zhu, Jiuxin; Wang, Yang; Yang, Fan; Wang, Baoqiu; Liu, Yanju; Xu, Chaoqian; Pan, Zhenwei; Wang, Ning; Yang, Baofeng

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have emerged as a promising therapeutic strategy for cardiovascular disease. However, there is no evidence so far that BMSCs can heal pathological myocardial hypertrophy. In this study, BMSCs were indirectly cocultured with neonatal rat ventricular cardiomyocytes (NRVCs) in vitro or intramyocardially transplanted into hypertrophic hearts in vivo. The results showed that isoproterenol (ISO)-induced typical hypertrophic characteristics of cardiomyocytes were prevented by BMSCs in the coculture model in vitro and after BMSC transplantation in vivo. Furthermore, activation of the Ca2+/calcineurin/nuclear factor of activated T cells cytoplasmic 3 (NFATc3) hypertrophic pathway in NRVCs was abrogated in the presence of BMSCs both in vitro and in vivo. Interestingly, inhibition of vascular endothelial growth factor (VEGF) release from BMSCs, but not basic fibroblast growth factor and insulin-like growth factor 1, abolished the protective effects of BMSCs on cardiomyocyte hypertrophy. Consistently, VEGF administration attenuated ISO-induced enlargement of cellular size; the upregulation of atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain expression; and the activation of Ca2+/calcineurin/NFATc3 hypertrophic pathways, and these pathways can be abrogated by blocking VEGFR-1 in cardiomyocytes, indicating that VEGF receptor 1 is involved in the antihypertrophic role of VEGF. We further found that the ample VEGF secretion contributing to the antihypertrophic effects of BMSCs originates from the crosstalk of BMSCs and cardiac cells but not BMSCs or cardiomyocytes alone. Interplay of mesenchymal stem cells with cardiomyocytes produced synergistic effects on VEGF release. In summary, crosstalk between mesenchymal stem cells and cardiomyocytes contributes to the inhibition of myocardial hypertrophy via inhibiting Ca2+/calcineurin/NFATc3 hypertrophic pathways in cardiac cells. These results provide the first evidence for the treatment of myocardial hypertrophy using BMSCs. Significance This study found that mesenchymal stem cells may crosstalk with cardiomyocytes, which causes a synergistic vascular endothelial growth factor (VEGF) release from both kinds of cells and then inhibits pathological cardiac remodeling following hypertrophic stimulation in cardiomyocytes in vitro and in vivo. Blockage of VEGF release from bone marrow-derived mesenchymal stem cells (BMSCs) abolishes the antihypertrophic actions of BMSCs in vitro and in vivo. On the contrary, VEGF administration attenuates hypertrophic signaling of calcineurin/ nuclear factor of activated T cell cytoplasmic 3 signal pathways. This study provides the first evidence for the treatment of myocardial hypertrophy using BMSCs. PMID:26586774

  19. VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease.

    PubMed

    Barratt, Shaney L; Flower, Victoria A; Pauling, John D; Millar, Ann B

    2018-04-24

    Interstitial lung disease (ILD) encompasses a group of heterogeneous diseases characterised by varying degrees of aberrant inflammation and fibrosis of the lung parenchyma. This may occur in isolation, such as in idiopathic pulmonary fibrosis (IPF) or as part of a wider disease process affecting multiple organs, such as in systemic sclerosis. Anti-Vascular Endothelial Growth Factor (anti-VEGF) therapy is one component of an existing broad-spectrum therapeutic option in IPF (nintedanib) and may become part of the emerging therapeutic strategy for other ILDs in the future. This article describes our current understanding of VEGF biology in normal lung homeostasis and how changes in its bioavailability may contribute the pathogenesis of ILD. The complexity of VEGF biology is particularly highlighted with an emphasis on the potential non-vascular, non-angiogenic roles for VEGF in the lung, in both health and disease.

  20. Generation of monoclonal antibodies to recombinant vascular endothelial growth factor.

    PubMed

    Shein, S A; Gurina, O I; Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Grinenko, N F; Ivanova, N V; Volgina, N E; Ryabukhin, I A; Chekhonin, V P

    2012-05-01

    Female BALB/c mice were subcutaneously immunized with recombinant VEGF-164. After 3 immunization cycles, splenic B cells from immunized mouse were fused with immortalized myeloma culture SP2/0-Ag14 cells. Screening of hybrid cells producing anti-VEGF antibodies was performed by ELISA and immunocytochemical analysis on cultured C6 glioma cells. Subsequent cloning yielded hybridoma stably expressing monoclonal anti-VEGF antibodies recognizing recombinant and native VEGF.

  1. VEGF-C Is a Thyroid Marker of Malignancy Superior to VEGF-A in the Differential Diagnostics of Thyroid Lesions

    PubMed Central

    Woliński, Kosma; Stangierski, Adam; Szczepanek-Parulska, Ewelina; Gurgul, Edyta; Budny, Bartłomiej; Wrotkowska, Elzbieta; Biczysko, Maciej; Ruchala, Marek

    2016-01-01

    Introduction Thyroid nodular goiter is one of the most common medical conditions affecting even over a half of adult population. The risk of malignancy is rather small but noticeable–estimated by numerous studies to be about 3–10%. The definite differentiation between benign and malignant ones is a vital issue in endocrine practice. The aim of the current study was to assess the expression of vascular endothelial growth factor A (VEGF-A) and VEGF-C on the mRNA level in FNAB washouts in case of benign and malignant thyroid nodules and to evaluate the diagnostic value of these markers of malignancy. Materials and Methods Patients undergoing fine-needle aspiration biopsy (FNAB) in our department between January 2013 and May 2014 were included. In case of all patients who gave the written consent, after ultrasonography (US) and fine-needle aspiration biopsy (FNAB) performed as routine medical procedure the needle was flushed with RNA Later solution, the washouts were frozen in -80 Celsius degrees. Expression of VEGF-A and VEGF-C and GADPH (reference gene) was assessed in washouts on the mRNA level using the real-time PCR technique. Probes of patients who underwent subsequent thyroidectomy and were diagnosed with differentiated thyroid cancer (DTC; proved by post-surgical histopathology) were analyzed. Similar number of patients with benign cytology were randomly selected to be a control group. Results Thirty one DTCs and 28 benign thyroid lesions were analyzed. Expression of VEGF-A was insignificantly higher in patients with DTCs (p = 0.13). Expression of VEGF-C was significantly higher in patients with DTC. The relative expression of VEGF-C (in comparison with GAPDH) was 0.0049 for DTCs and 0.00070 for benign lesions, medians – 0.0036 and 0.000024 respectively (p<0.0001). Conclusions Measurement of expression VEGF-C on the mRNA level in washouts from FNAB is more useful than more commonly investigated VEGF-A. Measurement of VEGF-C in FNAB washouts do not allow for fully reliable differentiation of benign and malignant thyroid nodules and should be interpreted carefully. Further studies on larger groups are indicated. However, measurement of VEGF-C on mRNA level can bring important information without exposing patient for additional risk and invasive procedures. PMID:26900960

  2. EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer.

    PubMed

    Geng, Jian; Li, Xiao; Zhou, Zhanmei; Wu, Chin-Lee; Dai, Meng; Bai, Xiaoyan

    2015-04-10

    Enhancer of Zeste Homologue 2 (EZH2) accounts for aggressiveness and unfavorable prognosis of tumor. We investigated the mechanisms and signaling pathways of EZH2 in non-small cell lung carcinoma (NSCLC) progression. Increased expression of EZH2, vascular endothelial growth factor-A (VEGF-A) and AKT phosphorylation correlated with differentiation, lymph node metastasis, size and TNM stage in NSCLC. There was a positive correlation between EZH2 and VEGF-A expression and high EZH2 expression, as an independent prognostic factor, predicted a shorter overall survival time for NSCLC patients. The expression of VEGF-A and phosphorylated Ser(473)-AKT, cell proliferation, migration and metastasis were enhanced in EZH2-overexpressing A549 cells, but inhibited in parental H2087 cells with EZH2 silencing or GSK126 treatment. AKT activity was enhanced by recombinant human VEGF-165 but suppressed by bevacizumab. An AKT inhibitor MK-2206 blocked VEGF-A expression and AKT phosphorylation in parental H2087 and EZH2-overexpressing A549 cells. EZH2 activity was not affected by either VEGF-A stimulation/depletion or MK-2206 inhibition. These results demonstrate that EZH2 promotes lung cancer progression via the VEGF-A/AKT signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Hypoxia-inducible factors promote alveolar development and regeneration.

    PubMed

    Vadivel, Arul; Alphonse, Rajesh S; Etches, Nicholas; van Haaften, Timothy; Collins, Jennifer J P; O'Reilly, Megan; Eaton, Farah; Thébaud, Bernard

    2014-01-01

    Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.

  4. Connective tissue growth factor is a substrate of ADAM28

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki

    2010-11-26

    Research highlights: {yields} The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. {yields} ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF{sub 165} complex. {yields} CTGF digestion by ADAM28 releases biologically active VEGF{sub 165} from the complex. {yields} ADAM28, CTGF and VEGF{sub 165} are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. {yields} These suggest that ADAM28 promotes VEGF{sub 165}-induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF{sub 165} complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinomamore » cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala{sup 181}-Tyr{sup 182} and Asp{sup 191}-Pro{sup 192} bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor{sub 165} (VEGF{sub 165}), releasing biologically active VEGF{sub 165} from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF{sub 165}-induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF{sub 165} complex.« less

  5. The Janus Face of VEGF in Stroke

    PubMed Central

    Geiseler, Samuel J.; Morland, Cecilie

    2018-01-01

    The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy. PMID:29734653

  6. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    PubMed

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Modulation of VEGF-Induced Retinal Vascular Permeability by Peroxisome Proliferator-Activated Receptor-β/δ

    PubMed Central

    Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.

    2014-01-01

    Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against VEGF-induced vascular permeability, possibly through reduced VEGFR expression. Therefore, antagonism/reverse agonism of PPARβ/δ siRNA may represent a novel therapeutic methodology against retinal hyperpermeability and is worthy of future investigation. PMID:25406289

  8. Proangiogenic and Profibrotic Markers in Pulmonary Sarcoidosis.

    PubMed

    Tuleta, I; Biener, L; Pizarro, C; Nickenig, G; Skowasch, D

    2018-04-21

    The aim of our study was to determine the blood levels of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1, fibroblast growth factor (FGF)-2, and platelet-derived growth factor (PDGF)-AB in different stages of pulmonary sarcoidosis. There were 92 patients in sarcoidosis stages I + II, III, and IV enrolled into the study. All the patients underwent lung diffusing capacity and blood sampling. We found that VEGF levels differed significantly between the stage groups with the peak VEGF concentrations in stage III. TGF-β1 levels were similar in stages I + II and III, and tended to be lower in stage IV. The analysis of the subgroups showed increased VEGF and FGF-2, and reduced TGF-β1 concentration in stages I + II patients with relevantly reduced lung diffusing capacity or increased sarcoidosis activity compared to patients with normal lung diffusing capacity or inactive sarcoidosis. A tendency towards increased VEGF, PDGF-AB and TGF-β1 levels was observed in the analogical subgroup analysis within the stage III. We conclude that proangiogenic VEGF, and profibrotic FGF-2 and PDGF-AB may contribute to the progression of sarcoidosis, whereas TGF-β1, with its dual anti-inflammatory and profibrotic actions, may play a dichotomous protective or deleterious role. Reduced diffusing capacity and active sarcoidosis are associated with an unfavorable constellation of the markers studied, which predicts a progressive disease course.

  9. Role of vascular endothelial cell growth factor in Ovarian Hyperstimulation Syndrome.

    PubMed Central

    Levin, E R; Rosen, G F; Cassidenti, D L; Yee, B; Meldrum, D; Wisot, A; Pedram, A

    1998-01-01

    Controlled ovarian hyperstimulation with gonadotropins is followed by Ovarian Hyperstimulation Syndrome (OHSS) in some women. An unidentified capillary permeability factor from the ovary has been implicated, and vascular endothelial cell growth/permeability factor (VEGF) is a candidate protein. Follicular fluids (FF) from 80 women who received hormonal induction for infertility were studied. FFs were grouped according to oocyte production, from group I (0-7 oocytes) through group IV (23-31 oocytes). Group IV was comprised of four women with the most severe symptoms of OHSS. Endothelial cell (EC) permeability induced by the individual FF was highly correlated to oocytes produced (r2 = 0.73, P < 0.001). Group IV FF stimulated a 63+/-4% greater permeability than FF from group I patients (P < 0. 01), reversed 98% by anti-VEGF antibody. Group IV fluids contained the VEGF165 isoform and significantly greater concentrations of VEGF as compared with group I (1,105+/-87 pg/ml vs. 353+/-28 pg/ml, P < 0. 05). Significant cytoskeletal rearrangement of F-actin into stress fibers and a destruction of ZO-1 tight junction protein alignment was caused by group IV FF, mediated in part by nitric oxide. These mechanisms, which lead to increased EC permeability, were reversed by the VEGF antibody. Our results indicate that VEGF is the FF factor responsible for increased vascular permeability, thereby contributing to the pathogenesis of OHSS. PMID:9835623

  10. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conducemore » to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.« less

  11. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy.

    PubMed

    Pepe, Martino; Mamdani, Mohammed; Zentilin, Lorena; Csiszar, Anna; Qanud, Khaled; Zacchigna, Serena; Ungvari, Zoltan; Puligadda, Uday; Moimas, Silvia; Xu, Xiaobin; Edwards, John G; Hintze, Thomas H; Giacca, Mauro; Recchia, Fabio A

    2010-06-25

    Vascular endothelial growth factor (VEGF)-B selectively binds VEGF receptor (VEGFR)-1, a receptor that does not mediate angiogenesis, and is emerging as a major cytoprotective factor. To test the hypothesis that VEGF-B exerts non-angiogenesis-related cardioprotective effects in nonischemic dilated cardiomyopathy. AAV-9-carried VEGF-B(167) cDNA (10(12) genome copies) was injected into the myocardium of chronically instrumented dogs developing tachypacing-induced dilated cardiomyopathy. After 4 weeks of pacing, green fluorescent protein-transduced dogs (AAV-control, n=8) were in overt congestive heart failure, whereas the VEGF-B-transduced (AAV-VEGF-B, n=8) were still in a well-compensated state, with physiological arterial Po(2). Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was, respectively, 15.0+/-1.5 versus 26.7+/-1.8 mm Hg and LV regional fractional shortening was 9.4+/-1.6% versus 3.0+/-0.6% (all P<0.05). VEGF-B prevented LV wall thinning but did not induce cardiac hypertrophy and did not affect the density of alpha-smooth muscle actin-positive microvessels, whereas it normalized TUNEL-positive cardiomyocytes and caspase-9 and -3 activation. Consistently, activated Akt, a major negative regulator of apoptosis, was superphysiological in AAV-VEGF-B, whereas the proapoptotic intracellular mediators glycogen synthase kinase (GSK)-3beta and FoxO3a (Akt targets) were activated in AAV-control, but not in AAV-VEGF-B. Cardiac VEGFR-1 expression was reduced 4-fold in all paced dogs, suggesting that exogenous VEGF-B(167) exerted a compensatory receptor stimulation. The cytoprotective effects of VEGF-B(167) were further elucidated in cultured rat neonatal cardiomyocytes exposed to 10(-8) mol/L angiotensin II: VEGF-B(167) prevented oxidative stress, loss of mitochondrial membrane potential, and, consequently, apoptosis. We determined a novel, angiogenesis-unrelated cardioprotective effect of VEGF-B(167) in nonischemic dilated cardiomyopathy, which limits apoptotic cell loss and delays the progression toward failure.

  12. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway.

    PubMed

    Li, Cheng-Zong; Jiang, Xiao-Jie; Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental for TNF-α-mediated NF-κB activation in GBC cells and can regulate TNF-α-mediated VEGF-C expression at the protein and transcriptional levels through the NF-κB pathway. RIP1 can regulate TNF-α-mediated lymphatic tube formation and metastasis in GBC cells both in vitro and vivo. The average optical density of RIP1 was linearly related to that of TNF-α protein and the lymphatic vessel density in GBC tissues. We conclude that RIP1 regulates TNF-α-mediated lymphangiogenesis and lymph node metastasis in GBC by modulating the NF-κB-VEGF-C pathway.

  13. RENAL MICROVASCULAR DISEASE DETERMINES THE RESPONSES TO REVASCULARIZATION IN EXPERIMENTAL RENOVASCULAR DISEASE

    PubMed Central

    Chade, Alejandro R.; Kelsen, Silvia

    2011-01-01

    Background Percutaneous trasluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolve renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesize that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. Methods and Results RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 was infused intra-renally (RAS+VEGF, 0.05 µg/kg). Single-kidney function was assessed in all pigs in vivo using ultra-fast CT after 6 weeks. Half of the RAS/RAS+VEGF completed their observation, and the other half underwent PTRA, VEGF was repeated, and CT studies repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex-vivo using 3D micro-CT, and renal fibrosis quantified. Degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Conclusion Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage. PMID:20587789

  14. Vascular endothelial growth factor-D is a key molecule that enhances lymphatic metastasis of soft tissue sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagawa, Takashi, E-mail: tyanagaw@med.gunma-u.ac.jp; Shinozaki, Tetsuya; Watanabe, Hideomi

    2012-04-15

    Studies on lymph node metastasis of soft tissue sarcomas are insufficient because of its rarity. In this study, we examined the expressions of vascular endothelial growth factor (VEGF)-C and VEGF-D in soft tissue sarcomas metastasized to lymph nodes. In addition, the effects of the two molecules on the barrier function of a lymphatic endothelial cell monolayer against sarcoma cells were analyzed. We examined 7 patients who had soft tissue sarcomas with lymph node metastases and who had undergone neither chemotherapy nor radiotherapy before lymphadenectomy. Immunohistochemistry revealed that 2 of 7 sarcomas that metastasized to lymph nodes expressed VEGF-C both inmore » primary and metastatic lesions. On the other hand, VEGF-D expression was detected in 4 of 7 primary and 7 of 7 metastatic lesions, respectively. Interestingly, 3 cases that showed no VEGF-D expression at primary sites expressed VEGF-D in metastatic lesions. Recombinant VEGF-C at 10{sup -8} and VEGF-D at 10{sup -7}and 10{sup -8} g/ml significantly increased the random motility of lymphatic endothelial cells compared with controls. VEGF-D significantly increased the migration of sarcoma cells through lymphatic endothelial monolayers. The fact that VEGF-D induced the migration of fibrosarcomas through the lymphatic endothelial monolayer is the probable reason for the strong relationship between VEGF-D expression and lymph node metastasis in soft tissue sarcomas. The important propensities of this molecule for the increase of lymph node metastases are not only lymphangiogenesis but also down-regulation of the barrier function of lymphatic endothelial monolayers, which facilitates sarcoma cells entering the lymphatic circulation.« less

  15. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hai-dong; Cui, Guo-hong; Yang, Jia-jun

    Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. Thismore » designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.« less

  16. Co-Expression of α9β1 Integrin and VEGF-D Confers Lymphatic Metastatic Ability to a Human Breast Cancer Cell Line MDA-MB-468LN

    PubMed Central

    Majumder, Mousumi; Rodriguez-Torres, Mauricio; Torres-Garcia, Jose; Wiebe, Ryan; Timoshenko, Alexander V.; Bhattacharjee, Rabindra N.; Chambers, Ann F.; Lala, Peeyush K.

    2012-01-01

    Introduction and Objectives Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice. Results A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely abrogated by stable knock-down of either VEGF-D or α9 in 468LN cells. Conclusion Differential capacity for VEGF-D production and α9β1 integrin expression by 468LN cells jointly contributed to their lymphatic metastatic phenotype. PMID:22545097

  17. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.

    PubMed

    Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F

    2014-11-01

    Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.

  18. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway.

    PubMed

    Wang, Chao-Qun; Huang, Yu-Wen; Wang, Shih-Wei; Huang, Yuan-Li; Tsai, Chun-Hao; Zhao, Yong-Ming; Huang, Bi-Fei; Xu, Guo-Hong; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-01-28

    Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Anti-VEGF/VEGFR therapy for cancer: reassessing the target.

    PubMed

    Sitohy, Basel; Nagy, Janice A; Dvorak, Harold F

    2012-04-15

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.

  20. Plasma Vascular Endothelial Growth Factor Concentrations after Intravitreous Anti-Vascular Endothelial Growth Factor Therapy for Diabetic Macular Edema.

    PubMed

    Jampol, Lee M; Glassman, Adam R; Liu, Danni; Aiello, Lloyd Paul; Bressler, Neil M; Duh, Elia J; Quaggin, Susan; Wells, John A; Wykoff, Charles C

    2018-07-01

    To assess systemic vascular endothelial growth factor (VEGF)-A levels after treatment with intravitreous aflibercept, bevacizumab, or ranibizumab. Comparative-effectiveness trial with participants randomly assigned to 2 mg aflibercept, 1.25 mg bevacizumab, or 0.3 mg ranibizumab after a re-treatment algorithm. Participants with available plasma samples (N = 436). Plasma samples were collected before injections at baseline and 4-week, 52-week, and 104-week visits. In a preplanned secondary analysis, systemic-free VEGF levels from an enzyme-linked immunosorbent assay were compared across anti-VEGF agents and correlated with systemic side effects. Changes in the natural log (ln) of plasma VEGF levels. Baseline free VEGF levels were similar across all 3 groups. At 4 weeks, mean ln(VEGF) changes were -0.30±0.61 pg/ml, -0.31±0.54 pg/ml, and -0.02±0.44 pg/ml for the aflibercept, bevacizumab, and ranibizumab groups, respectively. The adjusted differences between treatment groups (adjusted confidence interval [CI]; P value) were -0.01 (-0.12 to +0.10; P = 0.89), -0.31 (-0.44 to -0.18; P < 0.001), and -0.30 (-0.43 to -0.18; P < 0.001) for aflibercept-bevacizumab, aflibercept-ranibizumab, and bevacizumab-ranibizumab, respectively. At 52 weeks, a difference in mean VEGF changes between bevacizumab and ranibizumab persisted (-0.23 [-0.38 to -0.09]; P < 0.001); the difference between aflibercept and ranibizumab was -0.12 (P = 0.07) and between aflibercept and bevacizumab was +0.11 (P = 0.07). Treatment group differences at 2 years were similar to 1 year. No apparent treatment differences were detected at 52 or 104 weeks in the cohort of participants not receiving injections within 1 or 2 months before plasma collection. Participants with (N = 9) and without (N = 251) a heart attack or stroke had VEGF levels that appeared similar. These data suggest that decreases in plasma free-VEGF levels are greater after treatment with aflibercept or bevacizumab compared with ranibizumab at 4 weeks. At 52 and 104 weeks, a greater decrease was observed in bevacizumab versus ranibizumab. Results from 2 subgroups of participants who did not receive injections within at least 1 month and 2 months before collection suggest similar changes in VEGF levels after stopping injections. It is unknown whether VEGF levels return to normal as the drug is cleared from the system or whether the presence of the drug affects the assay's ability to accurately measure free VEGF. No significant associations between VEGF concentration and systemic factors were noted. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. VEGF-ablation therapy reduces drug delivery and therapeutic response in ECM-dense tumors.

    PubMed

    Röhrig, F; Vorlová, S; Hoffmann, H; Wartenberg, M; Escorcia, F E; Keller, S; Tenspolde, M; Weigand, I; Gätzner, S; Manova, K; Penack, O; Scheinberg, D A; Rosenwald, A; Ergün, S; Granot, Z; Henke, E

    2017-01-05

    The inadequate transport of drugs into the tumor tissue caused by its abnormal vasculature is a major obstacle to the treatment of cancer. Anti-vascular endothelial growth factor (anti-VEGF) drugs can cause phenotypic alteration and maturation of the tumor's vasculature. However, whether this consistently improves delivery and subsequent response to therapy is still controversial. Clinical results indicate that not all patients benefit from antiangiogenic treatment, necessitating the development of criteria to predict the effect of these agents in individual tumors. We demonstrate that, in anti-VEGF-refractory murine tumors, vascular changes after VEGF ablation result in reduced delivery leading to therapeutic failure. In these tumors, the impaired response after anti-VEGF treatment is directly linked to strong deposition of fibrillar extracellular matrix (ECM) components and high expression of lysyl oxidases. The resulting condensed, highly crosslinked ECM impeded drug permeation, protecting tumor cells from exposure to small-molecule drugs. The reduced vascular density after anti-VEGF treatment further decreased delivery in these tumors, an effect not compensated by the improved vessel quality. Pharmacological inhibition of lysyl oxidases improved drug delivery in various tumor models and reversed the negative effect of VEGF ablation on drug delivery and therapeutic response in anti-VEGF-resistant tumors. In conclusion, the vascular changes after anti-VEGF therapy can have a context-dependent negative impact on overall therapeutic efficacy. A determining factor is the tumor ECM, which strongly influences the effect of anti-VEGF therapy. Our results reveal the prospect to revert a possible negative effect and to potentiate responsiveness to antiangiogenic therapy by concomitantly targeting ECM-modifying enzymes.

  2. VEGF-ablation therapy reduces drug delivery and therapeutic response in ECM-dense tumors

    PubMed Central

    Röhrig, F; Vorlová, S; Hoffmann, H; Wartenberg, M; Escorcia, F E; Keller, S; Tenspolde, M; Weigand, I; Gätzner, S; Manova, K; Penack, O; Scheinberg, D A; Rosenwald, A; Ergün, S; Granot, Z; Henke, E

    2017-01-01

    The inadequate transport of drugs into the tumor tissue caused by its abnormal vasculature is a major obstacle to the treatment of cancer. Anti-vascular endothelial growth factor (anti-VEGF) drugs can cause phenotypic alteration and maturation of the tumor's vasculature. However, whether this consistently improves delivery and subsequent response to therapy is still controversial. Clinical results indicate that not all patients benefit from antiangiogenic treatment, necessitating the development of criteria to predict the effect of these agents in individual tumors. We demonstrate that, in anti-VEGF-refractory murine tumors, vascular changes after VEGF ablation result in reduced delivery leading to therapeutic failure. In these tumors, the impaired response after anti-VEGF treatment is directly linked to strong deposition of fibrillar extracellular matrix (ECM) components and high expression of lysyl oxidases. The resulting condensed, highly crosslinked ECM impeded drug permeation, protecting tumor cells from exposure to small-molecule drugs. The reduced vascular density after anti-VEGF treatment further decreased delivery in these tumors, an effect not compensated by the improved vessel quality. Pharmacological inhibition of lysyl oxidases improved drug delivery in various tumor models and reversed the negative effect of VEGF ablation on drug delivery and therapeutic response in anti-VEGF-resistant tumors. In conclusion, the vascular changes after anti-VEGF therapy can have a context-dependent negative impact on overall therapeutic efficacy. A determining factor is the tumor ECM, which strongly influences the effect of anti-VEGF therapy. Our results reveal the prospect to revert a possible negative effect and to potentiate responsiveness to antiangiogenic therapy by concomitantly targeting ECM-modifying enzymes. PMID:27270432

  3. Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway.

    PubMed

    Bao, Lingzhi; Shi, Honglian

    2010-11-15

    As a potent environmental oxidative stressor, arsenic exposure has been reported to exacerbate cardiovascular diseases and increase vascular endothelial cell monolayer permeability. However, the underlying mechanism of this effect is not well understood. In this paper, we test our hypothesis that reactive oxygen species (ROS)-induced vascular endothelial growth factor (VEGF) expression may play an important role in an arsenic-caused increase of endothelial cell monolayer permeability. The mouse brain vascular endothelial cell bEnd3 monolayer was exposed to arsenite for 1, 3, and 6 days. The monolayer permeability, VEGF protein release, and ROS generation were determined. In addition, VE-cadherin and zonula occludens-1 (ZO-1), two membrane structure proteins, were immunostained to elucidate the effects of arsenite on the cell-cell junction. The roles of ROS and VEGF in arsenite-induced permeability was determined by inhibiting ROS with antioxidants and immuno-depleting VEGF with a VEGF antibody. We observed that arsenite increased bEnd3 monolayer permeability, elevated the production of cellular ROS, and increased VEGF release. VE-cadherin and ZO-1 disruptions were also found in cells treated with arsenite. Furthermore, both antioxidant (N-acetyl cysteine and tempol) and the VEGF antibody treatments significantly lowered the arsenite-induced permeability of the bEnd3 monolayer as well as VEGF expression. VE-cadherin and ZO-1 disruptions were also diminished by N-acetyl cysteine and the VEGF antibody. Our data suggest that the increase in VEGF expression caused by ROS may play an important role in the arsenite-induced increase in endothelial cell permeability.

  4. Expression and localization of the vascular endothelial growth factor and changes of microvessel density during hair follicle development of Liaoning cashmere goats.

    PubMed

    Zhang, Q L; Li, J P; Li, Y M; Chang, Q; Chen, Y; Jiang, H Z; Zhao, Z H; Guo, D

    2013-12-10

    Vascular endothelial growth factors (VEGFs) play important roles in neovascularization, tissue development, and angiogenesis. In this study, changes in VEGF expression patterns and microvessel density (MVD), and their correlations, were investigated during hair follicle development in epidermal appendages of Liaoning cashmere goats. Polyclonal antibodies to VEGF and microvessels were used for monthly immunohistochemical examinations of normal skin specimens from adult female goats for one year. VEGF was expressed in the hair bulb of primary and secondary hair follicles, the outer and inner root sheaths, sebaceous glands (ductal and secretory portions), eccrine sweat glands (ductal and secretory portions), and the epidermis. Abundant expression of VEGF was observed in the follicular basement membrane zone surrounding the bulb matrix and in ductal and secretory portions of eccrine sweat glands. The change in VEGFs in primary hair follicles showed a bimodal pattern, with the first peak observed from March to May, and the second in August. Maximal expression in secondary hair follicles occurred in May and August. Therefore, VEGF expression in primary and secondary hair follicles is synchronized throughout the year, and is correlated to hair development. In the later telogen and anagen phases, VEGF expression was higher in the secondary, compared to the primary, hair follicle. Changes in MVD also showed a bimodal pattern with peaks in May and August. VEGF expression and MVD showed moderate and strongly positive correlation in the primary and secondary hair follicles, respectively. Therefore, MVD and VEGF are closely related to the processes involved in hair cycle regulation.

  5. VEGF-A is increased in exogenous endophthalmitis.

    PubMed

    Seamone, Mark E; Lewis, Darrell R; Haidl, Ian D; Gupta, R Rishi; O' Brien, Daniel M; Dickinson, John; Samad, Arif; Marshall, Jean S; Cruess, Alan F

    2017-06-01

    Exogenous endophthalmitis is an ophthalmologic emergency defined by panocular inflammation. Vascular endothelial growth factor A (VEGF-A) contributes to inflammation by promoting chemotaxis of monocytes and granulocytes and by increasing vascular permeability. The purpose of this article is to determine if VEGF-A is elevated in the vitreous samples obtained from individuals with exogenous endophthalmitis. Vitreous samples from individuals with exogenous endophthalmitis (n = 18) were analyzed via Luminex assay and enzyme-linked immunosorbent assay for the cytokines VEGF-A, tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-8 (chemokine [CXCL]-8), IL-1β, IL-10, IL-12p70, IL-33, interferon (IFN)-γ, IFN-α, IFN-β, chemokine ligand (CCL)-3, IL-2, IL-5, IL-15, CXCL-10, CCL-2, IL-1Ra, CCL-5, IL-17, and CCL-11. Vitreous samples obtained at the time of macular hole surgery served as controls (n = 8). Concentrations of VEGF-A were significantly elevated in vitreous samples from individuals with exogenous endophthalmitis compared with macular hole (p < 0.001). VEGF-A was significantly upregulated in individuals with exogenous endophthalmitis after cataract surgery (p = 0.001), vitrectomy (p = 0.024), and intravitreal injection (p = 0.012). VEGF-A concentrations were similar in both culture-positive and culture-negative populations (p > 0.05). In a linear regression model, levels of VEGF-A correlated significantly with the chemokine CXCL-8 (p = 0.028). We demonstrate that VEGF-A is potently upregulated in exogenous endophthalmitis. This observation provides a foundation for future studies of targeted VEGF-A blockade in the management of endophthalmitis. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. Angiogenesis and lymphangiogenesis as prognostic factors after therapy in patients with cervical cancer

    PubMed Central

    Makarewicz, Roman; Kopczyńska, Ewa; Marszałek, Andrzej; Goralewska, Alina; Kardymowicz, Hanna

    2012-01-01

    Aim of the study This retrospective study attempts to evaluate the influence of serum vascular endothelial growth factor C (VEGF-C), microvessel density (MVD) and lymphatic vessel density (LMVD) on the result of tumour treatment in women with cervical cancer. Material and methods The research was carried out in a group of 58 patients scheduled for brachytherapy for cervical cancer. All women were patients of the Department and University Hospital of Oncology and Brachytherapy, Collegium Medicum in Bydgoszcz of Nicolaus Copernicus University in Toruń. VEGF-C was determined by means of a quantitative sandwich enzyme immunoassay using a human antibody VEGF-C ELISA produced by Bender MedSystem, enzyme-linked immunosorbent detecting the activity of human VEGF-C in body fluids. The measure for the intensity of angiogenesis and lymphangiogenesis in immunohistochemical reactions is the number of blood vessels within the tumour. Statistical analysis was done using Statistica 6.0 software (StatSoft, Inc. 2001). The Cox proportional hazards model was used for univariate and multivariate analyses. Univariate analysis of overall survival was performed as outlined by Kaplan and Meier. In all statistical analyses p < 0.05 (marked red) was taken as significant. Results In 51 patients who showed up for follow-up examination, the influence of the factors of angiogenesis, lymphangiogenesis, patients’ age and the level of haemoglobin at the end of treatment were assessed. Selected variables, such as patients’ age, lymph vessel density (LMVD), microvessel density (MVD) and the level of haemoglobin (Hb) before treatment were analysed by means of Cox logical regression as potential prognostic factors for lymph node invasion. The observed differences were statistically significant for haemoglobin level before treatment and the platelet number after treatment. The study revealed the following prognostic factors: lymph node status, FIGO stage, and kind of treatment. No statistically significant influence of angiogenic and lymphangiogenic factors on the prognosis was found. Conclusion Angiogenic and lymphangiogenic factors have no value in predicting response to radiotherapy in cervical cancer patients. PMID:23788848

  7. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito

    2007-08-31

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massivemore » expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.« less

  8. Soluble VEGF isoforms are essential for establishingepiphyseal vascularization and regulating chondrocyte development and survival

    PubMed Central

    Maes, Christa; Stockmans, Ingrid; Moermans, Karen; Van Looveren, Riet; Smets, Nico; Carmeliet, Peter; Bouillon, Roger; Carmeliet, Geert

    2004-01-01

    VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF120, VEGF164, and VEGF188 isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF164 or only VEGF188 (in VEGF188/188 mice) was sufficient for metaphyseal development. VEGF188/188 mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF188 isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF188/188 mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF188 isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation. PMID:14722611

  9. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival.

    PubMed

    Maes, Christa; Stockmans, Ingrid; Moermans, Karen; Van Looveren, Riet; Smets, Nico; Carmeliet, Peter; Bouillon, Roger; Carmeliet, Geert

    2004-01-01

    VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF(120), VEGF(164), and VEGF(188) isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF(164) or only VEGF(188) (in VEGF(188/188) mice) was sufficient for metaphyseal development. VEGF(188/188) mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF(188) isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF(188/188) mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF(188) isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation.

  10. Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor.

    PubMed

    Beckman, Sarah A; Chen, William C W; Tang, Ying; Proto, Jonathan D; Mlakar, Logan; Wang, Bing; Huard, Johnny

    2013-08-01

    We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZ-MDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF.

  11. Beneficial Effect of Mechanical Stimulation on the Regenerative Potential of Muscle-Derived Stem Cells Is Lost by Inhibiting Vascular Endothelial Growth Factor

    PubMed Central

    Beckman, Sarah A.; Chen, William C.W.; Tang, Ying; Proto, Jonathan D.; Mlakar, Logan; Wang, Bing; Huard, Johnny

    2016-01-01

    Objective We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. Approach and Results MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZMDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. Conclusions The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF. PMID:23723372

  12. Vitamin C down-regulates VEGF production in B16F10 murine melanoma cells via the suppression of p42/44 MAPK activation.

    PubMed

    Kim, Ha Na; Kim, Hyemin; Kong, Joo Myung; Bae, Seyeon; Kim, Yong Sung; Lee, Naeun; Cho, Byung Joo; Lee, Seung Koo; Kim, Hang-Rae; Hwang, Young-il; Kang, Jae Seung; Lee, Wang Jae

    2011-03-01

    It is known that vitamin C induces apoptosis in several kinds of tumor cells, but its effect on the regulation of the angiogenic process of tumors is not completely studied. Vascular endothelial growth factor (VEGF) is the most well-known angiogenic factor, and it has a potent function as a stimulator of endothelial survival, migration, as well as vascular permeability. Therefore, we have investigated whether vitamin C can regulate the angiogenic process through the modulation of VEGF production from B16F10 melanoma cells. VEGF mRNA expression and VEGF production at protein levels were suppressed by vitamin C. In addition, we found that vitamin C suppressed the expression of cyclooxygenase (COX)-2 and that decreased VEGF production by vitamin C was also restored by the administration of prostaglandin E2 which is a product of COX-2. These results suggest that vitamin C suppresses VEGF expression via the regulation of COX-2 expression. Mitogen-activated protein kinases are generally known as key mediators in the signaling pathway for VEGF production. In the presence of vitamin C, the activation of p42/44 MAPK was completely inhibited. Taken together, our data suggest that vitamin C can down-regulate VEGF production via the modulation of COX-2 expression and that p42/44 MAPK acts as an important signaling mediator in this process. Copyright © 2010 Wiley-Liss, Inc.

  13. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1

    PubMed Central

    Qin, Liuliang; Zhao, Dezheng; Xu, Jianfeng; Ren, Xianghui; Terwilliger, Ernest F.; Parangi, Sareh; Lawler, Jack; Dvorak, Harold F.

    2013-01-01

    Angiogenesis plays an important role in cancer and in many other human diseases. Vascular endothelial growth factor-A (VEGF-A), the best known angiogenic factor, was originally discovered as a potent vascular permeability factor (VPF), suggesting that other vascular permeabilizing agents, such as histamine and serotonin, might also have angiogenic activity. We recently demonstrated that, like VEGF-A, histamine and serotonin up-regulate the orphan nuclear receptor and transcription factor TR3 (mouse homolog Nur77) and that TR3/Nur77 is essential for their vascular permeabilizing activities. We now report that histamine and serotonin are also angiogenic factors that, at low micromolar concentrations, induce endothelial cell proliferation, migration and tube formation in vitro, and angiogenesis in vivo. All of these responses are mediated through specific histamine and serotonin receptors, are independent of VEGF-A, and are directly dependent on TR3/Nur77. Initially, the angiogenic response closely resembled that induced by VEGF-A, with generation of “mother” vessels. However, after ∼10 days, mother vessels began to regress as histamine and serotonin, unlike VEGF-A, up-regulated the potent angiogenesis inhibitor thrombospondin-1, thereby triggering a negative feedback loop. Thus, histamine and serotonin induce an angiogenic response that fits the time scale of acute inflammation. PMID:23315169

  14. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network.

    PubMed

    Fish, Jason E; Cantu Gutierrez, Manuel; Dang, Lan T; Khyzha, Nadiya; Chen, Zhiqi; Veitch, Shawn; Cheng, Henry S; Khor, Melvin; Antounians, Lina; Njock, Makon-Sébastien; Boudreau, Emilie; Herman, Alexander M; Rhyner, Alexander M; Ruiz, Oscar E; Eisenhoffer, George T; Medina-Rivera, Alejandra; Wilson, Michael D; Wythe, Joshua D

    2017-07-01

    The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis. © 2017. Published by The Company of Biologists Ltd.

  15. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis

    PubMed Central

    Zhang, Fan; Tang, Zhongshu; Hou, Xu; Lennartsson, Johan; Li, Yang; Koch, Alexander W.; Scotney, Pierre; Lee, Chunsik; Arjunan, Pachiappan; Dong, Lijin; Kumar, Anil; Rissanen, Tuomas T.; Wang, Bin; Nagai, Nobuo; Fons, Pierre; Fariss, Robert; Zhang, Yongqing; Wawrousek, Eric; Tansey, Ginger; Raber, James; Fong, Guo-Hua; Ding, Hao; Greenberg, David A.; Becker, Kevin G.; Herbert, Jean-Marc; Nash, Andrew; Yla-Herttuala, Seppo; Cao, Yihai; Watts, Ryan J.; Li, Xuri

    2009-01-01

    VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a “survival,” rather than an “angiogenic” factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases. PMID:19369214

  16. Aqueous Humor Levels of Different Interleukins 1-β, 2, 6 and 10, Tumor Necrosis Factor-α and Vascular Endothelial Growth Factor in Uveitis Treated with Adalimumab

    PubMed Central

    Hernández Garfella, María Luisa; Palomares Fort, Paula; Román Ivorra, José Andrés; Cervera Taulet, Enrique

    2015-01-01

    Purpose: To assess changes in aqueous humor levels of different interleukins (IL), tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) in patients with uveitis treated with adalimumab. Methods: In this study, 24 aqueous humor samples including 12 pre- and post-treatment samples from 6 patients with uveitis treated with subcutaneous adalimumab and 12 samples from patients with cataracts (serving as controls) were evaluated. The levels of IL-1β, IL-2, IL-6, IL-10, TNF-α and VEGF were measured using a Luminex® 200™ flow cytometer (Merckmillipore, Merck KGaA, Darmstadt, Alemania) and a highly sensitive ELISA system. Results: The levels of IL-1β, IL-2, IL-6 and IL-10 in the aqueous humor before and after treatment with adalimumab did not show significant differences. Aqueous VEGF levels significantly reduced after treatment with adalimumab (P = 0.028). Aqueous TNF-α levels did not significantly change after treatment with adalimumab, however the post-treatment level was significantly higher in patients as compared to control subjects (P = 0.032). IL-2 showed significantly higher levels in uveitis patients before treatment as compared to controls (P = 0.024), while its post-treatment levels were almost normalized. Conclusion: Decrease in the aqueous humor levels of VEGF and IL-2 after treatment with systemic adalimumab indicates that anti-TNF-α therapy induces modifications of some inflammatory mediators involved in the pathogenesis of uveitis. Aqueous humor samples may be useful to assess the effect of adalimumab on intraocular inflammation through measurement of cytokines. PMID:26005553

  17. Angiotensin II Evokes Angiogenic Signals within Skeletal Muscle through Co-ordinated Effects on Skeletal Myocytes and Endothelial Cells

    PubMed Central

    Gorman, Jennifer L.; Liu, Sammy T. K.; Slopack, Dara; Shariati, Khashayar; Hasanee, Adam; Olenich, Sara; Olfert, I. Mark; Haas, Tara L.

    2014-01-01

    Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced angiogenesis, indicating that AT1-independent signals maintain VEGF production in losartan-treated muscle. PMID:24416421

  18. SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer

    PubMed Central

    Wang, Chu-An; Jedlicka, Paul; Patrick, Aaron N.; Micalizzi, Douglas S.; Lemmer, Kimberly C.; Deitsch, Erin; Casás-Selves, Matias; Harrell, J. Chuck; Ford, Heide L.

    2012-01-01

    An association between lymph node metastasis and poor prognosis in breast cancer was observed decades ago. However, the mechanisms by which tumor cells infiltrate the lymphatic system are not completely understood. Recently, it has been proposed that the lymphatic system has an active role in metastatic dissemination and that tumor-secreted growth factors stimulate lymphangiogenesis. We therefore investigated whether SIX1, a homeodomain-containing transcription factor previously associated in breast cancer with lymph node positivity, was involved in lymphangiogenesis and lymphatic metastasis. In a model in which human breast cancer cells were injected into immune-compromised mice, we found that SIX1 expression promoted peritumoral and intratumoral lymphangiogenesis, lymphatic invasion, and distant metastasis of breast cancer cells. SIX1 induced transcription of the prolymphangiogenic factor VEGF-C, and this was required for lymphangiogenesis and lymphatic metastasis. Using a mouse mammary carcinoma model, we found that VEGF-C was not sufficient to mediate all the metastatic effects of SIX1, indicating that SIX1 acts through additional, VEGF-C–independent pathways. Finally, we verified the clinical significance of this prometastatic SIX1/VEGF-C axis by demonstrating coexpression of SIX1 and VEGF-C in human breast cancer. These data define a critical role for SIX1 in lymphatic dissemination of breast cancer cells, providing a direct mechanistic explanation for how VEGF-C expression is upregulated in breast cancer, resulting in lymphangiogenesis and metastasis. PMID:22466647

  19. Effect of systemic piracetam treatment on flap survival and vascular endothelial growth factor expression after ischemia-reperfusion injury.

    PubMed

    Tuncer, Serhan; Ayhan, Suhan; Findikcioglu, Kemal; Ergun, Hakan; Tuncer, Ilhan

    2011-09-01

    The effects of piracetam on flap survival, ischemia-reperfusion (I/R) injury, and vascular endothelial growth factor (VEGF) expression were evaluated in this study. Unipedicled epigastric flap model was used in 36 rats and was evaluated within 4 groups. The flap was elevated and untreated in Group 1. Postoperative piracetam treatment was given for 7 days in Group 2. In Group 3, 4 hours of ischemia and 2 hours of reperfusion were applied. I/R was applied to Group 4 and piracetam was given 30 minutes before reperfusion and postoperatively for 7 days. Laser Doppler flowmetry was used to measure blood flow changes. VEGF expression was determined using immunohistochemical methods on tissue samples taken after the completion of 2 hours reperfusion in groups 3 and 4. Flap necrosis was measured on the day 7 in all groups. Blood flow rates did not show significant difference between piracetam treated and untreated I/R groups. Piracetam significantly reduced necrosis area both in ischemic and nonischemic flaps ( P < 0.05). VEGF expression was significantly increased in piracetam-treated Group 4 compared with Group 3 ( P = 0.005). This experimental study demonstrates that systemic piracetam treatment improves survival of pedicled flaps, reduces necrosis amounts, and increases VEGF expression in I/R induced flaps. © Thieme Medical Publishers.

  20. Phenotypic and Gene Expression Modification with Normal Brain Aging in GFAP-Positive Astrocytes and Neural Stem Cells

    PubMed Central

    Bernal, Giovanna M.; Peterson, Daniel A.

    2011-01-01

    Summary Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche, and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked if a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in gene expression of GFAP, VEGF and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits neural stem cell and progenitor cell maintenance and contributes to decreased neurogenesis. PMID:21385309

  1. Effect of peritoneal dialysis on expression of vascular endothelial growth factor, basic fibroblast growth factor and endostatin of the peritoneum in peritoneal dialysis patients.

    PubMed

    Gao, Dan; Zhao, Zhan-Zheng; Liang, Xian-Hui; Li, Yan; Cao, Ying; Liu, Zhang-Suo

    2011-11-01

    The aim of this study is to investigate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endostatin (ES) in human peritoneum and investigate the relationship between them and peritoneum neoangiogensis in the patients with uraemia and peritoneal dialysis (PD). Peritoneal biopsies were obtained from normal subjects (n = 8), uraemic predialysis patients (n = 12) and PD patients (n = 10). The mRNA expression of VEGF, bFGF and ES in peritoneal tissues were measured through real-time polymerase chain reaction. The protein expression of VEGF, bFGF and ES in peritoneal tissues were determined through western blot. Microvessel density (MVD) of peritoneal tissue was assessed using immunohistochemistry with CD34 monoclonal antibody. The mRNA and protein of VEGF, bFGF and ES were expressed in all peritoneal samples. Compared with the normal control group, the mRNA and protein expression of VEGF and bFGF in peritoneal tissues were all significantly upregulated in the uraemic predialysis and PD group (all P < 0.05). Compared with the normal control group, the protein expression of ES were significantly upregulated in the uraemic predialysis and PD group (all (P < 0.05), but the mRNA expression of ES did not have obvious differences in the uraemic predialysis and PD group as compared to the normal control group (P > 0.05). MVD of peritoneal tissue were increased in the uraemic predialysis and PD group compared with the normal group (all P < 0.05). A significant positive correlation was found between VEGF mRNA expression and MVD, bFGF mRNA expression and MVD. The mRNA expression of VEGF and bFGF, the protein expression of VEGF, bFGF, and ES and microvessel density (MVD) are increased both in the uraemic predialysis and PD patients. These results show that uraemia circumstances and non-physiological compatibility of peritoneal dialysis solution might increase VEGF, bFGF and ES expression and MVD, which might participate in the increment of the peritoneum neoangiogensis and ultrafiltration failure in PD patients. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.

  2. Vascular Endothelial Growth Factor Augments Arginine Transport and Nitric Oxide Generation via a KDR Receptor Signaling Pathway.

    PubMed

    Shashar, Moshe; Chernichovski, Tamara; Pasvolsky, Oren; Levi, Sharon; Grupper, Ayelet; Hershkovitz, Rami; Weinstein, Talia; Schwartz, Idit F

    2017-01-01

    Vascular endothelial growth factor (VEGF) is an endothelium-specific peptide that stimulates angiogenesis via two receptor tyrosine kinases, Flt-1 and KDR. Endothelial nitric oxide synthase (eNOS) plays a major role in VEGF signaling. Delivery of arginine to membrane bound eNOS by the cationic amino acid transporter-1 (CAT-1) has been shown to modulate eNOS activity. The current studies were designed to test the hypothesis that VEGF enhances eNOS activity via modulation of arginine transport by CAT-1. Using radio-labeled arginine, {[3H] L-arginine} uptake was determined in human umbilical vein endothelial cells (HUVEC) following incubation with VEGF with and without silencing the VEGF receptors Flt-1 or KDR. Subsequently, western blotting for CAT-1, PKCα, ERK 1/2, JNK, and their phosphorylated forms were performed. NO generation was measured by the Griess reaction. VEGF (50 and 100 ng/ml) significantly augmented endothelial arginine transport in a time dependent manner, an effect which was prevented by Sunitinib (2 µM), a multi targeted receptor tyrosine kinase inhibitor. The increase in arginine transport velocities by VEGF was not affected by silencing Flt-1 while silencing KDR abrogated VEGF effect. Furthermore, incubating cells with 50 and 100 ng of VEGF for 30 minutes significantly augmented CAT-1 abundance. The expression of PKC-α, JNK, and ERK1/2 and their phosphorylated forms were unchanged following incubation of HUVEC with VEGF. The concentration of NO2/NO3 following incubation with VEGF was significantly higher than from untreated cells. This increase was significantly attenuated by silencing KDR. VEGF increases arginine transport via modulation of CAT-1 in endothelial cells. This effect is exclusively dependent on KDR rather than Flt-1. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes

    PubMed Central

    Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L.

    2011-01-01

    Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease. PMID:22174951

  4. Endocrine disruptors and human reproductive failure: the in vitro effect of phthalates on human luteal cells.

    PubMed

    Romani, Federica; Tropea, Anna; Scarinci, Elisa; Federico, Alex; Dello Russo, Cinzia; Lisi, Lucia; Catino, Stefania; Lanzone, Antonio; Apa, Rosanna

    2014-09-01

    To evaluate the influence of phthalates on human luteal cell function. Laboratory study. University hospital. Twenty-three normally menstruating patients in the midluteal phase. Human luteal cells isolated from corpora lutea for primary cultures. Progesterone (P4) and prostaglandin release assayed by enzyme immunoassay, vascular endothelial growth factor (VEGF) secretion by enzyme-linked immunosorbent assay (ELISA), and VEGF mRNA expression by real-time polymerase chain reaction. We investigated the effect of di(2-ethylhexyl)phthalate (DEHP), di-n-butyl phthalate (DBP), and butyl benzyl phthalate (BBP) on basal and hCG-induced progesterone (P4) release, as well as DEHP effect on the balance between prostaglandin (PG) E2, vascular endothelial growth factor (VEGF)-luteotrophic factors, and the luteolitic PGF2α in isolated human steroidogenc cells. Phthalates influence on VEGF expression has been also evaluated. DEHP, DBP, and BBP were able to reduce both basal and hCG-stimulated P4 as well as PGE2 release. PGF2α release was reduced after DEHP incubation. VEGF protein release was decreased by the incubation with the tested phthalates. VEGF mRNA expression was not affected by DEHP, DBP, and BBP. As expected, both hCG and cobalt chloride were able to induce P4 release and VEGF release and mRNA expression in human luteal cells respectively. The results show the ability of phthalates to affect luteal steroidogenesis as well as the balance between luteotrophic and luteolytic factors suggesting an interference of phthalates in human luteal function. These data may contribute to clarify the classically known impaired reproductive health observed after phthalates exposure. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Impact of continuous positive airway pressure on vascular endothelial growth factor in patients with obstructive sleep apnea: a meta-analysis.

    PubMed

    Qi, Jia-Chao; Zhang, LiangJi; Li, Hao; Zeng, Huixue; Ye, Yuming; Wang, Tiezhu; Wu, Qiyin; Chen, Lida; Xu, Qiaozhen; Zheng, Yifeng; Huang, Yaping; Lin, Li

    2018-04-18

    Cumulative evidence supports the clear relationship of obstructive sleep apnea (OSA) with cardiovascular disease (CVD). And, adherence to continuous positive airway pressure (CPAP) treatment alleviates the risk of CVD in subjects with OSA. Vascular endothelial growth factor (VEGF), a potent angiogenic cytokine regulated by hypoxia-inducible factor, stimulates the progression of CVD. Thus, whether treatment with CPAP can actually decrease VEGF in patients with OSA remains inconclusive. The purpose of the present study was to quantitatively evaluate the impact of CPAP therapy on VEGF levels in OSA patients. We systematically searched Web of Science, Cochrane Library, PubMed, and Embase databases that examined the impact of CPAP on VEGF levels in OSA patients prior to May 1, 2017. Related searching terms were "sleep apnea, obstructive," "sleep disordered breathing," "continuous positive airway pressure," "positive airway pressure," and "vascular endothelial growth factor." We used standardized mean difference (SMD) to analyze the summary estimates for CPAP therapy. Six studies involving 392 patients were eligible for the meta-analysis. Meta-analysis of the pooled effect showed that levels of VEGF were significantly decreased in patients with OSA before and after CPAP treatment (SMD = - 0.440, 95% confidence interval (CI) = - 0.684 to - 0.196, z = 3.53, p = 0.000). Further, results demonstrated that differences in age, body mass index, apnea-hypopnea index, CPAP therapy duration, sample size, and racial differences also affected CPAP efficacy. Improved endothelial function measured by VEGF may be associated with CPAP therapy in OSA patients. The use of VEGF levels may be clinically important in evaluating CVD for OSA patients. Further large-scale, well-designed long-term interventional investigations are needed to clarify this issue.

  6. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF) and Her-2 Protein in the Genesis of Cervical Carcinoma.

    PubMed

    Rahmani, Arshad H; Babiker, Ali Yousif; Alsahli, Mohammed A; Almatroodi, Saleh A; Husain, Nazik Elmalaika O S

    2018-02-15

    Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p < 0.05). However, no significant difference in the expression pattern of VEGF protein was observed among the different grades and stages of tumours (p > 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p < 0.05). The expression level of Her-2 protein was not correlated with the stage of a tumour (p > 0.05). The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.

  7. Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation.

    PubMed

    Yan, Dan; He, Yujuan; Dai, Jun; Yang, Lili; Wang, Xiaoyan; Ruan, Qiurong

    2017-06-30

    Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF 165 ) displayed a high capability to alter their phenotype and function into ELCs in vitro Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation. © 2017 The Author(s).

  8. Decursin inhibits VEGF-mediated inner blood-retinal barrier breakdown by suppression of VEGFR-2 activation.

    PubMed

    Kim, Jin Hyoung; Kim, Jeong Hun; Lee, You Mie; Ahn, Eun-Mi; Kim, Kyu-Won; Yu, Young Suk

    2009-09-01

    The blood-retinal barrier (BRB) is essential for the normal structural and functional integrity of the retina, whose breakdown could cause the serious vision loss. Vascular endothelial growth factor (VEGF), as a permeable factor, induces alteration of tight junction proteins to result in BRB breakdown. Herein, we demonstrated that decursin inhibits VEGF-mediated inner BRB breakdown through suppression of VEGFR-2 signaling pathway. In retinal endothelial cells, decursin inhibited VEGF-mediated hyperpermeability. Decursin prevented VEGF-mediated loss of tight junction proteins including zonula occludens-1 (ZO-1), ZO-2, and occludin in retinal endothelial cells, which was also supported by restoration of tight junction proteins in intercellular junction. In addition, decursin significantly inhibited VEGF-mediated vascular leakage from retinal vessels, which was accompanied by prevention of loss of tight junction proteins in retinal vessels. Decursin significantly suppressed VEGF-induced VEGFR-2 phosphrylation that consequently led to inhibition of extracellular signal-regulated kinase (ERK) 1/2 activation. Moreover, decursin induced no cytotoxicity to retinal endothelial cells and no retinal toxicity under therapeutic concentrations. Therefore, our results suggest that decursin prevents VEGF-mediated BRB breakdown through blocking of loss of tight junction proteins, which might be regulated by suppression of VEGFR-2 activation. As a novel inhibitor to BRB breakdown, decursin could be applied to variable retinopathies with BRB breakdown.

  9. Angiogenesis after sintered bone implantation in rat parietal bone.

    PubMed

    Ohtsubo, S; Matsuda, M; Takekawa, M

    2003-01-01

    We studied the effect of bone substitutes on revascularization and the restart of blood supply after sintered bone implantation in comparison with synthetic hydroxyapatite implantation and fresh autogenous bone transplantation (control) in rat parietal bones. Methods for the study included the microvascular corrosion cast method and immunohistochemical techniques were also used. The revascularization of the control group was the same as that for usual wound healing in the observations of the microvascular corrosion casts. The sintered bone implantation group was quite similar to that of the control group. In the synthetic hydroxyapatite group, immature newly-formed blood vessels existed even on the 21st day after implantation and the physiological process of angiogenesis was interrupted. Immunohistochemically, vascular endothelial growth factor (VEGF), which activates angiogenesis, appeared at the early stages of both the control group and the sintered bone implantation group. VEGF reduced parallel with the appearance of the transforming growth factor factor-beta-1 (TGF-beta-1), which obstructs angiogenesis, and the angiogenesis passed gradually into the mature stage. In the hydroxyapatite implantation group, TGF-beta-1 appeared at the early stage of the implants. The appearance of VEGF lagged and it existed around the pores of hydroxyapatite even on the 21st day of the implantation. Proliferation and wandering of endothelial cells continued without any maturing of the vessels. These findings suggest that the structure and the components of the implant material affect angiogenesis after implantation as well as new bone formation.

  10. Inositol Polyphosphate Multikinase Inhibits Angiogenesis via Inositol Pentakisphosphate-Induced HIF-1α Degradation.

    PubMed

    Fu, Chenglai; Tyagi, Richa; Chin, Alfred C; Rojas, Tomas; Li, Ruo-Jing; Guha, Prasun; Bernstein, Isaac A; Rao, Feng; Xu, Risheng; Cha, Jiyoung Y; Xu, Jing; Snowman, Adele M; Semenza, Gregg L; Snyder, Solomon H

    2018-02-02

    Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. We have investigated the role of IPMK in regulating angiogenesis. Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α. © 2017 American Heart Association, Inc.

  11. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling

    USDA-ARS?s Scientific Manuscript database

    VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...

  12. From the discovery of vascular endothelial growth factor to the introduction of avastin in clinical trials - an interview with Napoleone Ferrara by Domenico Ribatti.

    PubMed

    Ferrara, Napoleone

    2011-01-01

    Napoleone Ferrara and his colleagues at Genentech were the first to isolate and clone vascular endothelial growth factor (VEGF) in 1989. His laboratory has investigated many aspects of VEGF biochemistry and molecular biology. In 1993, Ferrara reported that inhibition of VEGF-induced angiogenesis by specific monoclonal antibodies resulted in dramatic suppression of the growth of a variety of tumors in vivo. These findings provided an important evidence that inhibition of angiogenesis may suppress tumor growth and blocking VEGF action could have therapeutic value for a variety of malignancies. A further development was the design in a rational fashion in 1997 of a humanized anti-VEGF monoclonal antibody (Avastin), now in clinical trials as a treatment for several solid tumors and also outside of cancer, in the treatment of age-related macular degeneration (AMD). Ferrara's work is revolutionizing quality of life for many of the estimated 1.2 million individuals in the US who have wet AMD. Upwards of a million AMD patients worldwide have already received anti-VEGF antibody therapy.

  13. Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TF1 progenitor cell line.

    PubMed

    Coppola, S; Narciso, L; Feccia, T; Bonci, D; Calabrò, L; Morsilli, O; Gabbianelli, M; De Maria, R; Testa, U; Peschle, C

    2006-01-01

    Vascular endothelial growth factor (VEGF) receptor-2/kinase insert domain-containing receptor (KDR) is expressed in primitive hematopoietic cells, in megakaryocytes and platelets. In primitive hematopoiesis KDR mediates cell survival via autocrine VEGF, while its effect on cell growth and differentiation has not been elucidated. We induced enforced KDR expression in the granulocyte macrophage-colony-stimulating factor (GM-CSF)-dependent TF1 progenitor cell line (TF1-KDR), treated the cells with VEGF and analyzed their response. In GM-CSF-deprived cells, VEGF induces cell proliferation and protection against apoptosis, followed by enhanced expression of megakaryocytic (MK) markers. Combined with GM-CSF, VEGF induces a mild proliferative stimulus, followed by cell adherence, accumulation in G0/G1, massive MK differentiation and Fas-mediated apoptosis. Accordingly, we observed that MK-differentiating cells, derived from hematopoietic progenitors, produce VEGF, express KDR, inhibition of which reduces MK differentiation, indicating a key role of KDR in megakaryopoiesis. In conclusion, TF1-KDR cells provide a reliable model to investigate the biochemical and molecular mechanisms underlying hematopoietic progenitor proliferation, survival and MK differentiation.

  14. In vitro therapeutic effect of PDT combined with VEGF-A gene therapy

    NASA Astrophysics Data System (ADS)

    Lecaros, Rumwald Leo G.; Huang, Leaf; Hsu, Yih-Chih

    2014-02-01

    Vascular endothelial growth factor A (VEGF-A), commonly known as VEGF, is one of the primary factors that affect tumor angiogenesis. It was found to be expressed in cancer cell lines including oral squamous cell carcinoma. Photodynamic therapy (PDT) is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates oxygen-independent hypoxic conditions to tumor. Another emerging treatment to cure cancer is the use of interference RNA (e.g. siRNA) to silence a specific mRNA sequence. VEGF-A was found to be expressed in oral squamous cell carcinoma and overexpressed after 24 hour post-PDT by Western blot analysis. Cell viability was found to decrease at 25 nM of transfected VEGF-A siRNA. In vitro combined therapy of PDT and VEGF-A siRNA showed better response as compared with PDT and gene therapy alone. The results suggest that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  15. Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair

    PubMed Central

    Liu, Zhengni; Feng, Xueyi; Wang, Huichun; Ma, Jun; Liu, Wei; Cui, Daxiang; Gu, Yan; Tang, Rui

    2014-01-01

    Insufficient early vascularization in biological meshes, resulting in limited host tissue incorporation, is thought to be the primary cause for the failure of abdominal wall defect repair after implantation. The sustained release of exogenous angiogenic factors from a biocompatible nanomaterial might be a way to overcome this limitation. In the study reported here, multiwalled carbon nanotubes (MWNT) were functionalized by plasma polymerization to deliver vascular endothelial growth factor165 (VEGF165). The novel VEGF165-controlled released system was incorporated into porcine small intestinal submucosa (PSIS) to construct a composite scaffold. Scaffolds incorporating varying amounts of VEGF165-loaded functionalized MWNT were characterized in vitro. At 5 weight percent MWNT, the scaffolds exhibited optimal properties and were implanted in rats to repair abdominal wall defects. PSIS scaffolds incorporating VEGF165-loaded MWNT (VEGF–MWNT–PSIS) contributed to early vascularization from 2–12 weeks postimplantation and obtained more effective collagen deposition and exhibited improved tensile strength at 24 weeks postimplantation compared to PSIS or PSIS scaffolds, incorporating MWNT without VEGF165 loading (MWNT–PSIS). PMID:24648727

  16. Activation of platelet-rich plasma using soluble type I collagen.

    PubMed

    Fufa, Duretti; Shealy, Blake; Jacobson, May; Kevy, Sherwin; Murray, Martha M

    2008-04-01

    Platelet-rich plasma (PRP) has recently been found to be a useful delivery system for growth factors important to oral tissue healing. But application of PRP in a liquid form to a wound site within the oral cavity can be complicated by significant loss of the PRP into the surrounding oral space unless gelation through the clotting mechanism is accomplished. Gelation is currently accomplished using bovine thrombin; however, rare but serious complications of this method have led to the search for alternative clotting mechanisms, including the use of soluble collagen as a clotting activator. In this work, our hypothesis was that soluble type I collagen would be as effective as bovine thrombin in causing clotting of the PRP and stimulating growth factor release from the platelets and granulocytes. PRP from human donors was clotted using type I collagen or bovine thrombin. Clot retraction was determined by measuring clot diameters over time. The release of platelet-derived growth factor (PDGF)-AB, transforming growth factor (TGF)-beta1, and vascular endothelial growth factor (VEGF) from both types of clots was measured over 10 days using enzyme-linked immunosorbent assasy. Clots formed using type I collagen exhibited far less retraction than those formed with bovine thrombin. Bovine thrombin and type I collagen stimulated similar release of PDGF-AB and VEGF between 1 and 10 days; however, thrombin activation resulted in a greater release of TGF-beta1 during the first 5 days after activation. The use of type I collagen to activate clotting of PRP may be a safe and effective alternative to bovine thrombin. The use of collagen results in less clot retraction and equal release of PDGF-AB and VEGF compared with currently available methods of clot activation.

  17. Molecular dynamics-based model of VEGF-A and its heparin interactions.

    PubMed

    Uciechowska-Kaczmarzyk, Urszula; Babik, Sándor; Zsila, Ferenc; Bojarski, Krzysztof Kamil; Beke-Somfai, Tamás; Samsonov, Sergey A

    2018-06-01

    We present a computational model of the Vascular Endothelial Growth Factor (VEGF), an important regulator of blood vessels formation, which function is affected by its heparin interactions. Although structures of a receptor binding (RBD) and a heparin binding domain (HBD) of VEGF are known, there are structural data neither on the 12 amino acids interdomain linker nor on its complexes with heparin. We apply molecular docking and molecular dynamics techniques combined with circular dichroism spectroscopy to model the full structure of the dimeric VEGF and to propose putative molecular mechanisms underlying the function of VEGF/VEGF receptors/heparin system. We show that both the conformational flexibility of the linker and the formation of HBD-heparin-HBD sandwich-like structures regulate the mutual disposition of HBDs and so affect the VEGF-mediated signalling. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A novel antiangiogenic peptide derived from hepatocyte growth factor inhibits neovascularization in vitro and in vivo

    PubMed Central

    Xu, Yi; Zhao, Hui; Zheng, Ying; Gu, Qing; Ma, Jianxing

    2010-01-01

    Purpose To study the antiangiogenic activity of two small peptides (H-RN and H-FT) derived from the hepatocyte growth factor kringle 1 domain (HGF K1) using in vitro and in vivo assays. Methods RF/6A rhesus macaque choroid-retina endothelial cells were used for in vitro studies. The inhibiting effect of two peptides on a vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration, and endothelial cell tube formation were investigated. For in vivo assays, the antiangiogenic activity of H-RN and H-FT in the chick chorioallantoic membrane model (CAM) and a mice oxygen-induced retinopathy model (OIR) were studied. A recombinant mouse VEGF-neutralizing antibody, bevacizumab, and a scrambled peptide were used as two control groups in separate studies. Results H-RN effectively inhibited VEGF-stimulated RF/6A cell proliferation, migration, and tube formation on Matrigel™, while H-FT did not. H-RN was also able to inhibit angiogenesis when applied to the CAM, and had antineovascularization activity in the retinal neovascularization of a mouse OIR model when administrated as an intravitreous injection. The antiangiogenic activity of H-RN was not as strong as that of VEGF antibodies. The H-FT and scrambled peptide had no such activity. Conclusions H-RN, a new peptide derived from the HGF K1 domain, was shown to have antiangiogenic activity in vitro and in vivo. It may lead to new potential drug discoveries and the development of new treatments for pathological retinal angiogenesis. PMID:21031024

  19. Clinical Importance of Angiogenic Cytokines, Fibrinolytic Activity and Effusion Size in Parapneumonic Effusions

    PubMed Central

    Chung, Chi-Li; Hsiao, Shih-Hsin; Hsiao, George; Sheu, Joen-Rong; Chen, Wei-Lin; Chang, Shi-Chuan

    2013-01-01

    Objective To investigate the relationship among angiogenic cytokines, fibrinolytic activity and effusion size in parapneumonic effusion (PPE) and their clinical importance. Methods From January 2008 through December 2010, 26 uncomplicated (UPPE) and 38 complicated (CPPE) PPE were studied. Based on chest ultrasonography, there were non-loculated in 30, uni-loculated in 12, and multi-loculated effusions in 22 patients. The effusion size radiological scores, and effusion vascular endothelial growth factor (VEGF), interleukin (IL)-8, plasminogen activator inhibitor type-1 (PAI-1) and tissue type plasminogen activator (tPA) were measured on admission. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results The effusion size and effusion VEGF, IL-8 and PAI-1/tPA ratio were significantly higher in CPPE than in UPPE, and significantly higher in multi-loculated PPE than in non-locualted and uni-loculated PPE, respectively. VEGF (cutoff value 1975 pg/ml) and IL-8 (cutoff value 1937 pg/ml) seemed best to discriminate between UPPE and CPPE. VEGF, IL-8 and effusion size correlated positively with PAI-1/tPA ratio in both UPPE and CPPE. Moreover, the level of VEGF, but not IL-8, correlated positively with effusion size in all patients (r = 0.79, p<0.001) and in UPPE (r = 0.64, p<0.001) and CPPE (r = 0.71, p<0.001) groups. The patients with higher VEGF or greater effusion were prone to have medical treatment failure (n = 10; VEGF, odds ratio 1.01, p = 0.02; effusion size, odds ratio 1.26, p = 0.01). Additionally, ten patients with RPT had larger effusion size and higher levels of VEGF and PAI-1/tPA ratio than did those without. Conclusions In PPE, VEGF and IL-8 levels are valuable to identify CPPE, and higher VEGF level or larger effusion is associated with decreased fibrinolytic activity, development of pleural loculation and fibrosis, and higher risk of medical treatment failure. PMID:23308155

  20. Effect of Antiprogesterone RU486 on VEGF Expression and Blood Vessel Remodeling on Ovarian Follicles before Ovulation

    PubMed Central

    Berardinelli, Paolo; Russo, Valentina; Bernabò, Nicola; Di Giacinto, Oriana; Mattioli, Mauro; Barboni, Barbara

    2014-01-01

    Background The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation. Aim This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration. Material and Methods Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. Results and Conclusions VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy. PMID:24756033

  1. Defect of Adaptation to Hypoxia in Patients With COPD Due to Reduction of Histone Deacetylase 7

    PubMed Central

    To, Masako; Yamamura, Satoshi; Akashi, Kenichi; Charron, Catherine E.; Barnes, Peter J.

    2012-01-01

    Background: Hypoxia inducible factor (HIF)-1 plays an important role in cellular adaptation to hypoxia by activating oxygen-regulated genes such as vascular endothelial growth factor (VEGF) and erythropoietin. Sputum VEGF levels are reported to be decreased in COPD, despite hypoxia. Here we show that patients with COPD fail to induce HIF-1α and VEGF under hypoxic condition because of a reduction in histone deacetylase (HDAC) 7. Methods: Peripheral blood mononuclear cells (PBMCs) were obtained from patients with moderate to severe COPD (n = 21), smokers without COPD (n = 12), and nonsmokers (n = 15). PBMCs were exposed to hypoxia (1% oxygen, 5% CO2, and 94% N2) for 24 h, and HIF-1α and HDAC7 protein expression in nuclear extracts were determined by sodium dodecyl sulfate poly acrylamide gel electrophoresis (SDS-PAGE)/Western blotting. Results: HIF-1α was significantly induced by hypoxia in each group when compared with the normoxic condition (12-fold induction in nonsmokers, 24-fold induction in smokers without COPD, fourfold induction in COPD), but induction of HIF-1α under hypoxia was significantly lower in patients with COPD than in nonsmokers and smokers without COPD (P < .05 and P < .01, respectively). VEGF messenger RNA detected by quantitative real-time polymerase chain reaction was correlated with HIF-1α protein in nuclei (r = 0.79, P < .05), and HDAC7 protein expression was correlated with HIF-1α protein in nuclei (r = 0.46, P < .05). HDAC7 knockdown inhibited hypoxia-induced HIF-1α activity in U937 cells, and HIF-1α nuclear translocation and HIF-1α binding to the VEGF promoter in A549 cells. Conclusions: HDAC7 reduction in COPD causes a defect of HIF-1α induction response to hypoxia with impaired VEGF gene expression. This poor cellular adaptation might play a role in the pathogenesis of COPD. PMID:22172637

  2. Therapeutic and prophylactic thalidomide in TNBS-induced colitis: Synergistic effects on TNF-α, IL-12 and VEGF production

    PubMed Central

    Carvalho, Ana Teresa; Souza, Heitor; Carneiro, Antonio Jose; Castelo-Branco, Morgana; Madi, Kalil; Schanaider, Alberto; Silva, Flavia; Pereira Jứnior, Fernando Antonio; Pereira, Márcia G; Tortori, Cláudio; Dines, Ilana; Carvalho, Jane; Rocha, Eduardo; Elia, Celeste

    2007-01-01

    AIM: To evaluated the therapeutic and prophylactic effect of thalidomide on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thalidomide has been reported to downregulate the expression of tumor necrosis factor α (TNF-α), IL-12, and vascular endothelial growth factor (VEGF), hallmarks of intestinal inflammation in Crohn’s disease (CD). METHODS: Male Wistar rats were divided in five groups of ten animals each. Four groups received a rectal infusion of TNBS in ethanol. The first group was sacrificed 7 d after colitis induction. The second and third groups received either thalidomide or placebo by gavage and were sacrificed at 14 d. The fourth group received thalidomide 6 h before TNBS administration, and was sacrificed 7 d after induction. The fifth group acted as the control group and colitis was not induced. Histological inflammatory scores of the colon were performed and lamina propria CD4+ T cells, macrophages, and VEGF+ cells were detected by immunohistochemistry. TNF-α and IL-12 were quantified in the supernatant of organ cultures by ELISA. RESULTS: Significant reduction in the inflammatory score and in the percentage of VEGF+ cells was observed in the group treated with thalidomide compared with animals not treated with thalidomide. Both TNF-α and IL-12 levels were significantly reduced among TNBS induced colitis animals treated with thalidomide compared with animals that did not receive thalidomide. TNF-α levels were also significantly reduced among the animals receiving thalidomide prophylaxis compared with untreated animals with TNBS-induced colitis. Intestinal levels of TNF-α and IL-12 were significantly correlated with the inflammatory score and the number of VEGF+ cells. CONCLUSION: Thalidomide significantly attenuates TNBS-induced colitis by inhibiting the intestinal production of TNF-α, IL-12, and VEGF. This effect may support the use of thalidomide as an alternate approach in selected patients with CD. PMID:17465495

  3. In Vivo Cardiac Cellular Reprogramming Efficacy Is Enhanced by Angiogenic Preconditioning of the Infarcted Myocardium With Vascular Endothelial Growth Factor

    PubMed Central

    Mathison, Megumi; P. Gersch, Robert; Nasser, Ahmed; Lilo, Sarit; Korman, Mallory; Fourman, Mitchell; Hackett, Neil; Shroyer, Kenneth; Yang, Jianchang; Ma, Yupo; Crystal, Ronald G.; Rosengart, Todd K.

    2012-01-01

    Background In situ cellular reprogramming offers the possibility of regenerating functional cardiomyocytes directly from scar fibroblasts, obviating the challenges of cell implantation. We hypothesized that pretreating scar with gene transfer of the angiogenic vascular endothelial growth factor (VEGF) would enhance the efficacy of this strategy. Methods and Results Gata4, Mef2c, and Tbx5 (GMT) administration via lentiviral transduction was demonstrated to transdifferentiate rat fibroblasts into (induced) cardiomyocytes in vitro by cardiomyocyte marker studies. Fisher 344 rats underwent coronary ligation and intramyocardial administration of an adenovirus encoding all 3 major isoforms of VEGF (AdVEGF‐All6A+) or an AdNull control vector (n=12/group). Lentivirus encoding GMT or a GFP control was administered to each animal 3 weeks later, followed by histologic and echocardiographic analyses. GMT administration reduced the extent of fibrosis by half compared with GFP controls (12±2% vs 24±3%, P<0.01) and reduced the number of myofibroblasts detected in the infarct zone by 4‐fold. GMT‐treated animals also demonstrated greater density of cardiomyocyte‐specific marker beta myosin heavy chain 7+ cells compared with animals receiving GFP with or without VEGF (P<0.01). Ejection fraction was significantly improved after GMT vs GFP administration (12±3% vs −7±3%, P<0.01). Eight (73%) GFP animals but no GMT animals demonstrated decreased ejection fraction during this interval (P<0.01). Also, improvement in ejection fraction was 4‐fold greater in GMT/VEGF vs GMT/null animals (17±2% vs 4±1%, P<0.05). Conclusions VEGF administration to infarcted myocardium enhances the efficacy of GMT‐mediated cellular reprogramming in improving myocardial function and reducing the extent of myocardial fibrosis compared with the use of GMT or VEGF alone. PMID:23316332

  4. Macrophage Migration Inhibitory Factor Stimulates Angiogenic Factor Expression and Correlates With Differentiation and Lymph Node Status in Patients With Esophageal Squamous Cell Carcinoma

    PubMed Central

    Ren, Yi; Law, Simon; Huang, Xin; Lee, Ping Yin; Bacher, Michael; Srivastava, Gopesh; Wong, John

    2005-01-01

    Objective: The objectives of this study were: 1) to examine the expression of macrophage migration inhibitory factor (MIF) in esophageal squamous cell carcinoma (ESCC); 2) to see if a relationship exists between MIF expression, clinicopathologic features, and long-term prognosis; and 3) to ascertain the possible biologic function of MIF in angiogenesis. Summary Background Data: MIF has been linked to fundamental processes such as those controlling cell proliferation, cell survival, angiogenesis, and tumor progression. Its role in ESCC, and the correlation of MIF expression and tumor pathologic features in patients, has not been elucidated. Methods: The expression of MIF in tumor and nontumor tissues was examined by immunohistochemical staining. Concentrations of MIF, vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) in patients’ sera and in the supernatant of tumor cells culture were examined by ELISA. Correlations with clinicopathologic factors were made. Results: In 72 patients with ESCC, intracellular MIF was overexpressed in esophagectomy specimens. The expression of MIF correlated with both tumor differentiation and lymph node status. The median survival in the low-MIF expression group (<50% positively stained cancer cells on immunohistochemistry) and high expression group (≥50% positively stained cancer cells) was 28.3 months and 15.8 months, respectively (P = 0.03). The 3-year survival rates for the 2 groups were 37.7% and 12.1%, respectively. MIF expression was related to microvessel density; increased MIF serum levels also correlated with higher serum levels of VEGF. In addition, in vitro MIF stimulation of esophageal cancer cell lines induced a dose-dependent increase in VEGF and IL-8 secretion. Conclusions: These results demonstrate, for the first time, that human esophageal carcinomas express and secrete large amounts of MIF. Through its effects on VEGF and IL-8, MIF may serve as an autocrine factor in angiogenesis and thus play an important role in the pathogenesis of ESCC. PMID:15973102

  5. Both high expression of pyruvate kinase M2 and vascular endothelial growth factor-C predicts poorer prognosis in human breast cancer.

    PubMed

    Lin, Yang; Liu, Fangfang; Fan, Yu; Qian, Xiaolong; Lang, Ronggang; Gu, Feng; Gu, Jun; Fu, Li

    2015-01-01

    Pyruvate kinase M2 (PKM2) and vascular endothelial growth factor-C (VEGF-C) have been known to play an important role in tumorigenesis and tumor progression in breast cancer. However, the association between PKM2 and VEGF-C in breast cancer remains unclear. In the present study, a total of 218 specimens from breast cancer patients and 26 paired breast tumors with adjacent normal tissues as well as two breast cancer cell lines were enrolled to investigate the correlation between PKM2 and VEGF-C. We found that PKM2 and VEGF-C mRNA levels were both significantly increasing in breast tumors compared with adjacent normal tissues. Knockdown of PKM2 mRNA expression resulted in VEGF-C mRNA and protein down-regulated as well as cell proliferation inhibited. A positive correlation between PKM2 and VEGF-C expression was identified by immunohistochemical analyses of 218 specimens of patients with breast cancer (P=0.023). PKM2 high expression was significantly correlated with histological grade (P=0.030), lymph node stage (P=0.001), besides VEGF-C high expression was significantly associated with lymphovascular invasion (P=0.012). While combined high expression of PKM2 and VEGF-C was found to be associated with worse histological grade, more lymph node metastasis, more lymphovascular invasion, shorter progression free survival (PFS), and poorer overall survival (OS) in human breast cancer. The results of the present study suggested that PKM2 expression was correlated with VEGF-C expression, and combination of PKM2 and VEGF-C levels had the better prognostic significance in predicting the poor outcome of patients with breast cancer.

  6. Associations of VEGF-C Genetic Polymorphisms with Urothelial Cell Carcinoma Susceptibility Differ between Smokers and Non-Smokers in Taiwan

    PubMed Central

    Tung, Min-Che; Hsieh, Ming-Ju; Wang, Shian-Shiang; Yang, Shun-Fa; Chen, Shiou-Sheng; Wang, Shih-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chien, Ming-Hsien

    2014-01-01

    Background Vascular endothelial growth factor (VEGF)-C is associated with lymphangiogenesis, pelvic regional lymph node metastasis, and an antiapoptotic phenotype in urothelial cell carcinoma (UCC). Knowledge of potential roles of VEGF-C genetic polymorphisms in susceptibility to UCC is lacking. This study was designed to examine associations between VEGF-C gene variants and UCC susceptibility and evaluate whether they are modified by smoking. Methodology/Principal Findings Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a TaqMan-based real-time polymerase chain reaction (PCR) in 233 patients with UCC and 520 cancer-free controls. A multivariate logistic regression was applied to model associations between genetic polymorphisms and UCC susceptibility, and to determine if the effect was modified by smoking. We found that after adjusting for other covariates, individuals within the entire population and the 476 non-smokers carrying at least one A allele at VEGF-C rs1485766 respectively had 1.742- and 1.834-fold risks of developing UCC than did wild-type (CC) carriers. Among the 277 smokers, we found that VEGF-C rs7664413 T (CT+TT) and rs2046463 G (AG+GG) allelic carriers were more prevalent in UCC patients than in non-cancer participants. Moreover, UCC patients with the smoking habit who had at least one T allele of VEGF-C rs7664413 were at higher risk of developing larger tumor sizes (p = 0.021), compared to those patients with CC homozygotes. Conclusions Our results suggest that the involvement of VEGF-C genotypes in UCC risk differs among smokers compared to non-smokers among Taiwanese. The genetic polymorphism of VEGF-C rs7664413 might be a predictive factor for the tumor size of UCC patients who have a smoking habit. PMID:24608123

  7. Associations of VEGF-C genetic polymorphisms with urothelial cell carcinoma susceptibility differ between smokers and non-smokers in Taiwan.

    PubMed

    Tung, Min-Che; Hsieh, Ming-Ju; Wang, Shian-Shiang; Yang, Shun-Fa; Chen, Shiou-Sheng; Wang, Shih-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chien, Ming-Hsien

    2014-01-01

    Vascular endothelial growth factor (VEGF)-C is associated with lymphangiogenesis, pelvic regional lymph node metastasis, and an antiapoptotic phenotype in urothelial cell carcinoma (UCC). Knowledge of potential roles of VEGF-C genetic polymorphisms in susceptibility to UCC is lacking. This study was designed to examine associations between VEGF-C gene variants and UCC susceptibility and evaluate whether they are modified by smoking. Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a TaqMan-based real-time polymerase chain reaction (PCR) in 233 patients with UCC and 520 cancer-free controls. A multivariate logistic regression was applied to model associations between genetic polymorphisms and UCC susceptibility, and to determine if the effect was modified by smoking. We found that after adjusting for other covariates, individuals within the entire population and the 476 non-smokers carrying at least one A allele at VEGF-C rs1485766 respectively had 1.742- and 1.834-fold risks of developing UCC than did wild-type (CC) carriers. Among the 277 smokers, we found that VEGF-C rs7664413 T (CT+TT) and rs2046463 G (AG+GG) allelic carriers were more prevalent in UCC patients than in non-cancer participants. Moreover, UCC patients with the smoking habit who had at least one T allele of VEGF-C rs7664413 were at higher risk of developing larger tumor sizes (p = 0.021), compared to those patients with CC homozygotes. Our results suggest that the involvement of VEGF-C genotypes in UCC risk differs among smokers compared to non-smokers among Taiwanese. The genetic polymorphism of VEGF-C rs7664413 might be a predictive factor for the tumor size of UCC patients who have a smoking habit.

  8. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    PubMed

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  9. Down-regulation of Jab1, HIF-1alpha, and VEGF by Moloney murine leukemia virus-ts1 infection: a possible cause of neurodegeneration.

    PubMed

    Lungu, Gina F; Stoica, George; Wong, Paul K Y

    2008-05-01

    Moloney murine leukemia virus-temperature sensitive (MoMuLV-ts1)-mediated neuronal death is a result of both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Here the authors propose vascular endothelial growth factor (VEGF) down-regulation as another contributory factor in neuronal degeneration induced by ts1 infection. To determine how ts1 affects VEGF expression in ts1-infected brain, the authors examined the expression of several proteins that are important in regulating the expression of VEGF. The authors found significant decreases in Jun-activating domain-binding protein 1 (Jab1), hypoxia-inducible factor (HIF)-1alpha, and VEGF levels and increases in p53 protein levels in ts1-infected brains compared to noninfected control brains. The authors suggest that a decrease Jab1 expression in ts1 infection leads to accumulation of p53, which binds to HIF-1alpha to accelerate its degradation. A rapid degradation of HIF-1alpha leads to decreased VEGF production and secretion. Considering that endothelial cells are the most conspicuous in virus replication and production in ts1 infection, but are not killed by the infection, the authors examined the expression of these proteins using infected and noninfected mouse cerebrovascular endothelial (CVE) cells. The ts1- infected CVE cells showed decreased Jab1, HIF-1alpha, and VEGF mRNA and protein levels and increased p53 protein levels compared with noninfected cells, consistent with the results found in vivo. These results confirm that ts1 infection results in insufficient secretion of VEGF from endothelial cells and may result in decreased neuroprotection. This study suggested that ts1-mediated neuropathology in mice may result from changes in expression and activity of Jab1, p53, and HIF-1alpha, with a final target on VEGF expression and neuronal degeneration.

  10. Resistive-Pulse Measurements with Nanopipettes: Detection of Vascular Endothelial Growth Factor C (VEGF-C) Using Antibody-Decorated Nanoparticles.

    PubMed

    Cai, Huijing; Wang, Yixian; Yu, Yun; Mirkin, Michael V; Bhakta, Snehasis; Bishop, Gregory W; Joshi, Amit A; Rusling, James F

    2015-06-16

    Quartz nanopipettes have recently been employed for resistive-pulse sensing of Au nanoparticles (AuNP) and nanoparticles with bound antibodies. The analytical signal in such experiments is the change in ionic current caused by the nanoparticle translocation through the pipette orifice. This paper describes resistive-pulse detection of cancer biomarker (Vascular Endothelial Growth Factor-C, VEGF-C) through the use of antibody-modified AuNPs and nanopipettes. The main challenge was to differentiate between AuNPs with attached antibodies for VEGF-C and antigen-conjugated particles. The zeta-potentials of these types of particles are not very different, and, therefore, carefully chosen pipettes with well-characterized geometry were necessary for selective detection of VEGF-C.

  11. Resistive-Pulse Measurements with Nanopipettes: Detection of Vascular Endothelial Growth Factor C (VEGF-C) Using Antibody-Decorated Nanoparticles

    PubMed Central

    Cai, Huijing; Wang, Yixian; Yu, Yun; Mirkin, Michael V.; Bhakta, Snehasis; Bishop, Gregory W.; Joshi, Amit A.; Rusling, James F.

    2015-01-01

    Quartz nanopipettes have recently been employed for resistive-pulse sensing of Au nanoparticles (AuNP) and nanoparticles with bound antibodies. The analytical signal in such experiments is the change in ionic current caused by the nanoparticle translocation through the pipette orifice. This paper describes resistive-pulse detection of cancer biomarker (Vascular Endothelial Growth Factor-C, VEGF-C) through the use of antibody-modified AuNPs and nanopipettes. The main challenge was to differentiate between AuNPs with attached antibodies for VEGF-C and antigen-conjugated particles. The zeta-potentials of these types of particles are not very different, and, therefore, carefully chosen pipettes with well-characterized geometry were necessary for selective detection of VEGF-C. PMID:26040997

  12. Constructing a blood vessel on the porous scaffold modified with vascular endothelial growth factor and basic fibroblast growth factor

    NASA Astrophysics Data System (ADS)

    Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-11-01

    Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.

  13. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis.

    PubMed

    Alitalo, Annamari K; Proulx, Steven T; Karaman, Sinem; Aebischer, David; Martino, Stefania; Jost, Manuela; Schneider, Nicole; Bry, Maija; Detmar, Michael

    2013-07-15

    VEGF-C and VEGF-D were identified as lymphangiogenic growth factors and later shown to promote tumor metastasis, but their effects on carcinogenesis are poorly understood. Here, we have studied the effects of VEGF-C and VEGF-D on tumor development in the murine multistep chemical carcinogenesis model of squamous cell carcinoma by using a soluble VEGF-C/VEGF-D inhibitor. After topical treatment with a tumor initiator and repeated tumor promoter applications, transgenic mice expressing a soluble VEGF-C/VEGF-D receptor (sVEGFR-3) in the skin developed significantly fewer squamous cell tumors with a delayed onset when compared with wild-type mice or mice expressing sVEGFR-3 lacking the ligand-binding site. Epidermal proliferation was reduced in the carcinogen-treated transgenic skin, whereas epidermal keratinocyte proliferation in vitro was not affected by VEGF-C or VEGF-D, indicating indirect effects of sVEGFR-3 expression. Importantly, transgenic mouse skin was less sensitive to tumor promoter-induced inflammation, with reduced angiogenesis and blood vessel leakage. Cutaneous leukocytes, especially macrophages, were reduced in transgenic skin without major changes in macrophage polarization or blood monocyte numbers. Several macrophage-associated cytokines were also reduced in transgenic papillomas, although the dermal macrophages themselves did not express VEGFR-3. These findings indicate that VEGF-C/VEGF-D are involved in shaping the inflammatory tumor microenvironment that regulates early tumor progression. Our results support the use of VEGF-C/VEGF-D-blocking agents not only to inhibit metastatic progression, but also during the early stages of tumor growth. ©2013 AACR.

  14. Luteal activity of pregnant rats with hypo-and hyperthyroidism

    PubMed Central

    2014-01-01

    Background Luteal activity is dependent on the interaction of various growth factors, cytokines and hormones, including the thyroid hormones, being that hypo- and hyperthyroidism alter the gestational period and are also a cause of miscarriage and stillbirth. Because of that, we evaluated the proliferation, apoptosis and expression of angiogenic factors and COX-2 in the corpus luteum of hypo- and hyperthyroid pregnant rats. Methods Seventy-two adult female rats were equally distributed into three groups: hypothyroid, hyperthyroid and control. Hypo- and hyperthyroidism were induced by the daily administration of propylthiouracil and L-thyroxine, respectively. The administration began five days before becoming pregnant and the animals were sacrificed at days 10, 14, and 19 of gestation. We performed an immunohistochemical analysis to evaluate the expression of CDC-47, VEGF, Flk-1 (VEGF receptor) and COX-2. Apoptosis was evaluated by the TUNEL assay. We assessed the gene expression of VEGF, Flk-1, caspase 3, COX-2 and PGF2α receptor using real time RT-PCR. The data were analyzed by SNK test. Results Hypothyroidism reduced COX-2 expression on day 10 and 19 (P < 0.05), endothelial/pericyte and luteal cell proliferation on day 10 and 14 (p < 0.05), apoptotic cell numbers on day 19 (p < 0.05) and the expression of Flk-1 and VEGF on day 14 and 19, respectively (p < 0.05). Hyperthyroidism increased the expression of COX-2 on day 19 (P < 0.05) and the proliferative activity of endothelial/pericytes cells on day 14 (p <0.05), as well as the expression of VEGF and Flk-1 on day 19 (P < 0.05). Conclusions Hypothyroidism reduces the proliferation, apoptosis and expression of angiogenic factors and COX-2in the corpus luteum of pregnant rats, contrary to what is observed in hyperthyroid animals, being this effect dependent of the gestational period. PMID:25298361

  15. The effect of platelet rich fibrin on growth factor levels in urethral repair.

    PubMed

    Soyer, Tutku; Ayva, Şebnem; Boybeyi, Özlem; Aslan, Mustafa Kemal; Çakmak, Murat

    2013-12-01

    Platelet rich fibrin (PRF) is an autologous source of growth factors and promotes wound healing. An experimental study was performed to evaluate the effect of PRF on growth factor levels in urethral repair. Eighteen Wistar albino rats were included in the study. Rats were allocated in three groups (n:6): control (CG), sham (SG), and PRF (PRFG). In SG, a 5 mm vertical incision was performed in the penile urethra and repaired with 10/0 Vicryl® under a microscope. In PRFG, during the urethral repair as described in SG, 1 cc of blood was sampled from each rat and centrifuged for 10 minutes at 2400 rpm. PRF obtained from the centrifugation was placed on the repair site during closure. Penile urethras were sampled 24 hours after PRF application in PRFG and after urethral repair in SG. Transforming growth factor beta receptor (TGF-β-R-CD105), vascular endothelial growth factor (VEGF) and its receptor (VEGF-R), as well as endothelial growth factor receptor (EGFR), were evaluated in subepithelia of the penile skin and urethra. Groups were compared for growth factor levels and growth factor receptor expression with the Kruskal Wallis test. TGF-β-R levels were significantly decreased in SG when compared to CG (p<0.05). In PRFG, TGF-β-R was increased in both subepithelia of penile skin and urethra with respect to SG (p<0.05). When VEGF levels and its receptor expression were compared between SG and PRFG, VEGF levels were found to be increased in penile skin subepithelium, whereas VEGF-R expressions were decreased in urethral subepithelia in PRFG (p<0.05). There was no difference between groups for EGFR levels (p>0.05). Use of PRF after urethral repair increases TGF-β-R and VEGF expressions in urethral tissue. PRF can be considered as an alternative measure to improve the success of urethral repair. © 2013.

  16. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering

    PubMed Central

    Nourse, Marilyn B.; Halpin, Daniel E.; Scatena, Marta; Mortisen, Derek J.; Tulloch, Nathaniel L.; Hauch, Kip D.; Torok-Storb, Beverly; Ratner, Buddy D.; Pabon, Lil; Murry, Charles E.

    2010-01-01

    Objective Human embryonic stem cells (hESCs) offer a sustainable source of endothelial cells for therapeutic vascularization and tissue engineering, but current techniques for generating these cells remain inefficient. We endeavored to induce and isolate functional endothelial cells from differentiating hESCs. Methods and Results To enhance endothelial cell differentiation above a baseline of ∼2% in embryoid body (EB) spontaneous differentiation, three alternate culture conditions were compared. Vascular endothelial growth factor (VEGF) treatment of EBs showed the best induction, with markedly increased expression of endothelial cell proteins CD31, VE-Cadherin, and von Willebrand Factor, but not the hematopoietic cell marker CD45. CD31 expression peaked around days 10-14. Continuous VEGF treatment resulted in a four- to five-fold enrichment of CD31+ cells but did not increase endothelial proliferation rates, suggesting a primary effect on differentiation. CD31+ cells purified from differentiating EBs upregulated ICAM-1 and VCAM-1 in response to TNFα, confirming their ability to function as endothelial cells. These cells also expressed multiple endothelial genes and formed lumenized vessels when seeded onto porous poly(2-hydroxyethyl methacrylate) scaffolds and implanted in vivo subcutaneously in athymic rats. Collagen gel constructs containing hESC-derived endothelial cells and implanted into infarcted nude rat hearts formed robust networks of patent vessels filled with host blood cells. Conclusions VEGF induces functional endothelial cells from hESCs independent of endothelial cell proliferation. These enrichment methods increase endothelial cell yield, enabling applications for revascularization as well as basic studies of human endothelial biology. We demonstrate the ability of hESC-derived endothelial cells to facilitate vascularization of tissue-engineered implants. PMID:19875721

  17. [Antitumor effect of recombinant T7 phage vaccine expressing xenogenic vascular endothelial growth factor on Lewis lung cancer in mice].

    PubMed

    Li, Xiao-Hui; Tang, Liang; Liu, Dong; Sun, Hong-Mei; Zhou, Cai-Cun; Tan, Li-Song; Wang, Li-Ping; Zhang, Pei-De; Zhang, Shang-Quan

    2006-10-01

    Angiogenesis plays an important role in growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is considered as a fundamental regulator for angiogenesis. This study was to construct a recombinant T7 phage vaccine expressing xenogenic VEGF on the capsid, and test its inhibitory effect on Lewis lung cancer cells in mice. VEGF gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR) from human lung cancer tissues, and inserted into phage using T7 Select10-3b kit to construct T7 Select10-3b_VEGF vaccine. The titer of prepared phage reached 1x10(13) pfu/ml. C57BL/6J mice were randomly divided into 3 groups: T7 Select10-3b_VEGF vaccine group (T7-VEGF), T7 phage (T7) group, normal saline (NS) group (10 mice/group). Each mouse was injected with Freundos adjuvant mixed with 1x10(12) pfu/200 microl T7 Select10-3b_VEGF, or T7, or normal saline once a week for 4 weeks. Lewis lung carcinoma model (LL/2) was established in C57BL/6J mice after 4-week immunization. Tumor growth and mouse's physical status were observed during immunization. Tumor weight and serum level of specific anti-VEGF antibody were measured by enzyme-linked immunosorbent assay (ELISA). Microvessel density (MVD) of tumors was detected by immunohistochemistry 14 days after the inoculation of tumor cells. Tumor weight of T7-VEGF vaccine group,T7 group, and NS group were (0.543+/-0.259)g, (0.982+/-0.359)g, (1.169+/-0.460)g, respectively. Tumor weight of T7-VEGF vaccine group was significantly lower than that of NS group (P<0.01). Serum anti-VEGF antibody level in T7-VEGF vaccine group was 1:1,000. MVD was significantly lower in T7-VEGF vaccine group than in NS group (8.5+/-0.8 vs 18.5+/-1.6, P<0.05). MVD in T7 group was 16.4+/-1.3. Recombinant T7 phage vaccine expressing xenogenic VEGF can break immunologic tolerance against self-VEGF and inhibit the growth of Lewis lung cancer cells.

  18. A case of angioimmunoblastic T-cell lymphoma with high serum VEGF preceded by RS3PE syndrome.

    PubMed

    Tabeya, Tetsuya; Sugaya, Toshiaki; Suzuki, Chisako; Yamamoto, Motohisa; Kanaseki, Takayuki; Noguchi, Hiroko; Naishiro, Yasuyoshi; Ishida, Tadao; Takahashi, Hiroki; Shinomura, Yasuhisa

    2016-01-01

    We report the case of a 76-year-old man diagnosed with angioimmunoblastic T-cell lymphoma (AITL) with high serum vascular endothelial growth factor (VEGF) preceded by Remitting seronegative symmetrical synovitis with pitting edema syndrome. He suffered respiratory discomfort caused by large amounts of pleural effusion. Interestingly, changes in serum VEGF measured over time were similar to changes in pleural effusion. Whether VEGF is related to the pathological condition of AITL is a very important question.

  19. Evaluation of serum and pleural levels of endostatin and vascular epithelial growth factor in lung cancer patients with pleural effusion.

    PubMed

    Zhang, Yu; Yu, Li-Ke; Xia, Ning

    2012-03-01

    To evaluate the diagnostic value of endostatin (ES), vascular endothelial growth factor (VEGF) and carcinoembryonic antigen (CEA) in both serum and pleural effusion of lung cancer patients. Levels of ES, VEGF and CEA in 52 malignant pleural effusion due to lung cancer and 50 patients with non-malignant disease were measured by using sandwich enzyme-linked immunosorbent assay and microparticle enzyme immunoassay. The ES, VEGF and CEA levels in pleural effusion and serum, and their ratio (F/S) were higher in lung cancer group than that in benign group, and the differences were statistically significant (P<0.05). The diagnostic efficiency of ES+VEGF for lung cancer was superior to either single detection. The diagnostic efficiency of ES+VEGF+CEA was superior to either ES+VEGF or ES+CEA. The results suggest that ES, VEGF and CEA might be useful in the differentiation between benign and malignant pleural effusion due to lung cancer. In comparison with either single determination of concentration in serum or pleural fluid, the combined detection of two or three markers is of important clinical significance in the diagnosis of lung cancer. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  20. Angiomodulin is a specific marker of vasculature and regulates VEGF-A dependent neo-angiogenesis

    PubMed Central

    Hooper, Andrea T.; Shmelkov, Sergey V.; Gupta, Sunny; Milde, Till; Bambino, Kathryn; Gillen, Kelly; Goetz, Mollie; Chavala, Sai; Baljevic, Muhamed; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; Vahdat, Linda; Evans, Todd; Rafii, Shahin

    2010-01-01

    Blood vessel formation is controlled by the balance between pro- and anti-angiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a VEGF-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGMlacZ/+) wherein we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17-22 hpf. Blockade of AGM activity with morpholino oligomers (MO) results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR-2/flk-1, is blocked by the simultaneous injection of AGM MO. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the pro-angiogenic effects of VEGF-A. PMID:19542015

  1. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    PubMed

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  2. Ethnic differences in the +405 and -460 vascular endothelial growth factor polymorphisms and peripheral neuropathy in patients with diabetes residing in a North London, community in the United Kingdom.

    PubMed

    Zitouni, Karima; Tinworth, Lorna; Earle, Kenneth Anthony

    2017-06-29

    There are marked ethnic differences in the susceptibility to the long-term diabetic vascular complications including sensory neuropathy. The vascular endothelial growth factor (VEGF) +405 (C/G) and -460 (T/C) polymorphisms are associated with retinopathy and possibly with nephropathy, however no information is available on their relationship with peripheral neuropathy. Therefore, we examined the prevalence of these VEGF genotypes in a multi-ethnic cohort of patients with diabetes and their relationship with evident peripheral diabetic neuropathy. In the current investigation, we studied 313 patients with diabetes mellitus of African-Caribbean, Indo-Asian and Caucasian ethnic origin residing in an inner-city community in London, United Kingdom attending a single secondary care centre. Genotyping was performed for the VEGF +405 and VEGF -460 polymorphisms using a pyrosequencing technique. Forty-nine patients (15.6%) had clinical evidence of peripheral neuropathy. Compared to Caucasian patients, African-Caribbean and Indo-Asian patients had lower incidence of neuropathy (24.6%, 14.28%, 6.7%, respectively; P = 0.04). The frequency of the VEGF +405 GG genotype was more common in Indo-Asian patients compared to African-Caribbean and Caucasian patients (67.5%, 45.3%, 38.4%, respectively; p ≤ 0.02). The G allele was more common in patients with type 2 diabetes of Indo-Asian origin compared to African-Caribbean and Caucasian origin (p ≤ 0.02). There was no difference between the ethnic groups in VEGF -460 genotypes. The distributions of the VEGF +405 and VEGF -460 genotypes were similar between the diabetic patients with and without neuropathy. In this cohort of patients, VEGF +405 and VEGF -460 polymorphisms were not associated with evident diabetic peripheral neuropathy, however an association was found between VEGF +405 genotypes and Indo-Asian which might have relevance to their lower rates of ulceration and amputation. This finding highlights the need for further investigation of any possible relationship between VEGF genotype, circulating VEGF concentrations and differential vulnerability to peripheral neuropathy amongst diabetic patients of different ethnic backgrounds.

  3. The effects of RNA interference mediated VEGF gene silencing on biological behavior of renal cell carcinoma and transplanted renal tumor in nude mice.

    PubMed

    Wang, Qi; Wang, Shuai; Sun, Si-Qiao; Cheng, Zhi-Hua; Zhang, Yang; Chen, Guang; Gu, Meng; Yao, Hai-Jun; Wang, Zhong; Zhou, Juan; Peng, Yu-Bing; Xu, Ming-Xi; Zhang, Ke; Sun, Xi-Wei

    2016-01-01

    This study was to explore the effects of RNA interference mediated vascular endothelial growth factor (VEGF) gene silencing on biological behavior of renal cell carcinoma (RCC), transplanted renal tumor and angiogenesis in nude mice. The specific siRNA sequence targeting VEGF were designed and synthesized to construct hVEGF-siRNA plasmid which was transfected into RCC 786-O cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the detection of VEGF gene expression and western blot was adopted for the examination of VEGF protein expression. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell growth as well as cell migration and invasion. The transplanted renal tumor models in nude mice were established, and the growth condition of nude mice, and VEGF protein expression in transplanted tumor slices and the microvessel density (MVD) were detected. The expression level of VEGF mRNA in VEGF-siRNA group was significant lower than that in the control group and negative group, suggesting that establishment of plasmid specifically inhibited the expression of VEGF gene The expression level of VEGF protein in VEGF-siRNA group was significant lower than that in the control group and negative group. VEGF gene silencing has the significant inhibition effects on proliferation, migration and invasion of RCC 786-O cells. The tumor weight, VEGF protein positive rate and MVD in VEGF-siRNA group were significant lower than those in negative group and blank group. The VEGF gene silencing could inhibit the cell proliferation, migration and invasion of RCC 786-O cells; inhibition of VEGF protein expression could prevent transplanted RCC growth and tumor angiogenesis.

  4. Effects of liver depression and psychological stress on human uterine leiomyoma cells by an AR-cAMP-PKA signal transduction pathway.

    PubMed

    Xia, Tian; Li, Shuang; Ma, Ruihong; Guan, Sufen; Li, Jiacui; Li, Hongqin; Zhang, Hexin; Lin, Qiu; Zhao, Zhimei; Wang, Baojuan

    2017-06-01

    Based on the emotional theory of Traditional Chinese Medicine, and combined with the modern medicine theory of psychological stress, a research model of human uterine leiomyoma cells (ULM) was cultured in vitro to determine the effectiveness of adrenergic receptor (AR) agonists in human ULM cell growth. In addition, we studied the functional influence of "liver depression and psychological stress theory" on fibroid formation by intervening in the AR-cAMP-PKA signaling pathway. The intention was to establish a new method to prevent and cure fibroids through "liver depression and psychological stress theory" and provide an experimental basis for the Traditional Chinese Medicine emotional theory. Primary human ULM cells were enriched by collagenase digestion. Immunohistochemistry and hematoxylin and eosin (HE) staining were used for cytological identification. Using this model, we studied intervention using specific AR agonists on ULM cells to observe the influence of "liver depression and psychological stress theory" on estrogen receptor (ER), progesterone receptor (PR), vascular endothelial growth factor (VEGF) and fibroblast growth factors (FGF). Norepinephrine (NE) and epinephrine (E) are adrenergic receptor agonists. They promoted ULM cell proliferation and increased the levels of ER, PR, VEGF and FGF. In contrast, isoproterenol (ISO) inhibited ULM cell proliferation and decreased the levels of ER, PR, VEGF and FGF. The protein expression of cAMP and PKA in ULM cells was reduced and the levels of ER, PR, VEGF and FGF were increased when co-treatment with the α-AR blocker (phentolamine). The β-AR blocker (metoprolol) displayed an opposite effect. AR agonists modulated ER, PR, VEGF and FGF levels in ULM cells in an AR-cAMP-PKA-dependent signaling pathways to influence fibroid occurrence and development. Copyright © 2017. Published by Elsevier B.V.

  5. Elevated cell proliferation and VEGF production by high-glucose conditions in Müller cells involve XIAP

    PubMed Central

    Sun, Y; Wang, D; Ye, F; Hu, D-N; Liu, X; Zhang, L; Gao, L; Song, E; Zhang, D Y

    2013-01-01

    Purpose Müller cells have important roles in the pathogenesis of diabetic retinopathy by promoting cell proliferation and inducing the production of vascular endothelial growth factor (VEGF) under hyperglycemic conditions. The objective of this study was to determine the potential mechanism of Müller cell proliferation and VEGF production due to high-glucose conditions. Methods Primary cultured rat Müller cells were incubated with medium containing variable concentrations of glucose and/or embelin, a specific inhibitor of X-linked inhibitor of apoptosis protein (XIAP), for 72 h. The proliferation of Müller cells was assessed by the MTT assay. The expression and/or phosphorylation of 146 proteins were assessed using protein pathway array. Results High concentrations of glucose-induced Müller cell proliferation and altered expression and/or phosphorylation of 47 proteins that have been identified to have key roles in several important signaling pathways (XIAP, VEGF, HIF1α, NFκB, etc) and are involved in the regulation of cell survival, proliferation, or apoptosis. However, Müller cell alterations induced by high-glucose conditions were counteracted by the XIAP inhibitor embelin, and 26 proteins/phosphorylations (out of 47) were restored to their normal levels. Nine proteins, including NFκB p65, p-p38, tumor necrosis factor-α, urokinase-type plasminogen activator, CREB, IL-1β, HCAM, estrogen receptor-α, and p-Stat3, were involved in regulatory networks between XIAP and VEGF. Conclusions The current study suggests that XIAP may be a potential regulator that can mediate a series of pathological changes induced by high-glucose conditions in Müller cells. Therefore, embelin could be a potential agent for the prevention and treatment of diabetic retinopathy. PMID:23928877

  6. [Effect of vascular endothelial growth factor and tumor necrosis factor receptor for treatment of avascular necrosis of the femoral head in rabbits].

    PubMed

    Hu, Zhi-ming; Zhou, Ming-qian; Gao, Ji-min

    2008-12-01

    To evaluate the therapeutic effect of vascular endothelial growth factor (VEGF) and tumor necrosis factor receptor (TNFR) on avascular necrosis of the femoral head in rabbits. Avascular necrosis of the femoral head was induced in 26 New Zealand white rabbits by injections of horse serum and prednisolone. The rabbits were then divided into VEGF/TNFR treatment group, VEGF treatment group, and untreated model group, with another 4 normal rabbits as the normal control group. In the two treatment groups, the therapeutic agents were injected percutaneously into the femoral head. Enzyme-linked immunosorbent assay was performed to determine the concentration of TNF-alpha in rabbit serum followed by pathological examination of the changes in the bone tissues, bone marrow hematopoietic tissue and the blood vessels in the femoral head. Compared with the model group, the rabbits with both VEGF and TNFR treatment showed decreased serum concentration of TNF-alpha with obvious new vessel formation, decreased empty bone lacunae in the femoral head and hematopoietic tissue proliferation in the bone marrow cavity. Percutaneous injection of VEGF and TNFR into the femoral head can significantly enhance bone tissue angiogenesis and ameliorate osteonecrosis in rabbits with experimental femoral head necrosis.

  7. ACCRETA COMPLICATING COMPLETE PLACENTA PREVIA IS CHARACTERIZED BY REDUCED SYSTEMIC LEVELS OF VASCULAR ENDOTHELIAL GROWTH FACTOR AND EPITHELIAL-TO-MESENCHYMAL TRANSITION OF THE INVASIVE TROPHOBLAST

    PubMed Central

    Wehrum, Mark J.; Buhimschi, Irina A.; Salafia, Carolyn; Thung, Stephen; Bahtiyar, Mert O.; Werner, Erica F.; Campbell, Katherine H.; Laky, Christine; Sfakianaki, Anna K.; Zhao, Guomao; Funai, Edmund F.; Buhimschi, Catalin S.

    2011-01-01

    OBJECTIVE To characterize serum angiogenic factor profile of women with complete placenta previa and determine if invasive trophoblast differentiation characteristic of accreta, increta or percreta shares features of epitehelial-mesenchymal-transition (EMT). STUDY DESIGN We analyzed gestational age matched serum samples from 90 pregnant women with either complete placenta previa (n=45) or uncomplicated pregnancies (n=45). Vascular-endothelial-growth-factor (VEGF), placental-growth-factor (PlGF) and soluble fms-like-tyrosine-kinase-1 (sFlt-1) were immunoassayed. VEGF and phosphotyrosine (P-Tyr) immunoreactivity was surveyed in histological specimens relative to expression of vimentin and cytokeratin-7. RESULTS Women with previa and invasive placentation [accreta (n=5); increta (n=6); percreta (n=2)] had lower systemic VEGF (invasive previa: median [IQR]: 0.8[0.02–3.4] vs. control: 6.5[2.7–10.5] pg/mL, P=0.02). VEGF and P-Tyr immunostaining predominated in the invasive extravillous trophoblasts (EVT) which co-expressed vimentin and cytokeratin-7, a EMT feature and tumor-like cell phenotype. CONCLUSIONS Lower systemic free VEGF and a switch of the interstitial EVT to a metastable cell phenotype characterize placenta previa with excessive myometrial invasion. PMID:21316642

  8. Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue.

    PubMed

    Iwashima, Shigejiro; Ozaki, Takenori; Maruyama, Shoichi; Saka, Yousuke; Kobori, Masato; Omae, Kaoru; Yamaguchi, Hirotake; Niimi, Tomoaki; Toriyama, Kazuhiro; Kamei, Yuzuru; Torii, Shuhei; Murohara, Toyoaki; Yuzawa, Yukio; Kitagawa, Yasuo; Matsuo, Seiichi

    2009-05-01

    Accumulating evidence suggests that the delivery of human adipose tissue-derived stromal cells (hASCs) has great potential as regenerative therapy. This was performed to develop a method for expanding hASCs by reducing the amount of serum required. We demonstrate that hASCs were able to expand efficiently in media containing 2% serum and fibroblast growth factor-2. These cells, or low serum cultured hASCs (hLASCs), expressed cell surface markers similar to those on bone marrow-derived mesenchymal stem cells, and could be differentiated into cells of mesenchymal lineage. Of interest, hLASCs secreted higher levels of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) than hASCs cultured in 20% serum (hHASCs). Moreover, hLASC-conditioned media significantly increased endothelial cell (EC) proliferation and decreased EC apoptosis compared to that obtained from hHASCs or control media only. Antibodies against VEGF and HGF virtually negated these effects. When hASCs were administered into the ischemic hindlimbs of nude rats, hLASCs improved blood flow, increased capillary density, and raised the levels of VEGF and HGF in the muscles as compared with hHASCs. In conclusion, we demonstrate a novel low serum culture system for hASCs, which may have great potential in regenerative cell therapy for damaged organs in the clinical setting.

  9. Anti-Angiogenics: Current Situation and Future Perspectives.

    PubMed

    Zirlik, Katja; Duyster, Justus

    2018-01-01

    Angiogenesis, the process leading to the formation of new blood vessels, is one of the hallmarks of cancer. Extensive studies established that i) vascular endothelial growth factor (VEGF) is a key driver of sprouting angiogenesis, ii) VEGF is overexpressed in most solid cancers, and iii) inhibition of VEGF can suppress tumor growth in animal models. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve the tumor of nutrients and oxygen, primarily through the blockade of VEGF/VEGF receptor signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, either alone or in combination with chemotherapy and other targeted therapies. However, inhibition of VEGF signaling is not effective in all cancers, and anti-angiogenics have often only limited impact on overall survival of cancer patients. This review focuses on the current status of FDA-approved anti-angiogenic antibodies and tyrosine kinase inhibitors and summarizes the progress and future directions of VEGF-targeted therapy. © 2018 S. Karger GmbH, Freiburg.

  10. Dynamics of VEGF matrix-retention in vascular network patterning

    NASA Astrophysics Data System (ADS)

    Köhn-Luque, A.; de Back, W.; Yamaguchi, Y.; Yoshimura, K.; Herrero, M. A.; Miura, T.

    2013-12-01

    Vascular endothelial growth factor (VEGF) is a central regulator of blood vessel morphogenesis, although its role in patterning of endothelial cells into vascular networks is not fully understood. It has been suggested that binding of soluble VEGF to extracellular matrix components causes spatially restricted cues that guide endothelial cells into network patterns. Yet, current evidence for such a mechanism remains indirect. In this study, we quantitatively analyse the dynamics of VEGF retention in a controlled in vitro situation of human umbilical vascular endothelial cells (HUVECs) in Matrigel. We show that fluorescent VEGF accumulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the pericellular region. Computational simulations using our experimental measurements of kinetic parameters show that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning.

  11. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism

    PubMed Central

    Yang, Yunlong; Zhang, Yin; Iwamoto, Hideki; Hosaka, Kayoko; Seki, Takahiro; Andersson, Patrik; Lim, Sharon; Fischer, Carina; Nakamura, Masaki; Abe, Mitsuhiko; Cao, Renhai; Skov, Peter Vilhelm; Chen, Fang; Chen, Xiaoyun; Lu, Yongtian; Nie, Guohui; Cao, Yihai

    2016-01-01

    The impact of discontinuation of anti-VEGF cancer therapy in promoting cancer metastasis is unknown. Here we show discontinuation of anti-VEGF treatment creates a time-window of profound structural changes of liver sinusoidal vasculatures, exhibiting hyper-permeability and enlarged open-pore sizes of the fenestrated endothelium and loss of VE-cadherin. The drug cessation caused highly leaky hepatic vasculatures permit tumour cell intravasation and extravasation. Discontinuation of an anti-VEGF antibody-based drug and sunitinib markedly promotes liver metastasis. Mechanistically, host hepatocyte, but not tumour cell-derived vascular endothelial growth factor (VEGF), is responsible for cancer metastasis. Deletion of hepatocyte VEGF markedly ablates the ‘off-drug'-induced metastasis. These findings provide mechanistic insights on anti-VEGF cessation-induced metastasis and raise a new challenge for uninterrupted and sustained antiangiogenic therapy for treatment of human cancers. PMID:27580750

  12. [Relationship between the expression levels of PAPP-A metalloproteinase and growth and transcriptional factors in endometrial cancer].

    PubMed

    Iunusova, N V; Spirina, L V; Kondakova, L A; Kolomiets, A L; Chernyshova, A L; Koval', V D; Nedosekov, V V; Savenkova, O V

    2013-01-01

    We have examined for the first time the relationship between the expression of PAPP-A metalloproteinase and insulin-like growth factors (IGF-I, IGF-II, VEGF) and transcription factors (NF-kappaB, HIF-1) playing an important role in pathogenesis of cancer. We also demonstrated a positive association between the level of PAPP-A metalloproteinase and the level of growth (VEGF and IGF-I) and transcription factors (NF-kappaB p50, NF-kappaB p65, HIF-1alpha). The current findings suggest an important role of PAPP-A in regulation of bioavailability of IGF-I, VEGF, activated forms of NF-kappaB, and alpha-subunits of HIF-1 in endometrial tumors.

  13. Calreticulin Regulates VEGF-A in Neuroblastoma Cells.

    PubMed

    Weng, Wen-Chin; Lin, Kuan-Hung; Wu, Pei-Yi; Lu, Yi-Chien; Weng, Yi-Cheng; Wang, Bo-Jeng; Liao, Yung-Feng; Hsu, Wen-Ming; Lee, Wang-Tso; Lee, Hsinyu

    2015-08-01

    Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.

  14. Vascular endothelial growth factor during hypoglycemia in patients with type 1 diabetes mellitus: relation to cognitive function and renin-angiotensin system activity.

    PubMed

    Kristensen, Peter Lommer; Høi-Hansen, Thomas; Boomsma, Frans; Pedersen-Bjergaard, Ulrik; Thorsteinsson, Birger

    2009-10-01

    In healthy adults, levels of vascular endothelial growth factor (VEGF) increase in response to mild hypoglycemia. VEGF is implicated in glucose transport over the blood-brain barrier, and the increase during hypoglycemia has been positively correlated with preservation of cognitive function during hypoglycemia. High activity in the renin-angiotensin system (RAS) is associated with an increased risk of severe hypoglycemia in patients with type 1 diabetes mellitus. Renin-angiotensin system possibly exerts its mechanism in hypoglycemia via VEGF. We studied the impact of mild hypoglycemia on plasma VEGF in patients with type 1 diabetes mellitus and high or low RAS activity and analyzed associations between VEGF levels and cognitive function during hypoglycemia. Eighteen patients with type 1 diabetes mellitus-9 with high and 9 with low RAS activity-underwent a single-blinded, placebo-controlled, crossover study with either mild hypoglycemia or stable glycemia. Cognitive function was assessed by the California Cognitive Assessment Package and the Alzheimer Quick Test. Nadir plasma glucose was 2.2 (0.3) mmol/L. During the control study, plasma VEGF did not change. During hypoglycemia, plasma VEGF increased from 39 to 58 pg/L in the high-RAS group (P = .004) and from 76 to 109 pg/L in the low-RAS group (P = .01), with no difference between RAS groups (P = .9). A weak association between reduced preservation of cognitive function during hypoglycemia and low VEGF response was observed. Plasma VEGF levels increase during mild, short-term hypoglycemia in patients with type 1 diabetes mellitus. The VEGF response is not dependent on RAS activity and only weakly associated with preservation of cognitive function during hypoglycemia. Thus, the previously described association between low RAS activity and better cognitive performance during hypoglycemia does not seem to be mediated by VEGF.

  15. PLACENTAL DEFECTS IN ARNT-KNOCKOUT CONCEPTUS CORRELATE WITH LOCALIZED DECREASES IN VEGF-R2, ANG-1, AND TIE-2.

    EPA Science Inventory

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcriptional regulator that heterodimerizes with Per-ARNT-Sim (PAS) proteins. ARNT also dimerizes with hypoxia inducible factor1 (HIF1 ), inducing expression of vascular endothelial cell growth factor (VEGF) to p...

  16. The use of a whole animal biophotonic model as a screen for the angiogenic potential of estrogenic compounds

    USDA-ARS?s Scientific Manuscript database

    Vascular endothelial growth factor (VEGF) is essential for normal vascular growth and development during wound repair. VEGF is estrogen responsive and capable of regulating its own receptor, vascular endothelial growth factor receptor-2 (VEGFR-2). Several agricultural pesticides (e.g., methoxychlor)...

  17. Elevated levels of placental growth factor represent an adaptive host response in sepsis.

    PubMed

    Yano, Kiichiro; Okada, Yoshiaki; Beldi, Guido; Shih, Shou-Ching; Bodyak, Natalya; Okada, Hitomi; Kang, Peter M; Luscinskas, William; Robson, Simon C; Carmeliet, Peter; Karumanchi, S Ananth; Aird, William C

    2008-10-27

    Recently, we demonstrated that circulating levels of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) are increased in sepsis (Yano, K., P.C. Liaw, J.M. Mullington, S.C. Shih, H. Okada, N. Bodyak, P.M. Kang, L. Toltl, B. Belikoff, J. Buras, et al. 2006. J. Exp. Med. 203:1447-1458). Moreover, enhanced VEGF/Flk-1 signaling was shown to contribute to sepsis morbidity and mortality. We tested the hypothesis that PlGF also contributes to sepsis outcome. In mouse models of endotoxemia and cecal ligation puncture, the genetic absence of PlGF or the systemic administration of neutralizing anti-PlGF antibodies resulted in higher mortality compared with wild-type or immunoglobulin G-injected controls, respectively. The increased mortality associated with genetic deficiency of PlGF was reversed by adenovirus (Ad)-mediated overexpression of PlGF. In the endotoxemia model, PlGF deficiency was associated with elevated circulating levels of VEGF, induction of VEGF expression in the liver, impaired cardiac function, and organ-specific accentuation of barrier dysfunction and inflammation. Mortality of endotoxemic PlGF-deficient mice was increased by Ad-mediated overexpression of VEGF and was blocked by expression of soluble Flt-1. Collectively, these data suggest that up-regulation of PlGF in sepsis is an adaptive host response that exerts its benefit, at least in part, by attenuating VEGF signaling.

  18. CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway.

    PubMed

    Zong, JiaXin; Li, YunTian; Du, DaYong; Liu, Yang; Yin, YongJun

    2016-11-01

    Intraplaque angiogenesis has been recognized as an important risk factor for the rupture of advanced atherosclerotic plaques in recent years. CD147, also called Extracellular Matrix Metalloproteinase Inducer, has been found the ability to promote angiogenesis in many pathological conditions such as cancer diseases and rheumatoid arthritis via the up-regulation of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis. We investigated whether CD147 would also induce the up-regulation of VEGF in the foam cells formation process and explored the probable signaling pathway. The results showed the expression of CD147 and VEGF was significantly higher in U937-derived foam cells. After CD147 stealth siRNA transfection treatment, the production of VEGF was reduced depended on the inhibition efficiency of CD147 siRNAs.The special signaling pathway inhibitors LY294002, SP600125, SB203580 and U0126 were added to cultures respectively and the results showed LY294002 dose-dependently inhibited the expression of VEGF. The reduction of phospho-Akt was observed in both LY294002 and siRNA groups, suggested that the phosphatidylinositol 3-kinase/Akt pathway may be the probable signaling pathway underlying CD147 induced up-regulation of VEGF in U937-derived foam cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Anti-VEGF treatment of macular edema associated with retinal vein occlusion: patterns of use and effectiveness in clinical practice (ECHO study report 2)

    PubMed Central

    Jumper, J Michael; Dugel, Pravin U; Chen, Sanford; Blinder, Kevin J; Walt, John G

    2018-01-01

    Purpose To evaluate the efficacy, safety, and injection frequency of vascular endothelial growth factor (VEGF) antagonists in the treatment of macular edema secondary to retinal vein occlusion (RVO) in clinical practice. Patients and methods A multicenter retrospective study of the medical records of 165 patients (95 branch RVO, 70 central RVO) treated with at least three anti-VEGF injections in the study eye was conducted. Available data collected for at least 6 months after the first injection included Snellen best-corrected visual acuity (BCVA), central retinal thickness (CRT) by time-domain optical coherence tomography (TD-OCT) or spectral-domain optical coherence tomography (SD-OCT), anti-VEGF injections, other treatments/procedures for RVO, and adverse events. Results At baseline prior to anti-VEGF treatment, mean BCVA was 20/80 Snellen equivalent and mean CRT was 499 μm. Mean number of anti-VEGF injections received was 7.1 during the first year, 5.4 during the second year, and 5.9 during the third year; 51.3% (842/1,641) of injections were ranibizumab, 44.1% (724/1,641) were bevacizumab, and 4.6% (75/1,641) were aflibercept. One in five patients received concomitant focal laser treatment. The percentage of patients achieving both BCVA of 20/40 or better and CRT ≤250 μm on TD-OCT or ≤300 μm on SD-OCT at the same visit (primary endpoint) was 26.1% (30/115) after the first anti-VEGF injection and ranged from 20.0% (7/35) to 36.7% (11/30) after the first 16 injections. After each anti-VEGF injection from the 1st to the 16th, <60% of patients achieved 20/40 or better BCVA and ≤70% of patients achieved CRT ≤250 μm on TD-OCT or ≤300 μm on SD-OCT. The most common treatment-related adverse event was blurry or cloudy vision. Conclusion In this real-world study, a mean of five to seven anti-VEGF injections was administered yearly, and the response to anti-VEGF therapy was suboptimal in many patients. Anti-VEGF therapy was well tolerated. PMID:29662298

  20. Chotosan ameliorates cognitive and emotional deficits in an animal model of type 2 diabetes: possible involvement of cholinergic and VEGF/PDGF mechanisms in the brain

    PubMed Central

    2012-01-01

    Background Diabetes is one of the risk factors for cognitive deficits such as Alzheimer’s disease. To obtain a better understanding of the anti-dementia effect of chotosan (CTS), a Kampo formula, we investigated its effects on cognitive and emotional deficits of type 2 diabetic db/db mice and putative mechanism(s) underlying the effects. Methods Seven-week-old db/db mice received daily administration of CTS (375 – 750 mg/kg, p.o.) and the reference drug tacrine (THA: 2.5 mg/kg, i.p.) during an experimental period of 7 weeks. From the age of 9-week-old, the animals underwent the novel object recognition test, the modified Y-maze test, and the water maze test to elucidate cognitive performance and the elevated plus maze test to elucidate anxiety-related behavior. After completing behavioral studies, Western blotting and immunohistochemical studies were conducted. Results Compared with age-matched non-diabetic control strain (m/m) mice, db/db mice exhibited impaired cognitive performance and an increased level of anxiety. CTS ameliorated cognitive and emotional deficits of db/db mice, whereas THA improved only cognitive performance. The phosphorylated levels of Akt and PKCα in the hippocampus were significantly lower and higher, respectively, in db/db mice than in m/m mice. Expression levels of the hippocampal cholinergic marker proteins and the number of the septal cholinergic neurons were also reduced in db/db mice compared with those in m/m mice. Moreover, the db/db mice had significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2, platelet-derived growth factor-B, and PDGF receptor β, in the hippocampus. CTS and THA treatment reversed these neurochemical and histological alterations caused by diabetes. Conclusion These results suggest that CTS ameliorates diabetes-induced cognitive deficits by protecting central cholinergic and VEGF/PDGF systems via Akt signaling pathway and that CTS exhibits the anxiolytic effect via neuronal mechanism(s) independent of cholinergic or VEGF/PDGF systems in db/db mice. PMID:23082896

  1. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells.

    PubMed

    Bernal, Giovanna M; Peterson, Daniel A

    2011-06-01

    Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  2. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma.

    PubMed

    Martini, Maurizio; de Pascalis, Ivana; D'Alessandris, Quintino Giorgio; Fiorentino, Vincenzo; Pierconti, Francesco; Marei, Hany El-Sayed; Ricci-Vitiani, Lucia; Pallini, Roberto; Larocca, Luigi Maria

    2018-05-10

    Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment.

  3. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma.

    PubMed

    Peng, Hong; Zhang, Qiuyang; Li, Jiali; Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-03-29

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC.

  4. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-01-01

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC. PMID:26967384

  5. Successful treatment of refractory TAFRO syndrome with elevated vascular endothelial growth factor using thyroxine supplements.

    PubMed

    Oka, Satoko; Ono, Kazuo; Nohgawa, Masaharu

    2018-04-01

    Although the clinical significance of hypothyroidism in TAFRO syndrome is unknown, vascular endothelial growth factor (VEGF) levels decreased with improvements in the condition of our refractory TAFRO cases after thyroxine supplement therapy. Our results indicate that elevated VEGF levels are a potential factor in the pathogenesis and anasarca of TAFRO syndrome with hypothyroidism.

  6. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography.

    PubMed

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H

    2012-09-11

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  7. The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.

    PubMed

    Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E

    2001-07-05

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.

  8. Antitumor and antiangiogenic activities of anti-vascular endothelial growth factor hairpin ribozyme in human hepatocellular carcinoma cell cultures and xenografts.

    PubMed

    Li, Li-Hua; Guo, Zi-Jian; Yan, Ling-Ling; Yang, Ji-Cheng; Xie, Yu-Feng; Sheng, Wei-Hua; Huang, Zhao-Hui; Wang, Xue-Hao

    2007-12-21

    To study the effectiveness and mechanisms of anti- human vascular endothelial growth factor (hVEGF) hairpin ribozyme on angiogenesis, oncogenicity and tumor growth in a hepatocarcinoma cell line and a xenografted model. The artificial anti-hVEGF hairpin ribozyme was transfected into hepatocarcinoma cell line SMMC-7,721 and, subsequently, polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR) were performed to confirm the ribozyme gene integration and transcription. To determine the effects of ribozyme ,VEGF expression was detected by semiquantitative RT-PCR and enzyme liked immunosorbent assay (ELISA). MTT assay was carried out to measure the cell proliferation. Furthermore,the transfected and control cells were inoculated into nude mice respectively, the growth of cells in nude mice and angiogenesis were observed. VEGF expression was down-regulated sharply by ribozyme in transfected SMMC-7,721 cells and xenografted tumor. Compared to the control group, the transfected cells grew slower in cell cultures and xenografts, and the xenograft formation was delayed as well. In addition, the microvessel density of the xenografted tumor was obviously declined in the transfected group. As demonstrated by microscopy,reduction of VEGF production induced by ribozyme resulted in a significantly higher cell differentiation and less proliferation vigor in xenografted tumor. Anti-hVEGF hairpin ribozyme can effectively inhibit VEGF expression and growth of hepatocarcinoma in vitro and in vivo. VEGF is functionally related to cell proliferation, differentiation and tumori-genesis in hepatocarcinoma.

  9. Endocrine gland-derived vascular endothelial growth factor in rat pancreas: genetic expression and testosterone regulation.

    PubMed

    Morales, Angélica; Morimoto, Sumiko; Díaz, Lorenza; Robles, Guillermo; Díaz-Sánchez, Vicente

    2008-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an endothelial cell mitogen, expressed essentially in steroidogenic cells. Recently, the expression of EG-VEGF in normal human pancreas and pancreatic adenocarcinoma has been demonstrated. Epidemiologically, pancreatic carcinogenesis is more frequent in males than females, and given that androgen receptors and testosterone biotransformation have been described in pancreas, we hypothesized that testosterone could participate in the regulation of EG-VEGF expression. In this study, we investigated the regulation of EG-VEGF gene expression by testosterone in normal rat pancreatic tissue and rat insulinoma cells (RINm5F). Total RNA was extracted from rat pancreas and cultured cells. Gene expression was studied by real-time PCR and protein detection by immunohistochemistry. Serum testosterone was quantified by RIA. Results showed that EG-VEGF is expressed predominantly in pancreatic islets and vascular endothelium, as well as in RINm5F cells. EG-VEGF gene expression was lower in the pancreas of rats with higher testosterone serum levels. A similar effect that was reverted by flutamide was observed in testosterone-treated RINm5F cells. In summary, testosterone down-regulated EG-VEGF gene expression in rat pancreatic tissue and RINm5F cells. This effect could be mediated by the androgen receptor. To our knowledge, this is the first time that a direct effect of testosterone on EG-VEGF gene expression in rat pancreas and RINm5F cells is demonstrated.

  10. Luminescent/magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics.

    PubMed

    Shen, Xue; Li, Tingting; Chen, Zhongyuan; Geng, Yue; Xie, Xiaoxue; Li, Shun; Yang, Hong; Wu, Chunhui; Liu, Yiyao

    2017-01-01

    Cancer diagnosis and treatment represent an urgent medical need given the rising cancer incidence over the past few decades. Cancer theranostics, namely, the combination of diagnostics and therapeutics within a single agent, are being developed using various anticancer drug-, siRNA-, or inorganic materials-loaded nanocarriers. Herein, we demonstrate a strategy of encapsulating quantum dots, superparamagnetic Fe 3 O 4 nanocrystals, and doxorubicin (DOX) into biodegradable poly(d,l-lactic- co -glycolic acid) (PLGA) polymeric nanocomposites using the double emulsion solvent evaporation method, followed by coupling to the amine group of polyethyleneimine premodified with polyethylene glycol-folic acid (PEI-PEG-FA [PPF]) segments and adsorption of vascular endothelial growth factor (VEGF)-targeted small hairpin RNA (shRNA). VEGF is important for tumor growth, progression, and metastasis. These drug-loaded luminescent/magnetic PLGA-based hybrid nanocomposites (LDM-PLGA/PPF/VEGF shRNA) were fabricated for tumor-specific targeting, drug/gene delivery, and cancer imaging. The data showed that LDM-PLGA/PPF/VEGF shRNA nanocomposites can codeliver DOX and VEGF shRNA into tumor cells and effectively suppress VEGF expression, exhibiting remarkable synergistic antitumor effects both in vitro and in vivo. The cell viability waŝ14% when treated with LDM-PLGA/PPF/VEGF shRNA nanocomposites ([DOX] =25 μg/mL), and in vivo tumor growth data showed that the tumor volume decreased by 81% compared with the saline group at 21 days postinjection. Magnetic resonance and fluorescence imaging data revealed that the luminescent/magnetic hybrid nanocomposites may also be used as an efficient nanoprobe for enhanced T 2 -weighted magnetic resonance and fluorescence imaging in vitro and in vivo. The present work validates the great potential of the developed multifunctional LDM-PLGA/PPF/VEGF shRNA nanocomposites as effective theranostic agents through the codelivery of drugs/genes and dual-modality imaging in cancer treatment.

  11. MAPK/ERK signal pathway involved expression of COX-2 and VEGF by IL-1β induced in human endometriosis stromal cells in vitro

    PubMed Central

    Huang, Fengying; Cao, Jing; Liu, Qiuhong; Zou, Ying; Li, Hongyun; Yin, Tuanfang

    2013-01-01

    Objective: Now there are more and more evidences that Cyclooxygenase-2 (COX-2) plays an important role in angiogenesis of endometriosis (EMs). Vascular endothelial growth factor (VEGF) has a potent angiogenic activity. However, it is worth studying about the regulating mechanism of COX-2/COX-1 and VEGF in the development of human endometriosis in vitro. The current study was designed to investigate the effect of 4 cytokines on COX-2/COX-1 expression and the effect of IL-1β on VEGF release in human endometriosis stromal cells (ESC), and to explore the related signaling pathways involved in vitro. Methods: Isolation, culture and identification of ESC. Cells were treated with 4 cytokines, and the inhibitor mitogen-activated protein-Erk (MEK) and the inhibitor p38 mitogen-activated protein kinase (MAPK) prior to adding cytokine IL-1β. COX-2 protein expression was measured by western blot and VEGF secretion was determined by ELISA. Results: Among four kinds of cytokines, IL-1β treatment increased COX-2 protein expression and VEGF release in three ESC, and TNF-α had the same effect on COX-2 protein level as IL-1β only in ectopic and eutopic ESC, and MCSF had only slight effect on ectopic ESC. In contrast, cytokines had no effect on COX-1 expression. We also demonstrated that MAPK reduced the synthesis of COX-2 by IL-1β induced. COX-2 inhibitor reduced VEGF release by IL-1β induced. Conclusions: i) In human ESC in vitro, IL-1β up-regulated the COX-2 expression through the activation of p38 MAPK pathway, and not to COX-1. ii) Up-regulation of VEGF level by IL-1β treatment was found in human endometriosis stromal cell and COX-2 inhibitor was involved in this process. PMID:24133591

  12. Luminescent/magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics

    PubMed Central

    Shen, Xue; Li, Tingting; Chen, Zhongyuan; Geng, Yue; Xie, Xiaoxue; Li, Shun; Yang, Hong; Wu, Chunhui; Liu, Yiyao

    2017-01-01

    Cancer diagnosis and treatment represent an urgent medical need given the rising cancer incidence over the past few decades. Cancer theranostics, namely, the combination of diagnostics and therapeutics within a single agent, are being developed using various anticancer drug-, siRNA-, or inorganic materials-loaded nanocarriers. Herein, we demonstrate a strategy of encapsulating quantum dots, superparamagnetic Fe3O4 nanocrystals, and doxorubicin (DOX) into biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) polymeric nanocomposites using the double emulsion solvent evaporation method, followed by coupling to the amine group of polyethyleneimine premodified with polyethylene glycol-folic acid (PEI-PEG-FA [PPF]) segments and adsorption of vascular endothelial growth factor (VEGF)-targeted small hairpin RNA (shRNA). VEGF is important for tumor growth, progression, and metastasis. These drug-loaded luminescent/magnetic PLGA-based hybrid nanocomposites (LDM-PLGA/PPF/VEGF shRNA) were fabricated for tumor-specific targeting, drug/gene delivery, and cancer imaging. The data showed that LDM-PLGA/PPF/VEGF shRNA nanocomposites can codeliver DOX and VEGF shRNA into tumor cells and effectively suppress VEGF expression, exhibiting remarkable synergistic antitumor effects both in vitro and in vivo. The cell viability waŝ14% when treated with LDM-PLGA/PPF/VEGF shRNA nanocomposites ([DOX] =25 μg/mL), and in vivo tumor growth data showed that the tumor volume decreased by 81% compared with the saline group at 21 days postinjection. Magnetic resonance and fluorescence imaging data revealed that the luminescent/magnetic hybrid nanocomposites may also be used as an efficient nanoprobe for enhanced T2-weighted magnetic resonance and fluorescence imaging in vitro and in vivo. The present work validates the great potential of the developed multifunctional LDM-PLGA/PPF/VEGF shRNA nanocomposites as effective theranostic agents through the codelivery of drugs/genes and dual-modality imaging in cancer treatment. PMID:28652734

  13. Hypoxia-Induced Expression of VEGF Splice Variants and Protein in Four Retinal Cell Types

    PubMed Central

    Watkins, William M.; McCollum, Gary W.; Savage, Sara R.; Capozzi, Megan E.; Penn, John S.; Morrison, David G.

    2014-01-01

    The purpose of this study was to investigate the hypoxia-induced Vegf120, Vegf164 and Vegf188 mRNA expression profiles in rat Müller cells (MC), astrocytes, retinal pigmented epithelial cells (RPE) and retinal microvascular endothelial cells (RMEC) and correlate these findings to VEGF secreted protein. Cultured cells were exposed to normoxia or hypoxia. Total RNA was isolated from cell lysates and Vegf splice variant mRNA copy numbers were assayed by a validated qRT-PCR external calibration curve method. mRNA copy numbers were normalized to input total RNA. Conditioned medium was collected from cells and assayed for total VEGF protein by ELISA. Hypoxia increased total Vegf mRNA and secreted protein in all the retinal cell types, with the highest levels observed in MC and astrocytes ranking second. Total Vegf mRNA levels in hypoxic RPE and RMEC were comparable; however, the greatest hypoxic induction of each Vegf splice variant mRNA was observed in RMEC. RPE and RMEC ranked 3rd and 4th respectively, in terms of secreted total VEGF protein in hypoxia. The Vegf120, Vegf164 and Vegf188 mRNA splice variants were all increased in hypoxic cells compared to normoxic controls. In normoxia, the relative Vegf splice variant mRNA levels ranked from highest to lowest for each cell type were Vegf164>Vegf120>Vegf188. Hypoxic induction did not alter this ranking, although it did favor an increased stoichiometry of Vegf164 mRNA over the other two splice variants. MC and astrocytes are likely to be the major sources of total Vegf, and Vegf164 splice variant mRNAs, and VEGF protein in retinal hypoxia. PMID:24076411

  14. VEGF signaling inside vascular endothelial cells and beyond

    PubMed Central

    Eichmann, Anne; Simons, Michael

    2014-01-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. PMID:22366328

  15. Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs

    PubMed Central

    Meng, Gang; Xu, Chun; Song, Yong; Wei, Jiwu

    2015-01-01

    Short interfering RNA (siRNA) targeting angiogenic factors and further inhibiting tumor angiogenesis, is one of the potent antitumor candidates for lung cancer treatment. However, this strategy must be combined with other therapeutics like chemotherapy. In this study, we designed a 5′-triphosphate siRNA targeting VEGF (ppp-VEGF), and showed that ppp-VEGF exerted three distinct antitumor effects: i) inhibition of tumor angiogenesis by silencing VEGF, ii) induction of innate immune responses by activating RIG-I signaling pathway, and thus activate antitumor immunity, iii) induction of apoptosis. In a subcutaneous model of murine lung cancer, ppp-VEGF displayed a potent antitumor effect. Our results provide a multifunctional antitumor molecule that may overcome the shortages of traditional antiangiogenic agents. PMID:26336994

  16. Adverse effects of anticancer agents that target the VEGF pathway.

    PubMed

    Chen, Helen X; Cleck, Jessica N

    2009-08-01

    Antiangiogenesis agents that target the VEGF/VEGF receptor pathway have become an important part of standard therapy in multiple cancer indications. With expanded clinical experience with this class of agents has come the increasing recognition of the diverse adverse effects related to disturbance of VEGF-dependent physiological functions and homeostasis in the cardiovascular and renal systems, as well as wound healing and tissue repair. Although most adverse effects of VEGF inhibitors are modest and manageable, some are associated with serious and life-threatening consequences, particularly in high-risk patients and in certain clinical settings. This Review examines the toxicity profiles of anti-VEGF antibodies and small-molecule inhibitors. The potential mechanisms of the adverse effects, risk factors, and the implications for selection of patients and management are discussed.

  17. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice.

    PubMed

    Merentie, Mari; Rissanen, Riina; Lottonen-Raikaslehto, Line; Huusko, Jenni; Gurzeler, Erika; Turunen, Mikko P; Holappa, Lari; Mäkinen, Petri; Ylä-Herttuala, Seppo

    2018-01-01

    Vascular endothelial growth factor-A (VEGF-A) is the master regulator of angiogenesis, vascular permeability and growth. However, its role in mature blood vessels is still not well understood. To better understand the role of VEGF-A in the adult vasculature, we generated a VEGF-A knockdown mouse model carrying a doxycycline (dox)-regulatable short hairpin RNA (shRNA) transgene, which silences VEGF-A. The aim was to find the critical level of VEGF-A reduction for vascular well-being in vivo. In vitro, the dox-inducible lentiviral shRNA vector decreased VEGF-A expression efficiently and dose-dependently in mouse endothelial cells and cardiomyocytes. In the generated transgenic mice plasma VEGF-A levels decreased shortly after the dox treatment but returned back to normal after two weeks. VEGF-A expression decreased shortly after the dox treatment only in some tissues. Surprisingly, increasing the dox exposure time and dose led to elevated VEGF-A expression in some tissues of both wildtype and knockdown mice, suggesting that dox itself has an effect on VEGF-A expression. When the effect of dox on VEGF-A levels was further tested in naïve/non-transduced cells, the dox administration led to a decreased VEGF-A expression in endothelial cells but to an increased expression in cardiomyocytes. In conclusion, the VEGF-A knockdown was achieved in a dox-regulatable fashion with a VEGF-A shRNA vector in vitro, but not in the knockdown mouse model in vivo. Dox itself was found to regulate VEGF-A expression explaining the unexpected results in mice. The effect of dox on VEGF-A levels might at least partly explain its previously reported beneficial effects on myocardial and brain ischemia. Also, this effect on VEGF-A should be taken into account in all studies using dox-regulated vectors.

  18. Encapsulated VEGF-secreting cells enhance proliferation of neuronal progenitors in the hippocampus of AβPP/Ps1 mice.

    PubMed

    Antequera, Desiree; Portero, Aitziber; Bolos, Marta; Orive, Gorka; Hernández, Rosa M Rm A; Pedraz, José Luis; Carro, Eva

    2012-01-01

    Vascular endothelial growth factor (VEGF) promotes neurogenesis in the adult hippocampus, but the way in which this process occurs in the Alzheimer's disease (AD) brain is still unknown. We examined the proliferation of neuronal precursors with an ex vivo approach, using encapsulated VEGF secreting cells, in AβPP/PS1 mice, a mouse model of AD. Overexpression of VEGF and VEGF receptor flk-1 was observed in the cerebral cortex from VEGF microcapsules-treated AβPP/PS1 mice at 1, 3 and 6 months after VEGF-microcapsule implantation. Stereological counting of 5-bromodeoxyuridine positive cells revealed that encapsulated VEGF secreting cells significantly enhanced cellular proliferation in the hippocampal dentate gyrus (DG). The number of neuronal precursors in VEGF microcapsules-treated AβPP/PS1 mice was also greater, and this effect remains after 6 months. We also confirmed that encapsulated VEGF secreting cells also stimulated angiogenesis in the cerebral cortex and hippocampal dentate gyrus. In addition, we found that VEGF-microcapsule treatment was associated with a depressed expression and activity of acetylcholinesterase in the hippocampus of AβPP/PS1 mice, a similar pattern as first-line medications for the treatment of AD. We conclude that stereologically-implanted VEGF-microcapsules exert an acute and long-standing neurotrophic effects, and could be utilized to improve potential therapies to control the progression of AD.

  19. Hypoxia-inducible vascular endothelial growth factor gene therapy using the oxygen-dependent degradation domain in myocardial ischemia.

    PubMed

    Kim, Hyun Ah; Lim, Soyeon; Moon, Hyung-Ho; Kim, Sung Wan; Hwang, Ki-Chul; Lee, Minhyung; Kim, Sun Hwa; Choi, Donghoon

    2010-10-01

    A hypoxia-inducible VEGF expression system with the oxygen-dependent degradation (ODD) domain was constructed and tested to be used in gene therapy for ischemic myocardial disease. Luciferase and VEGF expression vector systems were constructed with or without the ODD domain: pEpo-SV-Luc (or pEpo-SV-VEGF) and pEpo-SV-Luc-ODD (or pEpo-SV-VEGF-ODD). In vitro gene expression efficiency of each vector type was evaluated in HEK 293 cells under both hypoxic and normoxic conditions. The amount of VEGF protein was estimated by ELISA. The VEGF expression vectors with or without the ODD domain were injected into ischemic rat myocardium. Fibrosis, neovascularization, and cardiomyocyte apoptosis were assessed using Masson's trichrome staining, α-smooth muscle actin (α-SMA) immunostaining, and the TUNEL assay, respectively. The plasmid vectors containing ODD significantly improved the expression level of VEGF protein in hypoxic conditions. The enhancement of VEGF protein production was attributed to increased protein stability due to oxygen deficiency. In a rat model of myocardial ischemia, the pEpo-SV-VEGF-ODD group exhibited less myocardial fibrosis, higher microvessel density, and less cardiomyocyte apoptosis compared to the control groups (saline and pEpo-SV-VEGF treatments). An ODD-mediated VEGF expression system that facilitates VEGF-production under hypoxia may be useful in the treatment of ischemic heart disease.

  20. Effects of transcutaneous topical injection of oxygen on vascular endothelial growth factor gene into the healing ligament in rats.

    PubMed

    Ishii, Yoshimasa; Ushida, Takashi; Tateishi, Tetsuya; Miyanaga, Yutaka

    2003-11-01

    The effects of intermittent exposure to oxygen injection on an experimentally induced ligament tear were studied in the right hind limb of 17 male Sprague-Dawley rats. Two rats were used for monitoring the partial oxygen pressure (pO(2)) of subcutaneous tissue and 15 rats were divided into the following three groups of 5 after an experimentally induced ligament tear: Group A, control group; Group B, injection of 0.5 ml hyaluronan to the wound transcutaneously; Group C, injection of 0.5 ml hyaluronan mixed with haemoglobin and oxygen (n=5). At 7 days post-ligament injury, we compared the ligaments of the three treatment groups for gross appearance, histology and expression of vascular endothelial growth factor (VEGF) mRNA by RT-PCR. Our results indicate that the pO(2) was immediately elevated to 334.6 mmHg by topical oxygen injection and this method was effective in promoting vessel formation in comparison to the control group (p<0.01). However, the expression of VEGF mRNA in the topical oxygen injection group (Group C) was lower than that in control group (p<0.05). Our results suggest that oxygen is able to accelerate vessel formation in spite of its effect of decreasing VEGF mRNA. Our method of using topical injection proved to be useful in healing the ligament and the wound.

  1. Expression of vascular endothelial growth factor in Juvenile Angiofibroma.

    PubMed

    Hota, Ashutosh; Sarkar, Chitra; Gupta, Siddhartha Datta; Kumar, Rakesh; Bhalla, Ashu Seith; Thakar, Alok

    2015-06-01

    To examine Juvenile Angiofibroma (JA) tissue for expression of vascular endothelial growth factor (VEGF), and to explore its relationship with puberty status, stage, recurrence and the intraoperative blood loss. Retrospective cohort study of 36 histologically proven cases of JA. Minimum follow up period was 3 years. VEGF expression on tumor cells assessed by immunohistochemistry and graded on two criteria--percentage of cells expressing positivity and the intensity of positivity. These two parameters assessed for impact on puberty status, stage, recurrence, and blood loss. VEGF expression noted on the tumor endothelial cells in 36/36, and on the tumor stromal cells in 34/36. The percentage of cells expressing VEGF and the intensity of expression were not significantly related to puberty status, tumor stage, recurrence, or intra-operative blood loss (p values 0.3-1.0). VEGF expression is near universal in JA. Such expression is independent of puberty status and stage, and does not impact on intra operative blood loss and recurrence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Detection and quantification of mast cell, vascular endothelial growth factor, and microvessel density in human inflammatory periapical cysts and granulomas.

    PubMed

    Fonseca-Silva, T; Santos, C C O; Alves, L R; Dias, L C; Brito, M; De Paula, A M B; Guimarães, A L S

    2012-09-01

    To identify and quantify mast cell (MC), vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in human periapical cysts and granulomas. Archived samples of cysts (n = 40) and granulomas (n = 28) were sectioned and stained with toluidine blue. MCs were identified and counted. Immunohistochemical reactions were employed to evaluate the tissue expression of VEGF and vessels. MVD was estimated by determining the areas of tissue labelled with CD31 antibody. The data were analysed using the Mann-Whitney test (P < 0.05). MCs were observed in the peripheral regions of both lesion types, whilst VEGF and MVD were distributed in the stroma. The presence of MCs was higher in cysts than in granulomas (P < 0.05). VEGF and MVD expression were similar in these lesions. The highest number of MCs was observed in cysts. Moreover, the identification of VEGF and MVD was consistent with the immune mechanisms involved in the lesions. © 2012 International Endodontic Journal.

  3. Increased expression of high mobility group box protein 1 and vascular endothelial growth factor in placenta previa.

    PubMed

    Xie, Han; Qiao, Ping; Lu, Yi; Li, Ying; Tang, Yuping; Huang, Yiying; Bao, Yirong; Ying, Hao

    2017-12-01

    Placenta previa is often associated with preterm delivery, reduced birth weight, a higher frequency of placental accreta and postpartum haemorrhage, and increased likelihood of blood transfusion. The present study aimed to examine the expression of high mobility group box protein 1 (HMGB1) in the placenta of women with or without placenta previa. The study group consisted of placental tissues obtained from women with or without placenta previa. The expression levels of HMGB1 and vascular endothelial growth factor (VEGF) were evaluated in the placental tissues using reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. The mRNA expression levels of HMGB1 and VEGF were significantly increased in the placenta previa group compared with in the normal group. In addition, the placenta previa group exhibited increased HMGB1 and VEGF staining in vascular endothelial cells and trophoblasts. There were no significant differences in the expression of HMGB1 or VEGF between groups with or without placenta accreta or postpartum haemorrhage. The present study hypothesised that the increased expression of HMGB1 in the placenta may be associated with the pathogenesis of placenta previa by regulating the expression of the proangiogenic factor VEGF.

  4. The future implications and indications of anti-vascular endothelial growth factor therapy in ophthalmic practice

    PubMed Central

    Ghanekar, Yashoda; Kaur, Inderjeet

    2007-01-01

    In the last few years anti-vascular endothelial growth factor (VEGF) therapy has changed the paradigm in the treatment of neovascular age-related macular degeneration (ARMD). Besides, its potential use in the treatment of diabetic retinopathy and other possible proliferative vascular disorders has also shown promise. Clinical trial results have shown tremendous beneficial effect of ranibizumab in ARMD. Off-label use of bevacizumab has also shown similar benefit but long-term and clinical trial results do not exist. Some of the potential questions in the use of anti-VEGF are recurring cost, possible long-term effect on physiological function of VEGF and determination of endpoint of treatment. Overall, the use of anti-VEGF therapy in ocular angiogenesis has proven to be beneficial at least now. PMID:17951902

  5. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.

    PubMed

    Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth

    2016-01-01

    Inflammation, oxidative stress, and angiogenesis have been proposed to interact in age-related macular degeneration. It has been postulated that external stimuli that cause oxidative stress can increase production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial (RPE) cells. In this study, we tested the hypothesis that the inflammatory cytokine, tumor necrosis factor alpha (TNF-α), contributed to choroidal neovascularization (CNV) by upregulating VEGF in RPE through intracellular reactive oxygen species (ROS)-dependent signaling and sought to understand the mechanisms involved. In a murine laser-induced CNV model, 7 days after laser treatment and intravitreal neutralizing mouse TNF-α antibody or isotype immunoglobulin G (IgG) control, the following measurements were made: 1) TNF-α protein and VEGF protein in RPE/choroids with western blot, 2) CNV volume in RPE/choroidal flatmounts, and 3) semiquantification of oxidized phospholipids stained with E06 antibody within CNV with immunohistochemistry (IHC). In cultured human RPE cells treated with TNF-α or PBS control, 1) ROS generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence assay, and 2) NOX4 protein and VEGF protein or mRNA were measured with western blot or quantitative real-time PCR in cells pretreated with apocynin or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, VAS 2870, or transfected with p22phox siRNA, and each was compared to its appropriate control. Western blots of phosphorylated p65 (p-p65), total p65 and β-actin, and quantitative real-time PCR of VEGF mRNA were measured in human RPE cells treated with TNF-α and pretreatment with the nuclear factor kappa B inhibitor, Bay 11-7082 or control. Western blots of β-catenin, VEGF, and p22phox and coimmunoprecipitation of β-catenin and T-cell transcriptional factor were performed in human RPE cells treated with TNF-α following pretreatment with β-catenin transcriptional inhibitors, XAV939 or JW67, or transfection with p22phox siRNA and compared to appropriate controls. Compared to the non-lasered control, TNF-α and VEGF protein were increased in the RPE/choroids in a murine laser-induced CNV model (p<0.05). An intravitreal neutralizing antibody to mouse TNF-α reduced CNV volume, and VEGF protein in the RPE/choroids (p<0.01) and oxidized phospholipids within CNV compared to IgG control (p<0.05). In cultured RPE cells and compared to controls, TNF-α induced ROS generation and increased activation of NOX4, an isoform of NADPH oxidase; both were prevented by pretreatment with the apocynin or VAS2870 or knockdown of p22phox, a subunit of NADPH oxidase. TNF-α treatment increased VEGF expression (p<0.001) and the formation of a transcriptional complex of β-catenin and T-cell transcriptional factor; both were prevented by pretreatment with apocynin or knockdown of p22phox. Inhibition of β-catenin by XAV939, but not the nuclear factor kappa B inhibitor, Bay 11-7082, prevented TNF-α-induced VEGF upregulation. Our results support the thinking that TNF-α contributes to CNV by upregulating VEGF production in RPE cells through ROS-dependent activation of β-catenin signaling. These results provide mechanisms of crosstalk between inflammatory mediator, TNF-α, and ROS in RPE cells.

  6. Extracellular matrix metalloproteinase inducer (EMMPRIN) expression correlates positively with active angiogenesis and negatively with basic fibroblast growth factor expression in epithelial ovarian cancer.

    PubMed

    Szubert, Sebastian; Szpurek, Dariusz; Moszynski, Rafal; Nowicki, Michal; Frankowski, Andrzej; Sajdak, Stefan; Michalak, Slawomir

    2014-03-01

    The primary aim of this paper was to evaluate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its relationship with proangiogenic factors and microvessel density (MVD) in ovarian cancer. The study group included 58 epithelial ovarian cancers (EOCs), 35 benign ovarian tumors, and 21 normal ovaries. The expression of EMMPRIN, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) was assessed by ELISA of tissue homogenates. Antibodies against CD105, CD31, and CD34 were used to immunohistochemically assess MVD. We have found significantly higher EMMPRIN expression in EOC than in benign ovarian tumors and normal ovaries. Similarly, the VEGF expression was higher in EOC than in benign ovarian tumors and normal ovaries. By contrast, bFGF expression was lower in EOC than in benign ovarian tumors and ovary samples. EMMPRIN expression in EOC was directly correlated with VEGF expression and CD105-MVD, but inversely correlated with bFGF expression. Grade 2/3 ovarian cancers had increased expression of EMMPRIN and VEGF, increased CD105-MVD, and lowered expression of bFGF compared to grade 1 ovarian cancers. Moreover, EMMPRIN expression was higher in advanced (FIGO III and IV) ovarian cancer. The upregulation of EMMPRIN and VEGF expression is correlated with increased CD105-MVD and silenced bFGF, which suggests early and/or reactivated angiogenesis in ovarian cancer. Aggressive EOC is characterized by the following: high expression of EMMPRIN and VEGF, high CD105-MVD, and low expression of bFGF.

  7. VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis

    PubMed Central

    Licht, Tamar; Rothe, Gadiel; Kreisel, Tirzah; Wolf, Brachi; Benny, Ofra; Rooney, Alasdair G.; ffrench-Constant, Charles; Enikolopov, Grigori; Keshet, Eli

    2016-01-01

    Several factors are known to enhance adult hippocampal neurogenesis but a factor capable of inducing a long-lasting neurogenic enhancement that attenuates age-related neurogenic decay has not been described. Here, we studied hippocampal neurogenesis following conditional VEGF induction in the adult brain and showed that a short episode of VEGF exposure withdrawn shortly after the generation of durable new vessels (but not under conditions where newly made vessels failed to persist) is sufficient for neurogenesis to proceed at a markedly elevated level for many months later. Continual neurogenic increase over several months was not accompanied by accelerated exhaustion of the neuronal stem cell (NSC) reserve, thereby allowing neurogenesis to proceed at a markedly elevated rate also in old mice. Neurogenic enhancement by VEGF preconditioning was, in part, attributed to rescue of age-related NSC quiescence. Remarkably, VEGF caused extensive NSC remodelling manifested in transition of the enigmatic NSC terminal arbor onto long cytoplasmic processes engaging with and spreading over even remote blood vessels, a configuration reminiscent of early postnatal “juvenile” NSCs. Together, these findings suggest that VEGF preconditioning might be harnessed for long-term neurogenic enhancement despite continued exposure to an “aged” systemic milieu. PMID:27849577

  8. Biophysical Properties and Motility of Human Mature Dendritic Cells Deteriorated by Vascular Endothelial Growth Factor through Cytoskeleton Remodeling

    PubMed Central

    Hu, Zu-Quan; Xue, Hui; Long, Jin-Hua; Wang, Yun; Jia, Yi; Qiu, Wei; Zhou, Jing; Wen, Zong-Yao; Yao, Wei-Juan; Zeng, Zhu

    2016-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in the initiation, regulation, and maintenance of the immune responses. Vascular endothelial growth factor (VEGF) is one of the important cytokines in the tumor microenvironment (TME) and can inhibit the differentiation and functional maturation of DCs. To elucidate the potential mechanisms of DC dysfunction induced by VEGF, the effects of VEGF on the biophysical characteristics and motility of human mature DCs (mDCs) were investigated. The results showed that VEGF had a negative influence on the biophysical properties, including electrophoretic mobility, osmotic fragility, viscoelasticity, and transmigration. Further cytoskeleton structure analysis by confocal microscope and gene expression profile analyses by gene microarray and real-time PCR indicated that the abnormal remodeling of F-actin cytoskeleton may be the main reason for the deterioration of biophysical properties, motility, and stimulatory capability of VEGF-treated mDCs. This is significant for understanding the biological behavior of DCs and the immune escape mechanism of tumors. Simultaneously, the therapeutic efficacies may be improved by blocking the signaling pathway of VEGF in an appropriate manner before the deployment of DC-based vaccinations against tumors. PMID:27809226

  9. Vascular endothelial growth factor-A enhances indoleamine 2,3-dioxygenase expression by dendritic cells and subsequently impacts lymphocyte proliferation

    PubMed Central

    Marti, Luciana Cavalheiro; Pavon, Lorena; Severino, Patricia; Sibov, Tatiana; Guilhen, Daiane; Moreira-Filho, Carlos Alberto

    2013-01-01

    Dendritic cells (DCs) are antigen (Ag)-presenting cells that activate and stimulate effective immune responses by T cells, but can also act as negative regulators of these responses and thus play important roles in immune regulation. Pro-angiogenic vascular endothelial growth factor (VEGF) has been shown to cause defective DC differentiation and maturation. Previous studies have demonstrated that the addition of VEGF to DC cultures renders these cells weak stimulators of Ag-specific T cells due to the inhibitory effects mediated by VEGF receptor 1 (VEGFR1) and/or VEGFR2 signalling. As the enzyme indoleamine 2,3-dioxygenase (IDO) is recognised as an important negative regulator of immune responses, this study aimed to investigate whether VEGF affects the expression of IDO by DCs and whether VEGF-matured DCs acquire a suppressor phenotype. Our results are the first to demonstrate that VEGF increases the expression and activity of IDO in DCs, which has a suppressive effect on Ag-specific and mitogen-stimulated lymphocyte proliferation. These mechanisms have broad implications for the study of immunological responses and tolerance under conditions as diverse as cancer, graft rejection and autoimmunity. PMID:24141959

  10. Effect of benzo[a]pyrene on the production of vascular endothelial growth factor by human eosinophilic leukemia EoL-1 cells.

    PubMed

    Gu, Jie; Chan, Lai-Sheung; Wong, Chris Kong-Chu; Wong, Ngok-Shun; Wong, Chun-Kwok; Leung, Kok-Nam; Mak, Naiki K

    2011-01-01

    Benzo[a]pyrene (BaP) has been shown to affect both the development and response of T and B cells in the immune system. However, the effect of BaP on other immune cells, such as eosionophils, is unknown. In this study, we investigated the effect of BaP on the production of vascular endothelial growth factor (VEGF) using an in vitro eosinophilic EoL-1 cell and human umbilical vein endothelial cell (HUVEC) co-culture system. EoL-1-conditioned medium was found to promote the growth of HUVEC in a time-dependent manner. The growth stimulating activity was due to the production of VEGF by the EoL-1 cells. The production of VEGF was correlated with the enhanced expression of the phosphorylated form of extracellular signal-regulated kinases (p-ERKs) and the upregulated expression of VEGF mRNA. Furthermore, BaP-induced expression of VEGF mRNA was reduced by the ERK inhibitor PD98059. Results from this study suggested that BaP might affect the growth of endothelial cells through the modulation of VEGF production by eosinophils.

  11. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning

    PubMed Central

    Vempati, Prakash; Popel, Aleksander S.; Mac Gabhann, Feilim

    2014-01-01

    The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can ‘release’ matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF’s angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies. PMID:24332926

  13. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    NASA Astrophysics Data System (ADS)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.

  14. Multicenter Prospective Study of Angiogenesis Polymorphism Validation in HCC Patients Treated with Sorafenib. An INNOVATE Study Protocol.

    PubMed

    Casadei Gardini, Andrea; Faloppi, Luca; Aprile, Giuseppe; Brunetti, Oronzo; Caparello, Chiara; Corbelli, Jody; Chessa, Luchino; Bruno, Daniele; Ercolani, Giorgio; Leonetti, Alessandro; de Stefano, Giorgio; Farella, Nunzia; Foschi, Francesco Giuseppe; Lanzi, Arianna; Dadduzio, Vincenzo; Marisi, Giorgia; Masi, Gianluca; Negri, Francesca V; Pagan, Flavia; Santini, Daniele; Scarpi, Emanuela; Silletta, Marianna; Silvestris, Nicola; Tamburini, Emiliano; Tassinari, Davide; Vivaldi, Caterina; Gentilucci, Umberto Vespasiani; Zagonel, Vittorina; Calvetti, Lorenzo; Cascinu, Stefano; Frassineti, Giovanni Luca; Scartozzi, Mario

    2017-12-01

    Introduction Although sorafenib is the upfront standard of care for advanced hepatocellular carcinoma (HCC), molecular predictors of efficacy have not been identified yet. In the ALICE-1 study, rs2010963 of VEGF-A and VEGF-C proved to be independent predictive factors for progression-free survival (PFS) and overall survival (OS) in multivariate analysis. The ALICE-1 study results were confirmed in the ALICE-2 study, in which VEGF and VEGFR SNPs were analyzed. In the ePHAS study we analyzed the SNPs of eNOS. In univariate analysis, patients homozygous for an eNOS haplotype (HT1: T-4b at eNOS-786/eNOS VNTR) had significantly shorter median PFS and OS than those with other haplotypes. These data were confirmed in the validation set. Methods This nonpharmacological, interventional, prospective multicenter study aims to determine whether eNOS, HIF-1, VEGF, Ang2 and VEGFR polymorphisms play a role in predicting the objective response rate, PFS, and OS of advanced HCC patients treated with sorafenib. The study will involve 160 advanced HCC patients with Child-Pugh class A disease. The primary aim is to validate the prognostic or predictive roles of eNOS, Ang2, HIF-1, VEGF and VEGFR polymorphisms in relation to the clinical outcome (PFS) of HCC patients treated with sorafenib. Conclusions Overall, our data may suggest that polymorphism analysis of the VEGF, VEGFR-2, HIF and eNOS genes can identify HCC patients who are more likely to benefit from sorafenib.

  15. Diagnostic Significance of Measuring Vascular Endothelial Growth Factor for the Differentiation between Malignant and Tuberculous Pleural Effusion.

    PubMed

    Kim, Hak-Ryul; Kim, Byoung-Ryun; Park, Rae-Kil; Yoon, Kwon-Ha; Jeong, Eun-Taik; Hwang, Ki-Eun

    2017-06-01

    Malignancy and tuberculosis are common causes of lymphocytic exudative pleural effusion. However, it is occasionally difficult to differentiate malignant pleural effusion from tuberculous pleural effusion. Vascular endothelial growth factor (VEGF) is a critical cytokine in the pathogenesis of malignant pleural effusion. Endocan is a dermatan sulfate proteoglycan that is secreted by endothelial cells. Importantly, endocan mediates the vascular growth-promoting action of VEGF. The aim of this study was to evaluate the diagnostic significance of VEGF and endocan in pleural effusion. We thus measured the levels of VEGF and endocan in the pleural effusion and serum samples of patients with lung cancer (n = 59) and those with tuberculosis (n = 32) by enzyme-linked immunosorbent assay. Lung cancer included 40 cases of adenocarcinoma, 13 of squamous cell carcinoma, and 6 of small cell carcinoma. Pleural effusion VEGF levels were significantly higher in the malignant group than in the tuberculosis group (2,091.47 ± 1,624.80 pg/mL vs. 1,291.05 ± 1,100.53 pg/mL, P < 0.05), whereas pleural effusion endocan levels were similar between the two groups (1.22 ± 0.74 ng/mL vs. 0.87 ± 0.53 ng/mL). The areas under the curve of VEGF and endocan were 0.73 and 0.52, respectively. Notably, the VEGF levels were similar in malignant pleural effusion, irrespective of the histological type of lung cancer. Moreover, no significant difference was found in the serum VEGF and endocan levels between patients with lung cancer and those with tuberculosis. In conclusion, high VEGF levels in pleural effusion are suggestive of malignant pleural effusion.

  16. VEGF induces neuroglial differentiation in bone marrow-derived stem cells and promotes microglia conversion following mobilization with GM-CSF.

    PubMed

    Avraham-Lubin, Bat-Chen R; Goldenberg-Cohen, Nitza; Sadikov, Tamilla; Askenasy, Nadir

    2012-12-01

    Evaluation of potential tropic effects of vascular endothelial growth factor (VEGF) on the incorporation and differentiation of bone-marrow-derived stem cells (BMSCs) in a murine model of anterior ischemic optic neuropathy (AION). In the first approach, small-sized subset of BMCs were isolated from GFP donors mice by counterflow centrifugal elutriation and depleted of hematopoietic lineages (Fr25lin(-)). These cells were injected into a peripheral vein (1 × 10(6) in 0.2 ml) or inoculated intravitreally (2 × 10(5)) to syngeneic mice, with or without intravitreal injection of 5 μg/2μL VEGF, simultaneously with AION induction. In a second approach, hematopoietic cells were substituted by myelablative transplant of syngeseic GFP + bone marrow cells. After 3 months, progenitors were mobilized with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by VEGF inoculation into the vitreous body and AION induction . Engraftment and phenotype were examined by immunohistochemistry and FISH at 4 and 24 weeks post-transplantation, and VEGF receptors were determined by real time PCR. VEGF had no quantitative effect on incorporation of elutriated cells in the injured retina, yet it induced early expression of neuroal markers in cells incorporated in the RGC layer and promoted durable gliosis, most prominent perivascular astrocytes. These effects were mediated by VEGF-R1/Flt-1, which is constitutively expresses in the elutriated fraction of stem cells. Mobilization with GM-CSF limited the differentiation of bone marrow progenitors to microglia, which was also fostered by VEGF. VEGF signaling mediated by Flt-1 induces early neural and sustained astrocytic differentiation of stem cells elutriated from adult bone-marrow, with significant contribution to stabilization retinal architecture following ischemic injury.

  17. Elevated serum vascular endothelial growth factor and development of cardiac allograft vasculopathy in children.

    PubMed

    Watanabe, Kae; Karimpour-Fard, Anis; Michael, Alix; Miyamoto, Shelley D; Nakano, Stephanie J

    2018-04-30

    Cardiac allograft vasculopathy (CAV) is a leading cause of retransplantation and death in pediatric heart transplant recipients. Our aim was to evaluate the association between serum vascular endothelial growth factor-A (VEGF) and CAV development in the pediatric heart transplant population. In this retrospective study performed at a university hospital, VEGF concentrations were measured by enzyme-linked immunosorbent assay in banked serum from pediatric heart transplant recipients undergoing routine cardiac catheterization. In subjects with CAV (n = 29), samples were obtained at 2 time-points: before CAV diagnosis (pre-CAV) and at the time of initial CAV diagnosis (CAV). In subjects without CAV (no-CAV, n = 16), only 1 time-point was used. VEGF concentrations (n = 74) were assayed in duplicate. Serum VEGF is elevated in pediatric heart transplant recipients before catheter-based diagnosis of CAV (no-CAV mean: 144.0 ± 89.05 pg/ml; pre-CAV mean: 316.2 ± 118.3 pg/ml; p = 0.0002). Receiver-operating characteristic curve analysis of pre-CAV VEGF levels demonstrated an area under the curve of 87.7% (p = 0.0002), with a VEGF level of 226.3 pg/ml predicting CAV development with 77.8% sensitivity and 91.7% specificity. VEGF is similarly elevated in subjects with angiographically diagnosed CAV and in those with normal angiography but intravascular ultrasound (IVUS) evidence of CAV. The increase in serum VEGF before onset of detectable CAV is fundamental to its utility as a predictive biomarker and suggests further investigations of VEGF in the pathogenesis of CAV are warranted in the pediatric heart transplant population. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Vascular endothelial growth factor levels and rheumatic diseases of the elderly.

    PubMed

    Smets, Perrine; Devauchelle-Pensec, Valérie; Rouzaire, Paul-Olivier; Pereira, Bruno; Andre, Marc; Soubrier, Martin

    2016-12-01

    Increasing vascular endothelial growth factor (VEGF) has been reported in remitting symmetrical seronegative synovitis with pitting edema (RS3PE) syndrome, rheumatoid arthritis (RA), polymyalgia rheumatica (PMR) and giant cell arteritis (GCA). The aim of this study was to compare VEGF levels in patients over 60 years of age who have RS3PE, RA, PMR or GCA so as to determine whether elevated VEGF is specific for a rheumatic disease, the inflammation or edema that occurs with these pathological conditions. In this retrospective, multicentric study we assessed serum and plasma levels of VEGF in patients over 60 years of age with rheumatic diseases that were either de novo or of recent onset according to the initial clinical presentation, and we compared these patients with a control group. Serum and plasma VEGF levels were determined in 80 patients (5 with RS3PE, 13 with RA, 44 with PMR, and 18 with GCA) and 37 controls. Edema occurred in five patients with RS3PE, four with RA, and one with PMR, but not patients with GCA. Serum VEGF levels were significantly higher in individuals with rheumatic diseases (849 (405.5-1235.5) pg/ml) relative to the controls (484 (302-555) pg/ml) (p < 0.001). There were no significant differences between patients with RS3PE, RA, PMR, or GCA in terms of the VEGF serum levels (p = 0.60) or plasma levels (p = 0.57). Similarly, the occurrence of edema did not correlate with VEGF levels. VEGF increases in rheumatic diseases compared to a control group. This was not associated with specific rheumatic diseases or with edematous rheumatic diseases.

  19. Effect of HIF-1a/VEGF signaling pathway on plasma progesterone and ovarian prostaglandin F₂a secretion during luteal development of pseudopregnant rats.

    PubMed

    Pan, X Y; Zhang, Z H; Wu, L X; Wang, Z C

    2015-08-03

    The corpus luteum is a temporary endocrine structure in mammals that plays an important role in the female reproductive cycle and is formed from a ruptured and ovulated follicle with rapid angiogenesis. Vascular endothelial growth factor (VEGF) is thought to be vital in normal and abnormal angiogenesis in the ovary, but the molecular regulation of luteal VEGF expression during corpus luteum development in vivo is still poorly understood at present. Therefore, we examined whether hypoxia-inducible factor-1a (HIF-1a) is induced and regulates VEGF expression and luteal function in vivo using a pseudopregnant rat model treated with a small-molecule inhibitor of HIF-1a, echinomycin. Corpus luteum development in the pseudopregnant rat ovary was determined after measuring plasma progesterone concentration and ovarian prostaglandin F2a content to reflect changes in HIF-1a and VEGF on different days of this developmental process. At day 7, the corpus luteum was formed and the expression of HIF- 1a/VEGF reached a maximum, while a significant decrease in HIF-1a/ VEGF expression was observed when luteolysis occurred at day 13. Additionally, echinomycin blocked luteal development by inhibiting VEGF expression mediated by HIF-1a and following luteal function by detecting the progesterone changes at day 7. These results demonstrated that HIF-1a-mediated VEGF expression might be an important mechanism regulating ovarian luteal development in mammals in vivo, which may provide new strategies for fertility control and for treating some types of ovarian dysfunction, such as polycystic ovarian syndrome, ovarian hyperstimulation syndrome, and ovarian neoplasia.

  20. [Effects of Huoxue Bushen Mixture on skin blood vessel neogenesis and vascular endothelial growth factor expression in hair follicle of C57BL/6 mice].

    PubMed

    Gao, Shang-pu; Huang, Lan; Yang, Xin-wei

    2007-03-01

    To investigate the possible stimulating mechanism of Huoxue Bushen Mixture (HXBSM), a traditional Chinese compound medicine, on hair growth of mice via measuring the variance of skin blood vessel neogenesis and vascular endothelial growth factor (VEGF) expression in the hair follicle. Hot rosin and paraffin mixture depilation were used to induce C57BL/6 mice hair follicle to enter from telogen into anagen. Ninety C57BL/6 mice were divided into 3 groups randomly: HXBSM group, Yangxue Shengfa Capsule (YXSFC, another traditional Chinese compound medicine) group and untreated group. The mice were fed with corresponding drugs after modeling. The hair growth of the mice was observed every day. Every ten mice out of each group were executed respectively at day 4, 11 and day 17. Skin blood vessel neogenesis was counted through pathological section and VEGF expression in the hair follicle was measured via immunohistochemical method. The number of local blood vessel neogenisis in the HXBSM group observed was larger than that in the untreated group at day 4 (P<0.05); and evidently larger than that in the YXSFC group and the untreated group at day 11 (P<0.05). The expression of VEGF in the hair follicle was distinctively higher than that in the YXSFC group and the untreated group at day 11 and day 17 (P<0.05). HXBSM up-regulates VEGF expression to accelerate blood vessel neogenesis and hair growth.

  1. Effects of vinpocetine on random skin flap survival in rats.

    PubMed

    Xiao-Xiao, Tao; Sen-Min, Wu; Ding-Sheng, Lin

    2013-07-01

    The effect of vinpocetine on flap survival, vascular endothelial growth factor (VEGF) expression, and superoxide dismutase (SOD) and malondialdehyde (MDA) contents were evaluated in this study. The McFarlane flap model was established in 20 rats and evaluated within two groups. Postoperative celiac injection was given for 7 days in the two groups: vinpocetine was applied in Group 1, and the same volume of saline was applied in Group 2. Flap necrosis was measured on day 7 by cellophane in all groups. VEGF expression was determined using immunohistochemical methods on tissue samples taken after 7 days of injections. SOD and MDA contents were examined according to the Kit (reagent instructions). Vinpocetine significantly reduced necrosis area in Group 1 (p < 0.05). VEGF expression and SOD contents were significantly increased in Group 1 compared with Group 2 (p < 0.01), whereas MDA level was reduced (p < 0.05). This experimental study demonstrates that vinpocetine improves survival of random skin flaps, promotes neovascularization, and increases VEGF expression. Meanwhile, vinpocetine has a protective effect against ischemia-reperfusion injury by improving SOD vitality and decreasing MDA value. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. A pharmacogenetics study to predict outcome in patients receiving anti-VEGF therapy in age related macular degeneration

    PubMed Central

    Kitchens, John W; Kassem, Nawal; Wood, William; Stone, Thomas W; Isernhagen, Rick; Wood, Edward; Hancock, Brad A; Radovich, Milan; Waymire, Josh; Li, Lang; Schneider, Bryan P

    2013-01-01

    Purpose To ascertain whether single nucleotide polymorphisms (SNPs) in the Vascular Endothelial Growth factor (VEGFA), Complement Factor H (CFH), and LOC387715 genes could predict outcome to anti-VEGF therapy for patients with age related macular degeneration (AMD). Methods Patients with “wet” AMD were identified by chart review. Baseline optical coherence tomography (OCT) and visual acuity (VA) data, and at least 6 months of clinical follow up after 3 initial monthly injections of bevacizumab or ranibizumab were required for inclusion. Based on OCT and VA, patients were categorized into two possible clinical outcomes: (a) responders and (b) non-responders. DNA was extracted from saliva and genotyped for candidate SNPs in the VEGFA, LOC387715, and CFH genes. Clinical outcomes were statistically compared to patient genotypes. Results 101 patients were recruited, and one eye from each patient was included in the analysis. 97% of samples were successfully genotyped for all SNPs. We found a statistically significant association between the LOC387715 A69S TT genotype and outcome based on OCT. Conclusion Genetic variation may be associated with outcome in patients receiving anti-VEGF therapy. PMID:24143065

  3. Neurobiological markers of exercise-related brain plasticity in older adults

    PubMed Central

    Voss, Michelle W.; Erickson, Kirk I.; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Szabo, Amanda; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Olson, Erin A.; Gothe, Neha; Potter, Vicki V.; Martin, Stephen A.; Pence, Brandt D.; Cook, Marc D.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.

    2012-01-01

    The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF. PMID:23123199

  4. Intracranial meningiomas, the VEGF-A pathway, and peritumoral brain oedema.

    PubMed

    Nassehi, Damoun

    2013-04-01

    Meningiomas are the second-most common intracranial tumours in adults. They are derived from the arachnoid cells, and although approximately 90% of meningiomas are benign, more than half of all meningiomas develop peritumoral brain oedema (PTBE), which increases morbidity. The PTBE can be treated with steroid therapy, but this treatment is not specific, is not always effective, and involves long-term side-effects. Meningiomas are treated with radiation therapy, stereotactic radio-surgery or surgical resection. At the moment surgical resection is the only definite treatment, and the removal of the tumour also removes the PTBE. Based on the localization of the meningioma, surgery can be complicated. Although PTBE around meningiomas is frequent, the mechanisms behind its development are not clearly understood. It is believed that due to tumour growth and local tissue hypoxia, angiogenesis is increased and leads to the formation of PTBE. The angiogenic protein vascular endothelial growth factor A (VEGF-A) is believed to be involved in the formation of PTBE around meningiomas, as several studies have found that it is increased in meningiomas with PTBE. VEGF-A is also known as vascular permeability factor due to its ability to increase the permeability of capillaries. Paper I examines the VEGF-A protein and mRNA levels in 101 intracranial meningiomas. The PTBE is quantified on MRI, and capillary length and tumour water content are measured and compared to control brain tissue. Possible co-factors to PTBE like meningioma localization and subtypes are also examined. Forty-three of the patients have primary, solitary, supratentorial meningiomas with PTBE. The correlation between PTBE or edema index with the VEGF-A protein and mRNA, capillary length, and tumour water content is investigated in these patients. A novel method is used for mRNA quantification. It involves direct amplification of the mRNA with probes and branched DNA in order to produce a chemiluminescence signal that can be measured using a luminometer. The paper shows that the oedema index is correlated to the VEGF-A protein and mRNA, and that capillary length is correlated to the PTBE. It also finds that VEGF-A protein and mRNA, capillary length and water content is increased in meningiomas compared to control tissue, suggesting that VEGF-A is produced in, and possibly secreted from the meningiomas. In addition, supratentorial meningiomas are shown to have larger PTBE compared to infratentorial meningiomas, suggesting that infratentorial meningiomas are diagnosed and removed earlier, due to earlier symptom development based on the anatomical features of the fossa posterior. Finally, a gender-specific difference in tumour water content and VEGF-A protein is revealed (higher and lower in females, respectively). Paper II is a method-comparison study pitting the chemiluminescence assay against the often used quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) assay. In RT-qPCR, RNA is isolated, measured, reverse transcribed, purified, amplified via real-time PCR, and analyzed. The method is robust and reliable, albeit laborious to some extent. The chemiluminescence assay detects RNA directly without the need for RNA purification, complement DNA synthesis or cyclic amplification. By comparing the output of the two protocols to a dilution series ranging from 1 to 128 times of the homogenized samples, the precision of the protocols is measured. Furthermore, VEGF-A/GAPDH ratios are quantified for 15 tissue samples and the results compared between the two protocols, showing significant correlation. The study finds that the chemiluminescence assay is competitive to RT-qPCR, and reflects a similar pattern in gene expression measurement with a similar precision. Whether one method or the other should be used depends on the variability of the samples, budget, and time. RT-qPCR has a much wider dynamic range, and is preferable in case of significant sample inter-variability. It is also less expensive, and gives the user more flexibility as homemade reagents can be used. On the other hand, the chemiluminescence assay is straight forward, requires less hands-on-time, and can be used on formalin-fixed and paraffin-embedded (FFPE) tissue. Paper III continues the investigations in paper I. The sample size is increased so that 22 angiomatous and secretory meningiomas are compared to 40 non-angiomatous meningiomas and 10 control brain tissue samples. Angiomatous and secretory meningiomas are chosen because they are known to have larger PTBE compared to other meningiomas. In addition to VEGF-A, capillary length, and PTBE, the VEGF-A tyrosine kinase receptor VEGFR-2 mRNA and protein levels are also examined. VEGFR-2 is a transmembrane receptor found on endothelial cells. It binds VEGF-A and thereby increases angiogenesis. VEGFR-2's co-receptor neuropilin-1 is also examined. Neuropilin-1 is an agonist of angiogenesis through complex-binding of VEGF-A, but it can also work as an inhibitor through competitive binding of semaphorin-3A. The complex binding of semaphorin-3A to neuropilin-1 can also induce endothelial cell apoptosis, thus working as an antagonist of angiogenesis. The study finds that VEGF-A mRNA, VEGF-A protein, and neuropilin-1 mRNA are higher in angiomatous and non-angiomatous meningiomas compared to controls. VEGFR-2 protein is higher, and neuropilin-1 protein lower in angiomatous meningiomas compared to controls. The mean capillary length is 3614 mm/mm3 in angiomatous, 605 mm/mm3 in non-angiomatous meningiomas, and 229 mm/mm3 in the controls. Non-angiomatous and angiomatous meningioma patients have equally sized tumours. The mean PTBE around the angiomatous meningiomas is 695 cm3, i.e. 477 cm3 larger than the non-angiomatous meningiomas (p = 0.0045), and the mean oedema index is twice the size compared to the non-angiomatous meningiomas. Further comparison between the two meningioma groups shows that mean VEGF-A mRNA, VEGFR-2 protein, and neuropilin-1 mRNA is significantly higher and neuropilin-1 protein is lower in the angiomatous meningiomas. We believe that the VEGF-A pathway participates in the formation of PTBE in meningiomas by inducing formation of "leaky" capillaries, resulting in secretion of VEGF-A and plasma to the peritumoural brain tissue. It may therefore be worth pursuing therapies targeted directly against VEGF-A and its receptors through drugs like bevacizumab, sorafenib, sunitifib, and cediranib.

  5. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro.

    PubMed

    Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M

    2015-01-01

    This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P < 0.05) when the culture medium was supplemented with 100 ng/mL of IGF-I for 72 hours. Moreover, IGF-I at a dose of 100 ng/mL increased P4 and VEGF production (P < 0.05). It can be concluded that IGF family members via their autocrine and paracrine effect play significant roles in promoting angiogenesis through the production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation.

    PubMed

    Huggenberger, Reto; Ullmann, Stefan; Proulx, Steven T; Pytowski, Bronislaw; Alitalo, Kari; Detmar, Michael

    2010-09-27

    The role of lymphangiogenesis in inflammation has remained unclear. To investigate the role of lymphatic versus blood vasculature in chronic skin inflammation, we inhibited vascular endothelial growth factor (VEGF) receptor (VEGFR) signaling by function-blocking antibodies in the established keratin 14 (K14)-VEGF-A transgenic (Tg) mouse model of chronic cutaneous inflammation. Although treatment with an anti-VEGFR-2 antibody inhibited skin inflammation, epidermal hyperplasia, inflammatory infiltration, and angiogenesis, systemic inhibition of VEGFR-3, surprisingly, increased inflammatory edema formation and inflammatory cell accumulation despite inhibition of lymphangiogenesis. Importantly, chronic Tg delivery of the lymphangiogenic factor VEGF-C to the skin of K14-VEGF-A mice completely inhibited development of chronic skin inflammation, epidermal hyperplasia and abnormal differentiation, and accumulation of CD8 T cells. Similar results were found after Tg delivery of mouse VEGF-D that only activates VEGFR-3 but not VEGFR-2. Moreover, intracutaneous injection of recombinant VEGF-C156S, which only activates VEGFR-3, significantly reduced inflammation. Although lymphatic drainage was inhibited in chronic skin inflammation, it was enhanced by Tg VEGF-C delivery. Together, these results reveal an unanticipated active role of lymphatic vessels in controlling chronic inflammation. Stimulation of functional lymphangiogenesis via VEGFR-3, in addition to antiangiogenic therapy, might therefore serve as a novel strategy to treat chronic inflammatory disorders of the skin and possibly also other organs.

  7. Inverse Relationship between Serum VEGF Levels and Late In-Stent Restenosis of Drug-Eluting Stents

    PubMed Central

    Shen, Li; Ji, Meng; Cai, Sishi; Chen, Jiahui; Yao, Zhifeng

    2017-01-01

    Late in-stent restenosis (ISR) has raised concerns regarding the long-term efficacy of drug-eluting stents (DES). The role of vascular endothelial growth factor (VEGF) in the pathological process of ISR is controversial. This retrospective study aimed to investigate the relationship between serum VEGF levels and late ISR in patients with DES implantation. A total of 158 patients who underwent angiography follow-up beyond 1 year after intervention were included. The study population was classified into ISR and non-ISR groups. The ISR group was further divided according to follow-up duration and Mehran classification. VEGF levels were significantly lower in the ISR group than in the non-ISR group [96.34 (48.18, 174.14) versus 179.14 (93.59, 307.74) pg/mL, p < 0.0001]. Multivariate regression revealed that VEGF level, procedure age, and low-density lipoprotein cholesterol were independent risk factors for late ISR formation. Subgroup analysis demonstrated that VEGF levels were even lower in the very late (≥5 years) and diffuse ISR group (Mehran patterns II, III, and IV) than in the late ISR group (1–4 years) and the focal ISR group (Mehran pattern I), respectively. Furthermore, significant difference was found between diffuse and focal ISR groups. Serum VEGF levels were inversely associated with late ISR after DES implantation. PMID:28373989

  8. IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation

    PubMed Central

    Dong, Wen; Li, Yi; Gao, Ming; Hu, Meiru; Li, Xiaoguang; Mai, Sanyue; Guo, Ning; Yuan, Shengtao; Song, Lun

    2012-01-01

    Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a critical role in mediating UVB-induced VEGF expression in mouse embryonic fibroblasts (MEFs), which requires IKKα kinase activity but is independent of IKKβ, IKKγ and the transactivation of NF-κB. We further show that the transcriptional factor AP-1 functions as the downstream target of IKKα that is responsible for VEGF induction under UVB exposure. Both the accumulation of AP-1 component, c-Fos and the transactivation of AP-1 by UVB require the activated IKKα located within the nucleus. Moreover, nuclear IKKα can associate with c-Fos and recruit to the vegf promoter regions containing AP-1-responsive element and then trigger phosphorylation of the promoter-bound histone H3. Thus, our results have revealed a novel independent role for IKKα in controlling VEGF expression during the cellular UVB response by regulating the induction of the AP-1 component and phosphorylating histone H3 to facilitate AP-1 transactivation. Targeting IKKα shows promise for the prevention of UVB-induced angiogenesis and the associated photodamage. PMID:22169952

  9. Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling.

    PubMed

    Güç, Esra; Briquez, Priscilla S; Foretay, Didier; Fankhauser, Manuel A; Hubbell, Jeffrey A; Kilarski, Witold W; Swartz, Melody A

    2017-07-01

    Lymphangiogenesis occurs in inflammation and wound healing, yet its functional roles in these processes are not fully understood. Consequently, clinically relevant strategies for therapeutic lymphangiogenesis remain underdeveloped, particularly using growth factors. To achieve controlled, local capillary lymphangiogenesis with protein engineering and determine its effects on fluid clearance, leukocyte trafficking, and wound healing, we developed a fibrin-binding variant of vascular endothelial growth factor C (FB-VEGF-C) that is slowly released upon demand from infiltrating cells. Using a novel wound healing model, we show that implanted fibrin containing FB-VEGF-C, but not free VEGF-C, could stimulate local lymphangiogenesis in a dose-dependent manner. Importantly, the effects of FB-VEGF-C were restricted to lymphatic capillaries, with no apparent changes to blood vessels and downstream collecting vessels. Leukocyte intravasation and trafficking to lymph nodes were increased in hyperplastic lymphatics, while fluid clearance was maintained at physiological levels. In diabetic wounds, FB-VEGF-C-induced lymphangiogenesis increased extracellular matrix deposition and granulation tissue thickening, indicators of improved wound healing. Together, these results indicate that FB-VEGF-C is a promising strategy for inducing lymphangiogenesis locally, and that such lymphangiogenesis can promote wound healing by enhancing leukocyte trafficking without affecting downstream lymphatic collecting vessels. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Vascular endothelial growth factor 121 and 165 in the subacromial bursa are involved in shoulder joint contracture in type II diabetics with rotator cuff disease.

    PubMed

    Handa, Akiyoshi; Gotoh, Masafumi; Hamada, Kazutoshi; Yanagisawa, Kazuhiro; Yamazaki, Hitoshi; Nakamura, Masato; Ueyama, Yoshito; Mochida, Joji; Fukuda, Hiroaki

    2003-11-01

    Vascular endothelial growth factor (VEGF) is a glycoprotein that plays an important role in neovascularization and increases vascular permeability. We reported that VEGF is involved in motion pain of patients with rotator cuff disease by causing synovial proliferation in the subacromial bursa (SAB). The present study investigates whether VEGF is also involved in the development of shoulder contracture in diabetics with rotator cuff disease. We examined 67 patients with rotator cuff disease, including 36 with complete cuff tears, 20 with incomplete tears, and 11 without apparent tears (subacromial bursitis). The patients were into groups according to the presence or absence of diabetes (14 type II diabetics and 53 non-diabetics). Specimens of the synovium of the SAB were obtained from all patients during surgery. Expression of the VEGF gene in the synovium of the subacromial bursa was evaluated by using the reverse transcriptase polymerase chain reaction. The VEGF protein was localized by immunohistochemistry, and the number of vessels was evaluated based on CD34 immunoreactivity. The results showed that VEGF mRNA was expressed in significantly more diabetics (100%, 14/14) than in non-diabetics (70%, 37/53) (P=0.0159, Fisher's test). Investigation of VEGF isoform expression revealed VEGF121 in all 14 diabetics and in 37 of the 53 non-diabetics, VEGF165 in 12 of the 14 diabetics and in 21 of the 53 non-diabetics, and VEGF189 in 1 of the 14 diabetics and in 2 of the 53 non-diabetics. No VEGF206 was expressed in either group. VEGF protein was localized in both vascular endothelial cells and synovial lining cells. The mean number of VEGF-positive vessels and the vessel area were also significantly greater in the diabetics (p<0.015, Mann-Whitney U test). Synovial proliferation and shoulder joint contracture were more common in the diabetics (P=0.0329 and P=0.073, respectively; Fisher's test). The mean preoperative range of shoulder motion significantly differed in terms of elevation between two groups: 103.8 degrees in diabetics and 124.9 degrees in no diabetics (p=0.0039 Mann-Whitney U test). In contrast, external rotation did not significantly differ: 44 degrees in diabetics and 49 degrees in non-diabetics (p=0.4957, Mann-Whitney U test). These results suggest that VEGF121 and VEGF165 expression in the SAB is responsible for the development of shoulder joint contracture, especially in elevation, among type II diabetic patients with rotator cuff disease.

  11. Anti-epidermal or anti-vascular endothelial growth factor as first-line metastatic colorectal cancer in modified Glasgow prognostic score 2' patients

    PubMed Central

    Dréanic, Johann; Dhooge, Marion; Barret, Maximilien; Brezault, Catherine; Mir, Olivier; Chaussade, Stanislas; Coriat, Romain

    2015-01-01

    Background In metastatic colorectal cancer, the modified Glasgow prognostic score (mGPS) has been approved as an independent prognostic indicator of survival. No data existed on poor prognosis patients treated with molecular-targeted agents. Methods From January 2007 to February 2012, patients with metastatic colorectal cancer and poor predictive survival score (mGPS = 2), treated with 5-fluorouracil-based chemotherapy in addition to an anti-epidermal growth factor receptor (EGFR) or anti-vascular epidermal growth factor (VEGF) therapy, were included to assess the interest of targeted therapy within mGPS = 2' patients. Results A total of 27 mGPS = 2' patients were included and received a 5-fluorouracil-based systemic chemotherapy in addition to an anti-EGFR treatment (cetuximab; n = 18) or an anti-VEGF treatment (bevacizumab; n = 9). Median follow-up was 12.1 months (interquartile range 4.9–22). Patients were Eastern Cooperative Oncology Group (ECOG) Performance Status 1, 2, and 3 in 66% (n = 18), 26% (n = 7), and 8% (n = 2), respectively. Comparing anti-EGFR and anti-VEGF groups, median progression-free survival was 3.9 and 15.4 months, respectively, and was significantly different (P = 0.046). Conversely, the median overall survival was not significantly different between the two groups (P = 0.15). Conclusion Our study confirmed the poor survival of patients with mGPS = 2 despite the use of targeted therapy and identified the superiority of an anti-VEGF treatment in progression-free survival, without a significant benefit in the overall survival compared with the anti-EGFR therapy. Our results deserved confirmation by a prospective clinical trial. PMID:26401469

  12. Phase I Trial of Aflibercept (VEGF Trap) with Radiation Therapy and Concomitant and Adjuvant Temozolomide in Patients with High-Grade Gliomas

    PubMed Central

    Nayak, Lakshmi; de Groot, John; Wefel, Jeffrey S; Cloughesy, Timothy F; Lieberman, Frank; Chang, Susan M; Omuro, Antonio; Drappatz, Jan; Batchelor, Tracy T; DeAngelis, Lisa M; Gilbert, Mark R; Aldape, Kenneth D; Yung, Alfred WK; Fisher, Joy; Ye, Xiaobu; Chen, Alice; Grossman, Stuart; Prados, Michael; Wen, Patrick Y

    2017-01-01

    Background Anti-vascular endothelial growth factor (VEGF) therapy has shown promise in the treatment of high-grade gliomas (HGG). Aflibercept is a recombinant human fusion protein that acts as a soluble decoy receptor for VEGF-A, VEGF-B and placental growth factor (PlGF), depleting circulating levels of these growth factors. Methods The Adult Brain Tumor Consortium (ABTC) conducted a phase I trial of aflibercept and temozolomide (TMZ) in patients with newly diagnosed high-grade gliomas (HGG) with 2 dose levels and a 3+3 design. Three arms using aflibercept were examined; with radiation and concomitant temozolomide; with adjuvant temozolomide using the 5/28 regimen; and with adjuvant temozolomide using the 21/28 day regimen. Results Fifty-nine patients were enrolled, 21 in arm 1, 20 in arm 2 and 18 in arm 3. Median age was 56 years (24-69); median KPS 90 (60-100). The maximum tolerated dose (MTD) of aflibercept for all 3 arms was 4mg/kg every 2 weeks. Dose limiting toxicities (DLTs) at the MTD were: Arm 1: 0/21 patients; Arm 2: 2/20 patients (G3 deep vein thrombosis, G4 neutropenia; Arm 3: 3/18 patients (G4 biopsy-confirmed thrombotic microangiopathy, G3 rash, G4 thrombocytopenia). The median number of cycles of aflibercept was 5 (range, 1-16). All patients stopped treatment; 28 (47%) for disease progression, 21 (36%) for toxicities, 8 (14%) for other reasons, and 2 (3%) patients completed the full treatment course. Conclusions This study met its primary endpoint and the MTD of aflibercept with radiation and concomitant and adjuvant temozolomide is 4mg/kg every 2 weeks. PMID:28116649

  13. VEGF signaling inside vascular endothelial cells and beyond.

    PubMed

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Serum vascular endothelial growth factor and adiponectin levels in patients with benign and malignant gynecological diseases.

    PubMed

    Lasalandra, Carla; Coviello, Maria; Falco, Gaetano; Divella, Rosa; Trojano, Giuseppe; Laterza, Anna Maria; Quero, Carmela; Pepe, Vito; Zito, Francesco Alfredo; Quaranta, Michele

    2010-05-01

    One of the most specific and critical regulators of angiogenesis is vascular endothelial growth factor (VEGF), which regulates endothelial proliferation, permeability, and survival. Vascular endothelial growth factor is an angiogenic mediator in tumors and has been implicated in the pathogenesis and progression of cancer. Adipose tissue is a major endocrine and it secretes hormones termed adipokines. These factors are derived from adipocytes and include proteins and metabolites such as adiponectin. Recently, adiponectin was also shown to modulate angiogenesis. This study was designed to determine the serum VEGF and adiponectin levels in patients with benign and malignant gynecological diseases and if there was a correlation between serum VEGF and adiponectin. Serum samples, collected fasting before surgery or intervention, were available for total of 114 female patients recorded between October 2006 and December 2008. Diagnosis of benign and malignant gynaecological diseases was established by biopsy. Serum levels VEGF and adiponectin were using commercially available enzyme linked immunosorbent assay (R&D Systems Inc, Minneapolis, MN), respectively. Statistical analysis was performed by using the SPSS 9.0 software package (SPSS, Inc, Chicago, IL). The correlation between serum VEGF and serum Adiponectin was calculated using the Pearson correlation coefficient. P values of < 0.05 were considered statistically significant. Our results were analyzed on the basis of 2 different parameters: age and benign and malignant gynecological diseases of the patient. Only for serum VEGF levels was a significant difference observed (P = 0.004) between patients with benign and malignant gynecological diseases. A significantly inverse correlation between serum VEGF and adiponectin levels among patients with benign and malignant gynecological diseases was found. Adiponectin level is not correlated with body mass index. This is one of the first report on adiponectin in benign and malignant gynecological diseases. Future studies are needed to address the clinical potential role of adiponectin in cancer.

  15. Outcome predictors of intra-articular glucocorticoid treatment for knee synovitis in patients with rheumatoid arthritis – a prospective cohort study

    PubMed Central

    2014-01-01

    Introduction Intra-articular glucocorticoid treatment (IAGC) is widely used for symptom relief in arthritis. However, knowledge of factors predicting treatment outcome is limited. The aim of the present study was to identify response predictors of IAGC for knee synovitis in patients with rheumatoid arthritis (RA). Methods In this study 121 RA patients with synovitis of the knee were treated with intra-articular injections of 20 mg triamcinolone hexacetonide. They were followed for six months and the rate of clinical relapse was studied. Non-responders (relapse within 6 months) and responders were compared regarding patient characteristics and knee joint damage as determined by the Larsen-Dale index. In addition, matched samples of serum and synovial fluid were analysed for factors reflecting the inflammatory process (C-reactive protein, interleukin 6, tumour necrosis factor alpha, vascular endothelial growth factor), joint tissue turnover (cartilage oligomeric matrix protein, metalloproteinase 3), and autoimmunity (antinuclear antibodies, antibodies against citrullinated peptides, rheumatoid factor). Results During the observation period, 48 knees relapsed (40%). Non-responders had more radiographic joint damage than responders (P = 0.002) and the pre-treatment vascular endothelial growth factor (VEGF) level in synovial fluid was significantly higher in non-responders (P = 0.002). Conclusions Joint destruction is associated with poor outcome of IAGC for knee synovitis in RA. In addition, higher levels of VEGF in synovial fluid are found in non-responders, suggesting that locally produced VEGF is a biomarker for recurrence of synovial hyperplasia and the risk for arthritis relapse. PMID:24950951

  16. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix

    NASA Astrophysics Data System (ADS)

    Geng, Hongquan; Song, Hua; Qi, Jun; Cui, Daxiang

    2011-12-01

    We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic- co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

  17. Radiolabeling of VEGF165 with 99mTc to evaluate VEGFR expression in tumor angiogenesis.

    PubMed

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D; Szkudlinski, Mariusz W; Agostinelli, Enzo; Dierckx, Rudi A J O; Signore, Alberto

    2017-06-01

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool to noninvasively image tumor lesions and evaluate the efficacy of anti-angiogenic drugs that block the VEGFR pathway. Aim of the present study was to radiolabel the human VEGF165 analogue with 99mTechnetium (99mTc) and to evaluate the expression of VEGFR in both cancer and endothelial cells in the tumor microenvironment. 99mTc-VEGF showed in vitro binding to HUVEC cells and in vivo to xenograft tumors in mice (ARO, K1 and HT29). By comparing in vivo data with immunohistochemical analysis of excised tumors we found an inverse correlation between 99mTc-VEGF165 uptake and VEGF histologically detected, but a positive correlation with VEGF receptor expression (VEGFR1). Results of our studies indicate that endogenous VEGF production by cancer cells and other cells of tumor microenvironment should be taken in consideration when performing scintigraphy with radiolabeled VEGF, because of possible false negative results due to saturation of VEGFRs.

  18. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment.

    PubMed

    Wang, Shih-Wei; Liu, Shih-Chia; Sun, Hui-Lung; Huang, Te-Yang; Chan, Chia-Han; Yang, Chen-Yu; Yeh, Hung-I; Huang, Yuan-Li; Chou, Wen-Yi; Lin, Yu-Min; Tang, Chih-Hsin

    2015-01-01

    Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

    PubMed

    Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji

    2012-09-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. The role of the hypoxia response in shaping retinal vascular development in the absence of Norrin/Frizzled4 signaling.

    PubMed

    Rattner, Amir; Wang, Yanshu; Zhou, Yulian; Williams, John; Nathans, Jeremy

    2014-11-20

    To define the role of hypoxia and vascular endothelial growth factor (VEGF) in modifying the pattern, density, and permeability of the retinal vasculature in mouse models in which Norrin/Frizzled4 signaling is impaired. Retinal vascular structure was analyzed in mice with mutation of Ndp (the gene coding for Norrin) or Frizzle4 (Fz4) with or without three additional perturbations: (1) retinal hyperoxia and reduction of VEGF, (2) reduced induction of VEGF in response to hypoxia, or (3) reduced responsiveness of vascular endothelial cells (ECs) to VEGF. These perturbations were produced, respectively, by (1) genetic ablation of rod photoreceptors in the retinal degeneration 1 (rd1) mutant background, (2) conditional deletion of the gene coding for hypoxia-inducible factor (HIF)-2alpha either in all neural retina cells or specifically in Müller glia, and (3) conditional deletion of the VEGF coreceptor neuropilin1 (NRP1) in ECs. All three conditions reduced vascular proliferation. Eliminating HIF2-alpha in Müller glia blocked VEGF induction in the inner nuclear layer, identifying HIF2-alpha as the transcription factor responsible for the hypoxia response in these cells. When Norrin/Frizzled4 signaling was eliminated, a secondary elevation in VEGF levels was required to compromise the barrier to transendothelial movement of high molecular weight compounds. In the absence of Norrin or Frizzled4, the vascular phenotype is determined by the primary defect in Norrin/Frizzled4 signaling (i.e., canonical Wnt signaling) and compensatory responses resulting from hypoxia. This work may be useful in guiding therapeutic strategies for the treatment of familial exudative vitreoretinopathy (FEVR). Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. The role of vascular endothelial growth factor-B in metabolic homoeostasis: current evidence.

    PubMed

    Zafar, Mohammad Ishraq; Zheng, Juan; Kong, Wen; Ye, Xiaofeng; Gou, Luoning; Regmi, Anita; Chen, Lu-Lu

    2017-08-31

    It has been shown that adipose tissue and skeletal muscles in lean individuals respond to meal-induced hyperinsulinemia by increase in perfusion, the effect not observed in patients with metabolic syndrome. In conditions of hyperglycaemia and hypertriglyceridemia, this insufficient vascularization leads to the liberation of reactive oxygen species (ROS), and disruption of nitric oxide (NO) synthesis and endothelial signalling responsible for the uptake of circulating fatty acids (FAs), whose accumulation in skeletal muscles and adipose tissue is widely associated with the impairment of insulin signalling. While the angiogenic role of VEGF-A and its increased circulating concentrations in obesity have been widely confirmed, the data related to the metabolic role of VEGF-B are diverse. However, recent discoveries indicate that this growth factor may be a promising therapeutic agent in patients with metabolic syndrome. Preclinical studies agree over two crucial metabolic effects of VEGF-B: (i) regulation of FAs uptake and (ii) regulation of tissue perfusion via activation of VEGF-A/vascular endothelial growth factor receptor (VEGFR) 2 (VEGFR2) pathway. While in some preclinical high-fat diet studies, VEGF-B overexpression reverted glucose intolerance and stimulated fat burning, in others it further promoted accumulation of lipids and lipotoxicity. Data from clinical studies point out the changes in circulating or tissue expression levels of VEGF-B in obese compared with lean patients. Potentially beneficial effects of VEGF-B, achieved through enhanced blood flow (increased availability of insulin and glucose uptake in target organs) and decreased FAs uptake (prevention of lipotoxicity and improved insulin signalling), and its safety for clinical use, remain to be clarified through future translational research. © 2017 The Author(s).

  2. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Qingwen; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433; Jiang, Songmin

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, amore » therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.« less

  3. Induction of Podocyte-Derived VEGF Ameliorates Podocyte Injury and Subsequent Abnormal Glomerular Development Caused by Puromycin Aminonucleoside

    PubMed Central

    Ma, Ji; Matsusaka, Taiji; Yang, Hai-Chun; Zhong, Jianyong; Takagi, Nobuaki; Fogo, Agnes B.; Kon, Valentina; Ichikawa, Iekuni

    2011-01-01

    Our previous studies using puromycin aminonucleoside (PAN) established that podocyte damage leads to glomerular growth arrest during development and glomerulosclerosis later in life. The present study examined the potential benefit of maintaining podocyte-derived vascular endothelial growth factor (VEGF) in podocyte defense and survival following PAN injury using conditional transgenic podocytes and mice, in which human VEGF-A (hVEGF) transgene expression is controlled by tetracycline responsive element (TRE) promoter and reverse tetracycline transactivator (rtTA) in podocytes. In vitro experiments used primary cultured podocytes harvested from mice carrying podocin-rtTA and TRE-hVEGF transgenes, in which hVEGF can be induced selectively. Induction of VEGF in PAN-exposed podocytes resulted in preservation of intrinsic VEGF, α-actinin-4 and synaptopodin, anti-apoptotic marker Bcl-xL/Bax, as well as attenuation in apoptotic marker cleaved/total caspase-3. In vivo, compared with genotype controls, PAN-sensitive neonatal mice with physiologically relevant levels of podocyte-derived VEGF showed significantly larger glomeruli. Further, PAN-induced up-regulation of desmin, down-regulation of synaptopodin and nephrin, and disruption of glomerular morphology was significantly attenuated in VEGF-induced transgenic mice. Our data indicate that podocyte-derived VEGF provides self-preservation functions, which can rescue the cell following injury and preempt subsequent deterioration of the glomerulus in developing mice. PMID:21451433

  4. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    PubMed

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  5. Expression of Vascular Endothelial Growth Factor Receptors in Benign Vascular Lesions of the Orbit: A Case Series.

    PubMed

    Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R

    2016-01-01

    Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  6. Prognostic factors and recurrence of hepatitis B-related hepatocellular carcinoma after argon-helium cryoablation: a prospective study.

    PubMed

    Wang, Chunping; Lu, Yinying; Chen, Yan; Feng, Yongyi; An, Linjing; Wang, Xinzhen; Su, Shuhui; Bai, Wenlin; Zhou, Lin; Yang, Yongping; Xu, Dongping

    2009-01-01

    To determine the long-term prognosis of hepatocellular carcinoma (HCC) after argon-helium cryoablation and identify the risk factors that predict metastasis and recurrence. A total of 156 patients with hepatitis B-related HCC less than 5 cm in diameter who underwent curative cryoablation were followed up prospectively for tumor metastasis and recurrence. Immunohistochemistry was used to analyze the expression of vascular endothelial growth factor (VEGF). HBV basal core promoter (BCP) and precore mutations were detected by DNA sequence analysis. Post-treatment prognostic factors influencing survival, tumor metastasis and recurrence were assessed by univariate and multivariate analyses. The variables included the expression of VEGF in HCC tissues, clinical and pathologic characteristics of patients, and HBV features (HBV DNA level, HBV genotype, BCP mutation). The median follow-up period of the 156 patients was 37 months (range 8-48 months). The 1-, 2-, and 3-year overall survival rates were 92, 82 and 64%, respectively. The 1-, 2-, and 3-year recurrence-free survival rates were 72, 56 and 43%, respectively. Eighty-five patients (54.5%) had tumor recurrence or metastasis. The multivariate analysis showed that Child-Pugh class and the expression of VEGF in HCC tissues could be used as independent prognostic factors for overall survival. Meanwhile, the expression of VEGF in HCC tissues and HBV BCP mutations were found to be independent prognostic factors for recurrence-free survival. Strong expression of VEGF in HCC tissues and HBV BCP mutations are important risk predictors for recurrence or metastasis of HCC smaller than 5 cm in diameter.

  7. Development of VEGF-loaded PLGA matrices in association with mesenchymal stem cells for tissue engineering

    PubMed Central

    Rosa, A.R.; Steffens, D.; Santi, B.; Quintiliano, K.; Steffen, N.; Pilger, D.A.; Pranke, P.

    2017-01-01

    The association of bioactive molecules, such as vascular endothelial growth factor (VEGF), with nanofibers facilitates their controlled release, which could contribute to cellular migration and differentiation in tissue regeneration. In this research, the influence of their incorporation on a polylactic-co-glycolic acid (PLGA) scaffold produced by electrospinning on cell adhesion and viability and cytotoxicity was carried out in three groups: 1) PLGA/BSA/VEGF; 2) PLGA/BSA, and 3) PLGA. Morphology, fiber diameter, contact angle, loading efficiency and controlled release of VEGF of the biomaterials, among others, were measured. The nanofibers showed smooth surfaces without beads and with interconnected pores. PLGA/BSA/VEGF showed the smallest water contact angle and VEGF released for up to 160 h. An improvement in cell adhesion was observed for the PLGA/BSA/VEGF scaffolds compared to the other groups and the scaffolds were non-toxic for the cells. Therefore, the scaffolds were shown to be a good strategy for sustained delivery of VEGF and may be a useful tool for tissue engineering. PMID:28793048

  8. TNF-α Decreases VEGF Secretion in Highly Polarized RPE Cells but Increases It in Non-Polarized RPE Cells Related to Crosstalk between JNK and NF-κB Pathways

    PubMed Central

    Terasaki, Hiroto; Kase, Satoru; Shirasawa, Makoto; Otsuka, Hiroki; Hisatomi, Toshio; Sonoda, Shozo; Ishida, Susumu; Ishibashi, Tatsuro; Sakamoto, Taiji

    2013-01-01

    Asymmetrical secretion of vascular endothelial growth factor (VEGF) by retinal pigment epithelial (RPE) cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD). We studied the effect of tumor necrosis factor-α (TNF-α) on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively) in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells. PMID:23922887

  9. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent. VEGF stimulated chemotaxis, is critically dependent on Rac activation. Osteopontin was a potent matrix activator of motility, and perhaps one explanation for the absence of a VEGF plus osteopontin effect is that osteopontin stimulated motility was inhibitory to the Rac pathway.

  10. Antagonism of EG-VEGF Receptors as Targeted Therapy for Choriocarcinoma Progression In Vitro and In Vivo.

    PubMed

    Traboulsi, Wael; Sergent, Frédéric; Boufettal, Houssine; Brouillet, Sophie; Slim, Rima; Hoffmann, Pascale; Benlahfid, Mohammed; Zhou, Qun Y; Balboni, Gianfranco; Onnis, Valentina; Bolze, Pierre A; Salomon, Aude; Sauthier, Philippe; Mallet, François; Aboussaouira, Touria; Feige, Jean J; Benharouga, Mohamed; Alfaidy, Nadia

    2017-11-15

    Purpose: Choriocarcinoma (CC) is the most malignant gestational trophoblastic disease that often develops from complete hydatidiform moles (CHM). Neither the mechanism of CC development nor its progression is yet characterized. We recently identified endocrine gland-derived vascular endothelial growth factor (EG-VEGF) as a novel key placental growth factor that controls trophoblast proliferation and invasion. EG-VEGF acts via two receptors, PROKR1 and PROKR2. Here, we demonstrate that EG-VEGF receptors can be targeted for CC therapy. Experimental Design: Three approaches were used: (i) a clinical investigation comparing circulating EG-VEGF in control ( n = 20) and in distinctive CHM ( n = 38) and CC ( n = 9) cohorts, (ii) an in vitro study investigating EG-VEGF effects on the CC cell line JEG3, and (iii) an in vivo study including the development of a novel CC mouse model, through a direct injection of JEG3-luciferase into the placenta of gravid SCID-mice. Results: Both placental and circulating EG-VEGF levels were increased in CHM and CC (×5) patients. EG-VEGF increased JEG3 proliferation, migration, and invasion in two-dimensional (2D) and three-dimensional (3D) culture systems. JEG3 injection in the placenta caused CC development with large metastases compared with their injection into the uterine horn. Treatment of the animal model with EG-VEGF receptor's antagonists significantly reduced tumor development and progression and preserved pregnancy. Antibody-array and immunohistological analyses further deciphered the mechanism of the antagonist's actions. Conclusions: Our work describes a novel preclinical animal model of CC and presents evidence that EG-VEGF receptors can be targeted for CC therapy. This may provide safe and less toxic therapeutic options compared with the currently used multi-agent chemotherapies. Clin Cancer Res; 23(22); 7130-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Vascular endothelial growth factor (VEGF) expression in locally advanced prostate cancer: secondary analysis of radiation therapy oncology group (RTOG) 8610.

    PubMed

    Pan, Larry; Baek, Seunghee; Edmonds, Pamela R; Roach, Mack; Wolkov, Harvey; Shah, Satish; Pollack, Alan; Hammond, M Elizabeth; Dicker, Adam P

    2013-04-25

    Angiogenesis is a key element in solid-tumor growth, invasion, and metastasis. VEGF is among the most potent angiogenic factor thus far detected. The aim of the present study is to explore the potential of VEGF (also known as VEGF-A) as a prognostic and predictive biomarker among men with locally advanced prostate cancer. The analysis was performed using patients enrolled on RTOG 8610, a phase III randomized control trial of radiation therapy alone (Arm 1) versus short-term neoadjuvant and concurrent androgen deprivation and radiation therapy (Arm 2) in men with locally advanced prostate carcinoma. Tissue samples were obtained from the RTOG tissue repository. Hematoxylin and eosin slides were reviewed, and paraffin blocks were immunohistochemically stained for VEGF expression and graded by Intensity score (0-3). Cox or Fine and Gray's proportional hazards models were used. Sufficient pathologic material was available from 103 (23%) of the 456 analyzable patients enrolled in the RTOG 8610 study. There were no statistically significant differences in the pre-treatment characteristics between the patient groups with and without VEGF intensity data. Median follow-up for all surviving patients with VEGF intensity data is 12.2 years. Univariate and multivariate analyses demonstrated no statistically significant correlation between the intensity of VEGF expression and overall survival, distant metastasis, local progression, disease-free survival, or biochemical failure. VEGF expression was also not statistically significantly associated with any of the endpoints when analyzed by treatment arm. This study revealed no statistically significant prognostic or predictive value of VEGF expression for locally advanced prostate cancer. This analysis is among one of the largest sample bases with long-term follow-up in a well-characterized patient population. There is an urgent need to establish multidisciplinary initiatives for coordinating further research in the area of human prostate cancer biomarkers.

  12. [Effect of Yishen capsule on serum vascular endothelial growth factor and cell immunity in patients with chronic glomerulonephritis].

    PubMed

    Wu, Xi-li; Sun, Wan-sen; Zhang, Wang-gang; Qiao, Cheng-lin; Wang, Zhu; Wang, Juan

    2007-11-01

    To explore the effect of Yishen capsule on the serum vascular endothelial growth factor (VEGF), the cell immunity and the theraphic. Serum VEGF and T cell subsets were studied in 30 normal subjects and 83 patients before and after treatment. Compare with normal subjects, CD3, CD4, CD4/CD8 were decreased, CD8 and serum VEGF were increased obviously (P <0. 05 or P <0. 01). After three months treatment with YiShen capsule, CD4/CD8 was increased, CD8 and serum VEGF were decreased significantly (P <0.05 or P <0.01). Yishen capsule can reduce the proteinuria, increase the function of immunity and improve the clinical symptom of patients with chronic glomerulonephritis, achieved the effects of allevating chronic glomerular sclerosis ultimately.

  13. Stimulation by thyroid-stimulating hormone and Grave's immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo.

    PubMed

    Sato, K; Yamazaki, K; Shizume, K; Kanaji, Y; Obara, T; Ohsumi, K; Demura, H; Yamaguchi, S; Shibuya, M

    1995-09-01

    To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.

  14. Production of Experimental Malignant Pleural Effusions Is Dependent on Invasion of the Pleura and Expression of Vascular Endothelial Growth Factor/Vascular Permeability Factor by Human Lung Cancer Cells

    PubMed Central

    Yano, Seiji; Shinohara, Hisashi; Herbst, Roy S.; Kuniyasu, Hiroki; Bucana, Corazon D.; Ellis, Lee M.; Fidler, Isaiah J.

    2000-01-01

    We determined the molecular mechanisms that regulate the pathogenesis of malignant pleural effusion (PE) associated with advanced stage of human, non-small-cell lung cancer. Intravenous injection of human PC14 and PC14PE6 (adenocarcinoma) or H226 (squamous cell carcinoma) cells into nude mice yielded numerous lung lesions. PC14 and PC14PE6 lung lesions invaded the pleura and produced PE containing a high level of vascular endothelial growth factor (VEGF)-localized vascular hyperpermeability. Lung lesions produced by H226 cells were confined to the lung parenchyma with no PE. The level of expression of VEGF mRNA and protein by the cell lines directly correlated with extent of PE formation. Transfection of PC14PE6 cells with antisense VEGF165 gene did not inhibit invasion into the pleural space but reduced PE formation. H226 cells transfected with either sense VEGF 165 or sense VEGF 121 genes induced localized vascular hyperpermeability and produced PE only after direct implantation into the thoracic cavity. The production of PE was thus associated with the ability of tumor cells to invade the pleura, a property associated with expression of high levels of urokinase-type plasminogen activator and low levels of TIMP-2. Collectively, the data demonstrate that the production of malignant PE requires tumor cells to invade the pleura and express high levels of VEGF/VPF. PMID:11106562

  15. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    PubMed Central

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H.

    2012-01-01

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF165 to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form ofVEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å2 in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2. PMID:22927390

  16. Serum levels of vascular endothelial growth factor in preeclamptic and normotensive pregnancy.

    PubMed

    Hunter, A; Aitkenhead, M; Caldwell, C; McCracken, G; Wilson, D; McClure, N

    2000-12-01

    The purpose of these studies was first to determine if vascular endothelial growth factor (VEGF), a vascular permeability agent, is increased in the serum of women with preclinical and clinical preclampsia (PE), and second to determine how these levels change after delivery. Twenty preeclamptic and 25 normotensive women at term consented to have blood taken pre- and post-delivery. Ten preeclamptic, 10 gestational hypertensive, and 28 normotensive women had blood collected respectively at 12, 20, and 30 weeks gestation and predelivery. Serum was extracted from all samples, and VEGF concentrations were determined by radioimmunoassay. Predelivery, the median serum VEGF concentration in the preeclamptic group was 51.7 ng/mL, and in the control group the concentration was 13.9 ng/mL (P<0.0001). Serum VEGF concentrations fell within 24 hours of delivery in both groups, which resulted in median values of 3.8 ng/mL and 3.2 ng/mL respectively (P<0.3). At 12 and 20 weeks, there was no significant difference between the serum VEGF concentrations in the 3 groups (P<0.3, 0.052 respectively). At 30 weeks, prior to the onset of clinical PE, the serum VEGF levels in the eventual preeclamptic group were elevated significantly compared with the gestational hypertensive and normotensive groups (P<0.001). Predelivery serum VEGF concentrations were significantly elevated in the preeclamptic group and were similar to those in the first study (P<0.0001). These findings suggest that VEGF may be important in the pathophysiology of PE and has the potential to act as a preclinical marker for the condition.

  17. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A)more » signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.« less

  18. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.

    PubMed

    Leach, J Kent; Kaigler, Darnell; Wang, Zhuo; Krebsbach, Paul H; Mooney, David J

    2006-06-01

    Bioactive glasses are potentially useful as bone defect fillers, and vascular endothelial growth factor (VEGF) has demonstrated benefit in bone regeneration as well. We hypothesized that the specific combination of prolonged localized VEGF presentation from a matrix coated with a bioactive glass may enhance bone regeneration. To test this hypothesis, the capacity of VEGF-releasing polymeric scaffolds with a bioactive glass coating was examined in vitro and in vivo using a rat critical-sized defect model. In the presence of a bioactive glass coating, we did not detect pronounced differences in the differentiation of human mesenchymal stem cells in vitro. However, we observed significantly enhanced mitogenic stimulation of endothelial cells in the presence of the bioactive glass coating, with an additive effect with VEGF release. This trend was maintained in vivo, where coated VEGF-releasing scaffolds demonstrated significant improvements in blood vessel density at 2 weeks versus coated control scaffolds. At 12 weeks, bone mineral density was significantly increased in coated VEGF-releasing scaffolds versus coated controls, while only a slight increase in bone volume fraction was observed. The results of this study suggest that a bioactive glass coating on a polymeric substrate participates in bone healing through indirect processes which enhance angiogenesis and bone maturation and not directly on osteoprogenitor differentiation and bone formation. The mass of bioactive glass used in this study provides a comparable and potentially additive, response to localized VEGF delivery over early time points. These studies demonstrate a materials approach to achieve an angiogenic response formerly limited to the delivery of inductive growth factors.

  19. In vivo vascularization of MSC-loaded porous hydroxyapatite constructs coated with VEGF-functionalized collagen/heparin multilayers

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Li, Bo; Lou, Lixia; Xu, Yufeng; Ye, Xin; Yao, Ke; Ye, Juan; Gao, Changyou

    2016-01-01

    Rapid and adequate vascularization is vital to the long-term success of porous orbital enucleation implants. In this study, porous hydroxyapatite (HA) scaffolds coated with vascular endothelial growth factor (VEGF)-functionalized collagen (COL)/heparin (HEP) multilayers (porosity 75%, pore size 316.8 ± 77.1 μm, VEGF dose 3.39 ng/mm3) were fabricated to enhance vascularization by inducing the differentiation of mesenchymal stem cells (MSCs) to endothelial cells. The in vitro immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting results demonstrated that the expression of the endothelial differentiation markers CD31, Flk-1, and von Willebrand factor (vWF) was significantly increased in the HA/(COL/HEP)5/VEGF/MSCs group compared with the HA/VEGF/MSCs group. Moreover, the HA/(COL/HEP)5 scaffolds showed a better entrapment of the MSCs and accelerated cell proliferation. The in vivo assays showed that the number of newly formed vessels within the constructs after 28 d was significantly higher in the HA/(COL/HEP)5/VEGF/MSCs group (51.9 ± 6.3/mm2) than in the HA (26.7 ± 2.3/mm2) and HA/VEGF/MSCs (38.2 ± 2.4/mm2) groups. The qRT-PCR and western blotting results demonstrated that the HA/(COL/HEP)5/VEGF/MSCs group also had the highest expression of CD31, Flk-1, and vWF at both the mRNA and protein levels.

  20. The urokinase plasminogen activator system components are regulated by vascular endothelial growth factor D in bovine oviduct.

    PubMed

    García, Daniela C; Russo-Maenza, Agostina; Miceli, Dora C; Valdecantos, Pablo A; Roldán-Olarte, Mariela

    2018-06-08

    SummaryThe mammalian oviduct plays a pivotal role in the success of early reproductive events. The urokinase plasminogen activator system (uPAS) is present in the bovine oviduct and is involved in extracellular matrix remodelling through plasmin generation. This system can be regulated by several members of the vascular endothelial growth factors (VEGF) and their receptors. In this study, the VEGF-D effect on the regulation of uPAS was evaluated. First, RT-polymerase chain reaction (PCR) analyses were used to evidence the expression of VEGF-D and its receptors in oviductal epithelial cells (BOEC). VEGF-D, VEGFR2 and VEGFR3 transcripts were found in ex vivo and in vitro BOEC, while only VEGFR2 mRNA was present after in vitro conditions. VEGF-D showed a regulatory effect on uPAS gene expression in a dose-dependent manner, inducing an increase in the expression of both uPA and its receptor (uPAR) at 24 h post-induction and decreases in the expression of its inhibitor (PAI-1). In addition, the regulation of cell migration induced by VEGF-D and uPA in BOEC monolayer cultures was analyzed. The wound areas of monolayer cultures incubated with VEGF-D 10 ng/ml or uPA 10 nM were modified and significant differences were found at 24 h for both stimulations. These results indicated that uPAS and VEGF-D systems can modify the arrangement of the bovine oviductal epithelium and contribute to the correct maintenance of the oviductal microenvironment.

Top