Sample records for factor vegf protein

  1. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    NASA Astrophysics Data System (ADS)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66

  2. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF) and Her-2 Protein in the Genesis of Cervical Carcinoma.

    PubMed

    Rahmani, Arshad H; Babiker, Ali Yousif; Alsahli, Mohammed A; Almatroodi, Saleh A; Husain, Nazik Elmalaika O S

    2018-02-15

    Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p < 0.05). However, no significant difference in the expression pattern of VEGF protein was observed among the different grades and stages of tumours (p > 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p < 0.05). The expression level of Her-2 protein was not correlated with the stage of a tumour (p > 0.05). The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.

  3. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF) and Her-2 Protein in the Genesis of Cervical Carcinoma

    PubMed Central

    Rahmani, Arshad H.; Babiker, Ali Yousif; Alsahli, Mohammed A.; Almatroodi, Saleh A.; Husain, Nazik Elmalaika O. S.

    2018-01-01

    BACKGROUND: Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. AIM: This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. METHODS: A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. RESULTS: Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p < 0.05). However, no significant difference in the expression pattern of VEGF protein was observed among the different grades and stages of tumours (p > 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p < 0.05). The expression level of Her-2 protein was not correlated with the stage of a tumour (p > 0.05). CONCLUSION: The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer. PMID:29531585

  4. [Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis].

    PubMed

    Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V

    2017-01-01

    Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.

  5. Vascular endothelial growth factor A (VEGF-A) decreases expression and secretion of pleiotrophin in a VEGF receptor-independent manner.

    PubMed

    Poimenidi, Evangelia; Theodoropoulou, Christina; Koutsioumpa, Marina; Skondra, Lamprini; Droggiti, Eirini; van den Broek, Marloes; Koolwijk, Pieter; Papadimitriou, Evangelia

    2016-05-01

    Vascular endothelial growth factor A (VEGF-A) is a key molecule in angiogenesis acting through VEGF receptors (VEGFRs), ανβ3 integrin, receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and cell surface nucleolin (NCL). Pleiotrophin (PTN) stimulates endothelial cell migration and limits the angiogenic effects of VEGF-A165 to the levels of its own effect, possibly acting as a VEGF-A165 modifier. Since PTN and VEGF-A165 share receptors and actions on endothelial cells, in the present work we studied whether and how VEGF-A165 affects PTN expression or secretion. VEGF-A165 decreased PTN mRNA and protein levels acting at the transcriptional level. Bevacizumab, a selective VEGFR2 tyrosine kinase inhibitor and down-regulation of VEGFR2 expression by siRNA did not affect this decrease, suggesting that it is VEGFR-independent. VEGF-A121 also decreased PTN mRNA and protein levels, suggesting that heparin binding of VEGF-A165 is not involved. Blockage of cell surface NCL, lack of expression or mutation of β3 integrin and down-regulation of RPTPβ/ζ abolished the inhibitory effect of VEGF-A165 on PTN expression and secretion. Down-regulation of endogenous PTN in endothelial cells enhanced VEGF-A165-induced increase in migration and tube formation on matrigel. Collectively, these data suggest that VEGF-A down-regulates PTN expression and secretion through the RPTPβ/ζ-ανβ3-NCL axis to enhance its own effect on cell migration and further highlight the role of RPTPβ/ζ in VEGF-A actions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  7. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides

    PubMed Central

    Zhao, Wenjing; McCallum, Scott A.; Xiao, Zhongping; Zhang, Fuming; Linhardt, Robert J.

    2011-01-01

    Heparin and heparan sulphate (HS) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS-binding to vascular endothelial growth factor (VEGF) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and that a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that VEGF binding affinity likely depends on the specific structural features of these oligosaccharides including their degree of sulphation and sugar ring stereochemistry and conformation. Notably, the unique 3-O-sulpho group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs. PMID:21658003

  8. The prognosis was poorer in colorectal cancers that expressed both VEGF and PROK1 (No correlation coefficient between VEGF and PROK1).

    PubMed

    Goi, Takanori; Nakazawa, Toshiyuki; Hirono, Yasuo; Yamaguchi, Akio

    2015-10-06

    The angiogenic proteins vascular endothelial growth factor (VEGF) and prokineticin1 (PROK1) proteins are considered important in colorectal cancer, the relationship between their simultaneous expression and prognosis was investigated in the present study. VEGF and PROK1 expression in 620 primary human colorectal cancer lesions was confirmed via immunohistochemical staining with anti-VEGF and anti-PROK1 antibodies, and the correlation between the expression of these 2 proteins and recurrence/prognosis were investigated. VEGF protein was expressed in 329 (53.1%) and PROK1 protein was expressed in 223 (36.0%). PROK1 and VEGF were simultaneously expressed in 116 (18.7%) of the 620 cases. The correlation coefficient between VEGF expression and PROK1 expression was r = 0.11, and therefore correlation was not observed. Clinical pathology revealed that substantially lymphnode matastasis, hematogenous metastasis, or TMN advanced-stage IV was significantly more prevalent in cases that expressed both VEGF and PROK1 than in the cases negative for both proteins or those positive for only 1 of the proteins. Also the cases positive for both proteins exhibited the worst recurrence and prognosis. In the Cox proportional hazards model, VEGF and PROK1 expression was an independent prognostic factor. The prognosis was poorer in colorectal cancers that expressed both PROK1 and VEGF relative to the cases that expressed only 1 protein, and the expression of both proteins was found to be an independent prognostic factor.

  9. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas.

    PubMed

    Roskoski, Robert

    2017-06-01

    One Von Hippel-Lindau (VHL) tumor suppressor gene is lost in most renal cell carcinomas while the nondeleted allele exhibits hypermethylation-induced inactivation or inactivating somatic mutations. As a result of these genetic modifications, there is an increased production of VEGF-A and pro-angiogenic growth factors in this disorder. The important role of angiogenesis in the pathogenesis of renal cell carcinomas and other tumors has focused the attention of investigators on the biology of VEGFs and VEGFR1-3 and to the development of inhibitors of the intricate and multifaceted angiogenic pathways. VEGFR1-3 contain an extracellular segment with seven immunoglobulin-like domains, a transmembrane segment, a juxtamembrane segment, a protein kinase domain with an insert of about 70 amino acid residues, and a C-terminal tail. VEGF-A stimulates the activation of preformed VEGFR2 dimers by the auto-phosphorylation of activation segment tyrosines followed by the phosphorylation of additional protein-tyrosines that recruit phosphotyrosine binding proteins thereby leading to signalling by the ERK1/2, AKT, Src, and p38 MAP kinase pathways. VEGFR1 modulates the activity of VEGFR2, which is the chief pathway in vasculogenesis and angiogenesis. VEGFR3 and its ligands (VEGF-C and VEGF-D) are involved primarily in lymphangiogenesis. Small molecule VEGFR1/2/3 inhibitors including axitinib, cabozantinib, lenvatinib, sorafenib, sunitinib, and pazopanib are approved by the FDA for the treatment of renal cell carcinomas. Most of these agents are type II inhibitors of VEGFR2 and inhibit the so-called DFG-Asp out inactive enzyme conformation. These drugs are steady-state competitive inhibitors with respect to ATP and like ATP they form hydrogen bonds with the hinge residues that connect the small and large protein kinase lobes. Bevacizumab, a monoclonal antibody that binds to VEGF-A, is also approved for the treatment of renal cell carcinomas. Resistance to these agents invariably occurs

  10. Hypoxia-Induced Expression of VEGF Splice Variants and Protein in Four Retinal Cell Types

    PubMed Central

    Watkins, William M.; McCollum, Gary W.; Savage, Sara R.; Capozzi, Megan E.; Penn, John S.; Morrison, David G.

    2014-01-01

    The purpose of this study was to investigate the hypoxia-induced Vegf120, Vegf164 and Vegf188 mRNA expression profiles in rat Müller cells (MC), astrocytes, retinal pigmented epithelial cells (RPE) and retinal microvascular endothelial cells (RMEC) and correlate these findings to VEGF secreted protein. Cultured cells were exposed to normoxia or hypoxia. Total RNA was isolated from cell lysates and Vegf splice variant mRNA copy numbers were assayed by a validated qRT-PCR external calibration curve method. mRNA copy numbers were normalized to input total RNA. Conditioned medium was collected from cells and assayed for total VEGF protein by ELISA. Hypoxia increased total Vegf mRNA and secreted protein in all the retinal cell types, with the highest levels observed in MC and astrocytes ranking second. Total Vegf mRNA levels in hypoxic RPE and RMEC were comparable; however, the greatest hypoxic induction of each Vegf splice variant mRNA was observed in RMEC. RPE and RMEC ranked 3rd and 4th respectively, in terms of secreted total VEGF protein in hypoxia. The Vegf120, Vegf164 and Vegf188 mRNA splice variants were all increased in hypoxic cells compared to normoxic controls. In normoxia, the relative Vegf splice variant mRNA levels ranked from highest to lowest for each cell type were Vegf164>Vegf120>Vegf188. Hypoxic induction did not alter this ranking, although it did favor an increased stoichiometry of Vegf164 mRNA over the other two splice variants. MC and astrocytes are likely to be the major sources of total Vegf, and Vegf164 splice variant mRNAs, and VEGF protein in retinal hypoxia. PMID:24076411

  11. Association of vascular endothelial growth factor (VEGF) gene polymorphism and increased serum VEGF concentration with pancreatic adenocarcinoma.

    PubMed

    Sivaprasad, Siddapuram; Govardhan, Bale; Harithakrishna, Ramanujam; Venkat Rao, Guduru; Pradeep, Rebala; Kunal, Bharadhwaj; Ramakrishna, Nalla; Anuradha, Shekaran; Reddy, Duvvuru Nageshwar

    2013-01-01

    BACKGROUND &AIM: Pancreatic cancer is related to high mortality rate. The vascular endothelial growth factor (VEGF) has a strong influence in tumor-related angiogenesis having association with the grade of angiogenesis and the prognosis of different solid tumors including pancreatic cancer. The present study was aimed to analyze the genotype and haplotype distribution of VEGF gene single nucleotide polymorphisms (SNPs), -460T/C, +405G/C, +936C/T, in patients with pancreatic adenocarcinoma from South India, and the effect of these SNPs on serum VEGF level. Total 80 patients with pancreatic adenocarcinoma and 87 controls were recruited. The genotype of VEGF gene polymorphisms was determined in both patients and controls using polymerase chain reaction-restriction fragment length polymorphism method. The serum VEGF protein was estimated by standard enzyme-linked immunosorbent assay. The genotype, +405G/G of VEGF gene showed a significant association with the patients with pancreatic adenocarcinoma (P = 0.012, Odds ratio: 2.133), whereas no significant difference was found in the genotype distribution of SNPs, -460C/T and +936C/T between patient and control groups (P > 0.05). Serum VEGF level was found to be significantly high in patients (1315.10 pg/Ml, SD ± 230.79) when compared to controls (591.35 pg/mL, SD ± 92.48) (P < 0.0001), which showed a strong genotype-phenotype correlation between genotype +405G/G and serum VEGF level. Further, the haplotype C-G-T showed a strong association with the disease, and no specific haplotype was associated with increased serum VEGF level. The polymorphism, +405G/C but not -460T/C and +936C/T, of VEGF gene is strongly associated with pancreatic adenocarcinoma, and this SNP has significant influence on serum VEGF level. Copyright © 2013 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  12. Vascular endothelial growth factor (VEGF) inhibition--a critical review.

    PubMed

    Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-03-01

    Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.

  13. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165)

    NASA Astrophysics Data System (ADS)

    Koide, Hiroyuki; Yoshimatsu, Keiichi; Hoshino, Yu; Lee, Shih-Hui; Okajima, Ai; Ariizumi, Saki; Narita, Yudai; Yonamine, Yusuke; Weisman, Adam C.; Nishimura, Yuri; Oku, Naoto; Miura, Yoshiko; Shea, Kenneth J.

    2017-07-01

    Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts.

  14. VEGF-Trap: a VEGF blocker with potent antitumor effects.

    PubMed

    Holash, Jocelyn; Davis, Sam; Papadopoulos, Nick; Croll, Susan D; Ho, Lillian; Russell, Michelle; Boland, Patricia; Leidich, Ray; Hylton, Donna; Burova, Elena; Ioffe, Ella; Huang, Tammy; Radziejewski, Czeslaw; Bailey, Kevin; Fandl, James P; Daly, Tom; Wiegand, Stanley J; Yancopoulos, George D; Rudge, John S

    2002-08-20

    Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors. The highest-affinity VEGF blocker described to date is a soluble decoy receptor created by fusing the first three Ig domains of VEGF receptor 1 to an Ig constant region; however, this fusion protein has very poor in vivo pharmacokinetic properties. By determining the requirements to maintain high affinity while extending in vivo half life, we were able to engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties. This VEGF-Trap effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors. VEGF-Trap-mediated blockade may be superior to that achieved by other agents, such as monoclonal antibodies targeted against the VEGF receptor.

  15. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    PubMed

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  16. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    PubMed

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  17. Glutamate Neonatal Excitotoxicity Modifies VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 Protein Expression Profiles During Postnatal Development of the Cerebral Cortex and Hippocampus of Male Rats.

    PubMed

    Castañeda-Cabral, Jose Luis; Beas-Zarate, Carlos; Gudiño-Cabrera, Graciela; Ureña-Guerrero, Monica E

    2017-09-01

    Vascular endothelial growth factor (VEGF) exerts both neuroprotective and proinflammatory effects in the brain, depending on the VEGF (A-E) and VEGF receptor (VEGFR1-3) types involved. Neonatal monosodium glutamate (MSG) treatment triggers an excitotoxic degenerative process associated with several neuropathological conditions, and VEGF messenger RNA (mRNA) expression is increased at postnatal day (PD) 14 in rat hippocampus (Hp) following the treatment. The aim of this work was to establish the changes in immunoreactivity to VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 proteins induced by neonatal MSG treatment (4 g/kg, subcutaneous, at PD1, 3, 5 and 7) in the cerebral motor cortex (CMC) and Hp. Samples collected from PD2 to PD60 from control and MSG-treated male Wistar rats were assessed by western blotting for each protein. Considering that immunoreactivity measured by western blotting is related to the protein expression level, we found that each protein in each cerebral region has a specific expression profile throughout the studied ages, and all profiles were differentially modified by MSG. Specifically, neonatal MSG treatment significantly increased the immunoreactivity to the following: (1) VEGF-A at PD8-PD10 in the CMC and at PD6-PD8 in the Hp; (2) VEGF-B at PD2, PD6 and PD10 in the CMC and at PD8-PD9 in the Hp; and (3) VEGFR-2 at PD6-PD8 in the CMC and at PD21-PD60 in the Hp. Also, MSG significantly reduced the immunoreactivity to the following: (1) VEGF-B at PD8-PD9 and PD45-PD60 in the CMC; and (2) VEGFR-1 at PD4-PD6 and PD14-PD21 in the CMC and at PD4, PD9-PD10 and PD60 in the Hp. Our results indicate that VEGF-mediated signalling is involved in the excitotoxic process triggered by neonatal MSG treatment and should be further characterized.

  18. Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF121 Expressed in E. coli Origami B (DE3) with Molecular Chaperones.

    PubMed

    Kaplan, Ondřej; Zárubová, Jana; Mikulová, Barbora; Filová, Elena; Bártová, Jiřina; Bačáková, Lucie; Brynda, Eduard

    2016-01-01

    We describe the production of a highly-active mutant VEGF variant, α2-PI1-8-VEGF121, which contains a substrate sequence for factor XIIIa at the aminoterminus designed for incorporation into a fibrin gel. The α2-PI1-8-VEGF121 gene was synthesized, cloned into a pET-32a(+) vector and expressed in Escherichia coli Origami B (DE3) host cells. To increase the protein folding and the solubility, the resulting thioredoxin-α2-PI1-8-VEGF121 fusion protein was co-expressed with recombinant molecular chaperones GroES/EL encoded by independent plasmid pGro7. The fusion protein was purified from the soluble fraction of cytoplasmic proteins using affinity chromatography. After cleavage of the thioredoxin fusion part with thrombin, the target protein was purified by a second round of affinity chromatography. The yield of purified α2-PI1-8-VEGF121 was 1.4 mg per liter of the cell culture. The α2-PI1-8-VEGF121 expressed in this work increased the proliferation of endothelial cells 3.9-8.7 times in comparison with commercially-available recombinant VEGF121. This very high mitogenic activity may be caused by co-expression of the growth factor with molecular chaperones not previously used in VEGF production. At the same time, α2-PI1-8-VEGF121 did not elicit considerable inflammatory activation of human endothelial HUVEC cells and human monocyte-like THP-1 cells.

  19. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    PubMed

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  20. EG-VEGF: a key endocrine factor in placental development.

    PubMed

    Brouillet, Sophie; Hoffmann, Pascale; Feige, Jean-Jacques; Alfaidy, Nadia

    2012-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF), also named prokineticin 1, is the canonical member of the prokineticin family. Numerous reports suggest a direct involvement of this peptide in normal and pathological reproductive processes. Recent advances propose EG-VEGF as a key endocrine factor that controls many aspects of placental development and suggest its involvement in the development of preeclampsia (PE), the most threatening pathology of human pregnancy. This review describes the finely tuned action and regulation of EG-VEGF throughout human pregnancy, argues for its clinical relevance as a potential diagnostic marker of the onset of PE, and discusses future research directions for therapeutic targeting of EG-VEGF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Identification of functional VEGF receptors on human platelets.

    PubMed

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  2. Silencing of VEGF inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via VEGF/PI3K/AKT signaling pathway

    PubMed Central

    Peng, Ningning; Gao, Shuming; Guo, Xu; Wang, Guangya; Cheng, Cai; Li, Min; Liu, Kehun

    2016-01-01

    Background: Osteosarcoma is a kind of highly malignant tumor and the growth and metastasis is closely related to angiogenesis. Vascular endothelial growth factor (VEGF) is an important angiogenesis-promoting factor. In the current study, we investigated the effects of suppressed VEGF on osteosarcoma and its molecular mechanism provided for a basis by targeting angiogenesis. Material/Methods: We established bearing human osteosarcoma Wistar rats model by subcutaneous inoculation of human SaOS-2 cells and the adenovirus vector Ad-VEGF-siRNA was constructed for further study. We assessed the efficiency of VEGF silencing and its influence on SaOS-2 cells. The expression of mRNA and protein were detected by RT-PCR and western blotting, respectively. Intratumoral microvessel density (MVD), VEGF and CD31 were evaluated by immunohistochemistry. We detected the cell apoptotic rates by flow cytometry. Results: Our results indicated that Ad-VEGF-siRNA could effectively suppressed the expression of VEGF expression, inhibited the proliferation capability and promoted apoptosis of SaOS-2 cells in vitro. Silencing of VEGF expression also suppress osteosarcoma tumor growth and reduce osteosarcoma angiogenesis in the Wistar rats model in vivo. Furthermore, We found that phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) activation were considerably reduced while inhibition VEGF expression in SaOS-2 cells. Conclusion: Our data demonstrated that VEGF silencing could suppress cells proliferation, promote cells apoptosis and reduce osteosarcoma angiogenesis through inactivation of VEGF/PI3K/AKT signaling pathway. PMID:27158386

  3. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) expression in colorectal cancer.

    PubMed

    Nagano, Hideki; Goi, Takanori; Koneri, Kenji; Hirono, Yasuo; Katayama, Kanji; Yamaguchi, Akio

    2007-12-01

    Vascular endothelial growth factor (VEGF) is known as an important factor in the growth and metastasis of cancer cells. In 2001, a novel angiogenesis factor, endocrine gland-derived vascular endothelial growth factor (EG-VEGF), was cloned. In this study, we investigated the expression of EG-VEGF in colorectal cancer, the relationship between its expression and clinicopathological factors, and the in vitro activity of EG-VEGF transfectants. We determined expression levels of EG-VEGF in 113 advanced colorectal cancers resected in our hospital by quantitative PCR, and compared the expression levels and clinicopathological findings by multivariate analyses. The expression of EG-VEGF mRNA was positive in 31 cancers and negative in 82 cancers. We found that compared with the negative expression of the EG-VEGF gene, its positive expression was more frequently associated with hematogenous metastasis, and was associated with a poorer survival rate. In addition, EG-VEGF transfectants showed a higher degree of in vitro tubular formation than control cells. We speculate that, in colorectal cancers, the EG-VEGF gene functions as an important factor in angiogenesis in primary and metastatic lesions, and consider that it is useful as a novel prognostic factor. EG-VEGF molecule-targeted therapy has the potential for improving survival rates.

  4. Effects of nerve growth factor (NGF) on blood vessels area and expression of the angiogenic factors VEGF and TGFbeta1 in the rat ovary

    PubMed Central

    Julio-Pieper, Marcela; Lara, Hernán E; Bravo, Javier A; Romero, Carmen

    2006-01-01

    Background Angiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary. Results In cultured neonatal rat ovaries, NGF increased VEGF mRNA and protein levels, whereas TGFbeta1 expression did not change. Sectioning of the superior ovarian nerve, which increases ovarian NGF protein content, augmented VEGF immunoreactivity and the area of capillary vessels in ovaries of prepubertal rats compared to control ovaries. Conclusion Results indicate that NGF may be important in the maintenance of the follicular and luteal vasculature in adult rodents, either indirectly, by increasing the expression of VEGF in the ovary, or directly via promoting the proliferation of vascular cells. This data suggests that a disruption on NGF regulation could be a component in ovarian disorders related with impaired angiogenesis. PMID:17096853

  5. Synaptic loss and firing alterations in Axotomized Motoneurons are restored by vascular endothelial growth factor (VEGF) and VEGF-B.

    PubMed

    Calvo, Paula M; de la Cruz, Rosa R; Pastor, Angel M

    2018-06-01

    Vascular endothelial growth factor (VEGF), also known as VEGF-A, was discovered due to its vasculogenic and angiogenic activity, but a neuroprotective role for VEGF was later proven for lesions and disorders. In different models of motoneuronal degeneration, VEGF administration leads to a significant reduction of motoneuronal death. However, there is no information about the physiological state of spared motoneurons. We examined the trophic role of VEGF on axotomized motoneurons with recordings in alert animals using the oculomotor system as the experimental model, complemented with a synaptic study at the confocal microscopy level. Axotomy leads to drastic alterations in the discharge characteristics of abducens motoneurons, as well as to a substantial loss of their synaptic inputs. Retrograde delivery of VEGF completely restored the discharge activity and synaptically-driven signals in injured motoneurons, as demonstrated by correlating motoneuronal firing rate with motor performance. Moreover, VEGF-treated motoneurons recovered a normal density of synaptic boutons around motoneuronal somata and in the neuropil, in contrast to the low levels of synaptic terminals found after axotomy. VEGF also reduced the astrogliosis induced by axotomy in the abducens nucleus to control values. The administration of VEGF-B produced results similar to those of VEGF. This is the first work demonstrating that VEGF and VEGF-B restore the normal operating mode and synaptic inputs on injured motoneurons. Altogether these data indicate that these molecules are relevant synaptotrophic factors for motoneurons and support their clinical potential for the treatment of motoneuronal disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy.

    PubMed

    Dong, Lijie; Nian, Hong; Shao, Yan; Zhang, Yan; Li, Qiutang; Yi, Yue; Tian, Fang; Li, Wenbo; Zhang, Hong; Zhang, Xiaomin; Wang, Fei; Li, Xiaorong

    2015-05-01

    Pathological retinal neovascularization, including retinopathy of prematurity and age-related macular degeneration, is the most common cause of blindness worldwide. Insulin-like growth factor-1 (IGF-1) has a direct mitogenic effect on endothelial cells, which is the basis of angiogenesis. Vascular endothelial growth factor (VEGF) activation in response to IGF-1 is well documented; however, the molecular mechanisms responsible for the termination of IGF-1 signaling are still not completely elucidated. Here, we show that the polypyrimidine tract-binding protein-associated splicing factor (PSF) is a potential negative regulator of VEGF expression induced by IGF stimulation. Functional analysis demonstrated that ectopic expression of PSF inhibits IGF-1-stimulated transcriptional activation and mRNA expression of the VEGF gene, whereas knockdown of PSF increased IGF-1-stimulated responses. PSF recruited Hakai to the VEGF transcription complex, resulting in inhibition of IGF-1-mediated transcription. Transfection with Hakai siRNA reversed the PSF-mediated transcriptional repression of VEGF gene transcription. In summary, these results show that PSF can repress the transcriptional activation of VEGF stimulated by IGF-1 via recruitment of the Hakai complex and delineate a novel regulatory mechanism of IGF-1/VEGF signaling that may have implications in the pathogenesis of neovascularization in ocular diseases.

  7. The Phosphorylation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) by Engineered Surfaces with Electrostatically or Covalently Immobilized VEGF

    PubMed Central

    Anderson, Sean M.; Chen, Tom T.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2010-01-01

    Growth factors are a class of signaling proteins that direct cell fate through interaction with cell surface receptors. Although a myriad of possible cell fates stem from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor – soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature. PMID:19540581

  8. The differential expression of VEGF, VEGFR-2, and GLUT-1 proteins in disease subtypes of systemic sclerosis.

    PubMed

    Davies, Christine Ann; Jeziorska, Maria; Freemont, Anthony J; Herrick, Ariane L

    2006-02-01

    Our aim was to evaluate (a) whether there is differential expression of the endothelial regulator vascular endothelial growth factor (VEGF), its receptor (VEGFR-2), and the hypoxia-associated glucose transporter molecule, GLUT-1, in skin biopsies from different disease subtypes of systemic sclerosis (SSc) and (b) whether they associate with dermal calcinosis, a significant complication of SSc. Skin punch biopsies were taken from the forearms of 66 SSc patients including 18 with limited cutaneous disease without calcinosis (lcSSc), 23 with calcinosis (lcSSc/cal), and 25 with diffuse cutaneous disease (dcSSc) and from 12 healthy control subjects. The histological appearance of the skin was graded as G0 (normal), G1 (dermal edema), or G2 or G3 (increasing fibrotic changes). Immunohistochemistry was performed with antibodies to VEGF, VEGFR-2, and GLUT-1. Staining was assessed in the epidermis, microvessels, and fibroblasts. The Kruskal-Wallis 1-way analysis of variance was used to compare the data between disease groups. VEGF protein was located in the epidermis and in dermal endothelial cells, pericytes, fibroblasts, and inflammatory cells. In dcSSc only, there was a significant increase in VEGF staining intensity in the keratinocytes and pericytes and the lowest percentage of microvessels with VEGF-positive endothelial cells. GLUT-1 protein was located in the epidermis, erythrocytes, and perineurium. In both lcSSc/cal and dcSSC, but not lcSSc, there were significant increases in GLUT-1 staining intensity of keratinocytes. We propose that in patients with dcSSc, there is a net increase in unbound VEGF in skin that may account for the raised levels of VEGF in serum reported by others. Increased GLUT-1 expression in lcSSc/cal and dcSSc indicates that hypoxia is an associated factor.

  9. Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF.

    PubMed

    Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang

    2011-08-01

    We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.

  10. Ovarian hyperstimulation syndrome is correlated with a reduction of soluble VEGF receptor protein level and a higher amount of VEGF-A.

    PubMed

    Pietrowski, D; Szabo, L; Sator, M; Just, A; Egarter, C

    2012-01-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening condition associated with increased vascular permeability. The vascular endothelial growth factor (VEGF) system and its receptors have been identified as the main angiogenic factors responsible for increased capillary permeability and are therefore discussed as crucial for the occurrence of OHSS. Recently, a number of soluble receptors for the VEGFs have been detected (sVEGF-Rs) and it has been shown that these sVEGF-Rs compete with the membrane-standing VEGF-R to bind VEGFs. We analyzed the serum levels of soluble VEGF-R1, -R2 and -R3 in 34 patients suffering from OHSS and in 34 controls without this disease. In a subgroup analysis, we correlated the severity of the OHSS with the detected amounts of VEGF-R1, -R2 and -R3. In addition, we determined the amount of total VEGF-A in the samples. All the three soluble VEGF receptors tended to be higher in the control group compared with that in the OHSS group but this difference only reached significance for sVEGF-R2 (mean ± SEM: 15.5 ± 0.6 versus 13.8 ± 0.5 ng/ml, respectively, P< 0.05). In the subgroup analysis, sVEGF-R2 levels decreased as the severity of OHSS increased (OHSS-I: 16.8 ± 1.9 ng/ml and OHSS-III: 12.7 ± 1.0 ng/ml, P< 0.05) Moreover, the serum levels of total VEGF-A were higher in the OHSS group than those in the controls (537.7 ± 38.9 versus 351 ± 53.4 pg/ml, respectively P< 0.05). We propose that VEGF-A plays a role in the occurrence of OHSS, that the amount of biologically available VEGF-A is modulated by sVEGF-Rs and that different combinations of VEGF-A and sVEGF-R levels might contribute to the severity of OHSS.

  11. Endocrine gland-derived endothelial growth factor (EG-VEGF) is a potential novel regulator of human parturition.

    PubMed

    Dunand, C; Hoffmann, P; Sapin, V; Blanchon, L; Salomon, A; Sergent, F; Benharouga, M; Sabra, S; Guibourdenche, J; Lye, S J; Feige, J J; Alfaidy, N

    2014-09-01

    EG-VEGF is an angiogenic factor that we identified as a new placental growth factor during human pregnancy. EG-VEGF is also expressed in the mouse fetal membrane (FM) by the end of gestation, suggesting a local role for this protein in the mechanism of parturition. However, injection of EG-VEGF to gravid mice did not induce labor, suggesting a different role for EG-VEGF in parturition. Here, we searched for its role in the FM in relation to human parturition. Human pregnant sera and total FM, chorion, and amnion were collected during the second and third trimesters from preterm no labor, term no labor, and term labor patients. Primary human chorion trophoblast and FM explants cultures were also used. We demonstrate that circulating EG-VEGF increased toward term and significantly decreased at the time of labor. EG-VEGF production was higher in the FM compared to placentas matched for gestational age. Within the FM, the chorion was the main source of EG-VEGF. EG-VEGF receptors, PROKR1 and PROKR2, were differentially expressed within the FM with increased expression toward term and an abrupt decrease with the onset of labor. In chorion trophoblast and FM explants collected from nonlaboring patients, EG-VEGF decreased metalloproteinase-2 and -9 activities and increased PGDH (prostaglandin-metabolizing enzyme) expression. Altogether these data demonstrate that EG-VEGF is a new cytokine that acts locally to ensure FM protection in late pregnancy. Its fine contribution to the initiation of human labor is exhibited by the abrupt decrease in its levels as well as a reduction in its receptors. © 2014 by the Society for the Study of Reproduction, Inc.

  12. Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D*

    PubMed Central

    Davydova, Natalia; Harris, Nicole C.; Roufail, Sally; Paquet-Fifield, Sophie; Ishaq, Musarat; Streltsov, Victor A.; Williams, Steven P.; Karnezis, Tara; Stacker, Steven A.; Achen, Marc G.

    2016-01-01

    VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93–Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo. This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C. PMID:27852824

  13. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  14. Immunohistochemical expression of vegf and her-2 proteins in osteosarcoma biopsies

    PubMed Central

    Becker, Ricardo Gehrke; Galia, Carlos Roberto; Morini, Sandra; Viana, Cristiano Ribeiro

    2013-01-01

    OBJECTIVES: To identify the prevalence of erbB-2 and vascular endothelial growth factor (VEGF) in osteosarcoma biopsies and to correlate them with possible prognosis factors. METHODS: Retrospective study conducted at the Hospital do Câncer de Barretos-SP including 27 osteosarcoma biopsies immunohistochemically stained for VEGF and erbB-2. The pathological characteristics were collected from medical records of patients to correlate with markers. RESULTS: In 27 biopsies, four overexpressed VEGF and three overexpressed erbB-2. Two thirds of patients had no metastases. Almost all patients with overexpression of VEGF showed metastases. Overexpression of erbB-2 was inversely related to the presence of metastases. There was no significant association between markers and prognosis. CONCLUSION: We identified a low prevalence of erbB-2 and VEGF in the sample. There was no significant association between overexpression of markers and pathological features. A larger sample and a longer follow-up, in addition to using new laboratory techniques can determine the real expression of VEGF and erbB-2 and its role in osteosarcoma. Level of Evidence III, Case-Control Study. PMID:24453675

  15. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport

    PubMed Central

    Ozawa, Kentaro; Kondo, Toshikazu; Hori, Osamu; Kitao, Yasuko; Stern, David M.; Eisenmenger, Wolfgang; Ogawa, Satoshi; Ohshima, Tohru

    2001-01-01

    Expression of angiogenic factors such as VEGF under conditions of hypoxia or other kinds of cell stress contributes to neovascularization during wound healing. The inducible endoplasmic reticulum chaperone oxygen-regulated protein 150 (ORP150) is expressed in human wounds along with VEGF. Colocalization of these two molecules was observed in macrophages in the neovasculature, suggesting a role of ORP150 in the promotion of angiogenesis. Local administration of ORP150 sense adenovirus to wounds of diabetic mice, a treatment that efficiently targeted this gene product to the macrophages of wound beds, increased VEGF antigen in wounds and accelerated repair and neovascularization. In cultured human macrophages, inhibition of ORP150 expression caused retention of VEGF antigen within the endoplasmic reticulum (ER), while overexpression of ORP150 promoted the secretion of VEGF into hypoxic culture supernatants. Taken together, these data suggest an important role for ORP150 in the setting of impaired wound repair and identify a key, inducible chaperone-like molecule in the ER. This novel facet of the angiogenic response may be amenable to therapeutic manipulation. PMID:11435456

  16. Fatty Acid Binding Protein 4 Regulates VEGF-Induced Airway Angiogenesis and Inflammation in a Transgenic Mouse Model

    PubMed Central

    Ghelfi, Elisa; Yu, Chen-Wei; Elmasri, Harun; Terwelp, Matthew; Lee, Chun G.; Bhandari, Vineet; Comhair, Suzy A.; Erzurum, Serpil C.; Hotamisligil, Gökhan S.; Elias, Jack A.; Cataltepe, Sule

    2014-01-01

    Neovascularization of the airways occurs in several inflammatory lung diseases, including asthma. Vascular endothelial growth factor (VEGF) plays an important role in vascular remodeling in the asthmatic airways. Fatty acid binding protein 4 (FABP4 or aP2) is an intracellular lipid chaperone that is induced by VEGF in endothelial cells. FABP4 exhibits a proangiogenic function in vitro, but whether it plays a role in modulation of angiogenesis in vivo is not known. We hypothesized that FABP4 promotes VEGF-induced airway angiogenesis and investigated this hypothesis with the use of a transgenic mouse model with inducible overexpression of VEGF165 under a CC10 promoter [VEGF-TG (transgenic) mice]. We found a significant increase in FABP4 mRNA levels and density of FABP4-expressing vascular endothelial cells in mouse airways with VEGF overexpression. FABP4−/− mouse airways showed a significant decrease in neovessel formation and endothelial cell proliferation in response to VEGF overexpression. These alterations in airway vasculature were accompanied by attenuated expression of proinflammatory mediators. Furthermore, VEGF-TG/FABP4−/− mice showed markedly decreased expression of endothelial nitric oxide synthase, a well-known mediator of VEGF-induced responses, compared with VEGF-TG mice. Finally, the density of FABP4-immunoreactive vessels in endobronchial biopsy specimens was significantly higher in patients with asthma than in control subjects. Taken together, these data unravel FABP4 as a potential target of pathologic airway remodeling in asthma. PMID:23391391

  17. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  18. VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy.

    PubMed

    Amato, Rosario; Biagioni, Martina; Cammalleri, Maurizio; Dal Monte, Massimo; Casini, Giovanni

    2016-06-01

    Growing evidence indicates neuroprotection as a therapeutic target in diabetic retinopathy (DR). We tested the hypothesis that VEGF is released and acts as a survival factor in the retina in early DR. Ex vivo mouse retinal explants were exposed to stressors similar to those characterizing DR, that is, high glucose (HG), oxidative stress (OS), or advanced glycation end-products (AGE). Neuroprotection was provided using octreotide (OCT), a somatostatin analog, and pituitary adenylate cyclase activating peptide (PACAP), two well-documented neuroprotectants. Data were obtained with real-time RT-PCR, Western blot, ELISA, and immunohistochemistry. Apoptosis was induced in the retinal explants by HG, OS, or AGE treatments. At the same time, explants also showed increased VEGF expression and release. The data revealed that VEGF is released shortly after exposure of the explants to stressors and before the level of cell death reaches its maximum. Retinal cell apoptosis was inhibited by OCT and PACAP. At the same time, OCT and PACAP also reduced VEGF expression and release. Vascular endothelial growth factor turned out to be a protective factor for the stressed retinal explants, because inhibiting VEGF with a VEGF trap further increased cell death. These data show that protecting retinal neurons from diabetic stress also reduces VEGF expression and release, while inhibiting VEGF leads to exacerbation of apoptosis. These observations suggest that the retina in early DR releases VEGF as a prosurvival factor. Neuroprotective agents may decrease the need of VEGF production by the retina, therefore limiting the risk, in the long term, of pathologic angiogenesis.

  19. The power of VEGF (vascular endothelial growth factor) family molecules.

    PubMed

    Thomas, Jean-Leon; Eichmann, Anne

    2013-05-01

    Vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors (VEGFRs) are key regulators of both angiogenesis and neurogenesis. The current issue of CMLS discusses recent literature and work implementing these signals in nervous system development, maintenance and disease pathology.

  20. Imaging vascular endothelial growth factor (VEGF) receptors in turpentine-induced sterile thigh abscesses with radiolabeled single-chain VEGF.

    PubMed

    Levashova, Zoia; Backer, Marina; Backer, Joseph M; Blankenberg, Francis G

    2009-12-01

    Angiogenesis plays a central role in the pathogenesis of chronic inflammatory disorders. Vascular endothelial growth factor (VEGF) and its receptors are the most important regulators of angiogenesis. We wished to determine whether labeled forms of single-chain VEGF (scVEGF) could be used to image VEGF receptors in a well-characterized model of sterile soft-tissue inflammation induced by intramuscular injection of turpentine. Anesthetized adult male Swiss-Webster mice received a 20-microL intramuscular injection of turpentine into the right thigh. At 4, 7, or 10 d later, groups of 3-5 mice were injected via the tail vein with 50 microg of either scVEGF that had been site specifically labeled with Cy5.5 (scVEGF/Cy) or inactivated scVEGF/Cy (inVEGF/Cy) and then examined by fluorescence imaging. At 3, 4, 6, 7, 9, 10, or 12 d, additional groups of 3-5 mice were injected via the tail vein with 74-111 MBq of (99m)Tc-scVEGF (or (99m)Tc-inVEGF) and then examined by SPECT imaging. On days 3 through 10, both forms of scVEGF (scVEGF/Cy and (99m)Tc-scVEGF) showed significantly higher uptake (P < 0.05) in the right (abscessed) thigh than in the contralateral thigh (and higher uptake than the inactivated tracer). Peak uptake occurred on day 7 (3.67 +/- 1.79 [ratio of uptake in abscessed thigh to uptake in normal thigh, mean +/- SD] and 0.72 +/- 0.01 for scVEGF/Cy and inVEGF/Cy, respectively, and 3.49 +/- 1.22 and 1.04 +/- 0.41 for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively) and slowly decreased thereafter. Autoradiography revealed peak tracer uptake in the thick irregular angiogenic rim of the abscess cavity on day 9 (5.83 x 10(-7) +/- 9.22 x 10(-8) and 5.85 x 10(-8) +/- 5.95 x 10(-8) percentage injected dose per pixel for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively); in comparison, a thin circumscribed rim of uptake was seen with (99m)Tc-inVEGF. Immunostaining revealed that VEGFR-2 (VEGF receptor) colocalized with CD31 (endothelial cell marker) at all time points in the

  1. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography.

    PubMed

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H

    2012-09-11

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  2. The immunohistochemical expression of endocrine gland-derived-VEGF (EG-VEGF) as a prognostic marker in ovarian cancer.

    PubMed

    Bălu, Sevilla; Pirtea, L; Gaje, Puşa; Cîmpean, Anca Maria; Raica, M

    2012-01-01

    Ovarian cancer-related angiogenesis is a complex process orchestrated by many positive and negative regulators. Many growth factors are involved in the development of the tumor-associated vasculature, and from these, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) seems to play a crucial role. EG-VEGF is the first organ-specific angiogenic factor and its effects are restricted to the endothelial cells of the endocrine glands. Although EG-VEGF was detected in both normal and neoplastic ovaries, its clinical significance remains controversial. In the present study, we analyzed 30 patients with epithelial ovarian cancer, and the immunohistochemical expression of EG-VEGF was compared with the conventional clinico-pathological parameters of prognosis. Neoplastic cells of the ovarian carcinoma expressed EG-VEGF in 73.33% of the cases, as a cytoplasmic granular product of reaction. We found a strong correlation between the expression of EG-VEGF at protein level and tumor stage, grade, and microscopic type. The expression of EG-VEGF was found in patients with stage III and IV, but not in stage II. The majority of serous adenocarcinoma, half of the cases with clear cell carcinoma and two cases with endometrioid carcinoma showed definite expression in tumor cells. No positive reaction was found in the cases with mucinous carcinoma. Our results showed that EG-VEGF expression is an indicator not only of the advanced stage, but also of ovarian cancer progression. Based on these data, we concluded that EG-VEGF expression in tumor cells of the epithelial ovarian cancer is a good marker of unfavorable prognosis and could be an attractive therapeutic target in patients with advanced-stage tumors, refractory conventional chemotherapy.

  3. The endocrine-gland-derived vascular endothelial growth factor (EG-VEGF)/prokineticin 1 and 2 and receptor expression in human prostate: Up-regulation of EG-VEGF/prokineticin 1 with malignancy.

    PubMed

    Pasquali, Daniela; Rossi, Valentina; Staibano, Stefania; De Rosa, Gaetano; Chieffi, Paolo; Prezioso, Domenico; Mirone, Vincenzo; Mascolo, Massimo; Tramontano, Donatella; Bellastella, Antonio; Sinisi, Antonio Agostino

    2006-09-01

    A new family of angiogenic factors named endocrine-gland-derived vascular endothelial growth factors (EG-VEGF)/prokineticins (PK) have been recently described as predominantly expressed in steroidogenic tissues. Whether the normal and malignant epithelial prostate cells and tissues express EG-VEGF/PK1 and PK2 and their receptors is still unknown. We studied the expression of EG-VEGF/PK1 and PK2 and their receptors (PK-R1 and PK-R2) in human prostate and their involvement in cancer. Using immunohistochemistry, Western blot, and RT-PCR, we determined the expression of EG-VEGF/PK1 in normal prostate (NP) and malignant prostate tissues (PCa), in epithelial cell primary cultures from normal prostate (NPEC) and malignant prostate (CPEC) and in a panel of prostate cell lines. In NPEC, CPEC, and in EPN, a nontransformed human prostate epithelial cell line, EG-VEGF/PK1, PK2, PK-R1, and PK-R2 mRNA levels were evaluated by quantitative RT-PCR. EG-VEGF/PK1 transcript was found in PCa, in CPEC, in EPN, and in LNCaP, whereas it was detected at low level in NP and in NPEC. EG-VEGF/PK1 was absent in androgen-independent PC3 and DU-145 cell lines. Immunochemistry confirmed that EG-VEGF/PK1 protein expression was restricted to hyperplastic and malignant prostate tissues, localized in the glandular epithelial cells, and progressively increased with the prostate cancer Gleason score advancement. EG-VEGF/PK1 and PK2 were weakly expressed in NPEC and EPN. On the other hand, their transcripts were highly detected in CPEC. PK-R1 and PK-R2 were found in NPEC, EPN, and CPEC. Interestingly, CPEC showed a significantly (P < 0.05) higher expression of EG-VEGF/PK1, PK2, PK-R1, and PK-R2 compared with NPEC and EPN. We demonstrated that PKs and their receptors are expressed in human prostate and that their levels increased with prostate malignancy. It may imply that EG-VEGF/PK1 could be involved in prostate carcinogenesis, probably regulating angiogenesis. Thus, the level of EG-VEGF/PK1 could be

  4. VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease.

    PubMed

    Barratt, Shaney L; Flower, Victoria A; Pauling, John D; Millar, Ann B

    2018-04-24

    Interstitial lung disease (ILD) encompasses a group of heterogeneous diseases characterised by varying degrees of aberrant inflammation and fibrosis of the lung parenchyma. This may occur in isolation, such as in idiopathic pulmonary fibrosis (IPF) or as part of a wider disease process affecting multiple organs, such as in systemic sclerosis. Anti-Vascular Endothelial Growth Factor (anti-VEGF) therapy is one component of an existing broad-spectrum therapeutic option in IPF (nintedanib) and may become part of the emerging therapeutic strategy for other ILDs in the future. This article describes our current understanding of VEGF biology in normal lung homeostasis and how changes in its bioavailability may contribute the pathogenesis of ILD. The complexity of VEGF biology is particularly highlighted with an emphasis on the potential non-vascular, non-angiogenic roles for VEGF in the lung, in both health and disease.

  5. Calreticulin Regulates VEGF-A in Neuroblastoma Cells.

    PubMed

    Weng, Wen-Chin; Lin, Kuan-Hung; Wu, Pei-Yi; Lu, Yi-Chien; Weng, Yi-Cheng; Wang, Bo-Jeng; Liao, Yung-Feng; Hsu, Wen-Ming; Lee, Wang-Tso; Lee, Hsinyu

    2015-08-01

    Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.

  6. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    PubMed Central

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H.

    2012-01-01

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF165 to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form ofVEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å2 in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2. PMID:22927390

  7. Smad4 Inhibits VEGF-A and VEGF-C Expressions via Enhancing Smad3 Phosphorylation in Colon Cancer.

    PubMed

    Li, Xuemei; Li, Xinlei; Lv, Xiaohong; Xiao, Jianbing; Liu, Baoquan; Zhang, Yafang

    2017-09-01

    Smad4 is a critical factor in the TGF-β pathway and is involved in tumor progression and metastasis, but the role of Smad4 in colon cancer cells is unclear. The aim of this study is to explore the effect and the underlying mechanism of Smad4 on the growth, migration and apoptosis of colon cancer cells as well as vascular endothelial growth factor (VEGF)-A and VEGF-C secreted by these cells. In this study, we showed that Smad4, VEGF-A, and VEGF-C are independent prognostic factors of colon cancer, and Smad4 expression was negatively correlated with VEGF-A and -C in samples. We found that Smad4 mRNA and protein levels in colon cancer cells, particularly in HCT-116 cells, were significantly lower than those in the human intestinal epithelial cell line (HIEC). Smad4 overexpression promoted tumor cell apoptosis, inhibited VEGF-A and -C expression in vitro and in vivo, but had no effect on cell proliferation and migration. Tail vein injection of the virus inhibited xenograft growth in nude mice. Importantly, we also demonstrated that Smad4 could increase the phosphorylation level of Smad3, but not Smad2, which may be one of the mechanisms underlying these effects of Smad4 in colon cancer. Therefore, Smad4 may be a new target for the treatment of colon cancer. Anat Rec, 300:1560-1569, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Expression of ATF4 and VEGF in chorionic villus tissue in early spontaneous abortion.

    PubMed

    Chai, Luwei; Ling, Kang; He, Xiaoxi; Yang, Rong

    2013-10-01

    To explore the relationship between early spontaneous abortion (SA) and the expression of activating transcription factor 4 (ATF4) and vascular endothelial growth factor (VEGF). The expression of ATF4 and VEGF protein and mRNA in villi from first trimester spontaneous abortion (SA, n=30) and normal pregnancy (NP, n=30) were detected by immunohistochemistry and fluorescent quantitative polymerase chain reaction (FQ-PCR). Both protein and mRNA expressions of ATF4 and VEGF in the SA group were significantly lower than in the NP group (P<0.01). Their proteins are expressed mainly in syncytiotrophoblast, cytotrophoblast and villous stromal cells. Correlation analysis showed that the expression of ATF4 was positively correlated with that of VEGF in the SA group (r=0.717, P<0.01). Lower expression of ATF4 and VEGF genes in chorionic villus tissue may participate in the pathogenesis of spontaneous abortion. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin.

    PubMed

    Pang, Vincent; Bates, David O; Leach, Lopa

    2017-12-01

    The human placenta nourishes and protects the developing foetus whilst influencing maternal physiology for fetal advantage. It expresses several members of the vascular endothelial growth factor (VEGF) family including the pro-angiogenic/pro-permeability VEGF-A 165 a isoform, the anti-angiogenic VEGF-A 165 b, placental growth factor (PIGF) and their receptors, VEGFR1 and VEGFR2. Alterations in the ratio of these factors during gestation and in complicated pregnancies have been reported; however, the impact of this on feto-placental endothelial barrier integrity is unknown. The present study investigated the interplay of these factors on junctional occupancy of VE-cadherin and macromolecular leakage in human endothelial monolayers and the perfused placental microvascular bed. Whilst VEGF-A 165 a (50 ng/ml) increased endothelial monolayer albumin permeability ( P <0.0001), equimolar concentrations of VEGF-A 165 b ( P >0.05) or PlGF ( P >0.05) did not. Moreover, VEGF-A 165 b (100 ng/ml; P <0.001) but not PlGF (100 ng/ml; P >0.05) inhibited VEGF-A 165 a-induced permeability when added singly. PlGF abolished the VEGF-A 165 b-induced reduction in VEGF-A 165 a-mediated permeability ( P >0.05); PlGF was found to compete with VEGF-A 165 b for binding to Flt-1 at equimolar affinity. Junctional occupancy of VE-cadherin matched alterations in permeability. In the perfused microvascular bed, VEGF-A 165 b did not induce microvascular leakage but inhibited and reversed VEGF-A 165 a-induced loss of junctional VE-cadherin and tracer leakage. These results indicate that the anti-angiogenic VEGF-A 165 b isoform does not increase permeability in human placental microvessels or HUVEC primary cells and can interrupt VEGF-A 165 a-induced permeability. Moreover, the interplay of these isoforms with PIGF (and s-flt1) suggests that the ratio of these three factors may be important in determining the placental and endothelial barrier in normal and complicated pregnancies. © 2017 The Author(s).

  10. Decursin inhibits VEGF-mediated inner blood-retinal barrier breakdown by suppression of VEGFR-2 activation.

    PubMed

    Kim, Jin Hyoung; Kim, Jeong Hun; Lee, You Mie; Ahn, Eun-Mi; Kim, Kyu-Won; Yu, Young Suk

    2009-09-01

    The blood-retinal barrier (BRB) is essential for the normal structural and functional integrity of the retina, whose breakdown could cause the serious vision loss. Vascular endothelial growth factor (VEGF), as a permeable factor, induces alteration of tight junction proteins to result in BRB breakdown. Herein, we demonstrated that decursin inhibits VEGF-mediated inner BRB breakdown through suppression of VEGFR-2 signaling pathway. In retinal endothelial cells, decursin inhibited VEGF-mediated hyperpermeability. Decursin prevented VEGF-mediated loss of tight junction proteins including zonula occludens-1 (ZO-1), ZO-2, and occludin in retinal endothelial cells, which was also supported by restoration of tight junction proteins in intercellular junction. In addition, decursin significantly inhibited VEGF-mediated vascular leakage from retinal vessels, which was accompanied by prevention of loss of tight junction proteins in retinal vessels. Decursin significantly suppressed VEGF-induced VEGFR-2 phosphrylation that consequently led to inhibition of extracellular signal-regulated kinase (ERK) 1/2 activation. Moreover, decursin induced no cytotoxicity to retinal endothelial cells and no retinal toxicity under therapeutic concentrations. Therefore, our results suggest that decursin prevents VEGF-mediated BRB breakdown through blocking of loss of tight junction proteins, which might be regulated by suppression of VEGFR-2 activation. As a novel inhibitor to BRB breakdown, decursin could be applied to variable retinopathies with BRB breakdown.

  11. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    PubMed

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  12. Serum Vascular Endothelial Growth Factor (VEGF) as a Biomarker for Disease Activity in Lupus Nephritis.

    PubMed

    Ghazali, Wan Syamimee Wan; Iberahim, Rahimah; Ashari, Noor Suryani Mohd

    2017-10-01

    Previous studies have shown that serum VEGF levels were elevated in patients with active systemic lupus erythematosus (SLE), especially in those with lupus nephritis (LN). In this case control study, we aimed to compare serum levels of VEGF in SLE patients between LN, non-LN and healthy participants to determine the association between serum VEGF levels and the activity and histological classes of lupus nephritis. Blood samples were obtained from 92 SLE patients (46 LN and 46 non-LN) and 26 controls. Data were collected from medical records. Serum VEGF assays were performed by specific, enzyme-linked immunosorbent assay kits (ELISA). Laboratory investigations included urinalysis, urine protein-creatinine ratio, serum creatinine, albumin and VEGF levels. Blood pressure, renal biopsy result and treatment were recorded. LN activity was evaluated using the renal subscale of the British Isles Lupus Assessment Group (rBILAG, 2004). The rBILAG measures blood pressure (diastolic and systolic), urine protein, serum creatinine, calculated glomerular filtration rate (GFR), presence of active urinary sediments and histological evidence of active nephritis. Serum VEGF was elevated in SLE patients with LN compared with the non-LN group and healthy controls. The levels found were significantly higher in the sera of patients with active nephritis compared to those with quiescent nephritis ( P = 0.024). The study did not find a statistically significant relationship between serum VEGF levels and histological classes of LN. There was no significant difference of serum VEGF level between LN and non-LN SLE groups and between the non-LN group and healthy controls. However, there were increased levels of serum VEGF in the LN group, especially in patients with active nephritis as compared to quiescent nephritis group. This reflects the role of VEGF in the pathogenesis of lupus nephritis, however the clinical potential of this biomarker needs further study.

  13. Detection of VEGF-A(xxx)b isoforms in human tissues.

    PubMed

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  14. Conditional Switching of Vascular Endothelial Growth Factor (VEGF) Expression in Tumors: Induction of Endothelial Cell Shedding and Regression of Hemangioblastoma-Like Vessels by VEGF Withdrawal

    NASA Astrophysics Data System (ADS)

    Benjamin, Laura E.; Keshet, Eli

    1997-08-01

    We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously ``on,'' tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

  15. A positive circuit of VEGF increases Glut-1 expression by increasing HIF-1α gene expression in human retinal endothelial cells.

    PubMed

    Choi, Yoon Kyung

    2017-12-01

    Treatment of human retinal microvascular endothelial cells (HRMECs) with vascular endothelial growth factor 165 (VEGF 165 ) increased hypoxia-inducible factor 1α (HIF-1α), VEGF, and glucose transporter 1 (Glut-1) mRNA expression and Glut-1 protein localization to the membrane. In contrast, treatment of human retinal pigment epithelium cells with VEGF 165 did not induce HIF-1α, VEGF, and Glut-1 gene expression. Microvascular endothelial cells are surrounded by astrocytic end feet in the retina. Astrocyte-derived A-kinase anchor protein 12 overexpression during hypoxia downregulated VEGF secretion, and this conditioned medium reduced VEGF and Glut-1 expression in HRMECs, suggesting that communications between astrocytes and endothelial cells may be the determinants of the blood vessel network. In HRMECs, HIF-1α small interfering RNA transfection blocked the VEGF 165 -mediated increase in VEGF and Glut-1 gene expression. Inhibition of protein kinase C (PKC) with inhibitor GF109203X or with a small interfering RNA targeting PKCζ attenuated the VEGF 165 -induced Glut-1 protein expression and VEGF and Glut-1 mRNA expression. In addition, results of an immunoprecipitation assay imply an interaction between VEGF receptor 2 (VEGFR2) and PKCζ in HRMECs. Therefore, VEGF secretion by hypoxic astrocytes may upregulate HIF-1α gene expression, inducing VEGF and Glut-1 expression via the VEGFR2-PKCζ axis in HRMECs.

  16. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  17. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    PubMed Central

    Yum, Soohwan; Jeong, Seongkeun; Kim, Dohoon; Lee, Sunyoung; Kim, Wooseong; Yoo, Jin-Wook; Kwon, Oh Sang; Kim, Dae-Duk; Min, Do Sik; Jung, Yunjin

    2017-01-01

    The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1. PMID:29295567

  18. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    PubMed

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p < 0.05) and dose dependent increase in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclasts. Functionality of these osteoclasts was assessed quantitatively and qualitatively by evaluating resorption pit area from both osteo-assay plates and harvested bone. Data indicated a statistically significant higher resorption area from the cells exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may

  19. Triiodothyronine stimulates VEGF expression and secretion via steroids and HIF-1α in murine Leydig cells.

    PubMed

    Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand

    2018-06-01

    Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.

  20. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    PubMed

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  1. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  2. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  3. Placental expression of EG-VEGF and its receptors PKR1 (prokineticin receptor-1) and PKR2 throughout mouse gestation.

    PubMed

    Hoffmann, P; Feige, J-J; Alfaidy, N

    2007-10-01

    Compelling evidence indicates that vascular endothelial growth factor (VEGF) is an important mediator of placental angiogenesis and appears to be disregulated in pre-eclampsia (PE). Recently, we characterised the expression of EG-VEGF (endocrine gland-derived vascular endothelial growth factor), also known as prokineticin 1 (PK1) in human placenta during the first trimester of pregnancy and showed that this factor is likely to play an important role in human placentation. However, because it is impossible to prospectively study placentation in humans, it has been impossible to further characterise EG-VEGF expression throughout complete gestation and especially at critical gestational ages for PE development. In the present study, we used mouse placenta to further characterise EG-VEGF expression throughout gestation. We investigated the pattern of expression of EG-VEGF and its receptors, PKR1 and PKR2 at the mRNA and protein levels. Our results show that EG-VEGF and VEGF exhibit different patterns of expression and different localisations in the mouse placenta. EG-VEGF was mainly localised in the labyrinth whereas VEGF was mainly present in glycogen and giant cells. EG-VEGF mRNA and protein levels were highest before 10.5days post coitus (dpc) whereas those of VEGF showed stable expression throughout gestation. PKR1 protein was localised to the labyrinth layer and showed the same pattern of expression as EG-VEGF whereas PKR2 expression was maintained over 10.5dpc with both trophoblastic and endothelial cell localisations. Altogether these findings suggest that EG-VEGF may have a direct effect on both endothelial and trophoblastic cells and is likely to play an important role in mouse placentation.

  4. Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer.

    PubMed

    Yonemura, Yutaka; Endo, Yoshio; Tabata, Kayoko; Kawamura, Taiichi; Yun, Hyo-Yung; Bandou, Etsurou; Sasaki, Takuma; Miura, Masahiro

    2005-10-01

    The molecular mechanisms of lymphangiogenesis induced by vascular endothelial growth factor (VEGF)-C and VEGF-D in gastric cancer were studied. VEGF-C and VEGF-D gene expression vectors were transfected into the gastric cancer cell line KKLS, which did not originally express VEGF-C and VEGF-D, and stable transfectants (KKLS/VEGF-C and KKLS/VEGF-D) were established. The cell lines were inoculated into the subserosal layer of the stomach and subcutaneous tissue of nude mice. VEGF-C and VEGF-D expression in KKLS/VEGF-C and KKLS/VEGF-D cells was found by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Expression of mouse VEGF receptor (VEGFR)-2 and mouse VEGFR-3 mRNA was detected in the KKLS/VEGF-C and KKLS/VEGF-D gastric tumors. Newly formed lymphatic vessels were detected not only in the periphery but also in the center of the tumors. The intratumor lymphatic vessels connected with the preexisting lymphatic vessels in the muscularis mucosa. The average numbers of lymphatic vessels in KKLS/VEGF-C (52.0 +/- 9.5) and KKLS/VEGF-D (16.4 +/- 0.6) gastric tumors were significantly higher than that in the KKLS/control vector tumors (4.0 +/- 1.4). VEGF-C and VEGF-D may induce neoformation of lymphatic vessels in experimental gastric tumors by the induction of VEGFR-3 expression.

  5. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo.

    PubMed

    Rennel, E S; Varey, A H R; Churchill, A J; Wheatley, E R; Stewart, L; Mather, S; Bates, D O; Harper, S J

    2009-10-06

    The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.

  6. Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis.

    PubMed

    Evans, Ian M; Kennedy, Susan A; Paliashvili, Ketevan; Santra, Tapesh; Yamaji, Maiko; Lovering, Ruth C; Britton, Gary; Frankel, Paul; Kolch, Walter; Zachary, Ian C

    2017-02-01

    p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis.

    PubMed

    Alitalo, Annamari K; Proulx, Steven T; Karaman, Sinem; Aebischer, David; Martino, Stefania; Jost, Manuela; Schneider, Nicole; Bry, Maija; Detmar, Michael

    2013-07-15

    VEGF-C and VEGF-D were identified as lymphangiogenic growth factors and later shown to promote tumor metastasis, but their effects on carcinogenesis are poorly understood. Here, we have studied the effects of VEGF-C and VEGF-D on tumor development in the murine multistep chemical carcinogenesis model of squamous cell carcinoma by using a soluble VEGF-C/VEGF-D inhibitor. After topical treatment with a tumor initiator and repeated tumor promoter applications, transgenic mice expressing a soluble VEGF-C/VEGF-D receptor (sVEGFR-3) in the skin developed significantly fewer squamous cell tumors with a delayed onset when compared with wild-type mice or mice expressing sVEGFR-3 lacking the ligand-binding site. Epidermal proliferation was reduced in the carcinogen-treated transgenic skin, whereas epidermal keratinocyte proliferation in vitro was not affected by VEGF-C or VEGF-D, indicating indirect effects of sVEGFR-3 expression. Importantly, transgenic mouse skin was less sensitive to tumor promoter-induced inflammation, with reduced angiogenesis and blood vessel leakage. Cutaneous leukocytes, especially macrophages, were reduced in transgenic skin without major changes in macrophage polarization or blood monocyte numbers. Several macrophage-associated cytokines were also reduced in transgenic papillomas, although the dermal macrophages themselves did not express VEGFR-3. These findings indicate that VEGF-C/VEGF-D are involved in shaping the inflammatory tumor microenvironment that regulates early tumor progression. Our results support the use of VEGF-C/VEGF-D-blocking agents not only to inhibit metastatic progression, but also during the early stages of tumor growth. ©2013 AACR.

  8. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF

    PubMed Central

    Anderson, Sean M.; Shergill, Bhupinder; Barry, Zachary T.; Manousiouthakis, Eleana; Chen, Tom T.; Botvinick, Elliot; Platt, Manu O.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2011-01-01

    Vascular endothelial growth factor (VEGF) is known to activate proliferation, migration, and survival pathways in endothelial cells through phosphorylation of VEGF receptor-2 (VEGFR-2). VEGF has been incorporated into biomaterials through encapsulation, electrostatic sequestration, and covalent attachment, but the effect of these immobilization strategies on VEGF signaling has not been thoroughly investigated. Further, although growth factor internalization along with the receptor generally occurs in a physiological setting, whether this internalization is needed for receptor phosphorylation is not entirely clear. Here we show that VEGF covalently bound through a modified heparin molecule elicits an extended response of pVEGFR-2 in human umbilical vein endothelial cells (HUVECs) and that the covalent linkage reduces internalization of the growth factor during receptor endocytosis. Optical tweezer measurements show that the rupture force required to disrupt the heparin-VEGF-VEGFR-2 interaction increases from 3–8 pN to 6–12 pN when a covalent bond is introduced between VEGF and heparin. Importantly, by covalently binding VEGF to a heparin substrate, the stability (half-life) of VEGF is extended over three-fold. Here, mathematical models support the biological conclusions, further suggesting that VEGF internalization is significantly reduced when covalently bound, and indicating that VEGF is available for repeated phosphorylation events. PMID:21826315

  9. Vascular endothelial growth factor and protein level in pleural effusion for differentiating malignant from benign pleural effusion.

    PubMed

    Wu, Da-Wei; Chang, Wei-An; Liu, Kuan-Ting; Yen, Meng-Chi; Kuo, Po-Lin

    2017-09-01

    Pleural effusion is associated with multiple benign and malignant conditions. Currently no biomarkers differentiate malignant pleural effusion (MPE) and benign pleural effusion (BPE) sensitively and specifically. The present study identified a novel combination of biomarkers in pleural effusion for differentiating MPE from BPE by enrolling 75 patients, 34 with BPE and 41 with MPE. The levels of lactate dehydrogenase, glucose, protein, and total cell, neutrophil, monocyte and lymphocyte counts in the pleural effusion were measured. The concentrations of interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-α, interferon γ, transforming growth factor-β1, colony stimulating factor 2, monocyte chemoattractant protein-1 and vascular endothelial growth factor (VEGF) were detected using cytometric bead arrays. Protein and VEGF levels differed significantly between patients with BPE and those with MPE. The optimal cutoff value of VEGF and protein was 214 pg/ml and 3.35 g/dl respectively, according to the receiver operating characteristic curve. A combination of VEGF >214 pg/ml and protein >3.35 g/dl in pleural effusion presented a sensitivity of 92.6% and an accuracy of 78.6% for MPE, but was not associated with a decreased survival rate. These results suggested that this novel combination strategy may provide useful biomarkers for predicting MPE and facilitating early diagnosis.

  10. Effects of EG-VEGF, VEGF and TGF-β1 on pregnancy outcome in patients undergoing IVF-ET treatment.

    PubMed

    Gao, Min-zhi; Zhao, Xiao-ming; Lin, Yi; Sun, Zhao-gui; Zhang, Hui-qin

    2012-10-01

    To investigate the correlation of endocrine gland-derived vascular endothelial growth factor (EG-VEGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGF-β1) with the corresponding reproductive outcome in patients who received in vitro fertilization-embryo transfer (IVF-ET). Sixty-seven women undergoing IVF-ET at a university tertiary hospital were recruited for a prospective study. Concentrations of EG-VEGF, VEGF and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA) in follicular fluid (FF) collected during oocyte retrieval (OR) and in serum collected 2 days after OR. In FF, concentrations of both EG-VEGF and VEGF were negatively correlated with peak E2 and the number of MII oocytes retrieved, and positively correlated with each other. In serum, concentrations of all the three growth factors were positively correlated with the rate of good quality embryo, and with one another. Patients in the pregnancy group had lower peak E2 concentrations and higher serum EG-VEGF concentrations than those in the non-pregnancy group, but such tendency was not observed in the case of VEGF and TGF-β1. Both concentrations of EG-VEGF and VEGF in FF were negatively correlated with ovarian response and oocyte maturation. Concentrations of all the three growth factors in serum were positively correlated with embryo quality, but only serum concentrations of EG-VEGF were associated with the pregnancy outcome.

  11. Vascular endothelial growth factor-C (VEGF-C) expression predicts lymph node metastasis of transitional cell carcinoma of the bladder.

    PubMed

    Suzuki, Kazumi; Morita, Tatsuo; Tokue, Akihiko

    2005-02-01

    It has been found that expression of vascular endothelial growth factor-C (VEGF-C) in several carcinomas is significantly associated with angiogenesis, lymphangiogenesis and regional lymph node metastasis. However, VEGF-C expression in bladder transitional cell carcinoma (TCC) has not yet been reported. To elucidate the role of VEGF-C in bladder TCC, we examined VEGF-C expression in bladder TCC and pelvic lymph node metastasis specimens obtained from patients who underwent radical cystectomy. Eighty-seven patients who underwent radical cystectomy for clinically organ-confined TCC of the bladder were enrolled in the present study. No neoadjuvant treatments, except transurethral resection of the tumor, were given to these patients. The VEGF-C expressions of 87 bladder tumors and 20 pelvic lymph node metastasis specimens were examined immunohistochemically and the association between VEGF-C expression and clinicopathological factors, including angiogenesis as evaluated by microvessel density (MVD), was also examined. Vascular endothelial growth factor-C expression was found in the cytoplasm of tumor cells, but not in the normal transitional epithelium. Vascular endothelial growth factor-C expression was significantly associated with the pathological T stage (P = 0.0289), pelvic lymph node metastasis (P < 0.0001), lymphatic involvement (P = 0.0008), venous involvement (P = 0.0002) and high MVD (P = 0.0043). The multivariate analysis demonstrated that VEGF-C expression and high MVD in bladder TCC were independent risk factors influencing the pelvic lymph node metastasis. Moreover, the patients with VEGF-C-positive tumors had significantly poorer prognoses than those with the VEGF-C-negative tumors (P = 0.0087) in the univariate analysis. The multivariate analysis based on Cox proportional hazard model showed that the independent prognostic factors were patient age (P = 0.0132) and pelvic lymph node metastasis (P = 0.0333). The present study suggests that VEGF

  12. Regulation of VEGF signaling by membrane traffic.

    PubMed

    Horowitz, Arie; Seerapu, Himabindu Reddy

    2012-09-01

    Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58]. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Intracranial meningiomas, the VEGF-A pathway, and peritumoral brain oedema.

    PubMed

    Nassehi, Damoun

    2013-04-01

    Meningiomas are the second-most common intracranial tumours in adults. They are derived from the arachnoid cells, and although approximately 90% of meningiomas are benign, more than half of all meningiomas develop peritumoral brain oedema (PTBE), which increases morbidity. The PTBE can be treated with steroid therapy, but this treatment is not specific, is not always effective, and involves long-term side-effects. Meningiomas are treated with radiation therapy, stereotactic radio-surgery or surgical resection. At the moment surgical resection is the only definite treatment, and the removal of the tumour also removes the PTBE. Based on the localization of the meningioma, surgery can be complicated. Although PTBE around meningiomas is frequent, the mechanisms behind its development are not clearly understood. It is believed that due to tumour growth and local tissue hypoxia, angiogenesis is increased and leads to the formation of PTBE. The angiogenic protein vascular endothelial growth factor A (VEGF-A) is believed to be involved in the formation of PTBE around meningiomas, as several studies have found that it is increased in meningiomas with PTBE. VEGF-A is also known as vascular permeability factor due to its ability to increase the permeability of capillaries. Paper I examines the VEGF-A protein and mRNA levels in 101 intracranial meningiomas. The PTBE is quantified on MRI, and capillary length and tumour water content are measured and compared to control brain tissue. Possible co-factors to PTBE like meningioma localization and subtypes are also examined. Forty-three of the patients have primary, solitary, supratentorial meningiomas with PTBE. The correlation between PTBE or edema index with the VEGF-A protein and mRNA, capillary length, and tumour water content is investigated in these patients. A novel method is used for mRNA quantification. It involves direct amplification of the mRNA with probes and branched DNA in order to produce a chemiluminescence signal

  14. Myocardial expression of the vascular endothelial growth factor (VEGF) after endocardial laser revascularization (ELR)

    NASA Astrophysics Data System (ADS)

    Rommerscheid, Jan; Theisen, Dirk; Schmuecker, G.; Brinkmann, Ralf; Broll, R.

    2001-10-01

    Background. Endocardial laser revascularization (ELR) is a new technique to treat patients with severe coronary artery disease (CAD) in a percutaneous approach. The results show a significant improvement of symptoms, but the mechanism of action is still unknown. One main theory is the angiogenesis for which Vascular Endothelial Growth Factor (VEGF) is the keypromotor. We investigated immunohistochemically the VEGF-expression after ELR in porcine hearts over a timeperiod of four weeks. Methods. ELR was performed with a single-pulse Thulium:YAG laser. 15 pigs were treated with ELR and the hearts were harvested at five timeperiods: directly (group I), 3 days (group II), 1 week (group III), 2 weeks (group IV) and 4 weeks (group V) after ELR. Each group consisted of three pigs. Immunohistochemically the VEGF-expression was assessed by staining with a polyclonal antibody against VEGF and cellcounting using an expression index (VEGF-EI) Results. A maximum of VEGF-expression was found three days (group II) after ELR with a VEGF-EI of 97%. At 1 week (group III) the VEGF-EI was similar high with 93%. Along the timecourse the index decreased to 22% at 4 weeks (groupV). Conclusions. Our findings show that ELR leads to an local upregulation of VEGF around the channels. The resulting angiogenesis could be the mechanism for the relief of angina.

  15. G protein, phosphorylated-GATA4 and VEGF expression in the hearts of transgenic mice overexpressing β1- and β2-adrenergic receptors

    PubMed Central

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Won, Moo-Ho; Kim, Yang Hee; Ahn, Ji Hyeon; Park, Jinseu; Choi, Soo Young; Jeon, Yong Hwan

    2017-01-01

    β1- and β2-adrenergic receptors (ARs) regulate cardiac contractility, calcium handling and protein phosphorylation. The present study aimed to examine the expression levels of vascular endothelial growth factor A (VEGF-A) and several G proteins, and the phosphorylation of transcription factor GATA binding protein 4 (GATA4), by western blot analysis, using isolated hearts from 6 month-old transgenic (TG) mice that overexpress β1AR or β2AR. Cardiac contractility/relaxation and heart rate was increased in both β1AR TG and β2AR TG mouse hearts compared with wild type; however, no significant differences were observed between the β1- and β2AR TG mouse hearts. Protein expression levels of inhibitory guanine nucleotide-binding protein (Gi) 2, Gi3 and G-protein-coupled receptor kinase 2 were upregulated in both TG mice, although the upregulation of Gi2 was more prominent in the β2AR TG mice. VEGF-A expression levels were also increased in both TG mice, and were highest in the β1AR TG mice. In addition, the levels of phosphorylated-GATA4 expression were increased in β1- and β2AR TG mice. In conclusion, the present study demonstrated that cardiac contractility/relaxation and heart rate is increased in β1AR TG and β2AR TG mice, and indicated that this increase may be related to the overexpression of G proteins and G-protein-associated proteins. PMID:28487987

  16. Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions

    PubMed Central

    Li, Bo; Wang, Hai; Qiu, Guixing; Su, Xinlin

    2016-01-01

    Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration. PMID:28070506

  17. MAPK signaling is required for LPS-induced VEGF in pulp stem cells.

    PubMed

    Botero, T M; Son, J S; Vodopyanov, D; Hasegawa, M; Shelburne, C E; Nör, J E

    2010-03-01

    Caries-induced pulpitis is typically accompanied by an increase in dental pulp microvascular density. However, the mechanisms by which dental pulp cells recognize lipopolysaccharides (LPSs) remain unclear. We hypothesized that Porphyromonas endodontalis and Escherichia coli LPSs induce vascular endothelial growth factor (VEGF) expression in dental pulp stem cells (DPSC) and human dental pulp fibroblasts (HDPF) through mitogen-activated protein kinase (MAPK) signaling. ELISA, semi-quantitative RT-PCR, immunofluorescence, and Western blots were used. Here, we observed that LPSs induced VEGF expression in DPSC and HDPF cells, and both cell types express Toll-like receptor 4 (TLR- 4). Notably, LPS-induced VEGF is associated with phosphorylation of protein kinase C (PKC zeta) and extracellular signal-regulator kinase (ERK1/2) and is dependent upon MAPK activation. Analysis of these data, collectively, unveils a signaling pathway responsible for synthesis of VEGF by pulp cells and suggests a novel therapeutic target for the management of vascular responses in teeth with pulpitis.

  18. Simultaneous EGFR and VEGF Alterations in Non-Small Cell Lung Carcinoma Based on Tissue Microarrays

    PubMed Central

    Tsiambas, Evangelos; Stamatelopoulos, Athanasios; Karameris, Andreas; Panagiotou, Ioannis; Rigopoulos, Dimitrios; Chatzimichalis, Antonios; Bouros, Demosthenes; Patsouris, Efstratios

    2007-01-01

    Background: Epidermal growth factor receptor (EGFR) overexpression is observed in significant proportions of non-small cell lung carcinomas (NSCLC). Furthermore, overactivation of vascular endothelial growth factor (VEGF) leads to increased angiogenesis implicated as an important factor in vascularization of those tumors. Patients and Methods: Using tissue microarray technology, forty-paraffin (n = 40) embedded, histologically confirmed primary NSCLCs were cored and re-embedded into a recipient block. Immunohistochemistry was performed for the determination of EGFR and VEGF protein levels which were evaluated by the performance of computerized image analysis. EGFR gene amplification was studied by chromogenic in situ hybridization based on the use of EGFR gene and chromosome 7 centromeric probes. Results: EGFR overexpression was observed in 23/40 (57.5%) cases and was correlated to the stage of the tumors (p = 0.001), whereas VEGF was overexpressed in 35/40 (87.5%) cases and was correlated to the stage of the tumors (p = 0.005) and to the smoking history of the patients (p = 0.016). Statistical significance was assessed comparing the protein levels of EGFR and VEGF (p = 0.043, k = 0.846). EGFR gene amplification was identified in 2/40 (5%) cases demonstrating no association to its overall protein levels (p = 0.241), whereas chromosome 7 aneuploidy was detected in 7/40 (17.5%) cases correlating to smoking history of the patients (p = 0.013). Conclusions: A significant subset of NSCLC is characterized by EGFR and VEGF simultaneous overexpression and maybe this is the eligible target group for the application of combined anti-EGFR/VEGF targeted therapies at the basis of genetic deregulation (especially gene amplification for EGFR). PMID:19455247

  19. The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.

    PubMed

    Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E

    2001-07-05

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.

  20. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients.

    PubMed

    Fusaru, Ana Marina; Pisoschi, Cătălina Gabriela; Bold, Adriana; Taisescu, C; Stănescu, R; Hîncu, Mihaela; Crăiţoiu, Stefania; Baniţă, Ileana Monica

    2012-01-01

    VEGF is one the pro-inflammatory adipokines synthesized by the "adipose secretoma" of obese subjects as a response to hypoxic conditions; but the main function of VEGF is angiogenesis, being recognized as the most important factor increasing blood capillaries in the adipose tissue by stimulating endothelial cell growth. In this paper, we propose a comparative study of the vascular response to VEGF synthesis in the subcutaneous and central-peritoneal adipose depots in lean, obese and obese diabetic patients. We used CD31 to label the endothelial cells in order to evaluate the response of the vascular network to VEGF synthesis. Our results showed an increase of VEGF protein synthesis in obese and obese-diabetic patients compared to lean subjects where the protein was absent. The positivity for VEGF in obese diabetic samples was observed in numerous structures from the adipose depots, both in the stromal vascular fraction--blood vessels and stromal cells--as well as in the cytoplasm of adipocytes. Positivity in the vascular wall was observed more frequently in areas of perivascular and intralobular fibrosis. Obese and diabetic patients showed similar incidence of CD31 immunoreactivity with lean subjects in both subcutaneous and peritoneal depots. In conclusion, human adipose depots show a different incidence of VEGF positive cells in relation with their disposal and the metabolic status. VEGF synthesis in visceral adipose tissue is inefficient being not followed by angiogenesis to counterbalance tissue hypoxia. We suggest that may be a pathogenic link between the degrees of intralobular fibrosis in adipose depots and VEGF expression.

  1. Vascular endothelial growth factor (VEGF-634G/C) polymorphism and retinopathy of prematurity: a meta-analysis

    PubMed Central

    Malik, Manzoor Ahmad; Shukla, Swati; Azad, Shorya Vardhan; Kaur, Jasbir

    2014-01-01

    Purpose Vascular endothelial growth factor polymorphism (VEGF-634G/C, rs 2010963) has been considered a risk factor for the development of retinopathy of prematurity (ROP). However, the results remain controversial. Therefore, the aim of the present meta-analysis was to determine the association between VEGF-634G/C polymorphism and ROP risk. Methods Published literature from PubMed and other databases were retrieved. All studies evaluating the association between VEGF-634G/C polymorphism and ROP risk were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random or fixed effects model. A total of six case-control studies including 355 cases and 471 controls were included. Results By pooling all the studies, we found that VEGF-634G/C polymorphism was not associated with ROP risk at co-dominant and allele levels and no association was also found in dominant and recessive models. While stratifying on ethnicity level no association was observed in Caucasian and Asian population. Discussion This meta-analysis suggests that VEGF-634G/C polymorphism may not be associated with ROP risk, the association between single VEGF-634G/C polymorphism and ROP risk awaits further investigation. PMID:25473347

  2. The Quantitative Analysis of bFGF and VEGF by ELISA in Human Meningiomas

    PubMed Central

    Denizot, Yves; De Armas, Rafael; Caire, François; Moreau, Jean Jacques; Pommepuy, Isabelle; Truffinet, Véronique; Labrousse, François

    2006-01-01

    The quantitative analysis of VEGF using ELISA in various subtypes of grade I meningiomas reported higher VEGF contents in meningothelial (2.38 ± 0.62 pg/μg protein, n = 7), transitional (1.08 ± 0.21 pg/μg protein, n = 13), and microcystic meningiomas (1.98 ± 0.87 pg/μg protein, n = 5) as compared with fibrous ones (0.36 ± 0.09 pg/μg protein, n = 5). In contrast to VEGF, no difference in the concentrations of bFGF was detected. VEGF levels did not correlate with meningioma grade (1.47 ± 0.23 pg/μg versus 2.29 ± 0.58 pg/μg for 32 and 16 grade I and II, resp), vascularisation (1.53 ± 0.41 pg/μg versus 1.96 ± 0.28 pg/μg for 24 low and 24 high vascularisated tumours, resp), and brain invasion (2.32 ± 0.59 pg/μg versus 1.46 ± 0.27 pg/μg for 7 and 41 patients with and without invasion, resp). The ELISA procedure is, thus, an interesting tool to ensure VEGF and bFGF levels in meningiomas and to test putative correlations with clinical parameters. It is, thus, tempting to speculate that ELISA would also be valuable for the quantitative analysis of other angiogenic growth factors and cytokines in intracranial tumours. PMID:17392584

  3. Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells.

    PubMed

    Kannan, Ram; Zhang, Ning; Sreekumar, Parameswaran G; Spee, Christine K; Rodriguez, Anthony; Barron, Ernesto; Hinton, David R

    2006-12-22

    To investigate whether oxidative stress modulates vascular endothelial growth factor (VEGF)-A and VEGF-C expression and polarized secretion in a human retinal pigment epithelium cell line (ARPE-19). Long-term culture of ARPE-19 cells in Dulbecco's modified Eagle medium (DMEM)/F12 containing 1% fetal bovine serum (FBS) on transwell filters (12 mm or 6 mm, pore size 0.4 microm) was performed to produce polarized retinal pigment epithelium (RPE) monolayers. The integrity of polarized monolayer was established by measurement of transepithelial resistance (TER) and presence of tight junctions assessed by zonula occludens (ZO-1) and occludin expression and apical Na/K ATPase localization. Paracellular permeability was studied using radiolabeled mannitol. Confluent cells were treated with tertiary butyl hydrogen peroxide (tBH) for varying durations (0-5 h) and doses (50-200 microM). VEGF-A and -C expression was evaluated by western blot and quantitative RT-PCR, while secretion to the apical and basolateral surfaces was quantitated by ELISA. Polarity of ARPE-19 cells was verified by the localization of tight junction proteins, ZO-1 and its binding partner occludin by confocal microscopy as well as by localization of Na,K-ATPase at the apical surface. The TER in confluent ARPE-19 cells averaged 48.7+/-2.1 Omega. cm(2) and tBH treatment (0-5 h) did not alter TER significantly (46.9+/-1.9 Omega. cm(2); p>0.05 versus controls) or ZO-1 expression. Whole cell mRNA in nonpolarized ARPE-19 increased with tBH at 5 h both for VEGF-A and VEGF-C and the increase was significant (p<0.05 vs controls). A similar, maximal increase at 5 h tBH treatment was also observed for VEGF-A and VEGF-C cellular protein levels. The secretion of VEGF-A and VEGF-C in nonpolarized ARPE showed an increase with tBH exposure. The levels of secretion of VEGF-A and -C were significantly higher in polarized monolayers and were stimulated significantly with tBH at both apical and basolateral domains. The

  4. Down-regulation of Jab1, HIF-1alpha, and VEGF by Moloney murine leukemia virus-ts1 infection: a possible cause of neurodegeneration.

    PubMed

    Lungu, Gina F; Stoica, George; Wong, Paul K Y

    2008-05-01

    Moloney murine leukemia virus-temperature sensitive (MoMuLV-ts1)-mediated neuronal death is a result of both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Here the authors propose vascular endothelial growth factor (VEGF) down-regulation as another contributory factor in neuronal degeneration induced by ts1 infection. To determine how ts1 affects VEGF expression in ts1-infected brain, the authors examined the expression of several proteins that are important in regulating the expression of VEGF. The authors found significant decreases in Jun-activating domain-binding protein 1 (Jab1), hypoxia-inducible factor (HIF)-1alpha, and VEGF levels and increases in p53 protein levels in ts1-infected brains compared to noninfected control brains. The authors suggest that a decrease Jab1 expression in ts1 infection leads to accumulation of p53, which binds to HIF-1alpha to accelerate its degradation. A rapid degradation of HIF-1alpha leads to decreased VEGF production and secretion. Considering that endothelial cells are the most conspicuous in virus replication and production in ts1 infection, but are not killed by the infection, the authors examined the expression of these proteins using infected and noninfected mouse cerebrovascular endothelial (CVE) cells. The ts1- infected CVE cells showed decreased Jab1, HIF-1alpha, and VEGF mRNA and protein levels and increased p53 protein levels compared with noninfected cells, consistent with the results found in vivo. These results confirm that ts1 infection results in insufficient secretion of VEGF from endothelial cells and may result in decreased neuroprotection. This study suggested that ts1-mediated neuropathology in mice may result from changes in expression and activity of Jab1, p53, and HIF-1alpha, with a final target on VEGF expression and neuronal degeneration.

  5. Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Amrita; Jones, Michael K.; Department of Medicine, University of California, Irvine, CA

    2013-08-09

    Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 andmore » VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is

  6. Neutralization of Schwann Cell-Secreted VEGF Is Protective to In Vitro and In Vivo Experimental Diabetic Neuropathy

    PubMed Central

    Taiana, Michela M.; Lombardi, Raffaella; Porretta-Serapiglia, Carla; Ciusani, Emilio; Oggioni, Norberto; Sassone, Jenny; Bianchi, Roberto; Lauria, Giuseppe

    2014-01-01

    The pathogenetic role of vascular endothelial growth factor (VEGF) in long-term retinal and kidney complications of diabetes has been demonstrated. Conversely, little is known in diabetic neuropathy. We examined the modulation of VEGF pathway at mRNA and protein level on dorsal root ganglion (DRG) neurons and Schwann cells (SC) induced by hyperglycaemia. Moreover, we studied the effects of VEGF neutralization on hyperglycemic DRG neurons and streptozotocin-induced diabetic neuropathy. Our findings demonstrated that DRG neurons were not affected by the direct exposition to hyperglycaemia, whereas showed an impairment of neurite outgrowth ability when exposed to the medium of SC cultured in hyperglycaemia. This was mediated by an altered regulation of VEGF and FLT-1 receptors. Hyperglycaemia increased VEGF and FLT-1 mRNA without changing their intracellular protein levels in DRG neurons, decreased intracellular and secreted protein levels without changing mRNA level in SC, while reduced the expression of the soluble receptor sFLT-1 both in DRG neurons and SC. Bevacizumab, a molecule that inhibits VEGF activity preventing the interaction with its receptors, restored neurite outgrowth and normalized FLT-1 mRNA and protein levels in co-cultures. In diabetic rats, it both prevented and restored nerve conduction velocity and nociceptive thresholds. We demonstrated that hyperglycaemia early affected neurite outgrowth through the impairment of SC-derived VEGF/FLT-1 signaling and that the neutralization of SC-secreted VEGF was protective both in vitro and in vivo models of diabetic neuropathy. PMID:25268360

  7. The expression and underlying angiogenesis effect of DPC4 and VEGF on the progression of cervical carcinoma

    PubMed Central

    A, Yanni; Li, Ying; Zhao, Shuping

    2018-01-01

    The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (−)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (−), VEGF (+) and TSP-1 (−) groups was significantly increased compared with that of the DPC4 (+), VEGF (−), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4. PMID:29434970

  8. The expression and underlying angiogenesis effect of DPC4 and VEGF on the progression of cervical carcinoma.

    PubMed

    A, Yanni; Li, Ying; Zhao, Shuping

    2018-02-01

    The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (-)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (-), VEGF (+) and TSP-1 (-) groups was significantly increased compared with that of the DPC4 (+), VEGF (-), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4.

  9. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.

    PubMed

    Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth

    2016-01-01

    Inflammation, oxidative stress, and angiogenesis have been proposed to interact in age-related macular degeneration. It has been postulated that external stimuli that cause oxidative stress can increase production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial (RPE) cells. In this study, we tested the hypothesis that the inflammatory cytokine, tumor necrosis factor alpha (TNF-α), contributed to choroidal neovascularization (CNV) by upregulating VEGF in RPE through intracellular reactive oxygen species (ROS)-dependent signaling and sought to understand the mechanisms involved. In a murine laser-induced CNV model, 7 days after laser treatment and intravitreal neutralizing mouse TNF-α antibody or isotype immunoglobulin G (IgG) control, the following measurements were made: 1) TNF-α protein and VEGF protein in RPE/choroids with western blot, 2) CNV volume in RPE/choroidal flatmounts, and 3) semiquantification of oxidized phospholipids stained with E06 antibody within CNV with immunohistochemistry (IHC). In cultured human RPE cells treated with TNF-α or PBS control, 1) ROS generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence assay, and 2) NOX4 protein and VEGF protein or mRNA were measured with western blot or quantitative real-time PCR in cells pretreated with apocynin or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, VAS 2870, or transfected with p22phox siRNA, and each was compared to its appropriate control. Western blots of phosphorylated p65 (p-p65), total p65 and β-actin, and quantitative real-time PCR of VEGF mRNA were measured in human RPE cells treated with TNF-α and pretreatment with the nuclear factor kappa B inhibitor, Bay 11-7082 or control. Western blots of β-catenin, VEGF, and p22phox and coimmunoprecipitation of β-catenin and T-cell transcriptional factor were performed in human RPE cells treated with TNF-α following pretreatment with

  10. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Fang; Li, Xiuli; Kong, Jian

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarianmore » cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.« less

  11. Differential regulation of ANG2 and VEGF-A in human granulosa lutein cells by choriogonadotropin.

    PubMed

    Pietrowski, D; Keck, C

    2004-04-01

    The growth and development of the corpus luteum after rupture of the follicle is a highly regulated process characterised by a rapid vascularization of the follicle surrounding granulosa cells. Vascularization is regulated by a large number of growth factors and cytokines whereas members of the angiopoietin family and VEGF-A are reported to play a principal role. The gonadotropic hormones luteinizing hormone and choriogonadotropin are reported to be essential for corpus luteum formation. In this study we investigated by RT PCR if the growth factors PGF, PDGF-A, PDGF-B, VEGF-A, VEGF-B, VEGF-C, VEGF-D, ANG1, ANG2, ANG3 and ANG4 are expressed in granulosa cells. We show the expression of VEGF-A, VEGF-B, PDGF-A, ANG1 and ANG2 in granulosa cells. Using RT-PCR and Real-Time PCR we demonstrate that angiopoietin 2 is downregulated in human granulosa cells in vitro after choriogonadotropin treatment whereas the expression of angiopoietin 1 is not significantly altered. The expression of VEGF on the RNA- and on the protein level was determined. It was shown that in granulosa cells VEGF is upregulated after choriogonadotropin treatment on the RNA level and that increasing concentrations of choriogonadotropin from 0 to 10 U/ml leads to an increasing amount of VEGF in the cell culture supernatants. The amount of VEGF in the supernatants reaches a plateau at 0.5 U/ml and is increased only slightly and not significantly after treatment of the cells with 10 U/ml choriogonadotropin compared to 0.5 U/ml. In total these findings suggests that in granulosa cells the mRNA of various growth factors is detectable by RT-PCR and that VEGF-A and ANG2 is regulated by the gonadotropic hormone choriogonadotropin. These findings may add impact on the hypothesis of choriogonadotropin as a novel angiogenic factor.

  12. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera's key metabolite Withaferin A.

    PubMed

    Saha, Sanjib; Islam, Md Khirul; Shilpi, Jamil A; Hasan, Shihab

    2013-01-01

    Angiogenesis, or new blood vessel formation from existing one, plays both beneficial and detrimental roles in living organisms in different aspects. Vascular endothelial growth factor (VEGF), a signal protein, well established as key regulator of vasculogenesis and angiogenesis. VEGF ensures oxygen supply to the tissues when blood supply is not adequate, or tissue environment is in hypoxic condition. Limited expression of VEGF is necessary, but if it is over expressed, then it can lead to serious disease like cancer. Cancers that have ability to express VEGF are more efficient to grow and metastasize because solid cancers cannot grow larger than a limited size without adequate blood and oxygen supply. Anti-VEGF drugs are already available in the market to control angiogenesis, but they are often associated with severe side-effects like fetal bleeding and proteinuria in the large number of patients. To avoid such side-effects, new insight is required to find potential compounds as anti-VEGF from natural sources. In the present investigation, molecular docking studies were carried out to find the potentiality of Withaferin A, a key metabolite of Withania somnifera, as an inhibitor of VEGF. Molecular Docking studies were performed in DockingServer and SwissDock. Bevacizumab, a commercial anti-VEGF drug, was used as reference to compare the activity of Withaferin A. X-ray crystallographic structure of VEGF, was retrieved from Protein Data Bank (PDB), and used as drug target protein. Structure of Withaferin A and Bevacizumab was obtained from PubChem and ZINC databases. Molecular visualization was performed using UCSF Chimera. Withaferin A showed favorable binding with VEGF with low binding energy in comparison to Bevacizumab. Molecular Docking studies also revealed potential protein-ligand interactions for both Withaferin A and Bevacizumab. Conclusively our results strongly suggest that Withaferin A is a potent anti-VEGF agent as ascertained by its potential

  13. The effects of RNA interference mediated VEGF gene silencing on biological behavior of renal cell carcinoma and transplanted renal tumor in nude mice.

    PubMed

    Wang, Qi; Wang, Shuai; Sun, Si-Qiao; Cheng, Zhi-Hua; Zhang, Yang; Chen, Guang; Gu, Meng; Yao, Hai-Jun; Wang, Zhong; Zhou, Juan; Peng, Yu-Bing; Xu, Ming-Xi; Zhang, Ke; Sun, Xi-Wei

    2016-01-01

    This study was to explore the effects of RNA interference mediated vascular endothelial growth factor (VEGF) gene silencing on biological behavior of renal cell carcinoma (RCC), transplanted renal tumor and angiogenesis in nude mice. The specific siRNA sequence targeting VEGF were designed and synthesized to construct hVEGF-siRNA plasmid which was transfected into RCC 786-O cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the detection of VEGF gene expression and western blot was adopted for the examination of VEGF protein expression. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell growth as well as cell migration and invasion. The transplanted renal tumor models in nude mice were established, and the growth condition of nude mice, and VEGF protein expression in transplanted tumor slices and the microvessel density (MVD) were detected. The expression level of VEGF mRNA in VEGF-siRNA group was significant lower than that in the control group and negative group, suggesting that establishment of plasmid specifically inhibited the expression of VEGF gene The expression level of VEGF protein in VEGF-siRNA group was significant lower than that in the control group and negative group. VEGF gene silencing has the significant inhibition effects on proliferation, migration and invasion of RCC 786-O cells. The tumor weight, VEGF protein positive rate and MVD in VEGF-siRNA group were significant lower than those in negative group and blank group. The VEGF gene silencing could inhibit the cell proliferation, migration and invasion of RCC 786-O cells; inhibition of VEGF protein expression could prevent transplanted RCC growth and tumor angiogenesis.

  14. Protein Kinase D-dependent Phosphorylation and Nuclear Export of Histone Deacetylase 5 Mediates Vascular Endothelial Growth Factor-induced Gene Expression and Angiogenesis*S⃞

    PubMed Central

    Ha, Chang Hoon; Wang, Weiye; Jhun, Bong Sook; Wong, Chelsea; Hausser, Angelika; Pfizenmaier, Klaus; McKinsey, Timothy A.; Olson, Eric N.; Jin, Zheng-Gen

    2008-01-01

    Vascular endothelial growth factor (VEGF) is essential for normal and pathological angiogenesis. However, the signaling pathways linked to gene regulation in VEGF-induced angiogenesis are not fully understood. Here we demonstrate a critical role of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) in VEGF-induced gene expression and angiogenesis. We found that VEGF stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a VEGF receptor 2-phospholipase Cγ-protein kinase C-PKD-dependent pathway. We further showed that the PKD-HDAC5 pathway mediated myocyte enhancer factor-2 transcriptional activation and a specific subset of gene expression in response to VEGF, including NR4A1, an orphan nuclear receptor involved in angiogenesis. Specifically, inhibition of PKD by overexpression of the PKD kinase-negative mutant prevents VEGF-induced HDAC5 phosphorylation and nuclear export as well as NR4A1 induction. Moreover, a mutant of HDAC5 specifically deficient in PKD-dependent phosphorylation inhibited VEGF-mediated NR4A1 expression, endothelial cell migration, and in vitro angiogenesis. These findings suggest that the PKD-HDAC5 pathway plays an important role in VEGF regulation of gene transcription and angiogenesis. PMID:18332134

  15. Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis.

    PubMed

    Catena, Raul; Muniz-Medina, Vanessa; Moralejo, Beatriz; Javierre, Biola; Best, Carolyn J M; Emmert-Buck, Michael R; Green, Jeffrey E; Baker, Carl C; Calvo, Alfonso

    2007-05-15

    Vascular endothelial growth factor (VEGF) is a proangiogenic factor upregulated in many tumors. The alternative splicing of VEGF mRNA renders 3 major isoforms of 121, 165 and 189 amino-acids in humans (1 less amino-acid for each mouse VEGF isoform). We have designed isoform specific real time QRT-PCR assays to quantitate VEGF transcripts in mouse and human normal and malignant prostates. In the human normal prostate, VEGF(165) was the predominant isoform (62.8% +/- 5.2%), followed by VEGF(121) (22.5% +/- 6.3%) and VEGF(189) (p < 0.001) (14.6% +/- 2.1%). Prostate tumors showed a significant increase in the percentage of VEGF(121) and decreases in VEGF(165) (p < 0.01) and VEGF(189) (p < 0.05). However, the amount of total VEGF mRNA was similar between normal and malignant prostates. VEGF(164) was the transcript with the highest expression in the mouse normal prostate. Unlike human prostate cancer, tumors from TRAMP mice demonstrated a significant increase in total VEGF mRNA levels and in each of the VEGF isoforms, without changes in the relative isoform ratios. Morpholino phosphorodiamide antisense oligonucleotide technology was used to increase the relative amount of VEGF(121) while proportionally decreasing VEGF(165) and VEGF(189) levels in human prostate cell lines, through the modification of alternative splicing, without changing transcription levels and total amount of VEGF. The increase in the VEGF(121)/VEGF(165-189) ratio in PC3 cells resulted in a dramatic increase in prostate tumor angiogenesis in vivo. Our results underscore the importance of VEGF(121) in human prostate carcinoma and demonstrate that the relative expression of the different VEGF isoforms has an impact on prostate carcinogenesis. (c) 2007 Wiley-Liss, Inc.

  16. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    PubMed

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  17. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    PubMed

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. High expression of SDF-1 and VEGF is associated with poor prognosis in patients with synovial sarcomas.

    PubMed

    Feng, Qi; Guo, Peng; Wang, Jin; Zhang, Xiaoyu; Yang, Hui-Chai; Feng, Jian-Gang

    2018-03-01

    Stromal cell-derived factor-1 (SDF-1) predicts poor clinical outcomes of certain types of cancer. Furthermore, vascular endothelial growth factor (VEGF) promotes the growth and metastasis of solid tumors. The aim of the present study was to examine the expression of SDF-1 and VEGF in patients with synovial sarcoma and to determine their expression is correlated with unfavorable outcomes. Levels of SDF-1 and VEGF proteins were evaluated in 54 patients with synovial sarcoma using immunohistochemical and immunofluorescence staining. Potential associations between the expression of SDF-1 and VEGF and various clinical parameters were analyzed using Pearson's χ 2 test and the Spearman-rho test. Additionally, univariate and multivariate Cox regression analyses were used to identify potential prognostic factors, and the Kaplan-Meier method was used to analyze the overall survival rates of patients. Low SDF-1 and VEGF expression was detected in 20.4% (11/54) and 22.2% (12/54) of patients with synovial sarcoma; moderate expression was detected in 35.2% (19/54) and 37.0% (20/54) of patients and high expression was detected in 44.4% (24 of 54) and 40.7% (22 of 54) of patients, respectively. Levels of SDF-1 and VEGF proteins were significantly associated with histological grade (P<0.05), metastasis (P<0.05) and American Joint Committee on Cancer staging (P<0.05). In addition, levels of SDF-1 and VEGF expression were positively correlated with each other (P<0.001). Univariate analysis also indicated that VEGF expression was associated with shorter overall survival rates in (P<0.05), whereas multivariate analysis demonstrated that SDF-1 expression was associated with shorter patient survival rates (P<0.05). Finally, both SDF-1 and VEGF expression were associated with various characteristics of synovial sarcoma. Therefore, SDF-1 expression may be a potential independent prognostic indicator in patients with synovial sarcomas.

  19. Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model

    PubMed Central

    2013-01-01

    Background Alopecia areata is the hair loss usually reversible, in sharply defined areas. The treatment of alopecia using growth factors shows interesting activity in promoting hair growth. In this concept, VEGF (vascular endothelial growth factor) is a marker of angiogenesis, stimulating hair growth by facilitating the supply of nutrients to the hair follicle, increasing follicular diameter. The aim of this study was the evaluation of a topical gel enriched with VEGF liposomes on the hair growth stimulation and its toxicological aspects. Methods Mesocricetus auratus were randomly divided into three groups. Control group was treated with Aristoflex® gel, 1% group with the same gel but added 1% VEGF and 3% group with 3% VEGF. Biochemical, hematological and histological analyses were done. Results At the end of the experiment (15th day of VEGF treatment) efficacy was determined macroscopically by hair density dermatoscopy analysis, and microscopically by hair diameter analysis. They both demonstrated that hair of the VEGF group increased faster and thicker than control. On the other hand, biochemical and hematological results had shown that VEGF was not 100% inert. Conclusions VEGF increased hair follicle area, but more studies are necessary to confirm its toxicity. PMID:24168457

  20. Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model.

    PubMed

    Gnann, Laís Angelo; Castro, Rafael Ferreira; Azzalis, Ligia Ajaime; Feder, David; Perazzo, Fabio Ferreira; Pereira, Edimar Cristiano; Rosa, Paulo César Pires; Junqueira, Virginia Berlanga Campos; Rocha, Katya Cristina; Machado, Carlos D' Aparecida; Paschoal, Francisco Camargo; de Abreu, Luiz Carlos; Valenti, Vitor Engrácia; Fonseca, Fernando Luiz Affonso

    2013-10-29

    Alopecia areata is the hair loss usually reversible, in sharply defined areas. The treatment of alopecia using growth factors shows interesting activity in promoting hair growth. In this concept, VEGF (vascular endothelial growth factor) is a marker of angiogenesis, stimulating hair growth by facilitating the supply of nutrients to the hair follicle, increasing follicular diameter. The aim of this study was the evaluation of a topical gel enriched with VEGF liposomes on the hair growth stimulation and its toxicological aspects. Mesocricetus auratus were randomly divided into three groups. Control group was treated with Aristoflex® gel, 1% group with the same gel but added 1% VEGF and 3% group with 3% VEGF. Biochemical, hematological and histological analyses were done. At the end of the experiment (15th day of VEGF treatment) efficacy was determined macroscopically by hair density dermatoscopy analysis, and microscopically by hair diameter analysis. They both demonstrated that hair of the VEGF group increased faster and thicker than control. On the other hand, biochemical and hematological results had shown that VEGF was not 100% inert. VEGF increased hair follicle area, but more studies are necessary to confirm its toxicity.

  1. VEGF Triggers the Activation of Cofilin and the Arp2/3 Complex within the Growth Cone

    PubMed Central

    Schlau, Matthias; Terheyden-Keighley, Daniel; Theis, Verena; Mannherz, Hans Georg; Theiss, Carsten

    2018-01-01

    A crucial neuronal structure for the development and regeneration of neuronal networks is the axonal growth cone. Affected by different guidance cues, it grows in a predetermined direction to reach its final destination. One of those cues is the vascular endothelial growth factor (VEGF), which was identified as a positive effector for growth cone movement. These positive effects are mainly mediated by a reorganization of the actin network. This study shows that VEGF triggers a tight colocalization of cofilin and the Arp2/3 complex to the actin cytoskeleton within chicken dorsal root ganglia (DRG). Live cell imaging after microinjection of GFP (green fluorescent protein)-cofilin and RFP (red fluorescent protein)-LifeAct revealed that both labeled proteins rapidly redistributed within growth cones, and showed a congruent distribution pattern after VEGF supplementation. Disruption of signaling upstream of cofilin via blocking LIM-kinase (LIMK) activity resulted in growth cones displaying regressive growth behavior. Microinjection of GFP-p16b (a subunit of the Arp2/3 complex) and RFP-LifeAct revealed that both proteins redistributed into lamellipodia of the growth cone within minutes after VEGF stimulation. Disruption of the signaling to the Arp2/3 complex in the presence of VEGF by inhibition of N-WASP (neuronal Wiskott–Aldrich–Scott protein) caused retraction of growth cones. Hence, cofilin and the Arp2/3 complex appear to be downstream effector proteins of VEGF signaling to the actin cytoskeleton of DRG growth cones. Our data suggest that VEGF simultaneously affects different pathways for signaling to the actin cytoskeleton, since activation of cofilin occurs via inhibition of LIMK, whereas activation of Arp2/3 is achieved by stimulation of N-WASP. PMID:29382077

  2. Cigarette Smoke-Related Hydroquinone Dysregulates MCP-1, VEGF and PEDF Expression in Retinal Pigment Epithelium in Vitro and in Vivo

    PubMed Central

    Pons, Marianne; Marin-Castaño, Maria E.

    2011-01-01

    Background Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly population. Debris (termed drusen) below the retinal pigment epithelium (RPE) have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV). The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s) linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1), pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial derived factor (PEDF) in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ), a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice. Principal Findings MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo. Conclusion We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might

  3. Loss of epigenetic Kruppel-like factor 4 histone deacetylase (KLF-4-HDAC)-mediated transcriptional suppression is crucial in increasing vascular endothelial growth factor (VEGF) expression in breast cancer.

    PubMed

    Ray, Alpana; Alalem, Mohamed; Ray, Bimal K

    2013-09-20

    Vascular endothelial growth factor (VEGF) is recognized as an important angiogenic factor that promotes angiogenesis in a series of pathological conditions, including cancer, inflammation, and ischemic disorders. We have recently shown that the inflammatory transcription factor SAF-1 is, at least in part, responsible for the marked increase of VEGF levels in breast cancer. Here, we show that SAF-1-mediated induction of VEGF is repressed by KLF-4 transcription factor. KLF-4 is abundantly present in normal breast epithelial cells, but its level is considerably reduced in breast cancer cells and clinical cancer tissues. In the human VEGF promoter, SAF-1- and KLF-4-binding elements are overlapping, whereas SAF-1 induces and KLF-4 suppresses VEGF expression. Ectopic overexpression of KLF-4 and RNAi-mediated inhibition of endogenous KLF-4 supported the role of KLF-4 as a transcriptional repressor of VEGF and an inhibitor of angiogenesis in breast cancer cells. We show that KLF-4 recruits histone deacetylases (HDACs) -2 and -3 at the VEGF promoter. Chronological ChIP assays demonstrated the occupancy of KLF-4, HDAC2, and HDAC3 in the VEGF promoter in normal MCF-10A cells but not in MDA-MB-231 cancer cells. Co-transfection of KLF-4 and HDAC expression plasmids in breast cancer cells results in synergistic repression of VEGF expression and inhibition of angiogenic potential of these carcinoma cells. Together these results identify a new mechanism of VEGF up-regulation in cancer that involves concomitant loss of KLF-4-HDAC-mediated transcriptional repression and active recruitment of SAF-1-mediated transcriptional activation.

  4. Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.

    PubMed

    Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin

    2017-01-01

    The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (I Ca,L ) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). I Ca,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased I Ca,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced I Ca,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, I Ca,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Serological inflammatory factors as biomarkers for anatomic response in diabetic macular edema treated with anti-VEGF.

    PubMed

    Brito, Pedro; Costa, Jorge; Gomes, Nuno; Costa, Sandra; Correia-Pinto, Jorge; Silva, Rufino

    2018-05-11

    To study the relationship between systemic pro-inflammatory factors and macular structural response to intravitreal bevacizumab for diabetic macular edema (DME). Prospective study including 30 cases with DME, treated with bevacizumab and a minimum follow-up of 6 months. All cases underwent baseline laboratory testing for cardiovascular risk (high sensitivity C-reactive protein (hsCRP), homocystein), dyslipidemia, renal dysfunction and glucose control. Serum levels of VEGF, soluble ICAM-1, MCP-1 and TNF-α were assessed by enzyme-linked immunosorbent assay kits. Significant associations between systemic factors and quantitative and qualitative spectral-domain optical coherence macular features were analyzed. A mean of 4.82 ± 0.56 intravitreal injections was performed, resulting in significant improvement of central foveal thickness (CFT) (p < 0.001). A significant association with third month CFT decrease <10% was found for hsCRP (3.33 ± 2.01 vs 1.39 ± 1.15 mg/l, p = 0.007) and ICAM1 (975.54 ± 265.49 vs 727.07 ± 336.09 pg/ml, p = 0.012). ROC curve analysis indicated hsCRP and ICAM1 as significant biomarkers for 3rd month reduced anatomic response (area under the curve (AUC) = 0.807, p = 0.009 for hsCRP; AUC = 0.788, p = 0.014 for ICAM1). ROC curve analysis revealed hsCRP as a significant biomarker for 6th month CFT decrease <10% (AUC = 0.903, p < 0.001, cutoff value = 1.81 mg/l). A significant association with 6th month CFT decrease ≥25% was found for serum MCP1 (244.69 ± 49.34 pg/ml vs 319.24 ± 94.88 pg/ml, p = 0.017) and serum VEGF (90.84 ± 37.33 vs 58.28 ± 25.19 pg/ml, p = 0.027). The combined model of serum VEGF and LDL-cholesterol was found to be predictive of 6th month hard exudate severity (p = 0.001, r2 = 0.463). Increased levels of hsCRP and ICAM1 were found to be significant biomarkers for early reduced anatomic response to anti-VEGF treatment

  6. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix

    NASA Astrophysics Data System (ADS)

    Geng, Hongquan; Song, Hua; Qi, Jun; Cui, Daxiang

    2011-12-01

    We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic- co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

  7. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Kotaro, E-mail: hif.panc@gmail.com; Nishioka, Masanori; Imura, Satoru

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearingmore » subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX

  8. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway.

    PubMed

    Li, Cheng-Zong; Jiang, Xiao-Jie; Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental

  9. The associations between serum VEGF, bFGF and endoglin levels with microvessel density and expression of proangiogenic factors in malignant and benign ovarian tumors.

    PubMed

    Szubert, Sebastian; Moszynski, Rafal; Michalak, Slawomir; Nowicki, Michal; Sajdak, Stefan; Szpurek, Dariusz

    2016-09-01

    To investigate whether serum levels of VEGF, bFGF and endoglin correlate with tumor VEGF and bFGF expression or microvessel density (MVD) in ovarian cancer. Forty five patients with epithelial ovarian cancers (EOCs) and 38 patients with benign ovarian tumors (BOTs) were included into the study. Serum levels of VEGF, bFGF and endoglin were assessed using ELISA. The expression of VEGF and bFGF in tumor samples were evaluated using ELISA of supernatants obtained from tumor homogenization. MVD was analyzed using immunohistochemistry with antibodies against CD31, CD34 and CD105. Serum VEGF levels were significantly higher in EOCs than in BOTs (436.6pg/ml [19.67-2860] vs 295.5pg/ml [123-539], P=0.025). Serum endoglin levels were lowered in the group EOCs when compared to BOTs (33,720g/ml [12,220-73,940] vs 42,390pg/ml [19,380-56,910], P=0.015). There were no differences in bFGF levels between studied groups. EOCs have significantly higher CD105 MVD (25 vessels/mm2 [0-57] vs 6 vessels/mm2 [0-70], P<0.001) and tumor VEGF (405.9pg/mg protein [0-3000] vs 2.225 [0-634.7], P<0.001) expression than BOTs, while, bFGF expression was higher in BOTs than in EOCs (2076pg/mg protein [668.1-8718] vs 847.3pg/mg protein [188.9-8333], P=0.003). In patients with EOCs we have observed negative correlation between serum VEGF concentration and its tissue expression (r Spearman=-0.571, P=0.0261), and serum VEGF concentration correlated positively with CD34-MVD (r Spearman=0.545, P=0.0289). In a multiple regression analysis we have observed only the negative correlation between serum VEGF and CD105-MVD (r=-0.5288, P=0.0427). Serum VEGF is a useful marker for prediction of ovarian cancer MVD and tumor VEGF expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A Compartment Model of VEGF Distribution in Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap

    PubMed Central

    Wu, Florence T. H.; Stefanini, Marianne O.; Mac Gabhann, Feilim; Popel, Aleksander S.

    2009-01-01

    Vascular endothelial growth factor (VEGF), through its activation of cell surface receptor tyrosine kinases including VEGFR1 and VEGFR2, is a vital regulator of stimulatory and inhibitory processes that keep angiogenesis – new capillary growth from existing microvasculature – at a dynamic balance in normal physiology. Soluble VEGF receptor-1 (sVEGFR1) – a naturally-occurring truncated version of VEGFR1 lacking the transmembrane and intracellular signaling domains – has been postulated to exert inhibitory effects on angiogenic signaling via two mechanisms: direct sequestration of angiogenic ligands such as VEGF; or dominant-negative heterodimerization with surface VEGFRs. In pre-clinical studies, sVEGFR1 gene and protein therapy have demonstrated efficacy in inhibiting tumor angiogenesis; while in clinical studies, sVEGFR1 has shown utility as a diagnostic or prognostic marker in a widening array of angiogenesis–dependent diseases. Here we developed a novel computational multi-tissue model for recapitulating the dynamic systemic distributions of VEGF and sVEGFR1. Model features included: physiologically-based multi-scale compartmentalization of the human body; inter-compartmental macromolecular biotransport processes (vascular permeability, lymphatic drainage); and molecularly-detailed binding interactions between the ligand isoforms VEGF121 and VEGF165, signaling receptors VEGFR1 and VEGFR2, non-signaling co-receptor neuropilin-1 (NRP1), as well as sVEGFR1. The model was parameterized to represent a healthy human subject, whereupon we investigated the effects of sVEGFR1 on the distribution and activation of VEGF ligands and receptors. We assessed the healthy baseline stability of circulating VEGF and sVEGFR1 levels in plasma, as well as their reliability in indicating tissue-level angiogenic signaling potential. Unexpectedly, simulated results showed that sVEGFR1 – acting as a diffusible VEGF sink alone, i.e., without sVEGFR1-VEGFR heterodimerization

  11. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    PubMed Central

    2012-01-01

    Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of

  12. VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma.

    PubMed

    Park, Seongyeol; Nam, Soo Jeong; Keam, Bhumsuk; Kim, Tae Min; Jeon, Yoon Kyung; Lee, Se-Hoon; Hah, J Hun; Kwon, Tack-Kyun; Kim, Dong-Wan; Sung, Myung-Whun; Heo, Dae Seog; Bang, Yung-Jue

    2016-04-01

    The purpose of this study was to evaluate potential prognostic factors in patients with adenoid cystic carcinoma (ACC). A total of 68 patients who underwent curative surgery and had available tissue were enrolled in this study. Their medical records and pathologic slides were reviewed and immunohistochemistry for basic fibroblast growth factor, fibroblast growth factor receptor (FGFR) 2, FGFR3, c-kit, Myb proto-oncogene protein, platelet-derived growth factor receptor beta, vascular endothelial growth factor (VEGF), and Ki-67 was performed. Univariate and multivariate analysis was performed for determination of disease-free survival (DFS) and overall survival (OS). In univariate analyses, primary site of nasal cavity and paranasal sinus (p=0.022) and Ki-67 expression of more than 7% (p=0.001) were statistically significant factors for poor DFS. Regarding OS, perineural invasion (p=0.032), high expression of VEGF (p=0.033), and high expression of Ki-67 (p=0.007) were poor prognostic factors. In multivariate analyses, primary site of nasal cavity and paranasal sinus (p=0.028) and high expression of Ki-67 (p=0.004) were independent risk factors for poor DFS, and high expression of VEGF (p=0.011) and Ki-67 (p=0.011) showed independent association with poor OS. High expression of VEGF and Ki-67 were independent poor prognostic factors for OS in ACC.

  13. Angiomodulin is a specific marker of vasculature and regulates VEGF-A dependent neo-angiogenesis

    PubMed Central

    Hooper, Andrea T.; Shmelkov, Sergey V.; Gupta, Sunny; Milde, Till; Bambino, Kathryn; Gillen, Kelly; Goetz, Mollie; Chavala, Sai; Baljevic, Muhamed; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; Vahdat, Linda; Evans, Todd; Rafii, Shahin

    2010-01-01

    Blood vessel formation is controlled by the balance between pro- and anti-angiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a VEGF-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGMlacZ/+) wherein we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17-22 hpf. Blockade of AGM activity with morpholino oligomers (MO) results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR-2/flk-1, is blocked by the simultaneous injection of AGM MO. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the pro-angiogenic effects of VEGF-A. PMID:19542015

  14. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    PubMed

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-11-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors like vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1) and its receptor, IGF-1R, have been implicated in CNV. We have previously shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in-vivo model. In this study we investigated the effect of PPP on VEGF expression both in vitro and in vivo and whether this effect has anti-angiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in choroids and retinal pigment epithelial cells (APRE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed 22-32% (p = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroids were significantly reduced. In cultured APRE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. We could confirm that PPP reduced the level of transcriptional activity of VEGF promoter. PPP reduces IGF-1 dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the therapy of conditions associated with CNV including neovascular AMD.

  15. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    PubMed

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-06-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-1 and its receptor, IGF-1R, have been implicated in CNV. A prior study has shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in vivo model. In this study we investigated the effect of PPP on VEGF expression, both in vitro and in vivo, and whether this effect has antiangiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in the choroid and retinal pigment epithelial cells (ARPE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed a 22% to 32% (P = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroid were significantly reduced. In cultured ARPE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. PPP reduced the level of transcriptional activity of the VEGF promoter. PPP reduces IGF-1-dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the treatment of conditions associated with CNV, including neovascular AMD.

  16. The growth and aggressive behavior of human osteosarcoma is regulated by a CaMKII-controlled autocrine VEGF signaling mechanism.

    PubMed

    Daft, Paul G; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd

    2015-01-01

    Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease.

  17. The Growth and Aggressive Behavior of Human Osteosarcoma Is Regulated by a CaMKII-Controlled Autocrine VEGF Signaling Mechanism

    PubMed Central

    Daft, Paul G.; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd

    2015-01-01

    Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease. PMID:25860662

  18. Effect of high ovarian response on the expression of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in peri-implantation endometrium in IVF women

    PubMed Central

    Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui

    2015-01-01

    Objective: To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Design: Prospective laboratory study. Setting: University hospital. Patients: Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Intervention(s): Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Main outcome measure(s): Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. Results: All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Conclusion: Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles. PMID:26464631

  19. Effect of high ovarian response on the expression of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in peri-implantation endometrium in IVF women.

    PubMed

    Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui

    2015-01-01

    To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Prospective laboratory study. University hospital. Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles.

  20. Pro- and antiangiogenic VEGF and its receptor status for the severity of diabetic retinopathy

    PubMed Central

    Mondal, Lakshmi K.; Borah, Prasanta K.; Bhattacharya, Chandra K.; Mahanta, Jagadish

    2017-01-01

    Purpose Alteration of pro- and antiangiogenic homeostasis of vascular endothelial growth factor (VEGF) isoforms in patients with hyperglycemia seems crucial but substantially unexplored at least quantitatively for diabetic retinopathy (DR). Therefore, in the present study we aimed to estimate the difference between the pro- (VEGF165a) and antiangiogenic (VEGF165b) VEGF isoforms and its soluble receptors for severity of DR. Methods The study included 123 participants (diabetic retinopathy: 81, diabetic control: 20, non-diabetic control: 22) from the Regional Institute of Ophthalmology, Kolkata. The protein levels of VEGF165a (proangiogenic), VEGF165b (antiangiogenic), VEGF receptor 1 (VEGFR1), VEGFR2, and VEGFR3 in plasma were determined with enzyme-linked immunosorbent assay (ELISA). Results An imbalance in VEGF homeostasis, a statistically significant concomitant increase (p<0.0001) in the level of VEGF165a and a decrease in the level of VEGF165b, was observed with the severity of the disease. Increased differences between VEGF165a and VEGF165b i.e. VEGF165a-b concomitantly increased statistically significantly with the severity of the disease (p<0.0001), patients with diffuse diabetic macular edema (DME) with proliferative DR (PDR) had the highest imbalance. The plasma soluble form of VEGFR2 concentration consistently increased statistically significantly with the severity of the disease (p<0.0001). Conclusions The increased difference or imbalance between the pro- (VEGF165a) and antiangiogenic (VEGF165b) homeostasis of the VEGF isoforms, seems crucial for an adverse prognosis of DR and may be a better explanatory marker compared with either VEGF isoform. PMID:28680264

  1. VEGF isoforms have differential effects on permeability of human pulmonary microvascular endothelial cells.

    PubMed

    Ourradi, Khadija; Blythe, Thomas; Jarrett, Caroline; Barratt, Shaney L; Welsh, Gavin I; Millar, Ann B

    2017-06-02

    Alternative splicing of Vascular endothelial growth factor-A mRNA transcripts (commonly referred as VEGF) leads to the generation of functionally differing isoforms, the relative amounts of which have potentially significant physiological outcomes in conditions such as acute respiratory distress syndrome (ARDS). The effect of such isoforms on pulmonary vascular permeability is unknown. We hypothesised that VEGF 165 a and VEGF 165 b isoforms would have differing effects on pulmonary vascular permeability caused by differential activation of intercellular signal transduction pathways. To test this hypothesis we investigated the physiological effect of VEGF 165 a and VEGF 165 b on Human Pulmonary Microvascular Endothelial Cell (HPMEC) permeability using three different methods: trans-endothelial electrical resistance (TEER), Electric cell-substrate impedance sensing (ECIS) and FITC-BSA passage. In addition, potential downstream signalling pathways of the VEGF isoforms were investigated by Western blotting and the use of specific signalling inhibitors. VEGF 165 a increased HPMEC permeability using all three methods (paracellular and transcellular) and led to associated VE-cadherin and actin stress fibre changes. In contrast, VEGF 165 b decreased paracellular permeability and did not induce changes in VE-cadherin cell distribution. Furthermore, VEGF 165 a and VEGF 165 b had differing effects on both the phosphorylation of VEGF receptors and downstream signalling proteins pMEK, p42/44MAPK, p38 MAPK, pAKT and peNOS. Interestingly specific inhibition of the pMEK, p38 MAPK, PI3 kinase and eNOS pathways blocked the effects of both VEGF 165 a and VEGF 165 b on paracellular permeability and the effect of VEGF 165 a on proliferation/migration, suggesting that this difference in cellular response is mediated by an as yet unidentified signalling pathway(s). This study demonstrates that the novel isoform VEGF 165 a and VEGF 165 b induce differing effects on permeability in

  2. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance.

    PubMed

    Hamdollah Zadeh, Maryam A; Amin, Elianna M; Hoareau-Aveilla, Coralie; Domingo, Enric; Symonds, Kirsty E; Ye, Xi; Heesom, Katherine J; Salmon, Andrew; D'Silva, Olivia; Betteridge, Kai B; Williams, Ann C; Kerr, David J; Salmon, Andrew H J; Oltean, Sebastian; Midgley, Rachel S; Ladomery, Michael R; Harper, Steven J; Varey, Alexander H R; Bates, David O

    2015-01-01

    The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A165b. Whereas flTIA-1 selectively bound VEGF-A165 mRNA and increased translation of VEGF-A165b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway

    PubMed Central

    Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Background Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. Methods The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. Results TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50

  4. Evolution of the VEGF-regulated vascular network from a neural guidance system.

    PubMed

    Ponnambalam, Sreenivasan; Alberghina, Mario

    2011-06-01

    The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.

  5. Pathophysiological consequences of VEGF-induced vascular permeability

    NASA Astrophysics Data System (ADS)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  6. Vitamin C down-regulates VEGF production in B16F10 murine melanoma cells via the suppression of p42/44 MAPK activation.

    PubMed

    Kim, Ha Na; Kim, Hyemin; Kong, Joo Myung; Bae, Seyeon; Kim, Yong Sung; Lee, Naeun; Cho, Byung Joo; Lee, Seung Koo; Kim, Hang-Rae; Hwang, Young-il; Kang, Jae Seung; Lee, Wang Jae

    2011-03-01

    It is known that vitamin C induces apoptosis in several kinds of tumor cells, but its effect on the regulation of the angiogenic process of tumors is not completely studied. Vascular endothelial growth factor (VEGF) is the most well-known angiogenic factor, and it has a potent function as a stimulator of endothelial survival, migration, as well as vascular permeability. Therefore, we have investigated whether vitamin C can regulate the angiogenic process through the modulation of VEGF production from B16F10 melanoma cells. VEGF mRNA expression and VEGF production at protein levels were suppressed by vitamin C. In addition, we found that vitamin C suppressed the expression of cyclooxygenase (COX)-2 and that decreased VEGF production by vitamin C was also restored by the administration of prostaglandin E2 which is a product of COX-2. These results suggest that vitamin C suppresses VEGF expression via the regulation of COX-2 expression. Mitogen-activated protein kinases are generally known as key mediators in the signaling pathway for VEGF production. In the presence of vitamin C, the activation of p42/44 MAPK was completely inhibited. Taken together, our data suggest that vitamin C can down-regulate VEGF production via the modulation of COX-2 expression and that p42/44 MAPK acts as an important signaling mediator in this process. Copyright © 2010 Wiley-Liss, Inc.

  7. Elevated cell proliferation and VEGF production by high-glucose conditions in Müller cells involve XIAP

    PubMed Central

    Sun, Y; Wang, D; Ye, F; Hu, D-N; Liu, X; Zhang, L; Gao, L; Song, E; Zhang, D Y

    2013-01-01

    Purpose Müller cells have important roles in the pathogenesis of diabetic retinopathy by promoting cell proliferation and inducing the production of vascular endothelial growth factor (VEGF) under hyperglycemic conditions. The objective of this study was to determine the potential mechanism of Müller cell proliferation and VEGF production due to high-glucose conditions. Methods Primary cultured rat Müller cells were incubated with medium containing variable concentrations of glucose and/or embelin, a specific inhibitor of X-linked inhibitor of apoptosis protein (XIAP), for 72 h. The proliferation of Müller cells was assessed by the MTT assay. The expression and/or phosphorylation of 146 proteins were assessed using protein pathway array. Results High concentrations of glucose-induced Müller cell proliferation and altered expression and/or phosphorylation of 47 proteins that have been identified to have key roles in several important signaling pathways (XIAP, VEGF, HIF1α, NFκB, etc) and are involved in the regulation of cell survival, proliferation, or apoptosis. However, Müller cell alterations induced by high-glucose conditions were counteracted by the XIAP inhibitor embelin, and 26 proteins/phosphorylations (out of 47) were restored to their normal levels. Nine proteins, including NFκB p65, p-p38, tumor necrosis factor-α, urokinase-type plasminogen activator, CREB, IL-1β, HCAM, estrogen receptor-α, and p-Stat3, were involved in regulatory networks between XIAP and VEGF. Conclusions The current study suggests that XIAP may be a potential regulator that can mediate a series of pathological changes induced by high-glucose conditions in Müller cells. Therefore, embelin could be a potential agent for the prevention and treatment of diabetic retinopathy. PMID:23928877

  8. Expression and localization of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in human pancreas and pancreatic adenocarcinoma.

    PubMed

    Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente

    2007-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) was recently identified as the first tissue-specific angiogenic molecule. EG-VEGF (the gene product of PROK-1) appears to be expressed exclusively in steroid-producing organs such as the ovary, testis, adrenals and placenta. Since the human pancreatic cells retain steroidogenic activity, in the present study we ascertained whether this angiogenic factor is expressed in normal pancreas and pancreatic adenocarcinoma. Tissue samples from normal males (n=5), normal females (n=5) and from surgically resected adenocarcinomas (n=2) were processed for RT-PCR and immunohistochemical studies. Results from semi-quantitative analysis by RT-PCR suggest a distinct expression level for EG-VEGF in the different tissue samples. The relative amount of EG-VEGF mRNA in pancreas was more abundant in female adenocarcinoma (0.89) followed by male adenocarcinoma (0.71), than normal female (0.64) and normal male (0.38). The expression of mRNA for EG-VEGF in normal tissue was significantly higher in females than in males. All samples examined showed specific immunostaining for EG-VEGF. In male preparations, the positive labeling was localized predominantly within the pancreatic islets while in female preparations the main staining was detected towards the exocrine portion. Specific immunolabeling was also observed in endothelial cells of pancreatic blood vessels. Our data provide evidence that the human pancreas expresses the EG-VEGF, a highly specific mitogen which regulates proliferation and differentiation of the vascular endothelium. The significance of this finding could be interpreted as either, EG-VEGF is not exclusive of endocrine organs, or the pancreas should be considered as a functional steroidogenic tissue. The extent of the expression of EG-VEGF appears to have a dimorphic pattern in normal and tumoral pancreatic tissue.

  9. Association of a single-nucleotide polymorphism in the promoter region of the VEGF gene with the risk of renal cell carcinoma.

    PubMed

    Ajaz, Sadia; Khaliq, Shagufta; Abid, Aiysha; Hassan, Asad Shehzad; Hashmi, Altaf; Sultan, Gauhar; Mohsin, Rehan; Mubarrak, Mohammad; Naqvi, Syed Ali Anwar; Rizvi, Syed Adib-ul-Hasan; Mehdi, Syed Qasim

    2011-09-01

    Vascular endothelial growth factor (VEGF) protein plays an important role in tumor development and progression. Polymorphisms in the VEGF gene may lead to over- or underexpression of the protein and may be associated with either risk or progression of malignancy. The aim of this case-control study is to identify and quantify the correlation between VEGF polymorphisms and renal cell carcinoma (RCC). Restriction fragment length polymorphism methods were used for the analysis of VEGF polymorphisms at -2578 and +936 positions in the promoter and 3'-untranslated regions, respectively. The VEGF -2578 A-allele was associated with an increased risk of RCC (odds ratio: 1.6; 95% CI: 1.2-2.3) and A-carrier genotypes were strongly correlated (odds ratio: 2.7; 95% CI: 1.5-4.7) with higher risk. Comparison of VEGF +936 C/T polymorphism between patient and control groups revealed no association with renal carcinoma. Both VEGF -2578 C/A and VEGF +936 C/T polymorphisms showed no significant association with the histopathological parameters of RCC. This study shows that VEGF -2578 A-allele and A-carrier genotypes are associated with an increased risk of RCC. In groups with higher incidence of RCC, a screening test for this polymorphism may be recommended in conjunction with other established markers.

  10. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFβ1-induced macrophages.

    PubMed

    Machado, Camila Maria Longo; Andrade, Luciana Nogueira Sousa; Teixeira, Verônica Rodrigues; Costa, Fabrício Falconi; Melo, Camila Morais; dos Santos, Sofia Nascimento; Nonogaki, Suely; Liu, Fu-Tong; Bernardes, Emerson Soares; Camargo, Anamaria Aranha; Chammas, Roger

    2014-04-01

    In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68(+)-cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68(+) cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Monocyte Chemotactic Protein-1 (MCP-1) and Growth Factors Called into Question as Markers of Prolonged Psychosocial Stress

    PubMed Central

    Jonsdottir, Ingibjörg H.; Hägg, Daniel A.; Glise, Kristina; Ekman, Rolf

    2009-01-01

    Background Psychosocial stress is becoming a major contributor to increased mental ill-health and sick leave in many countries. Valid markers of chronic stress would be valuable for diagnostic and prognostic purposes. A recent study suggested monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as markers of chronic stress. We aimed to confirm these potential biomarkers of prolonged psychosocial stress in female patients. Methodology/Principal Findings Circulating levels of MCP-1, EGF and VEGF, along with several other cytokines, were measured in plasma from 42 female patients suffering from exhaustion due to prolonged psychosocial stress and 42 control subjects, using a protein biochip immunoassay. There were no significant differences between patients and controls in any of the cytokines or growth factors analyzed. Furthermore, when using a different protein bioassay and reanalyzing MCP-1 and VEGF in the same samples, markedly different levels were obtained. To further explore if inflammation is present in patients with exhaustion, the classical inflammatory marker C-reactive protein (CRP) was measured in another group of patients (n = 89) and controls (n = 88) showing a small but significant increase of CRP levels in the patients. Conclusions/Significance MCP-1, EGF and VEGF may not be suitable markers of prolonged psychosocial stress as previously suggested. Furthermore, significant differences were obtained when using two different protein assays measuring the same samples, indicating that comparing studies where different analytic techniques have been used might be difficult. Increased levels of CRP indicate that low-grade inflammation might be present in patients with exhaustion due to prolonged stress exposure but this inflammation does not seem to be reflected by increase in circulating MCP-1 or other cytokines measured. PMID:19888340

  12. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells.

    PubMed

    Chen, Meng-Chuan; Lee, Chi-Feng; Huang, Wen-Hsin; Chou, Tz-Chong

    2013-05-01

    The hypoxic environment in tumors is an important factor causing tumor angiogenesis by activating the key transcription factor, hypoxia-inducible factors-1α (HIF-1α). Magnolol isolated from Magnolia officinalis has been reported to exhibit an anticancer activity via elevation of apoptosis. However, whether magnolol inhibits tumor angiogenesis remains unknown. In the present study, we demonstrated that magnolol significantly inhibited angiogenesis in vitro and in vivo evidenced by the attenuation of hypoxia and vascular endothelial growth factor (VEGF)-induced tube formation of human umbilical vascular endothelial cells, vasculature generation in chicken chorioallantoic membrane and Matrigel plug. In hypoxic human bladder cancer cells (T24), treatment with magnolol inhibited hypoxia-stimulated H2O2 formation, HIF-1α induction including mRNA, protein expression, and transcriptional activity as well as VEGF secretion. Additionally, the enhanced degradation of HIF-1α protein via enhancing prolyl hydroxylase activity and the decreased newly-synthesized HIF-1α protein in hypoxic T24 cells may involve the reduction of HIF-1α protein accumulation by magnolol. Interestingly, magnolol also acts as a VEGFR2 antagonist, and subsequently attenuates the down-stream AKT/mTOR/p70S6K/4E-BP-1 kinase activation both in hypoxic T24 cells and tumor tissues. As expected, administration of magnolol greatly attenuated tumor growth, angiogenesis and the protein expression of HIF-1α, VEGF, CD31, a marker of endothelial cells, and carbonic anhydrase IX, an endogenous marker for hypoxia, in the T24 xenograft mouse model. Collectively, these findings strongly indicate that the anti-agngiogenic activity of magnolol is, at least in part, mediated by suppressing HIF-1α/VEGF-dependent pathways, and suggest that magnolol may be a potential drug for human bladder cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction.

    PubMed

    Szentpéteri, Imre; Rab, Attila; Kornya, László; Kovács, Péter; Joó, József Gábor

    2013-07-01

    In this study, we describe changes in gene expression pattern of vascular endothelial growth factor (VEGF)-A in human placenta obtained from pregnancies with intrauterine growth restriction using placenta from normal pregnancies as control. We compared gene expression of VEGF-A in placental samples from Intrauterine growth restriction (IUGR) pregnancies versus placenta obtained from normal pregnancies. Among potential confounders, important clinical informations were also analyzed. In the IUGR group, the VEGF-A gene was overexpressed compared to the normal pregnancy group (Ln 2(α)β-actin: 1.32; Ln 2(α)GADPH: 1.56). There was no correlation between the degree of growth restriction and VEGF-A gene expression (Ln 2(α)(0-5)percentile: 0.58; Ln 2(α)(5-10)percentile: 0.64). Within the IUGR group, there was a trend toward a positive correlation between placental VEGF-A gene activity and gestational age at delivery (Ln 2(α)< 33 weeks: 1.09; Ln 2(α)33-37 weeks: 1.27; Ln 2(α)> 37 weeks: 1.35). Our findings suggest that the increase in placental expression of the VEGF-A gene and the resultant stimulation of angiogenesis are a response to hypoxic environment developing in the placental tissue in IUGR. Thus, it appears to be a secondary event rather than a primary factor in the development of IUGR There is a trend toward a positive correlation between gestational age and placental VEGF-A gene activity.

  14. [Role of VEGF in diseases of the retina].

    PubMed

    Barquet, Luis Arias

    2015-03-01

    Angiogenesis is the process through which new blood vessels are formed, based on preexisting vessels, and is the paradigm of diseases such as cancer and exudative ageassociated macular degeneration (ARMD). Several proangiogenic factors have been identified, such as vascular endothelial growth factor (VEGF), especially VEGF-A, which activates endothelial cells and promotes cell proliferation, migration, and an increase in vascular permeability. VEGF is also involved in the etiopathogenesis of other retinal diseases, such as diabetic macular edema and macular edema secondary to retinal vein occlusion. Likewise, there is increasing evidence that placental growth factor (PIGF) acts recepsynergetically with VEGF in promoting these diseases. Currently, the main treatment for these diseases are the anti-VEGF drugs, aflibercept, ranibizumab and bevacizumab. These agents differ in their molecular structure and mechanism of action. Copyright © 2015 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  15. The Janus Face of VEGF in Stroke

    PubMed Central

    Geiseler, Samuel J.; Morland, Cecilie

    2018-01-01

    The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy. PMID:29734653

  16. [The role of VEGF, HSP-70 and protein S-100B in the potentiation effect of the neuroprotective effect of hypercapnic hypoxia].

    PubMed

    Bespalov, A G; Tregub, P P; Kulikov, V P; Pijanzin, A I; Belousov, A A

    2014-01-01

    Studied the role of VEGF, HSP-70 and S-100B in potentiating hypercapnia neuroprotective effect of hypoxia. Demonstrated that neuroprotective effects when exposed hypercapnic hypoxia-mediated protein synthesis increased S-100B, mainly due to the action of carbon dioxide, and not oxygen deficiency. Neuroprotective effects of HSP-70 due to hypoxia, but the combined effect of hypoxia and hypercapnia gives a significant increase in the synthesis of HSP-70 in comparison with the isolated effect of hypoxia. Vascularization activated equally as hypoxia and hypercapnia, without adding significant effects in combination. This suggests dominant effect hypercapnia, hypoxia compared in neuroprotection mechanisms related to protein S-100B, but not the protein VEGF, hypercapnia and potentiate the neuroprotective efficacy of hypoxia-related protein HSP-70.

  17. Expression of hypoxia-inducible factor-1α, vascular endothelial growth factor and prolyl hydroxylase domain protein 2 in cutaneous squamous cell carcinoma and precursor lesions and their relationship with histological stages and clinical features.

    PubMed

    An, Xiangjie; Xu, Guangfen; Yang, Liu; Wang, Yuejue; Li, Yan; McHepange, Uwesu O; Shen, Guanxin; Tu, Yating; Tao, Juan

    2014-01-01

    The hypoxia-inducible factor-1 (HIF-1α) pathway is associated with tumor growth, angiogenesis and metastasis in various carcinomas. Little is known regarding the role of the HIF-1α signaling pathway in cutaneous squamous cell carcinoma (SCC). We investigated the expression of HIF-1α, vascular endothelial growth factor (VEGF) and the HIF negative regulator, prolyl hydroxylase domain protein 2 (PHD2), in cutaneous SCC, Bowen's disease, seborrheic keratosis (SK) and normal skin by immunohistochemistry and in situ hybridization. Additionally, we explored the relationships between these factors and the clinical and histological characteristics of each disease. Our study indicated that the expression of HIF-1α and VEGF was significantly higher (P < 0.05) in cutaneous SCC than in Bowen's disease, SK or normal skin. In contrast, PHD2 showed significantly higher expression in normal skin compared with SK, Bowen's disease and cutaneous SCC (P < 0.05). Grade II-IV cutaneous SCC had higher expression levels of nuclear HIF-1α and cytoplasm VEGF protein but less nuclear PHD2 protein than grade Ι cutaneous SCC (P < 0.05). Overexpression of HIF-1α and VEGF, as well as the decreased expression of PHD2, may play important roles in the development of cutaneous SCC. © 2013 Japanese Dermatological Association.

  18. GPER mediates activation of HIF1α/VEGF signaling by estrogens.

    PubMed

    De Francesco, Ernestina Marianna; Pellegrino, Michele; Santolla, Maria Francesca; Lappano, Rosamaria; Ricchio, Emilia; Abonante, Sergio; Maggiolini, Marcello

    2014-08-01

    Biological responses to estrogens in normal and malignant tissues are mainly mediated by the estrogen receptors ERα and ERβ, which function as ligand-activated transcription factors. In addition, the G protein-coupled receptor GPR30 (GPER) mediates estrogenic signaling in breast cancer cells and cancer-associated fibroblasts (CAF) that contribute to cancer progression. In this study, we evaluated the role elicited by GPER in the estrogen-regulated expression and function of vascular endothelial growth factor (VEGF) in ER-negative breast cancer cells and CAF. We demonstrated that 17β-estradiol (E2) and the GPER-selective ligand G-1 triggered a GPER/EGFR/ERK/c-fos signaling pathway that leads to increased VEGF via upregulation of HIF1α. In further extending the mechanisms involved in E2-supported angiogenesis, we also showed that conditioned medium from CAF treated with E2 and G-1 promoted human endothelial tube formation in a GPER-dependent manner. In vivo, ligand-activated GPER was sufficient to enhance tumor growth and the expression of HIF1α, VEGF, and the endothelial marker CD34 in a mouse xenograft model of breast cancer. Our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HIF1α-dependent VEGF expression that supports angiogenesis and progression in breast cancer. ©2014 American Association for Cancer Research.

  19. Emodin-Loaded Magnesium Silicate Hollow Nanocarriers for Anti-Angiogenesis Treatment through Inhibiting VEGF

    PubMed Central

    Ren, Hua; Zhu, Chao; Li, Zhaohui; Yang, Wei; Song, E

    2014-01-01

    The applications of anti-VEGF (vascular endothelial growth factor) treatment in ophthalmic fields to inhibit angiogenesis have been widely documented in recent years. However, the hydrophobic nature of many agents makes its delivery difficult in practice. Therefore, the aim of the present study was to introduce a new kind of hydrophobic drug carrier by employing nanoparticles with a hollow structure inside. Followed by the synthesis and characterization of magnesium silicate hollow spheres, cytotoxicity was evaluated in retina capillary endothelial cells. The loading and releasing capacity were tested by employing emodin, and the effect on VEGF expression was performed at the gene and protein level. Finally, an investigation on angiogenesis was carried on fertilized chicken eggs. The results indicated that the magnesium silicate nanoparticles had low toxicity. Emodin–MgSiO3 can inhibit the expression of both VEGF gene and protein effectively. Angiogenesis of eggs was also reduced significantly. Based on the above results, we concluded that magnesium silicate hollow spheres were good candidates as drug carriers with enough safety. PMID:25250911

  20. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conducemore » to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free

  1. VEGF-A is increased in exogenous endophthalmitis.

    PubMed

    Seamone, Mark E; Lewis, Darrell R; Haidl, Ian D; Gupta, R Rishi; O' Brien, Daniel M; Dickinson, John; Samad, Arif; Marshall, Jean S; Cruess, Alan F

    2017-06-01

    Exogenous endophthalmitis is an ophthalmologic emergency defined by panocular inflammation. Vascular endothelial growth factor A (VEGF-A) contributes to inflammation by promoting chemotaxis of monocytes and granulocytes and by increasing vascular permeability. The purpose of this article is to determine if VEGF-A is elevated in the vitreous samples obtained from individuals with exogenous endophthalmitis. Vitreous samples from individuals with exogenous endophthalmitis (n = 18) were analyzed via Luminex assay and enzyme-linked immunosorbent assay for the cytokines VEGF-A, tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-8 (chemokine [CXCL]-8), IL-1β, IL-10, IL-12p70, IL-33, interferon (IFN)-γ, IFN-α, IFN-β, chemokine ligand (CCL)-3, IL-2, IL-5, IL-15, CXCL-10, CCL-2, IL-1Ra, CCL-5, IL-17, and CCL-11. Vitreous samples obtained at the time of macular hole surgery served as controls (n = 8). Concentrations of VEGF-A were significantly elevated in vitreous samples from individuals with exogenous endophthalmitis compared with macular hole (p < 0.001). VEGF-A was significantly upregulated in individuals with exogenous endophthalmitis after cataract surgery (p = 0.001), vitrectomy (p = 0.024), and intravitreal injection (p = 0.012). VEGF-A concentrations were similar in both culture-positive and culture-negative populations (p > 0.05). In a linear regression model, levels of VEGF-A correlated significantly with the chemokine CXCL-8 (p = 0.028). We demonstrate that VEGF-A is potently upregulated in exogenous endophthalmitis. This observation provides a foundation for future studies of targeted VEGF-A blockade in the management of endophthalmitis. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  2. Increased expression of high mobility group box protein 1 and vascular endothelial growth factor in placenta previa.

    PubMed

    Xie, Han; Qiao, Ping; Lu, Yi; Li, Ying; Tang, Yuping; Huang, Yiying; Bao, Yirong; Ying, Hao

    2017-12-01

    Placenta previa is often associated with preterm delivery, reduced birth weight, a higher frequency of placental accreta and postpartum haemorrhage, and increased likelihood of blood transfusion. The present study aimed to examine the expression of high mobility group box protein 1 (HMGB1) in the placenta of women with or without placenta previa. The study group consisted of placental tissues obtained from women with or without placenta previa. The expression levels of HMGB1 and vascular endothelial growth factor (VEGF) were evaluated in the placental tissues using reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. The mRNA expression levels of HMGB1 and VEGF were significantly increased in the placenta previa group compared with in the normal group. In addition, the placenta previa group exhibited increased HMGB1 and VEGF staining in vascular endothelial cells and trophoblasts. There were no significant differences in the expression of HMGB1 or VEGF between groups with or without placenta accreta or postpartum haemorrhage. The present study hypothesised that the increased expression of HMGB1 in the placenta may be associated with the pathogenesis of placenta previa by regulating the expression of the proangiogenic factor VEGF.

  3. Exposure of chick embryos to cadmium changes the extra-embryonic vascular branching pattern and alters expression of VEGF-A and VEGF-R2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheorghescu, Anna Kaskova; Tywoniuk, Bartlomiej; Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4

    Cadmium (Cd) has several industrial applications, and is found in tobacco products, a notable source of human exposure. Vascular endothelial cells are key targets of Cd toxicity. Here, we aim to quantify the alteration to vascular branching pattern following Cd exposure in the chick extra-embryonic membrane (EEM) using fractal analysis, and explore molecular cues to angiogenesis such as VEGF-A and VEGF-R2 expression following Cd treatment. Chicken embryos were incubated for 60 h to Hamburger–Hamilton developmental stage 16–17, then explanted and treated with 50 μL of 50 μmol cadmium acetate (CdAc) or an equivalent volume of equimolar sodium acetate (NaAc). Imagesmore » of embryos and their area vasculosa (AV) were captured and analyzed at 4 different time points (4, 8, 24 and 48 h) following treatment. Vascular branching in the AV was quantified using its fractal dimension (D{sub f}), estimated using a box counting method. Gallinaceous VEGF ELISA was used to measure the VEGF-A concentration in the EEM following treatment, with determination of the relative expression of VEGF-A and VEGF-R2 using quantitative real-time RT-PCR. Vascular branching increased monotonically in the control group at all time points. The anti-angiogenic effect of Cd exposure on the AV was reflected by a significant reduction in D{sub f} when compared with controls. D{sub f} was more markedly reduced in cultures with abnormal embryos. The expression of VEGF-A protein, and VEGF-A and VEGF-R2 mRNA were reduced in Cd-exposed EEMs. Both molecules contribute to growth, vessel sprouting and branching processes, which supports our findings using fractal analysis. - Highlights: • The chick area vasculosa was undersized in embryos exposed to 50 μM cadmium acetate. • Fractal dimension was reduced in the AV after Cd exposure, indicating decreased branching. • VEGF-A protein was decreased in Cd-treated extraembryonic membranes. • VEGF-A and VEGF-R2 mRNA was decreased in Cd

  4. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    PubMed

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Differential Regulation of Angiogenesis using Degradable VEGF-Binding Microspheres

    PubMed Central

    Belair, David G.; Miller, Michael J.; Wang, Shoujian; Darjatmokon, Soesiawati R.; Binder, Bernard Y.K.; Sheibani, Nader; Murphy, William L.

    2016-01-01

    Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications. PMID:27061268

  6. NGF/anti-VEGF combined exposure protects RCS retinal cells and photoreceptors that underwent a local worsening of inflammation.

    PubMed

    Rocco, Maria Luisa; Balzamino, Bijorn Omar; Esposito, Graziana; Petrella, Carla; Aloe, Luigi; Micera, Alessandra

    2017-03-01

    Our previous study highlighted the potential nerve growth factor (NGF) effect on damaged photoreceptors from a rat model of spontaneous Retinitis Pigmentosa (RP). Herein, we tested the combined NGF/anti-vascular endothelial growth factorVEGF) effect on cultured retinal cells isolated from Royal College of Surgeons (RCS) rats receiving an intravitreal VEGF injection (iv-VEGF) to exacerbate retinal inflammation/neovascularization. RCS (n = 75) rats were equally grouped as untreated (n = 25), iv-saline (single saline intravitreal injection; n = 25) and iv-VEGF (single VEGF intravitreal injection; n = 25). Morphological and biochemical analysis or in vitro stimulations with the biomolecular investigation were carried out on explanted retinas. Isolated retinal cells were treated with NGF and αVEGF, either alone or in combination, for 6 days and cells were harvested for morphological and biomolecular analyses. Infiltrating inflammatory cells were detected in iv-VEGF exposed RCS retinas, indicative of exacerbated inflammation and neovascularization. In cell cultures, NGF/αVEGF significantly increased retinal cell survival as well as rhodopsin expression and neurite outgrowth in photoreceptors. Particularly, NGF/αVEGF upregulated Bcl-2 mRNA, downregulated Bax mRNA, upregulated trkA NGFR mRNA and finally upregulated both NGF mRNA and protein. These data confirm and extend our previous findings on NGF-photoreceptor crosstalk, highlighting that the NGF/αVEGF combination might be an interesting approach for improving neuroprotection of RCS retinal cells and likewise photoreceptors in the presence of neovascularization. Further studies are required to translate this in vitro approach into clinical practice.

  7. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells

    PubMed Central

    Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; De Marco, Paola; Cirillo, Francesca; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2015-01-01

    Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression. PMID:26415222

  8. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells.

    PubMed

    Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; De Marco, Paola; Cirillo, Francesca; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2015-10-27

    Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression.

  9. Moist exposed burn ointment promotes cutaneous excisional wound healing in rats involving VEGF and bFGF.

    PubMed

    Tang, Qian-Li; Han, Shan-Shan; Feng, Jing; Di, Jia-Qi; Qin, Wen-Xi; Fu, Jun; Jiang, Qiu-Yan

    2014-04-01

    Cutaneous delayed wounds are a challenging clinical problem, and vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) exhibit key roles in wound healing. Moist exposed burn ointment (MEBO), a Chinese burn ointment with a USA patented formulation, has been reported to promote chronic ischemic and neurogenic ulcer healing in patients; however, the underlying mechanisms remain unclear. In the present study, MEBO significantly promoted the formation of granulation tissue in cutaneous excisional wounds, shortened the time of wound healing, and increased neovascularization and the number of fibroblasts. Furthermore, as well as enhancing the protein expression, MEBO application also increased the gene expression of VEGF and bFGF. The results indicate that MEBO promotes cutaneous excisional wound healing by at least partially enhancing VEGF and bFGF production, implicating the potential uses of MEBO for delayed cutaneous wound healing.

  10. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viabilitymore » was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.« less

  11. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury.

    PubMed

    Sato, Teruhiko; Paquet-Fifield, Sophie; Harris, Nicole C; Roufail, Sally; Turner, Debra J; Yuan, Yinan; Zhang, You-Fang; Fox, Stephen B; Hibbs, Margaret L; Wilkinson-Berka, Jennifer L; Williams, Richard A; Stacker, Steven A; Sly, Peter D; Achen, Marc G

    2016-06-01

    Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF-D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF-D in pathological oedema was unknown. To address these issues, we exposed Vegfd-deficient mice to hyperoxia. The resulting pulmonary oedema in Vegfd-deficient mice was substantially reduced compared to wild-type, as was the protein content of bronchoalveolar lavage fluid, consistent with reduced vascular leak. Vegf-d and its receptor Vegfr-3 were more highly expressed in lungs of hyperoxic, versus normoxic, wild-type mice, indicating that components of the Vegf-d signalling pathway are up-regulated in hyperoxia. Importantly, VEGF-D and its receptors were co-localized on blood vessels in clinical samples of human lungs exposed to hyperoxia; hence, VEGF-D may act directly on blood vessels to promote fluid leak. Our studies show that Vegf-d promotes oedema in response to hyperoxia in mice and support the hypothesis that VEGF-D signalling promotes vascular leak in human HALI. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  12. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.

    PubMed

    Lv, Jia; Xiu, Peng; Tan, Jie; Jia, Zhaojun; Cai, Hong; Liu, Zhongjun

    2015-06-24

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects.

  13. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    PubMed

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  14. Grb-2–associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A–endothelial NOS pathway

    PubMed Central

    Xiong, Yan; Huo, Yingqing; Han, Jingyan; Yang, Xiao; Zhang, Rongli; Zhu, De-Sheng; Klein-Heßling, Stefan; Zhang, Xiaoyu; Han, Xiaofan; Li, Yanli; Shen, Bin; He, Yulong; Shibuya, Masabumi; Feng, Gen-Sheng; Luo, Jincai

    2011-01-01

    The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2–associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases. PMID:21282639

  15. Zebrafish WNK Lysine Deficient Protein Kinase 1 (wnk1) Affects Angiogenesis Associated with VEGF Signaling

    PubMed Central

    Chen, Wen-Chuan; Kou, Fong-Ji; Lu, Jeng-Wei; Wang, Horng-Dar; Huang, Chou-Long; Yuh, Chiou-Hwa

    2014-01-01

    The WNK1 (WNK lysine deficient protein kinase 1) protein is a serine/threonine protein kinase with emerging roles in cancer. WNK1 causes hypertension and hyperkalemia when overexpressed and cardiovascular defects when ablated in mice. In this study, the role of Wnk1 in angiogenesis was explored using the zebrafish model. There are two zebrafish wnk1 isoforms, wnk1a and wnk1b, and both contain all the functional domains found in the human WNK1 protein. Both isoforms are expressed in the embryo at the initiation of angiogenesis and in the posterior cardinal vein (PCV), similar to fms-related tyrosine kinase 4 (flt4). Using morpholino antisense oligonucleotides against wnk1a and wnk1b, we observed that wnk1 morphants have defects in angiogenesis in the head and trunk, similar to flk1/vegfr2 morphants. Furthermore, both wnk1a and wnk1b mRNA can partially rescue the defects in vascular formation caused by flk1/vegfr2 knockdown. Mutation of the kinase domain or the Akt/PI3K phosphorylation site within wnk1 destroys this rescue capability. The rescue experiments provide evidence that wnk1 is a downstream target for Vegfr2 (vascular endothelial growth factor receptor-2) and Akt/PI3K signaling and thereby affects angiogenesis in zebrafish embryos. Furthermore, we found that knockdown of vascular endothelial growth factor receptor-2 (flk1/vegfr2) or vascular endothelial growth factor receptor-3 (flt4/vegfr3) results in a decrease in wnk1a expression, as assessed by in situ hybridization and q-RT-PCR analysis. Thus, the Vegf/Vegfr signaling pathway controls angiogenesis in zebrafish via Akt kinase-mediated phosphorylation and activation of Wnk1 as well as transcriptional regulation of wnk1 expression. PMID:25171174

  16. Role of EG-VEGF in human placentation: Physiological and pathological implications.

    PubMed

    Hoffmann, Pascale; Saoudi, Yasmina; Benharouga, Mohamed; Graham, Charles H; Schaal, Jean-Patrick; Mazouni, Chafika; Feige, Jean-Jacques; Alfaidy, Nadia

    2009-08-01

    Pre-eclampsia (PE), the major cause of maternal morbidity and mortality, is thought to be caused by shallow invasion of the maternal decidua by extravillous trophoblasts (EVT). Data suggest that a fine balance between the expressions of pro- and anti-invasive factors might regulate EVT invasiveness. Recently, we showed that the expression of the new growth factor endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is high in early pregnancy but falls after 11 weeks, suggesting an essential role for this factor in early pregnancy. Using human villous explants and HTR-8/SVneo, a first trimester extravillous trophoblast cell line, we showed differential expression of EG-VEGF receptors, PKR1 and PKR2, in the placenta and demonstrated that EG-VEGF inhibits EVT migration, invasion and tube-like organisation. EG-VEGF inhibitory effect on invasion was supported by a decrease in matrix metalloproteinase (MMP)-2 and MMP-9 production. Interference with PKR2 expression, using specific siRNAs, reversed the EG-VEGF-induced inhibitory effects. Furthermore, we determined EG-VEGF circulating levels in normal and PE patients. Our results showed that EG-VEGF levels were highest during the first trimester of pregnancy and decreased thereafter to non-pregnant levels. More important, EG-VEGF levels were significantly elevated in PE patients compared with age-matched controls. These findings identify EG-VEGF as a novel paracrine regulator of trophoblast invasion. We speculate that a failure to correctly down-regulate placental expression of EG-VEGF at the end of the first trimester of pregnancy might lead to PE.

  17. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription.

    PubMed

    Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg

    2014-09-09

    Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These

  18. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis

    PubMed Central

    Zhang, Fan; Tang, Zhongshu; Hou, Xu; Lennartsson, Johan; Li, Yang; Koch, Alexander W.; Scotney, Pierre; Lee, Chunsik; Arjunan, Pachiappan; Dong, Lijin; Kumar, Anil; Rissanen, Tuomas T.; Wang, Bin; Nagai, Nobuo; Fons, Pierre; Fariss, Robert; Zhang, Yongqing; Wawrousek, Eric; Tansey, Ginger; Raber, James; Fong, Guo-Hua; Ding, Hao; Greenberg, David A.; Becker, Kevin G.; Herbert, Jean-Marc; Nash, Andrew; Yla-Herttuala, Seppo; Cao, Yihai; Watts, Ryan J.; Li, Xuri

    2009-01-01

    VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a “survival,” rather than an “angiogenic” factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases. PMID:19369214

  19. Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex.

    PubMed

    Howell, Kristy R; Kutiyanawalla, Ammar; Pillai, Anilkumar

    2011-01-01

    Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under long-term continuous glucocorticoid exposure has not been elucidated. We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects. We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects. The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecular mechanism of the neurobiological effects of chronic stress.

  20. The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    PubMed Central

    Appukuttan, Binoy; McFarland, Trevor J.; Stempel, Andrew; Kassem, Jean B.; Hartzell, Matthew; Zhang, Yi; Bond, Derek; West, Kelsey; Wilson, Reid; Stout, Andrew; Pan, Yuzhen; Ilias, Hoda; Robertson, Kathryn; Klein, Michael L.; Wilson, David; Smith, Justine R.; Stout, J. Timothy

    2012-01-01

    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases. PMID:22761647

  1. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours.

    PubMed

    Shiomitsu, K; Johnson, C L; Malarkey, D E; Pruitt, A F; Thrall, D E

    2009-06-01

    Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signalling pathways play a role in carcinogenesis. Inhibition of EGF receptor (EGFR) and of VEGF is effective in increasing the radiation responsiveness of neoplastic cells both in vitro and in human trials. In this study, immunohistochemical evaluation was employed to determine and characterize the potential protein expression levels and patterns of EGFR and VEGF in a variety of canine malignant epithelial nasal tumours. Of 24 malignant canine nasal tumours, 13 (54.2%) were positive for EGFR staining and 22 (91.7%) were positive for VEGF staining. The intensity and percentage of immunohistochemically positive neoplastic cells for EGFR varied. These findings indicate that EGFR and VEGF proteins were present in some malignant epithelial nasal tumours in the dogs, and therefore, it may be beneficial to treat canine patients with tumours that overexpress EGFR and VEGF with specific inhibitors in conjunction with radiation.

  2. High VEGF-D and Low MMP-2 Serum Levels Predict Nodal-Positive Disease in Invasive Bladder Cancer

    PubMed Central

    Benoit, Tobias; Keller, Etienne X.; Wolfsgruber, Pirmin; Hermanns, Thomas; Günthart, Michele; Banzola, Irina; Sulser, Tullio; Provenzano, Maurizio; Poyet, Cédric

    2015-01-01

    Background To investigate stromal variables including angiogenesis, lymphangiogenesis, and matrix metalloproteinase (MMP) in the serum of patients with urothelial carcinoma of the bladder (UCB) and to evaluate their association with histopathological characteristics and clinical outcome. Material/Methods Protein levels of vascular endothelial growth factors-A, -C, -D (VEGF-A/-C/-D), their receptors- VEGF-R2 and -R3 (VEGF-R2/-R3), and matrix metalloproteinases 2, -3, and -7 (MMP-2, MMP-3, MMP-7) were quantified in the blood serum samples of 71 patients with UCB before radical cystectomy (RC). Samples of patients with non-invasive UCB or no history of UCB were investigated as controls (n=20). Protein levels in the serum were measured using a flow cytometric cytokine assay. Results A positive association for VEGF-D (p<0.001) and an inverse association for MMP-2 (p=0.017) were observed in patients with positive lymph node (LN) status at the time of RC. VEGF-A (p<0.001), VEGF-C (p<0.001), MMP-2 (p<0.001), and MMP-7 (p=0.005) serum levels were different in serum of patients with invasive UCB compared with non-invasive UCB or healthy individuals. None of the serum markers were associated with disease progression. Conclusions High VEGF-D and low MMP-2 serum levels predict LN metastasis in patients with UCB at the time of RC. VEGF-A, VEGF-C, MMP-2, and MMP-7 serum levels varied significantly between invasive and non-invasive disease as well as in comparison with healthy individuals. Clinical implementation of these marker serum measurements may be valuable to select high-risk patients with more invasive or nodal-positive disease. PMID:26241709

  3. VEGF is a chemoattractant for FGF-2–stimulated neural progenitors

    PubMed Central

    Zhang, Huanxiang; Vutskits, Laszlo; Pepper, Michael S.; Kiss, Jozsef Z.

    2003-01-01

    Mmigration of undifferentiated neural progenitors is critical for the development and repair of the nervous system. However, the mechanisms and factors that regulate migration are not well understood. Here, we show that vascular endothelial growth factor (VEGF)-A, a major angiogenic factor, guides the directed migration of neural progenitors that do not display antigenic markers for neuron- or glia-restricted precursor cells. We demonstrate that progenitor cells express both VEGF receptor (VEGFR) 1 and VEGFR2, but signaling through VEGFR2 specifically mediates the chemotactic effect of VEGF. The expression of VEGFRs and the chemotaxis of progenitors in response to VEGF require the presence of fibroblast growth factor 2. These results demonstrate that VEGF is an attractive guidance cue for the migration of undifferentiated neural progenitors and offer a mechanistic link between neurogenesis and angiogenesis in the nervous system. PMID:14691144

  4. Peroxynitrite Upregulates Angiogenic Factors VEGF-A, BFGF, and HIF-1α in Human Corneal Limbal Epithelial Cells

    PubMed Central

    Ashki, Negin; Chan, Ann M.; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K.

    2014-01-01

    Purpose. Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2−), which react together to form the highly toxic molecule peroxynitrite (ONOO−). The role of ONOO− in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Methods. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO− donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO−-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Results. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO−. HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO− exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO− (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO− treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Conclusions. Exposure to elevated extracellular concentrations of ONOO− results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO− could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV. PMID:24398102

  5. Peroxynitrite upregulates angiogenic factors VEGF-A, BFGF, and HIF-1α in human corneal limbal epithelial cells.

    PubMed

    Ashki, Negin; Chan, Ann M; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K

    2014-03-19

    Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2(-)), which react together to form the highly toxic molecule peroxynitrite (ONOO(-)). The role of ONOO(-) in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO(-) donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO(-)-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO(-). HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO(-) exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO(-) (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO(-) treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Exposure to elevated extracellular concentrations of ONOO(-) results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO(-) could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV.

  6. Non-viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system cells.

    PubMed

    Villate-Beitia, Ilia; Puras, Gustavo; Soto-Sánchez, Cristina; Agirre, Mireia; Ojeda, Edilberto; Zarate, Jon; Fernández, Eduardo; Pedraz, José Luis

    2017-04-15

    Nanotechnology based non-viral vectors hold great promise to deliver therapeutic genes into the central nervous system (CNS) in a safe and controlled way. Vascular endothelial growth factor (VEGF) is a potential therapeutic gene candidate for CNS disorders due to its specific roles in brain angiogenesis and neuroprotection. In this work, we elaborated three different non-viral vectors based on magnetic, cationic lipid and polymeric nanoparticles complexed to the phVEGF165aIRESGFP plasmid, which codifies the VEGF protein -extracellular- and the green fluorescent protein (GFP) -intracellular-. Nanoparticles and corresponding nanoplexes -magnetoplexes, lipoplexes and polyplexes- were characterized in terms of size, zeta potential, polydispersity index, morphology and ability to bind, release and protect DNA. Transfection efficiencies of nanoplexes were measured in terms of percentage of GFP expressing cells, mean fluorescent intensity (MFI) and VEGF (ng/ml) production in HEK293, C6 and primary neuronal culture cells. Magnetoplexes showed the highest transfection efficiencies in C6, followed by lipoplexes, and in primary neuronal culture cells, followed by polyplexes. Lipoplexes were the most efficient in HEK293 cells, followed by magnetoplexes. The biological activity of VEGF was confirmed by its proliferative effect in HUVEC cells. Overall, these results provide new insights for VEGF gene delivery into CNS cells using non-viral vectors. Copyright © 2017. Published by Elsevier B.V.

  7. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria.

    PubMed

    Canavese, Miriam; Spaccapelo, Roberta

    2014-03-01

    Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.

  8. PLACENTAL DEFECTS IN ARNT-KNOCKOUT CONCEPTUS CORRELATE WITH LOCALIZED DECREASES IN VEGF-R2, ANG-1, AND TIE-2.

    EPA Science Inventory

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcriptional regulator that heterodimerizes with Per-ARNT-Sim (PAS) proteins. ARNT also dimerizes with hypoxia inducible factor1 (HIF1 ), inducing expression of vascular endothelial cell growth factor (VEGF) to p...

  9. Renal toxicity of anticancer agents targeting vascular endothelial growth factor (VEGF) and its receptors (VEGFRs).

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Liguigli, Wanda; Porta, Camillo

    2017-04-01

    Since angiogenesis plays a key role in tumor growth, progression and metastasization, anti-vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) agents have been developed over the years as anticancer agents, and have changed, for the better, the natural history of a number of cancer types. In the present review, the renal safety profile of presently available agents targeting either VEGF or VEGFRs will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, renal toxicity (especially, but not exclusively, hypertension and proteinuria) are quite commonly observed with these agents, and may be increased by the concomitant use of cytoxic chemotherapeutics. Despite all the above, kidney impairment or dialysis must not be regarded di per se as reasons not to administer or to stop an active anticancer treatment, especially considering the possibility of a significant survival improvement in many cancer patients treated with these agents.

  10. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice.

    PubMed

    Merentie, Mari; Rissanen, Riina; Lottonen-Raikaslehto, Line; Huusko, Jenni; Gurzeler, Erika; Turunen, Mikko P; Holappa, Lari; Mäkinen, Petri; Ylä-Herttuala, Seppo

    2018-01-01

    Vascular endothelial growth factor-A (VEGF-A) is the master regulator of angiogenesis, vascular permeability and growth. However, its role in mature blood vessels is still not well understood. To better understand the role of VEGF-A in the adult vasculature, we generated a VEGF-A knockdown mouse model carrying a doxycycline (dox)-regulatable short hairpin RNA (shRNA) transgene, which silences VEGF-A. The aim was to find the critical level of VEGF-A reduction for vascular well-being in vivo. In vitro, the dox-inducible lentiviral shRNA vector decreased VEGF-A expression efficiently and dose-dependently in mouse endothelial cells and cardiomyocytes. In the generated transgenic mice plasma VEGF-A levels decreased shortly after the dox treatment but returned back to normal after two weeks. VEGF-A expression decreased shortly after the dox treatment only in some tissues. Surprisingly, increasing the dox exposure time and dose led to elevated VEGF-A expression in some tissues of both wildtype and knockdown mice, suggesting that dox itself has an effect on VEGF-A expression. When the effect of dox on VEGF-A levels was further tested in naïve/non-transduced cells, the dox administration led to a decreased VEGF-A expression in endothelial cells but to an increased expression in cardiomyocytes. In conclusion, the VEGF-A knockdown was achieved in a dox-regulatable fashion with a VEGF-A shRNA vector in vitro, but not in the knockdown mouse model in vivo. Dox itself was found to regulate VEGF-A expression explaining the unexpected results in mice. The effect of dox on VEGF-A levels might at least partly explain its previously reported beneficial effects on myocardial and brain ischemia. Also, this effect on VEGF-A should be taken into account in all studies using dox-regulated vectors.

  11. EG-VEGF controls placental growth and survival in normal and pathological pregnancies: case of fetal growth restriction (FGR).

    PubMed

    Brouillet, S; Murthi, P; Hoffmann, P; Salomon, A; Sergent, F; De Mazancourt, P; Dakouane-Giudicelli, M; Dieudonné, M N; Rozenberg, P; Vaiman, D; Barbaux, S; Benharouga, M; Feige, J-J; Alfaidy, N

    2013-02-01

    Identifiable causes of fetal growth restriction (FGR) account for 30 % of cases, but the remainders are idiopathic and are frequently associated with placental dysfunction. We have shown that the angiogenic factor endocrine gland-derived VEGF (EG-VEGF) and its receptors, prokineticin receptor 1 (PROKR1) and 2, (1) are abundantly expressed in human placenta, (2) are up-regulated by hypoxia, (3) control trophoblast invasion, and that EG-VEGF circulating levels are the highest during the first trimester of pregnancy, the period of important placental growth. These findings suggest that EG-VEGF/PROKR1 and 2 might be involved in normal and FGR placental development. To test this hypothesis, we used placental explants, primary trophoblast cultures, and placental and serum samples collected from FGR and age-matched control women. Our results show that (1) EG-VEGF increases trophoblast proliferation ([(3)H]-thymidine incorporation and Ki67-staining) via the homeobox-gene, HLX (2) the proliferative effect involves PROKR1 but not PROKR2, (3) EG-VEGF does not affect syncytium formation (measurement of syncytin 1 and 2 and β hCG production) (4) EG-VEGF increases the vascularization of the placental villi and insures their survival, (5) EG-VEGF, PROKR1, and PROKR2 mRNA and protein levels are significantly elevated in FGR placentas, and (6) EG-VEGF circulating levels are significantly higher in FGR patients. Altogether, our results identify EG-VEGF as a new placental growth factor acting during the first trimester of pregnancy, established its mechanism of action, and provide evidence for its deregulation in FGR. We propose that EG-VEGF/PROKR1 and 2 increases occur in FGR as a compensatory mechanism to insure proper pregnancy progress.

  12. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panta, Sushil; Yamakuchi, Munekazu; Kagoshima University Hospital, Kagoshima

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclearmore » localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β{sub 3}-integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β{sub 3}-integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β{sub 3}-integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β{sub 3}-integrin pathway in endothelial cells.« less

  13. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  14. In vivo vascularization of MSC-loaded porous hydroxyapatite constructs coated with VEGF-functionalized collagen/heparin multilayers

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Li, Bo; Lou, Lixia; Xu, Yufeng; Ye, Xin; Yao, Ke; Ye, Juan; Gao, Changyou

    2016-01-01

    Rapid and adequate vascularization is vital to the long-term success of porous orbital enucleation implants. In this study, porous hydroxyapatite (HA) scaffolds coated with vascular endothelial growth factor (VEGF)-functionalized collagen (COL)/heparin (HEP) multilayers (porosity 75%, pore size 316.8 ± 77.1 μm, VEGF dose 3.39 ng/mm3) were fabricated to enhance vascularization by inducing the differentiation of mesenchymal stem cells (MSCs) to endothelial cells. The in vitro immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting results demonstrated that the expression of the endothelial differentiation markers CD31, Flk-1, and von Willebrand factor (vWF) was significantly increased in the HA/(COL/HEP)5/VEGF/MSCs group compared with the HA/VEGF/MSCs group. Moreover, the HA/(COL/HEP)5 scaffolds showed a better entrapment of the MSCs and accelerated cell proliferation. The in vivo assays showed that the number of newly formed vessels within the constructs after 28 d was significantly higher in the HA/(COL/HEP)5/VEGF/MSCs group (51.9 ± 6.3/mm2) than in the HA (26.7 ± 2.3/mm2) and HA/VEGF/MSCs (38.2 ± 2.4/mm2) groups. The qRT-PCR and western blotting results demonstrated that the HA/(COL/HEP)5/VEGF/MSCs group also had the highest expression of CD31, Flk-1, and vWF at both the mRNA and protein levels.

  15. A safety and immunogenicity study of immunization with hVEGF26-104/RFASE in cynomolgus monkeys.

    PubMed

    Wentink, Madelon Q; Verheul, Henk M W; Griffioen, Arjan W; Schafer, Kenneth A; McPherson, Susan; Early, Richard J; van der Vliet, Hans J; de Gruijl, Tanja D

    2018-04-05

    Vascular endothelial growth factor (VEGF) is pivotal in tumor angiogenesis and therapies targeting the VEGF axis are widely used in the clinic for the treatment of cancer. We have developed a therapeutic vaccine targeting human (h)VEGF 165 . hVEGF 26-104 /RFASE is based on the truncated protein hVEGF 26-104 as antigen formulated in an oil-in-water emulsion containing the sulpholipopolysaccharide RFASE as adjuvant. Here we describe the toxicity and immunogenicity of this therapeutic vaccine in cynomolgus monkeys. In total 54 cynomolgus monkeys were used and divided in 7 groups. Groups 1-3 were control groups, either receiving PBS alone (group 1), RFASE alone (group 2) or hVEGF 26-104 alone (group 3). Animals allocated to groups 4-7 received hVEGF 26-104 together with RFASE, but with varying doses of the antigen or the adjuvant. All animals were immunized four times with 2-week intervals and safety and immunogenicity were monitored until 3 days after the final immunization. Immunization induced an RFASE adjuvant dependent acute phase response. High titers of antibodies against hVEGF 26-104 and cross-reactive with hVEGF 165 , were found in monkey sera, 28 days after primer immunization. These antibodies were able to inhibit the binding of the monoclonal antibody bevacizumab with hVEGF 165 in a competition ELISA. Moreover, the biological activity of hVEGF 165 could be inhibited by the addition of immunized monkey serum in a VEGF specific bioassay. Importantly, no adverse events commonly observed with VEGF neutralization were observed throughout the study. These data show that hVEGF 26-104 /RFASE can be safely administered in cynomolgus monkeys, induces the desired immune response and therefore support the clinical development of this vaccine. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Lenticular cytoprotection. Part 1: the role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia.

    PubMed

    Neelam, Sudha; Brooks, Morgan M; Cammarata, Patrick R

    2013-01-01

    The prosurvival signaling cascades that mediate the unique ability of human lens epithelial cells to survive in their naturally hypoxic environment are not well defined. Hypoxia induces the synthesis of the hypoxia inducible factor HIF-1α that in turn, plays a crucial role in modulating a downstream survival scheme, where vascular endothelial growth factor (VEGF) also plays a major role. To date, no published reports in the lens literature attest to the expression and functionality of HIF-2α and the role it might play in regulating VEGF expression. The aim of this study was to identify the functional expression of the hypoxia inducible factors HIF-1α and HIF-2α and establish their role in regulating VEGF expression. Furthermore, we demonstrate a link between sustained VEGF expression and the ability of the hypoxic human lens epithelial cell to thrive in low oxygen conditions and resist mitochondrial membrane permeability transition (also referred to as lenticular cytoprotection). Hypoxia inducible factor translation inhibitors were used to demonstrate the role of HIF-1α and HIF-2α and the simultaneous expression of both hypoxic inducible factors to determine their role in regulating VEGF expression. Axitinib, which inhibits lenticular cell autophosphorylation of its VEGF receptor, was employed to demonstrate a role for the VEGF-VEGFR2 receptor complex in regulating Bcl-2 expression. Specific antisera and western blot analysis were used to detect the protein levels of HIF-1α and HIF-2α, as well as the proapoptotic protein, BAX and the prosurvival protein, Bcl-2. VEGF levels were analyzed with enzyme-linked immunosorbent assay (ELISA). The potentiometric dye, 5,5',6,6'-tetrachloro1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine iodide, was used to determine the effect of the inhibitors on mitochondrial membrane permeability transition. Cultured human lens epithelial cells (HLE-B3) maintained under hypoxic condition (1% oxygen) displayed consistent accumulation

  17. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head.

    PubMed

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.

  18. Expression of VEGF 111 and other VEGF-A variants in the rat uterus is correlated with stage of pregnancy.

    PubMed

    Whittington, Camilla M; Danastas, Kevin; Grau, Georges E; Murphy, Christopher R; Thompson, Michael B

    2017-02-01

    Vascular endothelial growth factor A is a major mediator of angiogenesis, a critically important process in vertebrate growth and development as well as pregnancy. Here we report for the first time the expression of a rare and unusually potent splice variant, VEGF 111 , in vivo in mammals. This variant has previously only been found in mammals in cultured human cells exposed to genotoxic agents. Our discovery of VEGF 111 in the uterus of both a eutherian (rat) and a marsupial (fat-tailed dunnart) suggests that the splice variant may be common to all mammals. As VEGF 111 is also expressed in the uterus of at least one lineage of lizards, the expression of this splice variant may be a widespread amniote phenomenon. We measured expression of VEGF 111 and two major VEGF-A splice variants in the uterus of pregnant rats, showing that the three variants show different expression patterns across pregnancy. Our results suggest that viviparous mammals possess a precisely regulated milieu of VEGF isoforms producing the angiogenesis required for successful pregnancy. The discovery of VEGF 111 in rat uterus paves the way for the development of in vivo models of VEGF 111 activity in a highly tractable laboratory animal, and is particularly significant in the context of early pregnancy loss and cancer research.

  19. VEGF expression and the effect of NSAIDs on ascites cell proliferation in the hen model of ovarian cancer.

    PubMed

    Urick, M E; Giles, J R; Johnson, P A

    2008-09-01

    We aimed to determine the expression of vascular endothelial growth factor (VEGF) and the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the proliferation of cells isolated from ascites in the hen model of ovarian cancer. Ovarian tumor and normal ovary were collected from hens and ascites cells were isolated from hens with ovarian cancer. Quantitative real-time PCR was used to quantify mRNA expression. Immunohistochemical and/or Western blot analyses were used to localize protein expression in ovarian tumors, normal ovaries, and ascites cells. Cells were treated with a nonspecific, COX-1-specific, or COX-2-specific NSAID and proliferation was determined. VEGF mRNA was increased in ascites cells and there was a trend for a correlation between VEGF mRNA in ascites cells and ascites volume. VEGF protein was localized to theca cells of normal ovaries, in glandular areas of tumors, and to the cytoplasm of ascites cells. Aspirin and a COX-1-specific inhibitor decreased the proliferation of ascites cells, whereas a COX-2-specific inhibitor did not. VEGF may play a role in ovarian cancer progression in the hen and the proliferation of ascites cells can be decreased by targeting the COX-1 but not COX-2 pathway.

  20. Resistive-Pulse Measurements with Nanopipettes: Detection of Vascular Endothelial Growth Factor C (VEGF-C) Using Antibody-Decorated Nanoparticles.

    PubMed

    Cai, Huijing; Wang, Yixian; Yu, Yun; Mirkin, Michael V; Bhakta, Snehasis; Bishop, Gregory W; Joshi, Amit A; Rusling, James F

    2015-06-16

    Quartz nanopipettes have recently been employed for resistive-pulse sensing of Au nanoparticles (AuNP) and nanoparticles with bound antibodies. The analytical signal in such experiments is the change in ionic current caused by the nanoparticle translocation through the pipette orifice. This paper describes resistive-pulse detection of cancer biomarker (Vascular Endothelial Growth Factor-C, VEGF-C) through the use of antibody-modified AuNPs and nanopipettes. The main challenge was to differentiate between AuNPs with attached antibodies for VEGF-C and antigen-conjugated particles. The zeta-potentials of these types of particles are not very different, and, therefore, carefully chosen pipettes with well-characterized geometry were necessary for selective detection of VEGF-C.

  1. Resistive-Pulse Measurements with Nanopipettes: Detection of Vascular Endothelial Growth Factor C (VEGF-C) Using Antibody-Decorated Nanoparticles

    PubMed Central

    Cai, Huijing; Wang, Yixian; Yu, Yun; Mirkin, Michael V.; Bhakta, Snehasis; Bishop, Gregory W.; Joshi, Amit A.; Rusling, James F.

    2015-01-01

    Quartz nanopipettes have recently been employed for resistive-pulse sensing of Au nanoparticles (AuNP) and nanoparticles with bound antibodies. The analytical signal in such experiments is the change in ionic current caused by the nanoparticle translocation through the pipette orifice. This paper describes resistive-pulse detection of cancer biomarker (Vascular Endothelial Growth Factor-C, VEGF-C) through the use of antibody-modified AuNPs and nanopipettes. The main challenge was to differentiate between AuNPs with attached antibodies for VEGF-C and antigen-conjugated particles. The zeta-potentials of these types of particles are not very different, and, therefore, carefully chosen pipettes with well-characterized geometry were necessary for selective detection of VEGF-C. PMID:26040997

  2. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals.

    PubMed

    Zhao, Y; You, W; Zheng, J; Chi, Y; Tang, W; Du, R

    2016-11-01

    Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, the investigation about the molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The objective of the present study is to investigate the effects of valproic acid (VPA), a histone deacetylase inhibitor, on the angiogenesis of cervical cancer. The effects and mechanisms of VPA on in vitro angiogenesis and vascular endothelial growth factor (VEGF) expression of human cervical cancer HeLa and SiHa cells were investigated. Our present study reveals that 1 mM VPA can significantly inhibit the in vitro angiogenic potential and VEGF expression of human cervical cancer HeLa and SiHa cells. Further, the transcription and protein levels of hypoxia inducible factor-1α (HIF-1α), and not HIF-1β, are significantly inhibited in VPA-treated cervical cancer cells. Over expression of HIF-1α can obviously reverse VPA-induced VEGF down regulation. VPA-treatment decreases the activation of Akt and ERK1/2 in both HeLa and SiHa cells in a time-dependent manner. The inhibitor of Akt (LY 294002) or ERK1/2 (PD98059) can inhibit VEGF alone and cooperatively reinforce the suppression effects of VPA on HIF-1α and VEGF expression. Collectively, our data reveal that the inhibition of PI3K/Akt and ERK1/2 signals are involved in VPA-induced HIF-1α and VEGF suppression of cervical cancer cells.

  3. Identification and characterization of VEGF and FGF from Hydra.

    PubMed

    Krishnapati, Lakshmi-Surekha; Ghaskadbi, Surendra

    2013-01-01

    Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) play important roles in the formation of the blood vascular system and in axon guidance, nervous system development and function. Here, we report isolation and characterization of VEGF and FGF homologues from Hydra vulgaris Ind-Pune, a Cnidarian which exhibits an organized nervous system and primitive epithelio-muscular cells. VEGF expression was prominent in the endoderm of the peduncle region and tentacles, as evident from in situ hybridization of whole polyps and its transverse sections. High levels of FGF were detected in the ectoderm of the budding region. The expression of VEGF in endodermal and FGF in interstitial cells was confirmed using sf-1 hydra, a temperature-sensitive mutant strain of Hydra magnipapillata. Tissue-specific expression of VEGF and FGF was confirmed by semi quantitative RT-PCR for ectodermal and endodermal tissues in H. vulgaris Ind-Pune. Treatment with SU5416, a specific inhibitor of the VEGF receptor, did not affect the whole polyp, but did delay both budding and head regeneration, suggesting a possible role of VEGF in nerve cell development, tube formation and/or in branching. FGF expression in the ectoderm of budding region, where the majority of interstitial stem cells reside suggests its role in interstitial stem cell maintenance. Further, activation of canonical Wnt signalling with the glycogen synthase kinase-3β (GSK-3β) inhibitor alsterpaullone caused down-regulation of VEGF and FGF, suggesting an antagonistic relationship between the Wnt and VEGF/FGF pathways. Our results indicate that VEGF and FGF evolved early in evolution, before the development of the blood vascular system, and open up the possibility of elucidating the evolutionarily ancient functions of VEGF and FGF.

  4. MAPK/ERK signal pathway involved expression of COX-2 and VEGF by IL-1β induced in human endometriosis stromal cells in vitro

    PubMed Central

    Huang, Fengying; Cao, Jing; Liu, Qiuhong; Zou, Ying; Li, Hongyun; Yin, Tuanfang

    2013-01-01

    Objective: Now there are more and more evidences that Cyclooxygenase-2 (COX-2) plays an important role in angiogenesis of endometriosis (EMs). Vascular endothelial growth factor (VEGF) has a potent angiogenic activity. However, it is worth studying about the regulating mechanism of COX-2/COX-1 and VEGF in the development of human endometriosis in vitro. The current study was designed to investigate the effect of 4 cytokines on COX-2/COX-1 expression and the effect of IL-1β on VEGF release in human endometriosis stromal cells (ESC), and to explore the related signaling pathways involved in vitro. Methods: Isolation, culture and identification of ESC. Cells were treated with 4 cytokines, and the inhibitor mitogen-activated protein-Erk (MEK) and the inhibitor p38 mitogen-activated protein kinase (MAPK) prior to adding cytokine IL-1β. COX-2 protein expression was measured by western blot and VEGF secretion was determined by ELISA. Results: Among four kinds of cytokines, IL-1β treatment increased COX-2 protein expression and VEGF release in three ESC, and TNF-α had the same effect on COX-2 protein level as IL-1β only in ectopic and eutopic ESC, and MCSF had only slight effect on ectopic ESC. In contrast, cytokines had no effect on COX-1 expression. We also demonstrated that MAPK reduced the synthesis of COX-2 by IL-1β induced. COX-2 inhibitor reduced VEGF release by IL-1β induced. Conclusions: i) In human ESC in vitro, IL-1β up-regulated the COX-2 expression through the activation of p38 MAPK pathway, and not to COX-1. ii) Up-regulation of VEGF level by IL-1β treatment was found in human endometriosis stromal cell and COX-2 inhibitor was involved in this process. PMID:24133591

  5. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    PubMed

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  6. [Suppression of VEGF protein expression by arctigenin in oral squamous cell carcinoma].

    PubMed

    Pu, Guang-rui; Liu, Fa-yu; Wang, Bo

    2015-08-01

    To observe arctigenin's inhibitory effect on oral squamous cell carcinoma, and explore the possible mechanism. The expression of VEGF in 32 cases of oral squamous cell cancer and 20 adjacent tissue specimen were detected with immunohistochemistry. Human nude mouse transplantation tumor model of oral squamous cell cancer was prepared with HSC-3 cells line. Transplanted tumor growth and VEGF expression in transplanted tumor tissues were assayed after treatment with arctigenin. One-way ANOVA was used for comparison between groups with SPSS 16.0 software package. Compared with the adjacent tissue, immunohistochemical staining score of VEGF was significantly higher (P<0.01) in oral squamous cell carcinoma tissues. After treatment with arctigenin, the growth of oral squamous cell transplanted tumors in nude mouse was inhibited (P<0.05), and decreased weight in end point of observation was noted (P<0.05). There were significant differences between high dose group and low dose group (P<0.05). Compared with the nude mouse model group, the optical density of VEGF staining was significantly lower in arctigenin group (P<0.05). There were significant differences between high dose group and low dose group (P<0.05). Arctigenin can dose-dependently inhibit the growth of oral squamous cell carcinomas, and this effect may be related to down regulation of VEGF expression.

  7. Regulation of vascular endothelial growth factor-C by tumor necrosis factor-α in the conjunctiva and pterygium.

    PubMed

    Dong, Yoko; Kase, Satoru; Dong, Zhenyu; Fukuhara, Junichi; Tagawa, Yoshiaki; Ishizuka, Erdal Tan; Murata, Miyuki; Shinmei, Yasuhiro; Ohguchi, Takeshi; Kanda, Atsuhiro; Noda, Kousuke; Ishida, Susumu

    2016-08-01

    Vascular endothelial growth factor C (VEGF-C) plays an important role in the development of a pterygium through lymphangiogenesis. We examined the association between VEGF-C and tumor necrosis factor-α (TNF-α) in the pathogenesis of pterygia. Cultured conjunctival epithelial cells were treated with TNF-α, and the gene expression levels of VEGFC were evaluated by quantitative polymerase chain reaction (qPCR) and VEGF-C protein expression levels were measured using an enzyme-linked immunosorbent assay (ELISA). In addition, using ELISA, we evaluated the VEGF-C protein expression in the supernatants of cultured conjunctival epithelial cells, in which we neutralized TNF-α using anti‑TNF-α antibody. The gene expression of tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A), known as TNF receptor 1 (TNFR1), was confirmed using reverse transcription PCR in cultured conjunctival epithelial cells. Immunofluorescence microscopy was used to examine the localization of VEGF-C and TNFR1 in pterygium tissues and TNFR1 expression in cultured conjunctival epithelial cells. Immunohistochemistry was used to examine the localization of TNFR1 in pterygia and normal conjunctival tissues. VEGFC gene expression increased in cultured conjunctival epithelial cells 24 h after the addition of TNF-α. The secretion of VEGF-C protein was significantly increased 48 h after the stimulation of cultured conjunctival epithelial cells with TNF-α. Increased VEGF-C protein secretion stimulated by TNF-α was significantly reduced by anti-TNF-α neutralizing antibody treatment. In cultured conjunctival epithelial cells, TNFRSF1A and TNFR1 were expressed. TNFR1 was immunolocalized in normal conjunctival tissues and in human pterygium tissues as well as in VEGF‑C‑positive epithelial cells from human pterygia. Our data demonstrate that TNF-α mediates VEGF-C expression, which plays a critical role in the pathogenesis of pterygia.

  8. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy.

    PubMed

    Pepe, Martino; Mamdani, Mohammed; Zentilin, Lorena; Csiszar, Anna; Qanud, Khaled; Zacchigna, Serena; Ungvari, Zoltan; Puligadda, Uday; Moimas, Silvia; Xu, Xiaobin; Edwards, John G; Hintze, Thomas H; Giacca, Mauro; Recchia, Fabio A

    2010-06-25

    Vascular endothelial growth factor (VEGF)-B selectively binds VEGF receptor (VEGFR)-1, a receptor that does not mediate angiogenesis, and is emerging as a major cytoprotective factor. To test the hypothesis that VEGF-B exerts non-angiogenesis-related cardioprotective effects in nonischemic dilated cardiomyopathy. AAV-9-carried VEGF-B(167) cDNA (10(12) genome copies) was injected into the myocardium of chronically instrumented dogs developing tachypacing-induced dilated cardiomyopathy. After 4 weeks of pacing, green fluorescent protein-transduced dogs (AAV-control, n=8) were in overt congestive heart failure, whereas the VEGF-B-transduced (AAV-VEGF-B, n=8) were still in a well-compensated state, with physiological arterial Po(2). Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was, respectively, 15.0+/-1.5 versus 26.7+/-1.8 mm Hg and LV regional fractional shortening was 9.4+/-1.6% versus 3.0+/-0.6% (all P<0.05). VEGF-B prevented LV wall thinning but did not induce cardiac hypertrophy and did not affect the density of alpha-smooth muscle actin-positive microvessels, whereas it normalized TUNEL-positive cardiomyocytes and caspase-9 and -3 activation. Consistently, activated Akt, a major negative regulator of apoptosis, was superphysiological in AAV-VEGF-B, whereas the proapoptotic intracellular mediators glycogen synthase kinase (GSK)-3beta and FoxO3a (Akt targets) were activated in AAV-control, but not in AAV-VEGF-B. Cardiac VEGFR-1 expression was reduced 4-fold in all paced dogs, suggesting that exogenous VEGF-B(167) exerted a compensatory receptor stimulation. The cytoprotective effects of VEGF-B(167) were further elucidated in cultured rat neonatal cardiomyocytes exposed to 10(-8) mol/L angiotensin II: VEGF-B(167) prevented oxidative stress, loss of mitochondrial membrane potential, and, consequently, apoptosis. We determined a novel, angiogenesis-unrelated cardioprotective effect of VEGF-B(167) in nonischemic dilated cardiomyopathy

  9. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells.

    PubMed

    Huang, Chun-Yin; Chang, An-Chen; Chen, Hsien-Te; Wang, Shih-Wei; Lo, Yuan-Shun; Tang, Chih-Hsin

    2016-09-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy characterized by distant metastatic propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumour lymphangiogenesis and lymphatic metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. In recent years, adiponectin has also been indicated as facilitating tumorigenesis, angiogenesis and metastasis. However, the effect of adiponectin on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has remained largely a mystery. In the present study, we have shown a clinical correlation between adiponectin and VEGF-C, as well as tumour stage, in human chondrosarcoma tissues. We further demonstrated that adiponectin promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium from adiponectin-treated cells significantly induced tube formation and migration of human lymphatic endothelial cells. In addition, adiponectin knock down inhibited lymphangiogenesis in vitro and in vivo We also found that adiponectin-induced VEGF-C is mediated by the calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK) and p38 signaling pathway. Furthermore, the expression of miR-27b was negatively regulated by adiponectin via the CaMKII, AMPK and p38 cascade. The present study is the first to describe the mechanism of adiponectin-promoted lymphangiogenesis by up-regulating VEGF-C expression in chondrosarcomas. Thus, adiponectin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  10. Platelet release of Vascular Endothelial Growth Factor (VEGF) in patients undergoing chemotherapy for breast cancer

    PubMed Central

    2009-01-01

    Background Venous thromboembolism (VTE) following breast cancer chemotherapy is common. Chemotherapy-induced alterations in markers of haemostasis occur during chemotherapy. In this study we investigated the changes in serum and plasma VEGF, together with platelet release of VEGF and related these to the development of VTE at 3 months. Methods Serum and plasma VEGF, together with platelet release of VEGF were measured prior to chemotherapy and at 24 hours; four-, eight days and three months following commencement of chemotherapy in early and advanced breast cancer patients and in age and sex matched controls. Duplex ultrasound imaging was performed after one month or if symptomatic. Results Of 123 patients 9.8% developed VTE within three months. Serum and plasma VEGF were increased in advanced breast cancer as was platelet release of VEGF. Prior to chemotherapy a 100 μg/ml increase in serum VEGF was associated with a 40% increased risk of VTE, while a 10 μg/ml increase in plasma VEGF was associated with a 20% increased risk of VTE. Serum VEGF showed a different response to chemotherapy in those who developed VTE. Conclusion A group of patients at risk of VTE could be identified, allowing targeted thrombopropylaxis. Whether or not the response in VEGF during chemotherapy has any angiogenic significance remains to be elucidated. PMID:20016693

  11. [Effect of Cordyceps sinensis on expressions of HIF-1α and VEGF in the kidney of rats with diabetic nephropathy].

    PubMed

    Yuan, Mingxia; Tang, Rong; Zhou, Qiaoling; Liu, Kanghan; Xiao, Zhou; Pouranan, Veeraragoo

    2013-05-01

    To examine the expressions of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in the kidney of rats with diabetic nephropathy before and after the treatment of Cordyceps sinensis, and to explore the mechanism of Cordyceps sinensis against hypoxia. The diabetes model was produced by intraperitoneal injection of 60 mg/kg streptozotocin, then the rats whose 24 h urine protein level was above 30 mg/d were thought to have suffered diabetic nephropathy. Thirty rats were randomly divided into a diabetic nephropathy group (DN group, n=15) and a Cordyceps sinensis group (CS group, n=15), and another 15 normal rats served as a normal control group (NC group, n=15). The CS group were intragastrically administered Cordyceps sinensis extract liquid [5.0 g/(kg.d)], the other groups were intragastrically administered drinking water of equal volume. Five rats in each group were killed after 2, 4, and 6 weeks. The 24 h urine protein excretion, urine β-N-acetyl glucosaminidase (NAGase) and serum creatinine were measured; the renal pathological changes were evaluated by HE and Masson staining; the mRNA and protein expressions of HIF-1α and VEGF were dectected by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Compared with the normal control group, the renal tubular vacuolar degeneration was obvious, and the glomerular mesangial matrix increased in the DN group. The 24 h urinary protein excretion, urine NAGase and serum creatinine also increased significantly (all P<0.05); the expressions of HIF-1α and VEGF in the renal tissue gradually increased with time, and the expression of HIF-1α was correlated with that of VEGF in the 2 groups (r=0.850, r=0.887, both P<0.05) . Compared with the DN group, the pathological changes were relieved, the 24 h urinary protein excretion, urine NAGase and serum creatinine level were decreased, and the expressions of HIF-1α and VEGF decreased in the CS group (all P<0.05), but

  12. Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor.

    PubMed

    Blankenberg, Francis G; Mandl, Stefanie; Cao, Yu-An; O'Connell-Rodwell, Caitlin; Contag, Christopher; Mari, Carina; Gaynutdinov, Timur I; Vanderheyden, Jean-Luc; Backer, Marina V; Backer, Joseph M

    2004-08-01

    Direct radiolabeling of proteins can result in the loss of targeting activity, requires highly customized procedures, and yields heterogeneous products. Here we describe a novel imaging complex comprised of a standardized (99m)Tc-radiolabeled adapter protein noncovalently bound to a "Docking tag" fused to a "Targeting protein". The assembly of this complex is based on interactions between human 109-amino acid (HuS) and 15-amino acid (Hu-tag) fragments of ribonuclease I, which serve as an "Adapter protein" and a Docking tag, respectively. HuS modified with hydrazinonicotinamide (HYNIC) was radiolabeled using (99m)Tc-tricine to a specific activity of 3.4-7.4 MBq/microg. Protein complexes were then formed by mixing (99m)Tc-HuS with equimolar amounts of either Hu-tagged VEGF(121) (Hu-VEGF [vascular endothelial growth factor]) or Hu-tagged anti-VEGFR-2 single-chain antibody (Hu-P4G7) and incubating on ice for 15 min. 4T1 luc/gfp luciferase-expressing murine mammary adenocarcinoma cells (1 x 10(4)) were implanted subcutaneously or injected intravenously into BALB/c mice. Bioluminescent imaging (BLI) was performed 10 d later. Immediately after BLI visualization of tumor, 18.5-37 MBq of tracer (5-10 microg of protein) were injected via tail vein. One hour later planar or SPECT images were obtained, followed by killing the mice. There was significantly (P = 0.0128) increased uptake of (99m)Tc-HuS/Hu-VEGF (n = 10) within subcutaneous tumor as compared with (99m)Tc-HuS/Hu-P4G7 (n = 5) at biodistribution assay (2.68 +/- 0.75 vs. 1.8 +/- 0.21; tumor-to-subcutaneous tissue [ratio of specific activities], respectively), despite similar molecular weights. The focal (99m)Tc-HuS/Hu-VEGF uptake seen on planar images (3.44 +/- 1.16 [tumor to soft-tissue background]) corresponded directly to the locations of tumor observed by BLI. Region of interest analyses of SPECT images revealed a significant increase of (99m)Tc-HuS/Hu-VEGF (n = 5) within the lungs with BLI-detectable pulmonary

  13. Anti-VEGF/VEGFR therapy for cancer: reassessing the target.

    PubMed

    Sitohy, Basel; Nagy, Janice A; Dvorak, Harold F

    2012-04-15

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.

  14. VEGF signaling inside vascular endothelial cells and beyond

    PubMed Central

    Eichmann, Anne; Simons, Michael

    2014-01-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. PMID:22366328

  15. The association between MCP-1, VEGF polymorphisms and their serum levels in patients with diabetic foot ulcer.

    PubMed

    Li, Xiaolei

    2018-06-01

    The purpose of the present study was to investigate distribution of monocyte chemoattractant protein-1 (MCP-1) -2518A/G and vascular endothelial growth factor (VEGF) -634G/C polymorphisms in type 2 diabetes melitus patients (T2DM) presenting diabetic foot ulcer (DFU). Additionally, we evaluated the effects of these 2 polymorphisms on serum levels of MCP-1 and VEGF in the study population.Patients diagnosed with T2DM without or with DFU were recruited in the study. The distribution of MCP-1 -2518A/G and VEGF -634G/C polymorphisms was investigated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Enzyme-linked immunosorbent assay (ELISA) was applied to detect the protein levels of MCP-1 and VEGF. The comparisons of protein levels in DFU patients were performed by student t test according to their genotypes.The frequencies of GG genotype and G allele of MCP-1 -2518A/G was increased in DFU patients, compared with T2DM patients (odds ratio [OR] = 2.60, 95% confidence interval [CI] = 1.23-5.50, P = .011 and OR = 1.72, 95% CI = 1.18-2.50, P = .005, respectively). Moreover, the increased frequency of GG was significantly associated with up-regulated MCP-1 level in DFU patients (P < .001). Analysis for VEGF -634G/C polymorphisms indicated that the prevalence of CC genotype and C allele of the polymorphisms was decreased in DFU patients, compared with T2DM patients (OR = 0.36, 95% CI = 0.17-0.77, P = .008 and OR = 0.63, 95% CI = 0.43-0.91, P = .015, respectively). DFU patients carrying CC genotype had a higher level of VEGF than those with other genotypes (P = .007).MCP-1 -2518A/G and VEGF -634G/C polymorphisms may involve in occurrence and progress of DFU through regulating transcription activity of the genes.

  16. Serum Levels of Vascular Endothelial Growth Factor and Insulin-like Growth Factor Binding Protein-3 in Obstructive Sleep Apnea Patients: Effect of Continuous Positive Airway Pressure Treatment

    PubMed Central

    Archontogeorgis, Kostas; Nena, Evangelia; Papanas, Nikolaos; Xanthoudaki, Maria; Hatzizisi, Olga; Kyriazis, Georgios; Tsara, Venetia; Maltezos, Efstratios; Froudarakis, Marios; Steiropoulos, Paschalis

    2015-01-01

    Background and Aim: Hypoxia, a major feature of obstructive sleep apnea (OSA), modifies Vascular Endothelial Growth Factor (VEGF) and Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) levels, which contribute to atherogenesis and occurrence of cardiovascular (CV) events. We assessed and compared serum levels of VEGF and IGFBP-3 in newly diagnosed OSA patients and controls, to explore associations with anthropometric and sleep parameters and to study the effect of continuous positive airway pressure (CPAP) treatment on these levels. Materials and Methods: Serum levels of VEGF and IGFBP-3 were measured in 65 OSA patients and 31 age- and body mass index- matched controls. In OSA patients, measurements were repeated after 6 months of CPAP therapy. All participants were non-smokers, without any comorbidities or systemic medication use. Results: At baseline, serum VEGF levels in OSA patients were higher compared with controls (p<0.001), while IGFBP-3 levels were lower (1.41±0.56 vs. 1.61±0.38 μg/ml, p=0.039). VEGF levels correlated with apnea-hypopnea index (r=0.336, p=0.001) and oxygen desaturation index (r=0.282, p=0.007). After 6 months on CPAP treatment, VEGF levels decreased in OSA patients (p<0.001), while IGFBP-3 levels increased (p<0.001). Conclusion: In newly diagnosed OSA patients, serum levels of VEGF are elevated, while IGFBP-3 levels are low. After 6 months of CPAP treatment these levels change. These results may reflect an increased CV risk in untreated OSA patients, which is ameliorated after CPAP therapy. PMID:27006717

  17. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head

    PubMed Central

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy. PMID:29399103

  18. Coffee induces vascular endothelial growth factor (VEGF) expression in human neuroblastama SH-SY5Y cells.

    PubMed

    Kakio, Shota; Funakoshi-Tago, Megumi; Kobata, Kenji; Tamura, Hiroomi

    2017-07-01

    Recent evidence indicates that hypoxia-inducible vascular endothelial growth factor (VEGF) has neurotrophic and neuroprotective effects on neuronal and glial cells. On the other hand, recent epidemiological studies showed that daily coffee consumption has been associated with a lower risk of several neuronal disorders. Therefore, we investigated the effect of coffee on VEGF expression in human neuroblastoma SH-SY5Y cells. We found that even low concentration of coffee (<2%) strongly induced VEGF expression via an activation of HIF-1α. The activation of HIF-1α by coffee was attributed to the coffee-dependent inhibition of prolyl hydroxylation of HIF1α, which is essential for proteolytic degradation of HIF-1α. However, no inhibition was observed at the catalytic activity in vitro. Coffee component(s) responsible for the activation of HIF-1α was not major constituents such as caffeine, caffeic acid, chlorogenic acid, and trigonelline, but was found to emerge during roasting process. The active component(s) was extractable with ethyl acetate. Our results suggest that daily consumption of coffee may induce VEGF expression in neuronal cells. This might be related to protective effect of coffee on neural disorders such as Alzheimer's disease and Parkinson's disease.

  19. Ligand-receptor assay for evaluation of functional activity of human recombinant VEGF and VEGFR-1 extracellular fragment.

    PubMed

    Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Shein, S A; Grinenko, N F; Pavlov, K A; Ryabukhin, I A; Chekhonin, V P

    2012-04-01

    cDNA encoding VEGF and Ig-like extracellular domains 2-4 of VEGFR-1 (sFlt-1(2-4)) were cloned into prokaryotic expression vectors pET32a and pQE60. Recombinant proteins were purified (metal affinity chromatography) and renatured. Chemiluminescent study for the interaction of recombinant VEGF and sFlt-1(2-4) showed that biotinylated VEGF specifically binds to the polystyrene-immobilized receptor extracellular fragment. Biotinylated recombinant sFlt-1 interacts with immobilized VEGF. Analysis of the interaction of immobilized recombinant VEGFR-1 and VEGF with C6 glioma cells labeled with CFDA-SE (vital fluorescent dye) showed that recombinant VEGFR-1 also binds to native membrane-associated VEGF. Recombinant VEGF was shown to bind to specific receptors expressed on the surface of C6 glioma cells. Functional activity of these proteins was confirmed by ligand-receptor assay for VEGF and VEGFR-1 (sFlt-1) and quantitative chemiluminescent detection.

  20. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-03-10

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathologicalmore » angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.« less

  1. IL-17 Promotes Angiogenic Factors IL-6, IL-8, and Vegf Production via Stat1 in Lung Adenocarcinoma.

    PubMed

    Huang, Qi; Duan, Limin; Qian, Xin; Fan, Jinshuo; Lv, Zhilei; Zhang, Xiuxiu; Han, Jieli; Wu, Feng; Guo, Mengfei; Hu, Guorong; Du, Jiao; Chen, Caiyun; Jin, Yang

    2016-11-07

    Inflammation and angiogenesis are two hallmarks of carcinoma. The proinflammatory cytokine interleukin-17 (IL-17) facilitates angiogenesis in lung cancer; however, the underlying mechanism is not fully understood. In this study, tumour microvessel density (MVD) was positively associated with IL-17, interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial cell growth factor (VEGF) expression in human lung adenocarcinoma tissues, and it was increased in tumour tissues of A549-IL-17 cell-bearing nude mice. Importantly, positive correlations were also detected between IL-17 expression and IL-6, IL-8 and VEGF expression in human lung adenocarcinoma tissues. Furthermore, IL-6, IL-8 and VEGF production, as well as STAT1 phosphorylation, were increased in tumour tissues of A549-IL-17 cell-bearing nude mice in vivo and in A549 and H292 cells following IL-17 stimulation in vitro. In addition, STAT1 knockdown using an inhibitor and siRNA attenuated the IL-17-mediated increases in IL-6, IL-8 and VEGF expression in A549 and H292 cells. In conclusion, IL-17 may promote the production of the angiogenic inducers IL-6, IL-8 and VEGF via STAT1 signalling in lung adenocarcinoma.

  2. Dynamics of VEGF matrix-retention in vascular network patterning

    NASA Astrophysics Data System (ADS)

    Köhn-Luque, A.; de Back, W.; Yamaguchi, Y.; Yoshimura, K.; Herrero, M. A.; Miura, T.

    2013-12-01

    Vascular endothelial growth factor (VEGF) is a central regulator of blood vessel morphogenesis, although its role in patterning of endothelial cells into vascular networks is not fully understood. It has been suggested that binding of soluble VEGF to extracellular matrix components causes spatially restricted cues that guide endothelial cells into network patterns. Yet, current evidence for such a mechanism remains indirect. In this study, we quantitatively analyse the dynamics of VEGF retention in a controlled in vitro situation of human umbilical vascular endothelial cells (HUVECs) in Matrigel. We show that fluorescent VEGF accumulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the pericellular region. Computational simulations using our experimental measurements of kinetic parameters show that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning.

  3. Avian leukosis virus subgroup J induces VEGF expression via NF-κB/PI3K-dependent IL-6 production.

    PubMed

    Gao, Yanni; Zhang, Yao; Yao, Yongxiu; Guan, Xiaolu; Liu, Yongzhen; Qi, Xiaole; Wang, Yongqiang; Liu, Changjun; Zhang, Yanping; Gao, Honglei; Nair, Venugopal; Wang, Xiaomei; Gao, Yulong

    2016-12-06

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus causing hemangiomas and myeloid tumors in chickens. Interleukin-6 (IL-6) is a multifunctional pro-inflammatory interleukin involved in many types of cancer. We previously demonstrated that IL-6 expression was induced following ALV-J infection in chickens. The aim of this study is to characterize the mechanism by which ALV-J induces IL-6 expression, and the role of IL-6 in tumor development. Our results demonstrate that ALV-J infection increases IL-6 expression in chicken splenocytes, peripheral blood lymphocytes, and vascular endothelial cells. IL-6 production is induced by the ALV-J envelope protein gp85 and capsid protein p27 via PI3K- and NF-κB-mediated signaling. IL-6 in turn induced expression of vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR-2, in vascular endothelial cells and embryonic vascular tissues. Suppression of IL-6 using siRNA inhibited the ALV-J induced VEGF-A and VEGFR-2 expression in vascular endothelial cells, indicating that the ALV-J-induced VEGF-A/VEGFR-2 expression is mediated by IL-6. As VEGF-A and VEGFR-2 are important factors in oncogenesis, our findings suggest that ALV-J hijacks IL-6 to promote tumorigenesis, and indicate that IL-6 could potentially serve as a therapeutic target in ALV-J infections.

  4. Combined VEGF and LMP-1 delivery enhances osteoprogenitor cell differentiation and ectopic bone formation.

    PubMed

    Wang, Xiuli; Cui, Fuai; Madhu, Vedavathi; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2011-02-01

    A novel strategy to enhance bone repair is to combine angiogenic factors and osteogenic factors. We combined vascular endothelial growth factor (VEGF) and LIM mineralization protein-1 (LMP-1) by using an internal ribosome entry site to link the genes within a single plasmid. We then evaluated the effects on osteoblastic differentiation in vitro and ectopic bone formation in vivo with a subcutaneously placed PLAGA scaffold loaded with a cloned mouse osteoprogenitor cell line, D1, transfected with plasmids containing VEGF and LMP-1 genes. The cells expressing both genes elevated mRNA expression of RunX2 and β-catenin and alkaline phosphatase activity compared to cells from other groups. In vivo, X-ray and micro-CT analysis of the retrieved implants revealed more ectopic bone formation at 2 and 3 weeks but not at 4 weeks compared to other groups. The results indicate that the combination of the therapeutic growth factors potentiates cell differentiation and may promote osteogenesis.

  5. Minimal Effects of VEGF and Anti-VEGF Drugs on the Permeability or Selectivity of RPE Tight Junctions

    PubMed Central

    Peng, Shaomin; Adelman, Ron A.

    2010-01-01

    Purpose. Bevacizumab and ranibizumab are currently used to treat age-related macular degeneration by neutralizing vascular endothelial growth factor (VEGF). In this study, the potential side effects on the outer blood–retinal barrier were examined. Methods. Human fetal RPE (hfRPE) cells were used because they are highly differentiated in culture. The claudin composition of RPE tight junctions was determined by RT-PCR, immunoblot analysis, and immunofluorescence. ELISA assays monitored the secretion and trafficking of VEGF and a fluid-phase marker, methylpolyethylene glycol (mPEG). Tight junction functions were assessed by the conductance of K+ and Na+ (derived from the transepithelial electrical resistance, TER) and the flux of NaCl and mPEG. Results. Claudin-3, claudin-10, and claudin-19 were detected in RPE tight junctions. VEGF was secreted in equal amounts across the apical and basolateral membranes, but the apical membrane was more active in endocytosing and degrading VEGF. Exogenous VEGF and mPEG crossed the RPE monolayer by transcytosis, predominantly in the apical-to-basal direction. RPE tight junctions were selective for K+, but did not discriminate between Na+ and Cl−. VEGF, bevacizumab, and ranibizumab had minimal effects on TER, permeation of mPEG, and selectivity for K+, Na+, and Cl−. They had minimal effects on the expression and distribution of the claudins. Conclusions. RPE has mechanisms for maintaining low concentrations of VEGF in the subretinal space that include endocytosis and degradation and fluid-phase transcytosis in the apical-to-basal direction. RPE tight junctions are selective for K+ over Na+ and Cl−. Permeability and selectivity of the junctions are not affected by VEGF, bevacizumab, or ranibizumab. PMID:20042644

  6. [Inhibitory effect of VEGF antisense phosphorothioate oligodeoxynucleotides on the growth of human salivary adenoid cystic carcinoma xenografts in nude mice].

    PubMed

    Li, Xiao-guang; Wang, Xu-xia; Li, Teng-yu; Wang, Yan-xiu; Gao, Jing; Ni, Chun-xiao

    2012-12-01

    To investigate the inhibitory effect of VEGF antisense phosphorothioate oligodeoxynucleoiides on the growth of human salivary adenoid cystic carcinoma (SACC) xenografts in nude mice. The VEGF-ASODN was synthesised artificially. After the model of human SACC xenografts in nude mice was established, they were random1y divided into three groups: antisense group, scrambled group and normal saline group. A control group without cancer was also established. Antisense(66 μg), scrambled sequence(66 μg) and normal saline(once every 3 days and 7 times in all) were injected in three experimental groups, respectively. Two days after therapy, the mice were sacrificed. Serums were used for detection of VEGF protein. All tumors were measured and weighted. The quantity of VEGF mRNA and protein and PLI, MVD was detected by hybridization in situ and immunohistochemistry. SPSS13.0 software package was used for statistical analysis. The VEGF-ASODN could suppress the expression of VEGF in human SACC xenografts in nude mice and reduce VEGF protein in serum of nude mice significantly. It cou1d also reduce the volume and weight of xenografts and could reduce the expression of VEGF mRNA and its protein, PCNA and CD34. By inhibiting the expression of VEGF, VEGF-ASODN can inhabit proliferation of human SACC xenografts in nude mice.

  7. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs ormore » VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.« less

  8. Carbon Ion Radiation Inhibits Glioma and Endothelial Cell Migration Induced by Secreted VEGF

    PubMed Central

    Liu, Yang; Liu, Yuanyuan; Sun, Chao; Gan, Lu; Zhang, Luwei; Mao, Aihong; Du, Yuting; Zhou, Rong; Zhang, Hong

    2014-01-01

    This study evaluated the effects of carbon ion and X-ray radiation and the tumor microenvironment on the migration of glioma and endothelial cells, a key process in tumorigenesis and angiogenesis during cancer progression. C6 glioma and human microvascular endothelial cells were treated with conditioned medium from cultures of glioma cells irradiated at a range of doses and the migration of both cell types, tube formation by endothelial cells, as well as the expression and secretion of migration-related proteins were evaluated. Exposure to X-ray radiation-conditioned medium induced dose-dependent increases in cell migration and tube formation, which were accompanied by an upregulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2 and -9 expression. However, glioma cells treated with conditioned medium of cells irradiated at a carbon ion dose of 4.0 Gy showed a marked decrease in migratory potential and VEGF secretion relative to non-irradiated cells. The application of recombinant VEGF165 stimulated migration in glioma and endothelial cells, which was associated with increased FAK phosphorylation at Tyr861, suggesting that the suppression of cell migration by carbon ion radiation could be via VEGF-activated FAK signaling. Taken together, these findings indicate that carbon ion may be superior to X-ray radiation for inhibiting tumorigenesis and angiogenesis through modulation of VEGF level in the glioma microenvironment. PMID:24893038

  9. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo

    PubMed Central

    Broermann, Andre; Winderlich, Mark; Block, Helena; Frye, Maike; Rossaint, Jan; Zarbock, Alexander; Cagna, Giuseppe; Linnepe, Ruth; Schulte, Dörte; Nottebaum, Astrid Fee

    2011-01-01

    We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation. PMID:22025303

  10. VEGF Receptor 2 (VEGFR2) Activation Is Essential for Osteocyte Survival Induced by Mechanotransduction.

    PubMed

    de Castro, Luis F; Maycas, Marta; Bravo, Beatriz; Esbrit, Pedro; Gortazar, Arancha

    2015-02-01

    Mechanical loading plays a key role in bone formation and maintenance. While unloading induces osteocyte apoptosis and bone loss in vivo, mechanical stimuli prevents osteocyte death through a mechanism involving β-catenin accumulation and ERK nuclear translocation. Vascular endothelial growth factor (VEGF) has a crucial role in bone formation, but its interaction with osteocytes is not completely understood. Of interest, VEGF receptor 2 (VEGFR2) has recently been shown to mediate the mechanical response of endothelial cells. The present study aimed to evaluate the putative role of the VEGF system in osteocyte mechanosensing. We show that either short (10 min) mechanical stimulus by pulsatile fluid flow (FF) (10 dyn/cm(2), 8 Hz) or exogenous VEGF165 (6 ng/ml) similarly stimulated cell viability, ERK phosphorylation, and β-catenin membrane translocation. A VEGFR2 antagonist (SU5416) or transfection with specific VEGFR2 siRNAs (siVEGFR2) decreased these events. FF for 10 min increased VEGFR2 phosphorylation at both Tyr-1059 and Tyr-1175; an effect that was mimicked by VEGF165 but was unaffected by a VEGF neutralizing antibody. Subsequently (at 6 h), this mechanical stimulus induced VEGF gene overexpression, which was prevented by siVEGFR2 transfection. Depletion of the structural protein caveolin-1 by using siRNA technology impaired FF-induced VEGFR2 phosphorylation. In conclusion, these in vitro findings point to caveolin-1-dependent VEGFR2 activation as an important mechanism whereby mechanical stimuli promote osteocyte viability. © 2014 Wiley Periodicals, Inc.

  11. VEGF signaling inside vascular endothelial cells and beyond.

    PubMed

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. An analysis on the roles of angiogenesis-related factors including serum vitamin D, soluble endoglin (sEng), soluble fms-like tyrosine kinase 1 (sFlt1), and vascular endothelial growth factor (VEGF) in the diagnosis and severity of late-onset preeclampsia.

    PubMed

    Cim, Numan; Kurdoglu, Mertihan; Ege, Serhat; Yoruk, Ibrahim; Yaman, Gorkem; Yildizhan, Recep

    2017-07-01

    The aim of this study was to evaluate the roles of proangiogenic factors including serum vitamin D and vascular endothelial growth factor (VEGF) and anti-angiogenic factors including soluble endoglin (sEng) and soluble fms-like tyrosine kinase 1 (sFlt1) in the diagnosis and severity of late-onset preeclampsia. The study was conducted at Yuzuncu Yil University Research and Education Hospital Department of Gynecology and Obstetrics. The study included a patient group of 40 women with late-onset preeclampsia who were pregnant at ≥32 weeks of gestation according to the last menstrual period (LMP) or ultrasonographic fetal biometric measurement and a control group of 40 healthy pregnant women who presented to our clinic for routine pregnancy examination and were at the same age and gestational period with those in the patient group. The two groups were compared in terms of maternal age, gravida, parity, week of gestation, systolic/diastolic blood pressure, total protein in spot urine sample, 24-h urine protein, white blood cell (WBC), hemoglobin (Hgb), platelet count, urea, creatinine, liver function tests (AST, ALT, LDH), vitamin D 3 , 25(OH) vitamin D 3 , 1,25(OH) vitamin D 3 , sEng, sFlt1, and VEGF levels, mode of delivery, the infant APGAR score at 1 and 5 min after delivery, and infant weight at delivery. The groups were similar in terms of age, gravida, parity, week of gestation, serum vitamin D 3 , 25(OH) vitamin D 3 , 1,25(OH) 2 vitamin D 3 and VEGF levels, and infant weight at delivery (p > 0.05). Systolic/diastolic blood pressure, total protein in spot urine sample, 24-h urine protein, WBC, Hgb, serum urea, creatine, AST, ALT, and LDH were significantly higher in the preeclamptic group compared to the healthy group (p < 0.05). However, thrombocyte level and the APGAR score at 1 and 5 min after delivery were significantly lower in the preeclamptic group compared to the healthy group (p < 0.05). No significant correlation was found between

  13. VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes.

    PubMed

    Igarashi, Yasuyuki; Chosa, Naoyuki; Sawada, Shunsuke; Kondo, Hisatomo; Yaegashi, Takashi; Ishisaki, Akira

    2016-04-01

    The direction of mesenchymal stem cell (MSC) differentiation is regulated by stimulation with various growth factors and cytokines. We recently established MSC lines, [transforming growth factor-β (TGF-β)-responsive SG‑2 cells, bone morphogenetic protein (BMP)-responsive SG‑3 cells, and TGF-β/BMP-non-responsive SG‑5 cells], derived from the bone marrow of green fluorescent protein-transgenic mice. In this study, to compare gene expression profiles in these MSC lines, we used DNA microarray analysis to characterize the specific gene expression profiles observed in the TGF-β-responsive SG‑2 cells. Among the genes that were highly expressed in the SG‑2 cells, we focused on vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), the gene product of FMS-like tyrosine kinase 4 (Flt4). We found that VEGF-C, a specific ligand of VEGFR3, significantly induced the cell proliferative activity, migratory ability (as shown by Transwell migration assay), as well as the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the SG‑2 cells. Additionally, VEGF-C significantly increased the expression of prospero homeobox 1 (Prox1) and lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), which are lymphatic endothelial cell markers, and decreased the expression of osteogenic differentiation marker genes in these cells. By contrast, TGF-β significantly increased the expression of early-phase osteogenic differentiation marker genes in the SG‑2 cells and markedly decreased the expression of lymphatic endothelial cell markers. The findings of our study strongly suggest the following: i) that VEGF-C promotes the proliferative activity and migratory ability of MSCs; and ii) VEGF-C and TGF-β reciprocally regulate MSC commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes, respectively. Our findings provide new insight into the molecular mechanisms underlying the regenerative ability of MSCs.

  14. Lenticular cytoprotection. Part 1: The role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia

    PubMed Central

    Neelam, Sudha; Brooks, Morgan M.

    2013-01-01

    Purpose The prosurvival signaling cascades that mediate the unique ability of human lens epithelial cells to survive in their naturally hypoxic environment are not well defined. Hypoxia induces the synthesis of the hypoxia inducible factor HIF-1α that in turn, plays a crucial role in modulating a downstream survival scheme, where vascular endothelial growth factor (VEGF) also plays a major role. To date, no published reports in the lens literature attest to the expression and functionality of HIF-2α and the role it might play in regulating VEGF expression. The aim of this study was to identify the functional expression of the hypoxia inducible factors HIF-1α and HIF-2α and establish their role in regulating VEGF expression. Furthermore, we demonstrate a link between sustained VEGF expression and the ability of the hypoxic human lens epithelial cell to thrive in low oxygen conditions and resist mitochondrial membrane permeability transition (also referred to as lenticular cytoprotection). Methods Hypoxia inducible factor translation inhibitors were used to demonstrate the role of HIF-1α and HIF-2α and the simultaneous expression of both hypoxic inducible factors to determine their role in regulating VEGF expression. Axitinib, which inhibits lenticular cell autophosphorylation of its VEGF receptor, was employed to demonstrate a role for the VEGF–VEGFR2 receptor complex in regulating Bcl-2 expression. Specific antisera and western blot analysis were used to detect the protein levels of HIF-1α and HIF-2α, as well as the proapoptotic protein, BAX and the prosurvival protein, Bcl-2. VEGF levels were analyzed with enzyme-linked immunosorbent assay (ELISA). The potentiometric dye, 5,5′,6,6′-tetrachloro1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide, was used to determine the effect of the inhibitors on mitochondrial membrane permeability transition. Results Cultured human lens epithelial cells (HLE-B3) maintained under hypoxic condition (1% oxygen

  15. Intraocular Penetration of a vNAR: In Vivo and In Vitro VEGF165 Neutralization.

    PubMed

    Camacho-Villegas, Tanya A; Mata-González, María Teresa; García-Ubbelohd, Walter; Núñez-García, Linda; Elosua, Carolina; Paniagua-Solis, Jorge F; Licea-Navarro, Alexei F

    2018-03-31

    Variable new antigen receptor domain (vNAR) antibodies are novel, naturally occurring antibodies that can be isolated from naïve, immune or synthetic shark libraries. These molecules are very interesting to the biotechnology and pharmaceutical industries because of their unique characteristics related to size and tissue penetrability. There have been some approved anti-angiogenic therapies for ophthalmic conditions, not related to vNAR. This includes biologics and chimeric proteins that neutralize vascular endothelial growth factor (VEGF) 165 , which are injected intravitreal, causing discomfort and increasing the possibility of infection. In this paper, we present a vNAR antibody against human recombinant VEGF 165 (rhVEGF 165 ) that was isolated from an immunized Heterodontus francisci shark. A vNAR called V13, neutralizes VEGF 165 cytokine starting at 75 μg/mL in an in vitro assay based on co-culture of normal human dermal fibroblasts (NHDFs) and green fluorescence protein (GFP)-labeled human umbilical vein endothelial cells (HUVECs) cells. In the oxygen-induced retinopathy model in C57BL/6:Hsd mice, we demonstrate an endothelial cell count decrease. Further, we demonstrate the intraocular penetration after topical administration of 0.1 μg/mL of vNAR V13 by its detection in aqueous humor in New Zealand rabbits with healthy eyes after 3 h of application. These findings demonstrate the potential of topical application of vNAR V13 as a possible new drug candidate for vascular eye diseases.

  16. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target

    PubMed Central

    Sitohy, Basel; Nagy, Janice A.; Dvorak, Harold F.

    2012-01-01

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed anti-angiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor/vascular endothelial growth factor (VEGF-A) as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and we here call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least six well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All six types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A164. Once formed, four of the six types lose their VEGF-A dependency and so their responsiveness to anti-VEGF/VEGFR therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels. PMID:22508695

  17. Peripheral blood mononuclear cells from patients with rheumatoid arthritis spontaneously secrete vascular endothelial growth factor (VEGF): specific up-regulation by tumour necrosis factor-alpha (TNF-α) in synovial fluid

    PubMed Central

    BOTTOMLEY, MJ; WEBB, NJA; WATSON, CJ; HOLT, PJL; FREEMONT, AJ; BRENCHLEY, PEC

    1999-01-01

    This study was designed to investigate VEGF production from peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) compared with healthy controls and to identify the predominant cellular source in PBMC isolated from RA patients. The regulation of PBMC VEGF production by cytokines and synovial fluid (SF) was studied. PBMC were isolated from RA patients and healthy controls and stimulated with lipopolysaccharide (LPS), IL-1β, IL-4, IL-6, IL-8, IL-10, TNF-α and transforming growth factor-beta (TGF-β) isoforms for varying time points up to 72 h at 37°C/5% CO2. The effect of SF on VEGF secretion by PBMC was also studied. Supernatant VEGF levels were measured using a flt-1 receptor capture ELISA. RA patients had significantly higher spontaneous production of VEGF compared with controls, and monocytes were identified as the predominant cellular source. RA PBMC VEGF production was up-regulated by TGF-β isoforms and TNF-α and down-regulated by IL-4 and IL-10, with no effect observed with IL-1β, IL-6 and IL-8. Antibody blocking experiments confirmed that TNF-α and not TGF-β isoforms in SF increased VEGF secretion by RA PBMC. These results emphasize the importance of monocytes as a source of VEGF in the pathophysiology of RA. Several cytokines known to be present in SF can modulate the level of VEGF secretion, but the predominant effect of SF in VEGF up-regulation is shown to be dependent on TNF-α. PMID:10403932

  18. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    PubMed Central

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2–neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.—Fan, X., Krieg, S., Kuo, C. J., Wiegand, S. J., Rabinovitch, M., Druzin, M. L., Brenner, R. M., Giudice, L. C., Nayak, N. R. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. PMID:18606863

  19. Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling.

    PubMed

    Güç, Esra; Briquez, Priscilla S; Foretay, Didier; Fankhauser, Manuel A; Hubbell, Jeffrey A; Kilarski, Witold W; Swartz, Melody A

    2017-07-01

    Lymphangiogenesis occurs in inflammation and wound healing, yet its functional roles in these processes are not fully understood. Consequently, clinically relevant strategies for therapeutic lymphangiogenesis remain underdeveloped, particularly using growth factors. To achieve controlled, local capillary lymphangiogenesis with protein engineering and determine its effects on fluid clearance, leukocyte trafficking, and wound healing, we developed a fibrin-binding variant of vascular endothelial growth factor C (FB-VEGF-C) that is slowly released upon demand from infiltrating cells. Using a novel wound healing model, we show that implanted fibrin containing FB-VEGF-C, but not free VEGF-C, could stimulate local lymphangiogenesis in a dose-dependent manner. Importantly, the effects of FB-VEGF-C were restricted to lymphatic capillaries, with no apparent changes to blood vessels and downstream collecting vessels. Leukocyte intravasation and trafficking to lymph nodes were increased in hyperplastic lymphatics, while fluid clearance was maintained at physiological levels. In diabetic wounds, FB-VEGF-C-induced lymphangiogenesis increased extracellular matrix deposition and granulation tissue thickening, indicators of improved wound healing. Together, these results indicate that FB-VEGF-C is a promising strategy for inducing lymphangiogenesis locally, and that such lymphangiogenesis can promote wound healing by enhancing leukocyte trafficking without affecting downstream lymphatic collecting vessels. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis.

    PubMed

    Lin, Chih-Yang; Tzeng, Huey-En; Li, Te-Mao; Chen, Hsien-Te; Lee, Yi; Yang, Yi-Chen; Wang, Shih-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2017-06-13

    Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.

  1. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway

    PubMed Central

    Chen, Zhuo; Zhao, Liang; Zhao, Feng; Yang, Guanghai; Wang, Jian Jun

    2018-01-01

    The present study investigated the effect of tetrandrine on lung cancer cell growth and apoptosis, and its possible underlying molecular mechanism. A549 human lung cancer cells were incubated with between 2.5 and 10 µM tetrandrine for 12, 24 and 48 h, following which the effect of tetrandrine on cell viability and apoptosis were assessed using an MTT assay and flow cytometry. ELISA and western blotting were used to analyze VEGF activity, and the expression of poly (ADP-ribose) polymerase (PARP), phosphorylated protein kinase B (Akt), Bcl-2-associated X protein (Bax), hypoxia inducible factor (HIF)-1α and inter-cellular adhesion molecule-1 (ICAM-1). Tetrandrine effectively suppressed the growth of and induced apoptosis in A549 lung cancer cells. The expression of PARP, Bax, intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) was significantly upregulated, and the phosphorylation of Akt and expression of HIF-1α was significantly suppressed in A549 lung cancer cells. Therefore, tetrandrine may suppress cell viability and induce apoptosis via the VEGF/HIF-1α/ICAM-1 signaling pathway. PMID:29849794

  2. Vascular endothelial growth factor (VEGF) expression in locally advanced prostate cancer: secondary analysis of radiation therapy oncology group (RTOG) 8610.

    PubMed

    Pan, Larry; Baek, Seunghee; Edmonds, Pamela R; Roach, Mack; Wolkov, Harvey; Shah, Satish; Pollack, Alan; Hammond, M Elizabeth; Dicker, Adam P

    2013-04-25

    Angiogenesis is a key element in solid-tumor growth, invasion, and metastasis. VEGF is among the most potent angiogenic factor thus far detected. The aim of the present study is to explore the potential of VEGF (also known as VEGF-A) as a prognostic and predictive biomarker among men with locally advanced prostate cancer. The analysis was performed using patients enrolled on RTOG 8610, a phase III randomized control trial of radiation therapy alone (Arm 1) versus short-term neoadjuvant and concurrent androgen deprivation and radiation therapy (Arm 2) in men with locally advanced prostate carcinoma. Tissue samples were obtained from the RTOG tissue repository. Hematoxylin and eosin slides were reviewed, and paraffin blocks were immunohistochemically stained for VEGF expression and graded by Intensity score (0-3). Cox or Fine and Gray's proportional hazards models were used. Sufficient pathologic material was available from 103 (23%) of the 456 analyzable patients enrolled in the RTOG 8610 study. There were no statistically significant differences in the pre-treatment characteristics between the patient groups with and without VEGF intensity data. Median follow-up for all surviving patients with VEGF intensity data is 12.2 years. Univariate and multivariate analyses demonstrated no statistically significant correlation between the intensity of VEGF expression and overall survival, distant metastasis, local progression, disease-free survival, or biochemical failure. VEGF expression was also not statistically significantly associated with any of the endpoints when analyzed by treatment arm. This study revealed no statistically significant prognostic or predictive value of VEGF expression for locally advanced prostate cancer. This analysis is among one of the largest sample bases with long-term follow-up in a well-characterized patient population. There is an urgent need to establish multidisciplinary initiatives for coordinating further research in the area of human

  3. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanata, Sohya; Akagi, Masao; Nishimura, Shunji

    It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-{gamma} was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-{gamma} inhibitor GW9662more » suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-{gamma} and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.« less

  4. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S) Production in Human Uterine Artery Endothelial Cells.

    PubMed

    Zhang, Hong-Hai; Chen, Jennifer C; Sheibani, Lili; Lechuga, Thomas J; Chen, Dong-Bao

    2017-07-01

    Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics. Copyright © 2017 Endocrine Society

  5. Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake.

    PubMed

    Stamati, Katerina; Priestley, John V; Mudera, Vivek; Cheema, Umber

    2014-09-10

    Angiogenesis is an essential neovascularisation process, which if recapitulated in 3D in vitro, will provide better understanding of endothelial cell (EC) behaviour. Various cell types and growth factors are involved, with vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 key components. We were able to control the aggregation pattern of ECs in 3D collagen hydrogels, by varying the matrix composition and/or having a source of cells signalling angiogenic proteins. These aggregation patterns reflect the different developmental pathways that ECs take to form different sized tubular structures. Cultures with added laminin and thus increased expression of α6 integrin showed a significant increase (p<0.05) in VEGFR2 positive ECs and increased VEGF uptake. This resulted in the end-to-end network aggregation of ECs. In cultures without laminin and therefore low α6 integrin expression, VEGFR2 levels and VEGF uptake were significantly lower (p<0.05). These ECs formed contiguous sheets, analogous to the 'wrapping' pathway in development. We have identified a key linkage between integrin expression on ECs and their uptake of VEGF, regulated by VEGFR2, resulting in different aggregation patterns in 3D. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  7. Modulation of VEGF-induced retinal vascular permeability by peroxisome proliferator-activated receptor-β/δ.

    PubMed

    Suarez, Sandra; McCollum, Gary W; Bretz, Colin A; Yang, Rong; Capozzi, Megan E; Penn, John S

    2014-11-18

    Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. These data suggest a protective effect for PPARβ/δ antagonism against VEGF-induced vascular permeability

  8. Modulation of VEGF-Induced Retinal Vascular Permeability by Peroxisome Proliferator-Activated Receptor-β/δ

    PubMed Central

    Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.

    2014-01-01

    Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against

  9. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning

    PubMed Central

    Vempati, Prakash; Popel, Aleksander S.; Mac Gabhann, Feilim

    2014-01-01

    The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can ‘release’ matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF’s angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies. PMID:24332926

  10. PPARγ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development.

    PubMed

    Garnier, Vanessa; Traboulsi, Wael; Salomon, Aude; Brouillet, Sophie; Fournier, Thierry; Winkler, Carine; Desvergne, Beatrice; Hoffmann, Pascale; Zhou, Qun-Yong; Congiu, Cenzo; Onnis, Valentina; Benharouga, Mohamed; Feige, Jean-Jacques; Alfaidy, Nadia

    2015-08-15

    PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion. Copyright © 2015 the American Physiological Society.

  11. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito

    2007-08-31

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massivemore » expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.« less

  12. The synergistic effect of VEGF and biomorphic silicon carbides topography on in vivo angiogenesis and human bone marrow derived mesenchymal stem cell differentiation.

    PubMed

    Díaz-Rodríguez, P; Gómez-Amoza, J L; Landin, M

    2015-08-04

    Topographical features of biomaterials are able to modulate cell attachment, spreading and differentiation. The addition of growth factors to implantable biomaterials can modify these cellular responses, enhancing their therapeutic potential. The aim of this research is to establish the influence of biomorphic silicon carbide ceramics (bioSiCs) surface topography on the proliferation and osteoblastic differentiation of mesenchymal stem cells and the potential synergistic effect of the ceramic porous structure together with vascular endothelial growth factor loading (VEGF) on the surface mediated osteoblastic differentiation. Three porous bioSiCs with important differences in their microstructure were obtained from different natural precursors. Samples loaded with or without VEGF through ionic interactions were cultured with human umbilical vein endothelial cells (HUVEC) or bone marrow derived mesenchymal stem cells (hMSCs). Cell behaviour and protein activity with regard to bioSiC porous structure and surface properties were analysed. An in vivo model (Chick Chorioallantoic Membrane; CAM) was used to assess the capability of the VEGF loaded systems to promote angiogenesis. Experimental data show that loaded systems were able to control the release of VEGF for up to 15 d ensuring the activity of the protein, increasing the proliferation of HUVECs and the formation of new blood vessels in the CAM. It was found that the selection of bioSiCs with a higher pore size promoted a higher concentration of osteoblastic differentiation markers of MSCs cultured on the surface of bioSiCs. Furthermore, the addition of VEGF to the systems was able to promote a faster osteoblastic differentiation according to the qPCR results, suggesting a synergy between both the surface properties and the controlled release of the growth factor. The VEGF loaded sapelli bioSiC was found to be the most promising material for bone tissue engineering applications.

  13. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-08-03

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.

  14. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells

    PubMed Central

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-01-01

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis. PMID:28771226

  15. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests.

    PubMed

    Eğri, Sinan; Eczacıoğlu, Numan

    2017-03-01

    Biodegradable PLA-PEG-PLA block copolymers were synthesized with desired backbone structures and molecular weights using PEG20000. Rectangular scaffolds were prepared by freeze drying with or without using NaCl particles. Bone morphogenetic protein (BMP)-2 was loaded to the matrix after the scaffold formation for sustained release while vascular endothelial growth factor (VEGF) was loaded within the pores with gelatin solution. VEGF release was quite fast and almost 60% of it was released in 2 d. However, sequential - sustained released was observed for BMP-2 in the following few months. Corporation of VEGF/BMP-2 couple into the scaffolds increased the cell adhesion and proliferation. Neither significant cytotoxicity nor apoptosis/necrosis were observed.

  16. The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy

    PubMed Central

    Kuiper, Esther J.; Van Nieuwenhoven, Frans A.; de Smet, Marc D.; van Meurs, Jan C.; Tanck, Michael W.; Oliver, Noelynn; Klaassen, Ingeborg; Van Noorden, Cornelis J. F.; Goldschmeding, Roel; Schlingemann, Reinier O.

    2008-01-01

    Background In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. Methods/Principal Findings VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32), macular hole (N = 13) or macular pucker (N = 23) and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4) were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. Conclusions/Significance CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy. PMID:18628999

  17. Genetic deletion of COX-2 diminishes VEGF production in mouse retinal Müller cells.

    PubMed

    Yanni, Susan E; McCollum, Gary W; Penn, John S

    2010-07-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit COX activity, reduce the production of retinal VEGF and neovascularization in relevant models of ocular disease. We hypothesized that COX-2 mediates VEGF production in retinal Müller cells, one of its primary sources in retinal neovascular disease. The purpose of this study was to determine the role of COX-2 and its products in VEGF expression and secretion. These studies have more clearly defined the role of COX-2 and COX-2-derived prostanoids in retinal angiogenesis. Müller cells derived from wild-type and COX-2 null mice were exposed to hypoxia for 0-24 h. COX-2 protein and activity were assessed by western blot analysis and GC-MS, respectively. VEGF production was assessed by ELISA. Wild-type mouse Müller cells were treated with vehicle (0.1% DMSO), 10 microM PGE(2), or PGE(2) + 5 microM H-89 (a PKA inhibitor), for 12 h. VEGF production was assessed by ELISA. Hypoxia significantly increased COX-2 protein (p < 0.05) and activity (p < 0.05), and VEGF production (p < 0.0003). COX-2 null Müller cells produced significantly less VEGF in response to hypoxia (p < 0.05). Of the prostanoids, PGE(2) was significantly increased by hypoxia (p < 0.02). Exogenous PGE(2) significantly increased VEGF production by Müller cells (p < 0.0039), and this effect was inhibited by H-89 (p < 0.055). These data demonstrate that hypoxia induces COX-2, prostanoid production, and VEGF synthesis in Müller cells, and that VEGF production is at least partially COX-2-dependent. Our study suggests that PGE(2), signaling through the EP(2) and/or EP(4) receptor and PKA, mediates the VEGF response of Müller cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Differential Expression of VEGF-Axxx Isoforms Is Critical for Development of Pulmonary Fibrosis.

    PubMed

    Barratt, Shaney L; Blythe, Thomas; Jarrett, Caroline; Ourradi, Khadija; Shelley-Fraser, Golda; Day, Michael J; Qiu, Yan; Harper, Steve; Maher, Toby M; Oltean, Sebastian; Hames, Thomas J; Scotton, Chris J; Welsh, Gavin I; Bates, David O; Millar, Ann B

    2017-08-15

    Fibrosis after lung injury is related to poor outcome, and idiopathic pulmonary fibrosis (IPF) can be regarded as an exemplar. Vascular endothelial growth factor (VEGF)-A has been implicated in this context, but there are conflicting reports as to whether it is a contributory or protective factor. Differential splicing of the VEGF-A gene produces multiple functional isoforms including VEGF-A 165 a and VEGF-A 165 b, a member of the inhibitory family. To date there is no clear information on the role of VEGF-A in IPF. To establish VEGF-A isoform expression and functional effects in IPF. We used tissue sections, plasma, and lung fibroblasts from patients with IPF and control subjects. In a bleomycin-induced lung fibrosis model we used wild-type MMTV mice and a triple transgenic mouse SPC-rtTA +/- TetoCre +/- LoxP-VEGF-A +/+ to conditionally induce VEGF-A isoform deletion specifically in the alveolar type II (ATII) cells of adult mice. IPF and normal lung fibroblasts differentially expressed and responded to VEGF-A 165 a and VEGF-A 165 b in terms of proliferation and matrix expression. Increased VEGF-A 165 b was detected in plasma of progressing patients with IPF. In a mouse model of pulmonary fibrosis, ATII-specific deficiency of VEGF-A or constitutive overexpression of VEGF-A 165 b inhibited the development of pulmonary fibrosis, as did treatment with intraperitoneal delivery of VEGF-A 165 b to wild-type mice. These results indicate that changes in the bioavailability of VEGF-A sourced from ATII cells, namely the ratio of VEGF-A xxx a to VEGF-A xxx b, are critical in development of pulmonary fibrosis and may be a paradigm for the regulation of tissue repair.

  19. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head.

    PubMed

    Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin

    2016-03-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Targeting the VEGF pathway: antiangiogenic strategies in the treatment of non-small cell lung cancer.

    PubMed

    Aita, Marianna; Fasola, Gianpiero; Defferrari, Carlotta; Brianti, Annalisa; Bello, Maria Giovanna Dal; Follador, Alessandro; Sinaccio, Graziella; Pronzato, Paolo; Grossi, Francesco

    2008-12-01

    The management of advanced non-small cell lung cancer (NSCLC) has evolved considerably in recent years, due to a progressive understanding of tumour biology and the identification of promising molecular targets. Several agents have been developed so far inhibiting vascular endothelial growth factor (VEGF) - a key protein in tumour neoangiogenesis, growth and dissemination - or its receptor signalling system. The finding in study E4599 of a survival benefit for carboplatin-paclitaxel plus bevacizumab - a humanised anti-VEGF monoclonal antibody - over chemotherapy (CT) alone led the U.S. Food and Drug Administration (FDA) to approve the novel combination for first-line treatment of patients with unresectable, locally advanced, recurrent or metastatic non-squamous NSCLC. In a randomised phase III trial presented at the American Society of Clinical Oncology (ASCO) 2007 Annual Meeting, patients receiving cisplatin-gemcitabine plus bevacizumab experienced a significantly longer progression-free survival (PFS) compared to the standard arm. Based on these data, the European Medicines Agency (EMEA) has granted marketing authorisation for bevacizumab in addition to any platinum-based CT for first-line treatment of advanced NSCLC other than predominantly squamous histology. Aim of this report is to provide an overview on bevacizumab in NSCLC, with special emphasis on clinical results presented at ASCO last meeting. Multitargeted tyrosine kinase inhibitors (TKIs), sharing a focus on both the angiogenesis process and additional cell-surface receptors, and VEGF Trap, a novel fusion protein with markedly higher affinity for VEGF than bevacizumab, will be briefly discussed as well.

  1. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma.

    PubMed

    Peng, Hong; Zhang, Qiuyang; Li, Jiali; Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-03-29

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC.

  2. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-01-01

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC. PMID:26967384

  3. VEGF and VEGFB Play Balancing Roles in Adipose Differentiation, Gene Expression, and Function.

    PubMed

    Jin, Honghong; Li, Dan; Wang, Xutong; Jia, Jia; Chen, Yang; Yao, Yapeng; Zhao, Chunlan; Lu, Xiaodan; Zhang, Shujie; Togo, Jacques; Ji, Yan; Zhang, Luqing; Feng, Xuechao; Zheng, Yaowu

    2018-05-01

    Obesity is the result of abnormal adipose development and energy metabolism. Using vascular endothelial growth factor (VEGF) B-knockout and inducible VEGF downregulation mouse models, we have shown that VEGFB inactivation caused expansion of white adipose, whitening of brown adipose, an increase in fat accumulation, and a reduction in energy consumption. At the same time, expression of the white adipose-associated genes was increased and brown adipose-associated genes decreased. VEGF repression, in contrast, induced brown adipose expansion and brown adipocyte development in white adipose, increased energy expenditure, upregulated brown adipose-associated genes, and downregulated white adipose-associated genes. When VEGFB-knockout and VEGF-repressed mice are crossed together, VEGF and VEGFB can counteractively regulate large numbers of genes and efficiently reverse each other's roles. These genes, under counteractive VEGF and VEGFB regulations, include transcription factors, adhesion molecules, and metabolic enzymes. This balancing role is confirmed by morphologic and functional changes. This study reports that VEGF and VEGFB counteractively regulate adipose development and function in energy metabolism.

  4. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor

    PubMed Central

    Zhang, Wenjie; Wang, Xiuli; Wang, Shaoyi; Zhao, Jun; Xu, Lianyi; Zhu, Chao; Zeng, Deliang; Chen, Jake; Zhang, Zhiyuan; Kaplan, David L.; Jiang, Xinquan

    2011-01-01

    Sonication-induced silk hydrogels were previously prepared as an injectable bone replacement biomaterial, with a need to improve osteogenic features. Vascular endothelial growth factor (VEGF165) and bone morphogenic protein-2 (BMP-2) are key regulators of angiogenesis and osteogenesis, respectively, during bone regeneration. Therefore, the present study aimed at evaluating in situ forming silk hydrogels as a vehicle to encapsulate dual factors for rabbit maxillary sinus floor augmentation. Sonication-induced silk hydrogels were prepared in vitro and the slow release of VEGF165 and BMP-2 from these silk gels was evaluated by ELISA. For in vivo studies for each time point (4 and 12 weeks), 24 sinus floors elevation surgeries were made bilaterally in 12 rabbits for the following four treatment groups: silk gel (group Silk gel), silk gel/VEGF165 (group VEGF), silk gel/BMP-2 (group BMP-2), silk gel/VEGF165/BMP-2 (group V+B) (n=6 per group). Sequential florescent labeling and radiographic observations were used to record new bone formation and mineralization, along with histological and histomorphometric analysis. At week 4, VEGF165 promoted more tissue infiltration into the gel and accelerated the degradation of the gel material. At this time point, the bone area in group V+B was significantly larger than those in the other three groups. At week 12, elevated sinus floor heights of groups BMP-2 and V+B were larger than those of the Silk gel and VEGF groups, and the V+B group had the largest new bone area among all groups. In addition, a larger blood vessel area formed in the remaining gel areas in groups VEGF and V+B. In conclusion, VEGF165 and BMP-2 released from injectable and biodegradable silk gels promoted angiogenesis and new bone formation, with the two factors demonstrating an additive effect on bone regeneration. These results indicate that silk hydrogels can be used as an injectable vehicle to deliver multiple growth factors in a minimally invasive approach to

  5. Lower capillary density but no difference in VEGF expression in obese vs. lean young skeletal muscle in humans.

    PubMed

    Gavin, Timothy P; Stallings, Howard W; Zwetsloot, Kevin A; Westerkamp, Lenna M; Ryan, Nicholas A; Moore, Rebecca A; Pofahl, Walter E; Hickner, Robert C

    2005-01-01

    Obesity is associated with lower skeletal muscle capillarization and lower insulin sensitivity. Vascular endothelial growth factor (VEGF) is important for the maintenance of the skeletal muscle capillaries. To investigate whether VEGF and VEGF receptor [kinase insert domain-containing receptor (KDR) and Flt-1] expression are lower with obesity, vastus lateralis muscle biopsies were obtained from eight obese and eight lean young sedentary men before and 2 h after a 1-h submaximal aerobic exercise bout for the measurement of VEGF, KDR, Flt-1, and skeletal muscle fiber and capillary characteristics. There were no differences in VEGF or VEGF receptor mRNA at rest between lean and obese muscle. Exercise increased VEGF (10-fold), KDR (3-fold), and Flt-1 (5-fold) mRNA independent of group. There were no differences in VEGF, KDR, or Flt-1 protein between groups. Compared with lean skeletal muscle, the number of capillary contacts per fiber was the same, but lower capillary density (CD), greater muscle cross sectional area, and lower capillary-to-fiber area ratio were observed in both type I and II fibers in obese muscle. Multiple linear regression revealed that 49% of the variance in insulin sensitivity (homeostasis model assessment) could be explained by percentage of body fat (35%) and maximal oxygen uptake per kilogram of fat-free mass (14%). Linear regression revealed significant relationships between maximal oxygen uptake and both CD and capillary-to-fiber perimeter exchange. Although differences may exist in CD and capillary-to-fiber area ratio between lean and obese skeletal muscle, the present results provide evidence that VEGF and VEGF receptor expression are not different between lean and obese muscle.

  6. CHIP involves in non-small cell lung cancer prognosis through VEGF pathway.

    PubMed

    Tingting, Qian; Jiao, Wang; Qingfeng, Wang; Yancheng, Liu; Shijun, Y U; Zhaoqi, Wang; Dongmei, Sun; ShiLong, Wang

    2016-10-01

    CHIP (c-terminal Hsp70-interacting protein) is an E3 ligase playing vital roles in various cancers. The VEGF pathway has become an important therapeutic target in non-small cell lung cancer (NSCLC). However, little is known about the role of CHIP and the relationship between CHIP and VEGF-VEGFR2 (VEGF receptor 2) pathway in NSCLC. In this study we aimed to investigate the clinical function of CHIP in NSCLC and explore the relevant regulatory mechanism. QRT-PCR was performed to detect CHIP expression in NSCLC tissues. The association of CHIP expression and clinical parameters was analyzed using the Chi-square test. Kaplan- Meier and Cox analyses were performed to identify the role of CHIP in the prognosis of NSCLC patients. ELISA test was used to detect the VEGF secretion of NSCLC cells and western blot were used to detected the protein expression of VEGFR2 in NSCLC cells. and the results revealed that CHIP expression was decreased in NSCLC tissues and significantly correlated with clinical stages, lymph node metastasis and distant metastasis (P<0.05). Moreover, Kaplan-Meier and Cox regression analyses showed that patients with negative expression of CHIP had a shorter survival time and CHIP could be an independent prognostic biomarker. In addition, ELISA tests showed that CHIP negatively regulated the secretion level of VEGF. Furthermore, western blot assay indicated that the VEGFR2 protein level was reduced after CHIP over-expression. Taken together, our findings demonstrate for the first time that CHIP may serve as a promising prognostic biomarker for NSCLC patients and it may be involved in NSCLC angiogenesis through regulating VEGF secretion and expression of VEGFR2. Copyright © 2016. Published by Elsevier Masson SAS.

  7. VEGF-C Is a Thyroid Marker of Malignancy Superior to VEGF-A in the Differential Diagnostics of Thyroid Lesions

    PubMed Central

    Woliński, Kosma; Stangierski, Adam; Szczepanek-Parulska, Ewelina; Gurgul, Edyta; Budny, Bartłomiej; Wrotkowska, Elzbieta; Biczysko, Maciej; Ruchala, Marek

    2016-01-01

    Introduction Thyroid nodular goiter is one of the most common medical conditions affecting even over a half of adult population. The risk of malignancy is rather small but noticeable–estimated by numerous studies to be about 3–10%. The definite differentiation between benign and malignant ones is a vital issue in endocrine practice. The aim of the current study was to assess the expression of vascular endothelial growth factor A (VEGF-A) and VEGF-C on the mRNA level in FNAB washouts in case of benign and malignant thyroid nodules and to evaluate the diagnostic value of these markers of malignancy. Materials and Methods Patients undergoing fine-needle aspiration biopsy (FNAB) in our department between January 2013 and May 2014 were included. In case of all patients who gave the written consent, after ultrasonography (US) and fine-needle aspiration biopsy (FNAB) performed as routine medical procedure the needle was flushed with RNA Later solution, the washouts were frozen in -80 Celsius degrees. Expression of VEGF-A and VEGF-C and GADPH (reference gene) was assessed in washouts on the mRNA level using the real-time PCR technique. Probes of patients who underwent subsequent thyroidectomy and were diagnosed with differentiated thyroid cancer (DTC; proved by post-surgical histopathology) were analyzed. Similar number of patients with benign cytology were randomly selected to be a control group. Results Thirty one DTCs and 28 benign thyroid lesions were analyzed. Expression of VEGF-A was insignificantly higher in patients with DTCs (p = 0.13). Expression of VEGF-C was significantly higher in patients with DTC. The relative expression of VEGF-C (in comparison with GAPDH) was 0.0049 for DTCs and 0.00070 for benign lesions, medians – 0.0036 and 0.000024 respectively (p<0.0001). Conclusions Measurement of expression VEGF-C on the mRNA level in washouts from FNAB is more useful than more commonly investigated VEGF-A. Measurement of VEGF-C in FNAB washouts do not allow

  8. Metastasis-associated protein 2 promotes the metastasis of non-small cell lung carcinoma by regulating the ERK/AKT and VEGF signaling pathways

    PubMed Central

    Zhang, Bin; Tao, Feng; Zhang, Hao

    2018-01-01

    Non-small cell lung carcinoma (NSCLC) is the most common cause of cancer-associated mortality in the world and accounts for ~85% of human lung cancers. Metastasis-associated protein 2 (MTA2) is a component of the histone deacetylase complex and serves a role in tumor progression; however, the mechanism through which MTA2 is involved in the progression of NSCLC remains unclear. The aim of the present study was to investigate the expression and function of MTA2 and the MTA2-mediated signaling pathway in NSCLC cells. Expression of MTA2 and its target genes was analyzed in MTA2-overexpressing and anti-MTA2 antibody (AbMTA2)-treated NSCLC cells, as well as growth, migration, invasion and apoptotic-resistance. The inhibitory effects on tumor formation were analyzed using AbMTA2-treated NSCLC cells and in a mouse model. Histological assessment was conducted to analyze the expressions levels of extracellular signal-regulated kinase (ERK), RAC-α serine/threonine protein kinase (AKT) and vascular endothelial growth factor (VEGF) in experimental tumors. Results of the present study demonstrated that MTA2 was overexpressed in NSCLC cells. The growth, migration and invasion of NSCLC cells were markedly inhibited by AbMTA2. In addition, it was observed that the ERK/AKT and VEGF signaling pathways were both upregulated in MTA2-overexpressing NSCLC cells, and downregulated following silencing of MTA2 activation. ERK and AKT phosphorylation levels were downregulated in NSCLC cells and tumors following MTA2 silencing. The in vivo study demonstrated that tumor growth was markedly inhibited following siRNA-MTA2 treatment. In conclusion, the results of the present study suggested that MTA2 silencing may significantly inhibit the growth and aggressiveness of NSCLC cells. Results from the present study indicated that the mechanism underlying the MTA2-mediated invasive potential of NSCLC cells involved the ERK/AKT and VEGF signaling pathways, which may be a potential therapeutic target

  9. TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.

    PubMed

    Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C

    2015-07-01

    To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P < 0.05). Furthermore, sirtinol, SIRT1 siRNA and CBO-P11 attenuated phosphorylation of Akt, extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) and the nuclear translocation of NF-κB p65. Pre-treatment with inhibitors of p38, ERK, JNK, PI3K and NF-κB decreased LPS + TNF-α-induced VEGF and SIRT1 expression, MMPs activity in HDPCs and angiogenesis (P < 0.05) in HUVECs. TNF-α and LPS led to upregulation of VEGF and SIRT1, and subsequent upregulation of MMP-2 and MMP-9 production, and promote angiogenesis via pathways involving PI3K, p38, ERK, JNK and NF-κB. The results suggest that inhibition of SIRT1 and VEGF might attenuate pro-inflammatory mediator-induced pulpal disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508).

    PubMed

    Chauvet, Sylvain; Traboulsi, Wael; Thevenon, Laura; Kouadri, Amal; Feige, Jean-Jacques; Camara, Boubou; Alfaidy, Nadia; Benharouga, Mohamed

    2015-08-01

    Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion. Copyright © 2015 the American Physiological Society.

  11. Cigarette smoke and α,β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts

    PubMed Central

    Volpi, Giorgia; Facchinetti, Fabrizio; Moretto, Nadia; Civelli, Maurizio; Patacchini, Riccardo

    2011-01-01

    BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is an angiogenic factor known to be elevated in the sputum of asymptomatic smokers as well as smokers with bronchitis type of chronic obstructive pulmonary disease. The aim of this study was to investigate whether acute exposure to cigarette smoke extract altered VEGF production in lung parenchymal cells. EXPERIMENTAL APPROACH We exposed human airway smooth muscle cells (ASMC), normal human lung fibroblasts (NHLF) and small airways epithelial cells (SAEC) to aqueous cigarette smoke extract (CSE) in order to investigate the effect of cigarette smoke on VEGF expression and release. KEY RESULTS Vascular endothelial growth factor release was elevated by sub-toxic concentrations of CSE in both ASMC and NHLF, but not in SAEC. CSE-evoked VEGF release was mimicked by its component acrolein at concentrations (10–100 µM) found in CSE, and prevented by the antioxidant and α,β-unsaturated aldehyde scavenger, N-acetylcysteine (NAC). Both CSE and acrolein (30 µM) induced VEGF mRNA expression in ASMC cultures, suggesting an effect at transcriptional level. Crotonaldehyde and 4-hydroxy-2-nonenal, an endogenous α,β-unsaturated aldehyde, stimulated VEGF release, as did H2O2. CSE-evoked VEGF release was accompanied by rapid and lasting phosphorylation of p38 MAPK (mitogen-activated protein kinase), which was abolished by NAC and mimicked by acrolein. Both CSE- and acrolein-evoked VEGF release were blocked by selective inhibition of p38 MAPK signalling. CONCLUSIONS AND IMPLICATIONS α,β-Unsaturated aldehydes and possibly reactive oxygen species contained in cigarette smoke stimulate VEGF expression and release from pulmonary cells through p38 MAPK signalling. PMID:21306579

  12. PKCδ Regulates Force Signaling during VEGF/CXCL4 Induced Dissociation of Endothelial Tubes

    PubMed Central

    Jamison, Joshua; Wang, James H-C.; Wells, Alan

    2014-01-01

    Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords. PMID:24699667

  13. PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.

    PubMed

    Jamison, Joshua; Wang, James H-C; Wells, Alan

    2014-01-01

    Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords.

  14. Immunohistochemical study of the growth factors, aFGF, bFGF, PDGF-AB, VEGF-A and its receptor (Flk-1) during arteriogenesis.

    PubMed

    Wu, Song; Wu, Xiaoqiong; Zhu, Wu; Cai, Wei-Jun; Schaper, Jutta; Schaper, Wolfgang

    2010-10-01

    Growth factors are viewed as main arteriogenic stimulators for collateral vessel growth. However, the information about their native expression and distribution in collateral vessels is still limited. This study was designed to profile expression of acidic and basic FGF, platelet-derived growth factor (PDGF-AB) and vascular endothelial growth factor (VEGF-A) and its receptor, fetal liver kinase-1 (Flk-1) during arteriogenesis by confocal immunofluorescence in both dog ameroid constrictor model and rabbit arteriovenous shunt model of arteriogenesis. We found that: (1) in normal arteries (NA) in dog heart, aFGF, bFGF, and PDGF-AB all were mainly expressed in endothelial cells (EC) and media smooth muscle cells (SMC), but the expression of aFGF was very weak, with those of the other two being moderate; (2) in collateral arteries (CAs), aFGF, bFGF, and PDGF-AB all were significantly upregulated (P < 0.05); they were present in all the layers of the vascular wall and were 2.1, 1.7, and 1.9 times higher than that in NA, respectively; and (3) in NA in rabbit hind limb, VEGF-A was absent, Flk-1 was only weakly present in endothelial cells, but in one week CAs VEGF-A and Flk-1 were significantly increased in both shunt and ligation sides; this was more evident in the shunt-side CAs, 2.3, and 2 times higher than that in the ligation side, respectively. In conclusion, our data demonstrate for the first time that growth factors, aFGF, bFGF, and PDGF-AB are significantly upregulated in collateral vessels in dog heart, and enhanced VEGF-A and its receptor, Flk-1, are associated with rapid and lasting increased shear stress. These findings suggest that endogenous production of growth factors could be an important factor promoting collateral vessel growth.

  15. Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Schofer, Markus D.; Fuchs-Winkelmann, S.; Wack, C.; Rudisile, M.; Dersch, R.; Leifeld, I.; Wendorff, J.; Greiner, A.; Paletta, J. R. J.; Boudriot, U.

    2009-01-01

    Growth factors like bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF) play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid) (PLLA) nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC) differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers. PMID:19412560

  16. New peptide MY1340 revert the inhibition effect of VEGF on dendritic cells differentiation and maturation via blocking VEGF-NRP-1 axis and inhibit tumor growth in vivo.

    PubMed

    Mo, Zheng; Yu, Fei; Han, Su; Yang, Songhua; Wu, Liangliang; Li, Peng; Jiao, Shunchang

    2018-05-03

    The development and clinical application of immunostimulatory therapy provides us a new and exciting strategy in cancer treatment of which the agents act on crucial receptors. Given the fact that Neuropilin-1(NRP-1) is essential for vascular endothelial growth factor (VEGF) to inhibit LPS-dependent maturation of dendritic cells (DCs), it may present a potentially meaningful target in cancer immunotherapy. To explore this hypothesis, we synthesized a novel polypeptide called MY1340 consist of 32 amino acids with the aim of targeting VEGF-NRP-1 axis. Pull-down assay coupled with liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) was firstly conducted to identify NRP-1 as a potential MY1340 interacting protein, and the interaction between them was further confirmed by western blot. The competitive enzyme-linked immunosorbent assay (ELISA) results revealed that MY1340 was able to inhibit the binding between NRP-1 and VEGF with IC 50 7.42 ng/ml, better than that of Tuftsin, although a natural ligand reportedly specific for the NRP-1 receptor. The presence of VEGF significantly reduced the expression of human leukocyte antigen-DR (HLA-DR), CD86 and CD11C on DCs, and this effect was reverted by MY1340-augment p65 NF-κB and ERK1/2 phosphorylation. We also present evidence that MY1340 is remarkably efficacious in the treatment of mice bearing subcutaneous liver cancer and induced DC maturation in the tumor environment in vivo. Taken together, these results indicate that MY1340 may represent a potential efficient immune therapeutic compound within disease that are rich in VEGF. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis.

    PubMed

    Wang, Xiaohong; Freire Valls, Aida; Schermann, Géza; Shen, Ying; Moya, Ivan M; Castro, Laura; Urban, Severino; Solecki, Gergely M; Winkler, Frank; Riedemann, Lars; Jain, Rakesh K; Mazzone, Massimilano; Schmidt, Thomas; Fischer, Tamás; Halder, Georg; Ruiz de Almodóvar, Carmen

    2017-09-11

    Vascular endothelial growth factor (VEGF) is a major driver of blood vessel formation. However, the signal transduction pathways culminating in the biological consequences of VEGF signaling are only partially understood. Here, we show that the Hippo pathway effectors YAP and TAZ work as crucial signal transducers to mediate VEGF-VEGFR2 signaling during angiogenesis. We demonstrate that YAP/TAZ are essential for vascular development as endothelium-specific deletion of YAP/TAZ leads to impaired vascularization and embryonic lethality. Mechanistically, we show that VEGF activates YAP/TAZ via its effects on actin cytoskeleton and that activated YAP/TAZ induce a transcriptional program to further control cytoskeleton dynamics and thus establish a feedforward loop that ensures a proper angiogenic response. Lack of YAP/TAZ also results in altered cellular distribution of VEGFR2 due to trafficking defects from the Golgi apparatus to the plasma membrane. Altogether, our study identifies YAP/TAZ as central mediators of VEGF signaling and therefore as important regulators of angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Adverse effects of anticancer agents that target the VEGF pathway.

    PubMed

    Chen, Helen X; Cleck, Jessica N

    2009-08-01

    Antiangiogenesis agents that target the VEGF/VEGF receptor pathway have become an important part of standard therapy in multiple cancer indications. With expanded clinical experience with this class of agents has come the increasing recognition of the diverse adverse effects related to disturbance of VEGF-dependent physiological functions and homeostasis in the cardiovascular and renal systems, as well as wound healing and tissue repair. Although most adverse effects of VEGF inhibitors are modest and manageable, some are associated with serious and life-threatening consequences, particularly in high-risk patients and in certain clinical settings. This Review examines the toxicity profiles of anti-VEGF antibodies and small-molecule inhibitors. The potential mechanisms of the adverse effects, risk factors, and the implications for selection of patients and management are discussed.

  19. The Effect of Simvastatin on mRNA Expression of Transforming Growth Factor-β1, Bone Morphogenetic Protein-2 and Vascular Endothelial Growth Factor in Tooth Extraction Socket

    PubMed Central

    Liu, Chang; Wu, Zhe; Sun, Hong-chen

    2009-01-01

    Aim To determine the effect of local simvastatin application on the mRNA expression level of transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) in the tooth sockets of rat. Methodology Forty-eight male Wistar rats were randomly divided into experimental and control groups (n=24). Polylactic acid/polyglycolic acid copolymer carriers, with or without simvastatin, were implanted into extraction sockets of right mandibular incisors. The expression of TGF-β1, BMP-2 and VEGF mRNA was determined by in situ hybridization in the tooth extraction socket at five days, one week, two weeks and four weeks after implantation. Results The fusiform stroma cells in the tooth extraction socket began to express TGF-β1, BMP-2 and VEGF mRNA in both experimental and control groups from one week after tooth extraction until the end of experiment. The expression of TGF-β1 and BMP-2 mRNA in the experimental group was significantly up-regulated after one, two and four weeks, and expression of VEGF mRNA was significantly increased after one and two weeks compared with that in the control group. Conclusion The findings indicate that local administration of simvastatin can influence alveolar bone remodeling by regulating the expression of a school of growth factors which are crucial to osteogenesis in the tooth extraction socket. PMID:20687301

  20. Reduced expressions of connexin 43 and VEGF in the first-trimester tissues from women with recurrent pregnancy loss.

    PubMed

    He, Xiaoping; Chen, Qinfang

    2016-08-17

    Approximately 45-50 % of the recurrent pregnancy loss (RPL) remain(s) unexplained that challenges its clinical management. Formation and development of placenta as well as angiogenesis are critical for successful pregnancy. Vascular endothelial growth factor (VEGF) and connexin 43 (Cx43) play important roles in angiogenesis and placenta development and aberration of these have been linked to RPL. We aimed to investigate whether the expressions of VEGF and Cx43 were altered in the first-trimester tissues (chorionic villi and decidua) collected from women with RPL compared to those from healthy early pregnant women. First-trimester chorionic villi and decidua were collected from pregnant women diagnosed RPL who ended up with surgical intervention (n = 28) in comparison to those collected from women requesting surgical termination of their unwanted normal first-trimester pregnancies (n = 28). These two groups of women were matched in age and gestational weeks. Tissues were analyzed for the protein and messenger ribonucleic acid (mRNA) expressions of Cx43 and VEGF by immunohistochemistry, western blot, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expressions of both Cx43 and VEGF at the level of mRNA and protein in the villi and decidua from women with RPL were significantly decreased compared with those from women with normal early pregnancy. Reduction of Cx43 and VEGF expressed in the first-trimester tissues might indicate their important roles involved in RPL and thus holds the potential to develop pharmaceutical therapies for treatment of RPL.

  1. Vascular endothelial growth factor from Trimeresurus jerdonii venom specifically binds to VEGFR-2.

    PubMed

    Zhong, Shurong; Wu, Jianbo; Cui, Yunpeng; Li, Rui; Zhu, Shaowen; Rong, Mingqiang; Lu, Qiumin; Lai, Ren

    2015-09-01

    Vascular endothelial growth factors (VEGFs) play important roles in angiogenesis. In this study, a vascular endothelial growth factor named TjsvVEGF was purified from the venom of Trimeresurus jerdonii by gel filtration, affinity, ion-exchange and high-performance liquid chromatography. TjsvVEGF was a homodimer with an apparent molecular mass of 29 kDa. The cDNA encoding TjsvVEGF was obtained by PCR. The open reading frame of the cloned TjsvVEGF was composed of 432 bp coding for a signal peptide of 24 amino acid residues and a mature protein of 119 amino acid residues. Compared with other snake venom VEGFs, the nucleotide and deduced protein sequences of the cloned TjsvVEGF were conserved. TjsvVEGF showed low heparin binding activity and strong capillary permeability increasing activity. The KD of TjsvVEGF to VEFGR-2 is 413 pM. However, the binding of TjsvVEGF to VEGFR-1 is too weak to detect. Though TjsvVEGF had high sequence identities (about 90%) with Crotalinae VEGFs, the receptor preference of TjsvVEGF was similar to Viperinae VEGFs which had lower sequence identities (about 60%) with it. TjsvVEGF might serve as a useful tool for the study of structure-function relationships of VEGFs and their receptors. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Molecular dynamics-based model of VEGF-A and its heparin interactions.

    PubMed

    Uciechowska-Kaczmarzyk, Urszula; Babik, Sándor; Zsila, Ferenc; Bojarski, Krzysztof Kamil; Beke-Somfai, Tamás; Samsonov, Sergey A

    2018-06-01

    We present a computational model of the Vascular Endothelial Growth Factor (VEGF), an important regulator of blood vessels formation, which function is affected by its heparin interactions. Although structures of a receptor binding (RBD) and a heparin binding domain (HBD) of VEGF are known, there are structural data neither on the 12 amino acids interdomain linker nor on its complexes with heparin. We apply molecular docking and molecular dynamics techniques combined with circular dichroism spectroscopy to model the full structure of the dimeric VEGF and to propose putative molecular mechanisms underlying the function of VEGF/VEGF receptors/heparin system. We show that both the conformational flexibility of the linker and the formation of HBD-heparin-HBD sandwich-like structures regulate the mutual disposition of HBDs and so affect the VEGF-mediated signalling. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Estrogen stabilizes hypoxia-inducible factor 1α through G protein-coupled estrogen receptor 1 in eutopic endometrium of endometriosis.

    PubMed

    Zhang, Ling; Xiong, Wenqian; Li, Na; Liu, Hengwei; He, Haitang; Du, Yu; Zhang, Zhibing; Liu, Yi

    2017-02-01

    To investigate whether G protein-coupled estrogen receptor (GPER, also known as GPR30 and GPER1) stabilizes hypoxia-inducible factor 1α (HIF-1α) in eutopic endometrium (EuEM) of endometriosis. Immunohistochemical analysis and experimental in vitro study. University hospital. Patients with or without endometriosis. The EuEM and normal control endometrium (CoEM) were obtained by curettage. Primary cultured endometrial stromal cells (ESCs) were treated with 17β-E 2 , G1, or G15. The EuEM and CoEM were collected for immunohistochemistry. Western blot, polymerase chain reaction, ELISA, and dual luciferase experiments were used to detect expression of GPER, HIF-1α, vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP9) in ESCs. Estradiol and G1 were used as agonists of GPER, G15 as an antagonist. Migration of ESCs and endothelial tube formation of human umbilical vein endothelial cells cultured in medium collected from ESCs were measured. Protein levels of GPER and HIF-1α were higher in EuEM than in CoEM. Protein levels of HIF-1α but not HIF-1α mRNA levels increased concurrently with GPER after E 2 and G1 treatment. Furthermore, expression and activity of VEGF and MMP9 increased under E 2 and G1 stimulation. However, these effects disappeared when GPER was blocked. G protein-coupled estrogen receptor stabilizes HIF-1α and thus promotes HIF-1α-induced VEGF and MMP9 in ESCs, which play critical roles in endometriosis. Copyright © 2016 American Society for Reproductive Medicine. All rights reserved.

  4. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies

    PubMed Central

    Sharma, Ajaykumar N.; da Costa e Silva, Bruno Fernando Borges; Soares, Jair C.; Carvalho, André F.; Quevedo, Joao

    2016-01-01

    Rationale The neurotrophin hypothesis of major depressive disorder (MDD) postulates that this illness results from aberrant neurogenesis in brain regions that regulates emotion and memory. Notwithstanding this theory has primarily implicated BDNF in the neurobiology of MDD. Recent evidence suggests that other trophic factors namely GDNF, VEGF and IGF-1 may also be involved. Purpose The present review aimed to critically summarize evidence regarding changes in GDNF, IGF-1 and VEGF in individuals with MDD compared to healthy controls. In addition, we also evaluated the role of these mediators as potential treatment response biomarkers for MDD. Methods A comprehensive review of original studies studies measuring peripheral, central or mRNA levels of GDNF, IGF-1 or VEGF in patients with MDD was conducted. The PubMed/MEDLINE database was searched for peer-reviewed studies published in English through June 2nd, 2015. Results Most studies reported a reduction in peripheral GDNF and its mRNA levels in MDD patients versus controls. In contrast, IGF-1 levels in MDD patients compared to controls were discrepant across studies. Finally, most studies reported high peripheral VEGF levels and mRNA expression in MDD patients compared to healthy controls. Conclusions GDNF, IGF-1 and VEGF levels and their mRNA expression appear to be differentially altered in MDD patients compared to healthy individuals, indicating that these molecules might play an important role in the pathophysiology of depression and antidepressant action of therapeutic interventions. PMID:26956384

  5. The impact of KRAS mutations on VEGF-A production and tumour vascular network

    PubMed Central

    2013-01-01

    Background The malignant potential of tumour cells may be influenced by the molecular nature of KRAS mutations being codon 13 mutations less aggressive than codon 12 ones. Their metabolic profile is also different, with an increased anaerobic glycolytic metabolism in cells harbouring codon 12 KRAS mutations compared with cells containing codon 13 mutations. We hypothesized that this distinct metabolic behaviour could be associated with different HIF-1α expression and a distinct angiogenic profile. Methods Codon13 KRAS mutation (ASP13) or codon12 KRAS mutation (CYS12) NIH3T3 transfectants were analyzed in vitro and in vivo. Expression of HIF-1α, and VEGF-A was studied at RNA and protein levels. Regulation of VEGF-A promoter activity was assessed by means of luciferase assays using different plasmid constructs. Vascular network was assessed in tumors growing after subcutaneous inoculation. Non parametric statistics were used for analysis of results. Results Our results show that in normoxic conditions ASP13 transfectants exhibited less HIF-1α protein levels and activity than CYS12. In contrast, codon 13 transfectants exhibited higher VEGF-A mRNA and protein levels and enhanced VEGF-A promoter activity. These differences were due to a differential activation of Sp1/AP2 transcription elements of the VEGF-A promoter associated with increased ERKs signalling in ASP13 transfectants. Subcutaneous CYS12 tumours expressed less VEGF-A and showed a higher microvessel density (MVD) than ASP13 tumours. In contrast, prominent vessels were only observed in the latter. Conclusion Subtle changes in the molecular nature of KRAS oncogene activating mutations occurring in tumour cells have a major impact on the vascular strategy devised providing with new insights on the role of KRAS mutations on angiogenesis. PMID:23506169

  6. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension.

    PubMed

    Li, Liwen; Pan, Hao; Wang, Handong; Li, Xiang; Bu, Xiaomin; Wang, Qiang; Gao, Yongyue; Wen, Guodao; Zhou, Yali; Cong, Zixiang; Yang, Youqing; Tang, Chao; Liu, Zhengwei

    2016-11-21

    Venous hypertension(VH) plays an important role in the pathogenesis of cerebral arteriovenous malformations (AVMs) and is closely associated with the HIF-1α/VEGF signaling pathway. Nuclear factor erythroid 2-related factor 2(Nrf2) significantly influences angiogenesis; however, the interplay between Nrf2 and VEGF under VH in brain AVMs remains unclear. Therefore, our study aimed to investigate the interplay between Nrf2 and VEGF due to VH in brain AVMs. Immunohistochemistry indicated that Nrf2 and VEGF were highly expressed in human brain AVM tissues. In vivo, we established a VH model in both wild-type (WT) and siRNA-mediated Nrf2 knockdown rats. VH significantly increased the expression of Nrf2 and VEGF. Loss of Nrf2 markedly inhibited the upregulation of VEGF, as determined by Western blot analysis and qRT-PCR. In vitro, primary brain microvascular endothelial cells (BMECs) were isolated from WT and Nrf2 -/- mice, and a VEGF-Nrf2 positive feed-back loop was observed in BMECs. By trans well assay and angiogenesis assay, Nrf2 knockout significantly inhibited the migration and vascular tube formation of BMECs. These findings suggest that the interplay between Nrf2 and VEGF can contribute to VH-induced angiogenesis in brain AVMs pathogenesis.

  7. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.

    PubMed

    Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L

    1998-03-01

    The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.

  8. Estrogen stabilizes hypoxia inducible factor 1 α through G protein coupled estrogen receptor 1 in eutopic endometrium of endometriosis

    PubMed Central

    Zhang, Ling; Xiong, Wenqian; Li, Na; Liu, Hengwei; He, Haitang; Du, Yu; Zhang, Zhibing; Liu, Yi

    2016-01-01

    Objective To investigate whether G protein-coupled estrogen receptor (GPER, also known as GPR30 and GPER1) stabilizes Hypoxia inducible factor 1α (HIF-1α) in eutopic endometrium (EuEM) of endometriosis? Design Immunohistochemical analysis and experimental in vitro study. Setting University hospital Patient(s) Patients with or without endometriosis Intervention(s) The EuEM and normal control endometrium (CoEM) were obtained by curettage. Primary cultured endometrial stromal cells (ESCs) were treated with 17β-estrogen (E2), G1 or G15. Main Outcome Measure(s) The EuEM and CoEM were collected for immunohistochemistry. Western blot, PCR, Elisa, and dual luciferase experiments were used to detect expression of GPER, HIF-1α, VEGF, and MMP9 in ESCs. E2 and G1 were used as agonists of GPER while G15 as an antagonist. Migration of ESCs and endothelial tube formation of HUVECs cultured in medium collected from ESCs were measured. Results Protein levels of GPER and HIF-1α were higher in EuEM than in CoEM. HIF-1α protein levels but not HIF-1α mRNA levels increased concurrently with GPER after E2 and G1 treatment. Furthermore, expression and activity of VEGF and MMP9 increased under E2 and G1 stimulation. However these effects disappeared when GPER was blocked. Conclusion GPER stabilizes HIF-1α thus promotes HIF-1α induced vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP9) in ESCs, which plays critical roles in endometriosis. PMID:27939762

  9. Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion.

    PubMed

    Wang, Chia-Yih; Tsai, Hui-Ling; Syu, Jhih-Siang; Chen, Ting-Yu; Su, Mei-Tsz

    2017-06-01

    Trophoblast invasion is an important event in embryo implantation and placental development. During these processes, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is the key regulator mediating the crosstalk at the feto-maternal interface. The primary cilium is a cellular antenna receiving environmental signals and is crucial for proper development. However, little is known regarding the role of the primary cilium in early human pregnancy. Here, we demonstrate that EG-VEGF regulates trophoblast cell invasion via primary cilia. We found that EG-VEGF activated ERK1/2 signaling and subsequent upregulation of MMP2 and MMP9, thereby facilitating cell invasion in human trophoblast HTR-8/SVneo cells. Inhibition of ERK1/2 alleviated the expression of MMPs and trophoblast cell invasion after EG-VEGF treatment. In addition, primary cilia were observed in all the trophoblast cell lines tested and, more importantly, in human first-trimester placental tissue. The receptor of EG-VEGF, PROKR1, was detected in primary cilia. Depletion of IFT88, the intraflagellar transporter required for ciliogenesis, inhibited primary cilium growth, thereby ameliorating ERK1/2 activation, MMP upregulation, and trophoblast cell invasion promoted by EG-VEGF. These findings demonstrate a novel function of primary cilia in controlling EG-VEGF-regulated trophoblast invasion and reveal the underlying molecular mechanism. J. Cell. Physiol. 232: 1467-1477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. [Systemic safety following intravitreal injections of anti-VEGF].

    PubMed

    Baillif, S; Levy, B; Girmens, J-F; Dumas, S; Tadayoni, R

    2018-03-01

    The goal of this manuscript is to assess data suggesting that intravitreal injection of anti-vascular endothelial growth factors (anti-VEGFs) could result in systemic adverse events (AEs). The class-specific systemic AEs should be similar to those encountered in cancer trials. The most frequent AE observed in oncology, hypertension and proteinuria, should thus be the most common expected in ophthalmology, but their severity should be lower because of the much lower doses of anti-VEGFs administered intravitreally. Such AEs have not been frequently reported in ophthalmology trials. In addition, pharmacokinetic and pharmacodynamic data describing systemic diffusion of anti-VEGFs should be interpreted with caution because of significant inconsistencies reported. Thus, safety data reported in ophthalmology trials and pharmacokinetic/pharmacodynamic data provide robust evidence that systemic events after intravitreal injection are very unlikely. Additional studies are needed to explore this issue further, as much remains to be understood about local and systemic side effects of anti-VEGFs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Imino proton exchange rates imply an induced-fit binding mechanism for the VEGF165-targeting aptamer, Macugen

    PubMed Central

    Lee, Joon-Hwa; Jucker, Fiona; Pardi, Arthur

    2008-01-01

    The 2′-fluoro/2′-O-methyl modified RNA aptamer Macugen is a potent inhibitor of the angiogenic regulatory protein, VEGF165. Macugen binds with high affinity to the heparin-binding domain (HBD) of VEGF165. Hydrogen exchange rates of the imino protons were measured for free Macugen and Macugen bound to the HBD or full-length VEGF to better understand the mechanism for high affinity binding. The results here show that the internal loop and hairpin loop of Macugen are highly dynamic in the free state and are greatly stabilized and/or protected from solvent upon protein binding. PMID:18485899

  12. The VEGF-C/VEGFR3 signaling pathway contributes to resolving chronic skin inflammation by activating lymphatic vessel function.

    PubMed

    Hagura, Asami; Asai, Jun; Maruyama, Kazuichi; Takenaka, Hideya; Kinoshita, Shigeru; Katoh, Norito

    2014-02-01

    The functions of lymphatic vessels are to drain the protein-rich lymph from the extracellular space, to maintain normal tissue pressure, and to mediate the immune response, particularly in inflammatory conditions. To evaluate the function of the vascular endothelial growth factor (VEGF)-C/VEGF receptor (VEGFR)-3 signaling pathway in chronic skin inflammation. We used adenovirus-mediated VEGF-C or VEGFR3-immunoglobulin (Ig) production and investigated the effects of VEGF-C/VEGFR3 signaling on the resolution of inflammation using the experimental chronic contact hypersensitivity (CHS) reaction mouse model. VEGF-C gene transfer promoted significant reduction of ear swelling and ear weight in CHS reaction-induced skin inflammation. Although, there was no significant difference in the number of lymphatic vessels, the number of infiltrating CD11b-positive inflammatory cells was significantly reduced in the VEGF-C group, which suggested that VEGF-C upregulated the drainage of interstitial fluid and inflammatory cells via lymphatic vessels. Furthermore, blockade of VEGFR3 expression resulted in a significant delay in the recovery from CHS reaction-induced skin inflammation. Lymphatic vessel size was enlarged and a significant increase of infiltrating CD11b inflammatory cells was observed in mice with VEGFR3-Ig gene transfer compared to control mice. These results suggested that blockade of VEGFR3 inhibited the drainage function of the lymphatic system. This study provides evidence that VEGF-C/VEGFR3 signaling plays an important role in the resolution of skin inflammation; the regulation of lymphatic function may have a great therapeutic potential in inflammatory skin diseases. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Taspine downregulates VEGF expression and inhibits proliferation of vascular endothelial cells through PI3 kinase and MAP kinase signaling pathways.

    PubMed

    Zhao, Jing; Zhao, Le; Chen, Wei; He, Langchong; Li, Xu

    2008-01-01

    Taspine is an active component isolated from Radix et Rhizoma Leonticis with inhibiting tumor angiogenic properties. The molecular mechanism(s) of taspine on tumor angiogenic inhibition have not been well documented. The aim of this study was to elucidate in detail the effects of taspine on genetic expressions of VEGF in human umbilical vein endothelial cells, and on VEGFR2-mediated intracellular signaling of human umbilical vein endothelial cells. The genetic expression of vascular endothelial growth factor (VEGF) in the human umbilical vein endothelial cells (HUVECs) treated with taspine in vitro was measured by the ELISA and RT-PCR methods. The effects of taspine on cell proliferation of HUVECs and HUVECs induced by VEGF165 were considered by using MTT assay. And also, a western blot was used to detect Akt and Erk1/2 expressions and their phosphorylation levels in HUVECs treated with taspine. Our results show that VEGF protein and mRNA expressions in the cells treated with taspine were significantly decreased. Taspine also significantly inhibited cell proliferation of HUVECs induced by VEGF165. HUVECs treated with taspine showed decreased Akt and Erk1/2 activities.

  14. Maternal uterine artery VEGF gene therapy for treatment of intrauterine growth restriction.

    PubMed

    David, Anna L

    2017-11-01

    Intrauterine growth restriction (IUGR) is a serious pregnancy complication affecting approximately 8% of all pregnancies. The aetiology is believed to be insufficient maternal uteroplacental perfusion which prevents adequate nutrient and oxygen availability for the fetus. There is no treatment that can improve uteroplacental perfusion and thereby increase fetal growth in the uterus. Maternal uterine artery gene therapy presents a promising treatment strategy for IUGR, with the use of adenoviral vectors encoding for proteins such as Vascular Endothelial Growth Factor (VEGF) demonstrating improvements in fetal growth and neonatal outcome in preclinical studies. Mechanistically, maternal VEGF gene therapy delivered to the uterine arteries increases uterine blood flow and enhances vascular relaxation short term, while reducing vascular contractility long term. It also leads to vascular remodeling with increased endothelial cell proliferation in the perivascular adventitia of uterine arteries. Safety assessments suggest no vector spread to the fetus and no adverse risk to the mother or fetus; a clinical trial is in development. This article assesses research into VEGF maternal uterine artery directed gene therapy for IUGR, investigating the use of transgenes and vectors, their route of administration in obstetrics, and the steps that will be needed to take this treatment modality into the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Vascular endothelial growth factor (VEGF)-targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma

    PubMed Central

    Choueiri, Toni K.; Lim, Zita Dubauskas; Hirsch, Michelle S.; Tamboli, Pheroze; Jonasch, Eric; McDermott, David F.; Cin, Paola Dal; Corn, Paul; Vaishampayan, Ulka; Heng, Daniel Y.C.; Tannir, Nizar M.

    2015-01-01

    Introduction Adult “translocation” renal cell carcinoma (RCC), bearing TFE3 gene fusions at Xp11.2, is a recently recognized unique entity for which prognosis and therapy remain poorly understood. We investigated the effect of vascular-endothelial growth factor (VEGF)-targeted therapy in this distinct subtype of RCC. Patients and Methods We conducted a retrospective review to describe the clinical characteristics and outcome of adult patients with metastatic Xp11.2 RCC, who had strong TFE-3 nuclear immunostaining, and received anti-VEGF therapy. Tumor response to anti-VEGF therapy was evaluated by RECIST. Kaplan-Meier methods were used to estimate progression-free survival (PFS) and overall survival (OS) distributions. Results Fifteen patients were identified of which 10, 3, and 2 received sunitinib, sorafenib and monoclonal anti-VEGF antibodies, respectively. The median follow-up was 19.1 months, the median age of the patients was 41 years, and the female:male ratio was 4:1. Initial histologic description included clear cell (n=8), papillary (n=1) or mixed clear cell/papillary RCC (n=6). Five patients had prior systemic therapy. Five patients had FISH analysis and all demonstrated a translocation involving chromosome Xp11.2. When treated with VEGF-targeted therapy, 3 patients had a partial response, 7 patients had stable disease and 5 patients had progressive disease. The median PFS and OS of the entire cohort were 7.1 months and 14.3 months respectively. Conclusion Adult-onset translocation-associated metastatic RCC is an aggressive disease that affects a younger population of patients with a female predominance. VEGF-targeted agents demonstrated some efficacy in this small retrospective series. PMID:20665500

  16. Tumor necrosis factor-α promotes the lymphangiogenesis of gallbladder carcinoma through nuclear factor-κB-mediated upregulation of vascular endothelial growth factor-C

    PubMed Central

    Du, Qiang; Jiang, Lei; Wang, Xiaoqian; Wang, Meiping; She, Feifei; Chen, Yanling

    2014-01-01

    Vascular endothelial growth factor (VEGF)-C is an important lymphangiogenic factor involved in the lymphangiogenesis of gallbladder carcinoma (GBC) and the lymph node metastasis of the tumor. Tumor necrosis factor (TNF)-α, a key inflammatory cytokine responding to chronic inflammation of GBC, has been reported to stimulate the expression of VEGF-C in some nonneoplastic cells. But whether TNF-α promotes the expression of VEGF-C in GBC has yet to be determined. Therefore, in the present study, the concentration of TNF-α and VEGF-C and the lymphatic vessel density (LVD) in the clinical GBC specimens were analyzed, and a linear correlation was found between the concentration of TNF-α and that of VEGF-C, the lymphatic vessel density (LVD); The transcription and protein level of VEGF-C in NOZ cell line were detected by real-time polymerase chain reaction (PCR) and enzyme linked immunosorbent assay (ELISA), and TNF-α enhanced the expression of VEGF-C in NOZ cell lines in a dose and time-dependent manner. Lymphatic tube formation in vitro was observed in a three-dimensional coculture system consisting of HDLECs and NOZ cell lines, and lymphatic vessels of GBC in nude mice model was detected by immunohistochemistry. TNF-α promoted the tube formation of lymphatic endothelial cells in vitro and the lymphangiogenesis of GBC in nude mice; The nuclear factor (NF)-κB binding site on the VEGF-C promoter was identified using Site-directed mutagenesis, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Taken together, TNF-α can upregulate the expression of VEGF-C and promote the lymphangiogenesis of GBC via NF-κB combining with the promoter of VEGF-C. PMID:25154789

  17. Antisense oligodeoxynucleotide inhibits vascular endothelial growth factor expression in U937 foam cells.

    PubMed

    Yang, Peng-Yuan; Rui, Yao-Cheng; Jin, You-Xin; Li, Tie-Jun; Qiu, Yan; Zhang, Li; Wang, Jie-Song

    2003-06-01

    To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liporotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. U937 cells were incubated with ox-LDL 80 mg/L for 48 h, then, the foam cells were treated with asODN (0, 5, 10, and 20 micromol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markedly inhibited the increase of VEGF. After treatment with asODN 20 micromol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.

  18. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua.

    PubMed

    Wheeler, Karen C; Jena, Manoj K; Pradhan, Bhola S; Nayak, Neha; Das, Subhendu; Hsu, Chaur-Dong; Wheeler, David S; Chen, Kang; Nayak, Nihar R

    2018-01-01

    It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition

  19. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua

    PubMed Central

    Nayak, Neha; Das, Subhendu; Hsu, Chaur-Dong; Wheeler, David S.; Chen, Kang; Nayak, Nihar R.

    2018-01-01

    It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition

  20. [Polymorphism in the regulatory regions -С2578A and +C936T of the vascular endothelial growth factor (VEGF-A) gene in Russian women with rheumatoid arthritis].

    PubMed

    Shevchenko, A V; Prokofyev, V F; Korolev, M A; Banshchikova, N E; Konenkov, V I

    To analyze polymorphism in the regulatory regions of the vascular endothelial growth factor (VEGF) gene in female patients with rheumatoid arthritis (RA). The investigation enrolled 257 female patients with RA. A control group consisted of 297 women without chronic diseases. The investigators examined the single-nucleotide polymorphism of VEGF-А2578С in the promoter region (rs699947) and that of VEGF+С936Т 3 in the retranslated region (rs3025039) of the gene. Genotyping was performed by restriction fragment length polymorphism analysis. There was an increase in the frequency of VEGF+936 CT and a reduction in that of the VEGF+936СС genotypes in the seronegative patients as compared to the healthy women. The VEGF+936СС genotype frequency was higher in the patients with seropositive RA than in the subgroup of seronegative patients. The frequency of the VEGF-2578СС genotype was increased in the patients with RA and rheumatoid nodules, as compared to the healthy women. The data presented suggest that the presence of certain VEGF gene variants located in the regulatory regions may reflect the nature of immunopathological mechanisms in RA.

  1. Effects of Wenyangbushen formula on the expression of VEGF, OPG, RANK and RANKL in rabbits with steroid-induced femoral head avascular necrosis.

    PubMed

    Song, Hong-Mei; Wei, Ying-Chen; Li, Nan; Wu, Bin; Xie, Na; Zhang, Kun-Mu; Wang, Shi-Zhong; Wang, He-Ming

    2015-12-01

    The present study aimed to investigate the effects of Wenyangbushen formula on the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), osteoprotegerin (OPG), receptor activator of nuclear factor (NF)‑κβ ligand (RANK), and RANK ligand (RANKL) in a rabbit model of steroid‑induced avascular necrosis of the femoral head (SANFH). The present study also aimed to examine the potential mechanism underlying the effect of this formula on the treatment of SANFH. A total of 136 New Zealand rabbits were randomly divided into five groups: Normal group, model group, and three groups treated with the traditional Chinese medicine (TCM), Wenyangbushen decoction, at a low, moderate and high dose, respectively. The normal group and positive control group were intragastrically administered with saline. The TCM groups were treated with Wenyangbushen decoction at the indicated dosage. Following treatment for 8 weeks, the mRNA and protein expression levels of VEGF, OPG, RANK and RANKL in the femoral head tissues were determined using reverse transcription‑quantitative polymerase chain reaction and western blot analyses, respectively. The data revealed that Wenyangbushen decoction effectively promoted the growth of bone cells, osteoblasts and chondrocytes, and prevented cell apoptosis in the SANFH. The mRNA and protein expression levels of OPG and VEGF were increased, while the levels of RANK and RANKL were reduced in the necrotic tissue of the model group, compared with those in the normal rabbits. Wenyangbushen treatment prevented these changes, manifested by an upregulation in the expression levels of VEGF and OPG, and downregulation in the expression levels of RANK and RANKL in a dose‑dependent manner. It was concluded that treatment with Wenyangbushen formula alleviated necrosis of the femoral head induced by steroids. It was observed to promote bone cell, osteoblast and chondrocyte growth, as well as prevent cell apoptosis. In addition, it

  2. Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes

    PubMed Central

    Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L.

    2011-01-01

    Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult

  3. Ascorbic Acid Prevents VEGF-induced Increases in Endothelial Barrier Permeability

    PubMed Central

    Ulker, Esad; Parker, William H.; Raj, Amita; Qu, Zhi-chao; May, James M.

    2015-01-01

    Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 μM and complete inhibition at 50 μM. Loading cells with 100 μM ascorbate also decreased basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25%, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 μM L-NAME (but not D-NAME) as well as by 30 μM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema. PMID:26590088

  4. Differential expression of VEGF ligands and receptors in prostate cancer.

    PubMed

    Woollard, David J; Opeskin, Kenneth; Coso, Sanja; Wu, Di; Baldwin, Megan E; Williams, Elizabeth D

    2013-05-01

    Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  5. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway.

    PubMed

    Lee, Hsiang-Ping; Lin, Chih-Yang; Shih, Jhao-Sheng; Fong, Yi-Chin; Wang, Shih-Wei; Li, Te-Mao; Tang, Chih-Hsin

    2015-11-03

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma.

  6. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway

    PubMed Central

    Shih, Jhao-Sheng; Fong, Yi-Chin; Wang, Shih-Wei; Li, Te-Mao; Tang, Chih-Hsin

    2015-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma. PMID:26468982

  7. Effects of hyperthyroidism on expression of vascular endothelial growth factor (VEGF) and apoptosis in fetal adrenal glands.

    PubMed

    Karaca, T; Hulya Uz, Y; Karabacak, R; Karaboga, I; Demirtas, S; Cagatay Cicek, A

    2015-11-26

    This study investigated the expression of vascular endothelial growth factor (VEGF), vascular density, and apoptosis in fetal rat adrenal glands with hyperthyroidism in late gestation. Twelve mature female Wistar albino rats with the same biological and physiological features were used for this study. Rats were divided into two groups: control and hyperthyroidism. Hyperthyroidism was induced by daily subcutaneous injections of L-thyroxine (250 μg/kg) before pregnancy for 21 days and during pregnancy. Rats in the control and hyperthyroidism groups were caged according to the number of male rats. Zero day of pregnancy (Day 0) was indicated when the animals were observed to have microscopic sperm in vaginal smears. Pregnant rats were sacrificed on the 20th day of pregnancy; blood from each animal was collected to determine the concentrations of maternal adrenocorticotropic hormone and thyroxine. Rat fetuses were then quickly removed from the uterus, and the adrenal glands of the fetuses were dissected. VEGF expression, vascular density, and apoptosis were analyzed in fetal rat adrenal glands. Maternal serum levels of the adrenocorticotropic hormone and free thyroxine were significantly higher in the hyperthyroidism group than in the control group. Immunohistochemistry revealed that the number of VEGF positive cells and vessel density significantly increased in the hyperthyroidism rat fetal adrenal group compared with the control group. Hyperthyroidism did not change the fetal and placental weights and the number of fetuses. This study demonstrates that hyperthyroidism may have an effect on the development of rat adrenal glands mediated by VEGF expression, angiogenesis, and apoptosis.

  8. Effects of Hyperthyroidism on Expression of Vascular Endothelial Growth Factor (VEGF) and Apoptosis in Fetal Adrenal Glands

    PubMed Central

    Hulya Uz, Y.; Karabacak, R.; Karaboga, I.; Demirtas, S.; Cagatay Cicek, A.

    2015-01-01

    This study investigated the expression of vascular endothelial growth factor (VEGF), vascular density, and apoptosis in fetal rat adrenal glands with hyperthyroidism in late gestation. Twelve mature female Wistar albino rats with the same biological and physiological features were used for this study. Rats were divided into two groups: control and hyperthyroidism. Hyperthyroidism was induced by daily subcutaneous injections of L-thyroxine (250 µg/kg) before pregnancy for 21 days and during pregnancy. Rats in the control and hyperthyroidism groups were caged according to the number of male rats. Zero day of pregnancy (Day 0) was indicated when the animals were observed to have microscopic sperm in vaginal smears. Pregnant rats were sacrificed on the 20th day of pregnancy; blood from each animal was collected to determine the concentrations of maternal adrenocorticotropic hormone and thyroxine. Rat fetuses were then quickly removed from the uterus, and the adrenal glands of the fetuses were dissected. VEGF expression, vascular density, and apoptosis were analyzed in fetal rat adrenal glands. Maternal serum levels of the ACTH and free thyroxine were significantly higher in the hyperthyroidism group than in the control group. Immunohistochemistry revealed that the number of VEGF positive cells and vessel density significantly increased in the hyperthyroidism rat fetal adrenal group compared with the control group. Hyperthyroidism did not change the fetal and placental weights and the number of fetuses. This study demonstrates that hyperthyroidism may have an effect on the development of rat adrenal glands mediated by VEGF expression, angiogenesis, and apoptosis. PMID:26708182

  9. A PDGF/VEGF homologue provides new insights into the nucleus grafting operation and immune response in the pearl oyster Pinctada fucata.

    PubMed

    Huang, Xian-De; Zhang, Hua; He, Mao-Xian

    2017-12-30

    The platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF, PVF) family of proteins have been implicated in a wide range of biological functions in vertebrates, including cell proliferation, cell differentiation, cell migration, neural development and especially angiogenesis/vasculogenesis. In this study, a PVF gene, belonging to the PDGF/VEGF family, was cloned and characterized from Pinctada fucata. It contained an ORF of 1110bp encoding a putative protein of 369 amino acids. The deduced amino acid sequence presented the typical structural features of PDGF family members and the N-terminal signal peptide for secretion. Comparative phylogenetic analysis revealed that PfPVF shows relatively high identity with other invertebrate PVF homologues. Furthermore, gene expression analysis revealed that PfPVF is involved in not only the nucleus grafting operation and but also the response to immune stimulation. The study may help to increase understanding of the functions of molluscan PVF. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In vitro therapeutic effect of PDT combined with VEGF-A gene therapy

    NASA Astrophysics Data System (ADS)

    Lecaros, Rumwald Leo G.; Huang, Leaf; Hsu, Yih-Chih

    2014-02-01

    Vascular endothelial growth factor A (VEGF-A), commonly known as VEGF, is one of the primary factors that affect tumor angiogenesis. It was found to be expressed in cancer cell lines including oral squamous cell carcinoma. Photodynamic therapy (PDT) is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates oxygen-independent hypoxic conditions to tumor. Another emerging treatment to cure cancer is the use of interference RNA (e.g. siRNA) to silence a specific mRNA sequence. VEGF-A was found to be expressed in oral squamous cell carcinoma and overexpressed after 24 hour post-PDT by Western blot analysis. Cell viability was found to decrease at 25 nM of transfected VEGF-A siRNA. In vitro combined therapy of PDT and VEGF-A siRNA showed better response as compared with PDT and gene therapy alone. The results suggest that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  11. Combined Effects of Vascular Endothelial Growth Factor and Bone Morphogenetic Protein 2 on Odonto/Osteogenic Differentiation of Human Dental Pulp Stem Cells In Vitro.

    PubMed

    Aksel, Hacer; Huang, George T-J

    2017-06-01

    The purpose of this study was to investigate whether combined and concerted delivery of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) enhances odonto/osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro. Various concentrations of VEGF and/or BMP-2 with or without the presence of odonto/osteogenic medium (OM) were added into DPSC cultures for 21 days. The mineral formation in cultures was evaluated using alizarin red stain (ARS). Optimal concentrations of VEGF and BMP-2 were codelivered to DPSCs for total of 21 days with the following experimental groups: (1) group 1: OM only, (2) group 2: OM + VEGF, (3) group 3: OM + BMP-2, and (4) group 4: OM + VEGF + BMP-2 (subgroup 4a: VEGF present the first 7 days, 4b: BMP-2 present the last 14 days, and 4c, both present for 21 days). Cultures were then subjected to quantitative ARS analysis or harvested for quantitative polymerase chain reaction analysis for the expression of core-binding factor alpha 1 (CBFA1), alkaline phosphatase (ALP), and dentin matrix protein 1 (DMP-1). No mineral formation was detected by ARS when VEGF and/or BMP-2 were used without OM. OM + VEGF, but not OM + BMP-2, formed more mineralization than OM (P < .05). In the codelivery groups, the highest mineralization was observed in OM + VEGF and subgroup 4a compared with OM or the other groups (P < .05). Quantitative polymerase chain reaction analysis showed that CBFA1, ALP, and DMP-1 levels were higher in groups 2, 3, and 4a compared with 4b and 4c (P < .05). CBFA1 expressed higher in groups 2, 3, and 4a compared with OM (P < .05). For ALP expression, only subgroup 4a expressed higher than OM (P < .05). No difference was detected between groups 2 and 3 (P > .05) in the expression of the 3 genes. VEGF addition in the early phase rather than a continuous presence of both VEGF and BMP-2 enhances odonto/osteogenic differentiation of DPSCs. Copyright © 2017 American

  12. Efficacy of topical tofacitinib in promoting hair growth in non-scarring alopecia: possible mechanism via VEGF induction.

    PubMed

    Meephansan, Jitlada; Thummakriengkrai, J; Ponnikorn, S; Yingmema, W; Deenonpoe, R; Suchonwanit, P

    2017-11-01

    Tofacitinib is a Janus kinase 3 (JAK3) inhibitor that promotes hair growth; however, the efficacy and mechanism of this effect are not yet understood. This study aimed to evaluate the efficacy and mechanism of topical tofacitinib on hair growth in mice. Eight-week-old male C57BL/6 mice were divided equally into four groups and treated topically with tofacitinib, minoxidil, or vehicle once daily for 21 days. Weekly photographs were taken to determine the area and rate of hair growth, and tissue samples were collected for histopathological evaluation. mRNA and protein expression of anagen-maintaining growth factors, including vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1), were determined via RT-PCR and ELISA, respectively. Tofacitinib-treated mice exhibited more hair regrowth than either minoxidil-treated or control mice did between day 7 and 21 (P < 0.05). Topical tofacitinib also promoted more rapid hair growth rate than topical minoxidil or control did (P < 0.001). Histopathology showed a distinct increase in the number of hair follicles, mostly in the anagen phase, in the tofacitinib-treated group. Hair follicles in the minoxidil- and vehicle-treated groups were more often classified as catagen and anagen. VEGF mRNA and protein expression in the tofacitinib-treated group was significantly greater than those in the other groups (P < 0.05). IGF-1 mRNA expression was not upregulated in tofacitinib-treated mice. Topical tofacitinib is effective in promoting hair growth, and the possible mechanism involves increased VEGF levels and lowered inflammation. This study will help develop a new therapeutic option for non-scarring alopecia.

  13. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.

    PubMed

    Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F

    2014-11-01

    Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.

  14. Effects of antibodies to EG-VEGF on angiogenesis in the chick embryo chorioallantoic membrane.

    PubMed

    Feflea, Stefana; Cimpean, Anca Maria; Ceausu, Raluca Amalia; Gaje, Pusa; Raica, Marius

    2012-01-01

    Endocrine gland-related vascular endothelial growth factor (EG-VEGF), is an angiogenic factor specifically targeting endothelial cells derived from endocrine tissues. The inhibition of the EG-VEGF/prokineticin receptor pathway could represent a selective antiangiogenic and anticancer strategy. to evaluate the impact of an antibody to EG-VEGF on the rapidly growing capillary plexus of the chick embryo chorioallantoic membrane (CAM). The in ovo CAM assay was performed for the humanized EG-VEGF antibody. Hemorrhagic damage was induced in the capillaries, which led to early death of the embryos. Upon morphological staining, there was evidence of vascular disruption and extravasation of red blood cells in the chorion. Signs of vacuolization of the covering epithelium were also observed. Blocking endogenous EG-VEGF might represent a valuable approach of impairing or inhibiting angiogenesis in steroidogenic-derived embryonic tissues.

  15. VEGF-ablation therapy reduces drug delivery and therapeutic response in ECM-dense tumors.

    PubMed

    Röhrig, F; Vorlová, S; Hoffmann, H; Wartenberg, M; Escorcia, F E; Keller, S; Tenspolde, M; Weigand, I; Gätzner, S; Manova, K; Penack, O; Scheinberg, D A; Rosenwald, A; Ergün, S; Granot, Z; Henke, E

    2017-01-05

    The inadequate transport of drugs into the tumor tissue caused by its abnormal vasculature is a major obstacle to the treatment of cancer. Anti-vascular endothelial growth factor (anti-VEGF) drugs can cause phenotypic alteration and maturation of the tumor's vasculature. However, whether this consistently improves delivery and subsequent response to therapy is still controversial. Clinical results indicate that not all patients benefit from antiangiogenic treatment, necessitating the development of criteria to predict the effect of these agents in individual tumors. We demonstrate that, in anti-VEGF-refractory murine tumors, vascular changes after VEGF ablation result in reduced delivery leading to therapeutic failure. In these tumors, the impaired response after anti-VEGF treatment is directly linked to strong deposition of fibrillar extracellular matrix (ECM) components and high expression of lysyl oxidases. The resulting condensed, highly crosslinked ECM impeded drug permeation, protecting tumor cells from exposure to small-molecule drugs. The reduced vascular density after anti-VEGF treatment further decreased delivery in these tumors, an effect not compensated by the improved vessel quality. Pharmacological inhibition of lysyl oxidases improved drug delivery in various tumor models and reversed the negative effect of VEGF ablation on drug delivery and therapeutic response in anti-VEGF-resistant tumors. In conclusion, the vascular changes after anti-VEGF therapy can have a context-dependent negative impact on overall therapeutic efficacy. A determining factor is the tumor ECM, which strongly influences the effect of anti-VEGF therapy. Our results reveal the prospect to revert a possible negative effect and to potentiate responsiveness to antiangiogenic therapy by concomitantly targeting ECM-modifying enzymes.

  16. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway.

    PubMed

    Jung, Myung Hwan; Lee, Sun Hee; Ahn, Eun-Mi; Lee, You Mie

    2009-04-01

    Inhibition of angiogenesis is an attractive approach for the treatment of angiogenic diseases, such as cancer. Vascular endothelial growth factor (VEGF) is one of the most important activators of angiogenesis and interacts with the high-affinity tyrosine kinase receptors, VEGFR-1 and VEGFR-2. The pyranocoumarin compounds decursin and decursinol angelate isolated from the herb, Angelica gigas, are known to possess potent anti-inflammatory activities. However, little is known about their antiangiogenic activity or their underlying mechanisms. Here, we show the antiangiogenic effects of decursin and decursinol angelate using in vitro assays and in vivo animal experiments. Decursin and decursinol angelate inhibited VEGF-induced angiogenic processes in vitro, including proliferation, migration and tube formation of human umbilical vein endothelial cells. Decursin and decursinol angelate significantly suppressed neovessel formation in chick chorioallantoic membrane and tumor growth in a mouse model. The microvessel density in tumors treated with decursin for 14 days was significantly decreased compared with a vehicle control group. Decursin and decursinol angelate inhibited VEGF-induced phosphorylation of VEGFR-2, extracellular signal-regulated kinases and c-Jun N-terminal kinase mitogen-activated protein kinases. Taken together, these results demonstrate that decursin and decursinol angelate are novel candidates for inhibition of VEGF-induced angiogenesis.

  17. Dickkopf-3 Upregulates VEGF in Cultured Human Endothelial Cells by Activating Activin Receptor-Like Kinase 1 (ALK1) Pathway

    PubMed Central

    Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza

    2017-01-01

    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232

  18. The gain-of-function GLI1 transcription factor TGLI1 enhances expression of VEGF-C and TEM7 to promote glioblastoma angiogenesis.

    PubMed

    Carpenter, Richard L; Paw, Ivy; Zhu, Hu; Sirkisoon, Sherona; Xing, Fei; Watabe, Kounosuke; Debinski, Waldemar; Lo, Hui-Wen

    2015-09-08

    We recently discovered that truncated glioma-associated oncogene homolog 1 (TGLI1) is highly expressed in glioblastoma (GBM) and linked to increased GBM vascularity. The mechanisms underlying TGLI1-mediated angiogenesis are unclear. In this study, we compared TGLI1- with GLI1-expressing GBM xenografts for the expression profile of 84 angiogenesis-associated genes. The results showed that expression of six genes were upregulated and five were down-regulated in TGLI1-carrying tumors compared to those with GLI1. Vascular endothelial growth factor-C (VEGF-C) and tumor endothelial marker 7 (TEM7) were selected for further investigations because of their significant correlations with high vascularity in 135 patient GBMs. TGLI1 bound to both VEGF-C and TEM7 gene promoters. Conditioned medium from TGLI1-expressing GBM cells strongly induced tubule formation of brain microvascular endothelial cells, and the induction was prevented by VEGF-C/TEM7 knockdown. Immunohistochemical analysis of 122 gliomas showed that TGLI1 expression was positively correlated with VEGF-C, TEM7 and microvessel density. Analysis of NCBI Gene Expression Omnibus datasets with 161 malignant gliomas showed an inverse relationship between tumoral VEGF-C, TEM7 or microvessel density and patient survival. Together, our findings support an important role that TGLI1 plays in GBM angiogenesis and identify VEGF-C and TEM7 as novel TGLI1 target genes of importance to GBM vascularity.

  19. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma.

    PubMed

    Pritchard-Jones, R O; Dunn, D B A; Qiu, Y; Varey, A H R; Orlando, A; Rigby, H; Harper, S J; Bates, D O

    2007-07-16

    Malignant melanoma is the most lethal of the skin cancers and the UK incidence is rising faster than that of any other cancer. Angiogenesis - the growth of new vessels from preexisting vasculature - is an absolute requirement for tumour survival and progression beyond a few hundred microns in diameter. We previously described a class of anti-angiogenic isoforms of VEGF, VEGF(xxx)b, that inhibit tumour growth in animal models, and are downregulated in some cancers, but have not been investigated in melanoma. To determine whether VEGF(xxx)b expression was altered in melanoma, PCR and immunohistochemistry of archived human tumour samples were used. In normal epidermis and in a proportion of melanoma samples, VEGF(xxx)b staining was seen. Some melanomas had much weaker staining. Subsequent examination revealed that expression was significantly reduced in primary melanoma samples (both horizontal and vertical growth phases) from patients who subsequently developed tumour metastasis compared with those who did not (analysis of variance (ANOVA) P<0.001 metastatic vs nonmetastatic), irrespective of tumour thickness, while the surrounding epidermis showed no difference in expression. Staining for total VEGF expression showed staining in metastatic and nonmetastatic melanomas, and normal epidermis. An absence of VEGF(xxx)b expression appears to predict metastatic spread in patients with primary melanoma. These results suggest that there is a switch in splicing as part of the metastatic process, from anti-angiogenic to pro-angiogenic VEGF isoforms. This may form part of a wider metastatic splicing phenotype.

  20. Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer.

    PubMed

    Lin, Yi; Zhai, Ertao; Liao, Bing; Xu, Lixia; Zhang, Xinhua; Peng, Sui; He, Yulong; Cai, Shirong; Zeng, Zhirong; Chen, Minhu

    2017-02-14

    Tumor cells produce vascular endothelial growth factor (VEGF) which interact with the membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth in an angiogenesis-independent fashion. Apatinib, a highly selective VEGFR2 inhibitor, is the only effective drug for patients with terminal gastric cancer (GC) who have no other chemotherapeutic options. However, its treatment efficacy is still controversy and the mechanism behind remains undetermined. In this study, we aimed to investigate the role of autocrine VEGF signaling in the growth of gastric cancer cells and the efficacy of Apatinib treatment. The expression of phosphor VEGFR2 in gastric cancer cell lines was determined by real-time PCR, immunofluorescence, and Western blot. The gastric cancer cells were administrated with or without recombination human VEGF (rhVEGF), VEGFR2 neutralizing antibody, U73122, SU1498, and Apatinib. The nude mice were used for xenograft tumor model. we found that autocrine VEGF induced high VEGFR2-expression, promoted phosphorylation of VEGFR2, and further enhanced internalization of pVEGFR2 in gastric cancer cells. The autocrine VEGF was self-sustained through increasing VEGF mRNA and protein expression. It exerted pro-proliferative effect through a PLC-ERK1/2 dependent pathway. Furthermore, we demonstrated that in VEGFR2 overexpressing gastric cancer cells, Apatinib inhibited cell proliferation in vitro and delayed xenograft tumor growth in vivo. However, these effects were not observed in VEGFR2 low expressing gastric cancer cells. These results suggested that autocrine VEGF signaling promotes gastric cancer cell proliferation and enhances Apatinib treatment outcome in VEGFR2 overexpression gastric cancer cells both in vitro and in vivo. This study would enable better stratification of gastric cancer patients for clinical treatment decision.

  1. Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer

    PubMed Central

    Xu, Lixia; Zhang, Xinhua; Peng, Sui; He, Yulong; Cai, Shirong; Zeng, Zhirong; Chen, Minhu

    2017-01-01

    Background Tumor cells produce vascular endothelial growth factor (VEGF) which interact with the membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth in an angiogenesis-independent fashion. Apatinib, a highly selective VEGFR2 inhibitor, is the only effective drug for patients with terminal gastric cancer (GC) who have no other chemotherapeutic options. However, its treatment efficacy is still controversy and the mechanism behind remains undetermined. In this study, we aimed to investigate the role of autocrine VEGF signaling in the growth of gastric cancer cells and the efficacy of Apatinib treatment. Methods The expression of phosphor VEGFR2 in gastric cancer cell lines was determined by real-time PCR, immunofluorescence, and Western blot. The gastric cancer cells were administrated with or without recombination human VEGF (rhVEGF), VEGFR2 neutralizing antibody, U73122, SU1498, and Apatinib. The nude mice were used for xenograft tumor model. Results we found that autocrine VEGF induced high VEGFR2-expression, promoted phosphorylation of VEGFR2, and further enhanced internalization of pVEGFR2 in gastric cancer cells. The autocrine VEGF was self-sustained through increasing VEGF mRNA and protein expression. It exerted pro-proliferative effect through a PLC-ERK1/2 dependent pathway. Furthermore, we demonstrated that in VEGFR2 overexpressing gastric cancer cells, Apatinib inhibited cell proliferation in vitro and delayed xenograft tumor growth in vivo. However, these effects were not observed in VEGFR2 low expressing gastric cancer cells. Conclusion These results suggested that autocrine VEGF signaling promotes gastric cancer cell proliferation and enhances Apatinib treatment outcome in VEGFR2 overexpression gastric cancer cells both in vitro and in vivo. This study would enable better stratification of gastric cancer patients for clinical treatment decision. PMID:28061477

  2. VEGF-A clinical significance in gastric cancers: immunohistochemical analysis of a wide Italian cohort.

    PubMed

    Lastraioli, E; Boni, L; Romoli, M R; Crescioli, S; Taddei, A; Beghelli, S; Tomezzoli, A; Vindigni, C; Saragoni, L; Messerini, L; Bernini, M; Bencini, L; Giommoni, E; Freschi, G; Di Costanzo, F; Scarpa, A; Morgagni, P; Farsi, M; Roviello, F; De Manzoni, G; Bechi, P; Arcangeli, A

    2014-10-01

    The clinical significance of VEGF-A expression in gastric cancer (GC) has been reported with contradicting results. We analyzed the expression and clinical significance of VEGF-A in a wide Italian cohort of GC specimens. VEGF-A expression was tested by immunohistochemistry in 507 patients with GC of all clinical stages. The impact of VEGF-A on overall survival (OS) was evaluated in conjunction with clinical and pathological parameters. In the Italian cohort we studied VEGF-A was not an independent prognostic factor neither at the univariate nor at multivariate analysis. Although frequently expressed, in our study VEGF-A was not able to discriminate between groups of patients with different risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Activated PAR-2 regulates pancreatic cancer progression through ILK/HIF-α-induced TGF-α expression and MEK/VEGF-A-mediated angiogenesis.

    PubMed

    Chang, Li-Hsun; Pan, Shiow-Lin; Lai, Chin-Yu; Tsai, An-Chi; Teng, Che-Ming

    2013-08-01

    Tissue factor initiates the process of thrombosis and activates cell signaling through protease-activated receptor-2 (PAR-2). The aim of this study was to investigate the pathological role of PAR-2 signaling in pancreatic cancer. We first demonstrated that activated PAR-2 up-regulated the protein expression of both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α, resulting in enhanced transcription of transforming growth factor-α (TGF-α). Down-regulation of HIFs-α by siRNA or YC-1, an HIF inhibitor, resulted in depleted levels of TGF-α protein. Furthermore, PAR-2, through integrin-linked kinase (ILK) signaling, including the p-AKT, promoted HIF protein expression. Diminishing ILK by siRNA decreased the levels of PAR-2-induced p-AKT, HIFs-α, and TGF-α; our results suggest that ILK is involved in the PAR-2-mediated TGF-α via an HIF-α-dependent pathway. Furthermore, the culture medium from PAR-2-treated pancreatic cancer cells enhanced human umbilical vein endothelial cell proliferation and tube formation, which was blocked by the MEK inhibitor, PD98059. We also found that activated PAR-2 enhanced tumor angiogenesis through the release of vascular endothelial growth factor-A (VEGF-A) from cancer cells, independent of the ILK/HIFs-α pathways. Consistent with microarray analysis, activated PAR-2 induced TGF-A and VEGF-A gene expression. In conclusion, the activation of PAR-2 signaling induced human pancreatic cancer progression through the induction of TGF-α expression by ILK/HIFs-α, as well as through MEK/VEGF-A-mediated angiogenesis, and it plays a role in the interaction between cancer progression and cancer-related thrombosis. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung

    PubMed Central

    Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G.; Yusuf, Kamran; Nedrelow, Jonathan H.; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J.; Elias, Jack A.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit. PMID:18441284

  5. Developmental regulation of NO-mediated VEGF-induced effects in the lung.

    PubMed

    Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G; Yusuf, Kamran; Nedrelow, Jonathan H; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J; Elias, Jack A

    2008-10-01

    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit.

  6. Sestrin2 Induced by Hypoxia Inducible Factor 1 alpha protects the Blood-Brain Barrier via Inhibiting VEGF after Severe Hypoxic-Ischemic Injury in Neonatal Rats

    PubMed Central

    Shi, Xudan; Doycheva, Desislava Met; Xu, Liang; Tang, Jiping; Yan, Min; Zhang, John H

    2016-01-01

    Objective Hypoxic ischemic (HI) encephalopathy remains the leading cause of perinatal brain injury resulting in long term disabilities. Stabilization of blood brain barrier (BBB) after HI is an important target, therefore, in this study we aim to determine the role of sestrin2, a stress inducible protein which is elevated after various insults, on BBB stabilization after moderate and severe HI injury. Methods Rat pups underwent common carotid artery ligation followed by either 150 min (severe model) or 100 min (moderate model) of hypoxia. 1h post HI, rats were intranasally administered with recombinant human sestrin2 (rh-sestrin2) and sacrificed for infarct area, brain water content, righting reflex and geotaxis reflex. Sestrin2 was silenced using siRNA and an activator/inhibitor of hypoxia inducible factor1α (HIF1α) were used to examine their roles on BBB permeability. Results Rats subjected to severe HI exhibited larger infarct area and higher sestrin2 expression compared to rats in the moderate HI group. rh-sestrin2 attenuated brain infarct and edema, while silencing sestrin2 reversed these protective effects after severe HI. HIF1α induced sestrin2 activation in severe HI but not in moderate HI groups. A HIF1a agonist was shown to increase permeability of the BBB via vascular endothelial growth factor (VEGF) after moderate HI. However, after severe HI, HIF1α activated both VEGF and sestrin2. But HIF1α dependent sestrin2 activation was the predominant pathway after severe HI which inhibited VEGF and attenuated BBB permeability. Conclusions rh-sestrin2 attenuated BBB permeability via upregulation of endogenous sestrin2 which was induced by HIF1α after severe HI. However, HIF1α’s effects as a prodeath or prosurvival signal were influenced by the severity of HI injury. PMID:27425892

  7. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    PubMed

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  8. VEGF correlates with inflammation and fibrosis in tuberculous pleural effusion.

    PubMed

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n=14; VEGF, odds ratio 1.28, P=0.01; effusion size, odds ratio 1.01, P=0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC=0.985, P<0.001). Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE.

  9. Soluble VEGF isoforms are essential for establishingepiphyseal vascularization and regulating chondrocyte development and survival

    PubMed Central

    Maes, Christa; Stockmans, Ingrid; Moermans, Karen; Van Looveren, Riet; Smets, Nico; Carmeliet, Peter; Bouillon, Roger; Carmeliet, Geert

    2004-01-01

    VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF120, VEGF164, and VEGF188 isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF164 or only VEGF188 (in VEGF188/188 mice) was sufficient for metaphyseal development. VEGF188/188 mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF188 isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF188/188 mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF188 isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation. PMID:14722611

  10. VEGF-ablation therapy reduces drug delivery and therapeutic response in ECM-dense tumors

    PubMed Central

    Röhrig, F; Vorlová, S; Hoffmann, H; Wartenberg, M; Escorcia, F E; Keller, S; Tenspolde, M; Weigand, I; Gätzner, S; Manova, K; Penack, O; Scheinberg, D A; Rosenwald, A; Ergün, S; Granot, Z; Henke, E

    2017-01-01

    The inadequate transport of drugs into the tumor tissue caused by its abnormal vasculature is a major obstacle to the treatment of cancer. Anti-vascular endothelial growth factor (anti-VEGF) drugs can cause phenotypic alteration and maturation of the tumor's vasculature. However, whether this consistently improves delivery and subsequent response to therapy is still controversial. Clinical results indicate that not all patients benefit from antiangiogenic treatment, necessitating the development of criteria to predict the effect of these agents in individual tumors. We demonstrate that, in anti-VEGF-refractory murine tumors, vascular changes after VEGF ablation result in reduced delivery leading to therapeutic failure. In these tumors, the impaired response after anti-VEGF treatment is directly linked to strong deposition of fibrillar extracellular matrix (ECM) components and high expression of lysyl oxidases. The resulting condensed, highly crosslinked ECM impeded drug permeation, protecting tumor cells from exposure to small-molecule drugs. The reduced vascular density after anti-VEGF treatment further decreased delivery in these tumors, an effect not compensated by the improved vessel quality. Pharmacological inhibition of lysyl oxidases improved drug delivery in various tumor models and reversed the negative effect of VEGF ablation on drug delivery and therapeutic response in anti-VEGF-resistant tumors. In conclusion, the vascular changes after anti-VEGF therapy can have a context-dependent negative impact on overall therapeutic efficacy. A determining factor is the tumor ECM, which strongly influences the effect of anti-VEGF therapy. Our results reveal the prospect to revert a possible negative effect and to potentiate responsiveness to antiangiogenic therapy by concomitantly targeting ECM-modifying enzymes. PMID:27270432

  11. Defining response to anti-VEGF therapies in neovascular AMD.

    PubMed

    Amoaku, W M; Chakravarthy, U; Gale, R; Gavin, M; Ghanchi, F; Gibson, J; Harding, S; Johnston, R L; Kelly, S P; Kelly, S; Lotery, A; Mahmood, S; Menon, G; Sivaprasad, S; Talks, J; Tufail, A; Yang, Y

    2015-06-01

    The introduction of anti-vascular endothelial growth factor (anti-VEGF) has made significant impact on the reduction of the visual loss due to neovascular age-related macular degeneration (n-AMD). There are significant inter-individual differences in response to an anti-VEGF agent, made more complex by the availability of multiple anti-VEGF agents with different molecular configurations. The response to anti-VEGF therapy have been found to be dependent on a variety of factors including patient's age, lesion characteristics, lesion duration, baseline visual acuity (VA) and the presence of particular genotype risk alleles. Furthermore, a proportion of eyes with n-AMD show a decline in acuity or morphology, despite therapy or require very frequent re-treatment. There is currently no consensus as to how to classify optimal response, or lack of it, with these therapies. There is, in particular, confusion over terms such as 'responder status' after treatment for n-AMD, 'tachyphylaxis' and 'recalcitrant' n-AMD. This document aims to provide a consensus on definition/categorisation of the response of n-AMD to anti-VEGF therapies and on the time points at which response to treatment should be determined. Primary response is best determined at 1 month following the last initiation dose, while maintained treatment (secondary) response is determined any time after the 4th visit. In a particular eye, secondary responses do not mirror and cannot be predicted from that in the primary phase. Morphological and functional responses to anti-VEGF treatments, do not necessarily correlate, and may be dissociated in an individual eye. Furthermore, there is a ceiling effect that can negate the currently used functional metrics such as >5 letters improvement when the baseline VA is good (ETDRS>70 letters). It is therefore important to use a combination of both the parameters in determining the response.The following are proposed definitions: optimal (good) response is defined as when there

  12. Hypoxia preconditioning protection of corneal stromal cells requires HIF1alpha but not VEGF.

    PubMed

    Xing, Dongmei; Bonanno, Joseph A

    2009-05-18

    Hypoxia preconditioning protects corneal stromal cells from stress-induced death. This study determined whether the transcription factor HIF-1alpha (Hypoxia Inducible Factor) is responsible and whether this is promulgated by VEGF (Vascular Endothelial Growth Factor). Cultured bovine stromal cells were preconditioned with hypoxia in the presence of cadmium chloride, a chemical inhibitor of HIF-1alpha, and HIF-1alpha siRNA to test if HIF-1alpha activity is needed for hypoxia preconditioning protection from UV-irradiation induced cell death. TUNEL assay was used to detect cell apoptosis after UV-irradiation. RT-PCR and western blot were used to detect the presence of HIF-1alpha and VEGF in transcriptional and translational levels. During hypoxia (0.5% O2), 5 muM cadmium chloride completely inhibited HIF-1alpha expression and reversed the protection by hypoxia preconditioning. HIF-1alpha siRNA (15 nM) reduced HIF-1alpha expression by 90% and produced a complete loss of protection provided by hypoxia preconditioning. Since VEGF is induced by hypoxia, can be HIF-1alpha dependent, and is often protective, we examined the changes in transcription of VEGF and its receptors after 4 h of hypoxia preconditioning. VEGF and its receptors Flt-1 and Flk-1 are up-regulated after hypoxia preconditioning. However, the transcription and translation of VEGF were paradoxically increased by siHIF-1alpha, suggesting that VEGF expression in stromal cells is not down-stream of HIF-1alpha. These findings demonstrate that hypoxia preconditioning protection in corneal stromal cells requires HIF-1alpha, but that VEGF is not a component of the protection.

  13. Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases.

    PubMed

    Ng, Eugene W M; Adamis, Anthony P

    2006-10-01

    Vascular endothelial growth factor (VEGF) is a central regulator of both physiological and pathological angiogenesis. Pegaptanib, a 28-nucleotide RNA aptamer specific for the VEGF(165) isoform, binds to it in the extracellular space, leaving other isoforms unaffected, and inhibits such key VEGF actions as promotion of endothelial cell proliferation and survival, and vascular permeability. Pegaptanib already has been examined as a treatment for two diseases associated with ocular neovascularization, age-related macular degeneration (AMD) and diabetic macular edema (DME). Preclinical studies have shown that VEGF(165) alone mediates pathological ocular neovascularization and that its inactivation by pegaptanib inhibits the choroidal neovascularization observed in patients with neovascular AMD. In contrast, physiological vascularization, which is supported by the VEGF(121) isoform, is unaffected by this inactivation of VEGF(165). In addition, animal model studies have shown that intravitreous injection of pegaptanib can inhibit the breakdown of the blood-retinal barrier characteristic of diabetes and even can reverse this damage to some degree. These preclinical findings formed the basis for randomized controlled trials examining the efficacy of pegaptanib as a therapy for AMD and DME. The VEGF Inhibition Study in Ocular Neovascularization (VISION) trial comprising two replicate, pivotal phase 3 studies, demonstrated that intravitreous injection of pegaptanib resulted in significant clinical benefit, compared with sham injection, for all prespecified clinical end points, irrespective of patient demographics or angiographic subtype, and led to pegaptanib's approval as a treatment for AMD. A phase 2 trial has provided support for the efficacy of intravitreous pegaptanib in the treatment of DME.

  14. Effect of peritoneal dialysis on expression of vascular endothelial growth factor, basic fibroblast growth factor and endostatin of the peritoneum in peritoneal dialysis patients.

    PubMed

    Gao, Dan; Zhao, Zhan-Zheng; Liang, Xian-Hui; Li, Yan; Cao, Ying; Liu, Zhang-Suo

    2011-11-01

    The aim of this study is to investigate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endostatin (ES) in human peritoneum and investigate the relationship between them and peritoneum neoangiogensis in the patients with uraemia and peritoneal dialysis (PD). Peritoneal biopsies were obtained from normal subjects (n = 8), uraemic predialysis patients (n = 12) and PD patients (n = 10). The mRNA expression of VEGF, bFGF and ES in peritoneal tissues were measured through real-time polymerase chain reaction. The protein expression of VEGF, bFGF and ES in peritoneal tissues were determined through western blot. Microvessel density (MVD) of peritoneal tissue was assessed using immunohistochemistry with CD34 monoclonal antibody. The mRNA and protein of VEGF, bFGF and ES were expressed in all peritoneal samples. Compared with the normal control group, the mRNA and protein expression of VEGF and bFGF in peritoneal tissues were all significantly upregulated in the uraemic predialysis and PD group (all P < 0.05). Compared with the normal control group, the protein expression of ES were significantly upregulated in the uraemic predialysis and PD group (all (P < 0.05), but the mRNA expression of ES did not have obvious differences in the uraemic predialysis and PD group as compared to the normal control group (P > 0.05). MVD of peritoneal tissue were increased in the uraemic predialysis and PD group compared with the normal group (all P < 0.05). A significant positive correlation was found between VEGF mRNA expression and MVD, bFGF mRNA expression and MVD. The mRNA expression of VEGF and bFGF, the protein expression of VEGF, bFGF, and ES and microvessel density (MVD) are increased both in the uraemic predialysis and PD patients. These results show that uraemia circumstances and non-physiological compatibility of peritoneal dialysis solution might increase VEGF, bFGF and ES expression and MVD, which might participate in the

  15. Hypothermia reduces VEGF-165 expression, but not osteogenic differentiation of human adipose stem cells under hypoxia

    PubMed Central

    Bakker, Astrid D.; Hogervorst, Jolanda M. A.; Nolte, Peter A.; Klein-Nulend, Jenneke

    2017-01-01

    Cryotherapy is successfully used in the clinic to reduce pain and inflammation after musculoskeletal damage, and might prevent secondary tissue damage under the prevalent hypoxic conditions. Whether cryotherapy reduces mesenchymal stem cell (MSC) number and differentiation under hypoxic conditions, causing impaired callus formation is unknown. We aimed to determine whether hypothermia modulates proliferation, apoptosis, nitric oxide production, VEGF gene and protein expression, and osteogenic/chondrogenic differentiation of human MSCs under hypoxia. Human adipose MSCs were cultured under hypoxia (37°C, 1% O2), hypothermia and hypoxia (30°C, 1% O2), or control conditions (37°C, 20% O2). Total DNA, protein, nitric oxide production, alkaline phosphatase activity, gene expression, and VEGF protein concentration were measured up to day 8. Hypoxia enhanced KI67 expression at day 4. The combination of hypothermia and hypoxia further enhanced KI67 gene expression compared to hypoxia alone, but was unable to prevent the 1.2-fold reduction in DNA amount caused by hypoxia at day 4. Addition of hypothermia to hypoxic cells did not alter the effect of hypoxia alone on BAX-to-BCL-2 ratio, alkaline phosphatase activity, gene expression of SOX9, COL1, or osteocalcin, or nitric oxide production. Hypothermia decreased the stimulating effect of hypoxia on VEGF-165 gene expression by 6-fold at day 4 and by 2-fold at day 8. Hypothermia also decreased VEGF protein expression under hypoxia by 2.9-fold at day 8. In conclusion, hypothermia decreased VEGF-165 gene and protein expression, but did not affect differentiation, or apoptosis of MSCs cultured under hypoxia. These in vitro results implicate that hypothermia treatment in vivo, applied to alleviate pain and inflammation, is not likely to harm early stages of callus formation. PMID:28166273

  16. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism

    PubMed Central

    Yang, Yunlong; Zhang, Yin; Iwamoto, Hideki; Hosaka, Kayoko; Seki, Takahiro; Andersson, Patrik; Lim, Sharon; Fischer, Carina; Nakamura, Masaki; Abe, Mitsuhiko; Cao, Renhai; Skov, Peter Vilhelm; Chen, Fang; Chen, Xiaoyun; Lu, Yongtian; Nie, Guohui; Cao, Yihai

    2016-01-01

    The impact of discontinuation of anti-VEGF cancer therapy in promoting cancer metastasis is unknown. Here we show discontinuation of anti-VEGF treatment creates a time-window of profound structural changes of liver sinusoidal vasculatures, exhibiting hyper-permeability and enlarged open-pore sizes of the fenestrated endothelium and loss of VE-cadherin. The drug cessation caused highly leaky hepatic vasculatures permit tumour cell intravasation and extravasation. Discontinuation of an anti-VEGF antibody-based drug and sunitinib markedly promotes liver metastasis. Mechanistically, host hepatocyte, but not tumour cell-derived vascular endothelial growth factor (VEGF), is responsible for cancer metastasis. Deletion of hepatocyte VEGF markedly ablates the ‘off-drug'-induced metastasis. These findings provide mechanistic insights on anti-VEGF cessation-induced metastasis and raise a new challenge for uninterrupted and sustained antiangiogenic therapy for treatment of human cancers. PMID:27580750

  17. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    PubMed

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  18. VEGF-A165b Is Cytoprotective and Antiangiogenic in the Retina

    PubMed Central

    Magnussen, Anette L.; Rennel, Emma S.; Hua, Jing; Bevan, Heather S.; Long, Nicholas Beazley; Lehrling, Christina; Gammons, Melissa; Floege, Juergen; Harper, Steven J.; Agostini, Hansjürgen T.; Bates, David O.; Churchill, Amanda J.

    2010-01-01

    Purpose. A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A165, the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A165b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF165b and its effect on retinal epithelial and endothelial cell survival. Methods. VEGF-A165b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A165b. Results. VEGF-A165b dose dependently inhibited angiogenesis (IC50, 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A165 across monolayers in culture (IC50, 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A165b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC50, 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A165b. Conclusions. The survival effects of VEGF-A165b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A165b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells. PMID:20237249

  19. IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation

    PubMed Central

    Dong, Wen; Li, Yi; Gao, Ming; Hu, Meiru; Li, Xiaoguang; Mai, Sanyue; Guo, Ning; Yuan, Shengtao; Song, Lun

    2012-01-01

    Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a critical role in mediating UVB-induced VEGF expression in mouse embryonic fibroblasts (MEFs), which requires IKKα kinase activity but is independent of IKKβ, IKKγ and the transactivation of NF-κB. We further show that the transcriptional factor AP-1 functions as the downstream target of IKKα that is responsible for VEGF induction under UVB exposure. Both the accumulation of AP-1 component, c-Fos and the transactivation of AP-1 by UVB require the activated IKKα located within the nucleus. Moreover, nuclear IKKα can associate with c-Fos and recruit to the vegf promoter regions containing AP-1-responsive element and then trigger phosphorylation of the promoter-bound histone H3. Thus, our results have revealed a novel independent role for IKKα in controlling VEGF expression during the cellular UVB response by regulating the induction of the AP-1 component and phosphorylating histone H3 to facilitate AP-1 transactivation. Targeting IKKα shows promise for the prevention of UVB-induced angiogenesis and the associated photodamage. PMID:22169952

  20. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF

    PubMed Central

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-01-01

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF. PMID:26416452

  1. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF.

    PubMed

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-10-20

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF.

  2. Xue-fu-Zhu-Yu decoction protects rats against retinal ischemia by downregulation of HIF-1α and VEGF via inhibition of RBP2 and PKM2.

    PubMed

    Tan, Shu-Qiu; Geng, Xue; Liu, Jorn-Hon; Pan, Wynn Hwai-Tzong; Wang, Li-Xiang; Liu, Hui-Kang; Hu, Lei; Chao, Hsiao-Ming

    2017-07-14

    Retinal ischemia-related eye diseases result in visual dysfunction. This study investigates the protective effects and mechanisms of Xue-Fu-Zhu-Yu decoction (XFZYD) with respect to retinal ischemia. Retinal ischemia (I) was induced in Wistar rats by a high intraocular pressure (HIOP) of 120 mmHg for 1 h, which was followed by reperfusion of the ischemic eye; the fellow untreated eye acted as a control. Electroretinogram (ERG), biochemistry and histopathology investigations were performed. Significant ischemic changes occurred after ischemia including decreased ERG b-wave ratios, less numerous retinal ganglion cells (RGCs), reduced inner retinal thickness, fewer choline acetyltransferase (ChAT) labeled amacrine cell bodies, increased glial fibrillary acidic protein (GFAP) immunoreactivity and increased vimentin Müller immunolabeling. These were accompanied by significant increases in the mRNA/protein concentrations of vascular endothelium growth factor, hypoxia-inducible factor-1α, pyruvate kinase M2 and retinoblastoma-binding protein 2. The ischemic changes were concentration-dependently and significantly altered when XFZYD was given for seven consecutive days before or after retina ischemia, compared to vehicle. These alterations included enhanced ERG b-wave amplitudes, more numerous RGCs, enhanced inner retinal thickness, a greater number of ChAT immunolabeled amacrine cell bodies and decreased GFAP/vimentin immunoreactivity. Furthermore, decreased mRNA levels of VEGF, HIF-1α, PKM2, and RBP2 were also found. Reduced protein concentrations of VEGF, HIF-1α, PKM2, and RBP2 were also demonstrated. Furthermore, there was an inhibition of the ischemia-associated increased ratios (target protein/β-actin) in the protein levels of VEGF, HIF-1α, PKM2, and RBP2, which were induced by Shikonin, JIB-04 or Avastin. XFZYD would seem to protect against well-known retinal ischemic changes via a synergistic inhibition of RBP2 and PKM2, as well as down-regulation of HIF-1

  3. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    PubMed

    Jo, Dong Hyun; Park, Sung Wook; Cho, Chang Sik; Powner, Michael B; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun

    2015-01-01

    Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.

  4. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice

    PubMed Central

    Powner, Michael B.; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun

    2015-01-01

    Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of “whitening” of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants. PMID:26226015

  5. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro.

    PubMed

    Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M

    2015-01-01

    This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P < 0.05) when the culture medium was supplemented with 100 ng/mL of IGF-I for 72 hours. Moreover, IGF-I at a dose of 100 ng/mL increased P4 and VEGF production (P < 0.05). It can be concluded that IGF family members via their autocrine and paracrine effect play significant roles in promoting angiogenesis through the production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. TNF-alpha and endotoxin increase hypoxia-induced VEGF production by cultured human nasal fibroblasts in synergistic fashion.

    PubMed

    Sun, Dong; Matsune, Shoji; Ohori, Junichiro; Fukuiwa, Tatsuya; Ushikai, Masato; Kurono, Yuichi

    2005-09-01

    Vascular endothelial growth factor (VEGF) promotes angiogenesis and is associated with the invasion and metastasis of malignant tumors. It enhances vascular permeability and is expressed in inflammatory nasal as well as middle-ear mucosa. As the mechanism of VEGF induction during chronic inflammation, such as chronic paranasal sinusitis (CPS) remains to be clarified, we studied the factors regulating the production of VEGF in cultured human nasal fibroblasts and discussed the role of VEGF in the pathogenesis of CPS. We used ELISA to quantify VEGF levels in paranasal sinus effusions, nasal secretions, and serum from patients with CPS. In addition, we cultured human nasal fibroblasts isolated from nasal polyps of CPS patients and studied the effects of hypoxia, TNF-alpha, and endotoxin on their production of VEGF using ELISA and PCR. The VEGF concentration was significantly higher in paranasal sinus effusions than in nasal secretions and serum. Nasal fibroblasts produced high levels of VEGF, when cultured under hypoxic condition and this production was remarkably enhanced in the presence of TNF-alpha or endotoxin. VEGF is locally produced in paranasal sinuses as well as nasal mucosa and its production is increased in patients with CPS. Hypoxia is associated with the production of VEGF by nasal fibroblasts and TNF-alpha and endotoxin may act synergistically to enhance VEGF production in paranasal sinuses under hypoxic condition.

  7. An EG-VEGF-dependent decrease in homeobox gene NKX3.1 contributes to cytotrophoblast dysfunction: a possible mechanism in human fetal growth restriction.

    PubMed

    Murthi, P; Brouillet, S; Pratt, A; Borg, Aj; Kalionis, B; Goffin, F; Tsatsaris, V; Munaut, C; Feige, Jj; Benharouga, M; Fournier, T; Alfaidy, N

    2015-07-21

    Idiopathic fetal growth restriction (FGR) is frequently associated with placental insufficiency. Previous reports have provided evidence that EG-VEGF (endocrine gland derived-vascular endothelial growth factor), a placental secreted protein, is expressed during the first trimester of pregnancy, controls both trophoblast proliferation and invasion, and its increased expression is associated with human FGR. In this study, we hypothesise that EG-VEGF-dependent change in placental homeobox gene expressions contribute to trophoblast dysfunction in idiopathic FGR. The changes in EG-VEGF-dependent homeobox gene expressions were determined using a Homeobox gene cDNA array on placental explants of 8-12 weeks' gestation after stimulation with EG-VEGF in vitro for 24 hours. The Homeobox gene array identified a >5-fold increase in HOXA9, HOXC8, HOXC10, HOXD1, HOXD8, HOXD9 and HOXD11, while NKX 3.1 showed a >2 fold-decrease in mRNA expression compared to untreated controls. Homeobox gene NKX3.1 was selected as a candidate because it is a downstream target of EG-VEGF and its expression and functional role are largely unknown in control and idiopathic FGR-affected placentae. Real-time PCR and immunoblotting showed a significant decrease in NKX3.1 mRNA and protein levels, respectively, in placentae from FGR compared to control pregnancies. Gene inactivation in vitro using short-interference RNA specific for NKX3.1 demonstrated an increase in BeWo cell differentiation and a decrease in HTR8-SVneo proliferation. We conclude that the decreased expression of homeobox gene NKX3.1 down-stream of EG-VEGF may contribute to the trophoblast dysfunction associated with idiopathic FGR pregnancies.

  8. An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression

    PubMed Central

    Pastukh, Viktor; Roberts, Justin T.; Clark, David W.; Bardwell, Gina C.; Patel, Mita; Al-Mehdi, Abu-Bakr; Borchert, Glen M.

    2015-01-01

    In hypoxia, mitochondria-generated reactive oxygen species not only stimulate accumulation of the transcriptional regulator of hypoxic gene expression, hypoxia inducible factor-1 (Hif-1), but also cause oxidative base modifications in hypoxic response elements (HREs) of hypoxia-inducible genes. When the hypoxia-induced base modifications are suppressed, Hif-1 fails to associate with the HRE of the VEGF promoter, and VEGF mRNA accumulation is blunted. The mechanism linking base modifications to transcription is unknown. Here we determined whether recruitment of base excision DNA repair (BER) enzymes in response to hypoxia-induced promoter modifications was required for transcription complex assembly and VEGF mRNA expression. Using chromatin immunoprecipitation analyses in pulmonary artery endothelial cells, we found that hypoxia-mediated formation of the base oxidation product 8-oxoguanine (8-oxoG) in VEGF HREs was temporally associated with binding of Hif-1α and the BER enzymes 8-oxoguanine glycosylase 1 (Ogg1) and redox effector factor-1 (Ref-1)/apurinic/apyrimidinic endonuclease 1 (Ape1) and introduction of DNA strand breaks. Hif-1α colocalized with HRE sequences harboring Ref-1/Ape1, but not Ogg1. Inhibition of BER by small interfering RNA-mediated reduction in Ogg1 augmented hypoxia-induced 8-oxoG accumulation and attenuated Hif-1α and Ref-1/Ape1 binding to VEGF HRE sequences and blunted VEGF mRNA expression. Chromatin immunoprecipitation-sequence analysis of 8-oxoG distribution in hypoxic pulmonary artery endothelial cells showed that most of the oxidized base was localized to promoters with virtually no overlap between normoxic and hypoxic data sets. Transcription of genes whose promoters lost 8-oxoG during hypoxia was reduced, while those gaining 8-oxoG was elevated. Collectively, these findings suggest that the BER pathway links hypoxia-induced introduction of oxidative DNA modifications in promoters of hypoxia-inducible genes to transcriptional

  9. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    PubMed

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  10. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    PubMed Central

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n = 14; VEGF, odds ratio 1.28, P = 0.01; effusion size, odds ratio 1.01, P = 0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC = 0.985, P < 0.001). Conclusions. Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE. PMID:25884029

  11. Role of vascular endothelial cell growth factor in Ovarian Hyperstimulation Syndrome.

    PubMed Central

    Levin, E R; Rosen, G F; Cassidenti, D L; Yee, B; Meldrum, D; Wisot, A; Pedram, A

    1998-01-01

    Controlled ovarian hyperstimulation with gonadotropins is followed by Ovarian Hyperstimulation Syndrome (OHSS) in some women. An unidentified capillary permeability factor from the ovary has been implicated, and vascular endothelial cell growth/permeability factor (VEGF) is a candidate protein. Follicular fluids (FF) from 80 women who received hormonal induction for infertility were studied. FFs were grouped according to oocyte production, from group I (0-7 oocytes) through group IV (23-31 oocytes). Group IV was comprised of four women with the most severe symptoms of OHSS. Endothelial cell (EC) permeability induced by the individual FF was highly correlated to oocytes produced (r2 = 0.73, P < 0.001). Group IV FF stimulated a 63+/-4% greater permeability than FF from group I patients (P < 0. 01), reversed 98% by anti-VEGF antibody. Group IV fluids contained the VEGF165 isoform and significantly greater concentrations of VEGF as compared with group I (1,105+/-87 pg/ml vs. 353+/-28 pg/ml, P < 0. 05). Significant cytoskeletal rearrangement of F-actin into stress fibers and a destruction of ZO-1 tight junction protein alignment was caused by group IV FF, mediated in part by nitric oxide. These mechanisms, which lead to increased EC permeability, were reversed by the VEGF antibody. Our results indicate that VEGF is the FF factor responsible for increased vascular permeability, thereby contributing to the pathogenesis of OHSS. PMID:9835623

  12. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis.

    PubMed

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  13. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis

    PubMed Central

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  14. [Expressions of VEGF/VEGFRs and activation of STATs in ovarian carcinoma].

    PubMed

    Chen, Bing-Ya; Ye, Da-Feng; Xie, Xing; Chen, Huai-Zeng; Lü, Wei-Guo

    2005-01-01

    To study the expressions of VEGF/VEGFRs and activation of STATs in ovarian epithelial carcinoma, and to elucidate direct effect of VEGF on ovarian carcinoma cells. Tissue samples from 42 women with primary ovarian epithelial carcinoma (OVCA), 29 with begnin ovarian tumor (OVBT) and 11 with normal ovarian tissue (NOV) were collected. LSAB immunohistochemical staining was used to determine the expression of VEGF, VEGFR1, VEGFR2 and activated STATS (P-STAT1, P-STAT3, P-STAT5, P-STAT6) proteins. (1) Semi-quantitative scoring showed that VEGF expression in OVCA was significantly higher than that in OVBT and NOV (P < 0.01). Expressions of VEGFR1 and VEGFR2 were significantly elevated in OVCA, including tumor cells and stromal vascular endothelial cells (P < 0.01, compared with OVBT and NOV). There was no difference in VEGFRs expressions between OVBT and NOV. (2) In OVCA, tumor cells and endothelial cells expressed P-STAT3 and P-STAT5 at significantly higher levels than those in OVBT and NOV (P = 0.000). The staining of P-STAT1 and P-STAT6 was weak with no significant differences among OVCA, OVBT and NOV. (3) Expressions of VEGFR1 and VEGFR2 in endothelial cells were significantly correlated with P-STAT5 and P-STAT3, respectively (P = 0.006 and 0.001). In cancer cells, VEGF, VEGFR1 and VEGFR2 were all significantly correlated with P-STAT3 and P-STAT5 (P = 0.000), but not with P-STAT1 or P-STAT6. VEGF affects ovarian carcinoma cells via VEGFRs, and STATs probably participate in intracellular signaling of VEGF.

  15. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy.

    PubMed

    Woitek, Felix; Zentilin, Lorena; Hoffman, Nicholas E; Powers, Jeffery C; Ottiger, Isabel; Parikh, Suraj; Kulczycki, Anna M; Hurst, Marykathryn; Ring, Nadja; Wang, Tao; Shaikh, Farah; Gross, Polina; Singh, Harinder; Kolpakov, Mikhail A; Linke, Axel; Houser, Steven R; Rizzo, Victor; Sabri, Abdelkarim; Madesh, Muniswamy; Giacca, Mauro; Recchia, Fabio A

    2015-07-14

    Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells.

    PubMed

    Brouillet, Sophie; Hoffmann, Pascale; Benharouga, Mohamed; Salomon, Aude; Schaal, Jean-Patrick; Feige, Jean-Jacques; Alfaidy, Nadia

    2010-08-15

    Endocrine gland derived vascular endothelial growth factor (EG-VEGF) also called prokineticin (PK1), has been identified and linked to several biological processes including angiogenesis. EG-VEGF is abundantly expressed in the highest vascularized organ, the human placenta. Here we characterized its angiogenic effect using different experimental procedures. Immunohistochemistry was used to localize EG-VEGF receptors (PROKR1 and PROKR2) in placental and umbilical cord tissue. Primary microvascular placental endothelial cell (HPEC) and umbilical vein-derived macrovascular EC (HUVEC) were used to assess its effects on proliferation, migration, cell survival, pseudovascular organization, spheroid sprouting, permeability and paracellular transport. siRNA and neutralizing antibody strategies were used to differentiate PROKR1- from PROKR2-mediated effects. Our results show that 1) HPEC and HUVEC express both types of receptors 2) EG-VEGF stimulates HPEC's proliferation, migration and survival, but increases only survival in HUVECs. and 3) EG-VEGF was more potent than VEGF in stimulating HPEC sprout formation, pseudovascular organization, and it significantly increases HPEC permeability and paracellular transport. More importantly, we demonstrated that PROKR1 mediates EG-VEGF angiogenic effects, whereas PROKR2 mediates cellular permeability. Altogether, these data characterized angiogenic processes mediated by EG-VEGF, depicted a new angiogenic factor in the placenta, and suggest a novel view of the regulation of angiogenesis in placental pathologies.

  17. Serum levels, and bone marrow immunohistochemical expression of, vascular endothelial growth factor in patients with chronic myeloproliferative diseases.

    PubMed

    Panteli, Katerina; Bai, Maria; Hatzimichael, Eleftheria; Zagorianakou, Nektaria; Agnantis, Niki John; Bourantas, Konstantinos

    2007-12-01

    Current data suggest that angiogenesis plays a significant role in the pathogenesis and progression of chronic myeloproliferative diseases (cMPDs). In the present study, we evaluated serum levels of vascular endothelial growth factor (VEGF) in 83 patients with cMPDs [myelofibrosis with myeloid metaplasia (MMM, n = 25), essential thrombocythaemia (ET, n = 40), polycythaemia vera (PV, n = 8) and chronic myeloid leukemia (CML, n = 10)] and in 27 healthy individuals. Serum VEGF levels were significantly increased in patients with cMPDs compared to healthy individuals (all p values were < or = 0.05) and were significantly correlated with bone marrow microvessel density (MVD) (p = 0.0013). In addition, the immunohistochemical expression of VEGF protein in bone marrow biopsy specimens were analyzed in 61 patients with cMPDs, (ET, n = 36 and MMM, n = 25) and in 27 healthy individuals. The cellular distribution of VEGF expression was similar in bone marrow specimens of patients and healthy individuals. VEGF protein was detected mainly in erythroid cells, whereas myeloid cells and megakaryocytes exhibited a variable expression of the protein. The percentage of bone marrow VEGF positive cells was positively correlated with serum levels of VEGF (p = 0.001). The results of the present study suggest that, VEGF is a major angiogenetic factor in patients with cMPDs and contributes to the pathogenesis of these diseases.

  18. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival.

    PubMed

    Maes, Christa; Stockmans, Ingrid; Moermans, Karen; Van Looveren, Riet; Smets, Nico; Carmeliet, Peter; Bouillon, Roger; Carmeliet, Geert

    2004-01-01

    VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF(120), VEGF(164), and VEGF(188) isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF(164) or only VEGF(188) (in VEGF(188/188) mice) was sufficient for metaphyseal development. VEGF(188/188) mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF(188) isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF(188/188) mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF(188) isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation.

  19. Effects of hypoxia and hyperoxia on the differential expression of VEGF-A isoforms and receptors in Idiopathic Pulmonary Fibrosis (IPF).

    PubMed

    Barratt, Shaney L; Blythe, Thomas; Ourradi, Khadija; Jarrett, Caroline; Welsh, Gavin I; Bates, David O; Millar, Ann B

    2018-01-15

    Dysregulation of VEGF-A bioavailability has been implicated in the development of lung injury/fibrosis, exemplified by Idiopathic Pulmonary Fibrosis (IPF). VEGF-A is a target of the hypoxic response via its translational regulation by HIF-1α. The role of hypoxia and hyperoxia in the development and progression of IPF has not been explored. In normal lung (NF) and IPF-derived fibroblasts (FF) VEGF-A xxx a protein expression was upregulated by hypoxia, mediated through activation of VEGF-A xxx a gene transcription. VEGF-A receptors and co-receptors were differentially expressed by hypoxia and hyperoxia. Our data supports a potential role for hypoxia, hyperoxia and VEGF-A xxx a isoforms as drivers of fibrogenesis.

  20. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube lengthmore » by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.« less

  1. Simulating vasogenic brain edema using chronic VEGF infusion

    PubMed Central

    Piazza, Martin; Munasinghe, Jeeva; Murayi, Roger; Edwards, Nancy; Montgomery, Blake; Walbridge, Stuart; Merrill, Marsha; Chittiboina, Prashant

    2017-01-01

    OBJECTIVE To study peritumoral brain edema (PTBE), it is necessary to create a model that accurately simulates vasogenic brain edema (VBE) without introducing a complicated tumor environment. PTBE associated with brain tumors is predominantly a result of vascular endothelial growth factor (VEGF) secreted by brain tumors, and VEGF infusion alone can lead to histological blood-brain barrier (BBB) breakdown in the absence of tumor. VBE is intimately linked to BBB breakdown. The authors sought to establish a model for VBE with chronic infusion of VEGF that can be validated by serial in-vivo MRI and histological findings. METHODS Male Fischer rats (n = 182) underwent stereotactic striatal implantation of MRI-safe brain cannulas for chronic infusion of VEGF (2–20 μg/ml). Following a preinfusion phase (4–6 days), the rats were exposed to VEGF or control rat serum albumin (1.5 μl/hr) for as long as 144 hours. Serial MRI was performed during infusion on a high-field (9.4-T) machine at 12–24, 24–36, 48–72, and 120–144 hours. Rat brains were then collected and histological analysis was performed. RESULTS Control animals and animals infused with 2 μg/ml of VEGF experienced no neurological deficits, seizure activity, or abnormal behavior. Animals treated with VEGF demonstrated a significantly larger volume (42.90 ± 3.842 mm3) of T2 hyper-attenuation at 144 hours when compared with the volume (8.585 ± 1.664 mm3) in control animals (mean difference 34.31 ± 4.187 mm3, p < 0.0001, 95% CI 25.74–42.89 mm3). Postcontrast T1 enhancement in the juxtacanalicular region indicating BBB breakdown was observed in rats undergoing infusion with VEGF. At the later time periods (120–144 hrs) the volume of T1 enhancement (34.97 ± 8.99 mm3) was significantly less compared with the region of edema (p < 0.0001). Histologically, no evidence of necrosis or inflammation was observed with VEGF or control infusion. Immunohistochemical analysis demonstrated astrocyte activation

  2. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells

    PubMed Central

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-01-01

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones—HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells. PMID:29156827

  3. Nucleolin mediated pro-angiogenic role of Hydroxysafflor Yellow A in ischaemic cardiac dysfunction: Post-transcriptional regulation of VEGF-A and MMP-9.

    PubMed

    Zou, Jiang; Wang, Nian; Liu, Manting; Bai, Yongping; Wang, Hao; Liu, Ke; Zhang, Huali; Xiao, Xianzhong; Wang, Kangkai

    2018-05-01

    Hydroxysafflor Yellow A (HSYA), a most representative ingredient of Carthamus tinctorius L., had long been used in treating ischaemic cardiovascular diseases in China and exhibited prominently anticoagulant and pro-angiogenic activities, but the underlying mechanisms remained largely unknown. This study aimed to further elucidate the pro-angiogenic effect and mechanism of HSYA on ischaemic cardiac dysfunction. A C57 mouse model of acute myocardial infarction (AMI) was firstly established, and 25 mg/kg HSYA was intraperitoneally injected immediately after operation and given once, respectively, each morning and evening for 2 weeks. It was found that HSYA significantly improved ischaemia-induced cardiac haemodynamics, enhanced the survival rate, alleviated the myocardial injury and increased the expressions of CD31, vascular endothelial growth factor-A (VEGF-A) and nucleolin in the ischaemic myocardium. In addition, HSYA promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs), enhanced the expressions of nucleolin, VEGF-A and matrix metalloproteinase-9 (MMP-9) in a dose- and time-dependent manner. However, down-regulation of nucleolin expression sharply abrogated the effect mentioned above of HSYA. Further protein-RNA coimmunoprecipitation and immunoprecipitation-RT-PCR assay showed that nucleolin binded to VEGF-A and MMP-9 mRNA and overexpression of nucleolin up-regulated the mRNA expressions of VEGF-A and MMP-9 in the HUVECs through enhancing the stability of VEGF-A and MMP-9 mRNA. Furthermore, HSYA increased the mRNA expressions of VEGF-A and MMP-9 in the extract of antinucleolin antibody-precipitated protein from the heart of AMI mice. Our data revealed that nucleolin mediated the pro-angiogenic effect of HSYA through post-transcriptional regulation of VEGF-A and MMP-9 expression, which contributed to the protective effect of HSYA on ischaemic cardiac dysfunction. © 2018 The Authors. Journal of Cellular and Molecular

  4. Baicalin increases VEGF expression and angiogenesis by activating the ERRα/PGC-1α pathway

    PubMed Central

    Zhang, Keqiang; Lu, Jianming; Mori, Taisuke; Smith-Powell, Leslie; Synold, Timothy W.; Chen, Shiuan; Wen, Wei

    2011-01-01

    Aims Baicalin is the major component found in Scutellaria baicalensis root, a widely used herb in traditional Chinese medicine. Although it has been used for thousands of years to treat stroke, the mechanisms of action of S. baicalensis have not been clearly elucidated. In this report, we studied the modulation of angiogenesis as one possible mechanism by investigating the effects of these agents on expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. Methods and results The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1α (HIF-1α). The expression of reporter genes was also activated under the control of the VEGF promoter containing either a functional or a defective HIF response element (HRE). Only minimal effects were observed on reporter activation under the HRE promoter. Instead, both agents significantly induced oestrogen-related receptor (ERRα) expression as well as the activity of reporter genes under the control of ERRα-binding element. Their ability to induce VEGF expression was suppressed once ERRα expression was knocked down by siRNA or ERRα-binding sites were deleted in the VEGF promoter. We also found that both agents stimulated cell migration and vessel sprout formation from the aorta. Conclusion Our results implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRα pathway. These data may facilitate a better understanding of the potential health benefits of these agents in the treatment of cardiovascular diseases. PMID:20851810

  5. VEGF signaling mediates bladder neuroplasticity and inflammation in response to BCG

    PubMed Central

    2011-01-01

    Background This work tests the hypothesis that increased levels of vascular endothelial growth factor (VEGF) observed during bladder inflammation modulates nerve plasticity. Methods Chronic inflammation was induced by intravesical instillations of Bacillus Calmette-Guérin (BCG) into the urinary bladder and the density of nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) or pan-neuronal marker PGP9.5 was used to quantify alterations in peripheral nerve plasticity. Some mice were treated with B20, a VEGF neutralizing antibody to reduce the participation of VEGF. Additional mice were treated systemically with antibodies engineered to specifically block the binding of VEGF to NRP1 (anti-NRP1B) and NRP2 (NRP2B), or the binding of semaphorins to NRP1 (anti-NRP1 A) to diminish activity of axon guidance molecules such as neuropilins (NRPs) and semaphorins (SEMAs). To confirm that VEGF is capable of inducing inflammation and neuronal plasticity, another group of mice was instilled with recombinant VEGF165 or VEGF121 into the urinary bladder. Results The major finding of this work was that chronic BCG instillation resulted in inflammation and an overwhelming increase in both PGP9.5 and TRPV1 immunoreactivity, primarily in the sub-urothelium of the urinary bladder. Treatment of mice with anti-VEGF neutralizing antibody (B20) abolished the effect of BCG on inflammation and nerve density. NRP1A and NRP1B antibodies, known to reduce BCG-induced inflammation, failed to block BCG-induced increase in nerve fibers. However, the NRP2B antibody dramatically potentiated the effects of BCG in increasing PGP9.5-, TRPV1-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactivity (IR). Finally, instillation of VEGF121 or VEGF165 into the mouse bladder recapitulated the effects of BCG and resulted in a significant inflammation and increase in nerve density. Conclusions For the first time, evidence is being presented supporting that

  6. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network.

    PubMed

    Fish, Jason E; Cantu Gutierrez, Manuel; Dang, Lan T; Khyzha, Nadiya; Chen, Zhiqi; Veitch, Shawn; Cheng, Henry S; Khor, Melvin; Antounians, Lina; Njock, Makon-Sébastien; Boudreau, Emilie; Herman, Alexander M; Rhyner, Alexander M; Ruiz, Oscar E; Eisenhoffer, George T; Medina-Rivera, Alejandra; Wilson, Michael D; Wythe, Joshua D

    2017-07-01

    The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis. © 2017. Published by The Company of Biologists Ltd.

  7. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.

    PubMed

    Leach, J Kent; Kaigler, Darnell; Wang, Zhuo; Krebsbach, Paul H; Mooney, David J

    2006-06-01

    Bioactive glasses are potentially useful as bone defect fillers, and vascular endothelial growth factor (VEGF) has demonstrated benefit in bone regeneration as well. We hypothesized that the specific combination of prolonged localized VEGF presentation from a matrix coated with a bioactive glass may enhance bone regeneration. To test this hypothesis, the capacity of VEGF-releasing polymeric scaffolds with a bioactive glass coating was examined in vitro and in vivo using a rat critical-sized defect model. In the presence of a bioactive glass coating, we did not detect pronounced differences in the differentiation of human mesenchymal stem cells in vitro. However, we observed significantly enhanced mitogenic stimulation of endothelial cells in the presence of the bioactive glass coating, with an additive effect with VEGF release. This trend was maintained in vivo, where coated VEGF-releasing scaffolds demonstrated significant improvements in blood vessel density at 2 weeks versus coated control scaffolds. At 12 weeks, bone mineral density was significantly increased in coated VEGF-releasing scaffolds versus coated controls, while only a slight increase in bone volume fraction was observed. The results of this study suggest that a bioactive glass coating on a polymeric substrate participates in bone healing through indirect processes which enhance angiogenesis and bone maturation and not directly on osteoprogenitor differentiation and bone formation. The mass of bioactive glass used in this study provides a comparable and potentially additive, response to localized VEGF delivery over early time points. These studies demonstrate a materials approach to achieve an angiogenic response formerly limited to the delivery of inductive growth factors.

  8. Targeting VEGF/VEGFRs Pathway in the Antiangiogenic Treatment of Human Cancers by Traditional Chinese Medicine.

    PubMed

    Zhang, Cheng; Wang, Ning; Tan, Hor-Yue; Guo, Wei; Li, Sha; Feng, Yibin

    2018-05-01

    Bearing in mind the doctrine of tumor angiogenesis hypothesized by Folkman several decades ago, the fundamental strategy for alleviating numerous cancer indications may be the strengthening application of notable antiangiogenic therapies to inhibit metastasis-related tumor growth. Under physiological conditions, vascular sprouting is a relatively infrequent event unless when specifically stimulated by pathogenic factors that contribute to the accumulation of angiogenic activators such as the vascular endothelial growth factor (VEGF) family and basic fibroblast growth factor (bFGF). Since VEGFs have been identified as the principal cytokine to initiate angiogenesis in tumor growth, synthetic VEGF-targeting medicines containing bevacizumab and sorafenib have been extensively used, but prominent side effects have concomitantly emerged. Traditional Chinese medicines (TCM)-derived agents with distinctive safety profiles have shown their multitarget curative potential by impairing angiogenic stimulatory signaling pathways directly or eliciting synergistically therapeutic effects with anti-angiogenic drugs mainly targeting VEGF-dependent pathways. This review aims to summarize ( a) the up-to-date understanding of the role of VEGF/VEGFR in correlation with proangiogenic mechanisms in various tissues and cells; ( b) the elaboration of antitumor angiogenesis mechanisms of 4 representative TCMs, including Salvia miltiorrhiza, Curcuma longa, ginsenosides, and Scutellaria baicalensis; and ( c) circumstantial clarification of TCM-driven therapeutic actions of suppressing tumor angiogenesis by targeting VEGF/VEGFRs pathway in recent years, based on network pharmacology.

  9. The Regulation of Vascular Endothelial Growth Factor by Hypoxia and Prostaglandin F2α during Human Endometrial Repair

    PubMed Central

    Maybin, Jacqueline A.; Hirani, Nikhil; Brown, Pamela; Jabbour, Henry N.

    2011-01-01

    Context: The human endometrium has an exceptional capacity for repeated repair after menses, but its regulation remains undefined. Premenstrually, progesterone levels fall and prostaglandin (PG) F2α synthesis increases, causing spiral arteriole constriction. We hypothesized that progesterone withdrawal, PGF2α, and hypoxia increase vascular endothelial growth factor (VEGF), an endometrial repair factor. Design and Results: Endometrial biopsies were collected (n = 47) with ethical approval and consent. VEGF mRNA, quantified by quantitative RT-PCR, was increased during menstruation (P < 0.01).VEGF protein was maximally secreted from proliferative endometrial explants. Treatment of an endometrial epithelial cell line and primary human endometrial stromal cells with 100 nm PGF2α or hypoxia (0.5% O2) resulted in significant increases in VEGF mRNA and protein. VEGF was maximal when cells were cotreated with PGF2α and hypoxia simultaneously (P < 0.05–0.001). Secretory-phase endometrial explants also showed an increase in VEGF with cotreatment (P < 0.05). However, proliferative-phase explants showed no increase in VEGF on treatment with PGF2α and/or hypoxia. Proliferative tissue was induced to increase VEGF mRNA expression when exposed to progesterone and its withdrawal in vitro but only in the presence of hypoxia and PG. Hypoxia-inducible factor-1α (HIF-1α) silencing with RNA interference suppressed hypoxia-induced VEGF expression in endometrial cells but did not alter PGF2α-induced VEGF expression. Conclusions: Endometrial VEGF is increased at the time of endometrial repair. Progesterone withdrawal, PGF2α, and hypoxia are necessary for this perimenstrual VEGF expression. Hypoxia acts via HIF-1α to increase VEGF, whereas PGF2α acts in a HIF-1α-independent manner. Hence, two pathways regulate the expression of VEGF during endometrial repair. PMID:21677035

  10. Effects of crocin and voluntary exercise, alone or combined, on heart VEGF-A and HOMA-IR of HFD/STZ induced type 2 diabetic rats.

    PubMed

    Ghorbanzadeh, V; Mohammadi, M; Dariushnejad, H; Chodari, L; Mohaddes, G

    2016-10-01

    Hyperglycemia is the main risk factor for microvascular complications in type 2 diabetes. Crocin and voluntary exercise have anti-hyperglycemic effects in diabetes. In this research, we evaluated the effects of crocin and voluntary exercise alone or combined on glycemia control and heart level of VEGF-A. Animals were divided into eight groups as: control (con), diabetes (Dia), crocin (Cro), voluntary exercise (Exe), crocin and voluntary exercise (Cro-Exe), diabetic-crocin (Dia-Cro), diabetic-voluntary exercise (Dia-Exe), diabetic-crocin-voluntary exercise (Dia-Cro-Exe). Type 2 diabetes was induced by a high-fat diet (4 weeks) and injection of streptozotocin (STZ) (i.p, 35 mg/kg). Animals received oral administration of crocin (50 mg/kg) or performed voluntary exercise alone or together for 8 weeks. Oral glucose tolerance test (OGTT) was performed on overnight fasted control, diabetic and treated rats after 8 weeks of treatment. Then, serum insulin and heart VEGF-A protein levels were measured. Crocin combined with voluntary exercise significantly decreased blood glucose levels (p < 0.001) and insulin resistance (HOMA-IR) (p < 0.001) compared to diabetic group. VEGF-A level was significantly (p < 0.01) lower in Dia group compared to control group. The combination of crocin and voluntary exercise significantly enhanced VEGF-A protein levels in Dia-Cro-Exe and Cro-Exe group compared to diabetic and control groups, respectively; p < 0.001 and p < 0.05. Crocin combined with voluntary exercise improved insulin resistance (HOMA-IR) and reduced glucose levels in diabetic rats. Since both crocin and voluntary exercise can increase VEGF-A protein expression in heart tissue, they probably are able to increase angiogenesis in diabetic animals.

  11. Synergistically combined gene delivery for enhanced VEGF secretion and anti-apoptosis

    PubMed Central

    Won, Young-Wook; Lee, Minhyung; Kim, Hyun Ah; Nam, Kihoon; Bull, David A.; Kim, Sung Wan

    2013-01-01

    With current pharmacological treatments, preventing the remodeling of the left ventricle and the progression to heart failure is a difficult task. Gene therapy is considered to provide a direct treatment to the long-term complications of ischemic heart diseases. Although current gene therapies that use single molecular targets seem potentially possible, they have not achieved a success in the treatment of ischemic diseases. With an efficient polymeric gene carrier, PAM-ABP, we designed a synergistically combined gene delivery strategy to enhance vascular endothelial growth factor (VEGF) secretion and prolong anti-apoptotic effects. A hypoxia-inducible plasmid expressing both hypoxia-inducible heme oxygenase-1 (HO-1) and the Src homology domain-2 containing tyrosine phosphatase-1 microRNA (miSHP 1) and a hypoxia-responsive VEGF plasmid were combined in this study. The positive feedback circuit between HO-1 and VEGF, and the negative regulatory role of SHP-1 in angiogenesis enhance VEGF secretion synergistically. The synergy in VEGF secretion as a consequence of the gene combination and the prolonged HO-1 activity was confirmed in hypoxic cardiomyocytes and cardiomyocyte apoptosis under hypoxia, and was decreased synergistically. These results suggest that the synergistic combination of VEGF, HO-1, and miSHP-1 may be promising for the clinical treatment of ischemic diseases. PMID:24007285

  12. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2.

    PubMed

    Incio, Joao; Ligibel, Jennifer A; McManus, Daniel T; Suboj, Priya; Jung, Keehoon; Kawaguchi, Kosuke; Pinter, Matthias; Babykutty, Suboj; Chin, Shan M; Vardam, Trupti D; Huang, Yuhui; Rahbari, Nuh N; Roberge, Sylvie; Wang, Dannie; Gomes-Santos, Igor L; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Tolaney, Sara M; Krop, Ian E; Duda, Dan G; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K

    2018-03-14

    Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation.

    PubMed

    Wei, Ming; Li, Hong; Huang, Huiling; Xu, Desheng; Zhi, Dashi; Liu, Dong; Zhang, Yipei

    2012-03-01

    The extracellular matrix metalloproteinase inducer (EMMPRIN) has been known to play a key regulatory role in pathological angiogenesis. A elevated activation of vascular endothelial growth factor (VEGF) following radiation injury has been shown to mediate blood-brain barrier (BBB) breakdown. However, the roles of EMMPRIN and VEGF in radiation-induced brain injury after gamma knife surgery (GKS) are not clearly understood. In this study, we investigated EMMPRIN changes in a rat model of radiation injury following GKS and examined potential associations between EMMPRIN and VEGF expression. Adult male rats were subjected to cerebral radiation injury by GKS under anesthesia. We found that EMMPRIN and VEGF expression were markedly upregulated in the target area at 8-12 weeks after GKS compared with the control group by western blot, immunohistochemistry, and RT-PCR analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals colocalized with caspase-3 and VEGF-positive cells. Our data also demonstrated that increased EMMPRIN expression was correlated with increased VEGF levels in a temporal manner. This is the first study to show that EMMPRIN and VEGF may play a role in radiation injuries of the central nervous system after GKS.

  14. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hai-dong; Cui, Guo-hong; Yang, Jia-jun

    Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. Thismore » designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.« less

  15. Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A.

    PubMed

    Carranza, Katherine; Veron, Dolores; Cercado, Alicia; Bautista, Noemi; Pozo, Wilson; Tufro, Alda; Veron, Delma

    2015-01-01

    The prevalence of diabetes mellitus increased during the last century and it is estimated that 45% of the patients are not diagnosed. In South America the prevalence of diabetes and chronic kidney disease (CKD) increased, with a great disparity among the countries with respect to access to dialysis. In Ecuador it is one of the main causes of mortality, principally in the provinces located on the coast of the Pacific Ocean. The greatest single cause of beginning dialysis is diabetic nephropathy (DN). Even using the best therapeutic options for DN, the residual risk of proteinuria and of terminal CKD remains high. In this review we indicate the importance of the problem globally and in our region. We analyse relevant cellular and molecular studies that illustrate the crucial significance of glomerular events in DN development and evolution and in insulin resistance. We include basic anatomical, pathophysiological and clinical concepts, with special attention to the role of angiogenic factors such as the vascular endothelial growth factor (VEGF-A) and their relationship to the insulin receptor, endothelial isoform of nitric oxide synthase (eNOS) and angiopoietins. We also propose various pathways that have therapeutic potential in our opinion. Greater in-depth study of VEGF-A and angiopoietins, the state of glomerular VEGF resistance, the relationship of VEGF receptor 2/nephrin, VEGF/insulin receptors/nephrin and the relationship of VEGF/eNOS-NO at glomerular level could provide solutions to the pressing world problem of DN and generate new treatment alternatives. Copyright © 2015. Published by Elsevier España, S.L.U.

  16. Is VEGF under-expressed in Indian children with Perthes disease?

    PubMed

    Tiwari, V; Poudel, R R; Khan, S A; Mehra, S; Chauhan, S S; Raje, A

    2018-04-01

    The role of vascular endothelial growth factor (VEGF) after ischaemic necrosis of the femoral head in Legg-Calve-Perthes disease (LCPD) has not been adequately studied in humans, especially in Indian population. Therefore, we aimed to evaluate the serum levels of VEGF-A in Indian children with various stages of LCPD and compare them with those of an age- and sex-matched control group of healthy children. In this case-control study, we enrolled 42 children (below 14 years age) suffering from LCPD and 21 age- and sex-matched healthy controls. Patients were classified radiographically according to Waldenstrom's classification. Serum VEGF-A was estimated by sandwich enzyme-linked immunosorbent assay technique. The serum values were compared between the patient group and the control group, as well as between the Waldenstrom subgroups. Results were expressed as means with ranges or median with interquartile range. The mean age in the patient as well as the control group was 9 years (range 4-13 years). The median value (interquartile range) of serum VEGF-A was 162.5 pg/ml (673.75 pg/ml) in the patient group and 652 pg/ml (190.5 pg/ml) in the control group (p = 0.013). When compared between lower Waldenstrom stages (initial stage + stage of fragmentation) and higher Waldenstrom stages (re-ossification stage + stage of healing), the mean values of serum VEGF-A were 464.7 pg/ml (range 0-2211 pg/ml) and 301.1 pg/ml (range 0-1910 pg/ml), respectively (p = 0.305). VEGF is under-expressed in Indian children suffering from LCPD. As VEGF acts as a key regulator of endochondral ossification, our finding may open new therapeutic approaches to the disease. Also, serum VEGF may act as a valuable marker for the follow-up of the disease. Our study also provides baseline data about serum VEGF-A levels in Indian cohort of LCPD patients. Future multi-centre studies are warranted with a larger sample size to fully appreciate the patho-physiological changes in VEGF

  17. [Antitumor effect of recombinant Xenopus laevis vascular endothelial growth factor (VEGF) as a vaccine combined with adriamycin on EL4 lymphoma in mice].

    PubMed

    Niu, Ting; Liu, Ting; Jia, Yong-Qian; Liu, Ji-Yan; Wu, Yang; Hu, Bing; Tian, Ling; Yang, Li; Kan, Bing; Wei, Yu-Quan

    2005-09-01

    To explore the antitumor effect of immunotherapy with recombinant Xenopus laevis vascular endothelial growth factor (xVEGF) as a vaccine combined with adriamycin on lymphoma model in mice. EL4 lymphoma model was established in C57BL/6 mice. Mice were randomized into four groups: combination therapy, adriamycin alone, xVEGF alone and normal saline (NS) groups, and then were given relevant treatments. The growth of tumor, the survival rate of tumor-bearing mice, and the potential toxicity of regimens above were observed. Anti-VEGF antibody-producing B cells (APBCs) were detected by enzyme-linked immunospot (ELISPOT) assay. In addition, microvessel density (MVD) of tumor was detected by immunohistochemistry, and tumor cell apoptosis was also detected by TUNEL staining. The tumor volumes of mice were significantly smaller in combination group than those in other three groups (P < 0.05). Complete regression of tumor was observed in 3 of 10 mice in combination group. Forty-eight days after inoculation of tumor cells, the survival rate of mice was significantly higher in combination group than in NS group (P < 0.01). The anti-VEGF APBC count in combination group or xVEGF group was significantly higher, compared with that in adriamycin group or NS group (P < 0.01). MVD in tumor tissues was significantly lower in combination group than those in other three groups (P < 0.05). Moreover, tumor cell apoptosis was significantly higher in combination group than those in other three groups (P < 0.05). In this experimental study, the use of xVEGF vaccine and adriamycin as a combination of immunotherapy with chemotherapy has sucessfully produced synergistic antitumor effect on lymphoma in mice.

  18. Downregulation of guanine nucleotide-binding protein beta 1 (GNB1) is associated with worsened prognosis of clearcell renal cell carcinoma and is related to VEGF signaling pathway.

    PubMed

    Chen, C; Chi, H; Min, L; Junhua, Z

    2017-01-01

    Clear-cell renal cell carcinoma (ccRCC) is characterized by genetic abnormalities, while the role of Guanine Nucleotide-Binding Protein Beta 1 (GNB1) in ccRCC has not been studied. We thus aimed to evaluate the expression and prognostic value of GNB1 in ccRCC. A two-stage study (exploration and validation) was conducted using in silico and immunohistochemical (IHC) scoring of ccRCC samples from our institute, to evaluate the association between GNB1 expression and clinicopathological parameters of ccRCC patients. Pathway analyses were performed for genes coexpressed with GNB1 using the KOBAS platform to profile the function of GNB1 and IHC validation. In the exploration stage, data from TCGA ccRCC dataset were reproduced, which contained 537 patients with ccRCC and found that downregulation of GNB1 was significantly associated with worse prognosis. IHC staining from the Human Protein Atlas showed significantly downregulation of GNB1 in ccRCC tissue compared with normal kidney. Pathway analysis showed significantly altered vascular endothelial growth factor (VEGF) signaling pathways among which expressions of 3 genes (WASF2, NRP1, and HIP1) were significantly associated with GNB1 expression, respectively. In the validation stage, included were 80 ccRCC samples and GNB1 expression was scored using IHC positivity. GNB1 expression was negatively associated with tumor stage, lymph node invasion, metastasis, older age, and increased tumor grade. Female gender and receiving neoadjuvant therapy were also associated with decreased GNB1 expression. The expressions of WASF2, NRP1 and HIP1 were also studied and found that they were significantly associated with GNB1. GNB1 was downregulated in ccRCC. Decreased GNB1 expression was associated with worsened disease characteristics and prognosis. GNB1 was related with VEGF signaling in ccRCC, implying a therapeutic potential of this factor.

  19. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  20. Pathway focused protein profiling indicates differential function for IL-1B, -18 and VEGF during initiation and resolution of lung inflammation evoked by carbon nanoparticle exposure in mice

    PubMed Central

    2009-01-01

    Background Carbonaceous nanoparticles possess an emerging source of human exposure due to the massive release of combustion products and the ongoing revolution in nanotechnology. Pulmonary inflammation caused by deposited nanoparticles is central for their adverse health effects. Epidemiological studies suggest that individuals with favourable lung physiology are at lower risk for particulate matter associated respiratory diseases probably due to efficient control of inflammation and repair process. Therefore we selected a mouse strain C3H/HeJ (C3) with robust lung physiology and exposed it to moderately toxic carbon nanoparticles (CNP) to study the elicited pulmonary inflammation and its resolution. Methods 5 μg, 20 μg and 50 μg CNP were intratracheally (i.t.) instilled in C3 mice to identify the optimal dose for subsequent time course studies. Pulmonary inflammation was assessed using histology, bronchoalveolar lavage (BAL) analysis and by a panel of 62 protein markers. Results 1 day after instillation of CNP, C3 mice exhibited a typical dose response, with the lowest dose (5 μg) representing the 'no effect level' as reflected by polymorphonuclear leucocyte (PMN), and BAL/lung concentrations of pro-inflammatory proteins. Histological analysis and BAL-protein concentration did not reveal any evidence of tissue injury in 20 μg CNP instilled animals. Accordingly time course assessment of the inflammatory response was performed after 3 and 7 days with this dose (20 μg). Compared to day 1, BAL PMN counts were significantly decreased at day 3 and completely returned to normal by day 7. We have identified protein markers related to the acute response and also to the time dependent response in lung and BAL. After complete resolution of PMN influx on day 7, we detected elevated concentrations of 20 markers that included IL1B, IL18, FGF2, EDN1, and VEGF in lung and/or BAL. Biological pathway analysis revealed these factors to be involved in a closely regulated

  1. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma.

    PubMed

    Martini, Maurizio; de Pascalis, Ivana; D'Alessandris, Quintino Giorgio; Fiorentino, Vincenzo; Pierconti, Francesco; Marei, Hany El-Sayed; Ricci-Vitiani, Lucia; Pallini, Roberto; Larocca, Luigi Maria

    2018-05-10

    Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment.

  2. ALA-induced photodynamic effect on vitality, apoptosis, and secretion of vascular endothelial growth factor (VEGF) by colon cancer cells in normoxic environment in vitro.

    PubMed

    Kawczyk-Krupka, A; Sieroń-Stołtny, K; Latos, W; Czuba, Z P; Kwiatek, B; Potempa, M; Wasilewska, K; Król, W; Stanek, A

    2016-03-01

    Cancer therapy is often based on combination of conventional methods of cancer treatment with immunotherapy. Photodynamic therapy (PDT) is one of the immunomodulating methods used in oncology. We examined how PDT influences the secretory activity of colon cancer cells in vitro, especially the secretion of vascular endothelial growth factor (VEGF) in aerobic conditions. We used two cancer cell lines with different malignancy potentials: a metastatic SW620 line and a non-metastatic SW480 line. In the first stage of the experiment, we exposed each cell line to three different concentrations of photosensitizer's precursor: 5-aminolevulinic acid (ALA) and varying levels of light radiation, after which we assessed cell viability and apoptosis induction in these lines, using the MTT and LDH assays. Then, we determined the secretion of VEGF by these cells in aerobic conditions and under the ALA-PDT parameters at which cells presented the highest viability. Photodynamic treatment with ALA did not influence on VEGF secretion by the non-metastatic SW480 cells, but caused a decrease in VEGF secretion by the metastatic SW 620 cell line by 29% (p<0.05). SW 620 cell line secreted more actively VEGF than the SW480 cells, both before and after photo dynamic therapy (p<0.05). The outcome of this in vitro study presented a beneficial effect of ALA-PDT, resulting in a decrease of VEGF secretion in the more malignant SW620 cell lines. Further studies should be considered to confirm the clinical relevance of this finding. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. VEGF165 Stimulates Vessel Density and Vessel Diameter Differently in Angiogenesis and Lymphangiogenesis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Radhakrishnan, Krishnan; DiCorleto, Paul E.; Leontiev, Dmitry; Anand-Apte, Bela; Albarran, Brian; Farr, Andrew G.

    2005-01-01

    Vascular endothelial growth factor-165 (VEGF(sub 165)) stimulated angiogenesis in the quail chorioallantoic membrane (CAM) by vessel expansion from the capillary network. However, lymphangiogenesis was stimulated by the filopodial guidance of tip cells located on blind-ended lymphatic sprouts. As quantified by fractal/generational branching analysis using the computer code VESGEN, vascular density increased maximally at low VEGF concentrations, and vascular diameter increased most at high VEGF concentrations. Increased vascular density and diameter were statistically independent events (r(sub s), -0.06). By fluorescence immunohistochemistry of VEGF receptors VEGFR-1 and VEGFR-2, alpha smooth muscle actin ((alpha) SMA) and a vascular/lymphatic marker, VEGF(sub 165) increased the density and diameter of sprouting lymphatic vessels guided by tip cells (accompanied by the dissociation of lymphatics from blood vessels). Isolated migratory cells expressing (alpha)SMA were recruited to blood vessels, whereas isolated cells expressing VEGFR-2 were recruited primarily to lymphatics. In conclusion, VEGF(sub 165) increased lymphatic vessel density by lymphatic sprouting, but increased blood vessel density by vascular expansion from the capillary network.

  4. Drospirenone reduces inflammatory cytokines, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) expression in human endometriotic stromal cells.

    PubMed

    Makabe, Tomoko; Koga, Kaori; Miyashita, Mariko; Takeuchi, Arisa; Sue, Fusako; Taguchi, Ayumi; Urata, Yoko; Izumi, Gentaro; Takamura, Masashi; Harada, Miyuki; Hirata, Tetsuya; Hirota, Yasushi; Wada-Hiraike, Osamu; Fujii, Tomoyuki; Osuga, Yutaka

    2017-02-01

    Drospirenone has been used as a progestin in oral contraceptives with ethinyl estradiol (DRSP/EE) and is expected to regulate endometriosis, however, the direct effects of drospirenone on endometriosis have not been clarified. The aim of this study was to evaluate the anti-inflammatory, anti-angiogenic and anti-neurogenic effects of drospirenone on endometriotic stromal cells (ESC). ESC isolated from endometriotic tissues were obtained from patients during laparoscopic surgery for ovarian endometriosis. ESC were exposed to IL-1β and cultured in the absence or presence of drospirenone. mRNA expression was evaluated using quantitative RT-PCR, and protein was measured using ELISAs. To evaluate the effect of drospirenone on progesterone receptor (PR) and mineralocorticoid receptor (MR), ESC were transfected with siRNA against PR (siPR) and MR (siMR), and cultured in the presence or absence of drospirenone. Drospirenone significantly decreased IL-6, IL-8, VEGF and NGF mRNA expression by ESC. Drospirenone (10 -5 M) significantly decreased IL-6 secretion and 10 -7 M drospirenone decreased IL-8 and VEGF secretion. Knockdown of PR, but not MR, negated the effects of drospirenone. In summary, this study demonstrates that drospirenone has anti-inflammatory, anti-angiogenic and anti-neurogenic effects on ESC and these effects are mediated by PR. These drospirenone effects may contribute to the regulatory effects of drospirenone-containing oral contraceptives on endometriosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease.

    PubMed

    Yiu, Glenn; Tieu, Eric; Nguyen, Anthony T; Wong, Brittany; Smit-McBride, Zeljka

    2016-10-01

    To employ type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease to suppress ocular angiogenesis by genomic disruption of VEGF-A in human RPE cells. CRISPR sequences targeting exon 1 of human VEGF-A were computationally identified based on predicted Cas9 on- and off-target probabilities. Single guide RNA (gRNA) cassettes with these target sequences were cloned into lentiviral vectors encoding the Streptococcuspyogenes Cas9 endonuclease (SpCas9) gene. The lentiviral vectors were used to infect ARPE-19 cells, a human RPE cell line. Frequency of insertion or deletion (indel) mutations was assessed by T7 endonuclease 1 mismatch detection assay; mRNA levels were assessed with quantitative real-time PCR; and VEGF-A protein levels were determined by ELISA. In vitro angiogenesis was measured using an endothelial cell tube formation assay. Five gRNAs targeting VEGF-A were selected based on the highest predicted on-target probabilities, lowest off-target probabilities, or combined average of both scores. Lentiviral delivery of the top-scoring gRNAs with SpCas9 resulted in indel formation in the VEGF-A gene at frequencies up to 37.0% ± 4.0% with corresponding decreases in secreted VEGF-A protein up to 41.2% ± 7.4% (P < 0.001), and reduction of endothelial tube formation up to 39.4% ± 9.8% (P = 0.02). No significant indel formation in the top three putative off-target sites tested was detected. The CRISPR-Cas9 endonuclease system may reduce VEGF-A secretion from human RPE cells and suppress angiogenesis, supporting the possibility of employing gene editing for antiangiogenesis therapy in ocular diseases.

  6. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  7. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo

    PubMed Central

    Cartland, Siân P.; Genner, Scott W.; Zahoor, Amna; Kavurma, Mary M.

    2016-01-01

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people. PMID:27918462

  8. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo.

    PubMed

    Cartland, Siân P; Genner, Scott W; Zahoor, Amna; Kavurma, Mary M

    2016-12-02

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  9. Anti-citrullinated protein antibody-positive rheumatoid arthritis associated with RS3PE syndrome-like symptoms and an elevated serum vascular endothelial growth factor level in a patient with myasthenia gravis.

    PubMed

    Horai, Yoshiro; Honda, Mai; Nishino, Ayako; Nakashima, Yoshikazu; Suzuki, Takahisa; Kawashiri, Shin-Ya; Ichinose, Kunihiro; Tamai, Mami; Nakamura, Hideki; Motomura, Masakatsu; Origuchi, Tomoki; Kawakami, Atsushi

    2014-01-01

    A 73-year-old man with a history of myasthenia gravis (MG) was diagnosed with rheumatoid arthritis (RA) based on a history of polyarthritis and positivity for anti-citrullinated protein antibodies (ACPA). He presented with a high level of serum vascular endothelial growth factor (VEGF) and RS3PE syndrome-like pitting edema in the extremities, which improved following treatment with low-dose prednisolone. This is an interesting case of ACPA-positive RA associated with RS3PE syndrome-like pitting edema and a high VEGF level.

  10. Changes in the Anatomic and Microscopic Structure and the Expression of HIF-1α and VEGF of the Yak Heart with Aging and Hypoxia

    PubMed Central

    He, Yanyu; Yu, Sijiu; Hu, Junwei; Cui, Yan; Liu, Penggang

    2016-01-01

    The study aimed to identify the changes of anatomic and microscopic structure and the expression and localization of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) in the myocardium and coronary artery of the yak heart adapted to chronic hypoxia with aging. Thirty-two yaks (1 day, 6 months, 1 year, 2 years, and 5 year old) were included, and immunoelectronmicroscopy, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used. Right ventricular hypertrophy was not present in yaks with aging. There was no intima thickening phenomenon in the coronary artery. The ultrastructure of myofibrils, mitochondria, and collagen fibers and the diameter and quantity of collagen changed significantly with aging. The enzymatic activity of complexes I, II, and V increased with age. Immunogold labeling showed the localization of HIF-1α protein in the cytoplasm and nuclei of endothelial cells and cytoplasm of cardiac muscle cells, and VEGF protein in the nuclei and perinuclei areas of smooth muscle cells of coronary artery, and in the cytoplasm and nuclei of endothelial cells. ELISA results showed that HIF-1α secretion significantly increased in the myocardium and coronary artery from an age of 1 day to 2 years of yaks and decreased in old yaks. However, VEGF protein always increased with aging. The findings of this study suggest that 6 months is a key age of yak before which there are some adaptive changes to deal with low-oxygen environment, and there is a maturation of the yak heart from the age of 6 months to 2 years. PMID:26914488

  11. Severity-Related Increase and Cognitive Correlates of Serum VEGF Levels in Alzheimer's Disease ApoE4 Carriers.

    PubMed

    Alvarez, X Anton; Alvarez, Irene; Aleixandre, Manuel; Linares, Carlos; Muresanu, Dafin; Winter, Stefan; Moessler, Herbert

    2018-01-01

    Vascular endothelial growth factor (VEGF) is an angioneurin involved in the regulation of vascular and neural functions relevant for the pathophysiology of Alzheimer's disease (AD), but the influence of AD severity and ApoE4 status on circulating VEGF and its relationship with cognition has not been investigated. We assessed serum VEGF levels and cognitive performance in AD, amnestic mild cognitive impairment (MCI), and control subjects. VEGF levels were higher in AD patients than in MCI cases and controls (p < 0.05) and showed a progressive increase with clinical severity in the whole study population (p < 0.01). Among AD patients, severity-related VEGF elevations were significant in ApoE4 carriers (p < 0.05), but not in non-carriers. Increased VEGF levels were associated with disease severity and showed mild correlations with cognitive impairment that were only consistent for the ADAS-cog+ items remembering test instructions (memory) and maze task (executive functions) in the group of AD patients (p < 0.05). On the other hand, higher VEGF values were related to better memory and language performance in ApoE4 carriers with moderately-severe AD. According to these results showing severity- and ApoE4-related differences in serum VEGF and its cognitive correlates, it is suggested that increases in VEGF levels might represent an endogenous response driven by pathological factors and could entail cognitive benefits in AD patients, particularly in ApoE4 carriers. Our findings support the notion that VEGF constitutes a relevant molecular target to be further explored in AD pathology and therapy.

  12. Sarcoidosis with high serum levels of vascular endothelial growth factor (VEGF), showing RS3PE-like symptoms in extremities.

    PubMed

    Matsuda, Masayuki; Sakurai, Kumi; Fushimi, Tomohisa; Yamamoto, Kanji; Rokuhara, Shiho; Hosaka, Naritoshi; Ikeda, Shu-ichi

    2004-06-01

    We report a patient with sarcoidosis who showed edema in the distal portion of all extremities, particularly the legs, as seen in remitting seronegative symmetrical synovitis with pitting edema (RS3PE). Magnetic resonance imaging demonstrated diffuse abnormal intensity in subcutaneous tissues of both legs, and skin biopsy led to a diagnosis of sarcoidosis. Vascular endothelial growth factor (VEGF) showed a high serum level, which decreased soon after starting oral prednisolone, in parallel with an improvement in the limb edema. In this patient VEGF as well as infiltration by sarcoid granuloma in the skin might have played an important role in the pathogenesis of RS3PE-like symptoms in the extremities. When painful pitting edema is seen predominantly in the distal portion of all extremities, sarcoidosis as well as RS3PE should be considered as a possible diagnosis.

  13. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    PubMed

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  14. Enhanced neuroprotective efficacy of bone marrow mesenchymal stem cells co-overexpressing BDNF and VEGF in a rat model of cardiac arrest-induced global cerebral ischemia

    PubMed Central

    Zhou, Lili; Lin, Qingming; Wang, Peng; Yao, Lan; Leong, Kahong; Tan, Zhiqun; Huang, Zitong

    2017-01-01

    Cardiac arrest-induced global cerebral ischemia injury (CA-GCII) usually leads to a poor neurological outcome without an effective treatment. Bone marrow-derived mesenchymal stem cells (BMMSCs) may provide a potential cell-based therapy against neurologic disorders through induction of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). To optimize the neuroprotective efficacy of BMMSCs further, in this study we have derived BMMSCs, which co-overexpress both BDNF and VEGF, and tested them for the treatment of CA-GCII in a rat model. Lentiviruses that express rat BDNF exon IV or VEGF-A were created using the bicistronic shuttle vectors of pLVX-IRES-ZsGreen1 and pLVX-IRES-tdTomato, respectively. BMMSCs that were co-transduced with the engineered lentiviruses with co-overexpression of both BDNF and VEGF along with corresponding fluorescent protein reporters were injected via jugular vein of rats that just recovered from a cardiac arrest. Animals were then scored for neurofunctional deficits and examined for brain pathology and gene expression relevant to the engraftment seven days after the treatments. We demonstrate that anchorage of lentiviral vector-transduced BMMSCs, which co-overexpressed both BDNF and VEGF in the hippocampus and temporal cortex along with significantly ameliorated brain pathology and improved neurofunctional performance in CA-GCII rats after transplantation. These findings provide a proof of concept for the further validation of engineered BMMSCs for the treatment of CA-GCII patients in clinical practice in the future. PMID:28492549

  15. Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment

    PubMed Central

    Ai, Bin; Bie, Zhixin; Zhang, Shuai; Li, Ailing

    2016-01-01

    Ovarian cancer is one of the gynecologic cancers with the highest mortality, wherein vascular endothelial growth factor (VEGF) is involved in regulating tumor vascularization, growth, migration, and invasion. VEGF-mediated angiogenesis in tumors has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Paclitaxel is a natural antitumor agent in the standard front-line treatment that has significant efficiency to treat advanced cancers, including ovarian cancer. Although platinum/paclitaxel-based chemotherapy has good response rates, most patients eventually relapse because the disease develops drug resistance. We aim to review the recent advances in paclitaxel treatment of ovarian cancer via antiangiogenesis. Single-agent therapy may be used in selected cases of ovarian cancer. However, to prevent drug resistance, drug combinations should be identified for optimal effectiveness and existing therapies should be improved. PMID:27648354

  16. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    PubMed

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  17. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells.

    PubMed

    Wang, Li-Hong; Lin, Chih-Yang; Liu, Shih-Chia; Liu, Guan-Ting; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-06-14

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma.

  18. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners

    PubMed Central

    Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong

    2016-01-01

    The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756

  19. Selective Imaging of VEGFR-1 and VEGFR-2 Using 89Zr-Labeled Single-Chain VEGF Mutants.

    PubMed

    Meyer, Jan-Philip; Edwards, Kimberly J; Kozlowski, Paul; Backer, Marina V; Backer, Joseph M; Lewis, Jason S

    2016-11-01

    Vascular endothelial growth factor-A (VEGF-A) acts via 2 vascular endothelial growth factor receptors, VEGFR-1 and VEGFR-2, that play important and distinct roles in tumor biology. We reasoned that selective imaging of these receptors could provide unique information for diagnostics and for monitoring and optimizing responses to anticancer therapy, including antiangiogenic therapy. Herein, we report the development of 2 first-in-class 89 Zr-labeled PET tracers that enable the selective imaging of VEGFR-1 and VEGFR-2. Functionally active mutants of scVEGF (an engineered single-chain version of pan-receptor VEGF-A with an N-terminal cysteine-containing tag for site-specific conjugation), named scVR1 and scVR2 with enhanced affinity to, respectively, VEGFR-1 and VEGFR-2, were constructed. Parental scVEGF and its receptor-specific mutants were site-specifically derivatized with the 89 Zr chelator desferroxamine B via a 3.4-kDa PEG linker. 89 Zr labeling of the desferroxamine B conjugates furnished scV/Zr, scVR1/Zr, and scVR2/Zr tracers with high radiochemical yield (>87%), high specific activity (≥9.8 MBq/nmol), and purity (>99%). Tracers were tested in an orthotopic breast cancer model using 4T1luc-bearing syngeneic BALB/c mice. For testing tracer specificity, tracers were coinjected with an excess of cold proteins of the same or opposite receptor specificity or pan-receptor scVEGF. PET imaging, biodistribution, and dosimetry studies in mice, as well as immunohistochemical analysis of harvested tumors, were performed. All tracers rapidly accumulated in orthotopic 4T1luc tumors, allowing for the successful PET imaging of the tumors as early as 2 h after injection. Blocking experiments with an excess of pan-receptor or receptor-specific cold proteins indicated that more than 80% of tracer tumor uptake is VEGFR-mediated, whereas uptake in all major organs is not affected by blocking within the margin of error. Critically, blocking experiments indicated that VEGFR

  20. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    PubMed

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Radiolabeling of VEGF165 with 99mTc to evaluate VEGFR expression in tumor angiogenesis.

    PubMed

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D; Szkudlinski, Mariusz W; Agostinelli, Enzo; Dierckx, Rudi A J O; Signore, Alberto

    2017-06-01

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool to noninvasively image tumor lesions and evaluate the efficacy of anti-angiogenic drugs that block the VEGFR pathway. Aim of the present study was to radiolabel the human VEGF165 analogue with 99mTechnetium (99mTc) and to evaluate the expression of VEGFR in both cancer and endothelial cells in the tumor microenvironment. 99mTc-VEGF showed in vitro binding to HUVEC cells and in vivo to xenograft tumors in mice (ARO, K1 and HT29). By comparing in vivo data with immunohistochemical analysis of excised tumors we found an inverse correlation between 99mTc-VEGF165 uptake and VEGF histologically detected, but a positive correlation with VEGF receptor expression (VEGFR1). Results of our studies indicate that endogenous VEGF production by cancer cells and other cells of tumor microenvironment should be taken in consideration when performing scintigraphy with radiolabeled VEGF, because of possible false negative results due to saturation of VEGFRs.

  2. The newest member of the VEGF family.

    PubMed

    Albuquerque, Romulo J C

    2013-05-16

    In this issue of Blood, Singh et al establish the existence of a new soluble isoform of vascular endothelial growth factor receptor 3 (sVEGFR-3), which is synthesized and secreted by corneal epithelial cells; they show that sVEGFR-3 modulates lymphangiogenesis by impounding vascular endothelial growth factor (VEGF) C and rendering it unable to activate its cognate receptors, thereby maintaining the natural alymphatic disposition of the cornea.

  3. Growth factor-functionalized silk membranes support wound healing in vitro.

    PubMed

    Bienert, M; Hoss, M; Bartneck, M; Weinandy, S; Böbel, M; Jockenhövel, S; Knüchel, R; Pottbacker, K; Wöltje, M; Jahnen-Dechent, W; Neuss, S

    2017-08-16

    Chronic wounds represent a serious problem in daily medical routine requiring improved wound care. Silk of the domesticated silkworm (Bombyx mori) has been used to form a variety of biomaterials for medical applications. We genetically engineered B. mori to produce silk functionalized with growth factors to promote wound healing in vitro. In this study FGF-, EGF-, KGF-, PDGF- or VEGF-functionalized silk membranes were compared to native B. mori silk membranes without growth factors for their ability to support wound healing in vitro. All silk membranes were cytocompatible and supported macrophage secretion of neutrophil recruiting factor CXCL1 and monocyte chemoattractant protein 1 (MCP-1). VEGF-functionalized silk significantly outperformed other growth factor-functionalized silk membranes, but not native silk in angiogenesis assays. In addition, EGF- and VEGF-functionalized silk membranes slightly enhanced macrophage adhesion compared to silk without growth factors. In wound healing assays in vitro (reduction of wound lesion), dermal equivalents showed a higher wound healing capacity when covered with EGF-, FGF- or VEGF-functionalized silk membranes compared to native, KGF- or PDGF-functionalized silk membranes. Keratinocyte migration and growth is overstimulated by KGF- and VEGF-functionalized silk membranes. In conclusion, growth factor-functionalized silk membranes prepared from genetically engineered silk worm glands are promising wound dressings for future wound healing therapies.

  4. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease.

    PubMed

    Argaw, Azeb Tadesse; Asp, Linnea; Zhang, Jingya; Navrazhina, Kristina; Pham, Trinh; Mariani, John N; Mahase, Sean; Dutta, Dipankar J; Seto, Jeremy; Kramer, Elisabeth G; Ferrara, Napoleone; Sofroniew, Michael V; John, Gareth R

    2012-07-01

    In inflammatory CNS conditions such as multiple sclerosis (MS), current options to treat clinical relapse are limited, and more selective agents are needed. Disruption of the blood-brain barrier (BBB) is an early feature of lesion formation that correlates with clinical exacerbation, leading to edema, excitotoxicity, and entry of serum proteins and inflammatory cells. Here, we identify astrocytic expression of VEGF-A as a key driver of BBB permeability in mice. Inactivation of astrocytic Vegfa expression reduced BBB breakdown, decreased lymphocyte infiltration and neuropathology in inflammatory and demyelinating lesions, and reduced paralysis in a mouse model of MS. Knockdown studies in CNS endothelium indicated activation of the downstream effector eNOS as the principal mechanism underlying the effects of VEGF-A on the BBB. Systemic administration of the selective eNOS inhibitor cavtratin in mice abrogated VEGF-A-induced BBB disruption and pathology and protected against neurologic deficit in the MS model system. Collectively, these data identify blockade of VEGF-A signaling as a protective strategy to treat inflammatory CNS disease.

  5. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantino Rosa Santos, Susana; Instituto de Biopatologia Quimica, Faculdade de Medicina de Lisboa/Unidade de Biopatologia Vascular, Instituto de Medicina Molecular, Lisbon; Instituto Gulbenkian de Ciencia

    2007-05-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this processmore » required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.« less

  6. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics.

    PubMed

    Lovett, Michael L; Wang, Xiaoqin; Yucel, Tuna; York, Lyndsey; Keirstead, Marc; Haggerty, Linda; Kaplan, David L

    2015-09-01

    Silk hydrogels were formulated with anti-vascular endothelial growth factor (anti-VEGF) therapeutics for sustained ocular drug delivery. Using silk fibroin as a vehicle for delivery, bevacizumab-loaded hydrogel formulations demonstrated sustained release of 3 months or greater in experiments in vitro as well as in vivo using an intravitreal injection model in Dutch-belted rabbits. Using both standard dose (1.25mg bevacizumab/50 μL injection) and high dose (5.0mg bevacizumab/50 μL injection) hydrogel formulations, release concentrations were achieved at day 90 that were equivalent or greater than those achieved at day 30 with the positive standard dose control (single injection (50 μL) of 1.25mg bevacizumab solution), which is estimated to be the therapeutic threshold based on the current dosage administration schedule of 1 injection/month. These gels also demonstrated signs of biodegradation after 3 months, suggesting that repeated injections may be possible (e.g., one injection every 3-6 months or longer). Due to its pharmacokinetic and biodegradation profiles, this delivery system may be used to reduce the frequency of dosing for patients currently enduring treatment using bevacizumab or other anti-VEGF therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Technology evaluation: VEGF165 gene therapy, Valentis Inc.

    PubMed

    Morse, M A

    2001-02-01

    Valentis Inc, formerly GeneMedicine, is developing a vascular endothelial growth factor (VEGF165) non-viral gene therapy using its proprietary PINC polymer for plasmid condensation. Two physician-initiated phase II angioplasty trials are ongoing, one for treating peripheral vascular disease and one for treating coronary artery disease [281714], [347153]. In February 2000, the trials were expected to be completed in the fourth quarter of 2000 [356225]; however, in October 2000, it was reported that the trial for peripheral vascular disease would be completed in the first quarter of 2001 [385232]. In March 2000, Valentis initiated a trial incorporating Valentis's DOTMA-based cationic lipid gene delivery system and the VEGF165 gene with Eurogene's local collar-reservoir delivery device. The trial is designed to demonstrate that the VEGF165 gene, delivered locally to the outside surface of a blood vessel, will transfect and express in the smooth muscle cells of the vessel wall [360683]. In March 1999, Valentis was awarded with a Phase II SBIR grant of $686,260. The aim of grant was to advance the development of non-viral gene therapies for ischemia. Specifically, Valentis intended to select an optimal promoter to be used with the VEGF expression plasmid. Valentis also intended to evaluate the gene therapy system in a rabbit ischemia model and complete the necessary preclinical studies for submission of an IND [318137].

  8. A Systematic Review and Meta-Analysis on the Safety of Vascular Endothelial Growth Factor (VEGF) Inhibitors for the Treatment of Retinopathy of Prematurity

    PubMed Central

    Pertl, Laura; Steinwender, Gernot; Mayer, Christoph; Hausberger, Silke; Pöschl, Eva-Maria; Wackernagel, Werner; Wedrich, Andreas; El-Shabrawi, Yosuf; Haas, Anton

    2015-01-01

    Introduction Laser photocoagulation is the current gold standard treatment for proliferative retinopathy of prematurity (ROP). However, it permanently reduces the visual field and might induce myopia. Vascular endothelial growth factor (VEGF) inhibitors for the treatment of ROP may enable continuing vascularization of the retina, potentially allowing the preservation of the visual field. However, for their use in infants concern remains. This meta-analysis explores the safety of VEGF inhibitors. Methods The Ovid Interface was used to perform a systematic review of the literature in the databases PubMed, EMBASE and the Cochrane Library. Results This meta-analysis included 24 original reports (including 1.457 eyes) on VEGF inhibitor treatment for ROP. The trials were solely observational except for one randomized and two case-control studies. We estimated a 6-month risk of retreatment per eye of 2.8%, and a 6-month risk of ocular complication without the need of retreatment of 1.6% per eye. Systemic complications were only reported as isolated incidents. Discussion VEGF inhibitors seem to be associated with low recurrence rates and ocular complication rates. They may have the benefit of potentially allowing the preservation of visual field and lower rates of myopia. Due to the lack of data, the risk of systemic side effects cannot be assessed. PMID:26083024

  9. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways

    PubMed Central

    ZHU, Xia; OKUBO, Aya; IGARI, Naoki; NINOMIYA, Kentaro; EGASHIRA, Yukari

    2016-01-01

    Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling. PMID:28439487

  10. VEGF: A critical driver for angiogenesis and subsequent tumor growth: An IHC study

    PubMed Central

    Kapoor, Prakhar; Deshmukh, RS

    2012-01-01

    Background: Tumors require blood supply for their growth and dissemination. It is a well accepted paradigm that tumors recruit new blood vessels from the existing circulation (angiogenesis) and this participates in tumor invasion and metastasis. Studies in the literature provide evidence for expression of Vascular Endothelial Growth Factor (VEGF) by the tumor for neo-angiogenesis, which is not only required for the tumor growth but also its metastasis. Based on the literary evidences we carried out an Immuno-Histochemical (IHC) study for VEGF in Oral Squamous Cell Carcinoma (OSCC) tissues to provide a strong link between the factor and oral cancer. Aim: To analyze the expression of VEGF in OSCC tissues of different histological grades, clinical sizes and lymph node status and to use this as an indicator for disease progression by helping in delineating a risk population, that may benefit from an attractive adjuvant therapeutic strategy for OSCC. Settings and Design: Studies published from 1990 till 2010 have only seen the association of VEGF with tumor angiogenesis and its possible role in metastasis. This is the first study that takes into account the clinical status of the lymph nodes and VEGF expressivity in a sample size of 30 cases. Materials and Methods: 30 oral squamous cell carcinoma tissue slides were stained using Hematoxylin and Eosin stain (to confirm the diagnosis) and immunohistochemically using VEGF antibody. IHC stained slides were thereafter evaluated for the positivity and intensity. Statistical Analysis: The result was subjected to statistical analysis using Chi-square test Results and Conclusion: VEGF positivity was seen in approximately. 90% of cases which was independent of histological grade of OSCC. However the intensity increased with the clinical size of cancer and from palpable lymph node to a tender and hard lymph node. PMID:23248460

  11. Effect of Target Therapy on the Content of Transcription and Growth Factors, Protein Kinase TOR, and Activity of Intracellular Proteases in Patients with Metastatic Renal Cell Carcinoma.

    PubMed

    Spirina, L V; Usynin, E A; Kondakova, I V; Yurmazov, Z A; Slonimskaya, E M

    2016-04-01

    We analyzed the dynamics of the expression of transcription factors, VEGF and its receptor VEGFR2, serine-threonine protein kinase mTOR and activity of proteasome and calpain in patients with metastatic renal cancer during therapy with tyrosine kinase inhibitor Votrient and mTOR blocker Afinitor. The expression of hypoxic nuclear factor HIF-1α in the tumor tissue decreased during therapy with the target preparations. The decrease of VEGF and its receptor VEGFR2 was observed only in patients treated with mTOR inhibitor. The increase in calpain activity in the tumor tissue was observed in both groups. These findings extend our understanding of the mechanism of action of target anticancer preparations as allow considering the studied markers as predictors in choosing optimal therapy.

  12. Development of VEGF-loaded PLGA matrices in association with mesenchymal stem cells for tissue engineering

    PubMed Central

    Rosa, A.R.; Steffens, D.; Santi, B.; Quintiliano, K.; Steffen, N.; Pilger, D.A.; Pranke, P.

    2017-01-01

    The association of bioactive molecules, such as vascular endothelial growth factor (VEGF), with nanofibers facilitates their controlled release, which could contribute to cellular migration and differentiation in tissue regeneration. In this research, the influence of their incorporation on a polylactic-co-glycolic acid (PLGA) scaffold produced by electrospinning on cell adhesion and viability and cytotoxicity was carried out in three groups: 1) PLGA/BSA/VEGF; 2) PLGA/BSA, and 3) PLGA. Morphology, fiber diameter, contact angle, loading efficiency and controlled release of VEGF of the biomaterials, among others, were measured. The nanofibers showed smooth surfaces without beads and with interconnected pores. PLGA/BSA/VEGF showed the smallest water contact angle and VEGF released for up to 160 h. An improvement in cell adhesion was observed for the PLGA/BSA/VEGF scaffolds compared to the other groups and the scaffolds were non-toxic for the cells. Therefore, the scaffolds were shown to be a good strategy for sustained delivery of VEGF and may be a useful tool for tissue engineering. PMID:28793048

  13. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation.

    PubMed

    Holfeld, Johannes; Tepeköylü, Can; Blunder, Stefan; Lobenwein, Daniela; Kirchmair, Elke; Dietl, Marion; Kozaryn, Radoslaw; Lener, Daniela; Theurl, Markus; Paulus, Patrick; Kirchmair, Rudolf; Grimm, Michael

    2014-01-01

    Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Hind-limb ischemia was induced in 10-12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium.

  14. EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer.

    PubMed

    Geng, Jian; Li, Xiao; Zhou, Zhanmei; Wu, Chin-Lee; Dai, Meng; Bai, Xiaoyan

    2015-04-10

    Enhancer of Zeste Homologue 2 (EZH2) accounts for aggressiveness and unfavorable prognosis of tumor. We investigated the mechanisms and signaling pathways of EZH2 in non-small cell lung carcinoma (NSCLC) progression. Increased expression of EZH2, vascular endothelial growth factor-A (VEGF-A) and AKT phosphorylation correlated with differentiation, lymph node metastasis, size and TNM stage in NSCLC. There was a positive correlation between EZH2 and VEGF-A expression and high EZH2 expression, as an independent prognostic factor, predicted a shorter overall survival time for NSCLC patients. The expression of VEGF-A and phosphorylated Ser(473)-AKT, cell proliferation, migration and metastasis were enhanced in EZH2-overexpressing A549 cells, but inhibited in parental H2087 cells with EZH2 silencing or GSK126 treatment. AKT activity was enhanced by recombinant human VEGF-165 but suppressed by bevacizumab. An AKT inhibitor MK-2206 blocked VEGF-A expression and AKT phosphorylation in parental H2087 and EZH2-overexpressing A549 cells. EZH2 activity was not affected by either VEGF-A stimulation/depletion or MK-2206 inhibition. These results demonstrate that EZH2 promotes lung cancer progression via the VEGF-A/AKT signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    PubMed Central

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  16. VEGF-A and VEGFR1 SNPs associate with preeclampsia in a Philippine population.

    PubMed

    Amosco, Melissa D; Villar, Van Anthony M; Naniong, Justin Michael A; David-Bustamante, Lara Marie G; Jose, Pedro A; Palmes-Saloma, Cynthia P

    The vascular endothelial growth factor (VEGF) family is important for establishing normal pregnancy, and related single nucleotide polymorphisms (SNPs) are implicated in abnormal placentation and preeclampsia. We evaluated the association between preeclampsia and several VEGF SNPs among Filipinos, an ethnically distinct group with high prevalence of preeclampsia. The genotypes and allelic variants were determined in a case-control study (191 controls and 165 preeclampsia patients) through SNP analysis of VEGF-A (rs2010963, rs3025039) and VEGF-C (rs7664413) and their corresponding receptors VEGFR1 (rs722503, rs12584067, rs7335588) and VEGFR3 (rs307826) from venous blood DNA. VEGF-A rs3025039 C allele has been shown to associate with preeclampsia (odds ratio of 1.648 (1.03-2.62)), while the T allele bestowed an additive effect for the maintenance of normal, uncomplicated pregnancy and against the development of preeclampsia (odds ratio of 0.62 (0.39-0.98)). VEGFR1 rs722503 is associated with preeclampsia occurring at or after the age of 40 years. The results showed that genetic variability of VEGF-A and VEGFR1 are important in the etiology of preeclampsia among Filipinos.

  17. Neutralizing VEGF Decreases Tortuosity and Alters Endothelial Cell Division Orientation in Arterioles and Veins in a Rat Model of ROP

    PubMed Central

    Hartnett, M. Elizabeth; Martiniuk, David; Byfield, Grace; Geisen, Pete; Zeng, Gefei; Bautch, Victoria L.

    2008-01-01

    Purpose To study the effects of vascular endothelial growth factor (VEGF) on endothelial nitric oxide synthetase (eNOS) and retinal vascular tortuosity and cleavage planes in a rat model of retinopathy of prematurity (ROP). Methods Within 4 hours of birth, pups and mothers were cycled between 50% and 10% oxygen daily. At postnatal day (p)12, pups received either intravitreous anti-rat neutralizing antibody to VEGF or control nonimmune rat IgG in one eye and returned to oxygen cycling until p14 when they were placed in room air (RA) for 4 days (50/10 oxygen-induced retinopathy [50/10 OIR]). Tortuosity indices and endothelial cleavage plane angles relative to the long axes of the major retinal vessels during anaphase were calculated from phosphohistone- and Alexa-isolectin-stained retinal flatmounts. Some retinas were processed for eNOS protein or phosphorylated/total eNOS. Results Retinas from 50/10 OIR had increased tortuosity over time with peaks at p12 and p14 (P < 0.001 vs. RA) before the development of intravitreous neovascularization, which peaked at p18. Compared with RA, eNOS/actin in 50/10 OIR retinas was increased at p12 (P = 0.0003) and p14 (P = 0.047). Inhibition of VEGF with a neutralizing antibody decreased tortuosity and caused endothelial mitosis cleavage planes to orient in favor of vessel elongation but did not affect eNOS protein or activation. Conclusions In the 50/10 OIR model, a model with relevance to ROP, arteriolar tortuosity, and venous dilation are increased through VEGF, which influences the orientation of endothelial cell cleavage in major arterioles and veins, independent of eNOS. PMID:18378573

  18. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition.

    PubMed

    Binion, D G; Otterson, M F; Rafiee, P

    2008-11-01

    Angiogenesis, the growth of new blood vessels, is a critical homeostatic mechanism which regulates vascular populations in response to physiological requirements and pathophysiological demand, including chronic inflammation and cancer. The importance of angiogenesis in gastrointestinal chronic inflammation and cancer has been defined, as antiangiogenic therapy has demonstrated benefit in models of inflammatory bowel disease and colon cancer treatment. Curcumin is a natural product undergoing evaluation for the treatment of chronic inflammation, including inflammatory bowel disease (IBD). The effect of curcumin on human intestinal angiogenesis is not defined. The antiangiogenic effect of curcumin on in vitro angiogenesis was examined using primary cultures of human intestinal microvascular endothelial cells (HIMECs), stimulated with vascular endothelial growth factor (VEGF). Curcumin inhibited proliferation, cell migration and tube formation in HIMECs induced by VEGF. Activation of HIMECs by VEGF resulted in enhanced expression of cyclo-oxygenase-2 (COX-2) mRNA, protein and prostaglandin E(2) (PGE(2)) production. Pretreatment of HIMECs with 10 microM curcumin as well as 1 microM NS398, a selective inhibitor of COX-2, resulted in inhibition of COX-2 at the mRNA and protein level and PGE(2) production. Similarly COX-2 expression in HIMECs was significantly inhibited by Jun N-terminal kinase (JNK; SP600125) and p38 mitogen-activated protein kinase (MAPK; SB203580) inhibitors and was reduced by p44/42 MAPK inhibitor (PD098059). Taken together, these data demonstrate an important role for COX-2 in the regulation of angiogenesis in HIMECs via MAPKs. Moreover, curcumin inhibits microvascular endothelial cell angiogenesis through inhibition of COX-2 expression and PGE(2) production, suggesting that this natural product possesses antiangiogenic properties, which warrants further investigation as adjuvant treatment of IBD and cancer.

  19. Sulphonated Formononetin Induces Angiogenesis through Vascular Endothelial Growth Factor/cAMP Response Element-Binding Protein/Early Growth Response 3/Vascular Cell Adhesion Molecule 1 and Wnt/β-Catenin Signaling Pathway.

    PubMed

    Dong, Zhaoju; Shi, Yanan; Zhao, Huijuan; Li, Ning; Ye, Liang; Zhang, Shuping; Zhu, Haibo

    2018-01-01

    Sodium formononetin-3'-sulphonate (Sul-F) is a derivative of the isoflavone formononetin. In this study, we investigated whether Sul-F can regulate angiogenesis and the potential mechanism in vitro. We examined the effects of Sul-F on cell proliferation, cell invasion, and tube formation in the human umbilical vein endothelial cell line (HUVEC). To better understand the mechanism involved, we investigated effects of the following compounds: cAMP response element-binding protein (CREB) inhibitor 2-naphthol-AS-E-phosphate (KG-501), early growth response 3 (Egr-3) siRNA, vascular endothelial growth factor (VEGF) antagonist soluble VEGF receptor 1 (sFlt-1), VEGF receptor 2 blocker SU-1498, Wnt5a antagonist WIF-1 recombinant protein (WIF-1), and inhibitor of Wnt/β-catenin recombinant Dickkopf-1 protein (DKK-1). HUVEC proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). A scratch adhesion test was used to assess cell invasion ability. Matrigel tube formation assay was performed to test capillary tube formation ability. Activation of the VEGF/CREB/Egr-3/Vascular cell adhesion molecule 1 (VCAM-1) pathway in HUVEC was tested by Western blot analysis. Our results suggest that Sul-F induced angiogenesis in vitro by enhancing cell proliferation, invasion, and tube formation. The increase in proliferation and tube formation by Sul-F was counteracted by DKK-1, WIF-1, SU1498, KG-501, sFlt-1, and Egr-3 siRNA. These results may suggest that Sul-F induces angiogenesis in vitro via a programed Wnt/β-catenin pathway and VEGF/CREB/Egr-3/VCAM-1 signaling axis. © 2017 S. Karger AG, Basel.

  20. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells

    PubMed Central

    Lin, Chih-Yang; Liu, Shih-Chia; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-01-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma. PMID:27166194

  1. VEGF-Iron Oxide Conjugate for Dual MR and PET Imaging of Breast Cancer Angiogenesis

    DTIC Science & Technology

    2007-09-01

    with both VEGF121 and PET isotope 64Cu (t1/2 = 12.7 h) and test the dual probe in vitro. Aim 2: To test the PET and mMRI efficacy of the dual...iron oxide nanoparticles conjugated with macrocyclic chelating agent DOTA for 64Cu -labeling and cyclic RGD peptide for integrin alpha(v)beta(3...radionuclide 64Cu without loss of receptor affinity and functional activity of the protein. 64Cu -VEGF is also able to delineate small tumors that are

  2. Inverse Relationship between Serum VEGF Levels and Late In-Stent Restenosis of Drug-Eluting Stents

    PubMed Central

    Shen, Li; Ji, Meng; Cai, Sishi; Chen, Jiahui; Yao, Zhifeng

    2017-01-01

    Late in-stent restenosis (ISR) has raised concerns regarding the long-term efficacy of drug-eluting stents (DES). The role of vascular endothelial growth factor (VEGF) in the pathological process of ISR is controversial. This retrospective study aimed to investigate the relationship between serum VEGF levels and late ISR in patients with DES implantation. A total of 158 patients who underwent angiography follow-up beyond 1 year after intervention were included. The study population was classified into ISR and non-ISR groups. The ISR group was further divided according to follow-up duration and Mehran classification. VEGF levels were significantly lower in the ISR group than in the non-ISR group [96.34 (48.18, 174.14) versus 179.14 (93.59, 307.74) pg/mL, p < 0.0001]. Multivariate regression revealed that VEGF level, procedure age, and low-density lipoprotein cholesterol were independent risk factors for late ISR formation. Subgroup analysis demonstrated that VEGF levels were even lower in the very late (≥5 years) and diffuse ISR group (Mehran patterns II, III, and IV) than in the late ISR group (1–4 years) and the focal ISR group (Mehran pattern I), respectively. Furthermore, significant difference was found between diffuse and focal ISR groups. Serum VEGF levels were inversely associated with late ISR after DES implantation. PMID:28373989

  3. Development of a molecularly imprinted polymer tailored on disposable screen-printed electrodes for dual detection of EGFR and VEGF using nano-liposomal amplification strategy.

    PubMed

    Johari-Ahar, Mohammad; Karami, Pari; Ghanei, Mostafa; Afkhami, Abbas; Bagheri, Hasan

    2018-06-01

    This work demonstrates the development of a gold screen-printed electrode (Au-SPE)-based biosensor modified with a molecularly imprinted polymer and amplified using antibody-conjugated nano-liposomes. The developed biosensor was utilized for dual determination of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) as cancer biomarkers. To prepare this biosensor, Au-SPE was modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) via self-assembly method and then the target proteins (EGFR and VEGF) were covalently attached to the modified SPE. To synthesize the molecularly imprinted polymer, monomers of acrylamide and N,N'-methylenebis(acrylamide) were polymerized around the EGFR and VEGF templates, and to characterize the prepared biosensor, electrochemical impedance spectroscopy was used for analyses of surface changes in the engineered electrodes. To produce reliable electrochemical signals, nano-liposomes which were loaded with Cd(II) and Cu(II) cations and decorated with antibodies specific for EGFR and VEGF were used as an efficient tool for detection of target biomarkers. In the analysis step, potentiometric striping analysis (PSA), as an electrochemical technique, was utilized for sensitive determination of these cations. The limits of detection (LODs) of EGFR and VEGF analyses were found to be 0.01 and 0.005 pg mL -1 with the linear dynamic ranges (LDRs) of 0.05-50000 and 0.01-7000 pg mL -1 , respectively. Moreover, the proposed biosensor was successfully used for sensitive, reproducible, and specific detection of EGFR and VEGF in real samples. Due to the SPE nature of the developed biosensor, we envision that this sensing tool has capability of being integrated with lab-on-a-chip (LOC), microfluidics, and micro total analysis systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro

    PubMed Central

    Cui, Shanshan; Li, Wen; Lv, Xin; Wang, Pengyan; Gao, Yuxia; Huang, Guowei

    2017-01-01

    The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes. PMID:28475147

  5. Multi-Carotenoids at Physiological Levels Inhibit VEGF-Induced Tube Formation of Endothelial Cells and the Possible Mechanisms of Action Both In Vitro and Ex Vivo.

    PubMed

    Huang, Chien-Hao; Huang, Chin-Shiu; Hu, Miao-Lin; Chuang, Cheng-Hung

    2018-01-01

    Carotenoids have been shown to exhibit antiangiogenic activities. Several studies have indicated that carotenoids used in combination were more effective on antioxidation and anticancer actions than carotenoids used singly. However, it is unclear whether multi-carotenoids have antiangiogenic effects. We investigated the effects of multi-carotenoids at physiological plasma levels of Taiwanese (abbreviated as MCT, with a total of 1.4 μM) and Americans (abbreviated as MCA, with a total of 1.8 μM), and of post-supplemental plasma levels (abbreviated as HMC with a total of 3.55 μM) on vascular endothelial growth factor (VEGF)-induced tube formation in human umbilical vein endothelial cells (HUVECs) and rat aortic rings. MCT, MCA, and HMC inhibited VEGF-induced migration, invasion, and tube formation of HUVECs as well as new vessels formation in rat aortic rings. MCT, MCA, and HMC inhibited activities o\\f matrix metalloproteinase (MMP)-2, urokinase plasminogen activator, and phosphorylation of VEGF receptor 2 induced by VEGF. Moreover, MCT, MCA, and HMC significantly upregulated protein expression of tissue inhibitors of MMP-2 and plasminogen activator inhibitor-1. These results demonstrate the antiangiogenic effect of multi-carotenoids both in vitro and ex vivo with possible mechanistic actions involving attenuation of VEGF receptor 2 phosphorylation and extracellular matrix degradation.

  6. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer.

    PubMed

    Semkina, Alevtina S; Abakumov, Maxim A; Skorikov, Alexander S; Abakumova, Tatiana O; Melnikov, Pavel A; Grinenko, Nadejda F; Cherepanov, Sergey A; Vishnevskiy, Daniil A; Naumenko, Victor A; Ionova, Klavdiya P; Majouga, Alexander G; Chekhonin, Vladimir P

    2018-05-03

    In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics. Copyright © 2018. Published by Elsevier Inc.

  7. VEGF inhibitors in metastatic renal cell carcinoma: current therapies and future perspective.

    PubMed

    Choueiri, Toni K

    2011-08-01

    Metastatic renal cell carcinoma (RCC) is predominantly refractory to treatment with traditional cytotoxic chemotherapies, and until recently management options were limited to immunotherapy, palliative care, or phase I trials. The past five years have witnessed a major change in the treatment of advanced RCC with the introduction of targeted therapies that derive their efficacy through affecting angiogenesis. The main class of agents involves drugs that target the vascular endothelial growth factor (VEGF). Several VEGF inhibitors are now approved for the treatment of metastatic RCC. The field is expanding rapidly with goals including 1) developing novel more potent and better tolerated agents and 2) defining the role of combination and sequential anti-VEGF regimens.

  8. Antagonism of EG-VEGF Receptors as Targeted Therapy for Choriocarcinoma Progression In Vitro and In Vivo.

    PubMed

    Traboulsi, Wael; Sergent, Frédéric; Boufettal, Houssine; Brouillet, Sophie; Slim, Rima; Hoffmann, Pascale; Benlahfid, Mohammed; Zhou, Qun Y; Balboni, Gianfranco; Onnis, Valentina; Bolze, Pierre A; Salomon, Aude; Sauthier, Philippe; Mallet, François; Aboussaouira, Touria; Feige, Jean J; Benharouga, Mohamed; Alfaidy, Nadia

    2017-11-15

    Purpose: Choriocarcinoma (CC) is the most malignant gestational trophoblastic disease that often develops from complete hydatidiform moles (CHM). Neither the mechanism of CC development nor its progression is yet characterized. We recently identified endocrine gland-derived vascular endothelial growth factor (EG-VEGF) as a novel key placental growth factor that controls trophoblast proliferation and invasion. EG-VEGF acts via two receptors, PROKR1 and PROKR2. Here, we demonstrate that EG-VEGF receptors can be targeted for CC therapy. Experimental Design: Three approaches were used: (i) a clinical investigation comparing circulating EG-VEGF in control ( n = 20) and in distinctive CHM ( n = 38) and CC ( n = 9) cohorts, (ii) an in vitro study investigating EG-VEGF effects on the CC cell line JEG3, and (iii) an in vivo study including the development of a novel CC mouse model, through a direct injection of JEG3-luciferase into the placenta of gravid SCID-mice. Results: Both placental and circulating EG-VEGF levels were increased in CHM and CC (×5) patients. EG-VEGF increased JEG3 proliferation, migration, and invasion in two-dimensional (2D) and three-dimensional (3D) culture systems. JEG3 injection in the placenta caused CC development with large metastases compared with their injection into the uterine horn. Treatment of the animal model with EG-VEGF receptor's antagonists significantly reduced tumor development and progression and preserved pregnancy. Antibody-array and immunohistological analyses further deciphered the mechanism of the antagonist's actions. Conclusions: Our work describes a novel preclinical animal model of CC and presents evidence that EG-VEGF receptors can be targeted for CC therapy. This may provide safe and less toxic therapeutic options compared with the currently used multi-agent chemotherapies. Clin Cancer Res; 23(22); 7130-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    PubMed

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P < 0.01). The presence of opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A Review of VEGF/VEGFR-Targeted Therapeutics for Recurrent Glioblastoma

    PubMed Central

    Reardon, David A.; Turner, Scott; Peters, Katherine B.; Desjardins, Annick; Gururangan, Sridharan; Sampson, John H.; McLendon, Roger E.; Herndon, James E.; Jones, Lee W.; Kirkpatrick, John P.; Friedman, Allan H.; Vredenburgh, James J.; Bigner, Darell D.; Friedman, Henry S.

    2011-01-01

    Glioblastoma, the most common primary malignant brain tumor among adults, is a highly angiogenic and deadly tumor. Angiogenesis in glioblastoma, driven by hypoxia-dependent and independent mechanisms, is primarily mediated by vascular endothelial growth factor (VEGF), and generates blood vessels with distinctive features. The outcome for patients with recurrent glioblastoma is poor because of ineffective therapies. However, recent encouraging rates of radiographic response and progression-free survival, and adequate safety, led the FDA to grant accelerated approval of bevacizumab, a humanized monoclonal antibody against VEGF, for the treatment of recurrent glioblastoma in May 2009. These results have triggered significant interest in additional antiangiogenic agents and therapeutic strategies for patients with both recurrent and newly diagnosed glioblastoma. Given the potent antipermeability effect of VEGF inhibitors, the Radiologic Assessment in Neuro- Oncology (RANO) criteria were recently implemented to better assess response among patients with glioblastoma. Although bevacizumab improves survival and quality of life, eventual tumor progression is the norm. Better understanding of resistance mechanisms to VEGF inhibitors and identification of effective therapy after bevacizumab progression are currently a critical need for patients with glioblastoma. PMID:21464146

  11. RELATIONSHIP BETWEEN THE PROANGIOGENIC ROLE OF EG-VEGF, CLINICOPATHOLOGICAL CHARACTERISTICS AND SURVIVAL IN TUMORAL OVARY.

    PubMed

    Lozneanu, Ludmila; Avădănei, Roxana; Cîmpean, Anca Maria; Giuşcă, Simona Eliza; Amălinei, Cornelia; Căruntu, Irina-Draga

    2015-01-01

    To prove the presence of EG-VEGF in tumor ovary and to analyze its involvement in the ovarian carcinogenesis, as promoter of angiogenesis, in relationship with the clinicopathological prognostic factors and survival. The study group comprises tumor tissue specimens from 50 cases of surgically treated ovarian cancer that were immunohistochemically investigated. A scoring system based on the percentage of positive cells and the intensity of staining was applied for the semiquantitative assessment of EG-VEGF, as negative or positive. Statistics involved χ2 test, and Kaplan-Meier and log-rank test. EG-VEGF was positive in 35 cases (70%) and negative in 15 cases (30%). Our data confirmed the predominance of EG-VEGF positivity in the serous subiype as compared to endometrioid and clear cell subtypes, and its absence in mucinous subtype. Moreover, we demonstrated that EG-VEGF is overexpressed mainly in high-grade ovarian carcinomas (type II) than in low-grade ones. Significant differences were registered between the EG-VEGF positive or negative expression and tumor stage and histological subtypes, respectively. Survival analysis showed no differences in patient's survival and EG-VEGF positive and negative cases. The analysis of EG-VEGF expression in ovarian tumors points out the relationship between the enhanced potential for tumor angiogenesis and the tumor aggressivity.

  12. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure.

    PubMed

    Wang, Li-Feng; Li, Xiang; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Yao, Bin-Wei; Xu, Xin-Ping; Chang, Gong-Min; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-08-01

    Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.

  13. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Tomlinson, Darren C.; Harrison, Michael A.; Ponnambalam, Sreenivasan

    2015-01-01

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. PMID:26285805

  14. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes

    PubMed Central

    Li, Tingting; Hu, Jianyan; Du, Shanshan; Chen, Yongdong; Wang, Shuai

    2014-01-01

    Purpose Retinal vascular dysfunction caused by vascular endothelial growth factor (VEGF) is the major pathological change that occurs in diabetic retinopathy (DR). It has recently been demonstrated that G protein-coupled receptor 91 (GPR91) plays a major role in both vasculature development and retinal angiogenesis. In this study, we examined the signaling pathways involved in GPR91-dependent VEGF release during the early stages of retinal vascular change in streptozotocin-induced diabetes. Methods Diabetic rats were assigned randomly to receive intravitreal injections of shRNA lentiviral particles targeting GPR91 (LV.shGPR91) or control particles (LV.shScrambled). Accumulation of succinate was assessed by gas chromatography-mass spectrometry (GC-MS). At 14 weeks, the ultrastructure and function of the retinal vessels of diabetic retinas with or without shRNA treatment were assessed using hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and Evans blue dye permeability. The expression of GPR91, extracellular signal-regulated kinases 1 and 2 (ERK1/2) and cyclooxygenase-2 (COX-2) were measured using immunofluorescence and western blotting. COX-2 and VEGF mRNA were determined by quantitative RT–PCR. Prostaglandin E2 (PGE2) and VEGF secretion were detected using an enzyme-linked immunosorbent assay. Results Succinate exhibited abundant accumulation in diabetic rat retinas. The retinal telangiectatic vessels, basement membrane thickness, and Evans blue dye permeability were attenuated by treatment with GPR91 shRNA. In diabetic rats, knockdown of GPR91 inhibited the activities of ERK1/2 and COX-2 as well as the expression of PGE2 and VEGF. Meanwhile, COX-2, PGE2, and VEGF expression was inhibited by ERK1/2 inhibitor U0126 and COX-2 inhibitor NS-398. Conclusions Our data suggest that hyperglycemia causes succinate accumulation and GPR91 activity in retinal ganglion cells, which mediate VEGF-induced retinal vascular change via the ERK1/2/COX-2

  15. VEGF Receptor-2 (Flk-1) Overexpression in Mice Counteracts Focal Epileptic Seizures

    PubMed Central

    Nikitidou, Litsa; Kanter-Schlifke, Irene; Dhondt, Joke; Carmeliet, Peter; Lambrechts, Diether; Kokaia, Mérab

    2012-01-01

    Vascular endothelial growth factor (VEGF) was first described as an angiogenic agent, but has recently also been shown to exert various neurotrophic and neuroprotective effects in the nervous system. These effects of VEGF are mainly mediated by its receptor, VEGFR-2, which is also referred to as the fetal liver kinase receptor 1 (Flk-1). VEGF is up-regulated in neurons and glial cells after epileptic seizures and counteracts seizure-induced neurodegeneration. In vitro, VEGF administration suppresses ictal and interictal epileptiform activity caused by AP4 and 0 Mg2+ via Flk-1 receptor. We therefore explored whether increased VEGF signaling through Flk-1 overexpression may regulate epileptogenesis and ictogenesis in vivo. To this extent, we used transgenic mice overexpressing Flk-1 postnatally in neurons. Intriguingly, Flk-1 overexpressing mice were characterized by an elevated threshold for seizure induction and a decreased duration of focal afterdischarges, indicating anti-ictal action. On the other hand, the kindling progression in these mice was similar to wild-type controls. No significant effects on blood vessels or glia cells, as assessed by Glut1 and GFAP immunohistochemistry, were detected. These results suggest that increased VEGF signaling via overexpression of Flk-1 receptors may directly affect seizure activity even without altering angiogenesis. Thus, Flk-1 could be considered as a novel target for developing future gene therapy strategies against ictal epileptic activity. PMID:22808185

  16. VEGF/Flk1 Signaling Cascade Transactivates Etv2 Gene Expression

    PubMed Central

    Rasmussen, Tara L.; Shi, Xiaozhong; Wallis, Alicia; Kweon, Junghun; Zirbes, Katie M.; Koyano-Nakagawa, Naoko; Garry, Daniel J.

    2012-01-01

    Previous reports regarding the genetic hierarchy between Ets related protein 71 (Er71/Etv2) and Flk1 is unclear. In the present study, we pursued a genetic approach to define the molecular cascade between Etv2 and Flk1. Using a transgenic Etv2-EYFP reporter mouse, we examined the expression pattern of Etv2 relative to Flk1 in the early conceptus. Etv2-EYFP was expressed in subset of Flk1 positive cells during primitive streak stages, suggesting that Flk1 is upstream of Etv2 during gastrulation. Analysis of reporter gene expression in Flk1 and Etv2 mutant mice further supports the hypothesis that Flk1 is necessary for Etv2 expression. The frequency of cells expressing Flk1 in Etv2 mutants is only modestly altered (21% decrease), whereas expression of the Etv2-EYFP transgenic reporter was severely reduced in the Flk1 null background. We further demonstrate using transcriptional assays that, in the presence of Flk1, the Etv2 promoter is activated by VEGF, the Flk1 ligand. Pharmacological inhibition studies demonstrate that VEGF mediated activation is dependent on p38 MAPK, which activates Creb. We identify the VEGF response element in the Etv2 promoter and demonstrate that Creb binds to this motif by EMSA and ChIP assays. In summary, we provide new evidence that VEGF activates Etv2 by signaling through Flk1, which activates Creb through the p38 MAPK signaling cascade. PMID:23185546

  17. Significance of CEA and VEGF as Diagnostic Markers of Colorectal Cancer in Lebanese Patients.

    PubMed

    Dbouk, Hashem A; Tawil, Ayman; Nasr, Fahd; Kandakarjian, Loucine; Abou-Merhi, Raghida

    2007-11-08

    Carcinoembryonic antigen and vascular endothelial growth factors are among the most important prognostic markers of colorectal cancer. Testing for these markers independently has been of limited value in screening for this tumor. The aim of this study is to determine the importance of simultaneous blood CEA and VEGF level determinations in diagnosis of colorectal cancer. Thirty-six patients diagnosed with colorectal cancer along with eight healthy controls were tested by ELISA for CEA and VEGF levels in serum and plasma, respectively. The positive predictive value of these markers was 95.4% for CEA and 89.5% for VEGF, and for combined CEA and VEGF was also high at 88%. Combined CEA and VEGF blood level assay constitutes a useful panel in detecting patients with colorectal cancer. Positive results allow selection of a subgroup of patients with a high tumor risk; therefore, such tests comprise valuable tumor diagnostic tests to add to current detection methods.

  18. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Qingwen; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433; Jiang, Songmin

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, amore » therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.« less

  19. Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment

    PubMed Central

    Lecaros, Rumwald Leo G; Huang, Leaf; Lee, Tsai-Chia; Hsu, Yih-Chih

    2016-01-01

    Photodynamic therapy (PDT) is believed to promote hypoxic conditions to tumor cells leading to overexpression of angiogenic markers such as vascular endothelial growth factor (VEGF). In this study, PDT was combined with lipid–calcium–phosphate nanoparticles (LCP NPs) to deliver VEGF-A small interfering RNA (siVEGF-A) to human head and neck squamous cell carcinoma (HNSCC) xenograft models. VEGF-A were significantly decreased for groups treated with siVEGF-A in human oral squamous cancer cell (HOSCC), SCC4 and SAS models. Cleaved caspase-3 and in situ TdT-mediated dUTP nick-end labeling assay showed more apoptotic cells and reduced Ki-67 expression for treated groups compared to phosphate buffered saline (PBS) group. Indeed, the combined therapy showed significant tumor volume decrease to ~70 and ~120% in SCC4 and SAS models as compared with untreated PBS group, respectively. In vivo toxicity study suggests no toxicity of such LCP NP delivered siVEGF-A. In summary, results suggest that PDT combined with targeted VEGF-A gene therapy could be a potential therapeutic modality to achieve enhanced therapeutic outcome for HNSCC. PMID:26373346

  20. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering

    PubMed Central

    Nourse, Marilyn B.; Halpin, Daniel E.; Scatena, Marta; Mortisen, Derek J.; Tulloch, Nathaniel L.; Hauch, Kip D.; Torok-Storb, Beverly; Ratner, Buddy D.; Pabon, Lil; Murry, Charles E.

    2010-01-01

    Objective Human embryonic stem cells (hESCs) offer a sustainable source of endothelial cells for therapeutic vascularization and tissue engineering, but current techniques for generating these cells remain inefficient. We endeavored to induce and isolate functional endothelial cells from differentiating hESCs. Methods and Results To enhance endothelial cell differentiation above a baseline of ∼2% in embryoid body (EB) spontaneous differentiation, three alternate culture conditions were compared. Vascular endothelial growth factor (VEGF) treatment of EBs showed the best induction, with markedly increased expression of endothelial cell proteins CD31, VE-Cadherin, and von Willebrand Factor, but not the hematopoietic cell marker CD45. CD31 expression peaked around days 10-14. Continuous VEGF treatment resulted in a four- to five-fold enrichment of CD31+ cells but did not increase endothelial proliferation rates, suggesting a primary effect on differentiation. CD31+ cells purified from differentiating EBs upregulated ICAM-1 and VCAM-1 in response to TNFα, confirming their ability to function as endothelial cells. These cells also expressed multiple endothelial genes and formed lumenized vessels when seeded onto porous poly(2-hydroxyethyl methacrylate) scaffolds and implanted in vivo subcutaneously in athymic rats. Collagen gel constructs containing hESC-derived endothelial cells and implanted into infarcted nude rat hearts formed robust networks of patent vessels filled with host blood cells. Conclusions VEGF induces functional endothelial cells from hESCs independent of endothelial cell proliferation. These enrichment methods increase endothelial cell yield, enabling applications for revascularization as well as basic studies of human endothelial biology. We demonstrate the ability of hESC-derived endothelial cells to facilitate vascularization of tissue-engineered implants. PMID:19875721

  1. SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer

    PubMed Central

    Wang, Chu-An; Jedlicka, Paul; Patrick, Aaron N.; Micalizzi, Douglas S.; Lemmer, Kimberly C.; Deitsch, Erin; Casás-Selves, Matias; Harrell, J. Chuck; Ford, Heide L.

    2012-01-01

    An association between lymph node metastasis and poor prognosis in breast cancer was observed decades ago. However, the mechanisms by which tumor cells infiltrate the lymphatic system are not completely understood. Recently, it has been proposed that the lymphatic system has an active role in metastatic dissemination and that tumor-secreted growth factors stimulate lymphangiogenesis. We therefore investigated whether SIX1, a homeodomain-containing transcription factor previously associated in breast cancer with lymph node positivity, was involved in lymphangiogenesis and lymphatic metastasis. In a model in which human breast cancer cells were injected into immune-compromised mice, we found that SIX1 expression promoted peritumoral and intratumoral lymphangiogenesis, lymphatic invasion, and distant metastasis of breast cancer cells. SIX1 induced transcription of the prolymphangiogenic factor VEGF-C, and this was required for lymphangiogenesis and lymphatic metastasis. Using a mouse mammary carcinoma model, we found that VEGF-C was not sufficient to mediate all the metastatic effects of SIX1, indicating that SIX1 acts through additional, VEGF-C–independent pathways. Finally, we verified the clinical significance of this prometastatic SIX1/VEGF-C axis by demonstrating coexpression of SIX1 and VEGF-C in human breast cancer. These data define a critical role for SIX1 in lymphatic dissemination of breast cancer cells, providing a direct mechanistic explanation for how VEGF-C expression is upregulated in breast cancer, resulting in lymphangiogenesis and metastasis. PMID:22466647

  2. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    PubMed

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds.

    PubMed

    Yu, Yuanman; Chen, Jie; Chen, Rui; Cao, Lingyan; Tang, Wei; Lin, Dan; Wang, Jing; Liu, Changsheng

    2015-05-13

    Rapid and controlled vascularization within scaffolds remains one of the key limitations in tissue engineering applications. This study describes the fabrication and characterization of 2-N,6-O-sulfated chitosan (26SCS)-coated hierarchical scaffold composed of poly(lactic-co-glycolic acid) (PLGA) microspheres, as a desirable vehicle for vascular endothelial growth factor (VEGF) delivery and consequent angiogenic boosting in vitro. Owing to the hierarchical porous structure and high affinity between VEGF and 26SCS, the 26SCS-modified PLGA (S-PLGA) scaffold possesses excellent entrapment and sustained release of VEGF. Using human umbilical vein endothelial cells (HUVECs) as a cell model, the VEGF-loaded S-PLGA scaffold shows desirable cell viability and attachment. The bioactivity of released VEGF is validated by intracellular nitric oxide secretion and capillary tube formation, demonstrating the improved capacity of VEGF-mediated pro-angiogenesis ascribed to 26SCS incorporation. Such a strategy will afford an effective method to prepare a scaffold with promoted angiogenesis.

  4. EG-VEGF Maintenance Over Early Gestation to Develop a Pregnancy-Induced Hypertensive Animal Model.

    PubMed

    Reynaud, Déborah; Sergent, Frédéric; Abi Nahed, Roland; Brouillet, Sophie; Benharouga, Mohamed; Alfaidy, Nadia

    2018-01-01

    During the last decade, multiple animal models have been developed to mimic hallmarks of pregnancy-induced hypertension (PIH) diseases, which include gestational hypertension, preeclampsia (PE), or eclampsia. Converging in vitro, ex vivo, and clinical studies from our group strongly suggested the potential involvement of the new angiogenic factor EG-VEGF (endocrine gland-derived-VEGF) in the development of PIH. Here, we described the protocol that served to demonstrate that maintenance of EG-VEGF production over 11.5 days post coitus (dpc) in the gravid mice caused the development of PIH. The developed model exhibited most hallmarks of preeclampsia.

  5. Mechanism-related circulating proteins as biomarkers for clinical outcome in patients with unresectable hepatocellular carcinoma receiving sunitinib

    PubMed Central

    2011-01-01

    Background Several proteins that promote angiogenesis are overexpressed in hepatocellular carcinoma (HCC) and have been implicated in disease pathogenesis. Sunitinib has antiangiogenic activity and is an oral multitargeted inhibitor of vascular endothelial growth factor receptors (VEGFRs)-1, -2, and -3, platelet-derived growth factor receptors (PDGFRs)-α and -β, stem-cell factor receptor (KIT), and other tyrosine kinases. In a phase II study of sunitinib in advanced HCC, we evaluated the plasma pharmacodynamics of five proteins related to the mechanism of action of sunitinib and explored potential correlations with clinical outcome. Methods Patients with advanced HCC received a starting dose of sunitinib 50 mg/day administered orally for 4 weeks on treatment, followed by 2 weeks off treatment. Plasma samples from 37 patients were obtained at baseline and during treatment and were analyzed for vascular endothelial growth factor (VEGF)-A, VEGF-C, soluble VEGFR-2 (sVEGFR-2), soluble VEGFR-3 (sVEGFR-3), and soluble KIT (sKIT). Results At the end of the first sunitinib treatment cycle, plasma VEGF-A levels were significantly increased relative to baseline, while levels of plasma VEGF-C, sVEGFR-2, sVEGFR-3, and sKIT were significantly decreased. Changes from baseline in VEGF-A, sVEGFR-2, and sVEGFR-3, but not VEGF-C or sKIT, were partially or completely reversed during the first 2-week off-treatment period. High levels of VEGF-C at baseline were significantly associated with Response Evaluation Criteria in Solid Tumors (RECIST)-defined disease control, prolonged time to tumor progression (TTP), and prolonged overall survival (OS). Baseline VEGF-C levels were an independent predictor of TTP by multivariate analysis. Changes from baseline in VEGF-A and sKIT at cycle 1 day 14 or cycle 2 day 28, and change in VEGF-C at the end of the first off-treatment period, were significantly associated with both TTP and OS, while change in sVEGFR-2 at cycle 1 day 28 was an independent

  6. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation.

    PubMed

    Madhu, Vedavathi; Li, Ching-Ju; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2014-01-01

    Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.

  7. VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis

    PubMed Central

    Licht, Tamar; Rothe, Gadiel; Kreisel, Tirzah; Wolf, Brachi; Benny, Ofra; Rooney, Alasdair G.; ffrench-Constant, Charles; Enikolopov, Grigori; Keshet, Eli

    2016-01-01

    Several factors are known to enhance adult hippocampal neurogenesis but a factor capable of inducing a long-lasting neurogenic enhancement that attenuates age-related neurogenic decay has not been described. Here, we studied hippocampal neurogenesis following conditional VEGF induction in the adult brain and showed that a short episode of VEGF exposure withdrawn shortly after the generation of durable new vessels (but not under conditions where newly made vessels failed to persist) is sufficient for neurogenesis to proceed at a markedly elevated level for many months later. Continual neurogenic increase over several months was not accompanied by accelerated exhaustion of the neuronal stem cell (NSC) reserve, thereby allowing neurogenesis to proceed at a markedly elevated rate also in old mice. Neurogenic enhancement by VEGF preconditioning was, in part, attributed to rescue of age-related NSC quiescence. Remarkably, VEGF caused extensive NSC remodelling manifested in transition of the enigmatic NSC terminal arbor onto long cytoplasmic processes engaging with and spreading over even remote blood vessels, a configuration reminiscent of early postnatal “juvenile” NSCs. Together, these findings suggest that VEGF preconditioning might be harnessed for long-term neurogenic enhancement despite continued exposure to an “aged” systemic milieu. PMID:27849577

  8. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    PubMed

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  9. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells.

    PubMed

    Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk

    2015-12-01

    The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.

  10. Localization and signaling patterns of vascular endothelial growth factors and receptors in human periapical lesions.

    PubMed

    Virtej, Anca; Løes, Sigbjørn S; Berggreen, Ellen; Bletsa, Athanasia

    2013-05-01

    Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key players in vasculogenesis and are also involved in pathologic conditions with bone destruction. Vasculogenesis is critical for disease progression, and bone resorption is a hallmark of apical periodontitis. However, the localization of VEGFs and VEGFRs and their gene signaling pathways in human apical periodontitis have not been thoroughly investigated. The aim of this study was to localize VEGFs and VEGFRs and analyze their gene expression as well as signaling pathways in human periapical lesions. Tissue was collected after endodontic surgery from patients diagnosed with chronic apical periodontitis. Periodontal ligament samples from extracted healthy wisdom teeth was also collected and used as control tissue. In lesion cryosections, VEGFs/VEGFRs were identified by immunohistochemistry/double immunofluorescence by using specific antibodies. A human VEGF signaling polymerase chain reaction array system was used for gene expression analysis comparing lesions with periodontal ligament samples. The histologic evaluation revealed heterogeneous morphology of the periapical lesions with various degrees of inflammatory infiltrates. In the lesions, all investigated factors and receptors were identified in blood vessels and various immune cells. No lymphatic vessels were detected. Gene expression analysis revealed up-regulation of VEGF-A and VEGFR-3, although not significant. Phosphatidylinositol-3-kinases, protein kinase C, mitogen-activated protein kinases, and phospholipases, all known to be involved in VEGF-mediated angiogenic activity, were significantly up-regulated. The cellular and vascular expressions of VEGFs and VEGFRs in chronic apical periodontitis, along with significant alterations of genes mediating VEGF-induced angiogenic responses, suggest ongoing vascular remodeling in established chronic periapical lesions. Copyright © 2013 American Association of Endodontists. Published by

  11. Thicker carotid intima-media thickness and increased plasma VEGF levels suffered by post-acute thrombotic stroke patients.

    PubMed

    Yueniwati, Yuyun; Darmiastini, Ni Komang; Arisetijono, Eko

    2016-01-01

    Atherosclerosis causes reduction of the oxygen supply to structures in the far arterial wall, provoking the release of factors that drive angiogenesis of vasa vasorum, including VEGF. Other studies have revealed the inflammatory response in atherosclerosis and the role of platelet factor 4 (PF4) as an anti-angiogenic chemokine through the inhibition of VEGF. This cross-sectional study aims at measuring the effect of atherosclerosis assessed through carotid intima-media thickness (CIMT) against plasma VEGF levels in patients with post-acute thrombotic stroke. CIMT was assessed sonographically using GE Logiq S6 with 13 MHz frequency linear probe. VEGF-A plasma levels were measured using enzyme-linked immunosorbent assay (ELISA) method. Differences among variables were compared statistically. The data were analyzed using Pearson correlation. A total of 25 patients with post-acute thrombotic stroke were identified in days 7 to 90. CIMT thickening was indicated in 88% of patients (1.202 ± 0.312 mm), while an increase in plasma VEGF was identified in all patients (178.28 ± 93.96 ng/mL). There was no significant correlation between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke ( p =0.741). A significant correlation was recognized between CIMT and total cholesterol ( p =0.029) and low-density lipoprotein ( p =0.018). There were no significant correlations between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke. However, plasma VEGF increased in patients with thrombotic stroke. CIMT measurement is a promising noninvasive modality to assess the vascular condition of patients with stroke and diabetes, while plasma VEGF cannot specifically assess vascular condition as it can be triggered by ischemic conditions in tissues of the whole body.

  12. Systemic pretreatment with dimethyloxalylglycine increases myocardial HIF-1α and VEGF production and improves functional recovery after acute ischemia/reperfusion.

    PubMed

    Poynter, Jeffrey A; Manukyan, Mariuxi C; Wang, Yue; Brewster, Benjamin D; Herrmann, Jeremy L; Weil, Brent R; Abarbanell, Aaron M; Meldrum, Daniel R

    2011-08-01

    Stem cells protect the heart from ischemic damage in part by the release of cytoprotective growth factors, particularly vascular endothelial growth factor (VEGF). Production of VEGF is regulated in part by levels of the transcription factor hypoxia inducible factor 1-α (HIF-1α). Dimethyloxalylglycine (DMOG) prevents the deactivation of HIF-1α and increases VEGF production. However, the effects of systemic DMOG treatment on myocardial tolerance for ischemia are unknown. We hypothesized that systemic pretreatment with DMOG would improve myocardial ischemic tolerance. To study this hypothesis, adult male rats were randomly given an intraperitoneal injection of DMOG (40 mg/kg in 1 mL saline, n = 5) or saline (1 mL, n = 6) 24 h before cardiectomy and isolated heart perfusion. All hearts were subjected to 15 min equilibration, 25 min ischemia and 40 min reperfusion. Myocardial function was continuously monitored. Following reperfusion, myocardial homogenates were analyzed for HIF-1α and VEGF production. We observed that hearts in the DMOG group exhibited greater recovery of left ventricular developed pressure LVDP, +dP/dt and -dP/dt. Myocardial HIF-1α and VEGF levels were increased by DMOG therapy. In conclusion, systemic pretreatment with DMOG augments post-ischemic myocardial functional recovery through increased HIF-1α levels and greater VEGF production. Copyright © 2011 Mosby, Inc. All rights reserved.

  13. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells.

    PubMed

    Izuta, Hiroshi; Shimazawa, Masamitsu; Tsuruma, Kazuhiro; Araki, Yoko; Mishima, Satoshi; Hara, Hideaki

    2009-11-17

    Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis > bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  14. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    PubMed Central

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases. PMID:19917137

  15. Induction of Podocyte-Derived VEGF Ameliorates Podocyte Injury and Subsequent Abnormal Glomerular Development Caused by Puromycin Aminonucleoside

    PubMed Central

    Ma, Ji; Matsusaka, Taiji; Yang, Hai-Chun; Zhong, Jianyong; Takagi, Nobuaki; Fogo, Agnes B.; Kon, Valentina; Ichikawa, Iekuni

    2011-01-01

    Our previous studies using puromycin aminonucleoside (PAN) established that podocyte damage leads to glomerular growth arrest during development and glomerulosclerosis later in life. The present study examined the potential benefit of maintaining podocyte-derived vascular endothelial growth factor (VEGF) in podocyte defense and survival following PAN injury using conditional transgenic podocytes and mice, in which human VEGF-A (hVEGF) transgene expression is controlled by tetracycline responsive element (TRE) promoter and reverse tetracycline transactivator (rtTA) in podocytes. In vitro experiments used primary cultured podocytes harvested from mice carrying podocin-rtTA and TRE-hVEGF transgenes, in which hVEGF can be induced selectively. Induction of VEGF in PAN-exposed podocytes resulted in preservation of intrinsic VEGF, α-actinin-4 and synaptopodin, anti-apoptotic marker Bcl-xL/Bax, as well as attenuation in apoptotic marker cleaved/total caspase-3. In vivo, compared with genotype controls, PAN-sensitive neonatal mice with physiologically relevant levels of podocyte-derived VEGF showed significantly larger glomeruli. Further, PAN-induced up-regulation of desmin, down-regulation of synaptopodin and nephrin, and disruption of glomerular morphology was significantly attenuated in VEGF-induced transgenic mice. Our data indicate that podocyte-derived VEGF provides self-preservation functions, which can rescue the cell following injury and preempt subsequent deterioration of the glomerulus in developing mice. PMID:21451433

  16. EMP2 regulates angiogenesis in endometrial cancer cells through induction of VEGF

    PubMed Central

    Gordon, L K; Kiyohara, M; Fu, M; Braun, J; Dhawan, P; Chan, A; Goodglick, L; Wadehra, M

    2013-01-01

    Understanding tumor-induced angiogenesis is a challenging problem with important consequences for the diagnosis and treatment of cancer. In this study, we define a novel function for epithelial membrane protein-2 (EMP2) in the control of angiogenesis. EMP2 functions as an oncogene in endometrial cancer, and its expression has been linked to decreased survival. Using endometrial cancer xenografts, modulation of EMP2 expression resulted in profound changes to the tumor microvasculature. Under hypoxic conditions, upregulation of EMP2 promoted vascular endothelial growth factors (VEGF) expression through a HIF-1α-dependent pathway and resulted in successful capillary-like tube formation. In contrast, reduction of EMP2 correlated with reduced HIF-1α and VEGF expression with the net consequence of poorly vascularized tumors in vivo. We have previously shown that targeting of EMP2 using diabodies in endometrial cancer resulted in a reduction of tumor load, and since then we have constructed a fully human EMP2 IgG1. Treatment of endometrial cancer cells with EMP2-IgG1 reduced tumor load with a significant improvement in survival. These results support the role of EMP2 in the control of the tumor microenvironment and confirm the cytotoxic effects observed by EMP2 treatment in vivo. PMID:23334331

  17. Protective Effect of Ad-VEGF-Bone Mesenchymal Stem Cells on Cerebral Infarction.

    PubMed

    Chen, Bo; Zhang, Feng; Li, Qiao-Yu; Gong, Aihua; Lan, Qing

    2016-01-01

    To understand the mechanism of intracerebroventricular transplantation of vascular endothelial growth factor (VEGF) genemodified bone mesenchymal stem cells (BMSCs) in rats after cerebral infarction. The middle cerebral artery occlusion ischemia/reperfusion (MCAO I/R) model was established in rats using the Zea-Longa suture method. A recombinant adenovirus (Ad-VEGF) was engineered to express VEGF. The rats were divided into 3 groups. Control BMSC infected with control adenovirus (BMSC-Ad), BMSC infected by Ad-VEGF (BMSC-Ad-VEGF), and phosphate buffered saline (PBS) suspension were injected into the intracerebroventricular system of the rats in groups 1, 2 and 3 respectively, 24 hours after middle cerebral artery occlusion (MCAO). The neurological function of rats was evaluated with the modified Neurological Severity Scores (mNSS). The infarct volume of brain in rats was determined using 2,3,5-triphenyltetrazolium chloride (TTC) stain at 14 days. GFAP and pGSK3β expression of ischemic penumbra was determined using immunohistochemical method. GFAP, pAKT, AKT, and pGSK3β expressions were determined with Western blot. Functional improvement was accelerated in animals receiving BMSC-Ad, while improvement at all times between 7 days and 28 days post MCAO was significantly greater in animals transplanted with BMSC-Ad-VEGF than for other treated animals. The number of GFAP-labeled cells was prevented by post-ischemic BMSC-Ad-VEGF treatment; pMCAO activate the PI3K/AKT/GSK3β pathway to reduce reactive gliosis. Our findings demonstrate that PI3K/AKT/GSK3β pathway could reduce reactive gliosis, ameliorate neurological deficit, diminish the percentage of cerebral infarction volume in rats, and facilitate angiogenesis.

  18. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.

    PubMed

    Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan

    2015-07-01

    Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.

  19. Prognostic Relevance of the Expression of CA IX, GLUT-1, and VEGF in Ovarian Epithelial Cancers

    PubMed Central

    Kim, Kyungbin; Park, Won Young; Kim, Jee Yeon; Sol, Mee Young; Shin, Dong Hun; Park, Do Youn; Lee, Chang Hun; Lee, Jeong Hee

    2012-01-01

    Background Tumor hypoxia is associated with malignant progression and treatment resistance. Hypoxia-related factors, such as carbonic anhydrase IX (CA IX), glucose transporter-1 (GLUT-1), and vascular endothelial growth factor (VEGF) permit tumor cell adaptation to hypoxia. We attempted to elucidate the correlation of these markers with variable clinicopathological factors and overall prognosis. Methods Immunohistochemistry for CA IX, GLUT-1, and VEGF was performed on formalin-fixed, paraffin-embedded tissues from 125 cases of ovarian epithelial cancer (OEC). Results CA IX expression was significantly associated with an endometrioid and mucinous histology, nuclear grade, tumor necrosis, and mitosis. GLUT-1 expression was associated with tumor necrosis and mitosis. VEGF expression was correlated only with disease recurrence. Expression of each marker was not significant in terms of overall survival in OECs; however, there was a significant correlation between poor overall survival rate and high coexpression of these markers. Conclusions The present study suggests that it is questionable whether CA IX, GLUT-1, or VEGF can be used alone as independent prognostic factors in OECs. Using at least two markers helps to predict patient outcomes in total OECs. Moreover, the inhibition of two target gene combinations might prove to be a novel anticancer therapy. PMID:23323103

  20. VEGF-A expression by HSV-1–infected cells drives corneal lymphangiogenesis

    PubMed Central

    Wuest, Todd R.

    2010-01-01

    Inflammatory lymphangiogenesis plays a crucial role in the development of inflammation and transplant rejection. The mechanisms of inflammatory lymphangiogenesis during bacterial infection, toll-like receptor ligand administration, and wound healing are well characterized and depend on ligands for the vascular endothelial grow factor receptor (VEGFR) 3 that are produced by infiltrating macrophages. But inflammatory lymphangiogenesis in nonlymphoid tissues during chronic viral infection is unstudied. Herpes simplex virus 1 (HSV-1) infection of the cornea is a leading cause of blindness and depends on aberrant host immune responses to antigen within the normally immunologically privileged cornea. We report that corneal HSV-1 infection drives lymphangiogenesis and that corneal lymphatics persist past the resolution of infection. The mechanism of HSV-1–induced lymphangiogenesis was distinct from the described mechanisms of inflammatory lymphangiogenesis. HSV-1–elicited lymphangiogenesis was strictly dependent on VEGF-A/VEGFR-2 signaling but not on VEGFR-3 ligands. Macrophages played no role in the induction of lymphangiogenesis and were not a detectable source of VEGF-A. Rather, using VEGF-A reporter transgenic mice, we have identified infected epithelial cells as the primary source of VEGF-A during HSV-1 infection. Our results indicate that HSV-1 directly induces vascularization of the cornea through up-regulation of VEGF-A expression. PMID:20026662

  1. Encapsulated VEGF-secreting cells enhance proliferation of neuronal progenitors in the hippocampus of AβPP/Ps1 mice.

    PubMed

    Antequera, Desiree; Portero, Aitziber; Bolos, Marta; Orive, Gorka; Hernández, Rosa M Rm A; Pedraz, José Luis; Carro, Eva

    2012-01-01

    Vascular endothelial growth factor (VEGF) promotes neurogenesis in the adult hippocampus, but the way in which this process occurs in the Alzheimer's disease (AD) brain is still unknown. We examined the proliferation of neuronal precursors with an ex vivo approach, using encapsulated VEGF secreting cells, in AβPP/PS1 mice, a mouse model of AD. Overexpression of VEGF and VEGF receptor flk-1 was observed in the cerebral cortex from VEGF microcapsules-treated AβPP/PS1 mice at 1, 3 and 6 months after VEGF-microcapsule implantation. Stereological counting of 5-bromodeoxyuridine positive cells revealed that encapsulated VEGF secreting cells significantly enhanced cellular proliferation in the hippocampal dentate gyrus (DG). The number of neuronal precursors in VEGF microcapsules-treated AβPP/PS1 mice was also greater, and this effect remains after 6 months. We also confirmed that encapsulated VEGF secreting cells also stimulated angiogenesis in the cerebral cortex and hippocampal dentate gyrus. In addition, we found that VEGF-microcapsule treatment was associated with a depressed expression and activity of acetylcholinesterase in the hippocampus of AβPP/PS1 mice, a similar pattern as first-line medications for the treatment of AD. We conclude that stereologically-implanted VEGF-microcapsules exert an acute and long-standing neurotrophic effects, and could be utilized to improve potential therapies to control the progression of AD.

  2. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.

    PubMed

    Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; Tayebi, Lobat

    2016-12-01

    Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future. Copyright © 2016. Published by Elsevier B.V.

  3. Collagenase IV plays an important role in regulating hair cycle by inducing VEGF, IGF-1, and TGF-β expression

    PubMed Central

    Hou, Chun; Miao, Yong; Wang, Jin; Wang, Xue; Chen, Chao-Yue; Hu, Zhi-Qi

    2015-01-01

    Background It has been reported that collagenases (matrix metalloproteinase 2 [MMP-2] and matrix metalloproteinase 9 [MMP-9]) are associated with hair cycle, whereas the mechanism of the association is largely unknown. Methods The mice were randomly allocated into four groups: saline, and 5, 10, and 15 nM SB-3CT. Immunohistochemical analysis was employed to examine MMP-2 and MMP-9 protein. Real-time polymerase chain reaction and enzyme-linked immunosorbent assay were performed to determine mRNA and protein levels of VEGF, IGF-1, TGF-β, and GAPDH. Growing hair follicles from anagen phase III–IV were scored based on hematoxylin and eosin staining. Hair regrowth was also evaluated. Results Results showed that mRNA expressions of enzymes changed with a peak at late anagen and a trough at telogen after depilation. Immunostaining showed that the highest expression of MMP-2 was more than that of MMP-9, and the highest expression of enzymes changed during anagen. The localizations of MMP-2 changed from dermal papilla, keratinocyte strand, out of root sheath, and basal plate at early anagen, to hair bulb, inner root sheath, and outer root sheath at late anagen. The localization of MMP-9 changed from partial keratinocyte to dermal papilla at early anagen and to outer root sheath at late anagen. VEGF, IGF-1, and TGF-β have been shown to regulate hair growth. We found mRNA and protein expressions of VEGF and IGF-1 fluctuated with a peak at anagen and a decrease at catagen to telogen. In contrast, mRNA and protein expressions of TGF-β changed with highest and lowest levels at anagen and telogen, respectively. With selective inhibitor of collagenase IV, SB-3CT, mice showed significant suppressed hair growth and decreased expression of VEGF, IGF-1, and TGF-β. The MMPs agonist also significantly increased expression of VEGF, IGF-1, and TGF-β. Meanwhile, SB-3CT treatment significantly suppressed hair growth. Conclusion All these data suggest that the type IV collagenases

  4. Quantification of STAT3 and VEGF expression for molecular diagnosis of lymph node metastasis in breast cancer

    PubMed Central

    Chen, Yujuan; Liu, Ya; Wang, Yu; Li, Wen; Wang, Xiaolu; Liu, Xuejuan; Chen, Yao; Ouyang, Chibin; Wang, Jing

    2017-01-01

    Abstract Background: Axillary lymph node metastasis is associated with increased risk of regional recurrence, distant metastasis, and poor survival in breast malignant neoplasm. Expression of signal transducer and activator of transcription 3 (STAT3) is significantly associated with tumor formation, migration, and invasion in various cancers. In addition, vascular endothelial growth factor (VEGF) expression could promote angiogenesis and increase the risk of tumorigenesis. To determine correlations among STAT3 expression, VEGF, and clinicopathological data on lymph node involvement in breast cancer patients after surgery. Methods: The mRNA expression levels of STAT3 and VEGFs were measured in 45 breast invasive ductal carcinoma tissues, 45 peritumoral tissues, and 45 adjacent nontumor tissues by real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Postoperative pathological examination revealed explicit axillary lymph node involvement in all patients. Results: Average mRNA levels of STAT3 and VEGFs were the highest in breast invasive ductal carcinoma tissues, followed by peritumoral tissues. High expression of STAT3 showed significant positive correlation with high axillary lymph node involvement and progesterone receptor (PR), VEGF-C, VEGF-D, and vascular endothelial growth factor receptor (VEGFR)-3 expression. The expression levels of STAT3, VEGF-C, and VEGFR-3 were significantly higher in the tumor tissues of patients with axillary lymph node metastasis than in those of patients without the metastasis. Expression levels of VEGF-C and VEGFR-3 were also significantly higher in peritumoral tissues of patients with axillary lymph node metastasis. Positive correlations were found between STAT3 and VEGF-C/-D mRNA levels. Conclusion: These data suggest that STAT3/VEGF-C/VEGFR-3 signaling pathway plays an important role in carcinogenesis and lymph-angiogenesis. Our findings suggest that STAT3 may be a potential molecular biomarker for

  5. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    PubMed

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  6. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review

    PubMed Central

    Yang, Shiqi; Zhao, Jingke; Sun, Xiaodong

    2016-01-01

    As a progressive chronic disease, age-related macular degeneration (AMD) is the leading cause of irreversible vision impairment worldwide. Experimental and clinical evidence has demonstrated that vascular endothelial growth factor (VEGF) plays a vital role in the formation of choroidal neovascularization. Intravitreal injections of anti-VEGF agents have been recommended as a first-line treatment for neovascular AMD. However, persistent fluid or recurrent exudation still occurs despite standardized anti-VEGF therapy. Patients suffering from refractory or recurrent neovascular AMD may develop mechanisms of resistance to anti-VEGF therapy, which results in a diminished therapeutic effect. Until now, there has been no consensus on the definitions of refractory neovascular AMD and recurrent neovascular AMD. This article aims at clarifying these concepts to evaluate the efficacy of switching drugs, which contributes to making clinical decision more scientifically. Furthermore, insight into the causes of resistance to anti-VEGF therapy would be helpful for developing possible therapeutic approaches, such as combination therapy and multi-target treatment that can overcome this resistance. PMID:27330279

  7. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres.

    PubMed

    Li, Liqun; Pan, Shengsheng; Ni, Binting; Lin, Yuanshao

    2014-08-01

    Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells. © 2014 International Federation for Cell Biology.

  8. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.

    PubMed

    Kimoto, Michiko; Nakamura, Mana; Hirao, Ichiro

    2016-09-06

    A new technology, genetic alphabet expansion using artificial bases (unnatural bases), has created high-affinity DNA ligands (aptamers) that specifically bind to target proteins by ExSELEX (genetic alphabet Expansion for Systematic Evolution of Ligands by EXponential enrichment). We recently found that the unnatural-base DNA aptamers can be stabilized against nucleases, by introducing an extraordinarily stable, unique hairpin DNA (mini-hairpin DNA) and by reinforcing the stem region with G-C pairs. Here, to establish this aptamer generation method, we examined the stabilization of a high-affinity anti-VEGF165 unnatural-base DNA aptamer. The stabilized aptamers displayed significantly increased thermal and nuclease stabilities, and furthermore, exhibited higher affinity to the target. As compared to the well-known anti-VEGF165 RNA aptamer, pegaptanib (Macugen), our aptamers did not require calcium ions for binding to VEGF165 Biological experiments using cultured cells revealed that our stabilized aptamers efficiently inhibited the interaction between VEGF165 and its receptor, with the same or slightly higher efficiency than that of the pegaptanib RNA aptamer. The development of cost-effective and calcium ion-independent high-affinity anti-VEGF165 DNA aptamers encourages further progress in diagnostic and therapeutic applications. In addition, the stabilization process provided additional information about the key elements required for aptamer binding to VEGF165. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Sequential delivery of TAT-HSP27 and VEGF using microsphere/hydrogel hybrid systems for therapeutic angiogenesis.

    PubMed

    Shin, Seung-Hwa; Lee, Jangwook; Lim, Kwang Suk; Rhim, Taiyoun; Lee, Sang Kyung; Kim, Yong-Hee; Lee, Kuen Yong

    2013-02-28

    Ischemic disease is associated with high mortality and morbidity rates, and therapeutic angiogenesis via systemic or local delivery of protein drugs is one potential approach to treat the disease. In this study, we hypothesized that combined delivery of TAT-HSP27 (HSP27 fused with transcriptional activator) and VEGF could enhance the therapeutic efficacy in an ischemic mouse model, and that sequential release could be critical in therapeutic angiogenesis. Alginate hydrogels containing TAT-HSP27 as an anti-apoptotic agent were prepared, and porous PLGA microspheres loaded with VEGF as an angiogenic agent were incorporated into the hydrogels to prepare microsphere/hydrogel hybrid delivery systems. Sequential in vitro release of TAT-HSP27 and VEGF was achieved by the hybrid systems. TAT-HSP27 was depleted from alginate gels in 7 days, while VEGF was continually released for 28 days. The release rate of VEGF was attenuated by varying the porous structures of PLGA microspheres. Sequential delivery of TAT-HSP27 and VEGF was critical to protect against muscle degeneration and fibrosis, as well as to promote new blood vessel formation in the ischemic site of a mouse model. This approach to controlling the sequential release behaviors of multiple drugs could be useful in the design of novel drug delivery systems for therapeutic angiogenesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Comparative Safety and Tolerability of Anti-VEGF therapy in Age-Related Macular Degeneration

    PubMed Central

    Modi, Yasha S.; Tanchon, Carley; Ehlers, Justis P

    2015-01-01

    Neovascular age-related macular degeneration (NVAMD) is one of the leading causes of blindness. Over the last decade, the treatment of NVAMD has been revolutionized by the development intravitreal anti-vascular endothelial growth factor (VEGF) therapies. Several anti-VEGF medications are used for the treatment of NVAMD. The safety and tolerability of these medications deserve review given the high prevalence of NVAMD and the significant utilization of these medications. Numerous large randomized clinical trials have not shown any definitive differential safety relative to ocular or systemic safety of these medications. Intravitreal anti-VEGF therapy does appear to impact systemic VEGF levels, but the implications of these changes remain unclear. One unique safety concern relates drug compounding and the potential risks of contamination, specifically for bevacizumab. Continued surveillance for systemic safety concerns, particularly for rare events is merited. Overall these medications are well tolerated and effective in the treatment of NVAMD. PMID:25700714

  11. A case of angioimmunoblastic T-cell lymphoma with high serum VEGF preceded by RS3PE syndrome.

    PubMed

    Tabeya, Tetsuya; Sugaya, Toshiaki; Suzuki, Chisako; Yamamoto, Motohisa; Kanaseki, Takayuki; Noguchi, Hiroko; Naishiro, Yasuyoshi; Ishida, Tadao; Takahashi, Hiroki; Shinomura, Yasuhisa

    2016-01-01

    We report the case of a 76-year-old man diagnosed with angioimmunoblastic T-cell lymphoma (AITL) with high serum vascular endothelial growth factor (VEGF) preceded by Remitting seronegative symmetrical synovitis with pitting edema syndrome. He suffered respiratory discomfort caused by large amounts of pleural effusion. Interestingly, changes in serum VEGF measured over time were similar to changes in pleural effusion. Whether VEGF is related to the pathological condition of AITL is a very important question.

  12. LQFM030 reduced Ehrlich ascites tumor cell proliferation and VEGF levels.

    PubMed

    da Mota, Mariana Flavia; de Carvalho, Flávio Silva; de Ávila, Renato Ivan; de Ávila, Paulo Henrique Marcelino; Cortez, Alane Pereira; Menegatti, Ricardo; Sabino, José Ricardo; Dos Santos, Thais Rosa Marques; Gomes, Sandro Antônio; da Cunha, Luiz Carlos; Valadares, Marize Campos

    2018-05-15

    This study reports the biological properties of LQFM030 in vivo, a molecular simplification of the compound nutlin-1. Ehrlich ascites tumor (EAT)-bearing mice were treated intraperitoneally with LQFM030 (50, 75 or 150mg/kg) for 10days to determine changes in ascites tumor volume, body weight, cytotoxicity and angiogenesis. Moreover, flow cytometric expression of p53 and p21 proteins and caspase-3/7, -8 and -9 activation were investigated in EAT cells from mice treated. Acute oral systemic toxicity potential of LQFM030 in mice was also investigated using an alternative method. Treatment of EAT-bearing mice with LQFM030 resulted in a marked decline in tumor cell proliferation and the vascular endothelial growth factor (VEGF) levels along with enhanced survival of the mice. Apoptotic tumor cell death was detected through p53 and p21 modulation and increase of caspase-3/7, -8 and -9 activity. LQFM030 also showed orally well tolerated, being classified in the UN GHS category 5 (LD 50 >2000-5000mg/Kg). LQFM030 seems to be a promising antitumor candidate for combinatory therapy with typical cytotoxic compounds, reducing the toxicity burden while allowing a superior anticancer activity. Moreover, these data also open new perspectives for LQFM030 as an antiangiogenic agent for treatment of diseases involving VEGF overexpression. Copyright © 2017. Published by Elsevier Inc.

  13. Elevated VEGF-D Modulates Tumor Inflammation and Reduces the Growth of Carcinogen-Induced Skin Tumors.

    PubMed

    Honkanen, Hanne-Kaisa; Izzi, Valerio; Petäistö, Tiina; Holopainen, Tanja; Harjunen, Vanessa; Pihlajaniemi, Taina; Alitalo, Kari; Heljasvaara, Ritva

    2016-07-01

    Vascular endothelial growth factor D (VEGF-D) promotes the lymph node metastasis of cancer by inducing the growth of lymphatic vasculature, but its specific roles in tumorigenesis have not been elucidated. We monitored the effects of VEGF-D in cutaneous squamous cell carcinoma (cSCC) by subjecting transgenic mice overexpressing VEGF-D in the skin (K14-mVEGF-D) and VEGF-D knockout mice to a chemical skin carcinogenesis protocol involving 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate treatments. In K14-mVEGF-D mice, tumor lymphangiogenesis was significantly increased and the frequency of lymph node metastasis was elevated in comparison with controls. Most notably, the papillomas regressed more often in K14-mVEGF-D mice than in littermate controls, resulting in a delay in tumor incidence and a remarkable reduction in the total tumor number. Skin tumor growth and metastasis were not obviously affected in the absence of VEGF-D; however, the knockout mice showed a trend for reduced lymphangiogenesis in skin tumors and in the untreated skin. Interestingly, K14-mVEGF-D mice showed an altered immune response in skin tumors. This consisted of the reduced accumulation of macrophages, mast cells, and CD4(+) T-cells and an increase of cytotoxic CD8(+) T-cells. Cytokine profiling by flow cytometry and quantitative real time PCR revealed that elevated VEGF-D expression results in an attenuated Th2 response and promotes M1/Th1 and Th17 polarization in the early stage of skin carcinogenesis, leading to an anti-tumoral immune environment and the regression of primary tumors. Our data suggest that VEGF-D may be beneficial in early-stage tumors since it suppresses the pro-tumorigenic inflammation, while at later stages VEGF-D-induced tumor lymphatics provide a route for metastasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Vascular endothelial growth factor (VEGF) gene polymorphisms and breast cancer risk in Punjabi population from North West India.

    PubMed

    Kapahi, Ruhi; Guleria, Kamlesh; Sambyal, Vasudha; Manjari, Mridu; Sudan, Meena; Uppal, Manjit Singh; Singh, Neeti Rajan

    2014-11-01

    The purpose of this study was to evaluate the association of seven VEGF promoter polymorphisms with breast cancer risk in Punjabi population from North West India. We screened DNA samples of 102 sporadic breast cancer patients and 102 unrelated healthy, gender, and age-matched individuals for seven VEGF promoter polymorphisms [-417 C/T (rs833062), -172 C/A (rs59260042), -165 C/T (rs79469752), -160 C/T, -152 G/A (rs13207351), -141 A/C (rs28357093) and -116 G/A (rs1570360)] by direct sequencing. The frequency of GG, GA, and AA genotype of -152 G/A polymorphism was 26.47 vs 38.34%, 46.08 vs 51.96%, and 27.45 vs 9.80%, in patients and controls, respectively. VEGF -152 AA genotype was significantly associated with increased risk for breast cancer (OR = 4.04, 95%CI, 1.69-9.68, p = 0.001; recessive model OR = 3.48, 95%CI, 1.59-7.63, p = 0.001). For VEGF -116 G/A polymorphism, G and A allele frequencies were 65.2 vs 76.47% and 34.8 vs 23.53% in patients and controls, respectively. Individuals having -116 AA genotype (OR = 3.40; 95%CI, 1.24-9.37; p = 0.014) and A allele (OR = 1.73; 95%CI, 1.12-2.67; p = 0.012) were associated with increased risk for breast cancer. VEGF -165 C/T and -141 A/C polymorphisms were associated with reduced risk for breast cancer. There was significantly decreased frequency of CT genotype (4.90 vs 18.63%; p = 0.002) and T allele (2.45 vs 9.31%; p = 0.003) of -165 C/T polymorphism among breast cancer patients as compared to controls. VEGF -141 A and C allele frequency were 96.57 vs 91.18% and 3.43 vs 8.82% in patients and controls, respectively. Significant reduced risk for breast cancer was observed with AC genotype (OR = 0.34, 95%CI, 0.14-0.86; p = 0.019) and C allele (OR = 0.37; 95%CI, 0.15-0.89; p = 0.023) of -141 A/C polymorphism. We did not observe association of VEGF -417 T/C, -172 C/A, -160 C/T polymorphisms with breast cancer risk in the studied subjects (p > 0.05). The VEGF -152 G/A and -116 G/A polymorphisms were found to be significantly

  15. VEGF increases paracellular permeability in brain endothelial cells via upregulation of EphA2.

    PubMed

    Miao, Ziwei; Dong, Yanbin; Fang, Wengang; Shang, Deshu; Liu, Dongxin; Zhang, Ke; Li, Bo; Chen, Yu-Hua

    2014-05-01

    Neurological disorders are associated with an increase in the permeability of human brain microvascular endothelial cells (HBMEC). Our previous findings have indicated that EphA2 could increase the permeability of HBMEC. Recent evidence has linked EphA2 and vascular endothelial growth factor (VEGF) to abnormalities in the vascular response. However, it is unclear whether EphA2 is involved in the VEGF-induced changes in the permeability of HBMEC. Here, changes in permeability were determined by measuring transendothelial electrical resistance (TEER) and the flux of FITC-dextran. We found that knockdown of EphA2 in HBMEC abolished the VEGF-induced reduction in TEER and increase in flux of fluorescent dextran. Moreover, VEGF-induced redistribution of ZO-1 and the recruitment of detergent-soluble occludin and claudin-5 were also prevented. Further results showed that VEGF increased EphA2 expression in a time- and dose-dependent manner, which was inhibited by a neutralizing antibody against VEGFR2 or SU1498. VEGF-induced EphA2 expression was suppressed in the brain endothelium following treatments with the PI3K inhibitor LY294002, Akt inhibitor or transfection with the dominant-negative PI3K mutants (Δp110). Similar results were obtained when ERK1/2 activation was inhibited by PD98059 or ERK1/2 siRNA transfection. Our data suggest that VEGF upregulates the expression of EphA2 in HBMEC through binding to VEGFR2 and subsequently activating the intracellular PI3K/Akt and ERK1/2 signaling pathways, which contribute to an increase in paracellular permeability. These data reveal a novel role for VEGF as a regulator of EphA2 expression in the brain endothelial cells and provide insights into the molecular mechanisms of VEGF-mediated changes in paracellular permeability. Copyright © 2014 Wiley Periodicals, Inc.

  16. Decreased Nephrin and GLEPP-1, But Increased VEGF, Flt-1, and Nitrotyrosine, Expressions in Kidney Tissue Sections From Women With Preeclampsia

    PubMed Central

    Zhao, Shuang; Gu, Xin; Groome, Lynn J.; Wang, Yuping

    2011-01-01

    Renal injury is a common pathophysiological feature in women with preeclampsia as evidenced by increased protein leakage (proteinuria) and glomerular injury (glomerular endotheliosis). Recently, podocyturia was found in preeclampsia, suggesting podocyte shedding occurs in this pregnancy disorder. However, podocyte function in preeclampsia is poorly understood. In this study, the authors have examined podocyte-specific protein expressions for nephrin, glomerular epithelial protein 1 (GLEPP-1), and ezrin in kidney biopsy tissue sections from women with preeclampsia. Expressions for vascular endothelial growth factor (VEGF) and its receptor Flt-1 and oxidative stress marker nitrotyrosine and antioxidant CuZn-superoxide dismutase (CuZn-SOD) were also examined. Kidney tissue sections from nonhypertensive and chronic hypertensive participants were stained as controls. The findings were (1) nephrin and GLEPP-1 were mainly expressed in glomerular podocytes; (2) ezrin was expressed in both glomerular podocytes and tubular epithelial cells; (3) compared to tissue sections from nonhypertensive and chronic hypertensive participants, nephrin and GLEPP-1 expressions were much reduced in tissue sections from preeclampsia and ezrin expression was reduced in podocytes; (4) enhanced VEGF, Flt-1, and nitrotyrosine, but reduced CuZn-SOD, expressions were observed in both glomerular podocytes and endothelial cells in tissue sections from preeclampsia; and (5) the expression pattern for nephrin, GLEPP-1, ezrin, VEGF, Flt-1, and CuZn-SOD were similar between tissue sections from nonhypertensive and chronic hypertensive participants. Although the authors could not conclude from this biopsy study whether the podocyte injury is the cause or effect of the preeclampsia phenotype, the data provide compelling evidence that podocyte injury accompanied by altered angiogenesis process and increased oxidative stress occurs in kidney of patients with preeclampsia. PMID:19528353

  17. Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs

    PubMed Central

    Meng, Gang; Xu, Chun; Song, Yong; Wei, Jiwu

    2015-01-01

    Short interfering RNA (siRNA) targeting angiogenic factors and further inhibiting tumor angiogenesis, is one of the potent antitumor candidates for lung cancer treatment. However, this strategy must be combined with other therapeutics like chemotherapy. In this study, we designed a 5′-triphosphate siRNA targeting VEGF (ppp-VEGF), and showed that ppp-VEGF exerted three distinct antitumor effects: i) inhibition of tumor angiogenesis by silencing VEGF, ii) induction of innate immune responses by activating RIG-I signaling pathway, and thus activate antitumor immunity, iii) induction of apoptosis. In a subcutaneous model of murine lung cancer, ppp-VEGF displayed a potent antitumor effect. Our results provide a multifunctional antitumor molecule that may overcome the shortages of traditional antiangiogenic agents. PMID:26336994

  18. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp; Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui; Mikami, Daisuke

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area bymore » producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.« less

  19. Ginsenoside Rg1 enhances lymphatic transport of intrapulmonary silica via VEGF-C/VEGFR-3 signaling in silicotic rats.

    PubMed

    Yu, Jie; Mao, Lijun; Guan, Li; Zhang, Yanlin; Zhao, Jinyuan

    2016-03-25

    Ginsenoside Rg1, extracted mainly from Panax ginseng, has been shown to exert strong pro-angiogenic activities in vivo. But it is unclear whether ginsenoside Rg1 could promote lung lymphangiogenesis to improve lymphatic transport of intrapulmonary silica in silicotic rats. Here we investigated the effect of ginsenoside Rg1 on lymphatic transport of silica during experimental silicosis, and found that ginsenoside Rg1 treatment significantly raised the silicon content in tracheobronchial lymph nodes and serum to reduce the silicon level in lung interstitium, meanwhile increased pulmonary lymphatic vessel density by enhancing the protein and mRNA expressions of vascular endothelial growth factor-C (VEGF-C) and vascular endothelial growth factor receptor-3 (VEGFR-3). The stimulative effect of ginsenoside Rg1 on lymphatic transport of silica was actively correlated with its pro-lymphangiogenic identity. And VEGFR-3 inhibitor SAR131675 blocked these above effects of ginsenoside Rg1. These findings suggest that ginsenoside Rg1 exhibits good protective effect against lung burden of silica during experimental silicosis through improving lymphatic transport of intrapulmonary silica, which is potentially associated with the activation of VEGF-C/VEGFR-3 signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The multiple roles of EG-VEGF/PROK1 in normal and pathological placental angiogenesis.

    PubMed

    Alfaidy, Nadia; Hoffmann, Pascale; Boufettal, Houssine; Samouh, Naima; Aboussaouira, Touria; Benharouga, Mohamed; Feige, Jean-Jacques; Brouillet, Sophie

    2014-01-01

    Placentation is associated with several steps of vascular adaptations throughout pregnancy. These vascular changes occur both on the maternal and fetal sides, consisting of maternal uterine spiral arteries remodeling and placental vasculogenesis and angiogenesis, respectively. Placental angiogenesis is a pivotal process for efficient fetomaternal exchanges and placental development. This process is finely controlled throughout pregnancy, and it involves ubiquitous and pregnancy-specific angiogenic factors. In the last decade, endocrine gland derived vascular endothelial growth factor (EG-VEGF), also called prokineticin 1 (PROK1), has emerged as specific placental angiogenic factor that controls many aspects of normal and pathological placental angiogenesis such as recurrent pregnancy loss (RPL), gestational trophoblastic diseases (GTD), fetal growth restriction (FGR), and preeclampsia (PE). This review recapitulates EG-VEGF mediated-angiogenesis within the placenta and at the fetomaternal interface and proposes that its deregulation might contribute to the pathogenesis of several placental diseases including FGR and PE. More importantly this paper argues for EG-VEGF clinical relevance as a potential biomarker of the onset of pregnancy pathologies and discusses its potential usefulness for future therapeutic directions.

  1. Dual effects of VEGF-B on activating cardiomyocytes and cardiac stem cells to protect the heart against short- and long-term ischemia-reperfusion injury.

    PubMed

    Li, Guo-Hua; Luo, Bin; Lv, Yan-Xia; Zheng, Fei; Wang, Lu; Wei, Meng-Xi; Li, Xian-Yu; Zhang, Lei; Wang, Jia-Ning; Chen, Shi-You; Tang, Jun-Ming; He, Xiaohua

    2016-05-04

    To investigate whether vascular endothelial growth factor B (VEGF-B) improves myocardial survival and cardiac stem cell (CSC) function in the ischemia-reperfusion (I/R) heart and promotes CSC mobilization and angiogenesis. One hour after myocardial ischemia and infarction, rats were treated with recombinant human VEGF-B protein following 24 h or 7 days of myocardial reperfusion. Twenty-four hours after myocardial I/R, VEGF-B increased pAkt and Bcl-2 levels, reduced p-p38MAPK, LC3-II/I, beclin-1, CK, CK-MB and cTnt levels, triggered cardiomyocyte protection against I/R-induced autophagy and apoptosis, and contributed to the decrease of infarction size and the improvement of heart function during I/R. Simultaneously, an in vitro hypoxia-reoxygenation (H/R)-induced H9c2 cardiomyocyte injury model was used to mimic I/R injury model in vivo; in this model, VEGF-B decreased LDH release, blocked H/R-induced apoptosis by inhibiting cell autophagy, and these special effects could be abolished by the autophagy inducer, rapamycin. Mechanistically, VEGF-B markedly activated the Akt signaling pathway while slightly inhibiting p38MAPK, leading to the blockade of cell autophagy and thus protecting cardiomyocyte from H/R-induced activation of the intrinsic apoptotic pathway. Seven days after I/R, VEGF-B induced the expression of SDF-1α and HGF, resulting in the massive mobilization and homing of c-Kit positive cells, triggering further angiogenesis and vasculogenesis in the infracted heart and contributing to the improvement of I/R heart function. VEGF-B could contribute to a favorable short- and long-term prognosis for I/R via the dual manipulation of cardiomyocytes and CSCs.

  2. Anti-VEGF therapy in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula.

    PubMed

    Seibel, Ira; Hager, Annette; Duncker, Tobias; Riechardt, Aline I; Nürnberg, Daniela; Klein, Julian P; Rehak, Matus; Joussen, Antonia M

    2016-04-01

    The purpose of this study was to describe the anatomical and functional outcome of vascular endothelial growth factor inhibitor (anti-VEGF) treatment in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula. Clinical records from patients seen between 2012 and 2013 at a single academic center were reviewed to identify PEHCR patients receiving anti-VEGF therapy due to disease-associated changes involving the macula. Affected eyes were either treated with consecutive intravitreal injections of anti-VEGF or vitrectomy combined with anti-VEGF followed by pro re nata injections. The mean age of the patients was 76 years (range 70-89 years). In all nine eyes, visual acuity was reduced due to central subretinal fluid. On average, three anti-VEGF injections (range 2-5 injections) were required initially to achieve complete resolution of macular subretinal fluid. In three eyes, subretinal fluid reappeared after an average of 10 months (range 5-16 months), and an average of 2.5 anti-VEGF injections (range 2-3 injections) were necessary to attain complete resolution of macular subretinal fluid a second time. Median visual acuity at the visit before the first injection was 1.0 logMAR (range 2.1-0.4 logMAR) and increased to 0.8 logMAR (range 2-0.1 logMAR) at the last visit. Results of this study show that for cases in which PEHCR becomes symptomatic due to macular involvement, anti-VEGF treatment may have drying potential. Although vision was improved in some patients, it remained limited in cases with long-term macular involvement, precluding any definitive functional conclusion. However, we believe that the use of anti-VEGF agents should be recommended in PEHCR that threatens the macula. Due to its often self-limiting course, peripheral lesions should be closely observed. Larger studies are needed in order to provide clear evidence of the efficacy of anti-VEGF therapy in PEHCR.

  3. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration.

    PubMed

    Hussain, Rehan M; Ciulla, Thomas A

    2017-09-01

    Evolving anti-vascular endothelial growth factor (VEGF) treatments for neovascular age-related macular degeneration (nAMD) include long acting agents, combination strategies involving new pathways, topical agents, sustained-release, and genetic therapy strategies. Areas covered: Brolucizumab and abicipar pegol have smaller molecular size, facilitating higher concentrations and potentially longer duration than current anti-VEGF agents. Agents being combined with anti-VEGFs include OPT-302 (to inhibit VEGF-C and VEGF-D); pegpleranib and rinucumab (to inhibit platelet derived growth factor, PDGF - but both failed to show consistently improved visual outcomes compared to anti-VEGF monotherapy); and RG7716, ARP-1536 and nesvacumab (to activate the Tie-2 tyrosine kinase receptor, which reduces permeability). X-82 is an oral anti-VEGF and anti-PDGF being tested in phase 2 studies. Topical anti-VEGF ± anti-PDGF drugs under study include pazopanib, PAN-90806, squalamine lactate, regorafinib, and LHA510. Sustained-release anti-VEGF delivery treatments, such as the ranibizumab Port Delivery System, GB-102, NT-503, hydrogel depot, Durasert, and ENV1305 aim to reduce the burden of frequent injections. Gene therapies with new viral vectors hold the potential to induce sustained expression of anti-angiogenic proteins via the retina's cellular apparatus, and include AVA-101/201, ADVM-202/302, AAV2-sFLT01, RGX314, and Retinostat. Expert opinion: There are many emerging anti-VEGF treatments that aim to improve visual outcomes and reduce the treatment burden of nAMD.

  4. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment.

    PubMed

    De Francesco, Ernestina M; Sims, Andrew H; Maggiolini, Marcello; Sotgia, Federica; Lisanti, Michael P; Clarke, Robert B

    2017-12-06

    The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor

  5. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulatingmore » the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.« less

  6. VEGF ameliorates the ataxic phenotype in spinocerebellar ataxia type 1 (SCA1) mice

    PubMed Central

    Cvetanovic, Marija; Patel, Jay; Marti, Hugo H; Kini, Ameet R; Opal, Puneet

    2012-01-01

    SCA1 is an adult-onset, dominantly inherited neurodegenerative disease caused by expansion of a glutamine repeat tract in ATXN1. Although the precise function of ATXN1 remains elusive, it appears to play a role in transcriptional repression. We find that mutant ATXN1 suppresses transcription of the neurotrophic and angiogenic factor VEGF. We also show that genetic or pharmacologic replenishment of VEGF mitigates SCA1 pathogenesis, suggesting a novel therapeutic strategy for this incurable disease. PMID:22001907

  7. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells.

    PubMed

    Su, Chen-Ming; Tang, Chih-Hsin; Chi, Meng-Ju; Lin, Chih-Yang; Fong, Yi-Chin; Liu, Yueh-Ching; Chen, Wei-Cheng; Wang, Shih-Wei

    2018-05-03

    Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF.

    PubMed

    Dashnyam, Khandmaa; Jin, Guang-Zhen; Kim, Joong-Hyun; Perez, Roman; Jang, Jun-Hyeog; Kim, Hae-Won

    2017-02-01

    Angiogenic capacity of biomaterials is a key asset to drive vascular ingrowth during tissue repair and regeneration. Here we design a unique angiogenic microcarrier based on sol-gel derived mesoporous silica. The microspheres offer a potential angiogenic stimulator, Si ion, 'intrinsically' within the chemical structure. Furthermore, the highly mesoporous nature allows the loading and release of angiogenic growth factor 'extrinsically'. The Si ion is released from the microcarriers at therapeutic ranges (over a few ppm per day), which indeed up-regulates the expression of hypoxia inducing factor 1α (HIF1α) and stabilizes it by blocking HIF-prolyl hydroxylase 2 (PHD2) in HUVECs. This in turn activates the expression of a series of proangiogenic molecules, including bFGF, VEGF, and eNOS. VEGF is incorporated effectively within the mesopores of microcarriers and is then released continuously over a couple of weeks. The Si ion and VEGF released from the microcarriers synergistically stimulate endothelial cell functions, such as cell migration, chemotactic homing, and tubular networking. Furthermore, in vivo neo-blood vessel sprouting in chicken chorioallantoic membrane model is significantly promoted by the Si/VEGF releasing microcarriers. The current study demonstrates the synergized effects of Si ion and angiogenic growth factor through a biocompatible mesoporous microsphere delivery platform, and the concept provided here may open the door to a new co-delivery system of utilizing ions with growth factors for tissue repair and regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases.

    PubMed

    Rahbari, Nuh N; Kedrin, Dmitriy; Incio, Joao; Liu, Hao; Ho, William W; Nia, Hadi T; Edrich, Christina M; Jung, Keehoon; Daubriac, Julien; Chen, Ivy; Heishi, Takahiro; Martin, John D; Huang, Yuhui; Maimon, Nir; Reissfelder, Christoph; Weitz, Jurgen; Boucher, Yves; Clark, Jeffrey W; Grodzinsky, Alan J; Duda, Dan G; Jain, Rakesh K; Fukumura, Dai

    2016-10-12

    The survival benefit of anti-vascular endothelial growth factor (VEGF) therapy in metastatic colorectal cancer (mCRC) patients is limited to a few months because of acquired resistance. We show that anti-VEGF therapy induced remodeling of the extracellular matrix with subsequent alteration of the physical properties of colorectal liver metastases. Preoperative treatment with bevacizumab in patients with colorectal liver metastases increased hyaluronic acid (HA) deposition within the tumors. Moreover, in two syngeneic mouse models of CRC metastasis in the liver, we show that anti-VEGF therapy markedly increased the expression of HA and sulfated glycosaminoglycans (sGAGs), without significantly changing collagen deposition. The density of these matrix components correlated with increased tumor stiffness after anti-VEGF therapy. Treatment-induced tumor hypoxia appeared to be the driving force for the remodeling of the extracellular matrix. In preclinical models, we show that enzymatic depletion of HA partially rescued the compromised perfusion in liver mCRCs after anti-VEGF therapy and prolonged survival in combination with anti-VEGF therapy and chemotherapy. These findings suggest that extracellular matrix components such as HA could be a potential therapeutic target for reducing physical barriers to systemic treatments in patients with mCRC who receive anti-VEGF therapy. Copyright © 2016, American Association for the Advancement of Science.

  10. VEGF-A/VEGFR-2 signaling plays an important role for the motility of pancreas cancer cells.

    PubMed

    Doi, Yosuke; Yashiro, Masakazu; Yamada, Nobuya; Amano, Ryosuke; Noda, Satoru; Hirakawa, Kosei

    2012-08-01

    Pancreatic cancer is one of the most lethal solid tumors. Vascular endothelial growth factor receptors (VEGFRs) are expressed not only by endothelial cells but also by pancreatic cancer cells. VEGFRs might play an important role for the development of pancreatic cancer cells. The purpose of this study was to evaluate the efficacy of VEGF/VEGFR-2-targeted therapy in pancreatic carcinoma. Five pancreatic carcinoma cell lines were used. The expression level of VEGFR-2 of cancer cells was examined by RT-PCR and Western blot. The effects of VEGFs, bevacizumab as an anti-VEGF antibody, sunitinib as a tyrosine kinase inhibitor against VEGFRs, and VEGF-R2 siRNA on the motility activity of pancreatic cancer cells were examined by invasion assay and wound healing assay. The effect of VEGF, bevacizumab, and sunitinib on the phosphorylation of VEGFR-2 and downstream effecter molecules, MAPK and PI3K, was examined by western blot. Pancreatic cancer cell lines expressed VEGFR-2. VEGF-A significantly increased the motility of pancreas cancer cells, which was inhibited by VEGFR-2 siRNA. Conditioned medium from pancreas cancer cells significantly stimulated the motility of pancreas cancer cells. VEGF/VEGFR inhibitors, bevacizumab and sunitinib, significantly decreased the motility of pancreas cancer cells. VEGFR-2 phosphorylation level of pancreas cancer cells was increased by VEGF-A. Bevacizumab and sunitinib decreased the level of VEGFR-2 phosphorylation, p-ERK, and p-Akt expression. VEGF-A decreased zonula occludens (ZO-1) or ZO-2 expression in pancreas cancer cells. VEGF-A/VEGFR-2 signaling plays an important role in inducing invasion and migration of pancreatic cancer cells.

  11. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases].

    PubMed

    Boufettal, H; Feige, J-J; Benharouga, M; Aboussaouira, T; Nadifi, S; Mahdaoui, S; Samouh, N; Alfaidy, N

    2013-10-01

    Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Evaluation of the presence of VEGF, BMP2 and CBFA1 proteins in autogenous bone graft: histometric and immunohistochemical analysis.

    PubMed

    Guskuma, Marcos Heidy; Hochuli-Vieira, Eduardo; Pereira, Flávia Priscila; Rangel-Garcia, Idelmo; Okamoto, Roberta; Okamoto, Tetuo; Filho, Osvaldo Magro

    2014-06-01

    The purpose of this study was to evaluate the expression of proteins that participate in the osteoinduction stage (VEGF, BMP2 and CBFA1) of the process of bone regeneration of defects created in rat calvariae and filled with autogenous bone block grafts. 10 adult male rats (Rattus norvegicus albinus, Wistar) were used, who received two bone defects measuring 5 mm each in the calvariae. The bone defects constituted two experimental groups (n = 10): Control Group (CONT) (defects filled with a coagulum); Graft Group (GR) (defects filled with autogenous bone removed from the contralateral defect). The animals were submitted to euthanasia at 7 and 30 days post-operatively. Quantitative analysis demonstrated significantly greater bone formation in Group GR, but the presence of the studied proteins was significantly greater in the CONT Group in both time intervals of observation. It was not possible in this study in cortical bone block groups to detect the osteoinductive proteins in a significant amount during the repair process. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Ginkgo biloba exocarp extracts inhibits angiogenesis and its effects on Wnt/β-catenin-VEGF signaling pathway in Lewis lung cancer.

    PubMed

    Han, Dongdong; Cao, Chengjie; Su, Ya; Wang, Jun; Sun, Jian; Chen, Huasheng; Xu, Aihua

    2016-11-04

    A fruit of Ginkgo biloba L. also known as Ginkgo biloba, can be used for the treatment of cancer in Chinese traditional medicine. The scientific name of succulent skin, which is the episperm of Ginkgo nuts, is exocarp. Experiment shows that Ginkgo biloba exocarp extracts (GBEE) has the effects of immune promotion, cancer inhibition and etc. Study on the activity of GBEE against Lewis lung cancer (LLC) angiogenesis and its partial molecular mechanism. The effect of GBEE on proliferation of LLC cells was detected by MTT method in vitro. The metastasis model of LLC was set up. The C57BL/6J mice were randomly separated into normal control, model control, positive control and GBEE (50, 100, 200mg/kg) treatment groups, n=10. The mice in normal group and model group were both intragastric gavage (i.g.) normal saline (NS) in a volume of 0.1mL/10g (b.w.), positive group were intraperitoneal (i.p.) injection cyclophosphamide (CPA) at a dose of 20mg/kg (b.w.) , the GBEE treatment groups were respectively i.g. GBEE 50, 100, and 200mg/kg (b.w.), once a day for 20d. After treatment, we calculated the tumor inhibition rate and anti-metastasis rate. The microvessel density (MVD) was measured by immunohistochemistry method in transplanted tumor. The expression levels of vascular en-dothelial growth factor (VEGF) and VEGFR2 mRNA or Wnt3a, β-catenin, VEGF, VEGFR2 and p-Akt/Akt protein expression were respectively tested by Quantitative Reverse transcription Polymerase chain reaction (qRT-PCR) or western blot in vitro and vivo. GBEE suppressed the growth of LLC cells in a dose-dependent way at the dose of 5, 10, 20, 40, 80 and 160µg/mL in vitro. It can suppressed Wnt3a and β-catenin protein expression and the content of mRNA of VEGF and VEGFR2 in LLC cells significantly. In vivo, we discovered GBEE can retard the growth of LLC transplanted tumor in a dose-dependent way at the dose of 50, 100, 200mg/kg, suppressing tumor lung metastasis. The expression of CD34 was reduced, which

  14. Effects of local gene transfer of VEGF on neointima formation after balloon injury in hypercholesterolemic rabbits

    PubMed Central

    Dulak, Jozef; Schwarzacher, Severin P; Zwick, Ralf H; Alber, Hannes; Millonig, Gunda; Weiss, Caecilia; Hügel, Heike; Frick, Matthias; Jozkowicz, Alicja; Pachinger, Otmar; Weidinger, Franz

    2006-01-01

    Enhancement of the generation of nitric oxide (NO) and vascular endothelial growth factor (VEGF) are suggested to prevent restenosis after angioplasty. Accordingly, we tested whether the local delivery of l-arginine (l-Arg), a substrate for NO generation and the VEGF gene, alone or in combination, can influence neointima formation in hypercholesterolemic rabbits. Balloon injury of the iliac arteries was performed in 24 New Zealand White rabbits fed a 1% cholesterol diet for 3 weeks followed by a local infusion of: (1) pSG5VEGF165 plasmid alone (1000 μg); (2) pSG5VEGF165 (1000 μg) with l-Arg (800 mg); (3) l-Arg (800 mg) alone; and (4) l-Arg (800 mg) with naked pSVβ-gal plasmid (1000 μg). The animals were kept on the hypercholesterolemic diets for a further 28 days, when vessels were taken for morphometric analysis and immunocytochemistry. Endogenous rabbit VEGF concentration in the plasma increased significantly at 7 days after injury (17.06 ± 1.57 vs 23.01 ± 1.9 pg/ml; p < 0.02) and remained elevated for up to 28 days (28.46 ± 5.24; p < 0.01). Injured arteries exhibited strong immunocytochemical staining for rabbit VEGF. Rabbits that received a VEGF gene transfer revealed more prominent neointima formation, whereas treatment with l-Arg was associated with significantly less intimal thickness (p < 0.05). Local transfer of the VEGF gene does not inhibit neointima formation in hypercholesterolemic rabbits. Our results suggest that VEGF gene therapy applied locally in atherosclerotic arteries may not be beneficial. PMID:16444857

  15. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species.

    PubMed

    Monaghan-Benson, Elizabeth; Burridge, Keith

    2009-09-18

    Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.

  16. Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons

    PubMed Central

    Tang, Jin Bo; Wu, Ya Fang; Cao, Yi; Chen, Chuan Hao; Zhou, You Lang; Avanessian, Bella; Shimada, Masaru; Wang, Xiao Tian; Liu, Paul Y.

    2016-01-01

    Tendon injury during limb motion is common. Damaged tendons heal poorly and frequently undergo unpredictable ruptures or impaired motion due to insufficient innate healing capacity. By basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) gene therapy via adeno-associated viral type-2 (AAV2) vector to produce supernormal amount of bFGF or VEGF intrinsically in the tendon, we effectively corrected the insufficiency of the tendon healing capacity. This therapeutic approach (1) resulted in substantial amelioration of the low growth factor activity with significant increases in bFGF or VEGF from weeks 4 to 6 in the treated tendons (p < 0.05 or p < 0.01), (2) significantly promoted production of type I collagen and other extracellular molecules (p < 0.01) and accelerated cellular proliferation, and (3) significantly increased tendon strength by 68–91% from week 2 after AAV2-bFGF treatment and by 82–210% from week 3 after AAV2-VEGF compared with that of the controls (p < 0.05 or p < 0.01). Moreover, the transgene expression dissipated after healing was complete. These findings show that the gene transfers provide an optimistic solution to the insufficiencies of the intrinsic healing capacity of the tendon and offers an effective therapeutic possibility for patients with tendon disunion. PMID:26865366

  17. Serum levels of vascular endothelial growth factor in chronic obstructive pulmonary disease.

    PubMed

    Farid Hosseini, Reza; Jabbari Azad, Farahzad; Yousefzadeh, Hadis; Rafatpanah, Houshang; Hafizi, Saeed; Tehrani, Homan; Khani, Masoud

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a third leading cause of death. In this case control study, we prepared 5 cc bloods from the antecubital vein of 100 COPD patients and 40 healthy individuals as control group. Vascular endothelial growth factor (VEGF) expression protein level was measured by ELISA in both groups. We found that concentration of VEGF in blood serum of patients with COPD (189.9±16pg/ml) was significantly higher than the control group (16.4±3.48pg/ml) (p<0.001). While VEGF serum level in emphysematous patients wasn't significantly different with control group (p=0.07). Furthermore VEGF serum level in COPD patients was proportionally increased with severity of disease (p<0.001). Besides all COPD patients, regardless of their smoking status, were experienced significantly higher levels of VEGF than healthy ones (p=0.001; z=4.3). Our results suggest VEGF serum concentration as the sensitive index for severity and activity of COPD and its prognosis.

  18. Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A.

    PubMed

    Markovic-Mueller, Sandra; Stuttfeld, Edward; Asthana, Mayanka; Weinert, Tobias; Bliven, Spencer; Goldie, Kenneth N; Kisko, Kaisa; Capitani, Guido; Ballmer-Hofer, Kurt

    2017-02-07

    Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases: VEGFR-1, -2, and -3. Partial structures of VEGFR/VEGF complexes based on single-particle electron microscopy, small-angle X-ray scattering, and X-ray crystallography revealed the location of VEGF binding and domain arrangement of individual receptor subdomains. Here, we describe the structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A at 4 Å resolution. We combined X-ray crystallography, single-particle electron microscopy, and molecular modeling for structure determination and validation. The structure reveals the molecular details of ligand-induced receptor dimerization, in particular of homotypic receptor interactions in immunoglobulin homology domains 4, 5, and 7. Functional analyses of ligand binding and receptor activation confirm the relevance of these homotypic contacts and identify them as potential therapeutic sites to allosterically inhibit VEGFR-1 activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A structural model of the VEGF signalling pathway: emergence of robustness and redundancy properties.

    PubMed

    Lignet, Floriane; Calvez, Vincent; Grenier, Emmanuel; Ribba, Benjamin

    2013-02-01

    The vascular endothelial growth factor (VEGF) is known as one of the main promoter of angiogenesis - the process of blood vessel formation. Angiogenesis has been recognized as a key stage for cancer development and metastasis. In this paper, we propose a structural model of the main molecular pathways involved in the endothelial cells response to VEGF stimuli. The model, built on qualitative information from knowledge databases, is composed of 38 ordinary differential equations with 78 parameters and focuses on the signalling driving endothelial cell proliferation, migration and resistance to apoptosis. Following a VEGF stimulus, the model predicts an increase of proliferation and migration capability, and a decrease in the apoptosis activity. Model simulations and sensitivity analysis highlight the emergence of robustness and redundancy properties of the pathway. If further calibrated and validated, this model could serve as tool to analyse and formulate new hypothesis on th e VEGF signalling cascade and its role in cancer development and treatment.

  20. Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB.

    PubMed

    Parajó, Yolanda; D'Angelo, Ivana; Welle, Alexander; Garcia-Fuentes, Marcos; Alonso, María José

    2010-11-01

    The development of a vascular network in tissue-engineered constructs is a fundamental bottleneck of bioregenerative medicine, particularly when the size of the implant exceeds a certain limit given by diffusion lengths and/or if the host tissue shows a very active metabolism. One of the approaches to achieve the vascularization of tissue constructs is generating a sustained release of proangiogenic factors from the ischemic site. This work describes the formation and characterization of hyaluronic acid-chitosan (HA/CS) nanoparticles for the delivery of two pro-angiogenic growth factors: vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF-BB). These nanoparticles were prepared by an ionic gelification technique, and different formulations were developed by encapsulating the growth factors in association with two stabilizing agents: bovine serum albumin or heparin sodium salt. These carriers were characterized with regard to their physicochemical properties, their stability in biological media, and their cytotoxicity in the C3a hepatoma cell line. The results show that nanoparticles around 200 nm can be prepared by this method. HA/CS nanoparticles were stable when incubated in EMEM cell culture medium or in water at 37°C for 24 h. Cell culture tests confirmed that HA/CS nanoparticles are not cytotoxic within the concentration range used for growth factor delivery. Moreover, HA/CS nanoparticles were able to entrap efficiently both growth factors, reaching association values of 94% and 54% for VEGF and PDGF, respectively. In vitro release studies confirm that PDGF-BB is released from HA/CS nanoparticles in a sustained manner over approximately 1 week. On the other hand, VEGF is completely released within the first 24 h.

  1. Modified model of VX2 tumor overexpressing vascular endothelial growth factor.

    PubMed

    Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre

    2012-06-01

    To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  2. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    PubMed

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  3. Mapping of Fab-1:VEGF Interface Using Carboxyl Group Footprinting Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wecksler, Aaron T.; Kalo, Matt S.; Deperalta, Galahad

    2015-12-01

    A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes.

  4. Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3

    PubMed Central

    Xu, Yunling; Yuan, Li; Mak, Judy; Pardanaud, Luc; Caunt, Maresa; Kasman, Ian; Larrivée, Bruno; del Toro, Raquel; Suchting, Steven; Medvinsky, Alexander; Silva, Jillian; Yang, Jian; Thomas, Jean-Léon; Koch, Alexander W.; Alitalo, Kari

    2010-01-01

    Vascular sprouting is a key process-driving development of the vascular system. In this study, we show that neuropilin-2 (Nrp2), a transmembrane receptor for the lymphangiogenic vascular endothelial growth factor C (VEGF-C), plays an important role in lymphatic vessel sprouting. Blocking VEGF-C binding to Nrp2 using antibodies specifically inhibits sprouting of developing lymphatic endothelial tip cells in vivo. In vitro analyses show that Nrp2 modulates lymphatic endothelial tip cell extension and prevents tip cell stalling and retraction during vascular sprout formation. Genetic deletion of Nrp2 reproduces the sprouting defects seen after antibody treatment. To investigate whether this defect depends on Nrp2 interaction with VEGF receptor 2 (VEGFR2) and/or 3, we intercrossed heterozygous mice lacking one allele of these receptors. Double-heterozygous nrp2vegfr2 mice develop normally without detectable lymphatic sprouting defects. In contrast, double-heterozygote nrp2vegfr3 mice show a reduction of lymphatic vessel sprouting and decreased lymph vessel branching in adult organs. Thus, interaction between Nrp2 and VEGFR3 mediates proper lymphatic vessel sprouting in response to VEGF-C. PMID:20065093

  5. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections.

    PubMed

    Levin, Ariana M; Rusu, Irene; Orlin, Anton; Gupta, Mrinali P; Coombs, Peter; D'Amico, Donald J; Kiss, Szilárd

    2017-01-01

    The aim of this study is to report peripheral reperfusion of ischemic areas of the retina on ultra-widefield fluorescein angiography (UWFA) following anti-vascular endothelial growth factor (VEGF) intravitreal injections in patients treated for diabetic retinopathy. This study is a retrospective review of 16 eyes of 15 patients with diabetic retinopathy, who received anti-VEGF intravitreal injections and underwent pre- and postinjection UWFA. The main outcome measured was the presence of reperfusion in postinjection UWFA images in areas of the retina that demonstrated nonperfusion in preinjection images. Images were analyzed for reperfusion qualitatively and quantitatively by two graders. Twelve of 16 eyes (75%) or 11 of 15 patients (73.3%) demonstrated reperfusion following anti-VEGF injection. On UWFA, reperfusion was detected both within the field of 7-standard field (7SF) fluorescein angiography and in the periphery outside the 7SF. Four of 16 eyes or 4 of 15 patients did not demonstrate reperfusion, one of which had extensive scarring from prior panretinal photocoagulation. In patients with diabetic retinopathy, treatment with anti-VEGF agents can be associated with reperfusion of areas of nonperfusion, as demonstrated by UWFA.

  6. Associations of VEGF-C Genetic Polymorphisms with Urothelial Cell Carcinoma Susceptibility Differ between Smokers and Non-Smokers in Taiwan

    PubMed Central

    Tung, Min-Che; Hsieh, Ming-Ju; Wang, Shian-Shiang; Yang, Shun-Fa; Chen, Shiou-Sheng; Wang, Shih-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chien, Ming-Hsien

    2014-01-01

    Background Vascular endothelial growth factor (VEGF)-C is associated with lymphangiogenesis, pelvic regional lymph node metastasis, and an antiapoptotic phenotype in urothelial cell carcinoma (UCC). Knowledge of potential roles of VEGF-C genetic polymorphisms in susceptibility to UCC is lacking. This study was designed to examine associations between VEGF-C gene variants and UCC susceptibility and evaluate whether they are modified by smoking. Methodology/Principal Findings Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a TaqMan-based real-time polymerase chain reaction (PCR) in 233 patients with UCC and 520 cancer-free controls. A multivariate logistic regression was applied to model associations between genetic polymorphisms and UCC susceptibility, and to determine if the effect was modified by smoking. We found that after adjusting for other covariates, individuals within the entire population and the 476 non-smokers carrying at least one A allele at VEGF-C rs1485766 respectively had 1.742- and 1.834-fold risks of developing UCC than did wild-type (CC) carriers. Among the 277 smokers, we found that VEGF-C rs7664413 T (CT+TT) and rs2046463 G (AG+GG) allelic carriers were more prevalent in UCC patients than in non-cancer participants. Moreover, UCC patients with the smoking habit who had at least one T allele of VEGF-C rs7664413 were at higher risk of developing larger tumor sizes (p = 0.021), compared to those patients with CC homozygotes. Conclusions Our results suggest that the involvement of VEGF-C genotypes in UCC risk differs among smokers compared to non-smokers among Taiwanese. The genetic polymorphism of VEGF-C rs7664413 might be a predictive factor for the tumor size of UCC patients who have a smoking habit. PMID:24608123

  7. Associations of VEGF-C genetic polymorphisms with urothelial cell carcinoma susceptibility differ between smokers and non-smokers in Taiwan.

    PubMed

    Tung, Min-Che; Hsieh, Ming-Ju; Wang, Shian-Shiang; Yang, Shun-Fa; Chen, Shiou-Sheng; Wang, Shih-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chien, Ming-Hsien

    2014-01-01

    Vascular endothelial growth factor (VEGF)-C is associated with lymphangiogenesis, pelvic regional lymph node metastasis, and an antiapoptotic phenotype in urothelial cell carcinoma (UCC). Knowledge of potential roles of VEGF-C genetic polymorphisms in susceptibility to UCC is lacking. This study was designed to examine associations between VEGF-C gene variants and UCC susceptibility and evaluate whether they are modified by smoking. Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a TaqMan-based real-time polymerase chain reaction (PCR) in 233 patients with UCC and 520 cancer-free controls. A multivariate logistic regression was applied to model associations between genetic polymorphisms and UCC susceptibility, and to determine if the effect was modified by smoking. We found that after adjusting for other covariates, individuals within the entire population and the 476 non-smokers carrying at least one A allele at VEGF-C rs1485766 respectively had 1.742- and 1.834-fold risks of developing UCC than did wild-type (CC) carriers. Among the 277 smokers, we found that VEGF-C rs7664413 T (CT+TT) and rs2046463 G (AG+GG) allelic carriers were more prevalent in UCC patients than in non-cancer participants. Moreover, UCC patients with the smoking habit who had at least one T allele of VEGF-C rs7664413 were at higher risk of developing larger tumor sizes (p = 0.021), compared to those patients with CC homozygotes. Our results suggest that the involvement of VEGF-C genotypes in UCC risk differs among smokers compared to non-smokers among Taiwanese. The genetic polymorphism of VEGF-C rs7664413 might be a predictive factor for the tumor size of UCC patients who have a smoking habit.

  8. Comparative analysis of COX-2, vascular endothelial growth factor and microvessel density in human renal cell carcinomas.

    PubMed

    Hemmerlein, B; Galuschka, L; Putzer, N; Zischkau, S; Heuser, M

    2004-12-01

    Cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are frequently up-regulated in malignant tumours and play a role in proliferation, apoptosis, angiogenesis and tumour invasion. In the present study, the expression of COX-2 and VEGF in renal cell carcinoma (RCC) was analysed and correlated with the microvessel density (MVD). COX-2 and VEGF were analysed by realtime reverse transcriptase-polymerase chain reaction and immunohistochemistry. The MVD was assessed by CD31 immunohistochemistry. The expression of COX-2 and VEGF was determined in the RCC cell lines A498 and Caki-1 under short-term hypoxia and in multicellular tumour cell aggregates. COX-2 was expressed in RCC by tumour epithelia, endothelia and macrophages in areas of cystic tumour regression and tumour necrosis. COX-2 protein in RCC was not altered in comparison with normal renal tissue. VEGF mRNA was up-regulated in RCC and positively correlated with MVD. RCC with high up-regulation of VEGF mRNA showed weak intracytoplasmic expression of VEGF in tumour cells. Intracytoplasmic VEGF protein expression was negatively correlated with MVD. In RCC with necrosis the MVD was reduced in comparison with RCC without necrosis. A498 RCC cells down-regulated COX-2 and up-regulated VEGF under conditions of hypoxia. In Caki-1 cells COX-2 expression remained stable, whereas VEGF was significantly up-regulated. In multicellular A498 cell aggregates COX-2 and VEGF were up-regulated centrally, whereas no gradient was found in Caki-1 cells. COX-2 and VEGF are potential therapeutic targets because COX-2 and VEGF are expressed in RCC and associated cell populations such as endothelia and monocytes/macrophages.

  9. Serum VEGF levels in the early diagnosis and severity assessment of non-small cell lung cancer

    PubMed Central

    Lai, Yanzhen; Wang, Xueping; Zeng, Tao; Xing, Shan; Dai, Shuqin; Wang, Junye; Chen, Shulin; Li, Xiaohui; Xie, Ying; Zhu, Yuanying; Liu, Wanli

    2018-01-01

    Background: Effective biomarkers are essential to the differential diagnosis and severity assessment of non-small cell lung cancer (NSCLC). This study explored the use of the serum vascular endothelial growth factor (VEGF) levels as a biomarker with the aim of achieving better management of NSCLC. Methods: Serum VEGF levels were assayed via enzyme-linked immunosorbent assay in 180 patients with NSCLC, 136 patients with benign pulmonary nodules, and 119 healthy controls. We additionally detected the serum concentration of three traditional biomarkers—carcinoembryonic antigen (CEA), cancer antigen (CA)-125, and cytokeratin 19 fragments (Cyfra 21-1)—to comparatively evaluate the efficiency and diagnostic value of VEGF in patients with NSCLC. We further evaluated the relationship between serum VEGF levels and clinicopathologic parameters. VEGF levels were compared between pro- and post-surgical patients using the Wilcoxon matched-pairs signed-rank test. DNA was isolated from the primary tumors. EGFR mutations were detected by Scorpions amplification refractory mutation system (ARMS). Results: Patients with NSCLC had significantly higher serum concentration of VEGF, compared to those with benign pulmonary nodules and healthy controls (P <0.0001). As a diagnostic biomarker of NSCLC, VEGF had area under the curve values of 0.824 and 0.839, sensitivities of 75.0% and 75.0%, and specificities of 93.3% and 95.6% when compared with healthy people and patients with benign pulmonary nodules, respectively; notably, these values were greater than those of CA125, Cyfra 21-1 and CEA. Furthermore, a model in which VEGF was combined with CEA, CA125, and Cyfra 21-1 was more effective for NSCLC diagnosis than VEGF alone (sensitivity, 85.0% and 84.4; specificity, 90.0% and 91.9% vs. healthy controls and patients with benign pulmonary nodules, respectively). When use to identify early-stage NSCLC, VEGF showed a better diagnostic efficacy than other biomarkers. The pro-surgical VEGF

  10. The 15-LO-1/15-HETE system promotes angiogenesis by upregulating VEGF in ischemic brains.

    PubMed

    Chen, Li; Zhu, Yan-Mei; Li, Yu-Nong; Li, Peng-Yan; Wang, Di; Liu, Yu; Qu, You-Yang; Zhu, Da-Ling; Zhu, Yu-Lan

    2017-09-01

    Angiogenesis promotes neurobehavioral recovery after cerebral ischemic stroke. 15(S)-hydroxyeicosatetraenoic acid (15-HETE) is one of the major metabolites of arachidonic acid by 15-lipoxygenase (15-LO) and stimulates the production of vascular endothelial growth factor (VEGF), thus, inducing autocrine-mediated angiogenesis. The present study aimed to investigate the role of 15-LO/15-HETE system on VEGF expression and angiogenesis in brain ischemia. Rat cerebral arterial vascular endothelial cells were used to set up a cell injury model of oxygen-glucose deprivation and reoxygenation (OGD/R), mimicking a condition of brain ischemia. A mouse model of middle cerebral artery occlusion (MCAO) was established. Oxygen-glucose deprivation increased cellular expression of 15-LO-1 and VEGF. Transfection of 15-LO-1 siRNA depleted cells of 15-LO-1, and sequentially induced downregulation of VEGF expression; while, incubation of 15-HETE increased the expression of VEGF. Incubation of 15-HETE attenuated the reduction in cell viability induced by oxygen-glucose deprivation, and promoted cell migration, while transfection of 15-LO-1 siRNA showed an opposite effect. In animal experiments, the density of microvessels in hypoxic regions of brains was significantly increased after MCAO, while intracerebroventricular delivery of 15-LO-1 siRNA significantly reduced the density of microvessels, and downregulates VEGF expression. The results indicate that the 15-LO-1/15-HETE system promotes angiogenesis in ischemic brains by upregulation of VEGF, representing a potential target for improving neurobehavioral recovery after cerebral ischemic stroke.

  11. Polymorphisms of VEGF and VEGF receptors are associated with the occurrence of ovarian hyperstimulation syndrome (OHSS)-a retrospective case-control study.

    PubMed

    Nouri, Kazem; Haslinger, Peter; Szabo, Ladislaus; Sator, Michael; Schreiber, Martin; Schneeberger, Christian; Pietrowski, Detlef

    2014-01-01

    Ovarian hyperstimulation syndrome (OHSS) is the most serious complication of IVF/ICSI therapy. The pathophysiology and etiology of the disease is still not fully clarified. To assess whether polymorphisms of the VEGF/VEGF-receptor system contribute to the occurrence of ovarian hyperstimulation syndrome (OHSS), we performed a retrospective analysis of 116 OHSS patients, and 124 female controls. The following SNPs were genotyped: Rs2071559 (VEGFR2-604); rs2305948 (VEGFR2-1192); rs1870377 (VEGFR2-1719); rs2010963 (VEGF-405); and rs111458691 (VEGFR1-519). Odds ratios (ORs) were estimated with a 95% confidence interval (CI). Linkage disequilibrium (LD) analysis was performed in the three loci of the VEGFR2 gene. We found an overrepresentation of the T allele of the VEGFR1-519 polymorphism in OHSS patients (P = 0.02, OR: 3.62, CI: 1.16 - 11.27). By genotype modeling, we found that polymorphism of VEGFR1-519 and VEGF-405 showed significant differences in patients and controls (p = 0.02, OR: 3.79 CI: 1.98 - 11.97 and p = 0.000005, OR: 0.29, CI: 0.17 - 0.50). LD analysis revealed significant linkage disequilibrium in VEGFR2. Polymorphisms in the VEGFR2 gene and in the VEGF gene are associated with the occurrence of OHSS. This strengthens the evidence for an important role of the VEGF/VEGF- receptor system in the occurrence of OHSS.

  12. Promotion Effect of Apo-9'-fucoxanthinone from Sargassum muticum on Hair Growth via the Activation of Wnt/β-Catenin and VEGF-R2.

    PubMed

    Kang, Jung-Il; Yoo, Eun-Sook; Hyun, Jin-Won; Koh, Young-Sang; Lee, Nam Ho; Ko, Mi-Hee; Ko, Chang-Sik; Kang, Hee-Kyoung

    2016-01-01

    This study was conducted to evaluate the effects of Sargassum muticum extract and apo-9'-fucoxanthinone, a principal component of S. muticum, on hair growth. When rat vibrissa follicles were treated with S. muticum extract for 21 d, the hair-fiber lengths for the vibrissa follicles increased significantly. Treatment with the S. muticum extract and the EtOAc fraction of the S. muticum extract markedly increased the proliferation of dermal papilla cells (DPCs) and decreased the 5α-reductase activity. In addition, the EtOAc fraction of the S. muticum extract significantly promoted anagen initiation in C57BL/6 mice. Especially, apo-9'-fucoxanthinone, an active constituent from the S. muticum extract, caused an increase in DPC proliferation and a decrease in 5α-reductase activity. To elucidate the molecular mechanisms of apo-9'-fucoxanthinone on the proliferation of DPCs, we examined the level of various signaling proteins. Apo-9'-fucoxanthinone increased the level of vascular endothelial growth factor receptor-2 (VEGF-R2), Wnt/β-catenin signaling proteins such as phospho(ser9)-glycogen synthase kinase-3β (GSK-3β) and phospho(ser552)-β-catenin, whereas apo-9'-fucoxanthinone did not affect the transforming growth factor-β (TGF-β) signaling proteins such as Smad2/3. These results suggest that apo-9'-fucoxanthinone from S. muticum could have the potential for hair growth with DPC proliferation via the activation of Wnt/β-catenin signaling and the VEGF-R2 pathway.

  13. Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells.

    PubMed

    Yokomori, Hiroaki; Oda, Masaya; Yoshimura, Kazunori; Nagai, Toshihiro; Ogi, Mariko; Nomura, Masahiko; Ishii, Hiromasa

    2003-12-01

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and vascular permeability. Hepatic sinusoidal endothelial cells (SECs) possess sieve-like pores that form an anastomosing labyrinth structure by the deeply invaginated plasma membrane. Caveolin is the principal structural protein in caveolae. In this study, we examined the role of VEGF on the fenestration and permeability of SECs and the relation with caveolin-1. SECs isolated from rat livers by collagenase infusion method were cultured for 24 h with (10 or 100 ng/ml) or without VEGF. The cells were then examined by transmission and scanning electron microscopy (EM). The expression of caveolin was investigated by confocal immunofluorescence, immunogold EM, and Western blot. Endocytosis and intracellular traffic was studied using horseradish peroxidase (HRP) reaction as a marker of fluid phase transport in SECs. Both transmission and scanning EM showed an increased number of sinusoidal endothelial fenestrae (SEF) in SECs cultured with VEGF. By confocal immunofluorescence, SECs cultured with VEGF displayed prominent caveolin-l-positive aggregates in the cytoplasm, especially surrounding the nucleus region. Immunogold EM depicted increased caveolin-1 reactivity on vesicles and vacuoles of VEGF-treated SECs compared with VEGF-nontreated cells. However, there was no change in the level of caveolin-1 protein expression on Western blot. After HRP injection, an increase of electron-dense tracer filled the SEF in cells treated with VEGF. Our results suggested that VEGF induced fenestration in SECs, accompanied by an increased number of caveolae-like vesicles. Increased caveolin-1 might be associated with vesicle formation but not with fenestration. Increased fenestration may augment hepatic sinusoidal permeability and transendothelial transport.

  14. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir; Kazemi, Bahram

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae.more » Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate.« less

  15. VEGF induces neuroglial differentiation in bone marrow-derived stem cells and promotes microglia conversion following mobilization with GM-CSF.

    PubMed

    Avraham-Lubin, Bat-Chen R; Goldenberg-Cohen, Nitza; Sadikov, Tamilla; Askenasy, Nadir

    2012-12-01

    Evaluation of potential tropic effects of vascular endothelial growth factor (VEGF) on the incorporation and differentiation of bone-marrow-derived stem cells (BMSCs) in a murine model of anterior ischemic optic neuropathy (AION). In the first approach, small-sized subset of BMCs were isolated from GFP donors mice by counterflow centrifugal elutriation and depleted of hematopoietic lineages (Fr25lin(-)). These cells were injected into a peripheral vein (1 × 10(6) in 0.2 ml) or inoculated intravitreally (2 × 10(5)) to syngeneic mice, with or without intravitreal injection of 5 μg/2μL VEGF, simultaneously with AION induction. In a second approach, hematopoietic cells were substituted by myelablative transplant of syngeseic GFP + bone marrow cells. After 3 months, progenitors were mobilized with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by VEGF inoculation into the vitreous body and AION induction . Engraftment and phenotype were examined by immunohistochemistry and FISH at 4 and 24 weeks post-transplantation, and VEGF receptors were determined by real time PCR. VEGF had no quantitative effect on incorporation of elutriated cells in the injured retina, yet it induced early expression of neuroal markers in cells incorporated in the RGC layer and promoted durable gliosis, most prominent perivascular astrocytes. These effects were mediated by VEGF-R1/Flt-1, which is constitutively expresses in the elutriated fraction of stem cells. Mobilization with GM-CSF limited the differentiation of bone marrow progenitors to microglia, which was also fostered by VEGF. VEGF signaling mediated by Flt-1 induces early neural and sustained astrocytic differentiation of stem cells elutriated from adult bone-marrow, with significant contribution to stabilization retinal architecture following ischemic injury.

  16. Tristetraprolin Inhibits Ras-dependent Tumor Vascularization by Inducing Vascular Endothelial Growth Factor mRNA Degradation

    PubMed Central

    Essafi-Benkhadir, Khadija; Onesto, Cercina; Stebe, Emmanuelle; Moroni, Christoph

    2007-01-01

    Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors. PMID:17855506

  17. Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway.

    PubMed

    Bao, Lingzhi; Shi, Honglian

    2010-11-15

    As a potent environmental oxidative stressor, arsenic exposure has been reported to exacerbate cardiovascular diseases and increase vascular endothelial cell monolayer permeability. However, the underlying mechanism of this effect is not well understood. In this paper, we test our hypothesis that reactive oxygen species (ROS)-induced vascular endothelial growth factor (VEGF) expression may play an important role in an arsenic-caused increase of endothelial cell monolayer permeability. The mouse brain vascular endothelial cell bEnd3 monolayer was exposed to arsenite for 1, 3, and 6 days. The monolayer permeability, VEGF protein release, and ROS generation were determined. In addition, VE-cadherin and zonula occludens-1 (ZO-1), two membrane structure proteins, were immunostained to elucidate the effects of arsenite on the cell-cell junction. The roles of ROS and VEGF in arsenite-induced permeability was determined by inhibiting ROS with antioxidants and immuno-depleting VEGF with a VEGF antibody. We observed that arsenite increased bEnd3 monolayer permeability, elevated the production of cellular ROS, and increased VEGF release. VE-cadherin and ZO-1 disruptions were also found in cells treated with arsenite. Furthermore, both antioxidant (N-acetyl cysteine and tempol) and the VEGF antibody treatments significantly lowered the arsenite-induced permeability of the bEnd3 monolayer as well as VEGF expression. VE-cadherin and ZO-1 disruptions were also diminished by N-acetyl cysteine and the VEGF antibody. Our data suggest that the increase in VEGF expression caused by ROS may play an important role in the arsenite-induced increase in endothelial cell permeability.

  18. Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair

    PubMed Central

    Liu, Zhengni; Feng, Xueyi; Wang, Huichun; Ma, Jun; Liu, Wei; Cui, Daxiang; Gu, Yan; Tang, Rui

    2014-01-01

    Insufficient early vascularization in biological meshes, resulting in limited host tissue incorporation, is thought to be the primary cause for the failure of abdominal wall defect repair after implantation. The sustained release of exogenous angiogenic factors from a biocompatible nanomaterial might be a way to overcome this limitation. In the study reported here, multiwalled carbon nanotubes (MWNT) were functionalized by plasma polymerization to deliver vascular endothelial growth factor165 (VEGF165). The novel VEGF165-controlled released system was incorporated into porcine small intestinal submucosa (PSIS) to construct a composite scaffold. Scaffolds incorporating varying amounts of VEGF165-loaded functionalized MWNT were characterized in vitro. At 5 weight percent MWNT, the scaffolds exhibited optimal properties and were implanted in rats to repair abdominal wall defects. PSIS scaffolds incorporating VEGF165-loaded MWNT (VEGF–MWNT–PSIS) contributed to early vascularization from 2–12 weeks postimplantation and obtained more effective collagen deposition and exhibited improved tensile strength at 24 weeks postimplantation compared to PSIS or PSIS scaffolds, incorporating MWNT without VEGF165 loading (MWNT–PSIS). PMID:24648727

  19. In vitro induction of protein complexes between bevacizumab, VEGF-A¹⁶⁵ and heparin: explanation for deposits observed on endothelial veins in monkey eyes.

    PubMed

    Julien, Sylvie; Biesemeier, Antje; Schraermeyer, Ulrich

    2013-04-01

    By investigating the effects of intravitreal bevacizumab on retinal vessels of monkeys, we found that bevacizumab accumulated locally at high concentration within individual blood vessels. It formed electron-dense fibrous deposits between endothelial cells and erythrocytes or granulocytes inducing retinal vein thrombosis. To better characterise the observed deposits, we investigated in vitro whether these deposits result from a complex between bevacizumab, vascular endothelial growth factor (VEGF)-A(165) and heparin. Cynomolgus monkeys were intravitreally injected with 1.25 mg bevacizumab. The eyes were enucleated between 1 and 14 days after injection and investigated by electron microscopy and immunohistochemistry. Human umbilical vein endothelial cells (HUVEC) were incubated with bevacizumab, VEGF-A(165) and heparin at different concentrations. Treatments with ranibizumab served as control. Bevacizumab and ranibizumab were detected immunohistochemically using Cy-3 or immunogold labelled antibodies. Treated animals showed bevacizumab locally at high concentration within retinal blood vessels. Electron-dense deposits inside retinal vessels and between erythrocytes were detected in three out of four treated monkeys. In vitro, many globular aggregates heavily stained with anti-human IgG were only observed with equimolar amounts (240 nM) of bevacizumab and VEGF-A(165) and 0.2 U/ml heparin and not after ranibizumab treatment. The immunogold labelling specifically localised ultrastructurally the complexes formed between bevacizumab, VEGF-A(165) and heparin at the surfaces of HUVEC cells. Heparin promotes bevacizumab immune complex deposition on to endothelial cells. Our in vitro results could explain the presence of deposits observed on endothelial veins in monkey eyes intravitreally injected with bevacizumab.

  20. The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema.

    PubMed

    Do, Diana V; Schmidt-Erfurth, Ursula; Gonzalez, Victor H; Gordon, Carmelina M; Tolentino, Michael; Berliner, Alyson J; Vitti, Robert; Rückert, Rene; Sandbrink, Rupert; Stein, David; Yang, Ke; Beckmann, Karola; Heier, Jeff S

    2011-09-01

    To determine whether different doses and dosing regimens of intravitreal vascular endothelial growth factor (VEGF) Trap-Eye are superior to focal/grid photocoagulation in eyes with diabetic macular edema (DME). Multicenter, randomized, double-masked, phase 2 clinical trial. A total of 221 diabetic patients with clinically significant macular edema involving the central macula. Patients were assigned to 1 of 5 treatment regimens: 0.5 mg VEGF Trap-Eye every 4 weeks; 2 mg VEGF Trap-Eye every 4 weeks; 2 mg VEGF Trap-Eye for 3 initial monthly doses and then every 8 weeks; 2 mg VEGF Trap-Eye for 3 initial monthly doses and then on an as-needed (PRN) basis; or macular laser photocoagulation. Assessments were completed at baseline and every 4 weeks thereafter. Mean change in visual acuity and central retinal thickness (CRT) at 24 weeks. Patients in the 4 VEGF Trap-Eye groups experienced mean visual acuity benefits ranging from +8.5 to +11.4 Early Treatment of Diabetic Retinopathy Study (ETDRS) letters versus only +2.5 letters in the laser group (P ≤ 0.0085 for each VEGF Trap-Eye group vs. laser). Gains from baseline of 0+, 10+, and 15+ letters were seen in up to 93%, 64%, and 34% of VEGF Trap-Eye groups versus up to 68%, 32%, and 21% in the laser group, respectively. Mean reductions in CRT in the 4 VEGF Trap-Eye groups ranged from -127.3 to -194.5 μm compared with only -67.9 μm in the laser group (P = 0.0066 for each VEGF Trap-Eye group vs. laser). VEGF Trap-Eye was generally well tolerated. Ocular adverse events in patients treated with VEGF Trap-Eye were generally consistent with those seen with other intravitreal anti-VEGF agents. Intravitreal VEGF Trap-Eye produced a statistically significant and clinically relevant improvement in visual acuity when compared with macular laser photocoagulation in patients with DME. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.