Sample records for factor vif protein

  1. CBFβ enhances de novo protein biosynthesis of its binding partners HIV-1 Vif and RUNX1 and potentiates the Vif-induced degradation of APOBEC3G.

    PubMed

    Miyagi, Eri; Kao, Sandra; Yedavalli, Venkat; Strebel, Klaus

    2014-05-01

    Vif is a lentiviral accessory protein that regulates viral infectivity in part by inducing proteasomal degradation of APOBEC3G (A3G). Recently, CBFβ was found to facilitate Vif-dependent degradation of A3G. However, the exact role of CBFβ remains unclear. Several studies noted reduced Vif expression in CBFβ knockdown cells while others saw no significant impact of CBFβ on Vif stability. Here, we confirmed that CBFβ increases Vif steady-state levels. CBFβ affected expression of neither viral Gag nor Vpu protein, indicating that CBFβ regulates Vif expression posttranscriptionally. Kinetic studies revealed effects of CBFβ on both metabolic stability and the rate of Vif biosynthesis. These effects were dependent on the ability of CBFβ to interact with Vif. Importantly, at comparable Vif levels, CBFβ further enhanced A3G degradation, suggesting that CBFβ facilitates A3G degradation by increasing the levels of Vif and by independently augmenting the ability of Vif to target A3G for degradation. CBFβ also increased expression of RUNX1 by enhancing RUNX1 biosynthesis. Unlike Vif, however, CBFβ had no detectable effect on RUNX1 metabolic stability. We propose that CBFβ acts as a chaperone to stabilize Vif during and after synthesis and to facilitate interaction of Vif with cellular cofactors required for the efficient degradation of A3G. In this study, we show that CBFβ has a profound effect on the expression of the HIV-1 infectivity factor Vif and the cellular transcription factor RUNX1, two proteins that physically interact with CBFβ. Kinetic studies revealed that CBFβ increases the rate of Vif and RUNX1 biosynthesis at the level of translation. Mutants of Vif unable to physically interact with CBFβ were nonresponsive to CBFβ. Our data suggest that CBFβ exerts a chaperone-like activity (i) to minimize the production of defective ribosomal products (DRiPs) by binding to nascent protein to prevent premature termination and (ii) to stabilize mature

  2. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3.

    PubMed

    Yoshikawa, Rokusuke; Takeuchi, Junko S; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei

    2017-06-01

    The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3

  3. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3

    PubMed Central

    Yoshikawa, Rokusuke; Takeuchi, Junko S.; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio

    2017-01-01

    ABSTRACT The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes

  4. Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors

    PubMed Central

    Smith, Amber M.; Hultquist, Judd F.; Caretta Cartozo, Nathalie; Campbell, Melody G.; Burton, Lily; La Greca, Florencia; McGregor, Michael J.; Ta, Hai M.; Bartholomeeusen, Koen; Peterlin, B. Matija; Krogan, Nevan J.; Sevillano, Natalia

    2018-01-01

    The lentiviral protein Viral Infectivity Factor (Vif) counteracts the antiviral effects of host APOBEC3 (A3) proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs) to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity. PMID:29304101

  5. Identification of the HIV-1 Vif and Human APOBEC3G Protein Interface.

    PubMed

    Letko, Michael; Booiman, Thijs; Kootstra, Neeltje; Simon, Viviana; Ooms, Marcel

    2015-12-01

    Human cells express natural antiviral proteins, such as APOBEC3G (A3G), that potently restrict HIV replication. As a counter-defense, HIV encodes the accessory protein Vif, which binds A3G and mediates its proteasomal degradation. Our structural knowledge on how Vif and A3G interact is limited, because a co-structure is not available. We identified specific points of contact between Vif and A3G by using functional assays with full-length A3G, patient-derived Vif variants, and HIV forced evolution. These anchor points were used to model and validate the Vif-A3G interface. The resultant co-structure model shows that the negatively charged β4-α4 A3G loop, which contains primate-specific variation, is the core Vif binding site and forms extensive interactions with a positively charged pocket in HIV Vif. Our data present a functional map of this viral-host interface and open avenues for targeted approaches to block HIV replication by obstructing the Vif-A3G interaction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Determinants of FIV and HIV Vif sensitivity of feline APOBEC3 restriction factors.

    PubMed

    Zhang, Zeli; Gu, Qinyong; Jaguva Vasudevan, Ananda Ayyappan; Hain, Anika; Kloke, Björn-Philipp; Hasheminasab, Sascha; Mulnaes, Daniel; Sato, Kei; Cichutek, Klaus; Häussinger, Dieter; Bravo, Ignacio G; Smits, Sander H J; Gohlke, Holger; Münk, Carsten

    2016-07-01

    Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model system for Human immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Felis catus), APOBEC3 (A3) genes encode for single-domain A3Z2s, A3Z3 and double-domain A3Z2Z3 anti-viral cytidine deaminases. The feline A3Z2Z3 is expressed following read-through transcription and alternative splicing, introducing a previously untranslated exon in frame, encoding a domain insertion called linker. Only A3Z3 and A3Z2Z3 inhibit Vif-deficient FIV. Feline A3s also are restriction factors for HIV and Simian immunodeficiency viruses (SIV). Surprisingly, HIV-2/SIV Vifs can counteract feline A3Z2Z3. To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric human-feline A3s were tested. Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present the first structural A3 model locating these interaction regions. In the Z3 domain we have identified residues involved in binding of FIV Vif, and their mutation blocked Vif-induced A3Z3 degradation. We further identified additional essential residues for FIV Vif interaction in the A3Z2 domain, allowing the generation of FIV Vif resistant A3Z2Z3. Mutated feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. Comparative modelling of feline A3Z2Z3 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting residues in human A3s, a unique location at the domain interface of Z2 and Z3 and that the linker forms a homeobox-like domain protruding of the Z2Z3 core. HIV-2/SIV Vifs efficiently degrade feline A3Z2Z3 by possible targeting the linker stretch connecting both Z-domains. Here we identified in feline A3s residues important for binding of FIV Vif and a unique protein domain insertion (linker). To understand Vif evolution, a structural model of the feline A3 was

  7. Multiple APOBEC3 Restriction Factors for HIV-1 and One Vif to Rule Them All

    PubMed Central

    Desimmie, Belete A.; Delviks-Frankenberry, Krista A.; Burdick, Ryan; Qi, Dongfei; Izumi, Taisuke; Pathak, Vinay K.

    2013-01-01

    Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients. PMID:24189052

  8. Vif of Feline Immunodeficiency Virus from Domestic Cats Protects against APOBEC3 Restriction Factors from Many Felids▿

    PubMed Central

    Zielonka, Jörg; Marino, Daniela; Hofmann, Henning; Yuhki, Naoya; Löchelt, Martin; Münk, Carsten

    2010-01-01

    To get more insight into the role of APOBEC3 (A3) cytidine deaminases in the species-specific restriction of feline immunodeficiency virus (FIV) of the domestic cat, we tested the A3 proteins present in big cats (puma, lion, tiger, and lynx). These A3 proteins were analyzed for expression and sensitivity to the Vif protein of FIV. While A3Z3s and A3Z2-Z3s inhibited Δvif FIV, felid A3Z2s did not show any antiviral activity against Δvif FIV or wild-type (wt) FIV. All felid A3Z3s and A3Z2-Z3s were sensitive to Vif of the domestic cat FIV. Vif also induced depletion of felid A3Z2s. Tiger A3s showed a moderate degree of resistance against the Vif-mediated counter defense. These findings may imply that the A3 restriction system does not play a major role to prevent domestic cat FIV transmission to other Felidae. In contrast to the sensitive felid A3s, many nonfelid A3s actively restricted wt FIV replication. To test whether VifFIV can protect also the distantly related human immunodeficiency virus type 1 (HIV-1), a chimeric HIV-1.VifFIV was constructed. This HIV-1.VifFIV was replication competent in nonpermissive feline cells expressing human CD4/CCR5 that did not support the replication of wt HIV-1. We conclude that the replication of HIV-1 in some feline cells is inhibited only by feline A3 restriction factors and the absence of the appropriate receptor or coreceptor. PMID:20444897

  9. Vif of feline immunodeficiency virus from domestic cats protects against APOBEC3 restriction factors from many felids.

    PubMed

    Zielonka, Jörg; Marino, Daniela; Hofmann, Henning; Yuhki, Naoya; Löchelt, Martin; Münk, Carsten

    2010-07-01

    To get more insight into the role of APOBEC3 (A3) cytidine deaminases in the species-specific restriction of feline immunodeficiency virus (FIV) of the domestic cat, we tested the A3 proteins present in big cats (puma, lion, tiger, and lynx). These A3 proteins were analyzed for expression and sensitivity to the Vif protein of FIV. While A3Z3s and A3Z2-Z3s inhibited Deltavif FIV, felid A3Z2s did not show any antiviral activity against Deltavif FIV or wild-type (wt) FIV. All felid A3Z3s and A3Z2-Z3s were sensitive to Vif of the domestic cat FIV. Vif also induced depletion of felid A3Z2s. Tiger A3s showed a moderate degree of resistance against the Vif-mediated counter defense. These findings may imply that the A3 restriction system does not play a major role to prevent domestic cat FIV transmission to other Felidae. In contrast to the sensitive felid A3s, many nonfelid A3s actively restricted wt FIV replication. To test whether Vif(FIV) can protect also the distantly related human immunodeficiency virus type 1 (HIV-1), a chimeric HIV-1.Vif(FIV) was constructed. This HIV-1.Vif(FIV) was replication competent in nonpermissive feline cells expressing human CD4/CCR5 that did not support the replication of wt HIV-1. We conclude that the replication of HIV-1 in some feline cells is inhibited only by feline A3 restriction factors and the absence of the appropriate receptor or coreceptor.

  10. The Structural Interface between HIV-1 Vif and Human APOBEC3H.

    PubMed

    Ooms, Marcel; Letko, Michael; Simon, Viviana

    2017-03-01

    Human APOBEC3H (A3H) is a cytidine deaminase that inhibits HIV-1 replication. To evade this restriction, the HIV-1 Vif protein binds A3H and mediates its proteasomal degradation. To date, little information on the Vif-A3H interface has been available. To decipher how both proteins interact, we first mapped the Vif-binding site on A3H by functionally testing a large set of A3H mutants in single-cycle infectivity and replication assays. Our data show that the two A3H α-helixes α3 and α4 represent the Vif-binding site of A3H. We next used viral adaptation and a set of Vif mutants to identify novel, reciprocal Vif variants that rescued viral infectivity in the presence of two Vif-resistant A3H mutants. These A3H-Vif interaction points were used to generate the first A3H-Vif structure model, which revealed that the A3H helixes α3 and α4 interact with the Vif β-sheet (β2-β5). This model is in good agreement with previously reported Vif and A3H amino acids important for interaction. Based on the predicted A3H-Vif interface, we tested additional points of contact, which validated our model. Moreover, these experiments showed that the A3H and A3G binding sites on HIV-1 Vif are largely distinct, with both host proteins interacting with Vif β-strand 2. Taken together, this virus-host interface model explains previously reported data and will help to identify novel drug targets to combat HIV-1 infection. IMPORTANCE HIV-1 needs to overcome several intracellular restriction factors in order to replicate efficiently. The human APOBEC3 locus encodes seven proteins, of which A3D, A3F, A3G, and A3H restrict HIV-1. HIV encodes the Vif protein, which binds to the APOBEC3 proteins and leads to their proteasomal degradation. No HIV-1 Vif-APOBEC3 costructure exists to date despite extensive research. We and others previously generated HIV-1 Vif costructure models with A3G and A3F by mapping specific contact points between both proteins. Here, we applied a similar approach to HIV

  11. Feline Immunodeficiency Virus Vif N-Terminal Residues Selectively Counteract Feline APOBEC3s.

    PubMed

    Gu, Qinyong; Zhang, Zeli; Cano Ortiz, Lucía; Franco, Ana Cláudia; Häussinger, Dieter; Münk, Carsten

    2016-12-01

    Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain. Both human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV) Vif proteins counteract their host's APOBEC3 restriction factors. However, these two Vif proteins have limited sequence homology. The molecular interaction between FIV Vif and feline APOBEC3s are not well understood. Here, we identified N-terminal FIV Vif sites that regulate the selective interaction of Vif with either feline APOBEC3Z

  12. Feline Immunodeficiency Virus Vif N-Terminal Residues Selectively Counteract Feline APOBEC3s

    PubMed Central

    Gu, Qinyong; Zhang, Zeli; Cano Ortiz, Lucía; Franco, Ana Cláudia; Häussinger, Dieter

    2016-01-01

    ABSTRACT Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain. IMPORTANCE Both human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV) Vif proteins counteract their host's APOBEC3 restriction factors. However, these two Vif proteins have limited sequence homology. The molecular interaction between FIV Vif and feline APOBEC3s are not well understood. Here, we identified N-terminal FIV Vif sites that regulate the selective interaction of Vif with

  13. Simian Immunodeficiency Virus Vif and Human APOBEC3B Interactions Resemble Those between HIV-1 Vif and Human APOBEC3G.

    PubMed

    Wang, Jiayi; Shaban, Nadine M; Land, Allison M; Brown, William L; Harris, Reuben S

    2018-06-15

    Several members of the APOBEC3 DNA cytosine deaminase family can potently inhibit Vif-deficient human immunodeficiency virus type 1 (HIV-1) by catalyzing cytosine deamination in viral cDNA and impeding reverse transcription. HIV-1 counteracts restriction with the virally encoded Vif protein, which targets relevant APOBEC3 proteins for proteasomal degradation. HIV-1 Vif is optimized for degrading the restrictive human APOBEC3 repertoire, and, in general, lentiviral Vif proteins specifically target the restricting APOBEC3 enzymes of each host species. However, simian immunodeficiency virus SIV mac239 Vif elicits a curiously wide range of APOBEC3 degradation capabilities that include degradation of several human APOBEC3s and even human APOBEC3B, a non-HIV-1-restricting APOBEC3 enzyme. To better understand the molecular determinants of the interaction between SIV mac239 Vif and human APOBEC3B, we analyzed an extensive series of mutants. We found that SIV mac239 Vif interacts with the N-terminal domain of human APOBEC3B and, interestingly, that this occurs within a structural region homologous to the HIV-1 Vif interaction surface of human APOBEC3G. An alanine scan of SIV mac239 Vif revealed several residues required for human APOBEC3B degradation activity. These residues overlap HIV-1 Vif surface residues that interact with human APOBEC3G and are distinct from those that engage APOBEC3F or APOBEC3H. Overall, these studies indicate that the molecular determinants of the functional interaction between human APOBEC3B and SIV mac239 Vif resemble those between human APOBEC3G and HIV-1 Vif. These studies contribute to the growing knowledge of the APOBEC-Vif interaction and may help guide future efforts to disrupt this interaction as an antiviral therapy or exploit the interaction as a novel strategy to inhibit APOBEC3B-dependent tumor evolution. IMPORTANCE Primate APOBEC3 proteins provide innate immunity against retroviruses such as HIV and SIV. HIV-1, the primary cause of

  14. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation.

    PubMed

    Santa-Marta, Mariana; da Silva, Frederico Aires; Fonseca, Ana Margarida; Goncalves, Joao

    2005-03-11

    The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G), also known as CEM-15, is a host-cell factor involved in innate resistance to retroviral infection. HIV-1 viral infectivity factor (Vif) protein was shown to protect the virus from APOBEC3G-mediated viral cDNA hypermutation. The mechanism proposed for protection of the virus by HIV-1 Vif is mediated by APOBEC3G degradation through ubiquitination and the proteasomal pathway. Here we show that in Escherichia coli the APOBEC3G-induced cytidine deamination is inhibited by expression of Vif without depletion of deaminase. Moreover, inhibition of deaminase-mediated bacterial hypermutation is dependent on a single amino acid substitution D128K that renders APOBEC3G resistant to Vif inhibition. This single amino acid was elegantly proven by other authors to determine species-specific sensitivity. Our results show that in bacteria this single amino acid substitution controls Vif-dependent blocking of APOBEC3G that is dependent on a strong protein interaction. The C-terminal region of Vif is responsible for this strong protein-protein interaction. In conclusion, our experiments suggest a complement to the model of Vif-induced degradation of APOBEC3G by bringing to relevance that deaminase inhibition can also result from a direct interaction with Vif protein.

  15. The Human Immunodeficiency Virus Type 1 Vif Protein Reduces Intracellular Expression and Inhibits Packaging of APOBEC3G (CEM15), a Cellular Inhibitor of Virus Infectivity

    PubMed Central

    Kao, Sandra; Khan, Mohammad A.; Miyagi, Eri; Plishka, Ron; Buckler-White, Alicia; Strebel, Klaus

    2003-01-01

    Replication of human immunodeficiency virus type 1 (HIV-1) in most primary cells and some immortalized T-cell lines depends on the activity of the viral infectivity factor (Vif). Vif has the ability to counteract a cellular inhibitor, recently identified as CEM15, that blocks infectivity of Vif-defective HIV-1 variants. CEM15 is identical to APOBEC3G and belongs to a family of proteins involved in RNA and DNA deamination. We cloned APOBEC3G from a human kidney cDNA library and confirmed that the protein acts as a potent inhibitor of HIV replication and is sensitive to the activity of Vif. We found that wild-type Vif inhibits packaging of APOBEC3G into virus particles in a dose-dependent manner. In contrast, biologically inactive variants carrying in-frame deletions in various regions of Vif or mutation of two highly conserved cysteine residues did not inhibit packaging of APOBEC3G. Interestingly, expression of APOBEC3G in the presence of wild-type Vif not only affected viral packaging but also reduced its intracellular expression level. This effect was not seen in the presence of biologically inactive Vif variants. Pulse-chase analyses did not reveal a significant difference in the stability of APOBEC3G in the presence or absence of Vif. However, in the presence of Vif, the rate of synthesis of APOBEC3G was slightly reduced. The reduction of intracellular APOBEC3G in the presence of Vif does not fully account for the Vif-induced reduction of virus-associated APOBEC3G, suggesting that Vif may function at several levels to prevent packaging of APOBEC3G into virus particles. PMID:14557625

  16. Identification of a Conserved Interface of Human Immunodeficiency Virus Type 1 and Feline Immunodeficiency Virus Vifs with Cullin 5.

    PubMed

    Gu, Qinyong; Zhang, Zeli; Gertzen, Christoph G W; Häussinger, Dieter; Gohlke, Holger; Münk, Carsten

    2018-03-15

    Members of the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 [A3]) family of DNA cytidine deaminases are intrinsic restriction factors against retroviruses. In felids such as the domestic cat ( Felis catus ), the A3 genes encode the A3Z2, A3Z3, and A3Z2Z3 antiviral cytidine deaminases. Only A3Z3 and A3Z2Z3 inhibit viral infectivity factor (Vif)-deficient feline immunodeficiency virus (FIV). The FIV Vif protein interacts with Cullin (CUL), Elongin B (ELOB), and Elongin C (ELOC) to form an E3 ubiquitination complex to induce the degradation of feline A3s. However, the functional domains in FIV Vif for the interaction with Cullin are poorly understood. Here, we found that the expression of dominant negative CUL5 prevented the degradation of feline A3s by FIV Vif, while dominant negative CUL2 had no influence on the degradation of A3. In coimmunoprecipitation assays, FIV Vif bound to CUL5 but not CUL2. To identify the CUL5 interaction site in FIV Vif, the conserved amino acids from positions 47 to 160 of FIV Vif were mutated, but these mutations did not impair the binding of Vif to CUL5. By focusing on a potential zinc-binding motif (K175-C161-C184-C187) of FIV Vif, we found a conserved hydrophobic region (174IR175) that is important for the CUL5 interaction. Mutation of this region also impaired the FIV Vif-induced degradation of feline A3s. Based on a structural model of the FIV Vif-CUL5 interaction, the 52LW53 region in CUL5 was identified as mediating binding to FIV Vif. By comparing our results to the human immunodeficiency virus type 1 (HIV-1) Vif-CUL5 interaction surface (120IR121, a hydrophobic region that is localized in the zinc-binding motif), we suggest that the CUL5 interaction surface in the diverse HIV-1 and FIV Vifs is evolutionarily conserved, indicating a strong structural constraint. However, the FIV Vif-CUL5 interaction is zinc independent, which contrasts with the zinc dependence of HIV-1 Vif. IMPORTANCE Feline

  17. Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif.

    PubMed

    Britan-Rosich, Elena; Nowarski, Roni; Kotler, Moshe

    2011-07-29

    In the absence of human immunodeficiency virus type 1 (HIV-1) Vif protein, the host antiviral deaminase apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) restricts the production of infectious HIV-1 by deamination of dC residues in the negative single-stranded DNA produced by reverse transcription. The Vif protein averts the lethal threat of deamination by precluding the packaging of A3G into assembling virions by mediating proteasomal degradation of A3G. In spite of this robust Vif activity, residual A3G molecules that escape degradation and incorporate into newly assembled virions are potentially deleterious to the virus. We hypothesized that virion-associated Vif inhibits A3G enzymatic activity and therefore prevents lethal mutagenesis of the newly synthesized viral DNA. Here, we show that (i) Vif-proficient HIV-1 particles released from H9 cells contain A3G with lower specific activity compared with Δvif-virus-associated A3G, (ii) encapsidated HIV-1 Vif inhibits the deamination activity of recombinant A3G, and (iii) purified HIV-1 Vif protein and the Vif-derived peptide Vif25-39 inhibit A3G activity in vitro at nanomolar concentrations in an uncompetitive manner. Our results manifest the potentiality of Vif to control the deamination threat in virions or in the pre-integration complexes following entry to target cells. Hence, virion-associated Vif could serve as a last line of defense, protecting the virus against A3G antiviral activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Design, synthesis and biological evaluation of indole derivatives as Vif inhibitors.

    PubMed

    Pu, Chunlan; Luo, Rong-Hua; Zhang, Mengqi; Hou, Xueyan; Yan, Guoyi; Luo, Jiang; Zheng, Yong-Tang; Li, Rui

    2017-09-01

    The crystal structure of viral infectivity factor (Vif) was reported recently, which makes it possible to design new inhibitors against Vif by structure-based drug design. Through analysis of the protein surface of Vif, the C2 pocket located in the N-terminal was found, which is suit for developing small molecular inhibitors. Then, in our article, fragment-based virtual screening (FBVS) was conducted and a series of fragments was obtained, among which, Zif-1 bearing indole scaffold and pyridine ring can form H-bonds with Tyr148 and Ile155. Subsequently, 19 derivatives of Zif-1 were synthesized. Through the immune-fluorescence staining and Western blot assays, Zif-15 shows potent activity in inhibiting Vif-mediated A3G degradation. Further docking experiment shows that Zif-15 form H-bond interactions with residues His139, Tyr148 and Ile155. Therefore, Zif-15 is a promising lead compound against Vif that can be used to treat AIDS. Copyright © 2017. Published by Elsevier Ltd.

  19. Natural resistance to HIV infection: The Vif-APOBEC interaction.

    PubMed

    Malim, Michael H

    2006-11-01

    Members of the APOBEC family of cellular polynucleotide cytidine deaminases (e.g., APOBEC3G) are potent inhibitors of HIV infection. Wild type viral infections are largely spared from APOBEC function through the action of the viral Vif protein. In Vif's absence, inhibitory APOBEC proteins are encapsidated by budding virus particles leading to excessive cytidine (C) to uridine (U) hypermutation of negative sense reverse transcripts in newly infected cells. This registers as guanosine (G) to adenosine (A) mutations in plus stranded cDNA. Because the functions of Vif and APOBEC proteins oppose each other, it is likely that fluctuations in the Vif/APOBEC balance can influence the natural history of HIV infection. Experimental support for this notion would further justify and stimulate drug discovery initiatives in this area.

  20. Identification of a Cullin5-ElonginB-ElonginC E3 complex in degradation of feline immunodeficiency virus Vif-mediated feline APOBEC3 proteins.

    PubMed

    Wang, Jiawen; Zhang, Wenyan; Lv, Mingyu; Zuo, Tao; Kong, Wei; Yu, Xianghui

    2011-12-01

    Various feline APOBEC3 (fA3) proteins exhibit broad antiviral activities against a wide range of viruses, such as feline immunodeficiency virus (FIV), feline foamy virus (FFV), and feline leukemia virus (FeLV), as well as those of other species. This activity can be counteracted by the FIV Vif protein, but the mechanism by which FIV Vif suppresses fA3s is unknown. In the present study, we demonstrated that FIV Vif could act via a proteasome-dependent pathway to overcome fA3s. FIV Vif interacted with feline cellular proteins Cullin5 (Cul5), ElonginB, and ElonginC to form an E3 complex to induce degradation of fA3s. Both the dominant-negative Cul5 mutant and a C-terminal hydrophilic replacement ElonginC mutant potently disrupted the FIV Vif activity against fA3s. Furthermore, we identified a BC-box motif in FIV Vif that was essential for the recruitment of E3 ubiquitin ligase and also required for FIV Vif-mediated degradation of fA3s. Moreover, despite the lack of either a Cul5-box or a HCCH zinc-binding motif, FIV Vif specifically selected Cul5. Therefore, FIV Vif may interact with Cul5 via a novel mechanism. These finding imply that SOCS proteins may possess distinct mechanisms to bind Cul5 during formation of the Elongin-Cullin-SOCS box complex.

  1. Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants

    PubMed Central

    Greenwood, Edward JD; Matheson, Nicholas J; Wals, Kim; van den Boomen, Dick JH; Antrobus, Robin; Williamson, James C; Lehner, Paul J

    2016-01-01

    Viruses manipulate host factors to enhance their replication and evade cellular restriction. We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a comprehensive time course analysis of >6500 viral and cellular proteins during HIV infection. To enable specific functional predictions, we categorized cellular proteins regulated by HIV according to their patterns of temporal expression. We focussed on proteins depleted with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and conserved Vif function. DOI: http://dx.doi.org/10.7554/eLife.18296.001 PMID:27690223

  2. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.

    PubMed

    Batisse, Julien; Guerrero, Santiago; Bernacchi, Serena; Sleiman, Dona; Gabus, Caroline; Darlix, Jean-Luc; Marquet, Roland; Tisné, Carine; Paillart, Jean-Christophe

    2012-11-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.

    PubMed

    Evans, Edward L; Becker, Jordan T; Fricke, Stephanie L; Patel, Kishan; Sherer, Nathan M

    2018-04-01

    Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1 NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G 2 /M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that Vif NL4-3 's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G 2 /M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle. IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1

  4. HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes

    PubMed Central

    Goila-Gaur, Ritu; Khan, Mohammad A.; Miyagi, Eri; Kao, Sandra; Opi, Sandrine; Takeuchi, Hiroaki; Strebel, Klaus

    2008-01-01

    HIV-1 Vif inhibits the antiviral activity of APOBEC3G (APO3G) by inducing proteasomal degradation. Here, we studied the effects of Vif on APO3G in vitro. In this system, Vif did not cause APO3G degradation. Instead, Vif induced changes in APO3G that affected immunoprecipitation of the native protein. This effect required wt Vif and was reversed by heat-denaturation of APO3G. Sucrose gradient analysis demonstrated that wt Vif induced the gradual transition of APO3G translated in vitro or expressed in HeLa cells from a low molecular mass conformation to puromycin-sensitive high molecular mass (HMM) complexes. In the absence of Vif or the presence of biologically inactive Vif APO3G failed to form HMM complexes. Our results expose a novel function of Vif that promotes the assembly of APO3G into presumably packaging-incompetent HMM complexes and may explain how Vif can overcome the APO3G-imposed block to HIV replication under conditions of no or inefficient APO3G degradation. PMID:18023836

  5. Tumultuous Relationship between the Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) and the Human APOBEC-3G and APOBEC-3F Restriction Factors

    PubMed Central

    Henriet, Simon; Mercenne, Gaëlle; Bernacchi, Serena; Paillart, Jean-Christophe; Marquet, Roland

    2009-01-01

    Summary: The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55Gag, by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F. PMID:19487726

  6. Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors.

    PubMed

    Henriet, Simon; Mercenne, Gaëlle; Bernacchi, Serena; Paillart, Jean-Christophe; Marquet, Roland

    2009-06-01

    The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.

  7. Conservation of an Intact vif Gene of Human Immunodeficiency Virus Type 1 during Maternal-Fetal Transmission

    PubMed Central

    Yedavalli, Venkat R. K.; Chappey, Colombe; Matala, Erik; Ahmad, Nafees

    1998-01-01

    The human immunodeficiency virus type 1 (HIV-1) vif gene is conserved among most lentiviruses, suggesting that vif is important for natural infection. To determine whether an intact vif gene is positively selected during mother-to-infant transmission, we analyzed vif sequences from five infected mother-infant pairs following perinatal transmission. The coding potential of the vif open reading frame directly derived from uncultured peripheral blood mononuclear cell DNA was maintained in most of the 78,912 bp sequenced. We found that 123 of the 137 clones analyzed showed an 89.8% frequency of intact vif open reading frames. There was a low degree of heterogeneity of vif genes within mothers, within infants, and between epidemiologically linked mother-infant pairs. The distances between vif sequences were greater in epidemiologically unlinked individuals than in epidemiologically linked mother-infant pairs. Furthermore, the epidemiologically linked mother-infant pair vif sequences displayed similar patterns that were not seen in vif sequences from epidemiologically unlinked individuals. The functional domains, including the two cysteines at positions 114 and 133, a serine phosphorylation site at position 144, and the C-terminal basic amino acids essential for vif protein function, were highly conserved in most of the sequences. Phylogenetic analyses of 137 mother-infant pair vif sequences and 187 other available vif sequences from HIV-1 databases revealed distinct clusters for vif sequences from each mother-infant pair and for other vif sequences. Taken together, these findings suggest that vif plays an important role in HIV-1 infection and replication in mothers and their perinatally infected infants. PMID:9445004

  8. Identification of small molecule compounds targeting the interaction of HIV-1 Vif and human APOBEC3G by virtual screening and biological evaluation.

    PubMed

    Ma, Ling; Zhang, Zhixin; Liu, Zhenlong; Pan, Qinghua; Wang, Jing; Li, Xiaoyu; Guo, Fei; Liang, Chen; Hu, Laixing; Zhou, Jinming; Cen, Shan

    2018-05-23

    Human APOBEC3G (hA3G) is a restriction factor that inhibits human immunodeficiency 1 virus (HIV-1) replication. The virally encoded protein Vif binds to hA3G and induces its degradation, thereby counteracting the antiviral activity of hA3G. Vif-mediated hA3G degradation clearly represents a potential target for anti-HIV drug development. Herein, we have performed virtual screening to discover small molecule inhibitors that target the binding interface of the Vif/hA3G complex. Subsequent biochemical studies have led to the identification of a small molecule inhibitor, IMB-301 that binds to hA3G, interrupts the hA3G-Vif interaction and inhibits Vif-mediated degradation of hA3G. As a result, IMB-301 strongly inhibits HIV-1 replication in a hA3G-dependent manner. Our study further demonstrates the feasibility of inhibiting HIV replication by abrogating the Vif-hA3G interaction with small molecules.

  9. Convergence and Divergence in the Evolution of the APOBEC3G-Vif Interaction Reveal Ancient Origins of Simian Immunodeficiency Viruses

    PubMed Central

    Compton, Alex A.; Emerman, Michael

    2013-01-01

    Naturally circulating lentiviruses are abundant in African primate species today, yet their origins and history of transmitting between hosts remain obscure. As a means to better understand the age of primate lentiviruses, we analyzed primate genomes for signatures of lentivirus-driven evolution. Specifically, we studied the adaptive evolution of host restriction factor APOBEC3G (A3G) in Old World Monkey (OWM) species. We find recurrent mutation of A3G in multiple primate lineages at sites that determine susceptibility to antagonism by the lentiviral accessory protein Vif. Using a broad panel of SIV Vif isolates, we demonstrate that natural variation in OWM A3G confers resistance to Vif-mediated degradation, suggesting that adaptive variants of the host factor were selected upon exposure to pathogenic lentiviruses at least 5–6 million years ago (MYA). Furthermore, in members of the divergent Colobinae subfamily of OWM, a multi-residue insertion event in A3G that arose at least 12 MYA blocks the activity of Vif, suggesting an even more ancient origin of SIV. Moreover, analysis of the lentiviruses associated with Colobinae monkeys reveal that the interface of the A3G-Vif interaction has shifted and given rise to a second genetic conflict. Our analysis of virus-driven evolution describes an ancient yet ongoing genetic conflict between simian primates and lentiviruses on a million-year time scale. PMID:23359341

  10. Differential Contributions of Ubiquitin-Modified APOBEC3G Lysine Residues to HIV-1 Vif-Induced Degradation.

    PubMed

    Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong

    2016-08-28

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here, we show that A3G polyubiquitination is essential for degradation. Inhibition of ubiquitin-activating enzyme E1 by PYR-41 or blocking the formation of ubiquitin chains by over-expressing the lysine to arginine mutation of ubiquitin K48 (K48R) inhibited A3G degradation. Our A3G mutagenesis study showed that lysine residues 297, 301, 303, and 334 were not sufficient to render lysine-free A3G sensitive to Vif-mediated degradation. Our data also confirm that Vif could induce ubiquitin chain formation on lysine residues interspersed throughout A3G. Notably, A3G degradation relied on the lysine residues involved in polyubiquitination. Although A3G and the A3G C-terminal mutant interacted with Vif and were modified by ubiquitin chains, the latter remained more resistant to Vif-induced degradation. Furthermore, the A3G C-terminal mutant, but not the N-terminal mutant, maintained potent antiviral activity in the presence of Vif. Taken together, our results suggest that the location of A3G ubiquitin modification is a determinant for Vif-mediated degradation, implying that in addition to polyubiquitination, other factors may play a key role in the rate of A3G degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Natural polymorphisms in human APOBEC3H and HIV-1 Vif combine in primary T lymphocytes to affect viral G-to-A mutation levels and infectivity.

    PubMed

    Refsland, Eric W; Hultquist, Judd F; Luengas, Elizabeth M; Ikeda, Terumasa; Shaban, Nadine M; Law, Emily K; Brown, William L; Reilly, Cavan; Emerman, Michael; Harris, Reuben S

    2014-11-01

    The Vif protein of HIV-1 allows virus replication by degrading several members of the host-encoded APOBEC3 family of DNA cytosine deaminases. Polymorphisms in both host APOBEC3 genes and the viral vif gene have the potential to impact the extent of virus replication among individuals. The most genetically diverse of the seven human APOBEC3 genes is APOBEC3H with seven known haplotypes. Overexpression studies have shown that a subset of these variants express stable and active proteins, whereas the others encode proteins with a short half-life and little, if any, antiviral activity. We demonstrate that these stable/unstable phenotypes are an intrinsic property of endogenous APOBEC3H proteins in primary CD4+ T lymphocytes and confer differential resistance to HIV-1 infection in a manner that depends on natural variation in the Vif protein of the infecting virus. HIV-1 with a Vif protein hypo-functional for APOBEC3H degradation, yet fully able to counteract APOBEC3D, APOBEC3F, and APOBEC3G, was susceptible to restriction and hypermutation in stable APOBEC3H expressing lymphocytes, but not in unstable APOBEC3H expressing lymphocytes. In contrast, HIV-1 with hyper-functional Vif counteracted stable APOBEC3H proteins as well as all other endogenous APOBEC3s and replicated to high levels. We also found that APOBEC3H protein levels are induced over 10-fold by infection. Finally, we found that the global distribution of stable/unstable APOBEC3H haplotypes correlates with the distribution a critical hyper/hypo-functional Vif amino acid residue. These data combine to strongly suggest that stable APOBEC3H haplotypes present as in vivo barriers to HIV-1 replication, that Vif is capable of adapting to these restrictive pressures, and that an evolutionary equilibrium has yet to be reached.

  12. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    PubMed Central

    Feng, Yuqing; Baig, Tayyba T.; Love, Robin P.; Chelico, Linda

    2014-01-01

    The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective. PMID:25206352

  13. An analog of camptothecin inactive against Topoisomerase I is broadly neutralizing of HIV-1 through inhibition of Vif-dependent APOBEC3G degradation.

    PubMed

    Bennett, Ryan P; Stewart, Ryan A; Hogan, Priscilla A; Ptak, Roger G; Mankowski, Marie K; Hartman, Tracy L; Buckheit, Robert W; Snyder, Beth A; Salter, Jason D; Morales, Guillermo A; Smith, Harold C

    2016-12-01

    Camptothecin (CPT) is a natural product discovered to be active against various cancers through its ability to inhibit Topoisomerase I (TOP1). CPT analogs also have anti-HIV-1 (HIV) activity that was previously shown to be independent of TOP1 inhibition. We show that a cancer inactive CPT analog (O2-16) inhibits HIV infection by disrupting multimerization of the HIV protein Vif. Antiviral activity depended on the expression of the cellular viral restriction factor APOBEC3G (A3G) that, in the absence of functional Vif, has the ability to hypermutate HIV proviral DNA during reverse transcription. Our studies demonstrate that O2-16 has low cytotoxicity and inhibits Vif-dependent A3G degradation, enabling A3G packaging into HIV viral particles that results in A3G signature hypermutations in viral genomes. This antiviral activity was A3G-dependent and broadly neutralizing against sixteen HIV clinical isolates from groups M (subtypes A-G), N, and O as well as seven single and multi-drug resistant strains of HIV. Molecular modeling predicted binding near the PPLP motif crucial for Vif multimerization and activity. O2-16 also was active in blocking Vif degradation of APOBEC3F (A3F). We propose that CPT analogs not active against TOP1 have novel therapeutic potential as Vif antagonists that enable A3G-dependent hypermutation of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The Binding Interface between Human APOBEC3F and HIV-1 Vif Elucidated by Genetic and Computational Approaches.

    PubMed

    Richards, Christopher; Albin, John S; Demir, Özlem; Shaban, Nadine M; Luengas, Elizabeth M; Land, Allison M; Anderson, Brett D; Holten, John R; Anderson, John S; Harki, Daniel A; Amaro, Rommie E; Harris, Reuben S

    2015-12-01

    APOBEC3 family DNA cytosine deaminases provide overlapping defenses against pathogen infections. However, most viruses have elaborate evasion mechanisms such as the HIV-1 Vif protein, which subverts cellular CBF-β and a polyubiquitin ligase complex to neutralize these enzymes. Despite advances in APOBEC3 and Vif biology, a full understanding of this direct host-pathogen conflict has been elusive. We combine virus adaptation and computational studies to interrogate the APOBEC3F-Vif interface and build a robust structural model. A recurring compensatory amino acid substitution from adaptation experiments provided an initial docking constraint, and microsecond molecular dynamic simulations optimized interface contacts. Virus infectivity experiments validated a long-lasting electrostatic interaction between APOBEC3F E289 and HIV-1 Vif R15. Taken together with mutagenesis results, we propose a wobble model to explain how HIV-1 Vif has evolved to bind different APOBEC3 enzymes and, more generally, how pathogens may evolve to escape innate host defenses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage.

    PubMed

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna; Perno, Carlo Federico; Svicher, Valentina

    2015-08-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage

    PubMed Central

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna

    2015-01-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e−7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, −40.1 kcal/mol; G24E, −510 kcal/mol; E25K, −522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. PMID:26055363

  17. Lentivirus Restriction by Diverse Primate APOBEC3A Proteins

    PubMed Central

    Schmitt, Kimberly; Guo, Kejun; Katuwal, Miki; Wilson, Darayu; Prochnow, Courtney; Bransteitter, Ronda; Chen, Xiaojiang S.; Santiago, Mario L.; Stephens, Edward B.

    2016-01-01

    Rhesus macaque APOBEC3A (rhA3A) is capable of restricting both simian-human immunodeficiency virus (SHIVΔvif) and human immunodeficiency virus (HIV-1Δvif) greater extent than hA3A. We constructed chimeric A3A proteins to define the domains required for differential lentivirus restriction. Substitution of amino acids 25–33 from rhA3A into hA3A was sufficient to restrict HIVΔvif to levels similar to rhA3A restriction of SHIVΔvif. We tested if differential lentivirus restriction is conserved between A3A from Old World monkey and hominid lineages. A3A from African green monkey restricted SHIVΔvif but not HIV-1Δvif and colobus monkey A3A restricted both wild type and SHIVΔvif and HIV-1Δvif. In contrast the gibbon ape A3A restricted neither SHIVΔvif nor HIV-1Δvif. Restriction of SHIVΔvif and HIV-1Δvif by New World monkey A3A proteins was not conserved as the A3A from the squirrel monkey but not the northern owl monkey restricted SHIVΔvif. Finally, the colobus A3A protein appears to restrict by a novel post-entry mechanism. PMID:23648232

  18. vif-negative human immunodeficiency virus type 1 persistently replicates in primary macrophages, producing attenuated progeny virus.

    PubMed Central

    Chowdhury, I H; Chao, W; Potash, M J; Sova, P; Gendelman, H E; Volsky, D J

    1996-01-01

    The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages. PMID:8764044

  19. vif-negative human immunodeficiency virus type 1 persistently replicates in primary macrophages, producing attenuated progeny virus.

    PubMed

    Chowdhury, I H; Chao, W; Potash, M J; Sova, P; Gendelman, H E; Volsky, D J

    1996-08-01

    The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages.

  20. The visiting internet Fiancé/ée (VIF): an emerging group of international travelers.

    PubMed

    Sofarelli, Theresa A; Birich, Holly K; Hale, DeVon C

    2014-01-01

    Here we describe an emerging category of travelers called the Visiting Internet Fiancé/ée (VIF), characterized by their travel to pursue a romantic relationship with an individual they have only encountered online. The VIF is not well identified in travel medicine literature despite having a higher risk for several travel-related issues including sexually transmitted infections, monetary fraud, and international scams. We also propose specific counseling interventions designed to minimize the adverse outcomes faced by the VIF traveler. © 2014 International Society of Travel Medicine.

  1. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.

    2008-05-10

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-{gamma} enzyme-linked immunospot responses of low magnitude were observed after immunizationmore » with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.« less

  2. Structural Features of Antiviral APOBEC3 Proteins are Linked to Their Functional Activities

    PubMed Central

    Kitamura, Shingo; Ode, Hirotaka; Iwatani, Yasumasa

    2011-01-01

    Human APOBEC3 (A3) proteins are cellular cytidine deaminases that potently restrict the replication of retroviruses by hypermutating viral cDNA and/or inhibiting reverse transcription. There are seven members of this family including A3A, B, C, DE, F, G, and H, all encoded in a tandem array on human chromosome 22. A3F and A3G are the most potent inhibitors of HIV-1, but only in the absence of the virus-encoded protein, Vif. HIV-1 utilizes Vif to abrogate A3 functions in the producer cells. More specifically, Vif, serving as a substrate receptor, facilitates ubiquitination of A3 proteins by forming a Cullin5 (Cul5)-based E3 ubiquitin ligase complex, which targets A3 proteins for rapid proteasomal degradation. The specificity of A3 degradation is determined by the ability of Vif to bind to the target. Several lines of evidence have suggested that three distinct regions of A3 proteins are involved in the interaction with Vif. Here, we review the biological functions of A3 family members with special focus on A3G and base our analysis on the available structural information. PMID:22203821

  3. Analysis of human immunodeficiency virus type 1 Vif gene sequences among men who have sex with men in Heilongjiang province of China.

    PubMed

    Shao, Bing; Li, Hang; Liu, Sheng-Yuan; Li, Wen-Jing; Huang, Chao-Qun; Lin, Yuan-Long; Wang, Fu-Xiang; Wang, Bin-You

    2013-05-01

    To identify the current prevalent subtypes and to study the genetic variation of HIV-1 strains in men who have sex with men (MSM) residing in Heilongjiang province, China. We analyzed the characteristics of the nucleotide sequences and the corresponding deduced protein of Vif of HIV-1 strains isolated from 17 drug-naive HIV-1-seropositive MSM. Subtypes B (7.65%) and B' (Thailand B) (11.76%), CRF07_BC (47.06%), and CRF01_AE (23.53%) were identified. Phylogenetic analysis showed that there was a close relationship between our strains and those from the same MSM population in Hebei province, which is geographically close to Heilongjiang. Most of the documented Vif functional motifs are well conserved in the majority of our analyzed sequences. Taken together, our results suggest that there might be multiple introductions of HIV in Heilongjiang MSM and frequent sexual communications with other geographically nearby MSM populations.

  4. APOBEC3H haplotypes and HIV-1 pro-viral vif DNA sequence diversity in early untreated human immunodeficiency virus-1 infection.

    PubMed

    Gourraud, P A; Karaouni, A; Woo, J M; Schmidt, T; Oksenberg, J R; Hecht, F M; Liegler, T J; Barbour, J D

    2011-03-01

    We examined single nucleotide polymorphisms (SNP) in the APOBEC3 locus on chromosome 22, paired with population sequences of pro-viral human immunodeficiency virus-1 (HIV-1) vif from peripheral blood mononuclear cells, from 96 recently HIV-1-infected treatment-naive adults. We found evidence for the existence of an APOBEC3H linkage disequilibrium (LD) block associated with variation in GA → AA, or APOBEC3F/H signature, sequence changes in pro-viral HIV-1 vif sequence (top 10 significant SNPs with a significant p = 4.8 × 10(-3)). We identified a common five position risk haplotype distal to APOBEC3H (A3Hrh). These markers were in high LD (D' = 1; r(2) = 0.98) to a previously described A3H "RED" haplotype containing a variant (E121) with enhanced susceptibility to HIV-1 Vif. This association was confirmed by a haplotype analysis. Homozygote carriers of the A3Hrh had lower GA->AA (A3F/H) sequence editing upon pro-viral HIV-1 vif sequence (p = 0.01), and lower HIV-1 RNA levels over time during early, untreated HIV-1 infection, (p = 0.015 mixed effects model). This effect may be due to enhanced susceptibility of A3H forms to HIV-1 Vif mediated viral suppression of sequence editing activity, slowing viral diversification and escape from immune responses. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  5. High level of APOBEC3F/3G editing in HIV-2 DNA vif and pol sequences from antiretroviral-naive patients.

    PubMed

    Bertine, Mélanie; Charpentier, Charlotte; Visseaux, Benoit; Storto, Alexandre; Collin, Gilles; Larrouy, Lucile; Damond, Florence; Matheron, Sophie; Brun-Vézinet, Françoise; Descamps, Diane

    2015-04-24

    In HIV-1, hypermutation introduced by APOBEC3F/3G cytidine deaminase activity leads to defective viruses. In-vivo impact of APOBEC3F/3G editing on HIV-2 sequences remains unknown. The objective of this study was to assess the level of APOBEC3F/3G editing in HIV-2-infected antiretroviral-naive patients. Direct sequencing of vif and pol regions was performed on HIV-2 proviral DNA from antiretroviral-naive patients included in the French Agence Nationale de Recherches sur le SIDA et les hépatites virales CO5 HIV-2 cohort. Hypermutated sequences were identified using Hypermut2.0 program. HIV-1 proviral sequences from Genbank were also assessed. Among 82 antiretroviral-naive HIV-2-infected patients assessed, 15 (28.8%) and five (16.7%) displayed Vif proviral defective sequences in HIV-2 groups A and B, respectively. A lower proportion of defective sequences was observed in protease-reverse transcriptase region. A higher median number of G-to-A mutations was observed in HIV-2 group B than in group A, both in Vif and protease-reverse transcriptase regions (P = 0.02 and P = 0.006, respectively). Compared with HIV-1 Vif sequences, a higher number of Vif defective sequences was observed in HIV-2 group A (P = 0.00001) and group B sequences (P = 0.013). We showed for the first time a high level of APOBEC3F/3G editing in HIV-2 sequences from antiretroviral-naive patients. Our study reported a group effect with a significantly higher level of APOBEC3F/3G editing in HIV-2 group B than in group A sequences.

  6. New World feline APOBEC3 potently controls inter-genus lentiviral transmission.

    PubMed

    Konno, Yoriyuki; Nagaoka, Shumpei; Kimura, Izumi; Yamamoto, Keisuke; Kagawa, Yumiko; Kumata, Ryuichi; Aso, Hirofumi; Ueda, Mahoko Takahashi; Nakagawa, So; Kobayashi, Tomoko; Koyanagi, Yoshio; Sato, Kei

    2018-04-10

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) gene family appears only in mammalian genomes. Some A3 proteins can be incorporated into progeny virions and inhibit lentiviral replication. In turn, the lentiviral viral infectivity factor (Vif) counteracts the A3-mediated antiviral effect by degrading A3 proteins. Recent investigations have suggested that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins, and have further proposed that the Vif-A3 interaction may help determine the co-evolutionary history of cross-species lentiviral transmission in mammals. Here we address the co-evolutionary relationship between two New World felids, the puma (Puma concolor) and the bobcat (Lynx rufus), and their lentiviruses, which are designated puma lentiviruses (PLVs). We demonstrate that PLV-A Vif counteracts the antiviral action of APOBEC3Z3 (A3Z3) of both puma and bobcat, whereas PLV-B Vif counteracts only puma A3Z3. The species specificity of PLV-B Vif is irrespective of the phylogenic relationships of feline species in the genera Puma, Lynx and Acinonyx. We reveal that the amino acid at position 178 in the puma and bobcat A3Z3 is exposed on the protein surface and determines the sensitivity to PLV-B Vif-mediated degradation. Moreover, although both the puma and bobcat A3Z3 genes are polymorphic, their sensitivity/resistance to PLV Vif-mediated degradation is conserved. To the best of our knowledge, this is the first study suggesting that the host A3 protein potently controls inter-genus lentiviral transmission. Our findings provide the first evidence suggesting that the co-evolutionary arms race between lentiviruses and mammals has occurred in the New World.

  7. Ubiquitin-fusion as a strategy to modulate protein half-life: A3G antiviral activity revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadima-Couto, Iris; Freitas-Vieira, Acilino; Instituto de Medicina Molecular, Lisboa

    2009-10-25

    The human APOBEC3G (A3G) is a potent inhibitor of HIV-1 replication and its activity is suppressed by HIV-1 virion infectivity factor (Vif). Vif neutralizes A3G mainly by inducing its degradation in the proteasome and blocking its incorporation into HIV-1 virions. Assessing the time needed for A3G incorporation into virions is, therefore, important to determine how quickly Vif must act to induce its degradation. We show that modelling the intracellular half-life of A3G can induce its Vif-independent targeting to the ubiquitin-proteasome system. By using various amino acids (X) in a cleavable ubiquitin-X-A3G fusion, we demonstrate that the half-life (t1/2) of X-A3Gmore » can be manipulated. We show that A3G molecules with a half-life of 13 min are incorporated into virions, whereas those with a half-life shorter than 5 min were not. The amount of X-A3G incorporated into virions increases from 13 min (Phe-A3G) to 85 min (Asn-A3G) and remains constant after this time period. Interestingly, despite the presence of similar levels of Arg-A3G (t1/2 = 28 min) and Asp-A3G (t1/2 = 65 min) into HIV-1 DELTAvif virions, inhibition of viral infectivity was only evident in the presence of A3G proteins with a longer half-life (t1/2 >= 65 min).« less

  8. An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G.

    PubMed

    Ejima, Tomohiko; Hirota, Mayuko; Mizukami, Tamio; Otsuka, Masami; Fujita, Mikako

    2011-10-01

    Human apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3G (A3G) is an antiviral protein that blocks HIV-1 replication. However, the antiviral activity of A3G is overcome by the HIV-1 protein Vif. This inhibitory function of Vif is related to its ability to degrade A3G in the proteasome. This finding prompted us to examine the activities of 4-(dimethylamino)-2,6-bis[(N-(2-[(2-nitrophenyl)dithio]ethyl)amino)methyl]pyridine (SN-2) and SN-3. We found that 5 µM SN-2 increases the expression of A3G to a level much higher than that observed in the absence of Vif, without affecting the level of Vif expression. The proteasome inhibitor MG-132 increased the level of both A3G and Vif expression. These results demonstrate that A3G is ubiquitinated and degraded in the proteasome by a factor other than Vif, and that SN-2 selectively inhibits these processes. Furthermore, 5 µM SN-2 significantly inhibited the MAGI cell infectivity of wild-type HIV-1. These findings may contribute to the development of a novel anti-HIV-1 drug.

  9. An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor.

    PubMed

    Vistas, Cláudia R; Soares, Sandra S; Rodrigues, Rogério M M; Chu, Virginia; Conde, João P; Ferreira, Guilherme N M

    2014-08-07

    A hydrogenated amorphous silicon (a-Si:H) photosensor was explored for the quantitative detection of a HIV-1 virion infectivity factor (Vif) at a detection limit in the single nanomolar range. The a-Si:H photosensor was coupled with a microfluidic channel that was functionalized with a recombinant single chain variable fragment antibody. The biosensor selectively recognizes HIV-1 Vif from human cell extracts.

  10. The role of multicollinearity in landslide susceptibility assessment by means of Binary Logistic Regression: comparison between VIF and AIC stepwise selection

    NASA Astrophysics Data System (ADS)

    Cama, Mariaelena; Cristi Nicu, Ionut; Conoscenti, Christian; Quénéhervé, Geraldine; Maerker, Michael

    2016-04-01

    landslides may lead to a better understanding and mitigation for government, local authorities and stakeholders to plan the economic activities, minimize the damages costs, environmental and cultural heritage protection. The results show that although the VIF Stepwise selection allows a more stable selection of the controlling factors, the AIC Stepwise selection produces better predictive performance. Moreover, when working with replicates the effect of multicollinearity are statistically reduced by the application of the AIC stepwise selection and the results are easily interpretable in geomorphologic terms.

  11. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    PubMed

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  12. Transmitted/Founder HIV-1 Subtype C Viruses Show Distinctive Signature Patterns in Vif, Vpr, and Vpu That Are Under Subsequent Immune Pressure During Early Infection.

    PubMed

    Rossenkhan, Raabya; MacLeod, Iain J; Brumme, Zabrina L; Magaret, Craig A; Sebunya, Theresa K; Musonda, Rosemary; Gashe, Berhanu A; Edlefsen, Paul T; Novitsky, Vlad; Essex, M

    Viral variants that predominate during early infection may exhibit constrained diversity compared with those found during chronic infection and could contain amino acid signature patterns that may enhance transmission, establish productive infection, and influence early events that modulate the infection course. We compared amino acid distributions in 17 patients recently infected with HIV-1C with patients with chronic infection. We found significantly lower entropy in inferred transmitted/founder (t/f) compared with chronic viruses and identified signature patterns in Vif and Vpr from inferred t/f viruses. We investigated sequence evolution longitudinally up to 500 days postseroconversion and compared the impact of selected substitutions on predicted human leukocyte antigen (HLA) binding affinities of published and predicted cytotoxic T-lymphocyte epitopes. Polymorphisms in Vif and Vpr during early infection occurred more frequently at epitope-HLA anchor residues and significantly decreased predicted epitope-HLA binding. Transmission-associated sequence signatures may have implications for novel strategies to prevent HIV-1 transmission.

  13. Transmitted/Founder HIV-1 Subtype C Viruses Show Distinctive Signature Patterns in Vif, Vpr, and Vpu That Are Under Subsequent Immune Pressure During Early Infection

    PubMed Central

    Rossenkhan, Raabya; MacLeod, Iain J.; Brumme, Zabrina L.; Magaret, Craig A.; Sebunya, Theresa K.; Musonda, Rosemary; Gashe, Berhanu A.; Edlefsen, Paul T.; Novitsky, Vlad

    2016-01-01

    Abstract Viral variants that predominate during early infection may exhibit constrained diversity compared with those found during chronic infection and could contain amino acid signature patterns that may enhance transmission, establish productive infection, and influence early events that modulate the infection course. We compared amino acid distributions in 17 patients recently infected with HIV-1C with patients with chronic infection. We found significantly lower entropy in inferred transmitted/founder (t/f) compared with chronic viruses and identified signature patterns in Vif and Vpr from inferred t/f viruses. We investigated sequence evolution longitudinally up to 500 days postseroconversion and compared the impact of selected substitutions on predicted human leukocyte antigen (HLA) binding affinities of published and predicted cytotoxic T-lymphocyte epitopes. Polymorphisms in Vif and Vpr during early infection occurred more frequently at epitope-HLA anchor residues and significantly decreased predicted epitope-HLA binding. Transmission-associated sequence signatures may have implications for novel strategies to prevent HIV-1 transmission. PMID:27349335

  14. Zinc-mediated binding of a low-molecular-weight stabilizer of the host anti-viral factor apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G.

    PubMed

    Radwan, Mohamed O; Sonoda, Sachiko; Ejima, Tomohiko; Tanaka, Ayumi; Koga, Ryoko; Okamoto, Yoshinari; Fujita, Mikako; Otsuka, Masami

    2016-09-15

    Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G, A3G), is a human anti-virus restriction protein which works deaminase-dependently and -independently. A3G is known to be ubiquitinated by HIV-1 viral infectivity factor (Vif) protein, leading to proteasomal degradation. A3G contains two zinc ions at the N-terminal domain and the C-terminal domain. Four lysine residues, K(297), K(301), K(303), and K(334), are known to be required for Vif-mediated A3G ubiquitination and degradation. Previously, we reported compound SN-1, a zinc chelator that increases steady-state expression level of A3G in the presence of Vif. In this study, we prepared Biotin-SN-1, a biotinylated derivative of SN-1, to study the SN-1-A3G interaction. A pull-down assay revealed that Biotin-SN-1 bound A3G. A zinc-abstraction experiment indicated that SN-1 binds to the zinc site of A3G. We carried out a SN-1-A3G docking study using molecular operating environment. The calculations revealed that SN-1 binds to the C-terminal domain through Zn(2+), H(216), P(247), C(288), and Y(315). Notably, SN-1-binding covers the H(257), E(259), C(288), and C(291) residues that participate in zinc-mediated deamination, and the ubiquitination regions of A3G. The binding of SN-1 presumably perturbs the secondary structure between C(288) and Y(315), leading to less efficient ubiquitination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Naturally Occurring Domestic Cat APOBEC3 Variant Confers Resistance to Feline Immunodeficiency Virus Infection.

    PubMed

    Yoshikawa, Rokusuke; Izumi, Taisuke; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Ren, Fengrong; Carpenter, Michael A; Ikeda, Terumasa; Münk, Carsten; Harris, Reuben S; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) DNA cytosine deaminases can be incorporated into progeny virions and inhibit lentiviral replication. On the other hand, viral infectivity factor (Vif) of lentiviruses antagonizes A3-mediated antiviral activities by degrading A3 proteins. It is known that domestic cat (Felis catus) APOBEC3Z3 (A3Z3), the ortholog of human APOBEC3H, potently suppresses the infectivity of vif-defective feline immunodeficiency virus (FIV). Although a recent report has shown that domestic cat encodes 7 haplotypes (hap I to hap VII) of A3Z3, the relevance of A3Z3 polymorphism in domestic cats with FIV Vif has not yet been addressed. In this study, we demonstrated that these feline A3Z3 variants suppress vif-defective FIV infectivity. We also revealed that codon 65 of feline A3Z3 is a positively selected site and that A3Z3 hap V is subject to positive selection during evolution. It is particularly noteworthy that feline A3Z3 hap V is resistant to FIV Vif-mediated degradation and still inhibits vif-proficient viral infection. Moreover, the side chain size, but not the hydrophobicity, of the amino acid at position 65 determines the resistance to FIV Vif-mediated degradation. Furthermore, phylogenetic analyses have led to the inference that feline A3Z3 hap V emerged approximately 60,000 years ago. Taken together, these findings suggest that feline A3Z3 hap V may have been selected for escape from an ancestral FIV. This is the first evidence for an evolutionary "arms race" between the domestic cat and its cognate lentivirus. Gene diversity and selective pressure are intriguing topics in the field of evolutionary biology. A direct interaction between a cellular protein and a viral protein can precipitate an evolutionary arms race between host and virus. One example is primate APOBEC3G, which potently restricts the replication of primate lentiviruses (e.g., human immunodeficiency virus type 1 [HIV-1] and simian

  16. Targeting Virus-host Interactions of HIV Replication.

    PubMed

    Weydert, Caroline; De Rijck, Jan; Christ, Frauke; Debyser, Zeger

    2016-01-01

    Cellular proteins that are hijacked by HIV in order to complete its replication cycle, form attractive new targets for antiretroviral therapy. In particular, the protein-protein interactions between these cellular proteins (cofactors) and viral proteins are of great interest to develop new therapies. Research efforts have led to the validation of different cofactors and some successes in therapeutic applications. Maraviroc, the first cofactor inhibitor approved for human medicinal use, provided a proof of concept. Furthermore, compounds developed as Integrase-LEDGF/p75 interaction inhibitors (LEDGINs) have advanced to early clinical trials. Other compounds targeting cofactors and cofactor-viral protein interactions are currently under development. Likewise, interactions between cellular restriction factors and their counteracting HIV protein might serve as interesting targets in order to impair HIV replication. In this respect, compounds targeting the Vif-APOBEC3G interaction have been described. In this review, we focus on compounds targeting the Integrase- LEDGF/p75 interaction, the Tat-P-TEFb interaction and the Vif-APOBEC3G interaction. Additionally we give an overview of currently discovered compounds presumably targeting cellular cofactor-HIV protein interactions.

  17. Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: different ways to counteract host-encoded restriction.

    PubMed

    Chareza, Sarah; Slavkovic Lukic, Dragana; Liu, Yang; Räthe, Ann-Mareen; Münk, Carsten; Zabogli, Elisa; Pistello, Mauro; Löchelt, Martin

    2012-03-15

    Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Factor H-related proteins.

    PubMed

    Józsi, Mihály; Meri, Seppo

    2014-01-01

    Factor H-related proteins (CFHRs) are plasma glycoproteins related in structure and antigenicity to each other and to the complement inhibitory protein factor H. Such proteins are found in most mammals but their number and domain composition vary. This chapter summarizes our current knowledge on the human factor H-related proteins. In contrast to factor H, they have no strong complement inhibitory activity, although for some of them regulatory or complement modulatory activity has been reported. A common feature of CFHRs is that they bind to the C3b component of complement. Novel links between CFHRs and various diseases (C3 glomerulopathies, atypical hemolytic uremic syndrome and age-related macular degeneration) have been revealed in recent years, but we are still far from understanding their biological function.

  19. Protein-protein interactions in the regulation of WRKY transcription factors.

    PubMed

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  20. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  1. A Virus-Induced Assay for Functional Dissection and Analysis of Monocot and Dicot Flowering Time Genes.

    PubMed

    Qin, Cheng; Chen, Weiwei; Shen, Jiajia; Cheng, Linming; Akande, Femi; Zhang, Ke; Yuan, Chen; Li, Chunyang; Zhang, Pengcheng; Shi, Nongnong; Cheng, Qi; Liu, Yule; Jackson, Stephen; Hong, Yiguo

    2017-06-01

    Virus-induced flowering (VIF) uses virus vectors to express Flowering Locus T ( FT ) to induce flowering in plants. This approach has recently attracted wide interest for its practical applications in accelerating breeding in crops and woody fruit trees. However, the insight into VIF and its potential as a powerful tool for dissecting florigenic proteins remained to be elucidated. Here, we describe the mechanism and further applications of Potato virus X (PVX)-based VIF in the short-day Nicotiana tabacum cultivar Maryland Mammoth. Ectopic delivery of Arabidopsis ( Arabidopsis thaliana ) AtFT by PVX/AtFT did not induce the expression of the endogenous FT ortholog NtFT4 ; however, it was sufficient to trigger flowering in Maryland Mammoth plants grown under noninductive long-day conditions. Infected tobacco plants developed no systemic symptoms, and the PVX-based VIF did not cause transgenerational flowering. We showed that the PVX-based VIF is a much more rapid method to examine the impacts of single amino acid mutations on AtFT for floral induction than making individual transgenic Arabidopsis lines for each mutation. We also used the PVX-based VIF to demonstrate that adding a His- or FLAG-tag to the N or C terminus of AtFT could affect its florigenic activity and that this system can be applied to assay the function of FT genes from heterologous species, including tomato ( Solanum lycopersicum ) SFT and rice ( Oryza sativa ) Hd3a Thus, the PVX-based VIF represents a simple and efficient system to identify individual amino acids that are essential for FT-mediated floral induction and to test the ability of mono- and dicotyledonous FT genes and FT fusion proteins to induce flowering. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangavelu, Pulari U.; Gupta, Vipul; Dixit, Narendra M., E-mail: narendra@chemeng.iisc.ernet.in

    The contest between the host factor APOBEC3G (A3G) and the HIV-1 protein Vif presents an attractive target of intervention. The extent to which the A3G–Vif interaction must be suppressed to tilt the balance in favor of A3G remains unknown. We employed stochastic simulations and mathematical modeling of the within-host dynamics and evolution of HIV-1 to estimate the fraction of progeny virions that must incorporate A3G to render productive infection unsustainable. Using three different approaches, we found consistently that a transition from sustained infection to suppression of productive infection occurred when the latter fraction exceeded ∼0.8. The transition was triggered bymore » A3G-induced hypermutations that led to premature stop codons compromising viral production and was consistent with driving the basic reproductive number, R{sub 0}, below unity. The fraction identified may serve as a quantitative guideline for strategies targeting the A3G–Vif axis. - Highlights: • We perform simulations and mathematical modeling of the role of APOBEC3G in suppressing HIV-1 infection. • In three distinct ways, we estimate that when over 80% of progeny virions carry APOBEC3G, productive HIV-1 infection would be suppressed. • Our estimate of this critical fraction presents quantitative guidelines for strategies targeting the APOBEC3G–Vif axis.« less

  3. Feline APOBEC3s, Barriers to Cross-Species Transmission of FIV?

    PubMed Central

    Zhang, Zeli; Gu, Qinyong; Marino, Daniela; Lee, Kyeong-Lim; Kong, Il-Keun; Häussinger, Dieter; Münk, Carsten

    2018-01-01

    The replication of lentiviruses highly depends on host cellular factors, which defines their species-specific tropism. Cellular restriction factors that can inhibit lentiviral replication were recently identified. Feline immunodeficiency virus (FIV) was found to be sensitive to several feline cellular restriction factors, such as apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) and tetherin, but FIV evolved to counteract them. Here, we describe the molecular mechanisms by which feline APOBEC3 restriction factors inhibit FIV replication and discuss the molecular interaction of APOBEC3 proteins with the viral antagonizing protein Vif. We speculate that feline APOBEC3 proteins could explain some of the observed FIV cross-species transmissions described in wild Felids. PMID:29642583

  4. Suppression of HIV-1 Infection by APOBEC3 Proteins in Primary Human CD4+ T Cells Is Associated with Inhibition of Processive Reverse Transcription as Well as Excessive Cytidine Deamination

    PubMed Central

    Gillick, Kieran; Pollpeter, Darja; Phalora, Prabhjeet; Kim, Eun-Young; Wolinsky, Steven M.

    2013-01-01

    The Vif protein of human immunodeficiency virus type 1 (HIV-1) promotes viral replication by downregulation of the cell-encoded, antiviral APOBEC3 proteins. These proteins exert their suppressive effects through the inhibition of viral reverse transcription as well as the induction of cytidine deamination within nascent viral cDNA. Importantly, these two effects have not been characterized in detail in human CD4+ T cells, leading to controversies over their possible contributions to viral inhibition in the natural cell targets of HIV-1 replication. Here we use wild-type and Vif-deficient viruses derived from the CD4+ T cells of multiple donors to examine the consequences of APOBEC3 protein function at natural levels of expression. We demonstrate that APOBEC3 proteins impart a profound deficiency to reverse transcription from the initial stages of cDNA synthesis, as well as excessive cytidine deamination (hypermutation) of the DNAs that are synthesized. Experiments using viruses from transfected cells and a novel method for mapping the 3′ termini of cDNAs indicate that the inhibition of reverse transcription is not limited to a few specific sites, arguing that APOBEC3 proteins impede enzymatic processivity. Detailed analyses of mutation spectra in viral cDNA strongly imply that one particular APOBEC3 protein, APOBEC3G, provides the bulk of the antiviral phenotype in CD4+ T cells, with the effects of APOBEC3F and APOBEC3D being less significant. Taken together, we conclude that the dual mechanisms of action of APOBEC3 proteins combine to deliver more effective restriction of HIV-1 than either function would by itself. PMID:23152537

  5. A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins

    PubMed Central

    Suryawanshi, Gajendra W.; Hoffmann, Alexander

    2015-01-01

    Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif’s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that

  6. APOBEC3G: a Double Agent in Defense

    PubMed Central

    Smith, Harold C.

    2011-01-01

    APOBEC3G (A3G) is an effective cellular host defense factor under experimental conditions in which a functional form of the HIV-encoded protein Vif cannot be expressed. Wild type Vif targets A3G for proteasomal degradation and along with it, any host defense advantage A3G might provide is severely diminished or lost. Recent evidence cast doubt on the potency of A3G in host defense and suggested that it could, under some circumstances, promote the emergence of more virulent HIV strains. In this article, I argue that it is time to recognize that A3G has the potential to act as a double agent. The path forward relies on understanding how cellular and viral regulatory mechanisms enable A3G antiviral function and on developing novel research reagents to explore these pathways. PMID:21239176

  7. Role of carbohydrate in multimeric structure of factor VIII/von Willebrand factor protein.

    PubMed Central

    Gralnick, H R; Williams, S B; Rick, M E

    1983-01-01

    The carbohydrate moiety of the factor VIII/von Willebrand (vW) factor protein is important in the expression of vW factor activity and the intravascular survival of the protein. Studies of normal human factor VIII/vW factor protein indicate that there is a requirement of a full complement of penultimate galactose for the maintenance of a normal multimeric structure. Release of penultimate galactose by beta-galactosidase or modification by galactose oxidase results in loss of the largest molecular weight multimers and increased numbers of intermediate and smaller multimers. In contrast, terminal galactose on the factor VIII/vW factor protein does not appear to play a significant role in the maintenance of the multimer organization. The abnormalities in multimeric structure and molecular size were demonstrated by NaDodSO4/polyacrylamide/agarose gel electrophoresis, NaDodSO4/glyoxyl-agarose electrophoresis, and sucrose density ultracentrifugation. These studies indicate that the penultimate galactose plays a role in the maintenance of the largest multimers of the factor VIII/vW factor protein. This may explain why, in some patients with variant forms of vW disease, a carbohydrate abnormality also may affect the multimeric structure of the plasma factor VIII/vW factor protein. Images PMID:6601805

  8. Cytidine deamination induced HIV-1 drug resistance

    PubMed Central

    Mulder, Lubbertus C. F.; Harari, Ariana; Simon, Viviana

    2008-01-01

    The HIV-1 Vif protein is essential for overcoming the antiviral activity of DNA-editing apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) cytidine deaminases. We show that naturally occurring HIV-1 Vif point mutants with suboptimal anti-APOBEC3G activity induce the appearance of proviruses with lamivudine (3TC) drug resistance-associated mutations before any drug exposure. These mutations, ensuing from cytidine deamination events, were detected in >40% of proviruses with partially defective Vif mutants. Transfer of drug resistance from hypermutated proviruses via recombination allowed for 3TC escape under culture conditions prohibitive for any WT viral growth. These results demonstrate that defective hypermutated genomes can shape the phenotype of the circulating viral population. Partially active Vif alleles resulting in incomplete neutralization of cytoplasmic APOBEC3 molecules are directly responsible for the generation of a highly diverse, yet G-to-A biased, proviral reservoir, which can be exploited by HIV-1 to generate viable and drug-resistant progenies. PMID:18391217

  9. Dissecting protein:protein interactions between transcription factors with an RNA aptamer.

    PubMed Central

    Tian, Y; Adya, N; Wagner, S; Giam, C Z; Green, M R; Ellington, A D

    1995-01-01

    Nucleic acid aptamers isolated from random sequence pools have generally proven useful at inhibiting the interactions of nucleic acid binding proteins with their cognate nucleic acids. In order to develop reagents that could also be used to study protein:protein interactions, we have used in vitro selection to search for RNA aptamers that could interact with the transactivating protein Tax from human T-cell leukemia virus. Tax does not normally bind to nucleic acids, but instead stimulates transcription by interacting with a variety of cellular transcription factors, including the cyclic AMP-response element binding protein (CREB), NF-kappa B, and the serum response factor (SRF). Starting from a pool of greater than 10(13) different RNAs with a core of 120 random sequence positions, RNAs were selected for their ability to be co-retained on nitrocellulose filters with Tax. After five cycles of selection and amplification, a single nucleic acid species remained. This aptamer was found to bind Tax with high affinity and specificity, and could disrupt complex formation between Tax and NF-kappa B, but not with SRF. The differential effects of our aptamer probe on protein:protein interactions suggest a model for how the transcription factor binding sites on the surface of the Tax protein are organized. This model is consistent with data from a variety of other studies. PMID:7489503

  10. Regulated production and anti-HIV type 1 activities of cytidine deaminases APOBEC3B, 3F, and 3G.

    PubMed

    Rose, Kristine M; Marin, Mariana; Kozak, Susan L; Kabat, David

    2005-07-01

    APOBEC3G and 3F (A3G and A3F) cytidine deaminases incorporate into retroviral cores where they lethally hypermutate nascent DNA reverse transcripts. As substantiated here, the viral infectivity factor (Vif) encoded by human immunodeficiency virus type-1 (HIV-1) binds A3G and A3F and induces their degradation, thereby precluding their incorporation into viral progeny. Previous evidence suggested that A3G is expressed in H9 and other nonpermissive cells that contain this antiviral defense but not in several permissive cells, and that overexpression of A3G or A3F makes permissive cells nonpermissive. Using a broader panel of cell lines, we confirmed a correlation between A3G and cellular abilities to inactivate HIV-1(Deltavif). However, there was a quantitative discrepancy because several cells with weak antiviral activities had similar amounts of wild-type A3G mRNA and protein compared to H9 cells. Antiviral activity of H9 cells was also attenuated in some conditions. These quantitative discrepancies could not be explained by the presence of A3F or other A3G paralogs in some of the cell lines. Thus, A3A, A3B, and A3C had weak but significant anti-HIV-1 activities and did not dominantly interfere with A3G or A3F antiviral functions. Control of A3G synthesis by the protein kinase C/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway was also similar in permissive and nonpermissive cells. A3G in highly permissive cells is degraded by Vif, suggesting that it is not in a sequestered site, and is specifically incorporated in low amounts into HIV-1(Deltavif). Although A3G and/or A3F inactivate HIV-1(Deltavif) and are neutralized by Vif, the antiviral properties of cell lines are also influenced by other cellular and viral factors.

  11. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model.

    PubMed

    Sato, Kei; Takeuchi, Junko S; Misawa, Naoko; Izumi, Taisuke; Kobayashi, Tomoko; Kimura, Yuichi; Iwami, Shingo; Takaori-Kondo, Akifumi; Hu, Wei-Shau; Aihara, Kazuyuki; Ito, Mamoru; An, Dong Sung; Pathak, Vinay K; Koyanagi, Yoshio

    2014-10-01

    Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo.

  12. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  13. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239.

    PubMed

    Martins, Mauricio A; Wilson, Nancy A; Piaskowski, Shari M; Weisgrau, Kim L; Furlott, Jessica R; Bonaldo, Myrna C; Veloso de Santana, Marlon G; Rudersdorf, Richard A; Rakasz, Eva G; Keating, Karen D; Chiuchiolo, Maria J; Piatak, Michael; Allison, David B; Parks, Christopher L; Galler, Ricardo; Lifson, Jeffrey D; Watkins, David I

    2014-07-01

    Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by

  14. Investigation of potent lead for acquired immunodeficiency syndrome from traditional Chinese medicine.

    PubMed

    Hung, Tzu-Chieh; Lee, Wen-Yuan; Chen, Kuen-Bao; Chan, Yueh-Chiu; Chen, Calvin Yu-Chian

    2014-01-01

    Acquired immunodeficiency syndrome (AIDS), caused by human immunodeficiency virus (HIV), has become, because of the rapid spread of the disease, a serious global problem and cannot be treated. Recent studies indicate that VIF is a protein of HIV to prevent all of human immunity to attack HIV. Molecular compounds of traditional Chinese medicine (TCM) database filtered through molecular docking and molecular dynamics simulations to inhibit VIF can protect against HIV. Glutamic acid, plantagoguanidinic acid, and Aurantiamide acetate based docking score higher with other TCM compounds selected. Molecular dynamics are useful for analysis and detection ligand interactions. According to the docking position, hydrophobic interactions, hydrogen bonding changes, and structure variation, the study try to select the efficacy of traditional Chinese medicine compound Aurantiamide acetate is better than the other for protein-ligand interactions to maintain the protein composition, based on changes in the structure.

  15. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy R.; McCauley, Micah J.; Wang, Wei; Qualley, Dominic F.; Wu, Tiyun; Kitamura, Shingo; Geertsema, Hylkje; Chan, Denise S. B.; Hertz, Amber; Iwatani, Yasumasa; Levin, Judith G.; Musier-Forsyth, Karin; Rouzina, Ioulia; Williams, Mark C.

    2014-01-01

    The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.

  16. Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair

    PubMed Central

    Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe

    2015-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502

  17. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    PubMed

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.

  18. Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2-related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning.

    PubMed

    Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong

    2017-03-01

    The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch

  19. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  20. How large B-factors can be in protein crystal structures.

    PubMed

    Carugo, Oliviero

    2018-02-23

    Protein crystal structures are potentially over-interpreted since they are routinely refined without any restraint on the upper limit of atomic B-factors. Consequently, some of their atoms, undetected in the electron density maps, are allowed to reach extremely large B-factors, even above 100 square Angstroms, and their final positions are purely speculative and not based on any experimental evidence. A strategy to define B-factors upper limits is described here, based on the analysis of protein crystal structures deposited in the Protein Data Bank prior 2008, when the tendency to allow B-factor to arbitrary inflate was limited. This B-factor upper limit (B_max) is determined by extrapolating the relationship between crystal structure average B-factor and percentage of crystal volume occupied by solvent (pcVol) to pcVol =100%, when, ab absurdo, the crystal contains only liquid solvent, the structure of which is, by definition, undetectable in electron density maps. It is thus possible to highlight structures with average B-factors larger than B_max, which should be considered with caution by the users of the information deposited in the Protein Data Bank, in order to avoid scientifically deleterious over-interpretations.

  1. Mapping transcription factor interactome networks using HaloTag protein arrays.

    PubMed

    Yazaki, Junshi; Galli, Mary; Kim, Alice Y; Nito, Kazumasa; Aleman, Fernando; Chang, Katherine N; Carvunis, Anne-Ruxandra; Quan, Rosa; Nguyen, Hien; Song, Liang; Alvarez, José M; Huang, Shao-Shan Carol; Chen, Huaming; Ramachandran, Niroshan; Altmann, Stefan; Gutiérrez, Rodrigo A; Hill, David E; Schroeder, Julian I; Chory, Joanne; LaBaer, Joshua; Vidal, Marc; Braun, Pascal; Ecker, Joseph R

    2016-07-19

    Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.

  2. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  3. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants.

    PubMed

    Barta, Andrea; Kalyna, Maria; Reddy, Anireddy S N

    2010-09-01

    Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species.

  4. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity.

    PubMed

    Shindo, Keisuke; Takaori-Kondo, Akifumi; Kobayashi, Masayuki; Abudu, Aierken; Fukunaga, Keiko; Uchiyama, Takashi

    2003-11-07

    Human immunodeficiency virus, type 1 (HIV-1) Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion. Vif functions to counteract an anti-HIV-1 cellular factor in non-permissive cells, CEM15/Apobec-3G, which shares a cytidine deaminase motif. CEM15/Apobec-3G deaminates dC to dU in the minus strand DNA of HIV-1, resulting in G to A hypermutation in the plus strand DNA. In this study, we have done the mutagenesis analysis on two cytidine deaminase motifs in CEM15/Apobec-3G and examined their antiviral functions as well as the DNA editing activity. Point mutations in the C-terminal active site such as E259Q and C291A almost completely abrogated the antiviral function, while those in the N-terminal active site such as E67Q and C100A retained this activity to a lesser extent as compared with that of the wild type. The DNA editing activities of E67Q and E259Q mutants were both retained but impaired to the same extent. This indicates that the enzymatic activity of this protein is essential but not a sole determinant of the antiviral activity. Furthermore, all the deletion mutants tested in this study lost the antiviral activity because of the loss of the activity for dimerization, suggesting that the entire protein structure is necessary for the antiviral function.

  5. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.

  6. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    PubMed

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  7. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    PubMed Central

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  8. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.

    PubMed

    Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B

    2018-06-01

    To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. TALE factors poise promoters for activation by Hox proteins.

    PubMed

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. APOBEC3G Inhibits HIV-1 RNA Elongation by Inactivating the Viral Trans-Activation Response Element

    PubMed Central

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-01-01

    Deamination of cytidine residues in viral DNA (vDNA) is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient HIV-1 replication. dC to dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here we demonstrate that A3G provides an additional layer of defence against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. Finally, we show that free ssDNA termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3′+5′ ends is sufficient for A3G deamination, identifying A3G as an efficient mutator, and that deamination of (−)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  11. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    PubMed

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the

  13. Sperm and Spermatids Contain Different Proteins and Bind Distinct Egg Factors

    PubMed Central

    Teperek, Marta; Miyamoto, Kei; Simeone, Angela; Feret, Renata; Deery, Michael J.; Gurdon, John B.; Jullien, Jerome

    2014-01-01

    Spermatozoa are more efficient at supporting normal embryonic development than spermatids, their immature, immediate precursors. This suggests that the sperm acquires the ability to support embryonic development during spermiogenesis (spermatid to sperm maturation). Here, using Xenopus laevis as a model organism, we performed 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry analysis of differentially expressed proteins between sperm and spermatids in order to identify factors that could be responsible for the efficiency of the sperm to support embryonic development. Furthermore, benefiting from the availability of egg extracts in Xenopus, we also tested whether the chromatin of sperm could attract different egg factors compared to the chromatin of spermatids. Our analysis identified: (1) several proteins which were present exclusively in sperm; but not in spermatid nuclei and (2) numerous egg proteins binding to the sperm (but not to the spermatid chromatin) after incubation in egg extracts. Amongst these factors we identified many chromatin-associated proteins and transcriptional repressors. Presence of transcriptional repressors binding specifically to sperm chromatin could suggest its preparation for the early embryonic cell cycles, during which no transcription is observed and suggests that sperm chromatin has a unique protein composition, which facilitates the recruitment of egg chromatin remodelling factors. It is therefore likely that the acquisition of these sperm-specific factors during spermiogenesis makes the sperm chromatin suitable to interact with the maternal factors and, as a consequence, to support efficient embryonic development. PMID:25244019

  14. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    PubMed

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  15. Effects of antinutritional factors on protein digestibility and amino acid availability in foods.

    PubMed

    Gilani, G Sarwar; Cockell, Kevin A; Sepehr, Estatira

    2005-01-01

    Digestibility of protein in traditional diets from developing countries such as India, Guatemala, and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94%). The presence of less digestible protein fractions, high levels of insoluble fiber, and high concentrations of antinutritional factors in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, are responsible for poor digestibility of protein. The effects of the presence of some of the important antinutritional factors on protein and amino digestibilities of food and feed products are reviewed in this chapter. Food and feed products may contain a number of antinutritional factors that may adversely affect protein digestibility and amino acid availability. Antinutritional factors may occur naturally, such as glucosinolates in mustard and rapeseed protein products, trypsin inhibitors and hemagglutinins in legumes, tannins in legumes and cereals, phytates in cereals and oilseeds, and gossypol in cottonseed protein products. Antinutritional factors may also be formed during heat/alkaline processing of protein products, yielding Maillard compounds, oxidized forms of sulfur amino acids, D-amino acids, and lysinoalanine (LAL, an unnatural amino acid derivative). The presence of high levels of dietary trypsin inhibitors from soybeans, kidney beans, or other grain legumes can cause substantial reductions in protein and amino acid digestibilities (up to 50%) in rats and pigs. Similarly, the presence of high levels of tannins in cereals, such as sorghum, and grain legumes, such as fababean (Vicia faba L.), can result in significantly reduced protein and amino acid digestibilities (up to 23%) in rats, poultry, and pigs. Studies involving phytase supplementation of production rations for swine or poultry have provided indirect evidence that normally encountered levels of phytates in cereals and legumes

  16. APOBEC3G ubiquitination by Nedd4-1 favors its packaging into HIV-1 particles.

    PubMed

    Dussart, Sylvie; Douaisi, Marc; Courcoul, Marianne; Bessou, Gilles; Vigne, Robert; Decroly, Etienne

    2005-01-21

    APOBEC3G is a cytidine deaminase that limits the replication of many retroviruses. This antiviral host factor is packaged into retrovirus particles, where it targets single-stranded DNA generated during reverse transcription and induces up to 2% of G-to-A mutations, which are lethal for the HIV-1 provirus. Vif protein counteracts this antiviral factor by decreasing its packaging into lentivirus particles. Here, we demonstrate that Nedd4-1, an HECT E3 ubiquitin ligase, interacts with APOBEC3G, through its WW2 and WW3 domains. As a result of this interaction, APOBEC3G undergoes post-translational modification by addition of ubiquitin moieties. Accordingly, we demonstrate that the dominant negative Nedd4-1 C/S form prevents APOBEC3G ubiquitination. Moreover, the packaging of APOBEC3G into Pr55 Gag virus-like particles and into HIV-1 virions is reduced when Nedd4-1 C/S is expressed. During HIV-1 viral production in the presence of APOBEC3G, Nedd4-1 C/S restores partially the infectivity of Deltavif HIV-1. We conclude that the ubiquitination of APOBEC3G by Nedd4-1 favors its targeting to the virus assembly site where APOBEC3G interacts with Gag and is packaged into HIV-1 particles in the absence of Vif.

  17. HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G

    PubMed Central

    Ikeda, Terumasa; Albin, John S.; Li, Ming; Thali, Markus

    2018-01-01

    HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs. PMID:29677220

  18. Regulation of RE1 Protein Silencing Transcription Factor (REST) Expression by HIP1 Protein Interactor (HIPPI)*

    PubMed Central

    Datta, Moumita; Bhattacharyya, Nitai P.

    2011-01-01

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease. PMID:21832040

  19. Regulation of RE1 protein silencing transcription factor (REST) expression by HIP1 protein interactor (HIPPI).

    PubMed

    Datta, Moumita; Bhattacharyya, Nitai P

    2011-09-30

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease.

  20. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M; Olstad-Thompson, Jessica L; Templeton, David W

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  1. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase.

    PubMed

    Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung Mi; Min, Bon Hong; Lee, Kee Ho; Park, Gil Hong

    2011-10-31

    Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)- p21Cip/WAF1 activation, and suppressed by the mitogenactivated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.

  2. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase

    PubMed Central

    Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung-Mi; Min, Bon Hong

    2011-01-01

    Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21Cip/WAF1 activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway. PMID:21778808

  3. Transcription Factor IIB (TFIIB)-Related Protein (pBrp), a Plant-Specific Member of the TFIIB-Related Protein Family

    PubMed Central

    Lagrange, Thierry; Hakimi, Mohamed-Ali; Pontier, Dominique; Courtois, Florence; Alcaraz, Jean Pierre; Grunwald, Didier; Lam, Eric; Lerbs-Mache, Silva

    2003-01-01

    Although it is now well documented that metazoans have evolved general transcription factor (GTF) variants to regulate their complex patterns of gene expression, there is so far no information regarding the existence of specific GTFs in plants. Here we report the characterization of a ubiquitously expressed gene that encodes a bona fide novel transcription factor IIB (TFIIB)-related protein in Arabidopsis thaliana. We have shown that this protein is the founding member of a plant-specific TFIIB-related protein family named pBrp (for plant-specific TFIIB-related protein). Surprisingly, in contrast to common GTFs that are localized in the nucleus, the bulk of pBrp proteins are bound to the cytoplasmic face of the plastid envelope, suggesting an organelle-specific function for this novel class of TFIIB-related protein. We show that pBrp proteins harbor conditional proteolytic signals that can target these proteins for rapid turnover by the proteasome-mediated protein degradation pathway. Interestingly, under conditions of proteasome inhibition, pBrp proteins accumulate in the nucleus. Together, our results suggest a possible involvement of these proteins in an intracellular signaling pathway between plastids and the nucleus. Our data provide the first evidence for an organelle-related evolution of the eukaryotic general transcription machinery. PMID:12697827

  4. Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus.

    PubMed

    Peng, Zong-Gen; Zhao, Zhi-Yun; Li, Yan-Ping; Wang, Yu-Ping; Hao, Lan-Hu; Fan, Bo; Li, Yu-Huan; Wang, Yue-Ming; Shan, Yong-Qiang; Han, Yan-Xing; Zhu, Yan-Ping; Li, Jian-Rui; You, Xue-Fu; Li, Zhuo-Rong; Jiang, Jian-Dong

    2011-04-01

    Host cellular factor apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3G (hA3G) is a cytidine deaminase that inhibits a group of viruses including human immunodeficiency virus-1 (HIV-1). In the continuation of our research on hA3G, we found that hA3G stabilizing compounds significantly inhibited hepatitis C virus (HCV) replication. Therefore, this study investigated the role of hA3G in HCV replication. Introduction of external hA3G into HCV-infected Huh7.5 human hepatocytes inhibited HCV replication; knockdown of endogenous hA3G enhanced HCV replication. Exogenous HIV-1 virion infectivity factor (Vif) decreased intracellular hA3G and therefore enhanced HCV proliferation, suggesting that the presence of Vif might be an explanation for the HIV-1/HCV coinfection often observed in HIV-1(+) individuals. Treatment of the HCV-infected Huh7.5 cells with RN-5 or IMB-26, two known hA3G stabilizing compounds, increased intracellular hA3G and accordingly inhibited HCV replication. The compounds inhibit HCV through increasing the level of hA3G incorporated into HCV particles, but not through inhibiting HCV enzymes. However, G/A hypermutation in the HCV genome were not detected, suggesting a new antiviral mechanism of hA3G in HCV, different from that in HIV-1. Stabilization of hA3G by RN-5 was safe in vivo. hA3G appears to be a cellular restrict factor against HCV and could be a potential target for drug discovery. 2011 American Association for the Study of Liver Diseases.

  5. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    PubMed

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of <3%, we identified 111 candidates from conditioned medium, including 44 proteins that have signal peptides or are described as secreted proteins in the UniProt database. As validation, we confirmed that one of these proteins, insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  6. A comparison of individual and population-derived vascular input functions for quantitative DCE-MRI in rats.

    PubMed

    Hormuth, David A; Skinner, Jack T; Does, Mark D; Yankeelov, Thomas E

    2014-05-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) can quantitatively and qualitatively assess physiological characteristics of tissue. Quantitative DCE-MRI requires an estimate of the time rate of change of the concentration of the contrast agent in the blood plasma, the vascular input function (VIF). Measuring the VIF in small animals is notoriously difficult as it requires high temporal resolution images limiting the achievable number of slices, field-of-view, spatial resolution, and signal-to-noise. Alternatively, a population-averaged VIF could be used to mitigate the acquisition demands in studies aimed to investigate, for example, tumor vascular characteristics. Thus, the overall goal of this manuscript is to determine how the kinetic parameters estimated by a population based VIF differ from those estimated by an individual VIF. Eight rats bearing gliomas were imaged before, during, and after an injection of Gd-DTPA. K(trans), ve, and vp were extracted from signal-time curves of tumor tissue using both individual and population-averaged VIFs. Extended model voxel estimates of K(trans) and ve in all animals had concordance correlation coefficients (CCC) ranging from 0.69 to 0.98 and Pearson correlation coefficients (PCC) ranging from 0.70 to 0.99. Additionally, standard model estimates resulted in CCCs ranging from 0.81 to 0.99 and PCCs ranging from 0.98 to 1.00, supporting the use of a population based VIF if an individual VIF is not available. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A Recommendation for Naming Transcription Factor Proteins in the Grasses

    USDA-ARS?s Scientific Manuscript database

    Transcription factors are central for the exquisite temporal and spatial expression patterns of many genes. These proteins are characterized by their ability to be tethered to particular regulatory sequences in the genes that they control. While many other proteins participate in the regulation of g...

  8. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent proteinmore » kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.« less

  9. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    PubMed Central

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  10. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...2009 4. TITLE AND SUBTITLE Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development 5a. CONTRACT NUMBER and Tumorigenesis...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS Fibroblast Growth Factor Binding Protein-1

  11. Functional and Structural Properties of a Novel Protein and Virulence Factor (Protein sHIP) in Streptococcus pyogenes *

    PubMed Central

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-01-01

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. PMID:24825900

  12. Functional characterization of a vacuolar invertase from Solanum lycopersicum: post-translational regulation by N-glycosylation and a proteinaceous inhibitor.

    PubMed

    Tauzin, Alexandra S; Sulzenbacher, Gerlind; Lafond, Mickael; Desseaux, Véronique; Reca, Ida Barbara; Perrier, Josette; Bellincampi, Daniela; Fourquet, Patrick; Lévêque, Christian; Giardina, Thierry

    2014-06-01

    Plant vacuolar invertases, which belong to family 32 of glycoside hydrolases (GH32), are key enzymes in sugar metabolism. They hydrolyse sucrose into glucose and fructose. The cDNA encoding a vacuolar invertase from Solanum lycopersicum (TIV-1) was cloned and heterologously expressed in Pichia pastoris. The functional role of four N-glycosylation sites in TIV-1 has been investigated by site-directed mutagenesis. Single mutations to Asp of residues Asn52, Asn119 and Asn184, as well as the triple mutant (Asn52, Asn119 and Asn184), lead to enzymes with reduced specific invertase activity and thermostability. Expression of the N516D mutant, as well as of the quadruple mutant (N52D, N119D, N184D and N516D) could not be detected, indicating that these mutations dramatically affected the folding of the protein. Our data indicate that N-glycosylation is important for TIV-1 activity and that glycosylation of N516 is crucial for recombinant enzyme stability. Using a functional genomics approach a new vacuolar invertase inhibitor of S. lycopersicum (SolyVIF) has been identified. SolyVIF cDNA was cloned and heterologously expressed in Escherichia coli. Specific interactions between SolyVIF and TIV-1 were investigated by an enzymatic approach and surface plasmon resonance (SPR). Finally, qRT-PCR analysis of TIV-1 and SolyVIF transcript levels showed a specific tissue and developmental expression. TIV-1 was mainly expressed in flowers and both genes were expressed in senescent leaves. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-induced activation of nuclear factor kappa B.

    PubMed

    Taylor, Shannon L; Frias-Staheli, Natalia; García-Sastre, Adolfo; Schmaljohn, Connie S

    2009-02-01

    Hantaviruses such as Hantaan virus (HTNV) and Andes virus cause two human diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, respectively. For both, disease pathogenesis is thought to be immunologically mediated and there have been numerous reports of patients with elevated levels of proinflammatory and inflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), in their sera. Multiple viruses have developed evasion strategies to circumvent the host cell inflammatory process, with one of the most prevalent being the disruption of nuclear factor kappa B (NF-kappaB) activation. We hypothesized that hantaviruses might also moderate host inflammation by interfering with this pathway. We report here that the nucleocapsid (N) protein of HTNV was able to inhibit TNF-alpha-induced activation of NF-kappaB, as measured by a reporter assay, and the activation of endogenous p65, an NF-kappaB subunit. Surprisingly, there was no defect in the degradation of the inhibitor of NF-kappaB (IkappaB) protein, nor was there any alteration in the level of p65 expression in HTNV N-expressing cells. However, immunofluorescence antibody staining demonstrated that cells expressing HTNV N protein and a green fluorescent protein-p65 fusion had limited p65 nuclear translocation. Furthermore, we were able to detect an interaction between HTNV N protein and importin alpha, a nuclear import molecule responsible for shuttling NF-kappaB to the nucleus. Collectively, our data suggest that HTNV N protein can sequester NF-kappaB in the cytoplasm, thus inhibiting NF-kappaB activity. These findings, which were obtained using cells transfected with cDNA representing the HTNV N gene, were confirmed using HTNV-infected cells.

  15. Phosphorylation of Wheat Germ Initiation Factors and Ribosomal Proteins 1

    PubMed Central

    Browning, Karen S.; Yan, Tyan Fuh J.; Lauer, Stephen J.; Aquino, Lu Ann; Tao, Mariano; Ravel, Joanne M.

    1985-01-01

    The ability of the wheat germ initiation factors and ribosomes to serve as substrates for a wheat germ protein kinase (Yan and Tao 1982 J Biol Chem 257: 7037-7043) has been investigated. The wheat germ kinase catalyzes the phosphorylation of the 42,000 dalton subunit of eukaryotic initiation factor (eIF)-2 and the 107,000 dalton subunit of eIF-3. Other initiation factors, eIF-4B and eIF-4A, and elongation factors, EF-1 and EF-2, are not phosphorylated by the kinase. Quantitative analysis indicates that the kinase catalyzes the incorporation of about 0.5 to 0.6 mole of phosphate per mole of the 42,000 dalton subunit of eIF-2 and about 6 moles of phosphate per mole of the 107,000 dalton subunit of eIF-3. Three proteins (Mr = 38,000, 14,800, and 12,600) of the 60S ribosomal subunit are phosphorylated by the kinase, but none of the 40S ribosomal proteins are substrates of the kinase. No effects of phosphorylation on the activities of eIF-2, eIF-3, or 60S ribosomal subunits could be demonstrated in vitro. Images Fig. 1 Fig. 3 Fig. 4 PMID:16664060

  16. Liquid-Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-09-08

    Dual variable domain immunoglobulin proteins (DVD-Ig proteins) are large molecules (MW ∼ 200 kDa) with increased asymmetry because of their extended Y-like shape, which results in increased formulation challenges. Liquid-liquid phase separation (LLPS) of protein solutions into protein-rich and protein-poor phases reduces solution stability at intermediate concentrations and lower temperatures, and is a serious concern in formulation development as therapeutic proteins are generally stored at refrigerated conditions. In the current work, LLPS was studied for a DVD-Ig protein molecule as a function of solution conditions by measuring solution opalescence. LLPS of the protein was confirmed by equilibrium studies and by visually observing under microscope. The protein does not undergo any structural change after phase separation. Protein-protein interactions were measured by light scattering (kD) and Tcloud (temperature that marks the onset of phase separation). There is a good agreement between kD measured in dilute solution with Tcloud measured in the critical concentration range. Results indicate that the increased complexity of the molecule (with respect to size, shape, and charge distribution on the molecule) increases contribution of specific and nonspecific interactions in solution, which are affected by formulation factors, resulting in LLPS for DVD-Ig protein.

  17. Interaction of Leptospira Elongation Factor Tu with Plasminogen and Complement Factor H: A Metabolic Leptospiral Protein with Moonlighting Activities

    PubMed Central

    Abe, Cecília M.; Monaris, Denize; Morais, Zenaide M.; Souza, Gisele O.; Vasconcellos, Sílvio A.; Isaac, Lourdes; Abreu, Patrícia A. E.; Barbosa, Angela S.

    2013-01-01

    The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities. PMID:24312361

  18. HIV–host interactome revealed directly from infected cells

    PubMed Central

    Luo, Yang; Jacobs, Erica Y.; Greco, Todd M.; Mohammed, Kevin D.; Tong, Tommy; Keegan, Sarah; Binley, James M.; Cristea, Ileana M.; Fenyö, David; Rout, Michael P.; Chait, Brian T.; Muesing, Mark A.

    2016-01-01

    Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen–host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention. PMID:27375898

  19. Functional and structural properties of a novel protein and virulence factor (Protein sHIP) in Streptococcus pyogenes.

    PubMed

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-06-27

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Complement factor H family proteins in their non-canonical role as modulators of cellular functions.

    PubMed

    Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi

    2018-01-04

    Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  2. Systemic delivery of factor IX messenger RNA for protein replacement therapy

    PubMed Central

    Ramaswamy, Suvasini; Tonnu, Nina; Tachikawa, Kiyoshi; Limphong, Pattraranee; Vega, Jerel B.; Karmali, Priya P.; Chivukula, Pad; Verma, Inder M.

    2017-01-01

    Safe and efficient delivery of messenger RNAs for protein replacement therapies offers great promise but remains challenging. In this report, we demonstrate systemic, in vivo, nonviral mRNA delivery through lipid nanoparticles (LNPs) to treat a Factor IX (FIX)-deficient mouse model of hemophilia B. Delivery of human FIX (hFIX) mRNA encapsulated in our LUNAR LNPs results in a rapid pulse of FIX protein (within 4–6 h) that remains stable for up to 4–6 d and is therapeutically effective, like the recombinant human factor IX protein (rhFIX) that is the current standard of care. Extensive cytokine and liver enzyme profiling showed that repeated administration of the mRNA–LUNAR complex does not cause any adverse innate or adaptive immune responses in immune-competent, hemophilic mice. The levels of hFIX protein that were produced also remained consistent during repeated administrations. These results suggest that delivery of long mRNAs is a viable therapeutic alternative for many clotting disorders and for other hepatic diseases where recombinant proteins may be unaffordable or unsuitable. PMID:28202722

  3. Over-expression and purification strategies for recombinant multi-protein oligomers: a case study of Mycobacterium tuberculosis σ/anti-σ factor protein complexes.

    PubMed

    Thakur, Krishan Gopal; Jaiswal, Ravi Kumar; Shukla, Jinal K; Praveena, T; Gopal, B

    2010-12-01

    The function of a protein in a cell often involves coordinated interactions with one or several regulatory partners. It is thus imperative to characterize a protein both in isolation as well as in the context of its complex with an interacting partner. High resolution structural information determined by X-ray crystallography and Nuclear Magnetic Resonance offer the best route to characterize protein complexes. These techniques, however, require highly purified and homogenous protein samples at high concentration. This requirement often presents a major hurdle for structural studies. Here we present a strategy based on co-expression and co-purification to obtain recombinant multi-protein complexes in the quantity and concentration range that can enable hitherto intractable structural projects. The feasibility of this strategy was examined using the σ factor/anti-σ factor protein complexes from Mycobacterium tuberculosis. The approach was successful across a wide range of σ factors and their cognate interacting partners. It thus appears likely that the analysis of these complexes based on variations in expression constructs and procedures for the purification and characterization of these recombinant protein samples would be widely applicable for other multi-protein systems. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. FACTORS AFFECTING THE UPTAKE OF LISSAMINE GREEN BY SERUM PROTEINS

    PubMed Central

    Brackenridge, C. J.

    1960-01-01

    Eight physicochemical factors which affect the uptake of lissamine green on filter paper impregnated with serum proteins have been examined, and their relevance to the staining of electrophoretically separated protein fractions is discussed. It is shown that grade of paper, weight of protein applied, separate and combined denaturation and staining time, temperature and concentration of staining solution, concentration of denaturant, and type of protein all influence the weight of dye absorbed per unit weight of applied protein, and must be rigidly standardized if valid quantitative results are to be obtained. Five sets of conditions are obtained for optimal staining and it is found that separation of denaturant from dye yields the best procedure. It is concluded that lissamine green is an excellent dye for the staining and quantitative estimation of separated protein fractions in paper electrophoresis, and that conditions can usually be arranged to produce a linear relation between dye uptake and protein concentration in an experimentally efficient manner. PMID:13803681

  5. A Joint Model for Vitamin K-Dependent Clotting Factors and Anticoagulation Proteins.

    PubMed

    Ooi, Qing Xi; Wright, Daniel F B; Tait, R Campbell; Isbister, Geoffrey K; Duffull, Stephen B

    2017-12-01

    Warfarin acts by inhibiting the reduction of vitamin K (VK) to its active form, thereby decreasing the production of VK-dependent coagulation proteins. The aim of this research is to develop a joint model for the VK-dependent clotting factors II, VII, IX and X, and the anticoagulation proteins, proteins C and S, during warfarin initiation. Data from 18 patients with atrial fibrillation who had warfarin therapy initiated were available for analysis. Nine blood samples were collected from each subject at baseline, and at 1-5, 8, 15 and 29 days after warfarin initiation and assayed for factors II, VII, IX and X, and proteins C and S. Warfarin concentration-time data were not available. The coagulation proteins data were modelled in a stepwise manner using NONMEM ® Version 7.2. In the first stage, each of the coagulation proteins was modelled independently using a kinetic-pharmacodynamic model. In the subsequent step, the six kinetic-pharmacodynamic models were combined into a single joint model. One patient was administered VK and was excluded from the analysis. Each kinetic-pharmacodynamic model consisted of two parts: (1) a common one-compartment pharmacokinetic model with first-order absorption and elimination for warfarin; and (2) an inhibitory E max model linked to a turnover model for coagulation proteins. In the joint model, an unexpected pharmacodynamic lag was identified and the estimated degradation half-life of VK-dependent coagulation proteins were in agreement with previously published values. The model provided an adequate fit to the observed data. The joint model represents the first work to quantify the influence of warfarin on all six VK-dependent coagulation proteins simultaneously. Future work will expand the model to predict the influence of exogenously administered VK on the time course of clotting factor concentrations after warfarin overdose and during perioperative warfarin reversal procedures.

  6. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens.

    PubMed

    Janssen, Renske H; Vincken, Jean-Paul; van den Broek, Lambertus A M; Fogliano, Vincenzo; Lakemond, Catriona M M

    2017-03-22

    Insects are considered a nutritionally valuable source of alternative proteins, and their efficient protein extraction is a prerequisite for large-scale use. The protein content is usually calculated from total nitrogen using the nitrogen-to-protein conversion factor (Kp) of 6.25. This factor overestimates the protein content, due to the presence of nonprotein nitrogen in insects. In this paper, a specific Kp of 4.76 ± 0.09 was calculated for larvae from Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens, using amino acid analysis. After protein extraction and purification, a Kp factor of 5.60 ± 0.39 was found for the larvae of three insect species studied. We propose to adopt these Kp values for determining protein content of insects to avoid overestimation of the protein content.

  7. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens

    PubMed Central

    2017-01-01

    Insects are considered a nutritionally valuable source of alternative proteins, and their efficient protein extraction is a prerequisite for large-scale use. The protein content is usually calculated from total nitrogen using the nitrogen-to-protein conversion factor (Kp) of 6.25. This factor overestimates the protein content, due to the presence of nonprotein nitrogen in insects. In this paper, a specific Kp of 4.76 ± 0.09 was calculated for larvae from Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens, using amino acid analysis. After protein extraction and purification, a Kp factor of 5.60 ± 0.39 was found for the larvae of three insect species studied. We propose to adopt these Kp values for determining protein content of insects to avoid overestimation of the protein content. PMID:28252948

  8. Different modes of retrovirus restriction by human APOBEC3A and APOBEC3G in vivo.

    PubMed

    Stavrou, Spyridon; Crawford, Daniel; Blouch, Kristin; Browne, Edward P; Kohli, Rahul M; Ross, Susan R

    2014-05-01

    The apolipoprotein B editing complex 3 (A3) cytidine deaminases are among the most highly evolutionarily selected retroviral restriction factors, both in terms of gene copy number and sequence diversity. Primate genomes encode seven A3 genes, and while A3F and 3G are widely recognized as important in the restriction of HIV, the role of the other genes, particularly A3A, is not as clear. Indeed, since human cells can express multiple A3 genes, and because of the lack of an experimentally tractable model, it is difficult to dissect the individual contribution of each gene to virus restriction in vivo. To overcome this problem, we generated human A3A and A3G transgenic mice on a mouse A3 knockout background. Using these mice, we demonstrate that both A3A and A3G restrict infection by murine retroviruses but by different mechanisms: A3G was packaged into virions and caused extensive deamination of the retrovirus genomes while A3A was not packaged and instead restricted infection when expressed in target cells. Additionally, we show that a murine leukemia virus engineered to express HIV Vif overcame the A3G-mediated restriction, thereby creating a novel model for studying the interaction between these proteins. We have thus developed an in vivo system for understanding how human A3 proteins use different modes of restriction, as well as a means for testing therapies that disrupt HIV Vif-A3G interactions.

  9. Recurrent Loss of APOBEC3H Activity during Primate Evolution.

    PubMed

    Garcia, Erin I; Emerman, Michael

    2018-06-20

    Genes in the APOBEC3 family encode cytidine deaminases that provide a barrier against viral infection and retrotransposition. Of all APOBEC3 genes in humans, APOBEC3H ( A3H ) is the most polymorphic: some haplotypes encode stable and active A3H proteins, while others are unstable and poorly antiviral. Such variation in human A3H affects interactions with the lentiviral antagonist Vif, which counteracts A3H via proteasomal degradation. In order to broaden our understanding of A3H-Vif interactions, as well as its evolution in Old World monkeys, we characterized A3H variation within four African green monkey (AGM) subspecies. We found that A3H is highly polymorphic in AGMs and has lost antiviral activity in multiple Old World monkeys. This loss of function was partially related to protein expression levels but was also influenced by amino acid mutations in the N-terminus. Moreover, we demonstrate that the evolution of A3H in the primate lineages leading to AGMs was not driven by Vif. Our work suggests that activity of A3H is evolutionarily dynamic and may have a negative effect on host fitness, resulting in its recurrent loss in primates. IMPORTANCE Adaptation of viruses to their hosts is critical for transmission of viruses between different species. Previous studies had identified changes in a protein from the APOBEC3 family that influenced species-specificity of simian immunodeficiency viruses (SIVs) in African green monkeys. We studied the evolution of a related protein in the same system, APOBEC3H, which has experienced a loss of function in humans. This evolutionary approach revealed that recurrent loss of APOBEC3H activity has taken place during primate evolution suggesting that APOBEC3H places a fitness cost on hosts. The variability of APOBEC3H activity between different primates highlights the differential selective pressures on the APOBEC3 gene family. Copyright © 2018 American Society for Microbiology.

  10. Structure of the Get3 targeting factor in complex with its membrane protein cargo

    DOE PAGES

    Mateja, Agnieszka; Paduch, Marcin; Chang, Hsin-Yang; ...

    2015-03-06

    Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. In this paper, we reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans themore » Get3 homodimer. Finally, our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.« less

  11. Multilayer regulatory mechanisms control cleavage factor I proteins in filamentous fungi

    PubMed Central

    Rodríguez-Romero, J.; Franceschetti, M.; Bueno, E.; Sesma, A.

    2015-01-01

    Cleavage factor I (CFI) proteins are core components of the polyadenylation machinery that can regulate several steps of mRNA life cycle, including alternative polyadenylation, splicing, export and decay. Here, we describe the regulatory mechanisms that control two fungal CFI protein classes in Magnaporthe oryzae: Rbp35/CfI25 complex and Hrp1. Using mutational, genetic and biochemical studies we demonstrate that cellular concentration of CFI mRNAs is a limited indicator of their protein abundance. Our results suggest that several post-transcriptional mechanisms regulate Rbp35/CfI25 complex and Hrp1 in the rice blast fungus, some of which are also conserved in other ascomycetes. With respect to Rbp35, these include C-terminal processing, RGG-dependent localization and cleavage, C-terminal autoregulatory domain and regulation by an upstream open reading frame of Rbp35-dependent TOR signalling pathway. Our proteomic analyses suggest that Rbp35 regulates the levels of proteins involved in melanin and phenylpropanoids synthesis, among others. The drastic reduction of fungal CFI proteins in carbon-starved cells suggests that the pre-mRNA processing pathway is altered. Our findings uncover broad and multilayer regulatory mechanisms controlling fungal polyadenylation factors, which have profound implications in pre-mRNA maturation. This area of research offers new avenues for fungicide design by targeting fungal-specific proteins that globally affect thousands of mRNAs. PMID:25514925

  12. How protein chemists learned about the hydrophobic factor.

    PubMed Central

    Tanford, C.

    1997-01-01

    It is generally accepted today that the hydrophobic force is the dominant energetic factor that leads to the folding of polypeptide chains into compact globular entities. This principle was first explicitly introduced to protein chemists in 1938 by Irving Langmuir, past master in the application of hydrophobicity to other problems, and was enthusiastically endorsed by J.D. Bernal. But both proposal and endorsement came in the course of a debate about a quite different structural principle, the so-called "cyclol hypothesis" proposed by D. Wrinch, which soon proved to be theoretically and experimentally unsupportable. Being a more tangible idea, directly expressed in structural terms, the cyclol hypothesis received more attention than the hydrophobic principle and the latter never actually entered the mainstream of protein science until 1959, when it was thrust into the limelight in a lucid review by W. Kauzmann. A theoretical paper by H.S. Frank and M. Evans, not itself related to protein folding, probably played a major role in the acceptance of the hydrophobicity concept by protein chemists because it provided a crude but tangible picture of the origin of hydrophobicity per se in terms of water structure. PMID:9194199

  13. [Chlamydia trachomatis proteasome protein as one of the significant pathogenicity factors of exciter].

    PubMed

    Davydov, D Iu; Zigangirova, N A

    2014-01-01

    Sex-related infections are a global problem. Such infections may lead to acute or chronic diseases. Chlamydia trachomatis is a dangerous and widespread pathogenicity factor that is not sensitive to conventional drugs and has no obvious symptoms. Protein CPAF is leading factor of pathogenesis. This protein inhibits the signaling pathways of host cell and supports long survival of the pathogen in the host cell. The goal of this work was to review general properties of the proteasome Chlamydia protein CPAF, its functions, and role in pathology. The role of protein CPAF in the anti-chlamydia immune reaction is discussed. The prospects of the development of promising anti-chlamydia vaccine, as well as new effective anti-chlamydia drugs are also discussed.

  14. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    PubMed

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  15. Lack of A-factor production induces the expression of nutrient scavenging and stress-related proteins in Streptomyces griseus.

    PubMed

    Birkó, Zsuzsanna; Swiatek, Magdalena; Szájli, Emília; Medzihradszky, Katalin F; Vijgenboom, Erik; Penyige, András; Keseru, Judit; van Wezel, Gilles P; Biró, Sándor

    2009-10-01

    The small gamma-butyrolactone A-factor is an important autoregulatory signaling molecule for the soil-inhabiting streptomycetes. Starvation is a major trigger for development, and nutrients are provided by degradation of the vegetative mycelium via a process of programmed cell death, reusing proteins, nucleic acids, and cell wall material. The A-factor regulon includes many extracellular hydrolases. Here we show via proteomics analysis that many nutrient-scavenging and stress-related proteins were overexpressed in an A-factor non-producing mutant of Streptomyces griseus B-2682. Transcript analysis showed that this is primarily due to differential transcription of the target genes during early development. The targets include proteins relating to nutrient stress and environmental stress and an orthologue of the Bacillus sporulation control protein Spo0M. The enhanced expression of these proteins underlines the stress that is generated by the absence of A-factor. Wild-type developmental gene expression was restored to the A-factor non-producing mutant by the signaling protein Factor C in line with our earlier observation that Factor C triggers A-factor production.

  16. Anti-apoptotic Role of Caspase-cleaved GAB1 Adaptor Protein in Hepatocyte Growth Factor/Scatter Factor-MET Receptor Protein Signaling*

    PubMed Central

    Le Goff, Arnaud; Ji, Zongling; Leclercq, Bérénice; Bourette, Roland P.; Mougel, Alexandra; Guerardel, Cateline; de Launoit, Yvan; Vicogne, Jérôme; Goormachtigh, Gautier; Fafeur, Véronique

    2012-01-01

    The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling. PMID:22915589

  17. Inhibition of Interferon Regulatory Factor 3 Activation by Paramyxovirus V Protein

    PubMed Central

    Irie, Takashi; Kiyotani, Katsuhiro; Igarashi, Tomoki; Yoshida, Asuka

    2012-01-01

    The V protein of Sendai virus (SeV) suppresses innate immunity, resulting in enhancement of viral growth in mouse lungs and viral pathogenicity. The innate immunity restricted by the V protein is induced through activation of interferon regulatory factor 3 (IRF3). The V protein has been shown to interact with melanoma differentiation-associated gene 5 (MDA5) and to inhibit beta interferon production. In the present study, we infected MDA5-knockout mice with V-deficient SeV and found that MDA5 was largely unrelated to the innate immunity that the V protein suppresses in vivo. We therefore investigated the target of the SeV V protein. We previously reported interaction of the V protein with IRF3. Here we extended the observation and showed that the V protein appeared to inhibit translocation of IRF3 into the nucleus. We also found that the V protein inhibited IRF3 activation when induced by a constitutive active form of IRF3. The V proteins of measles virus and Newcastle disease virus inhibited IRF3 transcriptional activation, as did the V protein of SeV, while the V proteins of mumps virus and Nipah virus did not, and inhibition by these proteins correlated with interaction of each V protein with IRF3. These results indicate that IRF3 is important as an alternative target of paramyxovirus V proteins. PMID:22532687

  18. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    PubMed

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  19. Acquired activated protein C resistance associated with anti-protein S antibody as a strong risk factor for DVT in non-SLE patients.

    PubMed

    Nojima, Junzo; Kuratsune, Hirohiko; Suehisa, Etsuji; Kawasaki, Tomio; Machii, Takashi; Kitani, Teruo; Iwatani, Yoshinori; Kanakura, Yuzuru

    2002-11-01

    Anti-phospholipid (aPL) antibodies (Abs) are well known to be associated with thromboembolic events in patients with systemic lupus erythematosus (SLE). However, the clinical relevance of a PL Abs in patients without SLE (non-SLE) who have venous thromboembolism remains unclear. We evaluated 143 non-SLE patients with a first episode of clinically suspected deep vein thrombosis (DVT) by using objective tests for diagnosing DVT and laboratory tests including the activated protein C resistance (APC-R) test, the factor V Leiden test, and various aPL Abs. The prevalence of acquired APC-R, in which case there was no factor V Leiden mutation, was significantly higher in patients with DVT (15/58 cases, 25.9%, p < 0.0001) than in those without DVT (3/80 cases, 3.7%), and confirmed that acquired APC-R was a strong risk factor for DVT (odds ratio [OR], 8.95; 95% confidence intervals [CI], 2.45-32.7; p < 0.001). Multivariate logistic analysis revealed that the presence of LA, aCL, anti-beta2-glycoprotein I, anti-prothrombin and anti-protein C Abs was not reliable as a risk factor for DVT in non-SLE patients, and that the presence of anti-protein S Abs was the most significant risk factor for DVT (OR, 5.88; 95% CI, 1.96-17.7; p < 0.002). Furthermore, the presence of anti-protein S Abs was strongly associated with acquired APC-R (OR, 57.8; 95% CI, 8.53-391; p < 0.0001). These results suggest that acquired APC-R may reflect functional interference by anti-protein S Abs of the protein C pathway, which action may represent an important mechanism for the development DVT in non-SLE patients.

  20. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

    PubMed Central

    Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh

    2017-01-01

    A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure

  1. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin

  2. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium.

    PubMed

    Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh

    2017-07-20

    A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world's resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this "perfect storm" will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food

  3. Factorization of the association rate coefficient in ligand rebinding to heme proteins

    NASA Astrophysics Data System (ADS)

    Young, Robert D.

    1984-01-01

    A stochastic theory of ligand migration in biomolecules is used to analyze the recombination of small ligands to heme proteins after flash photolysis. The stochastic theory is based on a generalized sequential barrier model in which a ligand binds by overcoming a series of barriers formed by the solvent protein interface, the protein matrix, and the heme distal histidine system. The stochastic theory shows that the association rate coefficient λon factorizes into three terms λon =γ12Nout, where γ12 is the rate coefficient from the heme pocket to the heme binding site, is the equilibrium pocket occupation factor, and Nout is the fraction of heme proteins which do not undergo geminate recombination of a flashed-off ligand. The factorization of λon holds for any number of barriers and with no assumptions regarding the various rate coefficients so long as the exponential solvent process occurs. Transitions of a single ligand are allowed between any two sites with two crucial exceptions: (i) the heme binding site acts as a trap so that thermal dissociation of a bound ligand does not occur within the time of the measurement; (ii) the final step in the rebinding process always has a ligand in the heme pocket from where the ligand binds to the heme iron.

  4. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  5. Analysis of In Vivo Chromatin and Protein Interactions of Arabidopsis Transcript Elongation Factors.

    PubMed

    Pfab, Alexander; Antosz, Wojciech; Holzinger, Philipp; Bruckmann, Astrid; Griesenbeck, Joachim; Grasser, Klaus D

    2017-01-01

    A central step to elucidate the function of proteins commonly comprises the analysis of their molecular interactions in vivo. For nuclear regulatory proteins this involves determining protein-protein interactions as well as mapping of chromatin binding sites. Here, we present two protocols to identify protein-protein and chromatin interactions of transcript elongation factors (TEFs) in Arabidopsis. The first protocol (Subheading 3.1) describes protein affinity-purification coupled to mass spectrometry (AP-MS) that utilizes suspension cultured cells as experimental system. This approach provides an unbiased view of proteins interacting with epitope-tagged TEFs. The second protocol (Subheading 3.2) depicts details about a chromatin immunoprecipitation (ChIP) procedure to characterize genomic binding sites of TEFs. These methods should be valuable tools for the analysis of a broad variety of nuclear proteins.

  6. Nitrogen-to-Protein Conversion Factors for Crop Residues and Animal Manure Common in China.

    PubMed

    Chen, Xueli; Zhao, Guanglu; Zhang, Yang; Han, Lujia; Xiao, Weihua

    2017-10-25

    Accurately determining protein content is essential in exploiting biomass as feed and fuel. A survey of biomass samples in China indicated protein contents from 2.65 to 3.98% for crop residues and from 6.07 to 10.24% for animal manure of dry basis. Conversion factors based on amino acid nitrogen (k A ) ranged from 5.42 to 6.00 for the former and from 4.78 to 5.36 for the latter, indicating that the traditional factor of 6.25 is not suitable for biomass samples. On the other hand, conversion factors from Kjeldahl nitrogen (k P ) ranged from 3.97 to 4.57 and from 2.76 to 4.31 for crop residues and animal manure, respectively. Of note, conversion factors were strongly affected by amino acid composition and levels of nonprotein nitrogen. Thus, k P values of 4.23 for crop residues, 4.11 for livestock manure, and 3.11 for poultry manure are recommended to better estimate protein content from total nitrogen.

  7. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor

    PubMed Central

    Wang, Hao-Ching; Ko, Tzu-Ping; Wu, Mao-Lun; Ku, Shan-Chi; Wu, Hsing-Ju; Wang, Andrew H.-J.

    2012-01-01

    DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps. PMID:22373915

  8. Stable expression of recombinant human coagulation factor XIII in protein-free suspension culture of Chinese hamster ovary cells.

    PubMed

    Chun, B H; Bang, W G; Park, Y K; Woo, S K

    2001-11-01

    The recombinant a and bsubunits for human coagulation factor XIII were transfected into Chinese hamster ovary (CHO) cells. CHO cells were amplified and selected with methotrexate in adherent cultures containing serum, and CHO 1-62 cells were later selected in protein-free medium. To develop a recombinant factor XIII production process in a suspension culture, we have investigated the growth characteristics of CHO cells and the maintenance of factor XIII expression in the culture medium. Suspension adaptation of CHO cells was performed in protein-free medium, GC-CHO-PI, by two methods, such as serum weaning and direct switching from serum containing media to protein-free media. Although the growth of CHO cells in suspension culture was affected initially by serum depletion, cell specific productivity of factor XIII showed only minor changes by the direct switching to protein-free medium during a suspension culture. As for the long-term stability of factor XIII, CHO 1-62 cells showed a stable expression of factor XIII in protein-free condition for 1000 h. These results indicate that the CHO 1-62cells can be adapted to express recombinant human factor XIII in a stable maimer in suspension culture using a protein-free medium. Our results demonstrate that enhanced cell growth in a continuous manner is achievable for factor XIII production in a protein-free medium when a perfusion bioreactor culture system with a spin filter is employed.

  9. The Effect of α-Mating Factor Secretion Signal Mutations on Recombinant Protein Expression in Pichia pastoris

    PubMed Central

    Lin-Cereghino, Geoff P.; Stark, Carolyn M.; Kim, Daniel; Chang, Jennifer; Shaheen, Nadia; Poerwanto, Hansel; Agari, Kimiko; Moua, Pachai; Low, Lauren K.; Tran, Namphuong; Huang, Amy D.; Nattestad, Maria; Oshiro, Kristin T.; Chang, John William; Chavan, Archana; Tsai, Jerry W.; Lin-Cereghino, Joan

    2013-01-01

    The methylotrophic yeast, Pichia pastoris, has been genetically engineered to produce many heterologous proteins for industrial and research purposes. In order to secrete proteins for easier purification from the extracellular medium, the coding sequence of recombinant proteins are initially fused to the Saccharomyces cerevisiae α-mating factor secretion signal leader. Extensive site-directed mutagenesis of the prepro region of the α-mating factor secretion signal sequence was performed in order to determine the effects of various deletions and substitutions on expression. Though some mutations clearly dampened protein expression, deletion of amino acids 57-70, corresponding to the predicted 3rd alpha helix of α-mating factor secretion signal, increased secretion of reporter proteins horseradish peroxidase and lipase at least 50% in small-scale cultures. These findings raise the possibility that the secretory efficiency of the leader can be further enhanced in the future. PMID:23454485

  10. High-sensitive factor I and C-reactive protein based biomarkers for coronary artery disease.

    PubMed

    Zhao, Qing; Du, Jian-Shi; Han, Dong-Mei; Ma, Ying

    2014-01-01

    An analysis of high-sensitive factor I and C-reactive proteins as biomarkers for coronary artery disease has been performed from 19 anticipated cohort studies that included 21,567 participants having no information about coronary artery disease. Besides, the clinical implications of statin therapy initiated due to assessment of factor I and C-reactive proteins have also been modeled during studies. The measure of risk discrimination (C-index) was increased (by 0.0101) as per the prognostic model for coronary artery disease with respect to sex, smoking status, age, blood pressure, total cholesterol level along with diabetic history characteristic parameters. The C-index was further raised by 0.0045 and 0.0053 when factor I and C-reactive proteins based information were added, respectively which finally predicted 10-year risk categories as: high (> 20%), medium (10% to < 20%), and low (< 10%) risks. We found 2,254 persons (among 15,000 adults (age ≥ 45 years)) would initially be classified as being at medium risk for coronary artery disease when only conventional risk factors were used as calculated risk. Besides, persons with a predicted risk of more than 20% as well as for persons suffering from other risk factors (i.e. diabetes), statin therapy was initiated (irrespective of their decade old predicted risk). We conclude that under current treatment guidelines assessment of factor I and C-reactive proteins levels (as biomarker) in people at medium risk for coronary artery disease could prevent one additional coronary artery disease risk over a period a decade for every 390-500 people screened.

  11. Fox proteins are modular competency factors for facial cartilage and tooth specification.

    PubMed

    Xu, Pengfei; Balczerski, Bartosz; Ciozda, Amanda; Louie, Kristin; Oralova, Veronika; Huysseune, Ann; Crump, J Gage

    2018-06-26

    Facial form depends on the precise positioning of cartilage, bone, and tooth fields in the embryonic pharyngeal arches. How complex signaling information is integrated to specify these cell types remains a mystery. We find that modular expression of Forkhead domain transcription factors (Fox proteins) in the zebrafish face arises through integration of Hh, Fgf, Bmp, Edn1 and Jagged-Notch pathways. Whereas loss of C-class Fox proteins results in reduced upper facial cartilages, loss of F-class Fox proteins results in distal jaw truncations and absent midline cartilages and teeth. We show that Fox proteins are required for Sox9a to promote chondrogenic gene expression. Fox proteins are sufficient in neural crest-derived cells for cartilage development, and neural crest-specific misexpression of Fox proteins expands the cartilage domain but inhibits bone. These results support a modular role for Fox proteins in establishing the competency of progenitors to form cartilage and teeth in the face. © 2018. Published by The Company of Biologists Ltd.

  12. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves.

    PubMed

    Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio

    2018-04-27

    Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Refolding of soluble leukemia inhibitory factor receptor fusion protein (gp 190 sol DAF) from urea.

    PubMed

    Liu, H; Moreau, J F; Gualde, N; Fu, J

    1997-04-01

    The insoluble inclusion bodies of soluble leukemia inhibitory factor receptor fusion protein (gp 190 sol DAF) was solubilized in 8 M urea on the unfolding transitions, and several factors on the aggregate formation were indirectly analyzed for the refolding of gp 190 sol DAF. Results indicate that the refolding yield can be considerably increased at lowering concentration of the unfolding protein, a little soluble protein with the slow refolding appears in the process of the aggregate formation and the concentration of the denaturant must be down to a minimum level for its refolding.

  14. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    PubMed

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  15. Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction

    PubMed Central

    Stock, Kristin; Nolden, Lars; Edenhofer, Frank; Quandel, Tamara

    2010-01-01

    In contrast to conventional gene transfer strategies, the direct introduction of recombinant proteins into cells bypasses the risk of insertional mutagenesis and offers an alternative to genetic intervention. Here, we explore whether protein transduction of the gliogenic transcription factor Nkx2.2 can be used to promote oligodendroglial differentiation of mouse embryonic stem cell (ESC)-derived neural stem cells (NSC). To that end, a recombinant cell-permeant form of Nkx2.2 protein was generated. Exposure of ESC-derived NSC to the recombinant protein and initiation of differentiation resulted in a two-fold increase in the number of oligodendrocytes. Furthermore, Nkx2.2-transduced cells exhibited a more mature oligodendroglial phenotype. Comparative viral gene transfer studies showed that the biological effect of Nkx2.2 protein transduction is comparable to that obtained by lentiviral transduction. The results of this proof-of-concept study depict direct intracellular delivery of transcription factors as alternative modality to control lineage differentiation in NSC cultures without genetic modification. Electronic supplementary material The online version of this article (doi:10.1007/s00018-010-0347-1) contains supplementary material, which is available to authorized users. PMID:20352468

  16. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed. In an effort to functionalize collagen/gelatin-based biomaterials with growth factors, we have designed an adaptor protein corresponding to a collagen-binding domain fused to a coil peptide. In our strategy, this adaptor protein captures growth factors being tagged with the partner coil peptide in a specific, stable and oriented manner. We have found that the tethering of the Epidermal Growth Factor preserved its mitogenic and anti-apoptotic activity. In the case of the basic Fibroblast Growth Factor, the captured growth factor remained bioactive although its

  17. Discovery and Development of Kelch-like ECH-Associated Protein 1. Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction Inhibitors: Achievements, Challenges, and Future Directions.

    PubMed

    Jiang, Zheng-Yu; Lu, Meng-Chen; You, Qi-Dong

    2016-12-22

    The transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.

  18. Factor H-binding protein, a unique meningococcal vaccine antigen.

    PubMed

    Pizza, Mariagrazia; Donnelly, John; Rappuoli, Rino

    2008-12-30

    GNA1870, also named factor H-binding protein (fHbp) or rLP-2086, is a genome-derived antigen and one of the components of a rationally designed vaccine against Neisseria meningitidis serogroup B, which has entered phase III clinical trials. It has been classified into three main non-cross-protective variant groups. GNA1870 has also been termed fHbp because of its ability to bind factor H, a key regulatory component of the alternative complement pathway. fHbp is important for survival in human blood, human sera, and in presence of antimicrobial peptides, independently of its expression level. All these properties make fHbp a unique vaccine antigen.

  19. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  20. Structural Determination of Functional Domains in Early B-cell Factor (EBF) Family of Transcription Factors Reveals Similarities to Rel DNA-binding Proteins and a Novel Dimerization Motif*

    PubMed Central

    Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena

    2010-01-01

    The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035

  1. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G.

    PubMed

    Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa; Habu, Yuichirou; Sugiyama, Ryuichi; Hayashi, Fumiaki; Kobayashi, Naohiro; Yokoyama, Shigeyuki; Takaku, Hiroshi; Katahira, Masato

    2009-02-18

    Human APOBEC3G exhibits anti-human immunodeficiency virus-1 (HIV-1) activity by deaminating cytidines of the minus strand of HIV-1. Here, we report a solution structure of the C-terminal deaminase domain of wild-type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real-time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3' --> 5' order. Virus infectivity factor (Vif) of HIV-1 counteracts the anti-HIV-1 activity of APOBEC3G. The structure of the N-terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species-specific sensitivity of APOBEC3G to Vif action.

  2. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G

    PubMed Central

    Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa; Habu, Yuichirou; Sugiyama, Ryuichi; Hayashi, Fumiaki; Kobayashi, Naohiro; Yokoyama, Shigeyuki; Takaku, Hiroshi; Katahira, Masato

    2009-01-01

    Human APOBEC3G exhibits anti-human immunodeficiency virus-1 (HIV-1) activity by deaminating cytidines of the minus strand of HIV-1. Here, we report a solution structure of the C-terminal deaminase domain of wild-type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real-time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3′ → 5′ order. Virus infectivity factor (Vif) of HIV-1 counteracts the anti-HIV-1 activity of APOBEC3G. The structure of the N-terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species-specific sensitivity of APOBEC3G to Vif action. PMID:19153609

  3. Ménage à trois: the complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins.

    PubMed

    Weyhe, Martin; Eschen-Lippold, Lennart; Pecher, Pascal; Scheel, Dierk; Lee, Justin

    2014-01-01

    Out of the 34 members of the VQ-motif-containing protein (VQP) family, 10 are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families - either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change - for instance, through MPK3/6-mediated modulation of protein stability - and therefore control defense gene transcription.

  4. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2008-10-01

    AD_________________ AWARD NUMBER: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis 5b. GRANT NUMBER W81XWH-06-1-0763 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibroblast growth factors (FGFs) are vital modulators of development as well as

  5. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    PubMed

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  6. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer.

    PubMed

    Huang, Yan-Shan; Wen, Xiao-Fang; Wu, Yi-Liang; Wang, Ye-Fei; Fan, Min; Yang, Zhi-Yu; Liu, Wei; Zhou, Lin-Fu

    2010-03-01

    The plasma half-life of therapeutic proteins is a critical factor in many clinical applications. Therefore, new strategies to prolong plasma half-life of long-acting peptides and protein drugs are in high demand. Here, we designed an artificial gelatin-like protein (GLK) and fused this hydrophilic GLK polymer to granulocyte-colony-stimulating factor (G-CSF) to generate a chimeric GLK/G-CSF fusion protein. The genetically engineered recombinant GLK/G-CSF (rGLK/G-CSF) fusion protein was purified from Pichia pastoris. In vitro studies demonstrated that rGLK/G-CSF possessed an enlarged hydrodynamic radius, improved thermal stability and retained full bioactivity compared to unfused G-CSF. Following a single subcutaneous administration to rats, the rGLK/G-CSF fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating white blood cells than G-CSF. Our findings indicate that fusion with this artificial, hydrophilic, GLK polymer provides many advantages in the construction of a potent hematopoietic factor with extended plasma half-life. This approach could be easily applied to other therapeutic proteins and have important clinical applications. (c) 2009 Elsevier B.V. All rights reserved.

  7. RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation

    PubMed Central

    Campos, Rafael K.; Wong, Benjamin; Lu, Yi-Fan; Shi, Pei-Yong; Pompon, Julien

    2016-01-01

    ABSTRACT The Flavivirus genus contains several arthropod-borne viruses that pose global health threats, including dengue viruses (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). In order to understand how these viruses replicate in human cells, we previously conducted genome-scale RNA interference screens to identify candidate host factors. In these screens, we identified ribosomal proteins RPLP1 and RPLP2 (RPLP1/2) to be among the most crucial putative host factors required for DENV and YFV infection. RPLP1/2 are phosphoproteins that bind the ribosome through interaction with another ribosomal protein, RPLP0, to form a structure termed the ribosomal stalk. RPLP1/2 were validated as essential host factors for DENV, YFV, and ZIKV infection in two human cell lines: A549 lung adenocarcinoma and HuH-7 hepatoma cells, and for productive DENV infection of Aedes aegypti mosquitoes. Depletion of RPLP1/2 caused moderate cell-line-specific effects on global protein synthesis, as determined by metabolic labeling. In A549 cells, global translation was increased, while in HuH-7 cells it was reduced, albeit both of these effects were modest. In contrast, RPLP1/2 knockdown strongly reduced early DENV protein accumulation, suggesting a requirement for RPLP1/2 in viral translation. Furthermore, knockdown of RPLP1/2 reduced levels of DENV structural proteins expressed from an exogenous transgene. We postulate that these ribosomal proteins are required for efficient translation elongation through the viral open reading frame. In summary, this work identifies RPLP1/2 as critical flaviviral host factors required for translation. IMPORTANCE Flaviviruses cause important diseases in humans. Examples of mosquito-transmitted flaviviruses include dengue, yellow fever and Zika viruses. Viruses require a plethora of cellular factors to infect cells, and the ribosome plays an essential role in all viral infections. The ribosome is a complex macromolecular machine composed of RNA and

  8. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.

    PubMed

    Pang, Yuan-Ping

    2016-09-01

    Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å 2 for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å 2 for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.

  9. Aggregation factor analysis for protein formulation by a systematic approach using FTIR, SEC and design of experiments techniques.

    PubMed

    Feng, Yan Wen; Ooishi, Ayako; Honda, Shinya

    2012-01-05

    A simple systematic approach using Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and design of experiments (DOE) techniques was applied to the analysis of aggregation factors for protein formulations in stress and accelerated testings. FTIR and SEC were used to evaluate protein conformational and storage stabilities, respectively. DOE was used to determine the suitable formulation and to analyze both the main effect of single factors and the interaction effect of combined factors on aggregation. Our results indicated that (i) analysis at a low protein concentration is not always applicable to high concentration formulations; (ii) an investigation of interaction effects of combined factors as well as main effects of single factors is effective for improving conformational stability of proteins; (iii) with the exception of pH, the results of stress testing with regard to aggregation factors would be available for suitable formulation instead of performing time-consuming accelerated testing; (iv) a suitable pH condition should not be determined in stress testing but in accelerated testing, because of inconsistent effects of pH on conformational and storage stabilities. In summary, we propose a three-step strategy, using FTIR, SEC and DOE techniques, to effectively analyze the aggregation factors and perform a rapid screening for suitable conditions of protein formulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. BLOOD PLASMA PROTEIN REGENERATION AS INFLUENCED BY FASTING, INFECTION, AND DIET FACTORS

    PubMed Central

    Madden, S. C.; George, W. E.; Waraich, G. S.; Whipple, H.

    1938-01-01

    When blood plasma proteins are depleted by bleeding, with return of the washed red cells (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a uniform plasma protein production on a basal low protein diet. These dogs are clinically normal with normal appetite, no anemia and normal nitrogen metabolism. These dogs become test subjects by which various factors relating to plasma protein production may be tested. The normal dog (10 to 13 kg.) has a substantial reserve store of plasma protein building material (10 to 60+ gm.) which requires 2 to 6 weeks plasmapheresis for its complete removal. After this period the dog will produce uniform amounts of plasma protein each week on a fixed basal diet. Dogs previously depleted by plasmapheresis and then permitted to return to normal during a long rest period of many weeks, may show much higher reserve stores of protein building material in subsequent periods of plasma depletion (see Table 1). Under uniform conditions of low protein diet intake when plasmapheresis is discontinued for 2 weeks the plasma protein building material is stored quantitatively in the body and can subsequently be recovered (Table 4) in the next 2 to 3 weeks of plasmapheresis. Given complete depletion of plasma protein building reserve stores the dog can produce very little (2± gm. per week) plasma protein on a protein-free diet. This may be related to the wear and tear of body protein and conservation of these split products. Abscesses produced in a depleted dog during a fast may cause some excess production of plasma protein which is probably related to products of tissue destruction conserved for protein anabolism. Gelatin alone added to the basal diet causes very little plasma protein production but when supplemented by tryptophane gives a large protein output, while tryptophane alone is inert. PMID:19870748

  11. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.

    PubMed Central

    Colwill, K; Pawson, T; Andrews, B; Prasad, J; Manley, J L; Bell, J C; Duncan, P I

    1996-01-01

    Mammalian Clk/Sty is the prototype for a family of dual specificity kinases (termed LAMMER kinases) that have been conserved in evolution, but whose physiological substrates are unknown. In a yeast two-hybrid screen, the Clk/Sty kinase specifically interacted with RNA binding proteins, particularly members of the serine/arginine-rich (SR) family of splicing factors. Clk/Sty itself has an serine/arginine-rich non-catalytic N-terminal region which is important for its association with SR splicing factors. In vitro, Clk/Sty efficiently phosphorylated the SR family member ASF/SF2 on serine residues located within its serine/arginine-rich region (the RS domain). Tryptic phosphopeptide mapping demonstrated that the sites on ASF/SF2 phosphorylated in vitro overlap with those phosphorylated in vivo. Immunofluorescence studies showed that a catalytically inactive form of Clk/Sty co-localized with SR proteins in nuclear speckles. Overexpression of the active Clk/Sty kinase caused a redistribution of SR proteins within the nucleus. These results suggest that Clk/Sty kinase directly regulates the activity and compartmentalization of SR splicing factors. Images PMID:8617202

  12. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  13. Transforming properties of the Huntingtin interacting protein 1/ platelet-derived growth factor beta receptor fusion protein.

    PubMed

    Ross, T S; Gilliland, D G

    1999-08-06

    We have previously reported that the Huntingtin interacting protein 1 (HIP1) gene is fused to the platelet-derived growth factor beta receptor (PDGFbetaR) gene in a patient with chronic myelomonocytic leukemia. We now show that HIP1/PDGFbetaR oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the murine hematopoietic cell line, Ba/F3, to interleukin-3-independent growth. A kinase-inactive mutant is neither tyrosine-phosphorylated nor able to transform Ba/F3 cells. Oligomerization and kinase activation required the 55-amino acid carboxyl-terminal TALIN homology region but not the leucine zipper domain. Tyrosine phosphorylation of a 130-kDa protein and STAT5 correlates with transformation in cells expressing HIP1/PDGFbetaR and related mutants. A deletion mutant fusion protein that contains only the TALIN homology region of HIP1 fused to PDGFbetaR is incapable of transforming Ba/F3 cells and does not tyrosine-phosphorylate p130 or STAT5, although it is itself constitutively tyrosine-phosphorylated. We have also analyzed cells expressing Tyr --> Phe mutants of HIP1/PDGFbetaR in the known PDGFbetaR SH2 docking sites and report that none of these sites are necessary for STAT5 activation, p130 phosphorylation, or Ba/F3 transformation. The correlation of factor-independent growth of hematopoietic cells with p130 and STAT5 phosphorylation/activation in both the HIP1/PDGFbetaR Tyr --> Phe and deletion mutational variants suggests that both STAT5 and p130 are important for transformation mediated by HIP1/PDGFbetaR.

  14. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure.

    PubMed

    Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J

    1993-12-01

    The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.

  15. What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor?*

    PubMed Central

    Shi, Zheng-zheng; Zhang, Jia-wei; Zheng, Shu

    2007-01-01

    This article is to summarize the molecular and functional analysis of the gene “suppression of tumorigenicity 13” (ST13). ST13 is in fact the gene encoding Hsp70 interacting protein (Hip), a co-factor (co-chaperone) of the 70-kDa heat shock proteins (Hsc/Hsp70). By collaborating with other positive co-factors such as Hsp40 and the Hsp70-Hsp90 organizing protein (Hop), or competing with negative co-factors such as Bcl2-associated athanogen 1 (Bag1), Hip may facilitate the chaperone function of Hsc/Hsp70 in protein folding and repair, and in controlling the activity of regulatory proteins such as steroid receptors and regulators of proliferation or apoptosis. Although the nomenclature of ST13 implies a role in the suppression of tumorigenicity (ST), to date available experimental data are not sufficient to support its role in cancer development, except for the possible down-regulation of ST13 in gastric and colorectal cancers. Further investigation of this gene at the physiological level would benefit our understanding of diseases such as endocrinological disorders, cancer, and neurodegeneration commonly associated with protein misfolding. PMID:17323428

  16. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway.

    PubMed

    Werner, Haim; Meisel-Sharon, Shilhav; Bruchim, Ilan

    2018-02-19

    The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.

  17. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.

    PubMed

    Mittal, Nitish; Guimaraes, Joao C; Gross, Thomas; Schmidt, Alexander; Vina-Vilaseca, Arnau; Nedialkova, Danny D; Aeschimann, Florian; Leidel, Sebastian A; Spang, Anne; Zavolan, Mihaela

    2017-09-06

    In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response.The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.

  18. Purification and Properties of Myxococcus xanthus C-Factor, an Intercellular Signaling Protein

    NASA Astrophysics Data System (ADS)

    Kim, Seung K.; Kaiser, Dale

    1990-05-01

    C-factor, a Myxococcus xanthus protein that restores the developmental defects of a class of nonautonomous mutants resulting from mutation of the csgA gene, has been purified approximately 1000-fold from starved wild-type cells. The monomeric form of C-factor is a single polypeptide with a molecular mass of 17 kDa that can be solubilized by detergent from membrane components. Characterization by gel filtration and denaturing gel electrophoresis suggests that biologically active C-factor is a dimer composed of two 17-kDa monomers. Antibodies against a form of the M. xanthus csgA gene product overexpressed in Escherichia coli react with purified C-factor.

  19. Tumor Necrosis Factor Receptor-Associated Factor 5 Interacts with the NS3 Protein and Promotes Classical Swine Fever Virus Replication.

    PubMed

    Lv, Huifang; Dong, Wang; Guo, Kangkang; Jin, Mingxing; Li, Xiaomeng; Li, Cunfa; Zhang, Yanming

    2018-06-05

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious and high-mortality viral disease, causing huge economic losses in the swine industry worldwide. CSFV non-structural protein 3 (NS3), a multifunctional protein, plays crucial roles in viral replication. However, how NS3 exactly exerts these functions is currently unknown. Here, we identified tumor necrosis factor receptor-associated factor 5 (TRAF5) as a novel binding partner of the NS3 protein via yeast two-hybrid, co-immunoprecipitation and glutathione S -transferase pull-down assays. Furthermore, we observed that TRAF5 promoted CSFV replication in porcine alveolar macrophages (PAMs). Additionally, CSFV infection or NS3 expression upregulated TRAF5 expression, implying that CSFV may exploit TRAF5 via NS3 for better growth. Moreover, CSFV infection and TRAF5 expression activated p38 mitogen activated protein kinase (MAPK) activity, and inhibition of p38 MAPK activation by the SB203580 inhibitor suppressed CSFV replication. Notably, TRAF5 overexpression did not promote CSFV replication following inhibition of p38 MAPK activation. Our findings reveal that TRAF5 promotes CSFV replication via p38 MAPK activation. This work provides a novel insight into the role of TRAF5 in CSFV replication capacity.

  20. Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins.

    PubMed Central

    Lopez, I; Anthony, R G; Maciver, S K; Jiang, C J; Khan, S; Weeds, A G; Hussey, P J

    1996-01-01

    In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8693008

  1. Two distinct forms of Factor VIII coagulant protein in human plasma. Cleavage by thrombin, and differences in coagulant activity and association with von Willebrand factor.

    PubMed Central

    Weinstein, M J; Chute, L E

    1984-01-01

    We have characterized Factor VIII coagulant protein, present in normal human plasma, that reacts with a specific human 125I-labeled anti-human VIII:C antigen Fab antibody fragment. Two major Factor VIII coagulant antigen populations were present. The first, approximately 85% of the total antigen, was bound to von Willebrand factor and when tested in a standard one-stage assay had Factor VIII coagulant activity. The second antigenic population, eluting near fibrinogen when plasma was gel filtered, was not bound to von Willebrand protein, did not have Factor VIII coagulant activity unless activated, but did block anti-VIII:C Fab neutralization of clotting activity. The two antigenic populations were separable by cryoprecipitation and agarose gel electrophoresis. Although the two antigenic populations differed in their Factor VIII coagulant activity and in their binding to von Willebrand factor, the principal member of both populations is of mol wt 2.4 X 10(5). Both antigens, when proteolyzed by thrombin, were quickly converted to a 1 X 10(5)-mol wt form in association with the appearance of VIII:C activity. The 1 X 10(5)-mol wt antigen was further slowly degraded to an 8 X 10(4)-mol wt form while Factor VIII coagulant activity declined. These results demonstrate the presence of an inactive Factor VIII coagulant protein in plasma, not associated with von Willebrand factor, that can react with thrombin to yield Factor VIII coagulant activity. Images PMID:6421875

  2. Characterisation of clotting factors, anticoagulant protein activities and viscoelastic analysis in healthy donkeys.

    PubMed

    Perez-Ecija, A; Mendoza, F J

    2017-11-01

    Studies have demonstrated differences in commonly measured haemostatic parameters between donkeys and horses. Whether clotting factors, anticoagulant protein activities and thromboelastography parameters also differ between species is still unknown. To characterise haemostatic parameters in healthy donkeys and to compare these with those in horses. Cross-sectional study. Clotting factors (V, VII, VIII, IX, X, XI and XII), and antithrombin III, Protein C and Protein S activities were measured in 80 healthy Andalusian and crossbred donkeys and 40 healthy Andalusian crossbred horses with assays based on human deficient plasmas. Thromboelastography was performed in 34 donkeys using a coagulation and platelet function analyser. Donkeys had shorter activated partial thromboplastin time (mean ± s.d. 33.4 ± 5.2 s vs. 38.8 ± 4.2 s; P<0.001) and higher Factor VII (1825 ± 206 vs. 1513 ± 174; P<0.001), IX (142 ± 41 vs. 114 ± 28; P<0.05) and XI (59.4 ± 14.0 vs. 27.2 ± 6.3; P<0.001) activities, whereas horses showed higher Factor X (130 ± 32 vs. 145 ± 23; P>0.05) and XII (96 ± 21 vs. 108 ± 15; P<0.001) activities. Antithrombin III (204 ± 26 vs. 174 ± 29; P<0.001), Protein C (33.16 ± 10.0 vs. 7.57 ± 1.70; P<0.001) and Protein S (median [interquartile range]: 7.8 [5.8-9.3] vs. 6.2 [5.2-7.0]; P<0.001) activities were higher in donkeys. Activated clot time (175 [159-189]), time to peak (6.5 [5.8-7.8]) and clot formation rate (26.9 [16.9-36.4]) in donkeys were shorter than reported values in horses. Haemostatic pathways could not be fully evaluated in donkeys because some tests are unavailable. Certain fibrinolytic parameters (plasmin, plasminogen, etc.) have not been characterised in donkeys and this may have affected our results. The haemostatic system in donkeys differs from that in horses and extrapolation of reference values between these species is not appropriate. © 2017 EVJ Ltd.

  3. Promoter Recognition by Extracytoplasmic Function σ Factors: Analyzing DNA and Protein Interaction Motifs

    PubMed Central

    Guzina, Jelena

    2016-01-01

    ABSTRACT Extracytoplasmic function (ECF) σ factors are the largest and the most diverse group of alternative σ factors, but their mechanisms of transcription are poorly studied. This subfamily is considered to exhibit a rigid promoter structure and an absence of mixing and matching; both −35 and −10 elements are considered necessary for initiating transcription. This paradigm, however, is based on very limited data, which bias the analysis of diverse ECF σ subgroups. Here we investigate DNA and protein recognition motifs involved in ECF σ factor transcription by a computational analysis of canonical ECF subfamily members, much less studied ECF σ subgroups, and the group outliers, obtained from recently sequenced bacteriophages. The analysis identifies an extended −10 element in promoters for phage ECF σ factors; a comparison with bacterial σ factors points to a putative 6-amino-acid motif just C-terminal of domain σ2, which is responsible for the interaction with the identified extension of the −10 element. Interestingly, a similar protein motif is found C-terminal of domain σ2 in canonical ECF σ factors, at a position where it is expected to interact with a conserved motif further upstream of the −10 element. Moreover, the phiEco32 ECF σ factor lacks a recognizable −35 element and σ4 domain, which we identify in a homologous phage, 7-11, indicating that the extended −10 element can compensate for the lack of −35 element interactions. Overall, the results reveal greater flexibility in promoter recognition by ECF σ factors than previously recognized and raise the possibility that mixing and matching also apply to this group, a notion that remains to be biochemically tested. IMPORTANCE ECF σ factors are the most numerous group of alternative σ factors but have been little studied. Their promoter recognition mechanisms are obscured by the large diversity within the ECF σ factor group and the limited similarity with the well

  4. Streptococcal collagen-like protein A and general stress protein 24 are immunomodulating virulence factors of group A Streptococcus.

    PubMed

    Tsatsaronis, James A; Hollands, Andrew; Cole, Jason N; Maamary, Peter G; Gillen, Christine M; Ben Zakour, Nouri L; Kotb, Malak; Nizet, Victor; Beatson, Scott A; Walker, Mark J; Sanderson-Smith, Martina L

    2013-07-01

    In Western countries, invasive infections caused by M1T1 serotype group A Streptococcus (GAS) are epidemiologically linked to mutations in the control of virulence regulatory 2-component operon (covRS). In indigenous communities and developing countries, severe GAS disease is associated with genetically diverse non-M1T1 GAS serotypes. Hypervirulent M1T1 covRS mutant strains arise through selection by human polymorphonuclear cells for increased expression of GAS virulence factors such as the DNase Sda1, which promotes neutrophil resistance. The GAS bacteremia isolate NS88.2 (emm 98.1) is a covS mutant that exhibits a hypervirulent phenotype and neutrophil resistance yet lacks the phage-encoded Sda1. Here, we have employed a comprehensive systems biology (genomic, transcriptomic, and proteomic) approach to identify NS88.2 virulence determinants that enhance neutrophil resistance in the non-M1T1 GAS genetic background. Using this approach, we have identified streptococcal collagen-like protein A and general stress protein 24 proteins as NS88.2 determinants that contribute to survival in whole blood and neutrophil resistance in non-M1T1 GAS. This study has revealed new factors that contribute to GAS pathogenicity that may play important roles in resisting innate immune defenses and the development of human invasive infections.

  5. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  6. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis

    PubMed Central

    Zhang, Zhiyong; Zheng, Xixi; Yang, Jun; Messing, Joachim; Wu, Yongrui

    2016-01-01

    The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and o2 mutants was reduced by ∼5% and 11%, respectively, compared with normal genotypes. In the double-mutant PbfRNAi;o2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and protein metabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the two main starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the o2 mutant and are further decreased in the double mutant, indicating that o2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI. These findings show that three important traits—nutritional quality, calories, and yield—are linked through the same transcription factors. PMID:27621432

  7. Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin

    PubMed Central

    Lin, Changsheng; Ear, Jason; Midde, Krishna; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Garcia-Marcos, Mikel; Kufareva, Irina; Abagyan, Ruben; Ghosh, Pradipta

    2014-01-01

    A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs. PMID:25187647

  8. Complement Factor H, Vitronectin, and Opticin Are Tyrosine-Sulfated Proteins of the Retinal Pigment Epithelium

    PubMed Central

    Kanan, Yogita; Siefert, Joseph C.; Kinter, Michael; Al-Ubaidi, Muayyad R.

    2014-01-01

    Lack of tyrosine sulfation of ocular proteins results in disorganized photoreceptor structure and drastically reduced visual function, demonstrating the importance of this post-translational modification to vision. To understand the role that tyrosine sulfation plays in the function of ocular proteins, we identified some tyrosine-sulfated proteins in the retinal pigment epithelium using two independent methods, immuno-affinity column purification with an anti-sulfotyrosine specific antibody and computer-based sequence analysis of retinal pigment epithelium secretome by means of the prediction program Sulfinator. Radioactive labeling followed by thin layer electrophoresis revealed that three proteins, vitronectin, opticin, and complement factor H (CFH), were post-translationally modified by tyrosine sulfation. The identification of vitronectin and CFH as tyrosine-sulfated proteins is significant, since both are deposited in drusen in the eyes of patients with age-related macular degeneration (AMD). Furthermore, mutations in CFH have been determined to be a major risk factor in the development of AMD. Future studies that seek to understand the role of CFH in the development of AMD should take into account the role that tyrosine sulfation plays in the interaction of this protein with its partners, and examine whether modulating sulfation provides a potential therapeutic target. PMID:25136834

  9. Factors regulating astringency of whey protein beverages.

    PubMed

    Beecher, J W; Drake, M A; Luck, P J; Foegeding, E A

    2008-07-01

    A rapidly growing area of whey protein use is in beverages. There are 2 types of whey protein-containing beverages: those at neutral pH and those at low pH. Astringency is very pronounced at low pH. Astringency is thought to be caused by compounds in foods that bind with and precipitate salivary proteins; however, the mechanism of astringency of whey proteins is not understood. The effect of viscosity and pH on the astringency of a model beverage containing whey protein isolate was investigated. Trained sensory panelists (n = 8) evaluated the viscosity and pH effects on astringency and basic tastes of whey protein beverages containing 6% wt/vol protein. Unlike what has been shown for alum and polyphenols, increasing viscosity (1.6 to 7.7 mPa.s) did not decrease the perception of astringency. In contrast, the pH of the whey protein solution had a major effect on astringency. A pH 6.8 whey protein beverage had a maximum astringency intensity of 1.2 (15-point scale), whereas that of a pH 3.4 beverage was 8.8 (15-point scale). Astringency decreased between pH 3.4 and 2.6, coinciding with an increase in sourness. Decreases in astringency corresponded to decreases in protein aggregation as observed by turbidity. We propose that astringency is related to interactions between positively charged whey proteins and negatively charged saliva proteins. As the pH decreased between 3.4 and 2.6, the negative charge on the saliva proteins decreased, causing the interactions with whey proteins to decrease.

  10. Elusive retributive justice in post-Khmer Rouge Cambodia: Challenges of using ECCC Victim Information Forms as a victim participatory rights mechanism.

    PubMed

    Nou, Leakhena

    2015-01-01

    This paper focuses on the procedural challenges of using the Victim Information Forms (VIFs) to analyze survivors' experiences with the Extraordinary Chambers in the Courts of Cambodia (ECCC), commonly known as the Khmer Rouge Tribunal. The paper takes a systematic public/medical sociology approach to examining the VIF as a participatory rights mechanism for victims wishing to pursue justice for themselves and their loved ones who experienced the Khmer Rouge atrocities, torture, forced relocation, starvation, forced labor, rape, robbery, and other physical and psychological torment, firsthand. It provides the first comparative, critical analysis of both the original VIF and the revised form issued midway through the submission period; both forms appear as appendices to the paper. Conclusions are drawn and suggestions made by the researcher based on the firsthand collection and submission of the largest group of VIFs from any single source around the world (outside of Cambodia itself), as well as on support work with victims/survivors during the ECCC proceedings in Phnom Penh, Cambodia in 2013.

  11. Vascular endothelial growth factor and protein level in pleural effusion for differentiating malignant from benign pleural effusion.

    PubMed

    Wu, Da-Wei; Chang, Wei-An; Liu, Kuan-Ting; Yen, Meng-Chi; Kuo, Po-Lin

    2017-09-01

    Pleural effusion is associated with multiple benign and malignant conditions. Currently no biomarkers differentiate malignant pleural effusion (MPE) and benign pleural effusion (BPE) sensitively and specifically. The present study identified a novel combination of biomarkers in pleural effusion for differentiating MPE from BPE by enrolling 75 patients, 34 with BPE and 41 with MPE. The levels of lactate dehydrogenase, glucose, protein, and total cell, neutrophil, monocyte and lymphocyte counts in the pleural effusion were measured. The concentrations of interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-α, interferon γ, transforming growth factor-β1, colony stimulating factor 2, monocyte chemoattractant protein-1 and vascular endothelial growth factor (VEGF) were detected using cytometric bead arrays. Protein and VEGF levels differed significantly between patients with BPE and those with MPE. The optimal cutoff value of VEGF and protein was 214 pg/ml and 3.35 g/dl respectively, according to the receiver operating characteristic curve. A combination of VEGF >214 pg/ml and protein >3.35 g/dl in pleural effusion presented a sensitivity of 92.6% and an accuracy of 78.6% for MPE, but was not associated with a decreased survival rate. These results suggested that this novel combination strategy may provide useful biomarkers for predicting MPE and facilitating early diagnosis.

  12. Analysis of Protein Thermostability Enhancing Factors in Industrially Important Thermus Bacteria Species

    PubMed Central

    Kumwenda, Benjamin; Litthauer, Derek; Bishop, Özlem Tastan; Reva, Oleg

    2013-01-01

    Elucidation of evolutionary factors that enhance protein thermostability is a critical problem and was the focus of this work on Thermus species. Pairs of orthologous sequences of T. scotoductus SA-01 and T. thermophilus HB27, with the largest negative minimum folding energy (MFE) as predicted by the UNAFold algorithm, were statistically analyzed. Favored substitutions of amino acids residues and their properties were determined. Substitutions were analyzed in modeled protein structures to determine their locations and contribution to energy differences using PyMOL and FoldX programs respectively. Dominant trends in amino acid substitutions consistent with differences in thermostability between orthologous sequences were observed. T. thermophilus thermophilic proteins showed an increase in non-polar, tiny, and charged amino acids. An abundance of alanine substituted by serine and threonine, as well as arginine substituted by glutamine and lysine was observed in T. thermophilus HB27. Structural comparison showed that stabilizing mutations occurred on surfaces and loops in protein structures. PMID:24023508

  13. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography.

    PubMed

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H

    2012-09-11

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  14. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. [Insulin-like growth factor-binding protein-1: a new biochemical marker of nonalcoholic fatty liver disease?].

    PubMed

    Graffigna, Mabel Nora; Belli, Susana H; de Larrañaga, Gabriela; Fainboim, Hugo; Estepo, Claudio; Peres, Silvia; García, Natalia; Levalle, Oscar

    2009-03-01

    to assess the presence of nonalcoholic fatty liver disease in patients with risk factors for this pathology (obesity, dyslipidemia, metabolic syndrome and diabetes type 2) and to determine the role of insulin, HOMA index, insulin-like growth factor-binding protein-1, sex hormone-binding globulin and plasminogen activator inhibitor type 1, as biochemical markers. Ninety-one patients with risk factors for nonalcoholic fatty liver disease were evaluated. Serum transaminases, insulin, sex hormone-binding globulin, insulin-like growth factor-binding protein-1 and plasminogen activator inhibitor type 1 were measured. The diagnosis of fatty liver was performed by ultrasonography and liver biopsies were performed to 31 subjects who had steatosis by ultrasonography and high alanine aminotransferase. Nonalcoholic fatty liver disease was present in 65 out of 91 patients (71,4%). Liver biopsy performed to 31 subjects confirmed nonalcoholic steatohepatitis. Twenty-five patients had different degrees of fibrosis. Those individuals with fatty liver had higher waist circumference, serum levels of triglycerides, insulin and HOMA index, and lower serum insulin-like growth factor-binding protein-1 concentration. The degree ofhepatic steatosis by ultrasonography was positively correlated to waist circumference, triglycerides, insulin and HOMA index (p<0,003; p<0,003; p<0,002 and p<0,001, respectively), and was negatively correlated to HDL-cholesterol and insulin-like growth factor-binding protein-1 (p<0,025 and p<0,018, respectively). We found a high prevalence of NAFLD in patients with risk factors, most of them overweight or obese. Although SHBG and PAI-1 have a closely relationship to insulin resistance, they did not show to be markers of NAFLD. Regardless of low IGFBP-1 levels associated with NAFLD, serum IGFBP-1 measure is less accessible than insulin and triglycerides levels, HOMA index and waist circumference. Moreover, it is not a better marker for NAFLD than the above

  16. Protein partners in the life history of activated fibroblast growth factor receptors.

    PubMed

    Vecchione, Anna; Cooper, Helen J; Trim, Kimberley J; Akbarzadeh, Shiva; Heath, John K; Wheldon, Lee M

    2007-12-01

    Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.

  17. The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.

    PubMed

    Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály

    2017-01-01

    Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.

  18. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    PubMed

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.

  20. A cell-free stock of simian-human immunodeficiency virus that causes AIDS in pig-tailed macaques has a limited number of amino acid substitutions in both SIVmac and HIV-1 regions of the genome and has offered cytotropism.

    PubMed

    Stephens, E B; Mukherjee, S; Sahni, M; Zhuge, W; Raghavan, R; Singh, D K; Leung, K; Atkinson, B; Li, Z; Joag, S V; Liu, Z Q; Narayan, O

    1997-05-12

    We have examined both the sequence changes in the LTR, gag, vif, vpr, vpx, tat, rev, vpu, env, and nef genes and the cell tropism of a cell-free stock of chimeric simian-human immunodeficiency virus (SHIV) isolated from the cerebrospinal fluid of a pig-tailed macaque (PNb) that developed AIDS. This virus (SHIVKU-1) is highly pathogenic when inoculated into other macaques. DNA sequence analysis of PCR-amplified products revealed a total of 5 nucleotide changes in the LTR while vif had 2 consensus amino acid changes. The gag, vif, and vpx had no consensus amino acid substitutions, whereas vpr had 1 consensus substitution. The tat and rev genes of the HXB2 region of SHIVKU-1 had 2 and 1 consensus amino acid changes, respectively. The vpu gene of the HXB2 region of SHIV, which originally had an ACG at the beginning of the gene, reverted to an initiation ATG codon and in addition contained a consensus amino acid substitution at position 69 of this protein. As expected, the majority of the nucleotide substitutions were found in the env and nef genes. Thirteen and 5 amino acid changes were predicted for the corresponding Env and Nef proteins, respectively. In addition, one-third of the env gene clones isolated from the SHIVKU-1 stock had a 5-amino-acid deletion in the V4 region. Using three independent assays, we determined that the changes in the SHIVKU-1 were associated with an increase in the efficiency of replication in macrophages. The strikingly few consensus changes in the virus suggest that conversion of this virus to one capable of causing AIDS in pig-tailed macaques was associated with relatively few changes in the viral envelope and/or accessory genes. These results will provide the basis for the development of a pathogenic, molecular clone of SHIV capable of causing AIDS in pig-tailed macaques.

  1. Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling.

    PubMed

    Lim, Y P; Low, B C; Lim, J; Wong, E S; Guy, G R

    1999-07-02

    FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.

  2. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.

    PubMed

    McLoughlin, Fionn; Basha, Eman; Fowler, Mary E; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha; Vierling, Elizabeth

    2016-10-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    PubMed

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  4. APOBEC3G-Induced Hypermutation of Human Immunodeficiency Virus Type-1 Is Typically a Discrete “All or Nothing” Phenomenon

    PubMed Central

    Armitage, Andrew E.; Deforche, Koen; Chang, Chih-hao; Wee, Edmund; Kramer, Beatrice; Welch, John J.; Gerstoft, Jan; Fugger, Lars; McMichael, Andrew; Rambaut, Andrew; Iversen, Astrid K. N.

    2012-01-01

    The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host–pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates are ∼10-fold lower than the lowest observed hypermutation levels in vitro and in vivo. Our results suggest that even a single incorporated hA3G-unit is likely to cause extensive and inactivating levels of HIV hypermutation and that hypermutation therefore is typically a discrete “all or nothing” phenomenon. Thus, therapeutic measures that inhibit the interaction between Vif and hA3G will likely not increase virus diversification but expand the fraction of hypermutated proviruses within the infected host. PMID:22457633

  5. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    PubMed Central

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H.

    2012-01-01

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF165 to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form ofVEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å2 in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2. PMID:22927390

  6. Cross-regulatory protein-protein interactions between Hox and Pax transcription factors.

    PubMed

    Plaza, Serge; Prince, Frederic; Adachi, Yoshitsugu; Punzo, Claudio; Cribbs, David L; Gehring, Walter J

    2008-09-09

    Homeotic Hox selector genes encode highly conserved transcriptional regulators involved in the differentiation of multicellular organisms. Ectopic expression of the Antennapedia (ANTP) homeodomain protein in Drosophila imaginal discs induces distinct phenotypes, including an antenna-to-leg transformation and eye reduction. We have proposed that the eye loss phenotype is a consequence of a negative posttranslational control mechanism because of direct protein-protein interactions between ANTP and Eyeless (EY). In the present work, we analyzed the effect of various ANTP homeodomain mutations for their interaction with EY and for head development. Contrasting with the eye loss phenotype, we provide evidence that the antenna-to-leg transformation involves ANTP DNA-binding activity. In a complementary genetic screen performed in yeast, we isolated mutations located in the N terminus of the ANTP homeodomain that inhibit direct interactions with EY without abolishing DNA binding in vitro and in vivo. In a bimolecular fluorescence complementation assay, we detected the ANTP-EY interaction in vivo, these interactions occurring through the paired domain and/or the homeodomain of EY. These results demonstrate that the homeodomain supports multiple molecular regulatory functions in addition to protein-DNA and protein-RNA interactions; it is also involved in protein-protein interactions.

  7. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimers, Kerstin; Buchholz, Katja; Werchau, Hermann

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cellsmore » revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.« less

  8. Factors affecting the rate of breakdown of bacterial protein in rumen fluid.

    PubMed

    Wallace, R J; McPherson, C A

    1987-09-01

    1. The cellular proteins of Butyrivibrio fibrisolvens, Lactobacillus casei, Megasphaera elsdenii, Selenomonas ruminantium and Streptococcus bovis were labelled by growth in the presence of L-[14C]leucine, and the breakdown of labelled protein was measured in incubations of these bacteria with rumen fluid to which unlabelled 5 mM-L-leucine was added. The rate of protein breakdown was estimated from the rate of release of radioactivity into acid-soluble material. 2. Protein breakdown occurred at different rates in different species. The mean rates for B. fibrisolvens, L. casei, M. elsdenii, Sel. ruminantium and Str. bovis were 28.6, 18.1, 17.7, 10.5 and 5.3%/h respectively in samples of strained rumen fluid (SRF) with different protozoal populations. Rates of 3%/h or less were found in SRF from ciliate-free sheep or in faunated SRF from which protozoa had been removed by centrifugation. Further removal of mixed rumen bacteria had little effect. Suspensions of washed protozoa degraded bacterial protein at rates which were of the same order as those found in SRF. 3. The rate of breakdown of bacterial protein in different samples of SRF tended to increase as the numbers of small entodiniomorphid protozoa increased. The numbers of larger entodiniomorphs and holotrichs had no obvious influence on this rate. 4. Autoclaved and u.v.-treated bacteria were generally no different from live bacteria in their susceptibility to breakdown in SRF from faunated sheep, indicating that endogenous protein turnover was not a significant cause of bacterial protein catabolism. 5. The rate of bacterial protein breakdown was unrelated to the proteolytic activity of SRF. 6. It was concluded that predation by small protozoa is by far the most important cause of bacterial protein turnover in the rumen, with autolysis, other lytic factors and endogenous proteolysis being of minor importance.

  9. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannone, Richard J; McDonald, W Hayes; Hurst, Gregory

    Telomere integrity (including telomere length and capping) is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography - tandem mass spectrometry (MudPIT LC-MS/MS). After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidencemore » towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.« less

  10. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression.

    PubMed

    Erlejman, Alejandra G; Lagadari, Mariana; Toneatto, Judith; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-02-01

    The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell. In contrast to most conventional chaperones, Hsp90 functions as a refined sensor of protein function and its principal role in the cell is to facilitate biological activity to properly folded client proteins that already have a preserved tertiary structure. Consequently, Hsp90 is related to basic cell functions such as cytoplasmic transport of soluble proteins, translocation of client proteins to organelles, and regulation of the biological activity of key signaling factors such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors. A growing amount of evidence links the protective action of this molecular chaperone to mechanisms related to posttranslational modifications of soluble nuclear factors as well as histones. In this article, we discuss some aspects of the regulatory action of Hsp90 on transcriptional regulation and how this effect could have impacted genetic assimilation mechanism in some organisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast.

    PubMed

    Abrams, Jennifer L; Verghese, Jacob; Gibney, Patrick A; Morano, Kevin A

    2014-05-09

    Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.

  12. The Wilms tumor protein WT1 stimulates transcription of the gene encoding insulin-like growth factor binding protein 5 (IGFBP5).

    PubMed

    Müller, Miriam; Persson, Anja Bondke; Krueger, Katharina; Kirschner, Karin M; Scholz, Holger

    2017-07-01

    Insulin-like growth factor (IGF) binding proteins (IGFBPs) constitute a family of six secreted proteins that regulate the signaling of insulin-like growth factors (IGFs). IGFBP5 is the most conserved family member in vertebrates and the major IGF binding protein in bone. IGFBP5 is required for normal development of the musculoskeletal system, and various types of cancer frequently express high levels of IGFP5. Here we identify the gene encoding IGFBP5 as a novel downstream target of the Wilms tumor protein WT1. IGFBP5 and WT1 are expressed in an overlapping pattern in the condensing metanephric mesenchyme of embryonic murine kidneys. Down-regulation of WT1 by transfection with antisense vivo-morpholino significantly decreased Igfbp5 transcripts in murine embryonic kidney explants. Likewise, silencing of Wt1 in a mouse mesonephros-derived cell line reduced Igfbp5 mRNA levels by approximately 80%. Conversely, induction of the WT1(-KTS) isoform, whose role as transcriptional regulator has been firmly established, significantly increased IGFBP5 mRNA and protein levels in osteosarcoma cells. IGFBP5 expression was not significantly changed by WT1(+KTS) protein, which exhibits lower DNA binding affinity than the WT1(-KTS) isoform and has a presumed role in post-transcriptional gene regulation. Luciferase reporter constructs harboring 0.8 and 1.6 kilobases of the murine Igfbp5 promoter, respectively, were stimulated approximately 5-fold by co-transfection of WT1(-KTS). The WT1(+KTS) variant had no significant effect on IGFBP5 promoter activity. Binding of WT1(-KTS), but not of WT1(+KTS) protein, to the IGFBP5 promoter in human osteosarcoma cells was proven by chromatin immunoprecipitation (ChIP) and confirmed by electrophoretic mobility shift assay. These findings demonstrate that WT1 activates transcription of the IGFBP5 gene with possible implications for kidney development and bone (patho)physiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Investigating a novel protein using mass spectrometry: the example of tumor differentiation factor (TDF).

    PubMed

    Woods, Alisa G; Sokolowska, Izabela; Deinhardt, Katrin; Darie, Costel C

    2014-01-01

    Better understanding of central nervous system (CNS) molecules can include the identification of new molecules and their receptor systems. Discovery of novel proteins and elucidation of receptor targets can be accomplished using mass spectrometry (MS). We describe a case study of such a molecule, which our lab has studied using MS in combination with other protein identification techniques, such as immunohistochemistry (IHC) and Western blotting. This molecule is known as tumor differentiation factor (TDF), a recently-found protein secreted by the pituitary into the blood. TDF mRNA has been detected in brain; not heart, placenta, lung, liver, skeletal muscle, or pancreas. Currently TDF has an unclear function, and prior to our studies, its localization was only minimally understood, with no understanding of receptor targets. We investigated the distribution of TDF in the rat brain using IHC and immunofluorescence (IF). TDF protein was detected in pituitary and most other brain regions, in specific neurons but not astrocytes. We found TDF immunoreactivity in cultured neuroblastoma, not astrocytoma. These data suggest that TDF is localized to neurons, not to astrocytes. Our group also conducted studies to identify the TDF receptor (TDF-R). Using LC-MS/MS and Western blotting, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) as potential TDF-R candidates in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cell fibroblasts or fibroblast-like cells. These studies have combined directed protein identification techniques with mass spectrometry to increase our understanding of a novel protein that may have distinct actions as a hormone in the body and as a growth factor in the brain.

  14. Antinutritional factors and in vitro protein digestibility of improved haricot bean (Phaseolus vulgaris L.) varieties grown in Ethiopia.

    PubMed

    Admassu Shimelis, Emire; Kumar Rakshit, Sudip

    2005-09-01

    The antinutrient (raffinose oligosaccharides, tannins, phytic acid and trypsin inhibitors) composition and in vitro protein digestibility of eight improved varieties of Phaseolus vulgaris grown in Ethiopia were determined. Stachyose was the predominant alpha-galactosides in all haricot bean samples. Raffinose was also present in significant quantities but verbascose, glucose and fructose were not detected at all in the samples. The concentrations observed for the protein digestibility and antinutritional factors, varied significantly (P<0.05) between varieties investigated in this study. Mean values for protein digestibility ranged from 80.66% (in Roba variety) to 65.64% (in Beshbesh variety). Mean values for raffinose, stachyose, sucrose, trypsin inhibitors, tannins and phytic acid were 3.14 mg/g, 14.86 mg/g, 24.22 mg/g, 20.68 TUIx10(3)/g, 17.44 mg, catechin equivalents/g and 20.54 mg/g respectively. Statistical analyses of data revealed that antinutritional factors and protein digestibility were influenced by variety (genotype). Relationships between antinutritional factors and protein digestibility were also observed. The possibility of selecting varieties to be used for large-scale cultivation in Ethiopia on the basis of these data is discussed. Among the improved varieties studied, Roba, Redwolaita, Mexican and Awash were found to be the best food and export type of haricot beans in the Ethiopian context, because of their higher protein digestibility, lower antinutrtional factors and other beneficial nutritional parameters. Roba variety can be used by local food processors for the production of value-added bean-based products especially to combat the problem of protein energy malnutrition and related diseases which are very common in developing countries.

  15. Biochemical and Biological Studies of Mouse APOBEC3

    PubMed Central

    Nair, Smita; Sanchez-Martinez, Silvia; Ji, Xinhua

    2014-01-01

    ABSTRACT Many murine leukemia viruses (MLVs) are partially resistant to restriction by mouse APOBEC3 (mA3) and essentially fully resistant to induction of G-to-A mutations by mA3. In contrast, Vif-deficient HIV-1 (ΔVif HIV-1) is profoundly restricted by mA3, and the restriction includes high levels of G-to-A mutation. Human APOBEC3G (hA3G), unlike mA3, is fully active against MLVs. We produced a glutathione S-transferase–mA3 fusion protein in insect cells and demonstrated that it possesses cytidine deaminase activity, as expected. This activity is localized within the N-terminal domain of this 2-domain protein; the C-terminal domain is enzymatically inactive but required for mA3 encapsidation into retrovirus particles. We found that a specific arginine residue and several aromatic residues, as well as the zinc-coordinating cysteines in the C-terminal domain, are necessary for mA3 packaging; a structural model of this domain suggests that these residues line a potential nucleic acid-binding interface. Mutation of a few potential phosphorylation sites in mA3 drastically reduces its antiviral activity by impairing either deaminase activity or its encapsidation. mA3 deaminates short single-stranded DNA oligonucleotides preferentially toward their 3′ ends, whereas hA3G exhibits the opposite polarity. However, when packaged into infectious ΔVif HIV-1 virions, both mA3 and hA3G preferentially induce deaminations toward the 5′ end of minus-strand viral DNA, presumably because of the sequence of events during reverse transcription in vivo. Despite the fact that mA3 in MLV particles does not induce detectable deaminations upon infection, its deaminase activity is easily detected in virus lysates. We still do not understand how MLV resists mA3-induced G-to-A mutation. IMPORTANCE One way that mammalian cells defend themselves against infection by retroviruses is with APOBEC3 proteins. These proteins convert cytidine bases to uridine bases in retroviral DNA. However

  16. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

    PubMed Central

    Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis

    2003-01-01

    Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092

  18. Complement factor H-related proteins in IgA nephropathy-sometimes a gentle nudge does the trick.

    PubMed

    Thurman, Joshua M; Laskowski, Jennifer

    2017-10-01

    Complement activation probably contributes to glomerular inflammation and damage in IgA nephropathy. In this issue, 2 groups report that levels of factor H-related protein 1 are elevated in patients with IgA nephropathy and correlate with disease progression. These studies provide new evidence that the complement cascade is important to the pathogenesis of this disease. These results also suggest that factor H-related protein 1 levels may be useful for identifying those patients at high risk of disease progression. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Nuclear Exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding.

    PubMed

    Bennett, Ryan P; Presnyak, Vladimir; Wedekind, Joseph E; Smith, Harold C

    2008-03-21

    Human APOBEC3G (hA3G) is a host factor that defends against HIV-1 as well as other exogenous retroviruses and endogenous retroelements. To this end, hA3G is restricted to the cytoplasm of T lymphocytes where it interacts with viral RNA and proteins to assemble with viral particles causing a post-entry block during reverse transcription. hA3G also exhibits a mechanism to inhibit the reverse transcription of retroelements by RNA binding and sequestration into mRNA processing centers in the cytoplasm. We have determined that the molecular basis for this specialized property of hA3G is a novel cytoplasmic retention signal (CRS) that is necessary and sufficient to restrict wild-type hA3G and chimeric constructs to the cytoplasm. The CRS resides within amino acids 113-128 and is embedded within a basic flanking sequence and does not require RNA binding to retain hA3G in the cytoplasm. Paralogs of hA3G that have nuclear or cytoplasmic distributions differ from hA3G within the region encompassing the CRS motif with respect to charge and amino acid composition. We propose that the CRS enables hA3G to interact with cytoplasmic factors, and thereby enables hA3G to serve in host cell defense by restricting an antiviral sentinel to the cytoplasm. The CRS lies in a region involved in both Gag and Vif interactions; therefore, identification of this motif has important implications for the design of therapeutics that target HIV-1 while maintaining antiviral and cellular functions.

  20. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis1[OPEN

    PubMed Central

    Shine, M.B.; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-01-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other’s nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection. PMID:27356973

  1. Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake.

    PubMed

    Saetae, Donlaporn; Suntornsuk, Worapot

    2010-12-28

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  2. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    PubMed Central

    Saetae, Donlaporn; Suntornsuk, Worapot

    2011-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications. PMID:21339978

  3. Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion.

    PubMed

    Younger, Andrew K D; Su, Peter Y; Shepard, Andrea J; Udani, Shreya V; Cybulski, Thaddeus R; Tyo, Keith E J; Leonard, Joshua N

    2018-02-01

    Naturally evolved metabolite-responsive biosensors enable applications in metabolic engineering, ranging from screening large genetic libraries to dynamically regulating biosynthetic pathways. However, there are many metabolites for which a natural biosensor does not exist. To address this need, we developed a general method for converting metabolite-binding proteins into metabolite-responsive transcription factors-Biosensor Engineering by Random Domain Insertion (BERDI). This approach takes advantage of an in vitro transposon insertion reaction to generate all possible insertions of a DNA-binding domain into a metabolite-binding protein, followed by fluorescence activated cell sorting to isolate functional biosensors. To develop and evaluate the BERDI method, we generated a library of candidate biosensors in which a zinc finger DNA-binding domain was inserted into maltose binding protein, which served as a model well-studied metabolite-binding protein. Library diversity was characterized by several methods, a selection scheme was deployed, and ultimately several distinct and functional maltose-responsive transcriptional biosensors were identified. We hypothesize that the BERDI method comprises a generalizable strategy that may ultimately be applied to convert a wide range of metabolite-binding proteins into novel biosensors for applications in metabolic engineering and synthetic biology. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G.

    PubMed

    Ara, Anjuman; Love, Robin P; Follack, Tyson B; Ahmed, Khawaja A; Adolph, Madison B; Chelico, Linda

    2017-02-01

    The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4 + T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected

  5. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  6. Protein-protein interactions within late pre-40S ribosomes.

    PubMed

    Campbell, Melody G; Karbstein, Katrin

    2011-01-20

    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  7. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB.

    PubMed

    Spadaro, Domenica; Tapia, Rocio; Jond, Lionel; Sudol, Marius; Fanning, Alan S; Citi, Sandra

    2014-08-08

    The localization and activities of DbpA/ZONAB and YAP transcription factors are in part regulated by the density-dependent assembly of epithelial junctions. DbpA activity and cell proliferation are inhibited by exogenous overexpression of the tight junction (TJ) protein ZO-1, leading to a model whereby ZO-1 acts by sequestering DbpA at the TJ. However, mammary epithelial cells and mouse tissues knock-out for ZO-1 do not show increased proliferation, as predicted by this model. To address this discrepancy, we examined the localization and activity of DbpA and YAP in Madin-Darby canine kidney cells depleted either of ZO-1, or one of the related proteins ZO-2 and ZO-3 (ZO proteins), or all three together. Depletion of only one ZO protein had no effect on DbpA localization and activity, whereas depletion of ZO-1 and ZO-2, which is associated with reduced ZO-3 expression, resulted in increased DbpA localization in the cytoplasm. Only depletion of ZO-2 reduced the nuclear import of YAP. Mammary epithelial (Eph4) cells KO for ZO-1 showed junctional DbpA, demonstrating that ZO-1 is not required to sequester DbpA at junctions. However, further depletion of ZO-2 in Eph4 ZO-1KO cells, which do not express ZO-3, caused decreased junctional localization and expression of DbpA, which were rescued by the proteasome inhibitor MG132. In vitro binding assays showed that full-length ZO-1 does not interact with DbpA. These results show that ZO-2 is implicated in regulating the nuclear shuttling of YAP, whereas ZO proteins redundantly control the junctional retention and stability of DbpA, without affecting its shuttling to the nucleus. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins

    PubMed Central

    de Wilde, Adriaan H.; Wannee, Kazimier F.; Scholte, Florine E. M.; Goeman, Jelle J.; ten Dijke, Peter; Snijder, Eric J.

    2015-01-01

    ABSTRACT To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy. IMPORTANCE Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although

  9. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors.

    PubMed

    Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B

    2017-06-13

    Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.

  10. The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ.

    PubMed

    Loiseau, Laurent; Fyfe, Cameron; Aussel, Laurent; Hajj Chehade, Mahmoud; Hernández, Sara B; Faivre, Bruno; Hamdane, Djemel; Mellot-Draznieks, Caroline; Rascalou, Bérengère; Pelosi, Ludovic; Velours, Christophe; Cornu, David; Lombard, Murielle; Casadesús, Josep; Pierrel, Fabien; Fontecave, Marc; Barras, Frédéric

    2017-07-14

    Ubiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in Escherichia coli , and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some of which are still unknown. Here, we report on the identification of a bacterial gene, yqiC , which is required for efficient UQ biosynthesis, and which we have renamed ubiK Using several methods, we demonstrated that the UbiK protein forms a complex with the C-terminal part of UbiJ, another UQ biogenesis factor we previously identified. We found that both proteins are likely to contribute to global UQ biosynthesis rather than to a specific biosynthetic step, because both ubiK and ubiJ mutants accumulated octaprenylphenol, an early intermediate of the UQ biosynthetic pathway. Interestingly, we found that both proteins are dispensable for UQ biosynthesis under anaerobiosis, even though they were expressed in the absence of oxygen. We also provide evidence that the UbiK-UbiJ complex interacts with palmitoleic acid, a major lipid in E. coli Last, in Salmonella enterica , ubiK was required for proliferation in macrophages and virulence in mice. We conclude that although the role of the UbiK-UbiJ complex remains unknown, our results support the hypothesis that UbiK is an accessory factor of Ubi enzymes and facilitates UQ biosynthesis by acting as an assembly factor, a targeting factor, or both. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  12. Protein kinase WNK3 regulates the neuronal splicing factor Fox-1.

    PubMed

    Lee, A-Young; Chen, Wei; Stippec, Steve; Self, Jon; Yang, Fan; Ding, Xiaojun; Chen, She; Juang, Yu-Chi; Cobb, Melanie H

    2012-10-16

    We report an action of the protein kinase WNK3 on the neuronal mRNA splicing factor Fox-1. Fox-1 splices mRNAs encoding proteins important in synaptic transmission and membrane excitation. WNK3, implicated in the control of neuronal excitability through actions on ion transport, binds Fox-1 and inhibits its splicing activity in a kinase activity-dependent manner. Phosphorylation of Fox-1 by WNK3 does not change its RNA binding capacity; instead, WNK3 increases the cytoplasmic localization of Fox-1, thereby suppressing Fox-1-dependent splicing. These findings demonstrate a role of WNK3 in RNA processing. Considering the implication of WNK3 and Fox-1 in disorders of neuronal development such as autism, WNK3 may offer a target for treatment of Fox-1-induced disease.

  13. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors.

    PubMed

    Yokoyama, Katsushi; Ishijima, Sanae A; Clowney, Lester; Koike, Hideaki; Aramaki, Hironori; Tanaka, Chikako; Makino, Kozo; Suzuki, Masashi

    2006-01-01

    Feast/famine regulatory proteins comprise a diverse family of transcription factors, which have been referred to in various individual identifications, including Escherichia coli leucine-responsive regulatory protein and asparagine synthase C gene product. A full length feast/famine regulatory protein consists of the N-terminal DNA-binding domain and the C-domain, which is involved in dimerization and further assembly, thereby producing, for example, a disc or a chromatin-like cylinder. Various ligands of the size of amino acids bind at the interface between feast/famine regulatory protein dimers, thereby altering their assembly forms. Also, the combination of feast/famine regulatory protein subunits forming the same assembly is altered. In this way, a small number of feast/famine regulatory proteins are able to regulate a large number of genes in response to various environmental changes. Because feast/famine regulatory proteins are shared by archaea and eubacteria, the genome-wide regulation by feast/famine regulatory proteins is traceable back to their common ancestor, being the prototype of highly differentiated transcription regulatory mechanisms found in organisms nowadays.

  14. Type I human T cell leukemia virus tax protein transforms rat fibroblasts through the cyclic adenosine monophosphate response element binding protein/activating transcription factor pathway.

    PubMed Central

    Smith, M R; Greene, W C

    1991-01-01

    The Tax oncoprotein of the type I human T cell leukemia virus (HTLV-I) activates transcription of cellular and viral genes through at least two different transcription factor pathways. Tax activates transcription of the c-fos proto-oncogene by a mechanism that appears to involve members of the cAMP response element binding protein (CREB) and activating transcription factor (ATF) family of DNA-binding proteins. Tax also induces the nuclear expression of the NF-kappa B family of rel oncogene-related enhancer-binding proteins. We have investigated the potential role of these CREB/ATF and NF-kappa B/Rel transcription factors in Tax-mediated transformation by analyzing the oncogenic potential of Tax mutants that functionally segregate these two pathways of transactivation. Rat fibroblasts (Rat2) stably expressing either the wild-type Tax protein or a Tax mutant selectively deficient in the ability to induce NF-kappa B/Rel demonstrated marked changes in morphology and growth characteristics including the ability to form tumors in athymic mice. In contrast, Rat2 cells stably expressing a Tax mutant selectively deficient in the ability to activate transcription through CREB/ATF demonstrated no detectable changes in morphology or growth characteristics. These results suggest that transcriptional activation through the CREB/ATF pathway may play an important role in Tax-mediated cellular transformation. Images PMID:1832173

  15. Gc protein-derived macrophage activating factor (GcMAF): isoelectric focusing pattern and tumoricidal activity.

    PubMed

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi

    2003-01-01

    Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.

  16. Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH.

    PubMed

    Kainulainen, Markus; Habjan, Matthias; Hubel, Philipp; Busch, Laura; Lau, Simone; Colinge, Jacques; Superti-Furga, Giulio; Pichlmair, Andreas; Weber, Friedemann

    2014-03-01

    The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity.

  17. Virulence Factor NSs of Rift Valley Fever Virus Recruits the F-Box Protein FBXO3 To Degrade Subunit p62 of General Transcription Factor TFIIH

    PubMed Central

    Kainulainen, Markus; Habjan, Matthias; Hubel, Philipp; Busch, Laura; Lau, Simone; Colinge, Jacques; Superti-Furga, Giulio; Pichlmair, Andreas

    2014-01-01

    ABSTRACT The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. IMPORTANCE Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity. PMID:24403578

  18. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein–Protein Interactions

    PubMed Central

    Bartlett, Madelaine; Thompson, Beth; Brabazon, Holly; Del Gizzi, Robert; Zhang, Thompson; Whipple, Clinton

    2016-01-01

    Protein–protein interactions (PPIs) have widely acknowledged roles in the regulation of development, but few studies have addressed the timing and mechanism of shifting PPIs over evolutionary history. The B-class MADS-box transcription factors, PISTILLATA (PI) and APETALA3 (AP3) are key regulators of floral development. PI-like (PIL) and AP3-like (AP3L) proteins from a number of plants, including Arabidopsis thaliana (Arabidopsis) and the grass Zea mays (maize), bind DNA as obligate heterodimers. However, a PIL protein from the grass relative Joinvillea can bind DNA as a homodimer. To ascertain whether Joinvillea PIL homodimerization is an anomaly or indicative of broader trends, we characterized PIL dimerization across the Poales and uncovered unexpected evolutionary lability. Both obligate B-class heterodimerization and PIL homodimerization have evolved multiple times in the order, by distinct molecular mechanisms. For example, obligate B-class heterodimerization in maize evolved very recently from PIL homodimerization. A single amino acid change, fixed during domestication, is sufficient to toggle one maize PIL protein between homodimerization and obligate heterodimerization. We detected a signature of positive selection acting on residues preferentially clustered in predicted sites of contact between MADS-box monomers and dimers, and in motifs that mediate MADS PPI specificity in Arabidopsis. Changing one positively selected residue can alter PIL dimerization activity. Furthermore, ectopic expression of a Joinvillea PIL homodimer in Arabidopsis can homeotically transform sepals into petals. Our results provide a window into the evolutionary remodeling of PPIs, and show that novel interactions have the potential to alter plant form in a context-dependent manner. PMID:26908583

  19. Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake.

    PubMed

    León-López, Liliana; Dávila-Ortiz, Gloria; Jiménez-Martínez, Cristian; Hernández-Sánchez, Humberto

    2013-01-01

    Jatropha curcas seed cake is a protein-rich byproduct of oil extraction which could be used to produce protein isolates. The purpose of this study was the optimization of the protein isolation process from the seed cake of an edible provenance of J. curcas by an alkaline extraction followed by isoelectric precipitation method via a sequentially integrated optimization approach. The influence of four different factors (solubilization pH, extraction temperature, NaCl addition, and precipitation pH) on the protein and antinutritional compounds content of the isolate was evaluated. The estimated optimal conditions were an extraction temperature of 20°C, a precipitation pH of 4, and an amount of NaCl in the extraction solution of 0.6 M for a predicted protein content of 93.3%. Under these conditions, it was possible to obtain experimentally a protein isolate with 93.21% of proteins, 316.5 mg 100 g(-1) of total phenolics, 2891.84 mg 100 g(-1) of phytates and 168 mg 100 g(-1) of saponins. The protein content of the this isolate was higher than the content reported by other authors.

  20. Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake

    PubMed Central

    León-López, Liliana; Dávila-Ortiz, Gloria; Jiménez-Martínez, Cristian; Hernández-Sánchez, Humberto

    2013-01-01

    Jatropha curcas seed cake is a protein-rich byproduct of oil extraction which could be used to produce protein isolates. The purpose of this study was the optimization of the protein isolation process from the seed cake of an edible provenance of J. curcas by an alkaline extraction followed by isoelectric precipitation method via a sequentially integrated optimization approach. The influence of four different factors (solubilization pH, extraction temperature, NaCl addition, and precipitation pH) on the protein and antinutritional compounds content of the isolate was evaluated. The estimated optimal conditions were an extraction temperature of 20°C, a precipitation pH of 4, and an amount of NaCl in the extraction solution of 0.6 M for a predicted protein content of 93.3%. Under these conditions, it was possible to obtain experimentally a protein isolate with 93.21% of proteins, 316.5 mg 100 g−1 of total phenolics, 2891.84 mg 100 g−1 of phytates and 168 mg 100 g−1 of saponins. The protein content of the this isolate was higher than the content reported by other authors. PMID:25937971

  1. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress1[OPEN

    PubMed Central

    Basha, Eman; Fowler, Mary E.; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha

    2016-01-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. PMID:27474115

  2. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  3. Human extrahepatic portal vein obstruction correlates with decreased factor VII and protein C transcription but increased hepatocyte proliferation.

    PubMed

    Chiu, Bill; Melin-Aldana, Hector; Superina, Riccardo A

    2007-10-01

    A 3-year-old girl developed extrahepatic portal vein obstruction (EHPVO) after a liver transplant. She had sequelae of portal hypertension that required another transplantation. The circumstances allowed for comparison of liver-dependent coagulation factor production between the second donor liver and the explanted liver with EHPVO. Liver samples from the explanted first graft and the second transplant were obtained. Fresh tissue was used to perform reverse transcription-polymerase chain reaction with primers against factors V, VII, as well as VIII, protein C, and paraffin-embedded sections for hepatocyte proliferation using Ki-67 antibody as well as for apoptosis using TUNEL assay. The transcription of factor VII and that of protein C were decreased in the explant as compared with the newly transplanted liver (factor VII, 77% of the donor; protein C, 88% of the donor). The transcription of factor V and that of factor VIII were unchanged. The explant had a greater percentage of proliferating hepatocytes than the new organ (0.85% +/- 0.75% vs 0.11% +/- 0.21%). The percentage of apoptotic cells was similar between the 2 livers (0.09% +/- 0.13% vs 0.09% +/- 0.13%). Idiopathic EHPVO is associated with a reduction in liver-dependent coagulation factor transcription and an increase in hepatocyte proliferation. Portal blood flow deprivation alters hepatic homeostasis and initiates mechanisms that attempt to restore liver-dependent coagulation factors.

  4. Protein-Protein Interactions within Late Pre-40S Ribosomes

    PubMed Central

    Campbell, Melody G.; Karbstein, Katrin

    2011-01-01

    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps. PMID:21283762

  5. Molecular Cloning and Characterization of Growth Factor Receptor Bound-Protein in Clonorchis sinensis

    PubMed Central

    Bai, Xuelian; Lee, Ji-Yun; Kim, Tae Im; Dai, Fuhong; Lee, Tae-Jin; Hong, Sung-Jong

    2014-01-01

    Background Clonorchis sinensis causes clonorchiasis, a potentially serious disease. Growth factor receptor-bound protein 2 (Grb2) is a cytosolic protein conserved among animals and plays roles in cellular functions such as meiosis, organogenesis and energy metabolism. In the present study, we report first molecular characters of growth factor receptor bound-protein (CsGrb2) from C. sinensis as counter part of Grb2 from animals and its possible functions in development and organogenesis of C. sinensis. Methodology/Principal Findings A CsGrb2 cDNA clone retrieved from the C. sinensis transcriptome encoded a polypeptide with a SH3-SH2-SH3 structure. Recombinant CsGrb2 was bacterially produced and purified to homogeneity. Native CsGrb2 with estimated molecular weight was identified from C. sinensis adult extract by western blotting using a mouse immune serum to recombinant CsGrb2. CsGrb2 transcripts was more abundant in the metacercariae than in the adults. Immunohistochemical staining showed that CsGrb2 was localized to the suckers, mesenchymal tissues, sperms in seminal receptacle and ovary in the adults, and abundantly expressed in most organs of the metacercariae. Recombinant CsGrb2 was evaluated to be little useful as a serodiagnostic reagent for C. sinesis human infections. Conclusion Grb2 protein found in C. sinensis was conserved among animals and suggested to play a role in the organogenesis, energy metabolism and mitotic spermatogenesis of C. sinensis. These findings from C. sinensis provide wider understanding on diverse function of Grb2 in lower animals such as platyhelminths. PMID:24454892

  6. Interaction of AIM with insulin-like growth factor-binding protein-4

    PubMed Central

    YOU, QIANG; WU, YAN; YAO, NANNAN; SHEN, GUANNAN; ZHANG, YING; XU, LIANGGUO; LI, GUIYING; JU, CYNTHIA

    2015-01-01

    Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two-hybrid screening, the present study uncovered that AIM binds to insulin-like growth factor binding protein-4 (IGFBP-4). AIM interaction with IGFBP-4, as well as IGFBP-2 and -3, but not with IGFBP-1, -5 and -6, was further confirmed by co-immunoprecipitation (co-IP) using 293 cells. The binding activity and affinity between AIM and IGFBP-4 in vitro were analyzed by co-IP and biolayer interferometry. Serum depletion-induced cellular apoptosis was attenuated by insulin-like growth factor-I (IGF-I), and this effect was abrogated by IGFBP-4. Of note, in the presence of AIM, the inhibitory effect of IGFBP-4 on the anti-apoptosis function of IGF-I was attenuated, possibly through binding of AIM with IGFBP-4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP-2, -3 and -4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function. PMID:26135353

  7. Molecular Characterization of the Schistosoma mansoni Zinc Finger Protein SmZF1 as a Transcription Factor

    PubMed Central

    D'Astolfo, Diego S.; Cardoso, Fernanda C.; Rajão, Matheus A.; Mourão, Marina M.; Gava, Elisandra; Oliveira, Sérgio C.; Macedo, Andréa M.; Machado, Carlos R.; Pena, Sérgio D. J.; Kitten, Gregory T.; Franco, Glória R.

    2009-01-01

    Background During its development, the parasite Schistosoma mansoni is exposed to different environments and undergoes many morphological and physiological transformations as a result of profound changes in gene expression. Characterization of proteins involved in the regulation of these processes is of importance for the understanding of schistosome biology. Proteins containing zinc finger motifs usually participate in regulatory processes and are considered the major class of transcription factors in eukaryotes. It has already been shown, by EMSA (Eletrophoretic Mobility Shift Assay), that SmZF1, a S. mansoni zinc finger (ZF) protein, specifically binds both DNA and RNA oligonucleotides. This suggests that this protein might act as a transcription factor in the parasite. Methodology/Principal Findings In this study we extended the characterization of SmZF1 by determining its subcellular localization and by verifying its ability to regulate gene transcription. We performed immunohistochemistry assays using adult male and female worms, cercariae and schistosomula to analyze the distribution pattern of SmZF1 and verified that the protein is mainly detected in the cells nuclei of all tested life cycle stages except for adult female worms. Also, SmZF1 was heterologously expressed in mammalian COS-7 cells to produce the recombinant protein YFP-SmZF1, which was mainly detected in the nucleus of the cells by confocal microscopy and Western blot assays. To evaluate the ability of this protein to regulate gene transcription, cells expressing YFP-SmZF1 were tested in a luciferase reporter system. In this system, the luciferase gene is downstream of a minimal promoter, upstream of which a DNA region containing four copies of the SmZF1 putative best binding site (D1-3DNA) was inserted. SmZF1 increased the reporter gene transcription by two fold (p≤0.003) only when its specific binding site was present. Conclusion Taken together, these results strongly support the hypothesis

  8. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  9. E74-like factor 2 regulates valosin-containing protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Binglin; Tomita, Yasuhiko; Qiu, Ying

    2007-05-11

    Enhanced expression of valosin-containing protein (VCP) correlates with invasion and metastasis of cancers. To clarify the transcription mechanism of VCP, human and mouse genomic sequence was compared, revealing a 260 bp DNA sequence in the 5'-flanking region of VCP gene to be highly conserved between the two, in which binding motif of E74-like factor 2/new Ets-related factor (ELF2/NERF) was identified. Chromatin immunoprecipitation assay showed binding of ELF2/NERF to the 5'-flanking region of VCP gene. Knock-down of ELF2/NERF by siRNA decreased expression level of VCP. Viability of cells under tumor necrosis factor-alpha treatment significantly reduced in ELF2/NERF-knock-down breast cancer cell line.more » Immunohistochemical analysis on clinical breast cancer specimens showed a correlation of nuclear ELF2/NERF expression with VCP expression and proliferative activity of cells shown by Ki-67 immunohistochemistry. These findings indicate that ELF2/NERF promotes VCP transcription and that ELF2/NERF-VCP pathway might be important for cell survival and proliferation under cytokine stress.« less

  10. Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis.

    PubMed

    Kanda, Shigeru; Mochizuki, Yasushi; Miyata, Yasuyoshi; Kanetake, Hiroshi; Yamamoto, Nobuto

    2002-09-04

    The vitamin D(3)-binding protein (Gc protein)-derived macrophage activating factor (GcMAF) activates tumoricidal macrophages against a variety of cancers indiscriminately. We investigated whether GcMAF also acts as an antiangiogenic factor on endothelial cells. The effects of GcMAF on angiogenic growth factor-induced cell proliferation, chemotaxis, and tube formation were examined in vitro by using cultured endothelial cells (murine IBE cells, porcine PAE cells, and human umbilical vein endothelial cells [HUVECs]) and in vivo by using a mouse cornea micropocket assay. Blocking monoclonal antibodies to CD36, a receptor for the antiangiogenic factor thrombospondin-1, which is also a possible receptor for GcMAF, were used to investigate the mechanism of GcMAF action. GcMAF inhibited the endothelial cell proliferation, chemotaxis, and tube formation that were all stimulated by fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor-A, or angiopoietin 2. FGF-2-induced neovascularization in murine cornea was also inhibited by GcMAF. Monoclonal antibodies against murine and human CD36 receptor blocked the antiangiogenic action of GcMAF on the angiogenic factor stimulation of endothelial cell chemotaxis. In addition to its ability to activate tumoricidal macrophages, GcMAF has direct antiangiogenic effects on endothelial cells independent of tissue origin. The antiangiogenic effects of GcMAF may be mediated through the CD36 receptor.

  11. Structural Insights into Helicobacter pylori Cag Protein Interactions with Host Cell Factors.

    PubMed

    Bergé, Célia; Terradot, Laurent

    2017-01-01

    The most virulent strains of Helicobacter pylori carry a genomic island (cagPAI) containing a set of 27-31 genes. The encoded proteins assemble a syringe-like apparatus to inject the cytotoxin-associated gene A (CagA) protein into gastric cells. This molecular device belongs to the type IV secretion system (T4SS) family albeit with unique characteristics. The cagPAI-encoded T4SS and its effector protein CagA have an intricate relationship with the host cell, with multiple interactions that only start to be deciphered from a structural point of view. On the one hand, the major roles of the interactions between CagL and CagA (and perhaps CagI and CagY) and host cell factors are to facilitate H. pylori adhesion and to mediate the injection of the CagA oncoprotein. On the other hand, CagA interactions with host cell partners interfere with cellular pathways to subvert cell defences and to promote H. pylori infection. Although a clear mechanism for CagA translocation is still lacking, the structural definition of CagA and CagL domains involved in interactions with signalling proteins are progressively coming to light. In this chapter, we will focus on the structural aspects of Cag protein interactions with host cell molecules, critical molecular events precluding H. pylori-mediated gastric cancer development.

  12. Relationships between serum leptin levels and bone mineral parameters in school-aged children: a 3-year follow-up study.

    PubMed

    Kouda, Katsuyasu; Ohara, Kumiko; Fujita, Yuki; Nakamura, Harunobu; Tachiki, Takahiro; Iki, Masayuki

    2018-02-02

    Leptin regulates bone cell differentiation and functions via direct and indirect actions in experimental settings. Epidemiologically, however, the impact of leptin on the regulation of bone metabolism remains unclear. While some studies have reported a positive relationship between leptin and bone mineral parameters, other studies found an inverse or no association. We analyzed data from a population-based follow-up survey of community-dwelling children in Hamamatsu, Japan, to investigate relationships between leptin levels and bone mineral parameters. Multiple regression analysis was performed. Multicollinearity was quantified using the variance infiltration factor (VIF). Among 408 children who participated in the baseline survey (at age 11.2 years), 254 (121 boys and 133 girls) completed the follow-up survey (at age 14.2 years). Leptin levels were strongly related to fat mass (r = 0.87 in boys, r = 0.80 in girls). Leptin levels at baseline were significantly (P < 0.05) positively related to total body less head (TBLH) areal bone mineral density (aBMD) at follow-up in girls (standardized partial regression coefficient: β = 0.302, VIF = 2.246), after adjusting for body fat percentage (%). On the other hand, leptin levels were inversely related to TBLH aBMD in boys (β = - 0.395, VIF = 4.116), after adjusting for body fat mass (kg). Positive relationships between leptin levels and bone mineral parameters were observed with VIF values < 4.0, whereas inverse relationships were observed with VIF values ≥ 4.0. These findings suggest that positive relationships between leptin levels and bone mineral parameters are weak, or not always observed, due to statistical problems (i.e., multicollinearity) and other factors derived from adipose tissue.

  13. Fanconi anemia FANCD2 and FANCI proteins regulate the nuclear dynamics of splicing factors.

    PubMed

    Moriel-Carretero, María; Ovejero, Sara; Gérus-Durand, Marie; Vryzas, Dimos; Constantinou, Angelos

    2017-12-04

    Proteins disabled in the cancer-prone disorder Fanconi anemia (FA) ensure the maintenance of chromosomal stability during DNA replication. FA proteins regulate replication dynamics, coordinate replication-coupled repair of interstrand DNA cross-links, and mitigate conflicts between replication and transcription. Here we show that FANCI and FANCD2 associate with splicing factor 3B1 (SF3B1), a key spliceosomal protein of the U2 small nuclear ribonucleoprotein (U2 snRNP). FANCI is in close proximity to SF3B1 in the nucleoplasm of interphase and mitotic cells. Furthermore, we find that DNA replication stress induces the release of SF3B1 from nuclear speckles in a manner that depends on FANCI and on the activity of the checkpoint kinase ATR. In chromatin, both FANCD2 and FANCI associate with SF3B1, prevent accumulation of postcatalytic intron lariats, and contribute to the timely eviction of splicing factors. We propose that FANCD2 and FANCI contribute to the organization of functional domains in chromatin, ensuring the coordination of DNA replication and cotranscriptional processes. © 2017 Moriel-Carretero et al.

  14. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein.

    PubMed

    Mast, Alan E

    2016-01-01

    Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients. © 2015 American Heart Association, Inc.

  15. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro, E-mail: fujii@sapmed.ac.j

    2011-05-25

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression ofmore » C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-{gamma} signaling pathway via inhibition of phosphorylated STAT1 dimerization.« less

  16. Monocyte chemoattractant protein-induced protein 1 targets hypoxia-inducible factor 1α to protect against hepatic ischemia/reperfusion injury.

    PubMed

    Sun, Peng; Lu, Yue-Xin; Cheng, Daqing; Zhang, Kuo; Zheng, Jilin; Liu, Yupeng; Wang, Xiaozhan; Yuan, Yu-Feng; Tang, Yi-Da

    2018-05-09

    Sterile inflammation is an essential factor causing hepatic ischemia/reperfusion (I/R) injury. As a critical regulator of inflammation, the role of monocyte chemoattractant protein-induced protein 1 (MCPIP1) in hepatic I/R injury remains undetermined. In this study, we discovered that MCPIP1 downregulation was associated with hepatic I/R injury in liver transplant patients and a mouse model. Hepatocyte-specific Mcpip1 gene knockout (HKO) and transgenic (HTG) mice demonstrated that MCPIP1 functions to ameliorate liver damage, reduce inflammation, prevent cell death, and promote regeneration. A mechanistic study revealed that MCPIP1 interacted with and maintained hypoxia-inducible factor 1α (HIF-1α) expression by deubiquitinating HIF-1α. Notably, HIF-1α inhibitor reversed the protective effect of MCPIP1, while HIF-1α activator compensated for the detrimental effect of MCPIP1 deficiency. Thus, we identified the MCPIP1-HIF-1α axis as a critical pathway that may be a good target for intervention in hepatic I/R injury. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  17. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  18. Poliovirus Proteins Induce Membrane Association of GTPase ADP-Ribosylation Factor

    PubMed Central

    Belov, George A.; Fogg, Mark H.; Ehrenfeld, Ellie

    2005-01-01

    Poliovirus infection results in the disintegration of intracellular membrane structures and formation of specific vesicles that serve as sites for replication of viral RNA. The mechanism of membrane rearrangement has not been clearly defined. Replication of poliovirus is sensitive to brefeldin A (BFA), a fungal metabolite known to prevent normal function of the ADP-ribosylation factor (ARF) family of small GTPases. During normal membrane trafficking in uninfected cells, ARFs are involved in vesicle formation from different intracellular sites through interaction with numerous regulatory and coat proteins as well as in regulation of phospholipase D activity and cytoskeleton modifications. We demonstrate here that ARFs 3 and 5, but not ARF6, are translocated to membranes in HeLa cell extracts that are engaged in translation of poliovirus RNA. The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA. ARF translocation can be induced independently by synthesis of poliovirus 3A or 3CD proteins, and we describe mutations that abolished this activity. In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs. Taken together, the data suggest an involvement of ARF in poliovirus RNA replication. PMID:15890959

  19. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    PubMed

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could

  20. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    PubMed Central

    Tatarinova, Tatiana; Dien Bard, Jennifer; Cohen, Irit

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content. PMID:26114113

  1. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors.

    PubMed

    Tatarinova, Tatiana; Salih, Bilal; Dien Bard, Jennifer; Cohen, Irit; Bolshoy, Alexander

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content.

  2. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins

    PubMed Central

    Cao, Zheng; Bowie, James U

    2014-01-01

    Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090

  3. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    PubMed

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  4. A Drosophila haemocyte-specific protein, hemolectin, similar to human von Willebrand factor.

    PubMed Central

    Goto, A; Kumagai, T; Kumagai, C; Hirose, J; Narita, H; Mori, H; Kadowaki, T; Beck, K; Kitagawa, Y

    2001-01-01

    We identified a novel Drosophila protein of approximately 400 kDa, hemolectin (d-Hml), secreted from haemocyte-derived Kc167 cells. Its 11.7 kbp cDNA contains an open reading frame of 3843 amino acid residues, with conserved domains in von Willebrand factor (VWF), coagulation factor V/VIII and complement factors. The d-hml gene is located on the third chromosome (position 70C1-5) and consists of 26 exons. The major part of d-Hml consists of well-known motifs with the organization: CP1-EG1-CP2-EG2-CP3-VD1-VD2-VD'-VD3-VC1-VD"-VD"'-FC1-FC2-VC2-LA1-VD4-VD5-VC3-VB1-VB2-VC4-VC5-CK1 (CP, complement-control protein domain; EG, epidermal-growth-factor-like domain; VB, VC, VD, VWF type B-, C- and D-like domains; VD', VD", VD"', truncated C-terminal VDs; FC, coagulation factor V/VIII type C domain; LA, low-density-lipoprotein-receptor class A domain; CK, cysteine knot domain). The organization of VD1-VD2-VD'-VD3, essential for VWF to be processed by furin, to bind to coagulation factor VIII and to form interchain disulphide linkages, is conserved. The 400 kDa form of d-Hml was sensitive to acidic cleavage near the boundary between VD2 and VD', where the cleavage site of pro-VWF is located. Agarose-gel electrophoresis of metabolically radiolabelled d-Hml suggested that it is secreted from Kc167 cells mainly as dimers. Resembling VWF, 7.9% (305 residues) of cysteine residues on the d-Hml sequence had well-conserved positions in each motif. Coinciding with the development of phagocytic haemocytes, d-hml transcript was detected in late embryos and larvae. Its low-level expression in adult flies was induced by injury at any position on the body. PMID:11563973

  5. The C Terminus of the Saccharomyces cerevisiae α-Factor Receptor Contributes to the Formation of Preactivation Complexes with Its Cognate G Protein

    PubMed Central

    Dosil, Mercedes; Schandel, Kimberly A.; Gupta, Ekta; Jenness, Duane D.; Konopka, James B.

    2000-01-01

    Binding of the α-factor pheromone to its G-protein-coupled receptor (encoded by STE2) activates the mating pathway in MATa yeast cells. To investigate whether specific interactions between the receptor and the G protein occur prior to ligand binding, we analyzed dominant-negative mutant receptors that compete with wild-type receptors for G proteins, and we analyzed the ability of receptors to suppress the constitutive signaling activity of mutant Gα subunits in an α-factor-independent manner. Although the amino acid substitution L236H in the third intracellular loop of the receptor impairs G-protein activation, this substitution had no influence on the ability of the dominant-negative receptors to sequester G proteins or on the ability of receptors to suppress the GPA1-A345T mutant Gα subunit. In contrast, removal of the cytoplasmic C-terminal domain of the receptor eliminated both of these activities even though the C-terminal domain is unnecessary for G-protein activation. Moreover, the α-factor-independent signaling activity of ste2-P258L mutant receptors was inhibited by the coexpression of wild-type receptors but not by coexpression of truncated receptors lacking the C-terminal domain. Deletion analysis suggested that the distal half of the C-terminal domain is critical for sequestration of G proteins. The C-terminal domain was also found to influence the affinity of the receptor for α-factor in cells lacking G proteins. These results suggest that the C-terminal cytoplasmic domain of the α-factor receptor, in addition to its role in receptor downregulation, promotes the formation of receptor–G-protein preactivation complexes. PMID:10866688

  6. Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family.

    PubMed

    Weber, Henriette; Hellmann, Hanjo

    2009-11-01

    In Arabidopsis thaliana, the BTB/POZ-MATH (BPM) proteins comprise a small family of six members. They have been described previously to use their broad complex, tram track, bric-a-brac/POX virus and zinc finger (BTB/POZ) domain to assemble with CUL3a and CUL3b and potentially to serve as substrate adaptors to cullin-based E3-ligases in plants. In this article, we show that BPMs can also assemble with members of the ethylene response factor/Apetala2 transcription factor family, and that this is mediated by their meprin and TRAF (tumor necrosis factor receptor-associated factor) homology (MATH) domain. In addition, we provide a detailed description of BPM gene expression patterns in different tissues and on abiotic stress treatments, as well as their subcellular localization. This work connects, for the first time, BPM proteins with ethylene response factor/Apetala2 family members, which is likely to represent a novel regulatory mechanism of transcriptional control.

  7. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    PubMed Central

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  8. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    PubMed

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species.

  9. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions

    DTIC Science & Technology

    2013-06-23

    Wallqvist‡ Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent ...experimental Burkholderia data to ini- tially select a small number of proteins as putative viru- lence factors. We then used yeast two-hybrid assays...causative agent of glan- ders, a disease primarily affecting horses but transmittable to humans; and Burkholderia pseudomallei, which is responsible for

  10. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe.

    PubMed

    Stöhr, Anke C; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F; Rosa, Gonçalo M; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6-100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  11. Phylogeny and Differentiation of Reptilian and Amphibian Ranaviruses Detected in Europe

    PubMed Central

    Stöhr, Anke C.; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F.; Rosa, Gonçalo M.; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E.

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  12. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. Copyright 2007 Wiley-Liss, Inc.

  13. A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement.

    PubMed

    Ravagnani, Adriana; Finan, Christopher L; Young, Michael

    2005-03-17

    In Micrococcus luteus growth and resuscitation from starvation-induced dormancy is controlled by the production of a secreted growth factor. This autocrine resuscitation-promoting factor (Rpf) is the founder member of a family of proteins found throughout and confined to the actinobacteria (high G + C Gram-positive bacteria). The aim of this work was to search for and characterise a cognate gene family in the firmicutes (low G + C Gram-positive bacteria) and obtain information about how they may control bacterial growth and resuscitation. In silico analysis of the accessory domains of the Rpf proteins permitted their classification into several subfamilies. The RpfB subfamily is related to a group of firmicute proteins of unknown function, represented by YabE of Bacillus subtilis. The actinobacterial RpfB and firmicute YabE proteins have very similar domain structures and genomic contexts, except that in YabE, the actinobacterial Rpf domain is replaced by another domain, which we have called Sps. Although totally unrelated in both sequence and secondary structure, the Rpf and Sps domains fulfil the same function. We propose that these proteins have undergone "non-orthologous domain displacement", a phenomenon akin to "non-orthologous gene displacement" that has been described previously. Proteins containing the Sps domain are widely distributed throughout the firmicutes and they too fall into a number of distinct subfamilies. Comparative analysis of the accessory domains in the Rpf and Sps proteins, together with their weak similarity to lytic transglycosylases, provide clear evidence that they are muralytic enzymes. The results indicate that the firmicute Sps proteins and the actinobacterial Rpf proteins are cognate and that they control bacterial culturability via enzymatic modification of the bacterial cell envelope.

  14. The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats

    PubMed Central

    Poupin, Nathalie; Bos, Cécile; Mariotti, François; Huneau, Jean-François; Tomé, Daniel; Fouillet, Hélène

    2011-01-01

    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source. PMID:22132207

  15. Enhance tumor radiosensitivity by intracellular delivery of eukaryotic translation initiation factor 4E binding proteins.

    PubMed

    Tian, Shuang; Li, Xiu-Li; Shi, Mei; Yao, Yuan-Qing; Li, Li-Wen; Xin, Xiao-Yan

    2011-02-01

    PTEN (phosphatase and tensin homologue deleted on chromosome ten)/PI3K (phosphatidylinositol 3-kinase)/Akt/mTOR (mammalian target of rapamycin) signaling pathway, which is commonly dysregulated in a broad array of human malignancies, controls the assembly of eukaryotic translation initiation factor 4F (eIF4F) complex through regulation of eIF4E binding proteins (4E-BPs) phosphorylation. And accumulated data over the past two decades implicated eIF4F complex as one of the promising targets for anticancer therapy. It has been confirmed that the translation initiation of mRNA coding for hypoxia-inducible factor-1α (HIF-1α) and survivin, which had been considered as the two major determinants of tumor radiosensitivity, are both controlled by eIF4F complex. Also, eIF4F complex controls the expression of VEGF and bFGF, the two well-known pro-angiogenic factors involved in developing radioresistance. Therefore eIF4F complex plays a pivotal role in regulation of radiosensitivity. In this article, we postulate that cell-permeable, phosphorylation-defective 4E-BP fusion proteins, which could be prepared by substituting the mTOR recognition motif located in N-terminal of 4E-BPs with protein transduction domain from HIV-1 TAT, HSV-1 VP22 or PTD4, could not only inhibit tumor growth but also enhance tumor response to radiation therapy through disruption of eIF4F complex assembly. In our opinion, the recombinant fusion proteins are superior to mTOR inhibitors for they do not cause immunosuppression, do not lead to Akt activation, and could be easily prepared by prokaryotic expression. If the hypothesis was proved to be practical, the cell-permeable, phosphorylation-defective 4E-BP fusion proteins would be widely used in clinical settings to improve tumor response to radiotherapy in the near future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Insulin- like Growth Factor-Binding Protein Action in Bone Tissue: A Key Role for Pregnancy- Associated Plasma Protein-A.

    PubMed

    Beattie, James; Al-Khafaji, Hasanain; Noer, Pernille R; Alkharobi, Hanaa Esa; Alhodhodi, Aishah; Meade, Josephine; El-Gendy, Reem; Oxvig, Claus

    2018-01-01

    The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.

  17. Soy protein preserves basement membrane integrity through a synergistic effect on nephrin, matrix metalloproteinase and vascular endothelial growth factor.

    PubMed

    Palanisamy, Nallasamy; Anuradha, Carani Venkataraman

    2011-01-01

    Soy protein improves renal function and prevents albuminuria in diabetic rats. This study investigates whether the renoprotective effect of soy protein is related to sustenance of basement membrane integrity. Adult male albino rats were randomized into four groups and fed one of the following semi-synthetic diets consisting of corn starch (60%) and casein (20%; CCD), fructose (60%) and casein (20%; FCD), fructose (60%) and soy protein (20%; FSD), or corn starch (60%) and soy protein (20%; CSD). Plasma chemistry and renal changes were analyzed after 60 days. FCD rats displayed metabolic derangements and renal ultrastructural changes. FSD rats showed reduction in type IV collagen, tissue inhibitor for matrix metallo-proteinase-2, vascular endothelial growth factor and tumor necrosis factor-α expression and improved matrix metallo-proteinase expression. Renal architecture was preserved in these rats. Soy protein supplementation not only improved insulin sensitivity but also markedly attenuated renal basement membrane changes in fructose diet-fed rats. These findings provide evidence in support of the use of dietary soy protein in patients with diabetic kidney disease. Copyright © 2011 S. Karger AG, Basel.

  18. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    PubMed

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  19. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking.

    PubMed

    Shohdy, Nadim; Efe, Jem A; Emr, Scott D; Shuman, Howard A

    2005-03-29

    Legionella pneumophila invades and replicates intracellularly in human and protozoan hosts. The bacteria use the Icm/Dot type IVB secretion system to translocate effectors that inhibit phagosome maturation and modulate host vesicle trafficking pathways. To understand how L. pneumophila modulates organelle trafficking in host cells, we carried out pathogen effector protein screening in yeast, identifying L. pneumophila genes that produced membrane trafficking [vacuole protein sorting (VPS)] defects in yeast. We identified four L. pneumophila DNA fragments that perturb sorting of vacuolar proteins. Three encode ORFs of unknown function that are translocated via the Icm/Dot transporter from Legionella into macrophages. VPS inhibitor protein (Vip) A is a coiled-coil protein, VipD is a patatin domain-containing protein, and VipF contains an acetyltransferase domain. Processing studies in yeast indicate that VipA, VipD, and VipF inhibit lysosomal protein trafficking by different mechanisms; overexpressing VipA has an effect on carboxypeptidase Y trafficking, whereas VipD interferes with multivesicular body formation at the late endosome and endoplasmic reticulum-to-Golgi body transport. Such differences highlight the multiple strategies L. pneumophila effectors use to subvert host trafficking processes. Using yeast as an effector gene discovery tool allows for a powerful, genetic approach to both the identification of virulence factors and the study of their function.

  20. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    PubMed Central

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  1. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis

    PubMed Central

    Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael

    2007-01-01

    The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952

  2. Thymidylate synthase (TS) protein expression as a prognostic factor in advanced colorectal cancer: a comparison with TS mRNA expression.

    PubMed

    Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru

    2012-06-01

    The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.

  3. [Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis].

    PubMed

    Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V

    2017-01-01

    Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.

  4. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans.

    PubMed

    Rutkovskiy, Arkady; Sagave, Julia; Czibik, Gabor; Baysa, Anton; Zihlavnikova Enayati, Katarina; Hillestad, Vigdis; Dahl, Christen Peder; Fiane, Arnt; Gullestad, Lars; Gravning, Jørgen; Ahmed, Shakil; Attramadal, Håvard; Valen, Guro; Vaage, Jarle

    2017-09-01

    We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.

  5. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China.

    PubMed

    Song, Wenwen; Yang, Ruping; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Zhang, Shouwei; Jiang, Bingjun; Tian, Shiyan; Liu, Xiaobing; Han, Tianfu

    2016-05-25

    From 2010 to 2013, 763 soybean samples were collected from an extensive area of China. The correlations between seed compositions and climate data were analyzed. The contents of crude protein and water-soluble protein, total amount of protein plus oil, and most of the amino acids were positively correlated with an accumulated temperature ≥15 °C (AT15) and the mean daily temperature (MDT) but were negatively correlated with hours of sunshine (HS) and diurnal temperature range (DTR). The correlations of crude oil and most fatty acids with climate factors were opposite to those of crude protein. Crude oil content had a quadratic regression relationship with MDT, and a positive correlation between oil content and MDT was found when the daily temperature was <19.7 °C. A path analysis indicated that DTR was the main factor that directly affected soybean protein and oil contents. The study illustrated the effects of climate factors on soybean protein and oil contents and proposed agronomic practices for improving soybean quality in different regions of China. The results provide a foundation for the regionalization of high-quality soybean production in China and similar regions in the world.

  6. Heat shock proteins: the missing link between hormonal and reproductive factors and rheumatoid arthritis?

    PubMed

    da Silva, J A

    1991-10-01

    Epidemiologic data suggest a strong link between hormonal and reproductive factors and the incidence of rheumatoid arthritis. Of interest is a possible protective effect of oral contraceptives or estrogen replacement therapy against the development of rheumatoid arthritis. At least 1 pregnancy also appears to reduce the risk of this disease. It has been hypothesized that hormonal contraceptive use and pregnancy elicit the production of higher amounts of endogenous heat shock proteins, which, in turn, induce immunotolerance to subsequent exposure to the actual triggering agent of rheumatoid arthritis. A related possibility is that pregnant women are exposed to specific types of heat shock proteins produced by the fetus in high concentrations. Heat shock proteins are known to be the predominant antigens related to the induction of reactive arthritis. The production of some such proteins is dependent on sex hormones in a tissue-specific way and their concentrations are raised dramatically by stimulation with estrogen and progesterone. A possible mechanism for heat protein-induced immunotolerance would be the predominant stimulation of a suppressor T cell clone. More research on the pathogenesis of rheumatic diseases and the activity of sex hormones could result in the development of a vaccine against rheumatoid arthritis.

  7. Affinity chromatography for purification of the modular protein growth factor receptor-bound protein 2 and development of a screening test for growth factor receptor-bound protein 2 Src homology 3 domain inhibitor using peroxidase-linked ligand.

    PubMed

    Gril, B; Liu, W Q; Lenoir, C; Garbay, C; Vidal, M

    2006-04-01

    Growth factor receptor-bound protein 2 (Grb2) is an adapter protein involved in the Ras-dependent signaling pathway that plays an important role in human cancers initiated by oncogenic receptors. Grb2 is constituted by one Src homology 2 domain surrounded by two SH3 domains, and the inhibition of the interactions produced by these domains could provide an antitumor approach. In evaluating chemical libraries, to search for potential Grb2 inhibitors, it was necessary to elaborate a rapid test for their screening. We have developed, first, a batch method based on the use of an affinity column bearing a Grb2-SH3 peptide ligand to isolate highly purified Grb2. We subsequently describe a very rapid 96-well screening of inhibitors based on a simple competition between purified Grb2 and a peroxidase-coupled proline-rich peptide.

  8. The Efficacy of Group Decision Support Systems: A Field Experiment to Evaluate Impacts on Air Force Decision Makers

    DTIC Science & Technology

    1992-12-01

    made several interesting observations as well. Gray, Vogel, and Beauclair developed an alternate method for determining which experiments were similar...organization" ( Beauclair , 1989), (1:329, 331). 2.7 Summary of Existing Research In the book Group Support Systems: New Perspectives," Alan Dennis and Brent...Computer TDY Temporary Duty USAF United States Air Force VIF Variance Inflation Factor P-2 Bibliography 1. Beauclair , Renee A. "An Experimental Study of

  9. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    PubMed

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The nuclear matrix protein NMP-1 is the transcription factor YY1.

    PubMed Central

    Guo, B; Odgren, P R; van Wijnen, A J; Last, T J; Nickerson, J; Penman, S; Lian, J B; Stein, J L; Stein, G S

    1995-01-01

    NMP-1 was initially identified as a nuclear matrix-associated DNA-binding factor that exhibits sequence-specific recognition for the site IV regulatory element of a histone H4 gene. This distal promoter domain is a nuclear matrix interaction site. In the present study, we show that NMP-1 is the multifunctional transcription factor YY1. Gel-shift and Western blot analyses demonstrate that NMP-1 is immunoreactive with YY1 antibody. Furthermore, purified YY1 protein specifically recognizes site IV and reconstitutes the NMP-1 complex. Western blot and gel-shift analyses indicate that YY1 is present within the nuclear matrix. In situ immunofluorescence studies show that a significant fraction of YY1 is localized in the nuclear matrix, principally but not exclusively associated with residual nucleoli. Our results confirm that NMP-1/YY1 is a ubiquitous protein that is present in both human cells and in rat osteosarcoma ROS 17/2.8 cells. The finding that NMP-1 is identical to YY1 suggests that this transcriptional regulator may mediate gene-matrix interactions. Our results are consistent with the concept that the nuclear matrix may functionally compartmentalize the eukaryotic nucleus to support regulation of gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479833

  11. A Comparison of Blood Factor XII Autoactivation in Buffer, Protein Cocktail, Serum, and Plasma Solutions

    PubMed Central

    Golas, Avantika; Yeh, Chyi-Huey Josh; Pitakjakpipop, Harit; Siedlecki, Christopher A.; Vogler, Erwin A.

    2012-01-01

    Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. The only plausible explanation consistent with current understanding of coagulation-cascade biochemistry is that procoagulant stimulus arising from the activation complex of the intrinsic pathway is dependent on activator surface area. And yet, it is herein shown that activation of the blood zymogen factor XII (Hageman factor, FXII) dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a “mechanochemical” reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results of this study strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway. PMID:23117212

  12. Periodontal and serum protein profiles in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitor adalimumab.

    PubMed

    Kobayashi, Tetsuo; Yokoyama, Tomoko; Ito, Satoshi; Kobayashi, Daisuke; Yamagata, Akira; Okada, Moe; Oofusa, Ken; Narita, Ichiei; Murasawa, Akira; Nakazono, Kiyoshi; Yoshie, Hiromasa

    2014-11-01

    Tumor necrosis factor (TNF)-α inhibitor has been shown to affect the periodontal condition of patients with rheumatoid arthritis (RA). The aim of the present study is to assess the effect of a fully humanized anti-TNF-α monoclonal antibody, adalimumab (ADA), on the periodontal condition of patients with RA and to compare serum protein profiles before and after ADA therapy. The study participants consisted of 20 patients with RA treated with ADA. Clinical periodontal and rheumatologic parameters and serum cytokine levels were evaluated at baseline and 3 months later. Serum protein spot volume was examined with two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins with significant difference in abundance before and after ADA therapy were found and identified using mass spectrometry and protein databases. The patients showed a significant decrease in gingival index (P = 0.002), bleeding on probing (P = 0.003), probing depth (P = 0.002), disease activity score including 28 joints using C-reactive protein (P <0.001), and serum levels of TNF-α (P <0.001) and interleukin-6 (P <0.001) after ADA medication, although plaque levels were comparable. Among a total of 495 protein spots obtained, nine spots were significantly decreased in abundance at reassessment, corresponding to complement factor H, phospholipase D, serum amyloid A, complement component 4, and α-1-acid glycoprotein (P <0.01). These results suggest a beneficial effect of ADA therapy on the periodontal condition of patients with RA, which might be related to differences in serum protein profiles before and after ADA therapy.

  13. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma.

    PubMed

    Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2018-04-01

    The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.

  14. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    PubMed

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  15. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days.

  16. Laboratory assessment of Activated Protein C Resistance/Factor V-Leiden and performance characteristics of a new quantitative assay.

    PubMed

    Amiral, Jean; Vissac, Anne Marie; Seghatchian, Jerard

    2017-12-01

    Activated Protein C Resistance is mainly associated to a factor V mutation (RQ506), which induces a deficient inactivation of activated factor V by activated protein C, and is associated to an increased risk of venous and arterial thrombosis in affected individuals, caused by the prolonged activated factor V survival. Its prevalence is mainly in Caucasians (about 5%), and this mutation is absent in Africans and Asians. Presence of Factor V-Leiden is usually evidenced with clotting methods, using a two-step APTT assay performed without or with APC: prolongation of blood coagulation time is decreased if this factor is present. The R506Q Factor V-Leiden mutation is now usually characterized using molecular biology, and this technique tends to become the first intention assay for characterization of patients. Both techniques are qualitative, and allow classifying tested individuals as heterozygotes or homozygotes for the mutation, when present. A new quantitative assay for Factor V-Leiden, using a one-step clotting method, has been developed, and designed with highly purified human coagulation proteins. Clotting is triggered with human Factor Xa, in presence of calcium and phospholipids (mixture which favours APC action over clotting process). Diluted tested plasma, is supplemented with a clotting mixture containing human fibrinogen, prothrombin, and protein S at a constant concentration. APC is added, and clotting is initiated with calcium. Calibration is performed with a pool of plasmas from patients carrying the R506Q Factor V mutation, and its mixtures with normal plasma. Homozygous patients have clotting times of about <40sec; heterozygous patients have clotting times of about 40-60sec and normal individuals yield clotting times >70sec. Factor V-Leiden concentration is usually >75% in homozygous patients, 30-60% in heterozygous patients and below 5% in normal. The assay is insensitive to clotting factor deficiencies (II, VII, VIII: C, IX, X), dicoumarol or heparin

  17. Determination of Protein Interactome of Transcription Factor Sox2 in Embryonic Stem Cells Engineered for Inducible Expression of Four Reprogramming Factors*

    PubMed Central

    Gao, Zhiguang; Cox, Jesse L.; Gilmore, Joshua M.; Ormsbee, Briana D.; Mallanna, Sunil K.; Washburn, Michael P.; Rizzino, Angie

    2012-01-01

    Unbiased proteomic screens provide a powerful tool for defining protein-protein interaction networks. Previous studies employed multidimensional protein identification technology to identify the Sox2-interactome in embryonic stem cells (ESC) undergoing differentiation in response to a small increase in the expression of epitope-tagged Sox2. Thus far the Sox2-interactome in ESC has not been determined. To identify the Sox2-interactome in ESC, we engineered ESC for inducible expression of different combinations of epitope-tagged Sox2 along with Oct4, Klf4, and c-Myc. Epitope-tagged Sox2 was used to circumvent the lack of suitable Sox2 antibodies needed to perform an unbiased proteomic screen of Sox2-associated proteins. Although i-OS-ESC differentiate when both Oct4 and Sox2 are elevated, i-OSKM-ESC do not differentiate even when the levels of the four transcription factors are coordinately elevated ∼2–3-fold. Our findings with i-OS-ESC and i-OSKM-ESC provide new insights into the reasons why ESC undergo differentiation when Sox2 and Oct4 are elevated in ESC. Importantly, the use of i-OSKM-ESC enabled us to identify the Sox2-interactome in undifferentiated ESC. Using multidimensional protein identification technology, we identified >70 proteins that associate with Sox2 in ESC. We extended these findings by testing the function of the Sox2-assoicated protein Smarcd1 and demonstrate that knockdown of Smarcd1 disrupts the self-renewal of ESC and induces their differentiation. Together, our work provides the first description of the Sox2-interactome in ESC and indicates that Sox2 along with other master regulators is part of a highly integrated protein-protein interaction landscape in ESC. PMID:22334693

  18. Position Matters: Network Centrality Considerably Impacts Rates of Protein Evolution in the Human Protein-Protein Interaction Network.

    PubMed

    Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip

    2017-06-01

    The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane.

    PubMed

    Russo, Alessandra; Bonci, Paola; Bonci, Paolo

    2012-06-01

    The aim of this work is to quantify the total protein and growth factors content in a tissue-suspension obtained from processed human amniotic membrane (hAM). hAM was collected, frozen, freeze dried, powdered and sterilized by γ-irradiation. At each step of the process, samples were characterized for the total protein amounts by a Bradford protein assay and for the growth factor concentrations by ELISA test of the tissue suspensions. Frozen-hAM samples show higher release of total proteins and specific growth factors in the tissue suspension in comparison with freeze-dried hAM. We observed that even if the protein extraction is hindered once the tissue is dried, the powdering process allows a greater release in the tissue suspension of total proteins and growth factors after tissue re-solubilization in comparison with only the freeze-drying process (+91 ± 13% for EGF, +16 ± 4% for HGF, +11 ± 5% for FGF, +16 ± 9% for TGF-β1), and a greater release of EGF (85 ± 10%) in comparison with only the freezing process, because proteins become much readily solubilized in the solution. According with these results, we describe a protocol to obtain a new sterile biological product from hAM tissue, with well-known effects of thermal, mechanical and physical processes on the total protein and grow factors contents.

  20. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons.

    PubMed

    Kenney, Justin W; Genheden, Maja; Moon, Kyung-Mee; Wang, Xuemin; Foster, Leonard J; Proud, Christopher G

    2016-01-01

    Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein-labeling techniques, stable isotope labeling of amino acids in cell culture and bio-orthogonal non-canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule-related proteins. Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule-related proteins is up-regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  1. Key factors regulating protein carbonylation by α,β unsaturated carbonyls: A structural study based on a retrospective meta-analysis.

    PubMed

    Vistoli, Giulio; Mantovani, Chiara; Gervasoni, Silvia; Pedretti, Alessandro; Aldini, Giancarlo

    2017-11-01

    Protein carbonylation represents one of the most important oxidative-based modifications involving nucleophilic amino acids and affecting protein folding and function. Protein carbonylation is induced by electrophilic carbonyl species and is an highly selective process since few nucleophilic residues are carbonylated within each protein. While considering the great interest for protein carbonylation, few studies investigated the factors which render a nucleophilic residue susceptible to carbonylation. Hence, the present study is aimed to delve into the factors which modulate the reactivity of cysteine, histidine and lysine residues towards α,β unsaturated carbonyls by a retrospective analysis of the available studies which identified the adducted residues for proteins, the structure of which was resolved. Such an analysis involved different parameters including exposure, nucleophilicity, surrounding residues and capacity to attract carbonyl species (as derived by docking simulations). The obtained results allowed a meaningful clustering of the analyzed proteins suggesting that on average carbonylation selectivity increases with protein size. The comparison between adducted and unreactive residues revealed differences in all monitored parameters which are markedly more pronounced for cysteines compared to lysines and histidines. Overall, these results suggest that cysteine's carbonylation is a finely (and reasonably purposely) modulated process, while the carbonylation of lysines and histidines seems to be a fairly random event in which limited differences influence their reactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients.

  3. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with amore » Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.« less

  4. Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants.

    PubMed

    Ueda, Hirokazu; Yamaguchi, Yube; Sano, Hiroshi

    2006-05-01

    Plants cope with pathogens with distinct mechanisms. One example is a gene-for-gene system, in which plants recognize the pathogen molecule by specified protein(s), this being called the R factor. However, mechanisms of interaction between proteins from the host and the pathogen are not completely understood. Here, we analyzed the mode of interaction between the N factor, a tobacco R factor, and the helicase domain (p50) of tobacco mosaic virus (TMV). To this end, domain dissected proteins were prepared and subjected to Agroinfiltration into intact leaves, followed by yeast two hybrid and pull-down assays. The results pointed to three novel features. First, the N factor was found to directly bind to the p50 of TMV, second, ATP was pre-requisite for this interaction, with formation of an ATP/N factor complex, and third, the N factor was shown to possess ATPase activity, which is enhanced by the p50. Moreover, we found that intra- and/or inter-molecular interactions take place in the N factor molecule. This interaction required ATP, and was disrupted by the p50. Based on these results, we propose a following model for the TMV recognition mechanism in tobacco plants. The N factor forms a complex with ATP, to which the helicase domain interacts, and enhances ATP hydrolysis. The resulting ADP/N factor complex then changes its conformation, thereby facilitating further interaction with the down-stream signaling factor(s). This model is consistent with the idea of 'protein machine'.

  5. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    PubMed Central

    López-Camarillo, César; Ocampo, Elena Aréchaga; Casamichana, Mavil López; Pérez-Plasencia, Carlos; Álvarez-Sánchez, Elizbeth; Marchat, Laurence A.

    2012-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer. PMID:22312244

  6. Factors influencing protein tyrosine nitration--structure-based predictive models.

    PubMed

    Bayden, Alexander S; Yakovlev, Vasily A; Graves, Paul R; Mikkelsen, Ross B; Kellogg, Glen E

    2011-03-15

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high-resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged side chain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines for which there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases, predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    PubMed

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  8. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  9. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE PAGES

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.; ...

    2015-02-16

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  10. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.

    2014-06-01

    This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.

  11. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea.

    PubMed

    Rivera-Gómez, Nancy; Martínez-Núñez, Mario Alberto; Pastor, Nina; Rodriguez-Vazquez, Katya; Perez-Rueda, Ernesto

    2017-08-01

    Gene regulation at the transcriptional level is a central process in all organisms where DNA-binding transcription factors play a fundamental role. This class of proteins binds specifically at DNA sequences, activating or repressing gene expression as a function of the cell's metabolic status, operator context and ligand-binding status, among other factors, through the DNA-binding domain (DBD). In addition, TFs may contain partner domains (PaDos), which are involved in ligand binding and protein-protein interactions. In this work, we systematically evaluated the distribution, abundance and domain organization of DNA-binding TFs in 799 non-redundant bacterial and archaeal genomes. We found that the distributions of the DBDs and their corresponding PaDos correlated with the size of the genome. We also identified specific combinations between the DBDs and their corresponding PaDos. Within each class of DBDs there are differences in the actual angle formed at the dimerization interface, responding to the presence/absence of ligands and/or crystallization conditions, setting the orientation of the resulting helices and wings facing the DNA. Our results highlight the importance of PaDos as central elements that enhance the diversity of regulatory functions in all bacterial and archaeal organisms, and our results also demonstrate the role of PaDos in sensing diverse signal compounds. The highly specific interactions between DBDs and PaDos observed in this work, together with our structural analysis highlighting the difficulty in predicting both inter-domain geometry and quaternary structure, suggest that these systems appeared once and evolved with diverse duplication events in all the analysed organisms.

  12. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    PubMed Central

    Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978

  13. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  14. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  15. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  16. 14-3-3 Proteins Modulate the ETS Transcription Factor ETV1 in Prostate Cancer

    PubMed Central

    Oh, Sangphil; Shin, Sook; Lightfoot, Stan A.; Janknecht, Ralf

    2013-01-01

    Overexpression of the ETS-related transcription factor ETV1 can initiate neoplastic transformation of the prostate. ETV1 activity is highly regulated by phosphorylation, but the underlying mechanisms are unknown. Here we report that all 14-3-3 proteins, with the exception of the tumor suppressor 14-3-3σ, can bind to ETV1 in a condition manner dictated by its prominent phosphorylation site S216. All non-σ 14-3-3 proteins synergized with ETV1 to activate transcription of its target genes MMP-1 and MMP-7, which regulate extracellular matrix in the prostate tumor microenvironment. S216 mutation or 14-3-3τ downregulation was sufficient to reduce ETV1 protein levels in prostate cancer cells, indicating that non-σ 14-3-3 proteins protect ETV1 from degradation. Notably, S216 mutation also decreased ETV1-dependent migration and invasion in benign prostate cells. Downregulation of 14-3-3τ reduced prostate cancer cell invasion and growth in the same manner as ETV1 attenuation. Lastly, we showed that 14-3-3τ and 14-3-3ε were overexpressed in human prostate tumors. Taken together, our results demonstrated that non-σ 14-3-3 proteins are important modulators of ETV1 function that promote prostate tumorigenesis. PMID:23774214

  17. An Extracellular Serine/Threonine-Rich Protein from Lactobacillus plantarum NCIMB 8826 Is a Novel Aggregation-Promoting Factor with Affinity to Mucin

    PubMed Central

    Hevia, Arancha; Martínez, Noelia; Ladero, Víctor; Álvarez, Miguel A.; Margolles, Abelardo

    2013-01-01

    Autoaggregation in lactic acid bacteria is directly related to the production of certain extracellular proteins, notably, aggregation-promoting factors (APFs). Production of aggregation-promoting factors confers beneficial traits to probiotic-producing strains, contributing to their fitness for the intestinal environment. Furthermore, coaggregation with pathogens has been proposed to be a beneficial mechanism in probiotic lactic acid bacteria. This mechanism would limit attachment of the pathogen to the gut mucosa, favoring its removal by the human immune system. In the present paper, we have characterized a novel aggregation-promoting factor in Lactobacillus plantarum. A mutant with a knockout of the D1 gene showed loss of its autoaggregative phenotype and a decreased ability to bind to mucin, indicating an adhesion role of this protein. In addition, heterologous production of the D1 protein or an internal fragment of the protein, characterized by its abundance in serine/threonine, strongly induced autoaggregation in Lactococcus lactis. This result strongly suggested that this internal fragment is responsible for the bioactivity of D1 as an APF. To our knowledge, this is the first report on a gene coding for an aggregation-promoting factor in Lb. plantarum. PMID:23892754

  18. Host-derived, pore-forming toxin–like protein and trefoil factor complex protects the host against microbial infection

    PubMed Central

    Xiang, Yang; Yan, Chao; Guo, Xiaolong; Zhou, Kaifeng; Li, Sheng’an; Gao, Qian; Wang, Xuan; Zhao, Feng; Liu, Jie; Lee, Wen-Hui; Zhang, Yun

    2014-01-01

    Aerolysins are virulence factors belonging to the bacterial β-pore–forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. βγ-CAT, a complex of an aerolysin-like protein subunit (two βγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When βγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1β release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1β was potently triggered by βγ-CAT from the frog peritoneal cells and murine macrophages in vitro. βγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1β maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens. PMID:24733922

  19. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interruptsmore » the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.« less

  20. Association of the macrophage activating factor (MAF) precursor activity with polymorphism in vitamin D-binding protein.

    PubMed

    Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Kubo, Shinichi; Hori, Hitoshi

    2004-01-01

    Serum vitamin D-binding protein (Gc protein or DBP) is a highly expressed polymorphic protein, which is a precursor of the inflammation-primed macrophage activating factor, GcMAF, by a cascade of carbohydrate processing reactions. In order to elucidate the relationship between Gc polymorphism and GcMAF precursor activity, we estimated the phagocytic ability of three homotypes of Gc protein, Gc1F-1F, Gc1S-1S and Gc2-2, through processing of their carbohydrate moiety. We performed Gc typing of human serum samples by isoelectric focusing (IEF). Gc protein from human serum was purified by affinity chromatography with 25-hydroxyvitamin D3-sepharose. A phagocytosis assay of Gc proteins, modified using beta-glycosidase and sialidase, was carried out. The Gc1F-1F phenotype was revealed to possess Galbeta1-4GalNAc linkage by the analysis of GcMAF precursor activity using beta1-4 linkage-specific galactosidase from jack bean. The GcMAF precursor activity of the Gc1F-1F phenotype was highest among three Gc homotypes. The Gc polymorphism and carbohydrate diversity of Gc protein are significant for its pleiotropic effects.

  1. The Scl1 protein of M6-type group A Streptococcus binds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement.

    PubMed

    Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir

    2008-02-01

    Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.

  2. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  3. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (Temozolomide).

    PubMed

    Pandith, Arshad A; Qasim, Iqbal; Zahoor, Wani; Shah, Parveen; Bhat, Abdul R; Sanadhya, Dheera; Shah, Zafar A; Naikoo, Niyaz A

    2018-04-30

    O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation and its subsequent loss of protein expression has been identified to have a variable impact on clinical outcome of glioma patients indicated for chemotherapy with alkylating agents (Temozolomide). This study investigated methylation status of MGMT gene along with in situ protein expression in malignant glioma patients of different histological types to evaluate the associated clinical outcome vis-a-vis use of alkylating drugs and radiotherapy. Sixty three cases of glioma were evaluated for MGMT promoter methylation by methylation-specific PCR (MS-PCR) and protein expression by immunostaining (IHC). Methylation status of MGMT and loss of protein expression showed a very high concordant association with better survival and progression free survival (PFS) (p < 0.0001). Multivariate Cox regression analysis showed both MGMT methylation and loss of protein as significant independent prognostic factors in glioma patients with respect to lower Hazard Ratio (HR) for better OS and PFS) [p < 0.05]. Interestingly concordant MGMT methylation and lack of protein showed better response in TMZ therapy treated patient subgroups with HR of 2.02 and 0.76 (p < 0.05). We found the merits of prognostication of MGMT parameters, methylation as well as loss of its protein as predictive factors for favorable outcome in terms of better survival for TMZ therapy.

  4. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I.

    PubMed Central

    Takeshita, S; Kikuno, R; Tezuka, K; Amann, E

    1993-01-01

    A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580

  5. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence.

    PubMed

    Ancona, Veronica; Li, Wenting; Zhao, Youfu

    2014-01-01

    In Erwinia amylovora, ECF (extracytoplasmic functions) alternative sigma factor HrpL regulates the transcription of hrp (hypersensitive response and pathogenicity)-type III secretion system (T3SS) genes by binding to a consensus sequence known as the hrp box in hrp gene promoters. In turn, the expression of hrpL has been proposed to be positively controlled by alternative sigma factor 54 (σ(54)) (RpoN) and HrpS, a member of the σ(54) enhancer-binding proteins (EBPs). However, the function of RpoN has not been characterized genetically in E. amylovora. In this study, we investigated the role of RpoN, a nitrogen limitation sigma factor, and its modulation protein YhbH, a novel ribosome-associated protein, in E. amylovora virulence. Our results showed that mutations in hrpS, hrpL, rpoN and yhbH, but not yfiA and rmf3, resulted in a nonpathogenic phenotype on immature pear fruits and apple shoots. Consistently, the expression of T3SS genes, including hrpL, dspE, hrpN and hrpA, was barely detected in hrpS, hrpL, rpoN and yhbH mutants. These mutants were also not capable of eliciting a hypersensitive response (HR) on tobacco; however, the overexpression of hrpL using an inducible promoter rescued the HR-eliciting abilities of these mutants. These results suggest that a sigma factor cascade exists in the regulatory networks of E. amylovora and regulates important virulence factors. On the basis of this study and previously reported data, a model is proposed for the regulation of T3SS in E. amylovora. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  7. Leucine-rich Repeat Neuronal Protein 1 Regulates Differentiation of Embryonic Stem Cells by Posttranslational Modifications of Pluripotency Factors.

    PubMed

    Liao, Chien Huang; Wang, Ya-Hui; Chang, Wei-Wei; Yang, Bei-Chia; Wu, Tsai-Jung; Liu, Wei-Li; Yu, Alice L; Yu, John

    2018-06-11

    Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional, novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs prior to differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  8. p97/DAP5 is a ribosome-associated factor that facilitates protein synthesis and cell proliferation by modulating the synthesis of cell cycle proteins

    PubMed Central

    Lee, Sang Hyun; McCormick, Frank

    2006-01-01

    p97 (also referred to as DAP5, NAT1 or eIF4G2) has been proposed to act as a repressor of protein synthesis. However, we found that p97 is abundantly expressed in proliferating cells and p97 is recruited to ribosomes following growth factor stimulation. We also report that p97 binds eIF2β through its C-terminal domain and localizes to ribosome through its N-terminal MIF4G domain. When overexpressed, p97 increases reporter luciferase activity. In contrast, overexpression of the C-terminal two-thirds of eukaryotic initiation factor 4GI (eIF4GI), a region that shares significant homology with p97, or the N-terminal MIF4G domain of p97 markedly inhibits reporter activity, the rate of global translation and cell proliferation. Conversely, downregulation of p97 levels by RNA interference also decreases the rate of global translation and inhibits cell proliferation. This coincides with an increase in p27/Kip1 protein levels and a marked decrease in CDK2 kinase activity. Taken together, our results demonstrate that p97 is functionally different from the closely related C-terminal two-thirds of eIF4GI and it can positively promote protein synthesis and cell proliferation. PMID:16932749

  9. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro.

    PubMed

    Muñoz-Félix, José M; Cuesta, Cristina; Perretta-Tejedor, Nuria; Subileau, Mariela; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-09-01

    Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence.

    PubMed

    Sengupta, Isha; Das, Dipanwita; Singh, Shivaram Prasad; Chakravarty, Runu; Das, Chandrima

    2017-12-15

    Promyelocytic leukemia nuclear bodies (PML-NB) are sub-nuclear organelles that are the hub of numerous proteins. DNA/RNA viruses often hijack the cellular factors resident in PML-NBs to promote their proliferation in host cells. Hepatitis B virus (HBV), belonging to Hepadnaviridae family, remains undetected in early infection as it does not induce the innate immune response and is known to be the cause of several hepatic diseases leading to cirrhosis and hepatocellular carcinoma. The association of PML-NB proteins and HBV is being addressed in a number of recent studies. Here, we report that the PML-NB protein Speckled 110 kDa (Sp110) is SUMO1-modified and undergoes a deSUMOylation-driven release from the PML-NB in the presence of HBV. Intriguingly, Sp110 knockdown significantly reduced viral DNA load in the culture supernatant by activation of the type I interferon-response pathway. Furthermore, we found that Sp110 differentially regulates several direct target genes of hepatitis B virus protein X (HBx), a viral co-factor. Subsequently, we identified Sp110 as a novel interactor of HBx and found this association to be essential for the exit of Sp110 from the PML-NB during HBV infection and HBx recruitment on the promoter of these genes. HBx, in turn, modulates the recruitment of its associated transcription cofactors p300/HDAC1 to these co-regulated genes, thereby altering the host gene expression program in favor of viral persistence. Thus, we report a mechanism by which HBV can evade host immune response by hijacking the PML-NB protein Sp110, and therefore, we propose it to be a novel target for antiviral therapy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions.

    PubMed

    Baxter, Robert C

    2013-08-01

    In addition to its important role in the regulation of somatic growth by acting as the major circulating transport protein for the insulin-like growth factors (IGFs), IGF binding protein-3 (IGFBP-3) has a variety of intracellular ligands that point to its function within major signaling pathways. The discovery of its interaction with the retinoid X receptor has led to the elucidation of roles in regulating the function of several nuclear hormone receptors including retinoic acid receptor-α, Nur77 and vitamin D receptor. Its interaction with the nuclear hormone receptor peroxisome proliferator-activated receptor-γ is believed to be involved in regulating adipocyte differentiation, which is also modulated by IGFBP-3 through an interaction with TGFβ/Smad signaling. IGFBP-3 can induce apoptosis alone or in conjunction with other agents, and in different systems can activate caspases -8 and -9. At least two unrelated proteins (LRP1 and TMEM219) have been designated as receptors for IGFBP-3, the latter with a demonstrated role in inducing caspase-8-dependent apoptosis. In contrast, IGFBP-3 also has demonstrated roles in survival-related functions, including the repair of DNA double-strand breaks through interaction with the epidermal growth factor receptor and DNA-dependent protein kinase, and the induction of autophagy through interaction with GRP78. The ability of IGFBP-3 to modulate the balance between pro-apoptotic and pro-survival sphingolipids by regulating sphingosine kinase 1 and sphingomyelinases may be integral to its role at the crossroads between cell death and survival in response to a variety of stimuli. The pleiotropic nature of IGFBP-3 activity supports the idea that IGFBP-3 itself, or pathways with which it interacts, should be investigated as targets of therapy for a variety of diseases.

  12. Characterization of protein-protein interaction domains within the baculovirus Autographa californica multiple nucleopolyhedrovirus late expression factor LEF-3.

    PubMed

    Downie, Kelsey; Adetola, Gbolagade; Carstens, Eric B

    2013-11-01

    Autographa californica nucleopolyhedrovirus late expression factor 3 (LEF-3) is required for late viral gene expression probably through its numerous functions related to DNA replication, including nuclear localization of the virus helicase P143 and binding to ssDNA. LEF-3 appears to interact with itself as a homo-oligomer, although the details of this oligomeric structure are not yet known. To examine LEF-3-LEF-3 interactions, a bimolecular fluorescent protein complementation assay was used. Pairs of recombinant plasmids expressing full-length LEF-3 fused to one of two complementary fragments (V1 or V2) of a variant of yellow fluorescent protein named 'Venus' were constructed. Plasmids expressing fusions with complementary fragments of Venus were co-transfected into Sf21 cells and analysed by fluorescence microscopy. Co-transfected plasmids expressing full-length V1-LEF-3 and V2-LEF-3 showed positive fluorescence, confirming the formation of homo-oligomers. A series of truncated V1/V2-LEF-3 fusions was constructed and used to investigate interactions with one another as well as with full-length LEF-3.

  13. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    PubMed

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  14. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  15. Mitogenic signaling pathways of growth factors can be distinguished by the involvement of pertussis toxin-sensitive guanosine triphosphate-binding protein and of protein kinase C.

    PubMed Central

    Nishizawa, N; Okano, Y; Chatani, Y; Amano, F; Tanaka, E; Nomoto, H; Nozawa, Y; Kohno, M

    1990-01-01

    We have examined the possible involvements of pertussis toxin (PT)-sensitive guanosine triphosphate (GTP)-binding protein (Gp) and protein kinase C (PKC) in the mitogenic signaling pathways of various growth factors by the use of PT-pretreated and/or 12-O-tetradecanoyl phorbol-13-acetate (TPA)-pretreated mouse fibroblasts. Effects of PT pretreatment (inactivation of PT-sensitive Gp) and TPA pretreatment (depletion of PKC) on mitogen-induced DNA synthesis varied significantly and systematically in response to growth factors: mitogenic responses of cells to thrombin, bombesin, and bradykinin were almost completely abolished both in PT- and TPA-pretreated cells; responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and vanadate were reduced to approximately 50% both in PT- and TPA-pretreated cells compared with native cells; response to basic fibroblast growth factor (bFGF) was not affected in PT-pretreated cells but was inhibited to some extent in TPA-pretreated cells. Thus, growth factors examined have been classified into three groups with regard to the involvements of PT-sensitive Gp and PKC in their signal transduction pathways. Binding of each growth factor to its receptor was not affected significantly by pretreatment of cells with PT or TPA. Inhibitory effects of PT and TPA pretreatment on each mitogen-induced DNA synthesis were not additive, suggesting that the functions of PT-sensitive Gp and PKC lie on an identical signal transduction pathway. Although all three groups of mitogens activated PKC, signaling of each growth factor depends to a varying extent on the function of PKC. Our results indicate that a single peptide growth factor such as EGF, PDGF, or bFGF acts through multiple signaling pathways to induce cell proliferation. Images PMID:2129194

  16. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors.

    PubMed

    Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin

    2016-07-05

    The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.

  17. TRUSS, a Novel Tumor Necrosis Factor Receptor 1 Scaffolding Protein That Mediates Activation of the Transcription Factor NF-κB

    PubMed Central

    Soond, Surinder M.; Terry, Jennifer L.; Colbert, Jeff D.; Riches, David W. H.

    2003-01-01

    We describe the cloning and characterization of tumor necrosis factor receptor (TNF-R)-associated ubiquitous scaffolding and signaling protein (TRUSS), a novel TNF-R1-interacting protein of 90.7 kDa. TRUSS mRNA was ubiquitously expressed in mouse tissues but was enriched in heart, liver, and testis. Coimmunoprecipitation experiments showed that TRUSS was constitutively associated with unligated TNF-R1 and that the complex was relatively insensitive to stimulation with TNF-α. Deletion mutagenesis of TNF-R1 indicated that TRUSS interacts with both the membrane-proximal region and the death domain of TNF-R1. In addition, the N-terminal region of TRUSS (residues 1 to 440) contains sequences that permit association with the cytoplasmic domain of TNF-R1. Transient overexpression of TRUSS activated NF-κB and increased NF-κB activation in response to ligation of TNF-R1. In contrast, a COOH-terminal-deletion mutant of TRUSS (TRUSS1-723) was found to inhibit NF-κB activation by TNF-α. Coprecipitation and coimmunoprecipitation assays revealed that TRUSS can interact with TRADD, TRAF2, and components of the IKK complex. These findings suggest that TRUSS may serve as a scaffolding protein that interacts with TNF-R1 signaling proteins and may link TNF-R1 to the activation of IKK. PMID:14585990

  18. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder☆

    PubMed Central

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. PMID:25206732

  19. Regulator of G protein signaling 4 is a novel target of GATA-6 transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yonggang; Li, Fang; Xiao, Xiao

    GATA transcription factors regulate an array of genes important in cell proliferation and differentiation. Here we report the identification of regulator of G protein signaling 4 (RGS4) as a novel target for GATA-6 transcription factor. Although three sites (a, b, c) within the proximal region of rabbit RGS4 promoter for GATA transcription factors were predicted by bioinformatics analysis, only GATA-a site (16 bp from the core TATA box) is essential for RGS4 transcriptional regulation. RT-PCR analysis demonstrated that only GATA-6 was highly expressed in rabbit colonic smooth muscle cells but GATA-4/6 were expressed in cardiac myocytes and GATA-1/2/3 expressed inmore » blood cells. Adenovirus-mediated expression of GATA-6 but not GATA-1 significantly increased the constitutive and IL-1β-induced mRNA expression of the endogenous RGS4 in colonic smooth muscle cells. IL-1β stimulation induced GATA-6 nuclear translocation and increased GATA-6 binding to RGS4 promoter. These data suggest that GATA factor could affect G protein signaling through regulating RGS4 expression, and GATA signaling may develop as a future therapeutic target for RGS4-related diseases. - Highlights: • GATA-6 is highly expressed in colonic smooth muscle cells. • RGS4 is a novel target for GATA-6 transcription factor. • GATA-a response element is essential to regulate the core promoter of RGS4. • GATA-6 regulates IL-1β-induced RGS4 upregulation.« less

  20. Soybean TCP transcription factors: Evolution, classification, protein interaction and stress and hormone responsiveness.

    PubMed

    Feng, Zhi-Juan; Xu, Sheng-Chun; Liu, Na; Zhang, Gu-Wen; Hu, Qi-Zan; Gong, Ya-Ming

    2018-06-01

    TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, a family of plant-specific proteins, play crucial roles in plant growth and development and stress response. However, systematical information is unknown regarding the TCP gene family in soybean. In the present study, a total of 54 GmTCPs were identified in soybean, which were grouped into 11 groups with the typical TCP conserved domains. Phylogenetic relationship, protein motif and gene structure analyses distinguished the GmTCPs into two homology classes: Class I and Class II. Class II was then differentiated into two subclasses: CIN and CYC/TB1. Unique cis-element number and composition existed in the promoter regions which might be involved in the gene transcriptional regulation of different GmTCPs. Tissue expression analysis demonstrated the diverse spatiotemporal expression profiles of GmTCPs. Furthermore, the interaction protein of one previously functionally unknown TCP protein-GmTCP8 was investigated. Yeast two-hybrid assay showed the interaction between GmTCP8 and an abscisic acid receptor (GmPYL10). QRT-PCR assays indicated the distinct expression profiles of GmTCPs in response to abiotic stresses (heat, drought and salt) and stress-related signals (abscisic acid, brassinolide, salicylicacid and methyl jasmonate). These results will facilitate to uncover the possible roles of GmTCPs under abiotic stress and hormone signal responses in soybean. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Localization of complement factor H gene expression and protein distribution in the mouse outer retina

    PubMed Central

    Smit-McBride, Zeljka; Oltjen, Sharon L.; Radu, Roxana A.; Estep, Jason; Nguyen, Anthony T.; Gong, Qizhi

    2015-01-01

    Purpose To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina. Methods Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC. Results Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh−/− eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh−/− mice. Greatly reduced Cfh protein immunohistological signals in the Cfh−/− eyes also supported the specificity of the Cfh protein distribution results. Conclusions Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC. PMID:25684976

  2. Regulatory role of tumor necrosis factor receptor-associated factor 6 in breast cancer by activating the protein kinase B/glycogen synthase kinase 3β signaling pathway.

    PubMed

    Shen, Hongyu; Li, Liangpeng; Yang, Sujin; Wang, Dandan; Zhou, Siying; Chen, Xiu; Tang, Jinhai

    2017-08-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an endogenous adaptor of innate and adaptive immune responses, and serves a crucial role in tumor necrosis factor receptor and toll‑like/interleukin‑1 receptor signaling. Although studies have demonstrated that TRAF6 has oncogenic activity, its potential contributions to breast cancer in human remains largely uninvestigated. The present study examined the expression levels and function of TRAF6 in breast carcinoma (n=32) and adjacent healthy (n=25) tissue samples. Compared with adjacent healthy tissues, TRAF6 protein expression levels were significantly upregulated in breast cancer tissues. Reverse transcription‑quantitative polymerase chain reaction analysis revealed a significant upregulation of the cellular proliferative marker Ki‑67 and proliferation cell nuclear antigen expression levels in breast carcinoma specimens. Furthermore, protein expression levels of the accessory molecule, transforming growth factor β‑activated kinase 1 (TAK1), were significantly increased in breast cancer patients, as detected by western blot analysis. As determined by MTT assay, TRAF6 exerted profoundly proliferative effects in the MCF‑7 breast cancer cell line; however, these detrimental effects were ameliorated by TAK1 inhibition. Notably, protein kinase B (AKT)/glycogen synthase kinase (GSK)3β phosphorylation levels were markedly upregulated in breast cancer samples, compared with adjacent healthy tissues. In conclusion, an altered TRAF6‑TAK1 axis and its corresponding downstream AKT/GSK3β signaling molecules may contribute to breast cancer progression. Therefore, TRAF6 may represent a potential therapeutic target for the treatment of breast cancer.

  3. Continuous prophylaxis with recombinant factor IX Fc fusion protein and conventional recombinant factor IX products: comparisons of efficacy and weekly factor consumption.

    PubMed

    Iorio, Alfonso; Krishnan, Sangeeta; Myrén, Karl-Johan; Lethagen, Stefan; McCormick, Nora; Yermakov, Sander; Karner, Paul

    2017-04-01

    Continuous prophylaxis for patients with hemophilia B requires frequent injections that are burdensome and that may lead to suboptimal adherence and outcomes. Hence, therapies requiring less-frequent injections are needed. In the absence of head-to-head comparisons, this study compared the first extended-half-life-recombinant factor IX (rFIX) product-recombinant factor IX Fc fusion protein (rFIXFc)-with conventional rFIX products based on annualized bleed rates (ABRs) and factor consumption reported in studies of continuous prophylaxis. This study compared ABRs and weekly factor consumption rates in clinical studies of continuous prophylaxis treatment with rFIXFc and conventional rFIX products (identified by systematic literature review) in previously-treated adolescents and adults with moderate-to-severe hemophilia B. Meta-analysis was used to pool ABRs reported for conventional rFIX products for comparison. Comparisons of weekly factor consumption were based on the mean, reported or estimated from the mean dose per injection. Five conventional rFIX studies (injections 1 to >3 times/week) met the criteria for comparison with once-weekly rFIXFc reported by the B-LONG study. The pooled mean ABR for conventional rFIX was slightly higher than but comparable to rFIXFc (difference=0.71; p = 0.210). Weekly factor consumption was significantly lower with rFIXFc than in conventional rFIX studies (difference in means = 42.8-74.5 IU/kg/week [93-161%], p < 0.001). Comparisons of clinical study results suggest weekly injections with rFIXFc result in similar bleeding rates and significantly lower weekly factor consumption compared with more-frequently-injected conventional rFIX products. The real-world effectiveness of rFIXFc may be higher based on results from a model of the impact of simulated differences in adherence.

  4. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins

    PubMed Central

    Crisci, Angela; Raleff, Flore; Bagdiul, Ivona; Raabe, Monika; Urlaub, Henning; Rain, Jean-Christophe; Krämer, Angela

    2015-01-01

    Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3′ splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein–protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions. PMID:26420826

  5. RNA-binding Protein Immunoprecipitation (RIP) to Examine AUF1 Binding to Senescence-Associated Secretory Phenotype (SASP) Factor mRNA

    PubMed Central

    Alspach, Elise; Stewart, Sheila A.

    2016-01-01

    Immunoprecipitation and subsequent isolation of nucleic acids allows for the investigation of protein:nucleic acid interactions. RNA-binding protein immunoprecipitation (RIP) is used for the analysis of protein interactions with mRNA. Combining RIP with quantitative real-time PCR (qRT-PCR) further enhances the RIP technique by allowing for the quantitative assessment of RNA-binding protein interactions with their target mRNAs, and how these interactions change in different cellular settings. Here, we describe the immunoprecipitation of the RNA-binding protein AUF1 with several different factors associated with the senescence-associated secretory phenotype (SASP) (Alspach and Stewart, 2013), specifically IL6 and IL8. This protocol was originally published in Alspach et al. (2014). PMID:27453911

  6. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening.

    PubMed

    Cardona-Correa, Albin; Rios-Velazquez, Carlos

    2016-05-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein‑protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting‑phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase‑A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF‑interacting peptides. With a minimum concentration of LF for interaction at 1 µg/ml, the T7PD isolated pepsin A3 pre‑protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents.

  7. Non-covalent Small-Molecule Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and Their Potential for Targeting Central Nervous System Diseases.

    PubMed

    Pallesen, Jakob S; Tran, Kim T; Bach, Anders

    2018-05-29

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has a protective effect against oxidative stress and plays a major role in inflammation and central nervous system (CNS) diseases. Inhibition of the protein-protein interaction (PPI) between Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), leads to translocation of Nrf2 from the cytosol to the nucleus and expression of detoxifying antioxidant enzymes. To date, several non-covalent small-molecule Keap1-Nrf2 inhibitors have been identified; however, many of them contain carboxylic acids and are rather large in size, which likely prevents or decreases CNS permeability. This Perspective describes current small-molecule Keap1-Nrf2 inhibitors with experimental evidence for the ability to inhibit the Keap1-Nrf2 interaction by binding to Keap1 in a non-covalent manner. Binding data, biostructural studies, and biological activity are summarized for the inhibitors, and their potential as CNS tool compounds is discussed by analyzing physicochemical properties, including CNS multiparameter optimization (MPO) scoring algorithms. Finally, several strategies for identifying CNS-targeting Keap1 inhibitors are described.

  8. Endometrial proteins: a reappraisal.

    PubMed

    Seppälä, M; Julkunen, M; Riittinen, L; Koistinen, R

    1992-06-01

    Uterine factors influence reproduction at the macro-anatomy level, and the effects of hormonal steroids on endometrial morphology are well recognized in the histopathological diagnosis of dysfunctional bleeding and infertility. During the past decade, attention has been paid to endometrial protein synthesis and secretion with respect to endocrine stimuli and implantation, and to the paracrine/autocrine effects of endometrial peptide growth factors, their binding proteins and other factors. The emphasis of this presentation is on protein secretion of the secretory endometrium, in which progesterone plays a pivotal role. Insulin-like growth factors have receptors on the endometrium, and IGF-binding proteins, stimulated by progesterone, modulate the effects of IGFs locally. Also other protein products of the secretory endometrium have been reviewed in this communication, with special emphasis on studies of a progesterone-associated endometrial protein which has many names in the literature, such as PEP, PP14, alpha 2-PEG and AUP. Extensive studies are ongoing in many laboratories to elucidate the regulation, function, interplay at tissue and cellular levels, and clinical significance of these proteins.

  9. A peptide fragment of ependymin neurotrophic factor uses protein kinase C and the mitogen-activated protein kinase pathway to activate c-Jun N-terminal kinase and a functional AP-1 containing c-Jun and c-Fos proteins in mouse NB2a cells.

    PubMed

    Adams, David S; Hasson, Brendan; Boyer-Boiteau, Anne; El-Khishin, Adam; Shashoua, Victor E

    2003-05-01

    Ependymin (EPN) is a goldfish brain neurotrophic factor previously shown to function in a variety of cellular events related to long-term memory formation and neuronal regeneration. CMX-8933, an 8-amino-acid synthetic peptide fragment of EPN, was designed for aiding an investigation of the biological properties of this glycoprotein. We reported from previous studies that treatment of mouse neuroblastoma (NB2a) cultures with CMX-8933 promotes activation of transcription factor AP-1, a characteristic previously associated with the following full-length neurotrophic factors: nerve growth factor, neurotropin-3, and brain-derived neurotrophic factor. The CMX-8933-activated AP-1 specifically bound an AP-1 consensus probe and appeared to contain c-Jun and c-Fos protein components in antibody supershift experiments. Because AP-1 influences a variety of positive and negative cellular processes, determined in part by its exact protein composition and mechanism of activation, we extended these initial AP-1 observations in the current study to confirm the identity of the CMX-8933-activated c-Jun and c-Fos components. CMX-8933 increases the enzymatic activity of c-Jun N-terminal kinase (JNK), increases the phosphorylation of JNK and c-Jun proteins, and increases the cellular titers of c-Jun and c-Fos mRNAs. Furthermore, the AP-1 activated by CMX-8933 is functional, insofar as it transactivates both synthetic and natural AP-1-dependent reporter plasmids. Inhibition studies indicate that activation of the 8933-induced AP-1 occurs via the mitogen-activated protein kinase pathway. These data are in agreement with the recently proposed model for the conversion of short- to long-term synaptic plasticity and memory, in which a JNK-activated transcription factor AP-1, containing c-Jun and c-Fos components, functions at the top of a hierarchy of transcription factors known to regulate long-term neural plasticity. Copyright 2003 Wiley-Liss, Inc.

  10. Monocyte Chemotactic Protein-1 (MCP-1) and Growth Factors Called into Question as Markers of Prolonged Psychosocial Stress

    PubMed Central

    Jonsdottir, Ingibjörg H.; Hägg, Daniel A.; Glise, Kristina; Ekman, Rolf

    2009-01-01

    Background Psychosocial stress is becoming a major contributor to increased mental ill-health and sick leave in many countries. Valid markers of chronic stress would be valuable for diagnostic and prognostic purposes. A recent study suggested monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as markers of chronic stress. We aimed to confirm these potential biomarkers of prolonged psychosocial stress in female patients. Methodology/Principal Findings Circulating levels of MCP-1, EGF and VEGF, along with several other cytokines, were measured in plasma from 42 female patients suffering from exhaustion due to prolonged psychosocial stress and 42 control subjects, using a protein biochip immunoassay. There were no significant differences between patients and controls in any of the cytokines or growth factors analyzed. Furthermore, when using a different protein bioassay and reanalyzing MCP-1 and VEGF in the same samples, markedly different levels were obtained. To further explore if inflammation is present in patients with exhaustion, the classical inflammatory marker C-reactive protein (CRP) was measured in another group of patients (n = 89) and controls (n = 88) showing a small but significant increase of CRP levels in the patients. Conclusions/Significance MCP-1, EGF and VEGF may not be suitable markers of prolonged psychosocial stress as previously suggested. Furthermore, significant differences were obtained when using two different protein assays measuring the same samples, indicating that comparing studies where different analytic techniques have been used might be difficult. Increased levels of CRP indicate that low-grade inflammation might be present in patients with exhaustion due to prolonged stress exposure but this inflammation does not seem to be reflected by increase in circulating MCP-1 or other cytokines measured. PMID:19888340

  11. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    PubMed

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  12. Pathogenic Leptospira Species Acquire Factor H and Vitronectin via the Surface Protein LcpA

    PubMed Central

    da Silva, Ludmila Bezerra; Miragaia, Lidia dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima

    2014-01-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn2+-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. PMID:25534939

  13. Perspectives on Subcutaneous Route of Administration as an Immunogenicity Risk Factor for Therapeutic Proteins.

    PubMed

    Hamuro, Lora; Kijanka, Grzegorz; Kinderman, Francis; Kropshofer, Harald; Bu, De-Xiu; Zepeda, Monica; Jawa, Vibha

    2017-10-01

    An increasing number of therapeutic proteins are being developed for delivery through the subcutaneous (SC) route of administration. Relative to intravenous (IV) administration, the SC route offers more convenience to patients, flexibility in dosing, and potential to reduce health care costs. There is a perception that SC administration can pose a higher immunogenicity risk than IV administration for a given protein. To evaluate whether there is a difference in therapeutic protein immunogenicity associated with administration routes, a more detailed understanding of the interactions with the immune system by each route is needed. Few approved therapeutic proteins have available clinical immunogenicity data sets in the public domain that represent both IV and SC administration routes. This has prevented a direct comparison of the 2 routes of administration across a large sample size. Of the 6 marketed products where SC and IV route-related incidences of anti-drug antibody (ADA) were available, 4 were associated with higher immunogenicity incidence with SC. In other cases, there was no apparent difference between the SC and IV routes. Overall, the ADA incidence was low (<15%) with no impact on safety or efficacy. The challenges associated with identifying specific risk factors unique to SC administration are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA.

    PubMed

    da Silva, Ludmila Bezerra; Miragaia, Lidia Dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima; Barbosa, Angela Silva

    2015-03-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn(2+)-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Role of activator protein-1 on the effect of arginine-glycine-aspartic acid containing peptides on transforming growth factor-beta1 promoter activity.

    PubMed

    Ruiz-Torres, M P; Perez-Rivero, G; Diez-Marques, M L; Griera, M; Ortega, R; Rodriguez-Puyol, M; Rodríguez-Puyol, D

    2007-01-01

    While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.

  16. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Dubin, Paul L.; Kaltashov, Igor A.

    2017-04-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions.

  17. The splicing factor U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeonghee; Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr

    Highlights: •Identification of U2AF65 as a novel TRF1-interacting protein. •U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. •U2AF65 interferes with the interaction between TRF1 and Fbx4. •U2AF65 represents a new route for modulating TRF1 function at telomeres. -- Abstract: The human telomeric protein TRF1 is a component of the six-subunit protein complex shelterin, which provides telomere protection by organizing the telomere into a high-order structure. TRF1 functions as a negative regulator of telomere length by controlling the access of telomerase to telomeres. Thus, the cellular abundance of TRF1 at telomeres should be maintained and tightly regulated to ensure propermore » telomere function. Here, we identify U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65), an essential pre-mRNA splicing factor, as a novel TRF1-interacting protein. U2AF65 interacts with TRF1 in vitro and in vivo and is capable of stabilizing TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. We also found that U2AF65 interferes with the interaction between TRF1 and Fbx4, an E3 ubiquitin ligase for TRF1. Depletion of endogenous U2AF65 expression by short interfering RNA (siRNA) reduced the stability of endogenous TRF1 whereas overexpression of U2AF65 significantly extended the half-life of TRF1. These findings demonstrate that U2AF65 plays a critical role in regulating the level of TRF1 through physical interaction and ubiquitin-mediated proteolysis. Hence, U2AF65 represents a new route for modulating TRF1 function at telomeres.« less

  18. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C-dependent pathway.

    PubMed

    Kalra, Dinesh; Sivasubramanian, Natarajan; Mann, Douglas L

    2002-05-07

    Previous studies suggest that angiotensin II (Ang II) upregulates the expression of tumor necrosis factor (TNF) in nonmyocyte cell types; however, the effect of Ang II on TNF expression in the adult mammalian heart is not known. To determine whether Ang II was sufficient to provoke TNF biosynthesis in the adult heart, we examined the effects of Ang II in isolated buffer-perfused Langendorff feline hearts. Ang II (10(-7) mol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF mRNA and protein biosynthesis in the heart as well as in cultured adult cardiac myocytes. The effects of Ang II on myocardial TNF mRNA and protein synthesis were mediated through the angiotensin type 1 receptor (AT1R), insofar as an AT1R antagonist (AT1a) blocked the effects of Ang II, whereas an angiotensin type 2 receptor (AT2R) antagonist (AT2a) had no effect. Stimulation with Ang II led to the activation of nuclear factor-kappaB and activator protein-1 (AP-1), two transcription factors that are important for TNF gene expression. Nuclear factor-kappaB activation was accompanied by phosphorylation of IkappaBalpha on serine 32 as well as degradation of IkappaBalpha, suggesting that the effects of Ang II were mediated through an IkappaBalpha-dependent pathway. The important role of protein kinase C (PKC) was suggested by studies in which a phorbol ester triggered TNF biosynthesis, and a PKC inhibitor abrogated Ang II-induced TNF biosynthesis. These studies suggest that Ang II provokes TNF biosynthesis in the adult mammalian heart through a PKC-dependent pathway.

  19. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    PubMed Central

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  20. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  1. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    PubMed

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms.

    PubMed

    López-Ochoa, Jaqueline; Montes-García, J Fernando; Vázquez, Candelario; Sánchez-Alonso, Patricia; Pérez-Márquez, Victor M; Blackall, Patrick J; Vaca, Sergio; Negrete-Abascal, Erasmo

    2017-09-01

    Gallibacterium, which is a bacterial pathogen in chickens, can form biofilms. Amyloid proteins present in biofilms bind Congo red dye. The aim of this study was to characterize the cell-surface amyloid-like protein expressed in biofilms formed by Gallibacterium strains and determine the relationship between this protein and curli, which is an amyloid protein that is commonly expressed by members of the Enterobacteriaceae family. The presence of amyloid-like proteins in outer membrane protein samples from three strains of G. anatis and one strain of Gallibacterium genomospecies 2 was evaluated. A protein identified as elongation factor-Tu (EF-Tu) by mass spectrometric analysis and in silico analysis was obtained from the G. anatis strain F149 T . This protein bound Congo red dye, cross-reacted with anti-curli polyclonal serum, exhibited polymerizing properties and was present in biofilms. This protein also reacted with pooled serum from chickens that were experimentally infected with G. anatis, indicating the in vivo immunogenicity of this protein. The recombinant EF-Tu purified protein, which was prepared from G. anatis 12656-12, polymerizes under in vitro conditions, forms filaments and interacts with fibronectin and fibrinogen, all of which suggest that this protein functions as an adhesin. In summary, EF-Tu from G. anatis presents amyloid characteristics, is present in biofilms and could be relevant for the pathogenesis of G. anatis.

  3. Factors influencing protein tyrosine nitration – structure-based predictive models

    PubMed Central

    Bayden, Alexander S.; Yakovlev, Vasily A.; Graves, Paul R.; Mikkelsen, Ross B.; Kellogg, Glen E.

    2010-01-01

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged sidechain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines where there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). PMID:21172423

  4. Prognostic significance of surfactant protein A, surfactant protein D, Clara cell protein 16, S100 protein, trefoil factor 3, and prostatic secretory protein 94 in idiopathic pulmonary fibrosis, sarcoidosis, and chronic pulmonary obstructive disease.

    PubMed

    Doubková, Martina; Karpíšek, Michal; Mazoch, Jiri; Skřičková, Jana; Doubek, Michael

    2016-10-07

    Identification of serum and bronchoalveolar lavage fluid (BALF) biomarkers may facilitate diagnosis and prognostication in various lung disorders. Serum and BALF levels of surfactant protein A (SP-A), surfactant protein D (SP-D), Clara cell protein 16 (CC16), S100 protein, trefoil factor 3 (TFF3), and prostatic secretory protein 94 (PSP94) were evaluated in 94 consecutive patients (idiopathic pulmonary fibrosis (IPF; n=18), sarcoidosis (n=25), chronic obstructive pulmonary disease (COPD; n=51)), and in 155 healthy controls. Biomarkers were measured at diagnosis and compared with disease characteristics. Both uniparametric and multiparametric analyses were used. Seven significant correlations were found: 1) BALF PSP94 level correlated with prognosis of sarcoidosis (P=0.035); 2) BALF SP-D level with pulmonary functions in IPF (P=0.032); 3) BALF SP-D and TFF3 with IPF mortality (P=0.049 and 0.017, respectively); 4) serum TFF3 level with COPD mortality (P=0.006,); 5) serum SP-A with pulmonary functions impairment in IPF (P=0.011); 6) serum SP-D level was associated with HRCT interstitial score in IPF (P=0.0346); and 7) serum SP-A was associated with staging of COPD according to spirometry (P<0.001). Moreover, our analysis showed that some biomarker levels differed significantly among the diseases: 1) BALF SP-D level differed between sarcoidosis and IPF; 2) serum SP-A level differed among IPF, sarcoidosis, COPD and was also different from healthy controls; 3) serum S100A6, S100A11 levels differed among IPF, sarcoidosis, COPD from healthy controls 4) serum SP-D, CC16, TFF-3 levels distinguished IPF patients from healthy controls; and 5) serum CC16, TFF3, PSP94 distinguished COPD patients from healthy controls. Our study shows that some of selected biomarkers should have prognostic value in the analysed lung disorders. On the other hand, these biomarkers do not appear to be unequivocally suitable for differential diagnosis of these disorders.

  5. Peptide affinity analysis of proteins that bind to an unstructured NH2-terminal region of the osmoprotective transcription factor NFAT5

    PubMed Central

    DuMond, Jenna F.; Ramkissoon, Kevin; Zhang, Xue; Izumi, Yuichiro; Wang, Xujing; Eguchi, Koji; Gao, Shouguo; Mukoyama, Masashi; Ferraris, Joan D.

    2016-01-01

    NFAT5 is an osmoregulated transcription factor that particularly increases expression of genes involved in protection against hypertonicity. Transcription factors often contain unstructured regions that bind co-regulatory proteins that are crucial for their function. The NH2-terminal region of NFAT5 contains regions predicted to be intrinsically disordered. We used peptide aptamer-based affinity chromatography coupled with mass spectrometry to identify protein preys pulled down by one or more overlapping 20 amino acid peptide baits within a predicted NH2-terminal unstructured region of NFAT5. We identify a total of 467 unique protein preys that associate with at least one NH2-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from HEK293 cells treated with elevated, normal, or reduced NaCl concentrations. Different sets of proteins are pulled down from nuclear vs. cytoplasmic extracts. We used GeneCards to ascertain known functions of the protein preys. The protein preys include many that were previously known, but also many novel ones. Consideration of the novel ones suggests many aspects of NFAT5 regulation, interaction and function that were not previously appreciated, for example, hypertonicity inhibits NFAT5 by sumoylating it and the NFAT5 protein preys include components of the CHTOP complex that desumoylate proteins, an action that should contribute to activation of NFAT5. PMID:26757802

  6. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development.

    PubMed

    Conover, Cheryl A; Bale, Laurie K; Overgaard, Michael T; Johnstone, Edward W; Laursen, Ulla H; Füchtbauer, Ernst-Martin; Oxvig, Claus; van Deursen, Jan

    2004-03-01

    Pregnancy-associated plasma protein A (PAPPA) is a metzincin superfamily metalloproteinase in the insulin-like growth factor (IGF) system. PAPPA increases IGF bioavailability and mitogenic effectiveness in vitro through regulated cleavage of IGF-binding protein 4 (IGFBP4). To determine its function in vivo, we generated PAPPA-null mice by gene targeting. Mice homozygous for targeted disruption of the PAPPA gene were viable but 60% the size of wild-type littermates at birth. The impact of the mutation was exerted during the early embryonic period prior to organogenesis, resulting in proportional dwarfism. PAPPA, IGF2 and IGFBP4 transcripts co-localized in wild-type embryos, and expression of IGF2 and IGFBP4 mRNA was not altered in PAPPA-deficient embryos. However, IGFBP4 proteolytic activity was completely lacking in fibroblasts derived from PAPPA-deficient embryos, and IGFBP4 effectively inhibited IGF-stimulated mitogenesis in these cells. These results provide the first direct evidence that PAPPA is an essential growth regulatory factor in vivo, and suggest a novel mechanism for regulated IGF bioavailability during early fetal development.

  7. Survey of rice proteins interacting with OsFCA and OsFY proteins which are homologous to the Arabidopsis flowering time proteins, FCA and FY.

    PubMed

    Jang, Yun Hee; Park, Hyo-Young; Kim, Soon-Kap; Lee, Jeong Hwan; Suh, Mi Chung; Chung, Young Soo; Paek, Kyung-Hee; Kim, Jeong-Kook

    2009-08-01

    The FCA protein is involved in controlling flowering time and plays more general roles in RNA-mediated chromatin silencing in Arabidopsis. It contains two RNA-binding domains and a WW domain. The FCA protein interacts with FY, a polyadenylation factor, via its WW domain. We previously characterized a rice gene, OsFCA, which was homologous to FCA. Here, we found that the OsFCA protein could interact through its WW domain with the following proteins: OsFY, a protein containing a CID domain present in RNA-processing factors such as Pcf11 and Nrd1; a protein similar to splicing factor SF1; a protein similar to FUSE splicing factor; and OsMADS8. The FY protein is associated with the 3' end processing machinery in Arabidopsis. Thus, we examined interactions between OsFY and the rice homologs (OsCstF-50, -64 and -77) of the AtCstF-50, -64 and -77 proteins. We found that OsFY could bind OsCstF50, whereas the OsCstF77 protein could bridge the interaction between OsCstF50 and OsCstF64. Taken together, our data suggest that OsFCA could interact with several proteins other than OsFY through its WW domain and may play several roles in rice.

  8. Regulation of myeloid leukemia factor-1 interacting protein (MLF1IP) expression in glioblastoma.

    PubMed

    Hanissian, Silva H; Teng, Bin; Akbar, Umar; Janjetovic, Zorica; Zhou, Qihong; Duntsch, Christopher; Robertson, Jon H

    2005-06-14

    The myelodysplasia/myeloid leukemia factor 1-interacting protein MLF1IP is a novel gene which encodes for a putative transcriptional repressor. It is localized to human chromosome 4q35.1 and is expressed in both the nuclei and cytoplasm of cells. Northern and Western blot analyses have revealed MLF1IP to be present at very low amounts in normal brain tissues, whereas a number of human and rat glioblastoma (GBM) cell lines demonstrated a high level expression of the MLF1IP protein. Immunohistochemical analysis of rat F98 and C6 GBM tumor models showed that MLF1IP was highly expressed in the tumor core where it was co-localized with MLF1 and nestin. Moreover, MLF1IP expression was elevated in the contralateral brain where no tumor cells were detected. These observations, together with previous data demonstrating a role for MLF1IP in erythroleukemias, suggest a possible function for this protein in glioma pathogenesis and potentially in other types of malignancies.

  9. An ontology-based search engine for protein-protein interactions.

    PubMed

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  10. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    PubMed

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  11. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments.

    PubMed Central

    Goldsmith, G H; Saito, H; Ratnoff, O S

    1978-01-01

    Activation of plasminogen through surface-mediated reactions is well recognized. In the presence of kaolin, purified Hageman factor (Factor XII) changed plasminogen to plasmin, as assayed upon a synthetic amide substrate and by fibrinolysis. Kinetic studies suggested an enzymatic action of Hageman factor upon its substrate, plasminogen. Hageman factor fragments, at a protein concentration equivalent to whole Hageman factor, activated plasminogen to a lesser extent. These protein preparations were not contaminated with other agents implicated in surface-mediated fibrinolysis. Diisopropyl fluorophosphate treatment of plasminogen did not inhibit its activation by Hageman factor. These studies indicate that Hageman factor has a hitherto unsuspected function, the direct activation of plasminogen. PMID:659637

  12. Specificity Protein (Sp) Transcription Factors and Metformin Regulate Expression of the Long Non-coding RNA HULC

    EPA Science Inventory

    There is evidence that specificity protein 1 (Sp1) transcription factor (TF) regulates expression of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) cells. RNA interference (RNAi) studies showed that among several lncRNAs expressed in HepG2, SNU-449 and SK-Hep-1...

  13. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    The effects of acute stressor exposure on proximal (growth hormone; GH) and distal (insulin-like growth factor-I; IGF-I and IGF-binding proteins) components of the somatotropic axis are poorly understood in finfish. We exposed rainbow trout (Oncorhynchus mykiss) to a 5-minute handling disturbance to...

  14. In vitro differentiation of embryonic stem cells into hepatocytes induced by fibroblast growth factors and bone morphological protein-4.

    PubMed

    Zhou, Qing-Jun; Huang, Yan-Dan; Xiang, Li-Xin; Shao, Jian-Zhong; Zhou, Guo-Shun; Yao, Hang; Dai, Li-Cheng; Lu, Yong-Liang

    2007-01-01

    The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.

  15. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  16. Mitogenicity of M5 protein extracted from Streptococcus pyogenes cells is due to streptococcal pyrogenic exotoxin C and mitogenic factor MF.

    PubMed Central

    Schmidt, K H; Gerlach, D; Wollweber, L; Reichardt, W; Mann, K; Ozegowski, J H; Fleischer, B

    1995-01-01

    M proteins of Streptococcus pyogenes are virulence factors which impede phagocytosis, bind to many plasma proteins, and induce formation of cross-reactive autoimmune antibodies. Recently, it has been reported that some M proteins, extracted with pepsin from streptococci (pep M), are superantigens. One of these, pep M5, was investigated in detail and was shown to stimulate human T cells bearing V beta 2, V beta 4, and V beta 8. In the present study, we extracted and purified M5 protein by different biochemical methods from two M type 5 group A streptococcal strains. The crude extracts were fractionated by affinity chromatography and ion-exchange chromatography. All fractions were tested in parallel for M protein by immunoblotting and for T-cell-stimulating activity. Although several crude preparations of M5 protein were associated with mitogenicity for V beta 2 and V beta 8 T cells, the M5 proteins, irrespective of the extraction method, could be purified to the extent that they were no longer mitogenic. The mitogenic activity was not destroyed during the purification procedures but was found in fractions separated from M protein. In these fractions, streptococcal pyrogenic exotoxin C and mitogenic factor MF could be detected by protein blotting and enzyme-linked immunosorbent assay. Moreover, anti-M protein sera did not inhibit the mitogenic activity of crude extracts, but antisera which contained anti-streptococcal pyrogenic exotoxin C antibodies showed inhibition. The inability of M5 protein to stimulate T cells was confirmed with recombinant pep M5 produced in Escherichia coli. Our data strongly suggest that the mitogenic activity in M protein preparations is caused by traces of streptococcal superantigens different from M protein. PMID:7591107

  17. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  18. Comparative molecular dynamics simulation studies for determining factors contributing to the thermostability of chemotaxis protein "CheY".

    PubMed

    Paul, Manish; Hazra, Mousumi; Barman, Arghya; Hazra, Saugata

    2014-01-01

    Comparative molecular dynamics simulations of chemotaxis protein "CheY" from thermophilic origin Thermotoga maritima and its mesophilic counterpart Salmonella enterica have been performed for 10 ns each at 300 and 350 K, and 20 ns each at 400 and 450 K. The trajectories were analyzed in terms of different factors like root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent accessible surface area, H-bonds, salt bridge content, and protein-solvent interactions which indicate distinct differences between the two of them. The two proteins also follow dissimilar unfolding pathways. The overall flexibility calculated by the trace of the diagonalized covariance matrix displays similar flexibility of both the proteins near their optimum growth temperatures. However, at higher temperatures mesophilic protein shows increased overall flexibility than its thermophilic counterpart. Principal component analysis also indicates that the essential subspaces explored by the simulations of two proteins at different temperatures are nonoverlapping and they show significantly different directions of motion. However, there are significant overlaps within the trajectories and similar direction of motions are observed for both proteins at 300 K. Overall, the mesophilic protein leads to increased conformational sampling of the phase space than its thermophilic counterpart. This is the first ever study of thermostability of CheY protein homologs by using protein dynamism as a main impact. Our study might be used as a model for studying the molecular basis of thermostability of two homologous proteins from two organisms living at different temperatures with less visible differences.

  19. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.

    PubMed

    Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia

    2017-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development. © 2016 John Wiley & Sons Ltd.

  20. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development.

    PubMed

    Reinhold, Heike; Soyk, Sebastian; Simková, Klára; Hostettler, Carmen; Marafino, John; Mainiero, Samantha; Vaughan, Cara K; Monroe, Jonathan D; Zeeman, Samuel C

    2011-04-01

    Plants contain β-amylase-like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains--also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain's glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic β-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic β-amylases, do not influence their transcription factor function.

  1. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    PubMed

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  2. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    PubMed

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor.

    PubMed Central

    Parrish, William; Eilers, Markus; Ying, Weiwen; Konopka, James B

    2002-01-01

    The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors. PMID:11861550

  4. Indirect comparisons of efficacy and weekly factor consumption during continuous prophylaxis with recombinant factor VIII Fc fusion protein and conventional recombinant factor VIII products.

    PubMed

    Iorio, A; Krishnan, S; Myrén, K J; Lethagen, S; McCormick, N; Yermakov, S; Karner, P

    2017-05-01

    Recombinant factor VIII (rFVIII) products with extended half-lives have the potential to improve adherence and outcomes in haemophilia beyond the results obtained with conventional rFVIII products. In the absence of head-to-head comparisons, annualized bleed rates (ABRs) and weekly factor consumption with rFVIII Fc fusion protein (rFVIIIFc) and conventional rFVIII products were indirectly compared using studies of continuous prophylaxis. A systematic literature review was conducted to identify studies of rFVIII products for comparison with rFVIIIFc in the continuous prophylactic treatment of previously treated adolescents and adults with moderate and severe haemophilia A. Mean ABRs were compared between rFVIIIFc and individual rFVIII studies and between rFVIIIFc and a pooled measure for rFVIII estimated by meta-analysis. Comparisons of factor consumption were based on mean or median weekly factor consumption. Results from seven studies of conventional rFVIII products (injections 2-4 times week -1 ) were compared with rFVIIIFc (injections 1.4-2.4 times week -1 ). The pooled mean ABR for rFVIII products was significantly higher compared with rFVIIIFc (difference = 2.0; P = 0.007). Compared with most rFVIII studies, the reported weekly factor consumption was lower with rFVIIIFc [mean differences = 15.5-21.8 IU kg -1 week -1 (17-26%); median differences = 12.7-29.8 IU kg -1 week -1 (16-37%)]. In one comparison, mean weekly factor consumption with rFVIII was significantly lower but mean ABR was significantly higher than rFVIIIFc. Prophylaxis with rFVIIIFc may be associated with improved bleeding rates and lower weekly factor consumption than more frequently injected rFVIII products. Relative to rFVIII products with similar bleeding rates, results indicate that rFVIIIFc is associated with reduced weekly factor consumption while requiring fewer prescribed injections. © 2017 John Wiley & Sons Ltd.

  5. Enteral delivery of proteins enhances the expression of proteins involved in the cytoskeleton and protein biosynthesis in human duodenal mucosa.

    PubMed

    Goichon, Alexis; Bertrand, Julien; Chan, Philippe; Lecleire, Stéphane; Coquard, Aude; Cailleux, Anne-Françoise; Vaudry, David; Déchelotte, Pierre; Coëffier, Moïse

    2015-08-01

    Amino acids are well known to be key effectors of gut protein turnover. We recently reported that enteral delivery of proteins markedly stimulated global duodenal protein synthesis in carbohydrate-fed healthy humans, but specifically affected proteins remain unknown. We aimed to assess the influence of an enteral protein supply on the duodenal mucosal proteome in carbohydrate-fed humans. Six healthy volunteers received for 5 h, on 2 occasions and in random order, either an enteral infusion of maltodextrins alone (0.25 g · kg⁻¹ · h⁻¹) mimicking the fed state or maltodextrins with a protein powder (0.14 g proteins · kg⁻¹ · h⁻¹). Endoscopic duodenal biopsy specimens were then collected and frozen until analysis. A 2-dimensional polyacrylamide gel electrophoresis-based comparative proteomics analysis was then performed, and differentially expressed proteins (at least ±1.5-fold change; Student's t test, P < 0.05) were identified by mass spectrometry. Protein expression changes were confirmed by Western blot analysis. Thirty-two protein spots were differentially expressed after protein delivery compared with maltodextrins alone: 28 and 4 spots were up- or downregulated, respectively. Among the 22 identified proteins, 11 upregulated proteins were involved either in the cytoskeleton (ezrin, moesin, plastin 1, lamin B1, vimentin, and β-actin) or in protein biosynthesis (glutamyl-prolyl-transfer RNA synthetase, glutaminyl-transfer RNA synthetase, elongation factor 2, elongation factor 1δ, and eukaryotic translation and initiation factor 3 subunit f). Enteral delivery of proteins altered the duodenal mucosal proteome and mainly stimulated the expression of proteins involved in cytoskeleton and protein biosynthesis. These results suggest that protein supply may affect intestinal morphology by stimulating actin cytoskeleton remodeling. © 2015 American Society for Nutrition.

  6. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein.

    PubMed Central

    Avram, Dorina; Fields, Andrew; Senawong, Thanaset; Topark-Ngarm, Acharawan; Leid, Mark

    2002-01-01

    Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems. PMID:12196208

  7. An ontology-based search engine for protein-protein interactions

    PubMed Central

    2010-01-01

    Background Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. Results We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Conclusion Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology. PMID:20122195

  8. G Protein-regulated inducer of neurite outgrowth (GRIN) modulates Sprouty protein repression of mitogen-activated protein kinase (MAPK) activation by growth factor stimulation.

    PubMed

    Hwangpo, Tracy Anh; Jordan, J Dedrick; Premsrirut, Prem K; Jayamaran, Gomathi; Licht, Jonathan D; Iyengar, Ravi; Neves, Susana R

    2012-04-20

    Gα(o/i) interacts directly with GRIN (G protein-regulated inducer of neurite outgrowth). Using the yeast two-hybrid system, we identified Sprouty2 as an interacting partner of GRIN. Gα(o) and Sprouty2 bind to overlapping regions of GRIN, thus competing for GRIN binding. Imaging experiments demonstrated that Gα(o) expression promoted GRIN translocation to the plasma membrane, whereas Sprouty2 expression failed to do so. Given the role of Sprouty2 in the regulation of growth factor-mediated MAPK activation, we examined the contribution of the GRIN-Sprouty2 interaction to CB1 cannabinoid receptor regulation of FGF receptor signaling. In Neuro-2A cells, a system that expresses all of the components endogenously, modulation of GRIN levels led to regulation of MAPK activation. Overexpression of GRIN potentiated FGF activation of MAPK and decreased tyrosine phosphorylation of Sprouty2. Pretreatment with G(o/i)-coupled CB1 receptor agonist attenuated subsequent FGF activation of MAPK. Decreased expression of GRIN both diminished FGF activation of MAPK and blocked CB1R attenuation of MAPK activation. These observations indicate that Gα(o) interacts with GRIN and outcompetes GRIN from bound Sprouty. Free Sprouty then in turn inhibits growth factor signaling. Thus, here we present a novel mechanism of how G(o/i)-coupled receptors can inhibit growth factor signaling to MAPK.

  9. Intrinsic factor

    MedlinePlus

    Intrinsic factor is a protein that helps your intestines absorb vitamin B12. It is made by cells in the ... Intrinsic factor is a protein that helps your body absorb vitamin B12. Vitamin B12 is needed for red blood ...

  10. Perinatal factors associated with the development of cow's milk protein allergy.

    PubMed

    Toro Monjaraz, E M; Ramírez Mayans, J A; Cervantes Bustamante, R; Gómez Morales, E; Molina Rosales, A; Montijo Barrios, E; Zárate Mondragón, F; Cadena León, J; Cazares Méndez, M; López-Ugalde, M

    2015-01-01

    The prevalence of cow's milk protein allergy (CMPA) has increased in recent years, and is associated with antimicrobial use during the perinatal period, prematurity, the type of childbirth, and the decrease in breastfeeding. The aim of this study was to analyze whether there is any association between these factors and the development of CMPA. A retrospective, comparative, cross-sectional, observational study was conducted by reviewing the case records of 101 children diagnosed with CMPA and seen at the Department of Gastroenterology and Nutrition of the Instituto Nacional de Pediatría within the time frame of January 2012 and August 2013. The following variables were included: age, sex, weeks of gestation, history of maternal infection and antimicrobial use during the pregnancy, type of delivery, and feeding with human milk, and its duration. Likewise, the case records of 90 children were reviewed as a control group on not having CMPA or any other allergy. The chi-square test was used for proportions, and the Mann-Whitney U test was used for comparing means in the statistical analysis. The factors associated with CMPA were the use of antimicrobials during gestation and breastfeeding duration in months. Both factors were statistically significant (P<.001). No association was found between CMPA and gestational age or type of delivery. The statistically significant associated factors were breastfeeding duration and the use of antimicrobials during the gestational stage. These results underline the necessity for prospective studies. Copyright © 2014 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  11. Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions

    PubMed Central

    Li, Bo; Wang, Hai; Qiu, Guixing; Su, Xinlin

    2016-01-01

    Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration. PMID:28070506

  12. Accurate optimization of amino acid form factors for computing small-angle X-ray scattering intensity of atomistic protein structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Dudu; Yang, Sichun; Lu, Lanyuan

    2016-06-20

    Structure modellingviasmall-angle X-ray scattering (SAXS) data generally requires intensive computations of scattering intensity from any given biomolecular structure, where the accurate evaluation of SAXS profiles using coarse-grained (CG) methods is vital to improve computational efficiency. To date, most CG SAXS computing methods have been based on a single-bead-per-residue approximation but have neglected structural correlations between amino acids. To improve the accuracy of scattering calculations, accurate CG form factors of amino acids are now derived using a rigorous optimization strategy, termed electron-density matching (EDM), to best fit electron-density distributions of protein structures. This EDM method is compared with and tested againstmore » other CG SAXS computing methods, and the resulting CG SAXS profiles from EDM agree better with all-atom theoretical SAXS data. By including the protein hydration shell represented by explicit CG water molecules and the correction of protein excluded volume, the developed CG form factors also reproduce the selected experimental SAXS profiles with very small deviations. Taken together, these EDM-derived CG form factors present an accurate and efficient computational approach for SAXS computing, especially when higher molecular details (represented by theqrange of the SAXS data) become necessary for effective structure modelling.« less

  13. Comparative prognostic value of epidermal growth factor quantitative protein expression compared with FISH for head and neck squamous cell carcinoma.

    PubMed

    Pectasides, Eirini; Rampias, Theodore; Kountourakis, Panteleimon; Sasaki, Clarence; Kowalski, Diane; Fountzilas, George; Zaramboukas, Thomas; Rimm, David; Burtness, Barbara; Psyrri, Amanda

    2011-05-01

    Epidermal growth factor receptor (EGFR) overexpression correlates with recurrence and with treatment resistance in head and neck squamous cell carcinoma (HNSCC). The aim of this study was to evaluate the relationship of EGFR gene copy number utilizing FISH and protein expression with automated quantitative analysis (AQUA) and to correlate those with patient outcome. A tissue microarray composed of 102 HNSCC treated with (chemo)radiation was constructed and analyzed for EGFR copy number by FISH (Vysis; Abbott Laboratories) and EGFR protein expression using AQUA analysis of EGFR staining scored on a scale of 0 to 255. We evaluated associations of EGFR FISH status and AQUA score with clinicopathologic parameters and survival prognosis. Eleven (17.2%) of 64 tumors with FISH results showed EGFR high polysomy and/or gene amplification (FISH positive). Protein levels assessed by AQUA in FISH-positive cases were significantly higher (P = 0.04) than in FISH-negative cases. Using the continuous AQUA scores for EGFR expression, AQUA and FISH showed significant agreement (Pearson's ρ = 0.353, P = 0.04). Patients with high tumor EGFR protein expression had inferior 5-year overall survival (27.7%) compared with those with low tumor EGFR expression (54%; P = 0.029). There was no significant association between EGFR FISH status and overall survival (P = 0.201). In the multivariate model, high tumor EGFR protein expression status remained an independent prognostic factor for overall survival (P = 0.047). EGFR protein content correlates with gene copy number if protein content is quantitated and automatically analyzed, as with AQUA. EGFR protein levels assessed by AQUA strongly predict for patient outcome in HNSCC, whereas EGFR FISH status does not provide prognostic information. ©2011 AACR.

  14. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR.

    PubMed

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E; Hornung, Veit; Weber, Friedemann

    2016-07-01

    Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we demonstrate that NSs

  15. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR

    PubMed Central

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit

    2016-01-01

    ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we

  16. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    PubMed

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  17. batman Interacts with Polycomb and trithorax Group Genes and Encodes a BTB/POZ Protein That Is Included in a Complex Containing GAGA Factor

    PubMed Central

    Faucheux, M.; Roignant, J.-Y.; Netter, S.; Charollais, J.; Antoniewski, C.; Théodore, L.

    2003-01-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes. PMID:12556479

  18. Hypoxia inducible factor (HIF) as a model for studying inhibition of protein–protein interactions

    PubMed Central

    Burslem, George M.; Kyle, Hannah F.; Nelson, Adam; Edwards, Thomas A.

    2017-01-01

    The modulation of protein–protein interactions (PPIs) represents a major challenge in modern chemical biology. Current approaches (e.g. high-throughput screening, computer aided ligand design) are recognised as having limitations in terms of identification of hit matter. Considerable success has been achieved in terms of developing new approaches to PPI modulator discovery using the p53/hDM2 and Bcl-2 family of PPIs. However these important targets in oncology might be considered as “low-hanging-fruit”. Hypoxia inducible factor (HIF) is an emerging, but not yet fully validated target for cancer chemotherapy. Its role is to regulate the hypoxic response and it does so through a plethora of protein–protein interactions of varying topology, topography and complexity: its modulation represents an attractive approach to prevent development of new vasculature by hypoxic tumours. PMID:28878873

  19. Protein Expression Level of Skin Wrinkle-Related Factors in Hairless Mice Fed Hyaluronic Acid.

    PubMed

    Yun, Min-Kyu; Lee, Sung-Jin; Song, Hye-Jin; Yu, Heui-Jong; Rha, Chan Su; Kim, Dae-Ok; Choe, Soo-Young; Sohn, Johann

    2017-04-01

    The aim of this study was to evaluate the wrinkle improving effect of hyaluronic acid intakes. Wrinkles were induced by exposing the skin of hairless mice to ultraviolet B (UVB) irradiation for 14 weeks. Hyaluronic acid was administered to the mice for 14 weeks including 4 weeks before experiments. Skin tissue was assayed by enzyme-linked immunosorbent assay to determine protein expression of wrinkle-related markers. The group supplemented with high concentrations of hyaluronic acid appeared significantly better than control group for collagen, matrix metalloproteinase 1, interleukin (IL)-1β, and IL-6 assay. Transforming growth factor-β1 (TGF-β1) and hyaluronic acid synthase 2 (HAS-2) were not shown to be significantly different. In conclusion, hyaluronic acid administration regulated expression levels of proteins associated with skin integrity, and improved the wrinkle level in skin subjected to UVB irradiation.

  20. Acquisition of Complement Inhibitor Serine Protease Factor I and Its Cofactors C4b-Binding Protein and Factor H by Prevotella intermedia

    PubMed Central

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678

  1. Xanthomonas filamentous hemagglutinin-like protein Fha1 interacts with pepper hypersensitive-induced reaction protein CaHIR1 and functions as a virulence factor in host plants.

    PubMed

    Choi, Hyong Woo; Kim, Dae Sung; Kim, Nak Hyun; Jung, Ho Won; Ham, Jong Hyun; Hwang, Byung Kook

    2013-12-01

    Pathogens have evolved a variety of virulence factors to infect host plants successfully. We previously identified the pepper plasma-membrane-resident hypersensitive-induced reaction protein (CaHIR1) as a regulator of plant disease- and immunity-associated cell death. Here, we identified the small filamentous hemagglutinin-like protein (Fha1) of Xanthomonas campestris pv. vesicatoria as an interacting partner of CaHIR1 using yeast two-hybrid screening. Coimmunoprecipitation and bimolecular fluorescence complementation experiments revealed that Fha1 specifically interacts with CaHIR1 in planta. The endocytic tracker FM4-64 staining showed that the CaHIR1-Fha1 complex localizes in the endocytic vesicle-like structure. The X. campestris pv. vesicatoria Δfha1 mutant strain exhibited significantly increased surface adherence but reduced swarming motility. Mutation of fha1 inhibited the growth of X. campestris pv. vesicatoria and X. campestris pv. vesicatoria ΔavrBsT in tomato and pepper leaves, respectively, suggesting that Fha1 acts as a virulence factor in host plants. Transient expression of fha1 and also infiltration with purified Fha1 proteins induced disease-associated cell death response through the interaction with CaHIR1 and suppressed the expression of pathogenesis-related (PR) genes. Silencing of CaHIR1 in pepper significantly reduced ΔavrBsT growth and Fha1-triggered susceptibility cell death. Overexpression of fha1 in Arabidopsis retarded plant growth and triggered disease-associated cell death, resulting in altered disease susceptibility. Taken together, these results suggest that the X. campestris pv. vesicatoria virulence factor Fha1 interacts with CaHIR1, induces susceptibility cell death, and suppresses PR gene expression in host plants.

  2. C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1).

    PubMed

    Mizutani, Tetsuya; Ju, Yunfeng; Imamichi, Yoshitaka; Osaki, Tsukasa; Yazawa, Takashi; Kawabe, Shinya; Ishikane, Shin; Matsumura, Takehiro; Kanno, Masafumi; Kamiki, Yasue; Kimura, Kohei; Minamino, Naoto; Miyamoto, Kaoru

    2014-06-15

    The transcription factor SF-1 (steroidogenic factor-1) is a master regulator of steroidogenesis. Previously, we have found that SF-1 induces the differentiation of mesenchymal stem cells into steroidogenic cells. To elucidate the molecular mechanisms of SF-1-mediated functions, we attempted to identify protein components of the SF-1 nuclear protein complex in differentiated cells. SF-1 immunoaffinity chromatography followed by MS/MS analysis was performed, and 24 proteins were identified. Among these proteins, we focused on C/EBPβ (CCAAT/enhancer-binding protein β), which is an essential transcription factor for ovulation and luteinization, as the transcriptional mechanisms of C/EBPβ working together with SF-1 are poorly understood. C/EBPβ knockdown attenuated cAMP-induced progesterone production in granulosa tumour-derived KGN cells by altering STAR (steroidogenic acute regulatory protein), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B2 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 2) expression. EMSA and ChIP assays revealed novel C/EBPβ-binding sites in the upstream regions of the HSD3B2 and CYP11A1 genes. These interactions were enhanced by cAMP stimulation. Luciferase assays showed that C/EBPβ-responsive regions were found in each promoter and C/EBPβ is involved in the cAMP-induced transcriptional activity of these genes together with SF-1. These results indicate that C/EBPβ is an important mediator of progesterone production by working together with SF-1, especially under tropic hormone-stimulated conditions.

  3. Dietary sources of animal and plant protein intake among Flemish preschool children and the association with socio-economic and lifestyle-related factors

    PubMed Central

    2011-01-01

    Background The aims of this study were to assess the intake of animal, plant and food group-specific protein, and to investigate their associations with socio-economic and lifestyle-related factors in Flemish preschoolers. Methods Three-day estimated dietary records were collected from 661 preschoolers aged 2.5-6.5 y (338 boys and 323 girls). Multiple linear regression analysis was used to investigate the association between animal, plant, and food group-specific protein intake and socio-economic and lifestyle factors. Results Animal proteins (mean 38 g/d) were the main source of total protein (mean 56 g/d), while mean plant protein intake amounted to 18 g/d. The group of meat, poultry, fish and eggs was the main contributor (51%) to animal protein intake, followed by milk and milk products (35%). Bread and cereals (41%) contributed most to the plant protein intake, followed by low-nutritious, energy-dense foods (21%). With higher educated fathers and mothers as reference, respectively, preschoolers with lower secondary and secondary paternal education had lower animal, dairy-, and meat-derived protein intakes, and those with lower secondary and secondary maternal education consumed less plant, and bread and cereal-derived proteins. Compared to children with high physical activity levels, preschoolers with low and moderate physical activity had lower animal and plant protein intakes. Significantly higher potatoes and grains-, and fish- derived proteins were reported for children of smoking mothers and fathers, respectively, compared to those of non-smoking mothers and fathers. Conclusions The total protein intake of Flemish preschoolers was sufficient according to the recommendations of the Belgian Superior Health Council. Parental level of education and smoking status might play a role in the sources of children's dietary proteins. PMID:21943312

  4. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins

    PubMed Central

    Walsh, Dustin R.; Nolin, Thomas D.

    2015-01-01

    Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na+/H+ exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development. PMID:26092975

  5. Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis.

    PubMed

    Wang, Feifei; Tidei, Joseph J; Polich, Eric D; Gao, Yu; Zhao, Huashan; Perrone-Bizzozero, Nora I; Guo, Weixiang; Zhao, Xinyu

    2015-09-08

    The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis.

  6. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF) and Her-2 Protein in the Genesis of Cervical Carcinoma.

    PubMed

    Rahmani, Arshad H; Babiker, Ali Yousif; Alsahli, Mohammed A; Almatroodi, Saleh A; Husain, Nazik Elmalaika O S

    2018-02-15

    Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p < 0.05). However, no significant difference in the expression pattern of VEGF protein was observed among the different grades and stages of tumours (p > 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p < 0.05). The expression level of Her-2 protein was not correlated with the stage of a tumour (p > 0.05). The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.

  7. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF) and Her-2 Protein in the Genesis of Cervical Carcinoma

    PubMed Central

    Rahmani, Arshad H.; Babiker, Ali Yousif; Alsahli, Mohammed A.; Almatroodi, Saleh A.; Husain, Nazik Elmalaika O. S.

    2018-01-01

    BACKGROUND: Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. AIM: This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. METHODS: A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. RESULTS: Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p < 0.05). However, no significant difference in the expression pattern of VEGF protein was observed among the different grades and stages of tumours (p > 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p < 0.05). The expression level of Her-2 protein was not correlated with the stage of a tumour (p > 0.05). CONCLUSION: The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer. PMID:29531585

  8. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  9. Facilitated Diffusion of Transcription Factor Proteins with Anomalous Bulk Diffusion.

    PubMed

    Liu, Lin; Cherstvy, Andrey G; Metzler, Ralf

    2017-02-16

    What are the physical laws of the diffusive search of proteins for their specific binding sites on DNA in the presence of the macromolecular crowding in cells? We performed extensive computer simulations to elucidate the protein target search on DNA. The novel feature is the viscoelastic non-Brownian protein bulk diffusion recently observed experimentally. We examine the influence of the protein-DNA binding affinity and the anomalous diffusion exponent on the target search time. In all cases an optimal search time is found. The relative contribution of intermittent three-dimensional bulk diffusion and one-dimensional sliding of proteins along the DNA is quantified. Our results are discussed in the light of recent single molecule tracking experiments, aiming at a better understanding of the influence of anomalous kinetics of proteins on the facilitated diffusion mechanism.

  10. Complex of Fas-associated Factor 1 (FAF1) with Valosin-containing Protein (VCP)-Npl4-Ufd1 and Polyubiquitinated Proteins Promotes Endoplasmic Reticulum-associated Degradation (ERAD)*

    PubMed Central

    Lee, Jae-Jin; Park, Joon Kyu; Jeong, Jaeho; Jeon, Hyesung; Yoon, Jong-Bok; Kim, Eunice EunKyeong; Lee, Kong-Joo

    2013-01-01

    Fas-associated factor 1 (FAF1) is a ubiquitin receptor containing multiple ubiquitin-related domains including ubiquitin-associated (UBA), ubiquitin-like (UBL) 1, UBL2, and ubiquitin regulatory X (UBX). We previously showed that N-terminal UBA domain recognizes Lys48-ubiquitin linkage to recruit polyubiquitinated proteins and that a C-terminal UBX domain interacts with valosin-containing protein (VCP). This study shows that FAF1 interacts only with VCP complexed with Npl4-Ufd1 heterodimer, a requirement for the recruitment of polyubiquitinated proteins to UBA domain. Intriguingly, VCP association to C-terminal UBX domain regulates ubiquitin binding to N-terminal UBA domain without direct interaction between UBA and UBX domains. These interactions are well characterized by structural and biochemical analysis. VCP-Npl4-Ufd1 complex is known as the machinery required for endoplasmic reticulum-associated degradation. We demonstrate here that FAF1 binds to VCP-Npl4-Ufd1 complex via UBX domain and polyubiquitinated proteins via UBA domain to promote endoplasmic reticulum-associated degradation. PMID:23293021

  11. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Iwanami, Hiroshi; Moriya, Shigeki; Abe, Kazuyuki; Voogd, Charlotte; Varkonyi-Gasic, Erika; Kotoda, Nobuhiro

    2011-05-01

    Understanding the flowering process in apple (Malus × domestica Borkh.) is essential for developing methods to shorten the breeding period and regulate fruit yield. It is known that FLOWERING LOCUS T (FT) acts as a transmissible floral inducer in the Arabidopsis flowering network system. To clarify the molecular network of two apple FT orthologues, MdFT1 and MdFT2, we performed a yeast two-hybrid screen to identify proteins that interact with MdFT1. We identified several transcription factors, including two members of the TCP (TEOSINTE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL FACTORs) family, designated MdTCP2 and MdTCP4, and an Arabidopsis thaliana VOZ1 (Vascular plant One Zinc finger protein1)-like protein, designated MdVOZ1. MdTCP2 and MdVOZ1 also interacted with MdFT2 in yeast. The expression domain of MdTCP2 and MdVOZ1 partially overlapped with that of MdFT1 and MdFT2, most strikingly in apple fruit tissue, further suggesting a potential interaction in vivo. Constitutive expression of MdTCP2, MdTCP4 and MdVOZ1 in Arabidopsis affected plant size, leaf morphology and the formation of leaf primordia on the adaxial side of cotyledons. On the other hand, chimeric MdTCP2, MdTCP4 and MdVOZ1 repressors that included the ethylene-responsive transcription factors (ERF)-associated amphiphilic repression (EAR) domain motif influenced reproduction and inflorescence architecture in transgenic Arabidopsis. These results suggest that MdFT1 and/or MdFT2 might be involved in the regulation of cellular proliferation and the formation of new tissues and that they might affect leaf and fruit development by interacting with TCP- and VOZ-family proteins. DDBJ accession nos. AB531019 (MdTCP2a mRNA), AB531020 (MdTCP2b mRNA), AB531021 (MdTCP4a mRNA), AB531022 (MdTCP4b mRNA) and AB531023 (MdVOZ1a mRNA). © The Author 2011. Published by Oxford University Press. All rights reserved.

  12. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  13. Antinutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing.

    PubMed

    Nidhina, N; Muthukumar, S P

    2015-04-15

    Proximate composition analysis and antinutritional factor composition of different fractions of industrial guar meal: raw churi (IRC), heated churi (IHC), final churi (IFC) and guar korma (IGK) were studied and compared. Protein content was found to be very high in IGK (52.7%) when compared to the churi fractions (32-33%) and the trypsin inhibitor activities were found to be negligible in all the fractions (0.58-1.8 mg/g). Single fraction (IGK) was selected for further studies, based on the protein content. The antinutritional factors of selected fractions were significantly reduced by different heat treatments. Heat treatments significantly increased the water absorbing capacity of IGK, but reduced the nitrogen solubility, emulsifying and foaming capacity. Highest L(∗) value was observed for boiled IGK, highest a(∗) and b(∗) values for roasted IGK, during colour measurement. FTIR spectral analysis revealed the presence several aromatic groups in IGK and slight modifications in the molecular structure during heat treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Expression and Protein Interaction Analyses Reveal Combinatorial Interactions of LBD Transcription Factors During Arabidopsis Pollen Development.

    PubMed

    Kim, Mirim; Kim, Min-Jung; Pandey, Shashank; Kim, Jungmook

    2016-11-01

    LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor gene family members play key roles in diverse aspects of plant development. LBD10 and LBD27 have been shown to be essential for pollen development in Arabidopsis thaliana. From the previous RNA sequencing (RNA-Seq) data set of Arabidopsis pollen, we identified the mRNAs of LBD22, LBD25 and LBD36 in addition to LBD10 and LBD27 in Arabidopsis pollen. Here we conducted expression and cellular analysis using GFP:GUS (green fluorescent protein:β-glucuronidase) reporter gene and subcellular localization assays using LBD:GFP fusion proteins expressed under the control of their own promoters in Arabidopsis. We found that these LBD proteins display spatially and temporally distinct and overlapping expression patterns during pollen development. Bimolecular fluorescence complementation and GST (glutathione S-transferase) pull-down assays demonstrated that protein-protein interactions occur among the LBDs exhibiting overlapping expression during pollen development. We further showed that LBD10, LBD22, LBD25, LBD27 and LBD36 interact with each other to form heterodimers, which are localized to the nucleus in Arabidopsis protoplasts. Taken together, these results suggest that combinatorial interactions among LBD proteins may be important for their function in pollen development in Arabidopsis. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis1[OPEN

    PubMed Central

    Zhao, Qiang; Wang, Qing-Jie; Wang, Xiao-Fei; You, Chun-Xiang

    2016-01-01

    Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants. PMID:27660166

  16. Effects of Bacillus fermentation on the protein microstructure and anti-nutritional factors of soybean meal.

    PubMed

    Zheng, L; Li, D; Li, Z-L; Kang, L-N; Jiang, Y-Y; Liu, X-Y; Chi, Y-P; Li, Y-Q; Wang, J-H

    2017-12-01

    This study evaluated the effects of Bacillus fermentation on soybean meal protein (SBMP) microstructure and major anti-nutritional factors (ANFs) in soybean meal (SBM). The Bacillus siamensis isolate JL8 producing high yield of protease at 519·1 U g -1 was selected for the laboratory production of fermented soybean meal (FSBM). After 24 h fermentation, the FSBM showed better properties compared with those of SBM, the ANFs such as glycinin, β-conglycinin and trypsin inhibitor significantly decreased by 86·0, 70·3 and 95·01%, while in vitro digestibility and absorbability increased by 8·7 and 18·9% respectively. Scanning electron microscopy (SEM) image of fermented soybean meal protein showed smaller aggregates and looser network than that of SBMP. Secondary structure examination of proteins revealed fermentation significantly decreased the content of β-sheet structure by 43·2% and increased the random coil structure by 59·9%. It is demonstrated that Bacillus fermentation improved the nutritional quality of SBM through degrading ANFs and changing the microstructure of SBMP. There is limited information about the structural property changes of soybean protein during fermentation. In this study, physicochemical analysis of soybean meal protein showed evidence that the increase in in vitro digestibility and absorbability of fermented soybean meal reflected the decrease in β-conformation and destruction of original structure in soybean meal protein. The results directly gained the understanding of nutritional quality improvement of soybean meal by Bacillus fermentation, and supply the potential use of Bacillus siamensis for fermented soybean meal production. © 2017 The Society for Applied Microbiology.

  17. Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study.

    PubMed

    van Baak, Marleen A; Larsen, Thomas M; Jebb, Susan A; Martinez, Alfredo; Saris, Wim H M; Handjieva-Darlenska, Teodora; Kafatos, Anthony; Pfeiffer, Andreas F H; Kunešová, Marie; Astrup, Arne

    2017-12-06

    An increase in dietary protein intake has been shown to improve weight loss maintenance in the DIOGenes trial. Here, we analysed whether the source of the dietary proteins influenced changes in body weight, body composition, and cardiometabolic risk factors during the weight maintenance period while following an energy-restricted diet. 489 overweight or obese participants of the DIOGenes trial from eight European countries were included. They successfully lost >8% of body weight and subsequently completed a six month weight maintenance period, in which they consumed an ad libitum diet varying in protein content and glycemic index. Dietary intake was estimated from three-day food diaries. A higher plant protein intake with a proportional decrease in animal protein intake did not affect body weight maintenance or cardiometabolic risk factors. A higher plant protein intake from non-cereal products instead of cereal products was associated with benefits for body weight maintenance and blood pressure. Substituting meat protein for protein from other animal sources increased insulin and HOMA-IR (homeostasis model assessment of insulin resistance). This analysis suggests that not only the amount of dietary proteins, but also the source may be important for weight and cardiometabolic risk management. However, randomized trials are needed to test the causality of these associations.

  18. Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study

    PubMed Central

    Jebb, Susan A.; Saris, Wim H. M.; Handjieva-Darlenska, Teodora; Kafatos, Anthony; Kunešová, Marie; Astrup, Arne

    2017-01-01

    An increase in dietary protein intake has been shown to improve weight loss maintenance in the DIOGenes trial. Here, we analysed whether the source of the dietary proteins influenced changes in body weight, body composition, and cardiometabolic risk factors during the weight maintenance period while following an energy-restricted diet. 489 overweight or obese participants of the DIOGenes trial from eight European countries were included. They successfully lost >8% of body weight and subsequently completed a six month weight maintenance period, in which they consumed an ad libitum diet varying in protein content and glycemic index. Dietary intake was estimated from three-day food diaries. A higher plant protein intake with a proportional decrease in animal protein intake did not affect body weight maintenance or cardiometabolic risk factors. A higher plant protein intake from non-cereal products instead of cereal products was associated with benefits for body weight maintenance and blood pressure. Substituting meat protein for protein from other animal sources increased insulin and HOMA-IR (homeostasis model assessment of insulin resistance). This analysis suggests that not only the amount of dietary proteins, but also the source may be important for weight and cardiometabolic risk management. However, randomized trials are needed to test the causality of these associations. PMID:29211027

  19. Heterochromatin protein 1 gamma and IκB kinase alpha interdependence during tumour necrosis factor gene transcription elongation in activated macrophages.

    PubMed

    Thorne, James L; Ouboussad, Lylia; Lefevre, Pascal F

    2012-09-01

    IκB kinase α (IKKα) is part of the cytoplasmic IKK complex regulating nuclear factor-κB (NF-κB) release and translocation into the nucleus in response to pro-inflammatory signals. IKKα can also be recruited directly to the promoter of NF-κB-dependent genes by NF-κB where it phosphorylates histone H3 at serine 10, triggering recruitment of the bromodomain-containing protein 4 and the positive transcription elongation factor b. Herein, we report that IKKα travels with the elongating form of ribonucleic acid polymerase II together with heterochromatin protein 1 gamma (HP1γ) at NF-κB-dependent genes in activated macrophages. IKKα binds to and phosphorylates HP1γ, which in turn controls IKKα binding to chromatin and phosphorylation of the histone variant H3.3 at serine 31 within transcribing regions. Downstream of transcription end sites, IKKα accumulates with its inhibitor the CUE-domain containing protein 2, suggesting a link between IKKα inactivation and transcription termination.

  20. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy. 2010 Elsevier Ltd. All rights reserved.

  1. Transcription factor activating protein 4 is synthetically lethal and a master regulator of MYCN-amplified neuroblastoma. | Office of Cancer Genomics

    Cancer.gov

    Despite the identification of MYCN amplification as an adverse prognostic marker in neuroblastoma, MYCN inhibitors have yet to be developed. Here, by integrating evidence from a whole-genome shRNA library screen and the computational inference of master regulator proteins, we identify transcription factor activating protein 4 (TFAP4) as a critical effector of MYCN amplification in neuroblastoma, providing a novel synthetic lethal target.

  2. Actin Interacting Protein1 and Actin Depolymerizing Factor Drive Rapid Actin Dynamics in Physcomitrella patens[W

    PubMed Central

    Augustine, Robert C.; Pattavina, Kelli A.; Tüzel, Erkan; Vidali, Luis; Bezanilla, Magdalena

    2011-01-01

    The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics. PMID:22003077

  3. Protein Kinase A Modulates Transforming Growth Factor-β Signaling through a Direct Interaction with Smad4 Protein*

    PubMed Central

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M.

    2013-01-01

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290–300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281–285 and 320–329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo. PMID:23362281

  4. A Translation System Reconstituted with Human Factors Proves That Processing of Encephalomyocarditis Virus Proteins 2A and 2B Occurs in the Elongation Phase of Translation without Eukaryotic Release Factors*

    PubMed Central

    Machida, Kodai; Mikami, Satoshi; Masutani, Mamiko; Mishima, Kurumi; Kobayashi, Tominari; Imataka, Hiroaki

    2014-01-01

    The genomic RNA of encephalomyocarditis virus (EMCV) encodes a single polyprotein, and the primary scission of the polyprotein occurs between nonstructural proteins 2A and 2B by an unknown mechanism. To gain insight into the mechanism of 2A-2B processing, we first translated the 2A-2B region in vitro with eukaryotic and prokaryotic translation systems. The 2A-2B processing occurred only in the eukaryotic systems, not in the prokaryotic systems, and the unprocessed 2A-2B protein synthesized by a prokaryotic system remained uncleaved when incubated with a eukaryotic cell extract. These results suggest that 2A-2B processing is a eukaryote-specific, co-translational event. To define the translation factors required for 2A-2B processing, we constituted a protein synthesis system with eukaryotic elongation factors 1 and 2, eukaryotic release factors 1 and 3 (eRF1 and eRF3), aminoacyl-tRNA synthetases, tRNAs, ribosome subunits, and a plasmid template that included the hepatitis C virus internal ribosome entry site. We successfully reproduced 2A-2B processing in the reconstituted system even without eRFs. Our results indicate that this unusual event occurs in the elongation phase of translation. PMID:25258322

  5. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation.

    PubMed

    Paulmurugan, R; Gambhir, S S

    2003-04-01

    In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein-protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor alpha through NFkappaB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein-protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network.

  6. Affinity purification of human factor H on polypeptides derived from streptococcal m protein: enrichment of the Y402 variant.

    PubMed

    Nilsson, O Rickard; Lannergård, Jonas; Morgan, B Paul; Lindahl, Gunnar; Gustafsson, Mattias C U

    2013-01-01

    Recent studies indicate that defective activity of complement factor H (FH) is associated with several human diseases, suggesting that pure FH may be used for therapy. Here, we describe a simple method to isolate human FH, based on the specific interaction between FH and the hypervariable region (HVR) of certain Streptococcus pyogenes M proteins. Special interest was focused on the FH polymorphism Y402H, which is associated with the common eye disease age-related macular degeneration (AMD) and has also been implicated in the binding to M protein. Using a fusion protein containing two copies of the M5-HVR, we found that the Y402 and H402 variants of FH could be efficiently purified by single-step affinity chromatography from human serum containing the corresponding protein. Different M proteins vary in their binding properties, and the M6 and M5 proteins, but not the M18 protein, showed selective binding of the FH Y402 variant. Accordingly, chromatography on a fusion protein derived from the M6-HVR allowed enrichment of the Y402 protein from serum containing both variants. Thus, the exquisite binding specificity of a bacterial protein can be exploited to develop a simple and robust procedure to purify FH and to enrich for the FH variant that protects against AMD.

  7. Proteomics to predict the response to tumour necrosis factor-α inhibitors in rheumatoid arthritis using a supervised cluster-analysis based protein score.

    PubMed

    Cuppen, Bvj; Fritsch-Stork, Rde; Eekhout, I; de Jager, W; Marijnissen, A C; Bijlsma, Jwj; Custers, M; van Laar, J M; Lafeber, Fpjg; Welsing, Pmj

    2018-01-01

    In rheumatoid arthritis (RA), it is of major importance to identify non-responders to tumour necrosis factor-α inhibitors (TNFi) before starting treatment, to prevent a delay in effective treatment. We developed a protein score for the response to TNFi treatment in RA and investigated its predictive value. In RA patients eligible for biological treatment included in the BiOCURA registry, 53 inflammatory proteins were measured using xMAP® technology. A supervised cluster analysis method, partial least squares (PLS), was used to select the best combination of proteins. Using logistic regression, a predictive model containing readily available clinical parameters was developed and the potential of this model with and without the protein score to predict European League Against Rheumatism (EULAR) response was assessed using the area under the receiving operating characteristics curve (AUC-ROC) and the net reclassification index (NRI). For the development step (n = 65 patient), PLS revealed 12 important proteins: CCL3 (macrophage inflammatory protein, MIP1a), CCL17 (thymus and activation-regulated chemokine), CCL19 (MIP3b), CCL22 (macrophage-derived chemokine), interleukin-4 (IL-4), IL-6, IL-7, IL-15, soluble cluster of differentiation 14 (sCD14), sCD74 (macrophage migration inhibitory factor), soluble IL-1 receptor I, and soluble tumour necrosis factor receptor II. The protein score scarcely improved the AUC-ROC (0.72 to 0.77) and the ability to improve classification and reclassification (NRI = 0.05). In validation (n = 185), the model including protein score did not improve the AUC-ROC (0.71 to 0.67) or the reclassification (NRI = -0.11). No proteomic predictors were identified that were more suitable than clinical parameters in distinguishing TNFi non-responders from responders before the start of treatment. As the results of previous studies and this study are disparate, we currently have no proteomic predictors for the response to TNFi.

  8. Role of tumour necrosis factor alpha converting enzyme (TACE/ADAM17) and associated proteins in coronary artery disease and cardiac events.

    PubMed

    Chemaly, Melody; McGilligan, Victoria; Gibson, Mark; Clauss, Matthias; Watterson, Steven; Alexander, H Denis; Bjourson, Anthony John; Peace, Aaron

    2017-12-01

    Tumour necrosis factor alpha converting enzyme (TACE/ADAM17) is a member of the A disintegrin and metalloproteinase (ADAM) family of ectodomain shedding proteinases. It regulates many inflammatory processes by cleaving several transmembrane proteins, including tumour necrosis factor alpha (TNFα) and its receptors tumour necrosis factor alpha receptor 1 and tumour necrosis factor alpha receptor 2. There is evidence that TACE is involved in several inflammatory diseases, such as ischaemia, heart failure, arthritis, atherosclerosis, diabetes and cancer as well as neurological and immune diseases. This review summarizes the latest discoveries regarding the mechanism of action and regulation of TACE. It also focuses on the role of TACE in atherosclerosis and coronary artery disease (CAD), highlighting clinical studies that have investigated its expression and protein activity. The multitude of substrates cleaved by TACE make this enzyme an attractive target for therapy and a candidate for biomarker research and development in CAD. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.

  9. Promyelocytic Leukemia Protein Is a Cell-Intrinsic Factor Inhibiting Parvovirus DNA Replication

    PubMed Central

    Mitchell, Angela M.; Hirsch, Matthew L.; Li, Chengwen

    2014-01-01

    Tripartite motif proteins are important viral restriction factors and affect processes ranging from uncoating to transcription to immune signaling. Specifically, the promyelocytic leukemia protein (TRIM19; also called PML) is a viral restriction factor inhibiting processes from uncoating to transcription to cell survival. Here we investigated PML's effect on adeno-associated virus (AAV), a parvovirus used for gene delivery. Although dependovirus (AAV) and autonomous parvovirus (minute virus of mice) replication centers can colocalize with PML, PML's functional effect on parvoviruses is unknown. Using PML knockout mice, we determined that PML knockout enhances recombinant AAV2 (rAAV2) transduction at a range of vector doses in both male and female mice. In fact, male and female PML knockout mice exhibited up to 56-fold and 28-fold increases in transduction, respectively. PML inhibited several rAAV serotypes, suggesting a conserved mechanism, and organ specificity correlated with PML expression. Mechanistically, PML inhibited rAAV second-strand DNA synthesis, precluding inhibition of self-complementary rAAV, and did not affect the prior steps in transduction. Furthermore, we confirmed the effect of human PML on rAAV transduction through small interfering RNA (siRNA)-mediated knockdown in HuH7 cells and determined that the highest level of inhibition was due to effects of PML isoform II (PMLII). Overexpression of PMLII resulted in inhibition of second-strand synthesis, vector production, and genome replication. Moreover, wild-type AAV2 production and infectivity were also inhibited by PMLII, demonstrating a PML interaction with wild-type AAV. These data have important implications for AAV-mediated gene therapy. Additionally, PMLII inhibition of AAV second-strand synthesis and replication, which are processes necessary for all parvoviruses, suggests implications for replication of other parvoviruses. PMID:24198403

  10. Promyelocytic leukemia protein is a cell-intrinsic factor inhibiting parvovirus DNA replication.

    PubMed

    Mitchell, Angela M; Hirsch, Matthew L; Li, Chengwen; Samulski, R Jude

    2014-01-01

    Tripartite motif proteins are important viral restriction factors and affect processes ranging from uncoating to transcription to immune signaling. Specifically, the promyelocytic leukemia protein (TRIM19; also called PML) is a viral restriction factor inhibiting processes from uncoating to transcription to cell survival. Here we investigated PML's effect on adeno-associated virus (AAV), a parvovirus used for gene delivery. Although dependovirus (AAV) and autonomous parvovirus (minute virus of mice) replication centers can colocalize with PML, PML's functional effect on parvoviruses is unknown. Using PML knockout mice, we determined that PML knockout enhances recombinant AAV2 (rAAV2) transduction at a range of vector doses in both male and female mice. In fact, male and female PML knockout mice exhibited up to 56-fold and 28-fold increases in transduction, respectively. PML inhibited several rAAV serotypes, suggesting a conserved mechanism, and organ specificity correlated with PML expression. Mechanistically, PML inhibited rAAV second-strand DNA synthesis, precluding inhibition of self-complementary rAAV, and did not affect the prior steps in transduction. Furthermore, we confirmed the effect of human PML on rAAV transduction through small interfering RNA (siRNA)-mediated knockdown in HuH7 cells and determined that the highest level of inhibition was due to effects of PML isoform II (PMLII). Overexpression of PMLII resulted in inhibition of second-strand synthesis, vector production, and genome replication. Moreover, wild-type AAV2 production and infectivity were also inhibited by PMLII, demonstrating a PML interaction with wild-type AAV. These data have important implications for AAV-mediated gene therapy. Additionally, PMLII inhibition of AAV second-strand synthesis and replication, which are processes necessary for all parvoviruses, suggests implications for replication of other parvoviruses.

  11. NF-Y, a CCAAT box-binding protein, is one of the trans-acting factors necessary for the response of the murine ERp72 gene to protein traffic.

    PubMed

    Marcus, N; Green, M

    1997-09-01

    The accumulation of incompletely assembled immunoglobulin mu heavy chain in transfected COS cells stimulates the cellular response to protein traffic that results in the increased transcription and elevated synthesis of several ER chaperones, including ERP72, a member of the protein disulfide isomerase family of molecular chaperones. The ERp72 promoter contains an 82 bp ER protein traffic response element (ERPTRE) that is sufficient to mediate this response. Previously, it had been shown that the alteration of a putative AP-2 site and a CCAAT and inverted CCAAT site within the ERPTRE significantly decreased the response of ERp72 promoter to mu chain accumulation. We have extended these findings by demonstrating a role for NF-Y and a potentially novel DNA-binding protein in the regulation of transcription from the ERp72 promoter. The fact that NF-Y binding to the ERPTRE is observed in extracts from both control cells and cells in which the response to protein traffic has been activated indicates that the binding of NF-Y, while necessary, is not sufficient to account for the response. Each of the two CCAAT sites in the ERPTRE can bind NF-Y independently, but both sites must be intact for full ERPTRE function. A second protein can bind to the ERPTRE independently of NF-Y and at a site overlapping or close to the 3' end of the reverse CCAAT site. It is possible that interactions between NF-Y, this protein and perhaps other factors are responsible for the regulation of the protein traffic response.

  12. Rsd family proteins make simultaneous interactions with regions 2 and 4 of the primary sigma factor

    PubMed Central

    Yuan, Andy H.; Gregory, Brian D.; Sharp, Josh S.; McCleary, Katherine D.; Dove, Simon L.; Hochschild, Ann

    2008-01-01

    Summary Bacterial anti-σ factors typically regulate σ factor function by restricting the access of their cognate σ factors to the RNA polymerase (RNAP) core enzyme. The E. coli Rsd protein forms a complex with the primary σ factor, σ70, inhibits σ70-dependent transcription in vitro, and has been proposed to function as a σ70-specific anti-σ factor, thereby facilitating the utilization of alternative σ factors. In prior work, Rsd has been shown to interact with conserved region 4 of σ70, but it is not known whether this interaction suffices to account for the regulatory functions of Rsd. Here we show that Rsd and the Rsd ortholog AlgQ, a global regulator of gene expression in P. aeruginosa, interact with conserved region 2 of σ70. We show further that Rsd and AlgQ can interact simultaneously with regions 2 and 4 of σ70. Our findings establish that the abilities of Rsd and AlgQ to interact with σ70 region 2 are important determinants of their in vitro and in vivo activities. PMID:18826409

  13. Rsd family proteins make simultaneous interactions with regions 2 and 4 of the primary sigma factor.

    PubMed

    Yuan, Andy H; Gregory, Brian D; Sharp, Josh S; McCleary, Katherine D; Dove, Simon L; Hochschild, Ann

    2008-12-01

    Bacterial anti-sigma factors typically regulate sigma factor function by restricting the access of their cognate sigma factors to the RNA polymerase (RNAP) core enzyme. The Escherichia coli Rsd protein forms a complex with the primary sigma factor, sigma(70), inhibits sigma(70)-dependent transcription in vitro, and has been proposed to function as a sigma(70)-specific anti-sigma factor, thereby facilitating the utilization of alternative sigma factors. In prior work, Rsd has been shown to interact with conserved region 4 of sigma(70), but it is not known whether this interaction suffices to account for the regulatory functions of Rsd. Here we show that Rsd and the Rsd orthologue AlgQ, a global regulator of gene expression in Pseudomonas aeruginosa, interact with conserved region 2 of sigma(70). We show further that Rsd and AlgQ can interact simultaneously with regions 2 and 4 of sigma(70). Our findings establish that the abilities of Rsd and AlgQ to interact with sigma(70) region 2 are important determinants of their in vitro and in vivo activities.

  14. The Small Muscle-Specific Protein Csl Modifies Cell Shape and Promotes Myocyte Fusion in an Insulin-like Growth Factor 1–Dependent Manner

    PubMed Central

    Palmer, Steve; Groves, Nicola; Schindeler, Aaron; Yeoh, Thomas; Biben, Christine; Wang, Cheng-Chun; Sparrow, Duncan B.; Barnett, Louise; Jenkins, Nancy A.; Copeland, Neal G.; Koentgen, Frank; Mohun, Tim; Harvey, Richard P.

    2001-01-01

    We have isolated a murine cDNA encoding a 9-kD protein, Chisel (Csl), in a screen for transcriptional targets of the cardiac homeodomain factor Nkx2-5. Csl transcripts were detected in atria and ventricles of the heart and in all skeletal muscles and smooth muscles of the stomach and pulmonary veins. Csl protein was distributed throughout the cytoplasm in fetal muscles, although costameric and M-line localization to the muscle cytoskeleton became obvious after further maturation. Targeted disruption of Csl showed no overt muscle phenotype. However, ectopic expression in C2C12 myoblasts induced formation of lamellipodia in which Csl protein became tethered to membrane ruffles. Migration of these cells was retarded in a monolayer wound repair assay. Csl-expressing myoblasts differentiated and fused normally, although in the presence of insulin-like growth factor (IGF)-1 they showed dramatically enhanced fusion, leading to formation of large dysmorphogenic “myosacs.” The activities of transcription factors nuclear factor of activated T cells (NFAT) and myocyte enhancer–binding factor (MEF)2, were also enhanced in an IGF-1 signaling–dependent manner. The dynamic cytoskeletal localization of Csl and its dominant effects on cell shape and behavior and transcription factor activity suggest that Csl plays a role in the regulatory network through which muscle cells coordinate their structural and functional states during growth, adaptation, and repair. PMID:11381084

  15. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis.

    PubMed

    Moreau, Fanny; Thévenon, Emmanuel; Blanvillain, Robert; Lopez-Vidriero, Irene; Franco-Zorrilla, Jose Manuel; Dumas, Renaud; Parcy, François; Morel, Patrice; Trehin, Christophe; Carles, Cristel C

    2016-04-01

    Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression. © 2016. Published by The Company of Biologists Ltd.

  16. Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor beta receptor.

    PubMed

    Lai, Char-Chang; Edwards, Anne P B; DiMaio, Daniel

    2005-02-01

    The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.

  17. Enhancer of rudimentary homologue interacts with scaffold attachment factor B at the nuclear matrix to regulate SR protein phosphorylation.

    PubMed

    Drakouli, Sotiria; Lyberopoulou, Aggeliki; Papathanassiou, Maria; Mylonis, Ilias; Georgatsou, Eleni

    2017-08-01

    Scaffold attachment factor B1 (SAFB1) is an integral component of the nuclear matrix of vertebrate cells. It binds to DNA on scaffold/matrix attachment region elements, as well as to RNA and a multitude of different proteins, affecting basic cellular activities such as transcription, splicing and DNA damage repair. In the present study, we show that enhancer of rudimentary homologue (ERH) is a new molecular partner of SAFB1 and its 70% homologous paralogue, scaffold attachment factor B2 (SAFB2). ERH interacts directly in the nucleus with the C-terminal Arg-Gly-rich region of SAFB1/2 and co-localizes with it in the insoluble nuclear fraction. ERH, a small ubiquitous protein with striking homology among species and a unique structure, has also been implicated in fundamental cellular mechanisms. Our functional analyses suggest that the SAFB/ERH interaction does not affect SAFB1/2 function in transcription (e.g. as oestrogen receptor α co-repressors), although it reverses the inhibition exerted by SAFB1/2 on the splicing kinase SR protein kinase 1 (SRPK1), which also binds on the C-terminus of SAFB1/2. Accordingly, ERH silencing decreases lamin B receptor and SR protein phosphorylation, which are major SRPK1 substrates, further substantiating the role of SAFB1 and SAFB2 in the co-ordination of nuclear function. © 2017 Federation of European Biochemical Societies.

  18. Regulation of protein turnover by heat shock proteins.

    PubMed

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Shedding of tumor necrosis factor receptor 1 induced by protein A decreases tumor necrosis factor alpha availability and inflammation during systemic Staphylococcus aureus infection.

    PubMed

    Giai, Constanza; Gonzalez, Cintia; Ledo, Camila; Garofalo, Ailin; Di Genaro, María Silvia; Sordelli, Daniel O; Gomez, Marisa I

    2013-11-01

    Staphylococcus aureus infections are an important public health concern due to their increasing incidence and high rates of mortality. The success of S. aureus as a pathogen is highly related to its enormous capacity to evade the host immune response. The critical role of tumor necrosis factor alpha (TNF-α) in the initial host defense against systemic staphylococcal infection has been demonstrated in experimental models and may partially explain the lack of significant benefits observed in clinical trials attempting to neutralize this cytokine in septic patients. S. aureus protein A plays a key role in regulating inflammation through its ability to bind and signal through the TNF-α receptor 1 (TNFR1). In this study, we demonstrate that S. aureus, via protein A-mediated signaling, induces early shedding of TNFR1, which precedes the secretion of TNF-α in vitro and in vivo. The results obtained using a protein A-deficient mutant and tnfr1(-/-) mice strongly suggest that the increased levels of soluble TNFR1 present during experimental S. aureus infection may neutralize circulating TNF-α and impair the host inflammatory response. Early shedding of TNFR1 induced by protein A may constitute a novel mechanism by which S. aureus subverts the host immune response.

  20. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    USDA-ARS?s Scientific Manuscript database

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  1. Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses.

    PubMed

    Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou

    2014-11-01

    Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple

    PubMed Central

    2012-01-01

    Background Plant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple. Results Here, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation. Conclusions Based on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple. PMID:22336381

  3. Impairment of interferon regulatory factor-3 activation by hepatitis C virus core protein basic amino acid region 1.

    PubMed

    Inoue, Kazuaki; Tsukiyama-Kohara, Kyoko; Matsuda, Chiho; Yoneyama, Mitsutoshi; Fujita, Takashi; Kuge, Shusuke; Yoshiba, Makoto; Kohara, Michinori

    2012-11-30

    Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The protein level of hypoxia-inducible factor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes.

    PubMed

    Li, Hong-Ge; Ren, Yong-Ming; Guo, Song-Chang; Cheng, Long; Wang, De-Peng; Yang, Jie; Chang, Zhi-Jie; Zhao, Xin-Quan

    2009-02-01

    The plateau pika (Ochotona curzoniae) is a high hypoxia-tolerant species living only at 3,000-5,000 m above sea-level on the Qinghai-Tibetan plateau. Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates a variety of cellular and systemic adaptations to hypoxia. To investigate how the plateau pika adapts to a high-altitude hypoxic environment at the molecular level, we examined the expression pattern of the HIF-1alpha protein in the pika by Western blot and immunohistochemical analysis. We found that HIF-1alpha protein is expressed at a significantly high level in the pika, which is higher in most tissues (particularly in the lung, liver, spleen and kidney) of the plateau pika than that of mice living at sea-level. Importantly, we found that the protein levels of HIF-1alpha in the lung, liver, spleen and kidney of the pika were increased with increased habitat altitudes. We observed that the plateau pika HIF-1alpha localized to the nucleus of cells by an immunostaining analysis, and enhanced HRE-driven gene expression by luciferase reporter assays. Our study suggests that the HIF-1alpha protein levels are related to the adaptation of the plateau pika to the high-altitude hypoxic environment.

  5. The most effective factors to offset sarcopenia and obesity in the older Korean: Physical activity, vitamin D, and protein intake.

    PubMed

    Oh, Chorong; Jeon, Byeong Hwan; Reid Storm, Shaun Nicholas; Jho, Sunkug; No, Jae-Kyung

    2017-01-01

    The aim of this study was to evaluate the effects of the types and levels of physical activity in conjunction with protein intake and vitamin D on sarcopenia and obesity status in an elderly population. Study participants (N = 4452) were ages ≥60 y and included 1929 men and 2523 women who completed a body composition analysis with a dual energy x-ray absorptiometry and provided health and dietary data. Higher appendicular skeletal muscle mass/weight was observed in the non-obese group, although obese participants had greater weights. The non-obese sarcopenia subgroup showed health problems related to insulin resistance and metabolic-related factors compared with the nonsarcopenic group. The total metabolic equivalent was significantly different in both obese categories, regardless of sarcopenic status. The prevalence of obesity, sarcopenia, and sarcopenic obesity relatively increased with a diet deficient of protein intake and vitamin D. These data suggest that sarcopenia had a significant association with metabolic-related factors; physical activity, especially vigorous activity; and protein intake and vitamin D levels in a non-obese elderly population. Therefore, maintaining healthy body weight by means of resistance exercise and enhanced protein intake and vitamin D may help offset sarcopenia in this age group. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Role of Shape Complementarity in the Protein-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-11-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody-antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity.

  7. Kirromycin, an Inhibitor of Protein Biosynthesis that Acts on Elongation Factor Tu

    PubMed Central

    Wolf, Heinz; Chinali, Gianni; Parmeggiani, Andrea

    1974-01-01

    Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu·GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNAPhe is bound enzymatically to ribosomes, presumably because GTP hydrolysis associated with enzymatic binding of Phe-tRNAPhe is not followed by release of EF-Tu·GDP from the ribosome. This antibiotic also enables EF-Tu to catalyze the binding of Phe-tRNAPhe to the poly(U)·ribosome complex even in the absence of GTP. EF-Tu activity in the GTPase reaction is dramatically affected by kirromycin: GTP hydrolysis, which normally requires ribosomes and aminoacyl-tRNA, takes place with the elongation factor alone. This GTPase shows the same Km for GTP as the one dependent on Phe-tRNAPhe and ribosomes in the absence of the antibiotic. Ribosomes and Phe-tRNAPhe, but not tRNAPhe or Ac-Phe-tRNAPhe, stimulate the kirromycin-induced EF-Tu GTPase. These results indicate that the catalytic center of EF-Tu GTPase that is dependent upon aminoacyl-tRNA and ribosomes is primarily located on the elongation factor. In conclusion, kirromycin can substitute for GTP, aminoacyl-tRNA, or ribosomes in various reactions involving EF-Tu, apparently by affecting the allosteric controls between the sites on the EF-Tu molecule interacting with these components. PMID:4373734

  8. A Multiprotein Binding Interface in an Intrinsically Disordered Region of the Tumor Suppressor Protein Interferon Regulatory Factor-1*

    PubMed Central

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R.; Vojtesek, Borivoj; Ball, Kathryn L.

    2011-01-01

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs. PMID:21245151

  9. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1.

    PubMed

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R; Vojtesek, Borivoj; Ball, Kathryn L

    2011-04-22

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.

  10. Identification of zinc finger transcription factor EGR2 as a novel acetylated protein.

    PubMed

    Noritsugu, Kota; Ito, Akihiro; Nakao, Yoichi; Yoshida, Minoru

    2017-08-05

    EGR2 is a zinc finger transcription factor that regulates myelination in the peripheral nervous system and T cell anergy. The transcriptional activity of EGR2 is known to be regulated by its co-activators and/or co-repressors. Although the activity of transcription factors is generally regulated not only by interactions with co-regulators but also posttranslational modifications including acetylation, little is known about posttranslational modifications of EGR2. Here we show that EGR2 is a novel acetylated protein. Through immunoblotting analyses using an antibody that specifically recognizes the acetylated form of EGR2, CBP and p300 were identified as acetyltransferases, while HDAC6, 10 and SIRT1 were identified as deacetylases of EGR2. Although the NuRD complex containing HDAC1 and HDAC2 is known to associate with EGR2, the present study suggests that acetylation of EGR2 is regulated independently of NuRD. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. REGULATION OF INFLAMMATORY TRANSCRIPTION FACTORS BY HEAT SHOCK PROTEIN 70 IN PRIMARY CULTURED ASTROCYTES EXPOSED TO OXYGEN–GLUCOSE DEPRIVATION

    PubMed Central

    KIM, J. Y.; YENARI, M. A.; LEE, J. E.

    2018-01-01

    Inflammation is an important event in ischemic injury. These immune responses begin with the expression of pro-inflammatory genes modulating transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducers and activator of transcription-1 (STAT-1). The 70-kDa heat shock protein (Hsp70) can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. Since Hsp70 are induced under heat stress, we investigated the link between Hsp70 neuroprotection and phosphorylation of inhibitor of κB (IκB), c-Jun N-terminal kinases (JNK) and p38 through co-immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) assay. Transcription factors and pro-inflammatory genes were quantified by immunoblotting, electrophoretic-mobility shift assay and reverse transcription-polymerase chain reaction assays. The results showed that heat stress led to Hsp70 overexpression which rendered neuroprotection after ischemia-like injury. Overexpression Hsp70 also interrupts the phosphorylation of IκB, JNK and p38 and bluntsDNA binding of their transcription factors (NF-κB, AP-1 and STAT-1), effectively downregulating the expression of pro-inflammatory genes inheat-pretreatedastrocytes. Takentogether, these results suggest that overexpression of Hsp70 may protect against brain ischemia via an anti-inflammatory mechanism by interrupting the phosphorylation of upstream of transcription factors. PMID:25485480

  12. Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence.

    PubMed

    Lella, Muralikrishna; Mahalakshmi, Radhakrishnan

    2017-06-20

    Every amino acid exhibits a different propensity for distinct structural conformations. Hence, decoding how the primary amino acid sequence undergoes the transition to a defined secondary structure and its final three-dimensional fold is presently considered predictable with reasonable certainty. However, protein sequences that defy the first principles of secondary structure prediction (they attain two different folds) have recently been discovered. Such proteins, aptly named metamorphic proteins, decrease the conformational constraint by increasing flexibility in the secondary structure and thereby result in efficient functionality. In this review, we discuss the major factors driving the conformational switch related both to protein sequence and to structure using illustrative examples. We discuss the concept of an evolutionary transition in sequence and structure, the functional impact of the tertiary fold, and the pressure of intrinsic and external factors that give rise to metamorphic proteins. We mainly focus on the major components of protein architecture, namely, the α-helix and β-sheet segments, which are involved in conformational switching within the same or highly similar sequences. These chameleonic sequences are widespread in both cytosolic and membrane proteins, and these folds are equally important for protein structure and function. We discuss the implications of metamorphic proteins and chameleonic peptide sequences in de novo peptide design.

  13. Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression

    DTIC Science & Technology

    2012-03-01

    After 1 week of tumor inoculation, vehicle (10% ethanol, 90% corn oil ), 10 mg/kg body weight (BW) of daidzein, or combined soy isoflavones 10 mg/kg BW...Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression. PRINCIPAL INVESTIGATOR: Columba de la Parra Simental CONTRACTING...00935 Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression Columba de la Parra Simental

  14. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    NASA Astrophysics Data System (ADS)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  15. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    PubMed Central

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  16. Comparison of plasma pigment epithelium-derived factor (PEDF), retinol binding protein 4 (RBP-4), chitinase-3-like protein 1 (YKL-40) and brain-derived neurotrophic factor (BDNF) for the identification of insulin resistance.

    PubMed

    Toloza, F J K; Pérez-Matos, M C; Ricardo-Silgado, M L; Morales-Álvarez, M C; Mantilla-Rivas, J O; Pinzón-Cortés, J A; Pérez-Mayorga, M; Arévalo-García, M L; Tolosa-González, G; Mendivil, C O

    2017-09-01

    To evaluate and compare the association of four potential insulin resistance (IR) biomarkers (pigment-epithelium-derived factor [PEDF], retinol-binding-protein-4 [RBP-4], chitinase-3-like protein 1 [YKL-40] and brain-derived neurotrophic factor [BDNF]) with objective measures of IR. We studied 81 subjects with different metabolic profiles. All participants underwent a 5-point OGTT with calculation of multiple IR indexes. A subgroup of 21 participants additionally underwent a hyperinsulinemic-euglycemic clamp. IR was defined as belonging to the highest quartile of incremental area under the insulin curve (iAUCins), or to the lowest quartile of the insulin sensitivity index (ISI). PEDF was associated with adiposity variables. PEDF and RBP4 increased linearly across quartiles of iAUCins (for PEDF p-trend=0.029; for RBP-4 p-trend=0.053). YKL-40 and BDNF were not associated with any adiposity or IR variable. PEDF and RBP-4 levels identified individuals with IR by the iAUCins definition: A PEDF cutoff of 11.9ng/mL had 60% sensitivity and 68% specificity, while a RBP-4 cutoff of 71.6ng/mL had 70% sensitivity and 57% specificity. In multiple regression analyses simultaneously including clinical variables and the studied biomarkers, only BMI, PEDF and RBP-4 remained significant predictors of IR. Plasma PEDF and RBP4 identified IR in subjects with no prior diagnosis of diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Role of Shape Complementarity in the Protein-Protein Interactions

    PubMed Central

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-01-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody–antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity. PMID:24253561

  18. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  19. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)?

    PubMed

    Ruggiero, Marco; Reinwald, Heinz; Pacini, Stefania

    2016-09-01

    We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Transfection of influenza A virus nuclear export protein induces the expression of tumor necrosis factor alpha.

    PubMed

    Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jesús-Ortega, Nereyda; Santos-López, Gerardo; Vallejo-Ruiz, Verónica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio

    2014-06-24

    Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators and protein kinases

    USDA-ARS?s Scientific Manuscript database

    Transcription factors (TFs) are proteins that regulate the expression of target genes by binding to specific elements in their regulatory regions. Transcriptional regulators (TRs) also regulate the expression of target genes; however, they operate indirectly via interaction with the basal transcript...

  2. Identification and cloning of two immunogenic Clostridium perfringens proteins, elongation factor Tu and pyruvate:ferredoxin oxidoreductase of C. perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium-related poultry diseases such as necrotic enteritis (NE) and gangrenous dermatitis (GD) cause substantial economic losses on a global scale. Two antigenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO), were identified by react...

  3. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  4. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  5. Heat tolerance and expression of protein synthesis elongation factors, EF-Tu and EF-1a, in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Protein elongation factors, EF-Tu and EF-1a, have been implicated in cell response to heat stress. In spring wheat, EF-Tu displays chaperone activity and reduces thermal aggregation of Rubisco activase. Similarly, in mammalian cells, EF-1a displays chaperone-like activity and regulates the expressio...

  6. Protein stability: a crystallographer’s perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deller, Marc C., E-mail: mdeller@stanford.edu; Kong, Leopold; Rupp, Bernhard

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhatmore » practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.« less

  7. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor.

    PubMed

    Bradley, Sarah V; Holland, Eric C; Liu, Grace Y; Thomas, Dafydd; Hyun, Teresa S; Ross, Theodora S

    2007-04-15

    Huntingtin interacting protein 1 (HIP1) is a multidomain oncoprotein whose expression correlates with increased epidermal growth factor receptor (EGFR) levels in certain tumors. For example, HIP1-transformed fibroblasts and HIP1-positive breast cancers have elevated EGFR protein levels. The combined association of HIP1 with huntingtin, the protein that is mutated in Huntington's disease, and the known overexpression of EGFR in glial brain tumors prompted us to explore HIP1 expression in a group of patients with different types of brain cancer. We report here that HIP1 is overexpressed with high frequency in brain cancers and that this overexpression correlates with EGFR and platelet-derived growth factor beta receptor expression. Furthermore, serum samples from patients with brain cancer contained anti-HIP1 antibodies more frequently than age-matched brain cancer-free controls. Finally, we report that HIP1 physically associates with EGFR and that this association is independent of the lipid, clathrin, and actin interacting domains of HIP1. These findings suggest that HIP1 may up-regulate or maintain EGFR overexpression in primary brain tumors by directly interacting with the receptor. This novel HIP1-EGFR interaction may work with or independent of HIP1 modulation of EGFR degradation via clathrin-mediated membrane trafficking pathways. Further investigation of HIP1 function in brain cancer biology and validation of its use as a prognostic or predictive brain tumor marker are now warranted.

  8. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2.

    PubMed

    Shetty, Aditya; Dasari, Subramanyam; Banerjee, Souresh; Gheewala, Taher; Zheng, Guoxing; Chen, Aoshuang; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar

    2016-11-01

    Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated. Here, we show that HDGF is overexpressed in both androgen-sensitive LNCaP cells and androgen-insensitive DU145, 22RV1, and PC-3 cells. Forced overexpression enhanced cell viability of RWPE-1 cells, whereas HDGF knockdown reduced cell proliferation in human prostate cancer cells. We also show that HDGF may serve as a survival-related protein as ectopic overexpression of HDGF in RWPE cells up-regulated the expression of antiapoptosis proteins cyclin E and BCL-2, whereas simultaneously down-regulating proapoptotic protein BAX. Western blot analysis also showed that HDGF overexpression modulated the activity of phospho-AKT as well as NF-kB, and these results correlated with in vitro migration and invasion assays. We next assessed the therapeutic potential of HDGF inhibition with a HDGF monoclonal antibody and vitamin k 2 , showing reduced cell proliferation as well as inhibition of NF-kB expression in HDGF overexpressed RWPE cells treated with a HDGF monoclonal antibody and vitamin K 2 . Collectively, our results suggest that HDGF is a relevant protein in prostate oncogenesis and may serve as a potential therapeutic target in prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Phosphorylation of translation factors in response to anoxia in turtles, Trachemys scripta elegans: role of the AMP-activated protein kinase and target of rapamycin signalling pathways.

    PubMed

    Rider, Mark H; Hussain, Nusrat; Dilworth, Stephen M; Storey, Kenneth B

    2009-12-01

    Long-term survival of oxygen deprivation by animals with well-developed anoxia tolerance depends on multiple biochemical adaptations including strong metabolic rate depression. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in the suppression of protein synthesis that occurs when turtles experience anoxic conditions. AMPK activity and the phosphorylation state of ribosomal translation factors were measured in liver, heart, red muscle and white muscle of red-eared slider turtles (Trachemys scripta elegans) subjected to 20 h of anoxic submergence. AMPK activity increased twofold in white muscle of anoxic turtles compared with aerobic controls but remained unchanged in liver and red muscle, whereas in heart AMPK activity decreased by 40%. Immunoblotting with phospho-specific antibodies revealed that eukaryotic elongation factor-2 phosphorylation at the inactivating Thr56 site increased six- and eightfold in red and white muscles from anoxic animals, respectively, but was unchanged in liver and heart. The phosphorylation state of the activating Thr389 site of p70 ribosomal protein S6 kinase was reduced under anoxia in red muscle and heart but was unaffected in liver and white muscle. Exposure to anoxia decreased 40S ribosomal protein S6 phosphorylation in heart and promoted eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) dephosphorylation in red muscle, but surprisingly increased 4E-BP1 phosphorylation in white muscle. The changes in phosphorylation state of translation factors suggest that organ-specific patterns of signalling and response are involved in achieving the anoxia-induced suppression of protein synthesis in turtles.

  10. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    PubMed Central

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

  11. Host innate inflammatory factors and staphylococcal protein A influence the duration of human Staphylococcus aureus nasal carriage.

    PubMed

    Cole, A L; Muthukrishnan, G; Chong, C; Beavis, A; Eade, C R; Wood, M P; Deichen, M G; Cole, A M

    2016-11-01

    Human Staphylococcus aureus (SA) nasal carriage provides a reservoir for the dissemination of infectious strains; however, factors regulating the establishment and persistence of nasal colonization are mostly unknown. We measured carriage duration and nasal fluid inflammatory markers after nasally inoculating healthy participants with their previously isolated SA strains. Out of 15 studies, 10 resulted in rapid clearance (9±6 days) that corresponded with upregulated chemokines, growth factors, and predominantly Th1-type cytokines, but not interleukin (IL)-17. Nasal SA persistence corresponded with elevated baseline levels of macrophage inflammatory protein-1β, IL-1β, and IL-6, no induction of inflammatory factors after inoculation, and decreased IL-1 receptor antagonist/IL-1β ratio. SA-expressed staphylococcal protein A (SpA) levels correlated positively with carriage duration. Competitive inoculation studies revealed that isogenic SpA knockout (ΔSpA) strains were cleared faster than wild type only in participants with upregulated inflammatory markers after inoculation. The remaining participants did not mount an inflammatory response and did not clear either strain. ΔSpA strains demonstrated lower growth rates in carrier nasal fluids and lower survival rates when incubated with neutrophils. Collectively, the presented studies identify innate immune effectors that cooperatively modulate nasal carriage duration, and confirm SpA as a bacterial codeterminant of SA nasal carriage.

  12. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less

  13. Viscosity Analysis of Dual Variable Domain Immunoglobulin Protein Solutions: Role of Size, Electroviscous Effect and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-01-01

    Increased solution viscosity results in difficulties in manufacturing and delivery of therapeutic protein formulations, increasing both the time and production costs, and leading to patient inconvenience. The solution viscosity is affected by the molecular properties of both the solute and the solvent. The purpose of this work was to investigate the effect of size, charge and protein-protein interactions on the viscosity of Dual Variable Domain Immunoglobulin (DVD-Ig(TM)) protein solutions. The effect of size of the protein molecule on solution viscosity was investigated by measuring intrinsic viscosity and excluded volume calculations for monoclonal antibody (mAb) and DVD-Ig(TM) protein solutions. The role of the electrostatic charge resulting in electroviscous effects for DVD-Ig(TM) protein was assessed by measuring zeta potential. Light scattering measurements were performed to detect protein-protein interactions affecting solution viscosity. DVD-Ig(TM) protein exhibited significantly higher viscosity compared to mAb. Intrinsic viscosity and excluded volume calculations indicated that the size of the molecule affects viscosity significantly at higher concentrations, while the effect was minimal at intermediate concentrations. Electroviscous contribution to the viscosity of DVD-Ig(TM) protein varied depending on the presence or absence of ions in the solution. In buffered solutions, negative k D and B 2 values indicated the presence of attractive interactions which resulted in high viscosity for DVD-Ig(TM) protein at certain pH and ionic strength conditions. Results show that more than one factor contributes to the increased viscosity of DVD-Ig(TM) protein and interplay of these factors modulates the overall viscosity behavior of the solution, especially at higher concentrations.

  14. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    PubMed

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  15. Experimental Analysis of Mimivirus Translation Initiation Factor 4a Reveals Its Importance in Viral Protein Translation during Infection of Acanthamoeba polyphaga.

    PubMed

    Bekliz, Meriem; Azza, Said; Seligmann, Hervé; Decloquement, Philippe; Raoult, Didier; La Scola, Bernard

    2018-05-15

    The Acanthamoeba polyphaga mimivirus is the first giant virus ever described, with a 1.2-Mb genome which encodes 979 proteins, including central components of the translation apparatus. One of these proteins, R458, was predicted to initiate translation, although its specific role remains unknown. We silenced the R458 gene using small interfering RNA (siRNA) and compared levels of viral fitness and protein expression in silenced versus wild-type mimivirus. Silencing decreased the growth rate, but viral particle production at the end of the viral cycle was unaffected. A comparative proteomic approach using two-dimensional difference-in-gel electrophoresis (2D-DIGE) revealed deregulation of the expression of 32 proteins in silenced mimivirus, which were defined as up- or downregulated. Besides revealing proteins with unknown functions, silencing R458 also revealed deregulation in proteins associated with viral particle structures, transcriptional machinery, oxidative pathways, modification of proteins/lipids, and DNA topology/repair. Most of these proteins belong to genes transcribed at the end of the viral cycle. Overall, our data suggest that the R458 protein regulates the expression of mimivirus proteins and, thus, that mimivirus translational proteins may not be strictly redundant in relation to those from the amoeba host. As is the case for eukaryotic initiation factor 4a (eIF4a), the R458 protein is the prototypical member of the ATP-dependent DEAD box RNA helicase mechanism. We suggest that the R458 protein is required to unwind the secondary structures at the 5' ends of mRNAs and to bind the mRNA to the ribosome, making it possible to scan for the start codon. These data are the first experimental evidence of mimivirus translation-related genes, predicted to initiate protein biosynthesis. IMPORTANCE The presence in the genome of a mimivirus of genes coding for many translational processes, with the exception of ribosome constituents, has been the subject of

  16. Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells.

    PubMed

    Sadewasser, Anne; Paki, Katharina; Eichelbaum, Katrin; Bogdanow, Boris; Saenger, Sandra; Budt, Matthias; Lesch, Markus; Hinz, Klaus-Peter; Herrmann, Andreas; Meyer, Thomas F; Karlas, Alexander; Selbach, Matthias; Wolff, Thorsten

    2017-05-01

    Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells*

    PubMed Central

    Sadewasser, Anne; Paki, Katharina; Eichelbaum, Katrin; Bogdanow, Boris; Saenger, Sandra; Budt, Matthias; Lesch, Markus; Hinz, Klaus-Peter; Herrmann, Andreas; Meyer, Thomas F.; Karlas, Alexander; Selbach, Matthias; Wolff, Thorsten

    2017-01-01

    Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target. PMID:28289176

  18. The Acetylase/Deacetylase Couple CREB-binding Protein/Sirtuin 1 Controls Hypoxia-inducible Factor 2 Signaling*

    PubMed Central

    Chen, Rui; Xu, Min; Hogg, Richard T.; Li, Jiwen; Little, Bertis; Gerard, Robert D.; Garcia, Joseph A.

    2012-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors. HIF-1α plays a prominent role in hypoxic gene induction. HIF-2α target genes are more restricted but include erythropoietin (Epo), one of the most highly hypoxia-inducible genes in mammals. We previously reported that HIF-2α is acetylated during hypoxia but is rapidly deacetylated by the stress-responsive deacetylase Sirtuin 1. We now demonstrate that the lysine acetyltransferases cAMP-response element-binding protein-binding protein (CBP) and p300 are required for efficient Epo induction during hypoxia. However, despite close structural similarity, the roles of CBP and p300 differ in HIF signaling. CBP acetylates HIF-2α, is a major coactivator for HIF-2-mediated Epo induction, and is required for Sirt1 augmentation of HIF-2 signaling during hypoxia in Hep3B cells. In comparison, p300 is a major contributor for HIF-1 signaling as indicated by induction of Pgk1. Whereas CBP can bind with HIF-2α independent of the HIF-2α C-terminal activation domain via enzyme/substrate interactions, p300 only complexes with HIF-2α through the C-terminal activation domain. Maximal CBP/HIF-2 signaling requires intact CBP acetyltransferase activity in both Hep3B cells as well as in mice. PMID:22807441

  19. Organization, chromosomal localization and promoter analysis of the gene encoding human acidic fibroblast growth factor intracellular binding protein.

    PubMed Central

    Kolpakova, E; Frengen, E; Stokke, T; Olsnes, S

    2000-01-01

    Acidic fibroblast growth factor (aFGF) intracellular binding protein (FIBP) is a protein found mainly in the nucleus that might be involved in the intracellular function of aFGF. Here we present a comparative analysis of the deduced amino acid sequences of human, murine and Drosophila FIBP analogues and demonstrate that FIBP is an evolutionarily conserved protein. The human gene spans more than 5 kb, comprising ten exons and nine introns, and maps to chromosome 11q13.1. Two slightly different splice variants found in different tissues were isolated and characterized. Sequence analysis of the region surrounding the translation start revealed a CpG island, a classical feature of widely expressed genes. Functional studies of the promoter region with a luciferase reporter system suggested a strong transcriptional activity residing within 600 bp of the 5' flanking region. PMID:11104667

  20. Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi.

    PubMed

    Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M

    2006-05-01

    Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.

  1. The bZIP repressor proteins, c-Jun dimerization protein 2 and activating transcription factor 3, recruit multiple HDAC members to the ATF3 promoter.

    PubMed

    Darlyuk-Saadon, Ilona; Weidenfeld-Baranboim, Keren; Yokoyama, Kazunari K; Hai, Tsonwin; Aronheim, Ami

    2012-01-01

    JDP2, is a basic leucine zipper (bZIP) protein displaying a high degree of homology with the stress inducible transcription factor, ATF3. Both proteins bind to cAMP and TPA response elements and repress transcription by multiple mechanisms. Histone deacetylases (HDACs) play a key role in gene inactivation by deacetylating lysine residues on histones. Here we describe the association of JDP2 and ATF3 with HDACs 1, 2-6 and 10. Association of HDAC3 and HDAC6 with JDP2 and ATF3 occurs via direct protein-protein interactions. Only part of the N-terminal bZIP motif of JDP2 and ATF3 basic domain is necessary and sufficient for the interaction with HDACs in a manner that is independent of coiled-coil dimerization. Class I HDACs associate with the bZIP repressors via the DAC conserved domain whereas the Class IIb HDAC6 associates through its C-terminal unique binder of ubiquitin Zn finger domain. Both JDP2 and ATF3 are known to bind and repress the ATF3 promoter. MEF cells treated with histone deacetylase inhibitor, trichostatin A (TSA) display enhanced ATF3 transcription. ATF3 enhanced transcription is significantly reduced in MEF cells lacking both ATF3 and JDP2. Collectively, we propose that the recruitment of multiple HDAC members to JDP2 and ATF3 is part of their transcription repression mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Novel tumor necrosis factor-α induced protein eight (TNFAIP8/TIPE) family: Functions and downstream targets involved in cancer progression.

    PubMed

    Padmavathi, Ganesan; Banik, Kishore; Monisha, Javadi; Bordoloi, Devivasha; Bano, Shabnam; Arfuso, Frank; Sethi, Gautam; Lu, Fan; Kunnumakkara, Ajaikumar B

    2018-06-16

    The tumor necrosis factor (TNF)-α- induced protein 8 (TNFAIP8/TIPE) family is a death effector domain (DED)-containing protein family with four identified members: TNFAIP8 (TIPE), TNFAIP8L1 (TIPE1), TNFAIP8L2 (TIPE2), and TNFAIP8L3 (TIPE3). These proteins were found to play crucial roles in the regulation of immune homeostasis, inflammation, and cancer development. Intensive research in the past two decades revealed a strong correlation of TIPE proteins with development of various cancers including cancers of the bladder, blood, bone, breast, cervix, colon, esophagus, endometrium, stomach, liver, lung, ovary, pancreas, prostate, and thyroid gland. Also, deregulation of these proteins was found to promote the essential hallmarks of cancer such as survival, tumor growth, proliferation, inhibition of apoptosis, angiogenesis, invasion, migration, and metastasis. Further, differential expression of these proteins in normal and cancer tissues and their association with tumor progression and prognosis signifies the potential diagnostic and prognostic values of TIPE proteins and their importance in cancer therapy. The current review summarizes the literature available thus far on the expression, function, and role of TIPE proteins in the development and maintenance of various cancers. Copyright © 2018. Published by Elsevier B.V.

  3. Human Protein Kinases and Obesity.

    PubMed

    Engin, Atilla

    2017-01-01

    The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity, and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified by the target amino acid in their substrates. Some protein kinases can phosphorylate both serine/threonine, as well as tyrosine residues. This group of kinases has been known as dual specificity kinases. Unlike the dual specificity kinases, a heterogeneous group of protein phosphatases are known as dual-specificity phosphatases. These phosphatases remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases. The protein kinase-phosphoproteins interactions play an important role in obesity . In obesity, the pro- and anti-inflammatory effects of adipokines and cytokines through intracellular signaling pathways mainly involve the nuclear factor kappa B (NF-kappaB) and the c-Jun N-terminal kinase (JNK) systems as well as the inhibitor of kappaB-kinase beta (IKK beta). Impairment of insulin signaling in obesity is largely mediated by the activation of the IKKbeta and the JNK. Furthermore, oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2alpha kinase (PERK) and activating transcription factor-6. The transcriptional regulation of

  4. Position Matters: Network Centrality Considerably Impacts Rates of Protein Evolution in the Human Protein–Protein Interaction Network

    PubMed Central

    Feyertag, Felix; Chakraborty, Sandip

    2017-01-01

    Abstract The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein–protein interaction data set and the human signal transduction network—a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. PMID:28854629

  5. Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor

    PubMed Central

    Tawaratsumida, Kazuki; Phan, Van; Hrincius, Eike R.; High, Anthony A.; Webby, Richard; Redecke, Vanessa

    2014-01-01

    ABSTRACT Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host

  6. Optimization of non-denaturing protein extraction conditions for plant PPR proteins.

    PubMed

    Andrés-Colás, Nuria; Van Der Straeten, Dominique

    2017-01-01

    Pentatricopeptide repeat proteins are one of the major protein families in flowering plants, containing around 450 members. They participate in RNA editing and are related to plant growth, development and reproduction, as well as to responses to ABA and abiotic stresses. Their characteristics have been described in silico; however, relatively little is known about their biochemical properties. Different types of PPR proteins, with different tasks in RNA editing, have been suggested to interact in an editosome to complete RNA editing. Other non-PPR editing factors, such as the multiple organellar RNA editing factors and the organelle RNA recognition motif-containing protein family, for example, have also been described in plants. However, while evidence on protein interactions between non-PPR RNA editing proteins is accumulating, very few PPR protein interactions have been reported; possibly due to their high instability. In this manuscript, we aimed to optimize the conditions for non-denaturing protein extraction of PPR proteins allowing in vivo protein analyses, such as interaction assays by co-immunoprecipitation. The unusually high protein degradation rate, the aggregation properties and the high pI, as well as the ATP-dependence of some PPR proteins, are key aspects to be considered when extracting PPR proteins in a non-denatured state. During extraction of PPR proteins, the use of proteasome and phosphatase inhibitors is critical. The use of the ATP-cofactor reduces considerably the degradation of PPR proteins. A short centrifugation step to discard cell debris is essential to avoid PPR precipitation; while in some cases, addition of a reductant is needed, probably caused by the pI/pH context. This work provides an easy and rapid optimized non-denaturing total protein extraction protocol from plant tissue, suitable for polypeptides of the PPR family.

  7. The Chromatin Remodeling Factor SMARCB1 Forms a Complex with Human Cytomegalovirus Proteins UL114 and UL44

    PubMed Central

    Ranneberg-Nilsen, Toril; Rollag, Halvor; Slettebakk, Ragnhild; Backe, Paul Hoff; Olsen, Øyvind; Luna, Luisa; Bjørås, Magnar

    2012-01-01

    Background Human cytomegalovirus (HCMV) uracil DNA glycosylase, UL114, is required for efficient viral DNA replication. Presumably, UL114 functions as a structural partner to other factors of the DNA-replication machinery and not as a DNA repair protein. UL114 binds UL44 (HCMV processivity factor) and UL54 (HCMV-DNA-polymerase). In the present study we have searched for cellular partners of UL114. Methodology/Principal Findings In a yeast two-hybrid screen SMARCB1, a factor of the SWI/SNF chromatin remodeling complex, was found to be an interacting partner of UL114. This interaction was confirmed in vitro by co-immunoprecipitation and pull-down. Immunofluorescence microscopy revealed that SMARCB1 along with BRG-1, BAF170 and BAF155, which are the core SWI/SNF components required for efficient chromatin remodeling, were present in virus replication foci 24–48 hours post infection (hpi). Furthermore a direct interaction was also demonstrated for SMARCB1 and UL44. Conclusions/Significance The core SWI/SNF factors required for efficient chromatin remodeling are present in the HCMV replication foci throughout infection. The proteins UL44 and UL114 interact with SMARCB1 and may participate in the recruitment of the SWI/SNF complex to the chromatinized virus DNA. Thus, the presence of the SWI/SNF chromatin remodeling complex in replication foci and its association with UL114 and with UL44 might imply its involvement in different DNA transactions. PMID:22479537

  8. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    PubMed

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  9. Sequence and characterization of cytoplasmic nuclear protein import factor p97

    PubMed Central

    1995-01-01

    Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein. PMID:7615630

  10. Tunicate cytostatic factor TC14-3 induces a polycomb group gene and histone modification through Ca2+ binding and protein dimerization

    PubMed Central

    2012-01-01

    Background As many invertebrate species have multipotent cells that undergo cell growth and differentiation during regeneration and budding, many unique and interesting homeostatic factors are expected to exist in those animals. However, our understanding of such factors and global mechanisms remains very poor. Single zooids of the tunicate, Polyandrocarpa misakiensis, can give off as many as 40 buds during the life span. Bud development proceeds by means of transdifferentiation of very limited number of cells and tissues. TC14-3 is one of several different but closely related polypeptides isolated from P. misakiensis. It acts as a cytostatic factor that regulates proliferation, adhesion, and differentiation of multipotent cells, although the molecular mechanism remains uncertain. The Polycomb group (PcG) genes are involved in epigenetic control of genomic activity in mammals. In invertebrates except Drosophila, PcG and histone methylation have not been studied so extensively, and genome-wide gene regulation is poorly understood. Results When Phe65 of TC14-3 was mutated to an acidic amino acid, the resultant mutant protein failed to dimerize. The replacement of Thr69 with Arg69 made dimers unstable. When Glu106 was changed to Gly106, the resultant mutant protein completely lost Ca2+ binding. All these mutant proteins lacked cytostatic activity, indicating the requirement of protein dimerization and calcium for the activity. Polyandrocarpa Eed, a component of PcG, is highly expressed during budding, like TC14-3. When wild-type and mutant TC14-3s were applied in vivo and in vitro to Polyandrocarpa cells, only wild-type TC14-3 could induce Eed without affecting histone methyltransferase gene expression. Eed-expressing cells underwent trimethylation of histone H3 lysine27. PmEed knockdown by RNA interference rescued cultured cells from the growth-inhibitory effects of TC14-3. Conclusion These results show that in P. misakiensis, the cytostatic activity of TC14-3 is

  11. E. coli derived Von Willebrand Factor-A2 domain FRET proteins that quantify ADAMTS13 activity

    PubMed Central

    Dayananda, Kannayakanahalli M.; Gogia, Shobhit; Neelamegham, Sriram

    2010-01-01

    The cleavage of the A2-domain of Von Willebrand Factor (VWF) by the metalloprotease ADAMTS13 regulates VWF size and platelet thrombosis rates. Reduction or inhibition of this enzyme activity leads to thrombotic thrombocytopenic purpura (TTP). We generated a set of novel molecules called VWF-A2 FRET proteins’, where variants of YFP (Venus) and CFP (Cerulean) flank either the entire VWF-A2 domain (175 amino acids) or truncated fragments (141, 113, 77 amino acids) of this domain. These proteins were expressed in E. coli in soluble form, and they exhibited Fluorescence/Förster Resonance Energy Transfer (FRET) properties. Results show that introduction of Venus/Cerulean itself did not alter the ability of VWF-A2 to undergo ADAMTS13 mediated cleavage. The smallest FRET protein, XS-VWF, detected plasma ADAMTS13 activity down to 10% of normal levels. Tests of acquired and inherited TTP could be completed within 30 min. VWF-A2 conformation changed progressively, and not abruptly, upon increasing urea concentration. While proteins with 77 and 113 VWF-A2 residues were cleaved in the absence of denaturant, 4M urea was required for the efficient cleavage of larger constructs. Overall, VWF-A2 FRET proteins can be applied both for the rapid diagnosis of plasma ADAMTS13 activity, and as a tool to study VWF-A2 conformation dynamics. PMID:21146487

  12. Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation.

    PubMed

    Yang, Yoosoo; Kong, Byoungjae; Jung, Younghoon; Park, Joon-Bum; Oh, Jung-Mi; Hwang, Jaesung; Cho, Jae Youl; Kweon, Dae-Hyuk

    2018-01-01

    Vesicle-associated V-soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and target membrane-associated T-SNAREs (syntaxin 4 and SNAP-23) assemble into a core trans -SNARE complex that mediates membrane fusion during mast cell degranulation. This complex plays pivotal roles at various stages of exocytosis from the initial priming step to fusion pore opening and expansion, finally resulting in the release of the vesicle contents. In this study, peptides with the sequences of various SNARE motifs were investigated for their potential inhibitory effects against SNARE complex formation and mast cell degranulation. The peptides with the sequences of the N-terminal regions of vesicle-associated membrane protein 2 (VAMP2) and VAMP8 were found to reduce mast cell degranulation by inhibiting SNARE complex formation. The fusion of protein transduction domains to the N-terminal of each peptide enabled the internalization of the fusion peptides into the cells equally as efficiently as cell permeabilization by streptolysin-O without any loss of their inhibitory activities. Distinct subsets of mast cell granules could be selectively regulated by the N-terminal-mimicking peptides derived from VAMP2 and VAMP8, and they effectively decreased the symptoms of atopic dermatitis in mouse models. These results suggest that the cell membrane fusion machinery may represent a therapeutic target for atopic dermatitis.

  13. Nuclear Export Factor CRM1 Interacts with Nonstructural Proteins NS2 from Parvovirus Minute Virus of Mice

    PubMed Central

    Bodendorf, Ursula; Cziepluch, Celina; Jauniaux, Jean-Claude; Rommelaere, Jean; Salomé, Nathalie

    1999-01-01

    The nonstructural NS2 proteins of autonomous parvoviruses are known to act in a host cell-dependent manner and to play a role in viral DNA replication, efficient translation of viral mRNA, and/or encapsidation. Their exact function during the parvovirus life cycle remains, however, still obscure. We report here the characterization of the interaction with the NS2 proteins from the parvovirus minute virus of mice (MVM) and rat as well as mouse homologues of the human CRM1 protein, a member of the importin-beta family recently identified as an essential nuclear export factor. Using the two-hybrid system, we could detect the interaction between the carboxy-terminal region of rat CRM1 and each of the three isoforms of NS2 (P [or major], Y [or minor], and L [or rare]). NS2 proteins were further shown to interact with the full-length CRM1 by coimmunoprecipitation experiments using extracts from both mouse and rat cell lines. Our data show that CRM1 preferentially binds to the nonphosphorylated isoforms of NS2. Moreover, we observed that the treatment of MVM-infected cells with leptomycin B, a drug that specifically inhibits the CRM1-dependent nuclear export pathway, leads to a drastic accumulation of NS2 proteins in the nucleus. Both NS2 interaction with CRM1 and nuclear accumulation upon leptomycin B treatment strongly suggest that these nonstructural viral proteins are actively exported out of the nuclei of infected cells via a CRM1-mediated nuclear export pathway. PMID:10438867

  14. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.

  15. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class.

    PubMed Central

    Buchdunger, E; Zimmermann, J; Mett, H; Meyer, T; Müller, M; Regenass, U; Lydon, N B

    1995-01-01

    The platelet-derived growth factor (PDGF) receptor is a member of the transmembrane growth factor receptor protein family with intrinsic protein-tyrosine kinase activity. We describe a potent protein-tyrosine kinase inhibitor (CGP 53716) that shows selectivity for the PDGF receptor in vitro and in the cell. The compound shows selectivity for inhibition of PDGF-mediated events such as PDGF receptor autophosphorylation, cellular tyrosine phosphorylation, and c-fos mRNA induction in response to PDGF stimulation of intact cells. In contrast, ligand-induced autophosphorylation of the epidermal growth factor (EGF) receptor, insulin receptor, and the insulin-like growth factor I receptor, as well as c-fos mRNA expression induced by EGF, fibroblast growth factor, and phorbol ester, was insensitive to inhibition by CGP 53716. In antiproliferative assays, the compound was approximately 30-fold more potent in inhibiting PDGF-mediated growth of v-sis-transformed BALB/c 3T3 cells relative to inhibition of EGF-dependent BALB/Mk cells, interleukin-3-dependent FDC-P1 cells, and the T24 bladder carcinoma line. When tested in vivo using highly tumorigenic v-sis- and human c-sis-transformed BALB/c 3T3 cells, CGP 53716 showed antitumor activity at well-tolerated doses. In contrast, CGP 53716 did not show antitumor activity against xenografts of the A431 tumor, which overexpresses the EGF receptor. These findings suggest that CGP 53716 may have therapeutic potential for the treatment of diseases involving abnormal cellular proliferation induced by PDGF receptor activation. Images Fig. 1 Fig. 2 Fig. 3 PMID:7708684

  16. Heat-induced accumulation of protein synthesis elongation factor 1A indicates an important role in heat tolerance in potato

    USDA-ARS?s Scientific Manuscript database

    Heat stress substantially reduces crop productivity worldwide, and will become more severe due to global warming. Identification of proteins involved in heat stress response may help develop varieties for heat tolerance. Eukaryotic elongation factor 1A (eEF1A) is a cytosolic, multifunctional protei...

  17. Physical activity in individuals with haemophilia and experience with recombinant factor VIII Fc fusion protein and recombinant factor IX Fc fusion protein for the treatment of active patients: a literature review and case reports.

    PubMed

    Wang, Michael; Álvarez-Román, María Teresa; Chowdary, Pratima; Quon, Doris V; Schafer, Kim

    2016-10-01

    The World Federation of Hemophilia and the National Hemophilia Foundation encourage people with haemophilia (PWH) to participate in routine physical activity. The benefits of physical activity for PWH include improvements in joint, bone, and muscle health. Accordingly, a number of studies suggest that levels of physical activity among PWH are similar to those of their healthy peers, especially among individuals who began prophylaxis at an early age (≤3 years). Importantly, several studies found either no increased risk or only a transient increase in risk of bleeding with more intensive physical activity compared with less intensive physical activity. Data on optimal prophylaxis regimens for PWH who participate in physical/sporting activities; however, remain sparse. Long-acting recombinant factor VIII Fc fusion protein (rFVIIIFc) and recombinant factor IX Fc fusion protein (rFIXFc) demonstrated efficacy for the prevention and treatment of bleeding episodes in Phase 3 clinical trials of participants with haemophilia A and B, respectively, with most individuals able to maintain or increase their physical activities. This manuscript reviews the current literature that describes physical activity in PWH. Additionally, case studies are presented to provide supplemental information to clinicians illustrating the use of rFVIIIFc and rFIXFc in physically active patients with haemophilia A and B, respectively. These case reports demonstrate that it is possible for patients to be physically active and maintain good control of their haemophilia with extended interval prophylactic dosing using rFVIIIFc or rFIXFc.

  18. Physical activity in individuals with haemophilia and experience with recombinant factor VIII Fc fusion protein and recombinant factor IX Fc fusion protein for the treatment of active patients: a literature review and case reports

    PubMed Central

    Wang, Michael; Álvarez-Román, María Teresa; Chowdary, Pratima; Quon, Doris V.; Schafer, Kim

    2016-01-01

    The World Federation of Hemophilia and the National Hemophilia Foundation encourage people with haemophilia (PWH) to participate in routine physical activity. The benefits of physical activity for PWH include improvements in joint, bone, and muscle health. Accordingly, a number of studies suggest that levels of physical activity among PWH are similar to those of their healthy peers, especially among individuals who began prophylaxis at an early age (≤3 years). Importantly, several studies found either no increased risk or only a transient increase in risk of bleeding with more intensive physical activity compared with less intensive physical activity. Data on optimal prophylaxis regimens for PWH who participate in physical/sporting activities; however, remain sparse. Long-acting recombinant factor VIII Fc fusion protein (rFVIIIFc) and recombinant factor IX Fc fusion protein (rFIXFc) demonstrated efficacy for the prevention and treatment of bleeding episodes in Phase 3 clinical trials of participants with haemophilia A and B, respectively, with most individuals able to maintain or increase their physical activities. This manuscript reviews the current literature that describes physical activity in PWH. Additionally, case studies are presented to provide supplemental information to clinicians illustrating the use of rFVIIIFc and rFIXFc in physically active patients with haemophilia A and B, respectively. These case reports demonstrate that it is possible for patients to be physically active and maintain good control of their haemophilia with extended interval prophylactic dosing using rFVIIIFc or rFIXFc. PMID:27116081

  19. Cooperative Regulation of the Interferon Regulatory Factor-1 Tumor Suppressor Protein by Core Components of the Molecular Chaperone Machinery*

    PubMed Central

    Narayan, Vikram; Eckert, Mirjam; Zylicz, Alicja; Zylicz, Maciej; Ball, Kathryn L.

    2009-01-01

    Our understanding of the post-translational processes involved in regulating the interferon regulatory factor-1 (IRF-1) tumor suppressor protein is limited. The introduction of mutations within the C-terminal Mf1 domain (amino acids 301–325) impacts on IRF-1-mediated gene repression and growth suppression as well as the rate of IRF-1 degradation. However, nothing is known about the proteins that interact with this region to modulate IRF-1 function. A biochemical screen for Mf1-interacting proteins has identified an LXXLL motif that is required for binding of Hsp70 family members and cooperation with Hsp90 to regulate IRF-1 turnover and activity. These conclusions are supported by the finding that Hsp90 inhibitors suppress IRF-1-dependent transcription shortly after treatment, although at later time points inhibition of Hsp90 leads to an Hsp70-dependent depletion of nuclear IRF-1. Conversely, the half-life of IRF-1 is increased by Hsp90 in an ATPase-dependent manner leading to the accumulation of nuclear but not cytoplasmic IRF-1. This study begins to elucidate the role of the Mf1 domain of IRF-1 in orchestrating the recruitment of regulatory factors that can impact on both its turnover and transcriptional activity. PMID:19502235

  20. Diagnostic accuracy of dynamic contrast-enhanced MR imaging using a phase-derived vascular input function in the preoperative grading of gliomas.

    PubMed

    Nguyen, T B; Cron, G O; Mercier, J F; Foottit, C; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Caudrelier, J M; Sinclair, J; Hogan, M J; Thornhill, R E; Cameron, I G

    2012-09-01

    The accuracy of tumor plasma volume and K(trans) estimates obtained with DCE MR imaging may have inaccuracies introduced by a poor estimation of the VIF. In this study, we evaluated the diagnostic accuracy of a novel technique by using a phase-derived VIF and "bookend" T1 measurements in the preoperative grading of patients with suspected gliomas. This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. Both magnitude and phase images were acquired during DCE MR imaging for estimates of K(trans)_φ and V(p_)φ (calculated from a phase-derived VIF and bookend T1 measurements) as well as K(trans)_SI and V(p_)SI (calculated from a magnitude-derived VIF without T1 measurements). Median K(trans)_φ values were 0.0041 minutes(-1) (95 CI, 0.00062-0.033), 0.031 minutes(-1) (0.011-0.150), and 0.088 minutes(-1) (0.069-0.110) for grade II, III, and IV gliomas, respectively (P ≤ .05 for each). Median V(p_)φ values were 0.64 mL/100 g (0.06-1.40), 0.98 mL/100 g (0.34-2.20), and 2.16 mL/100 g (1.8-3.1) with P = .15 between grade II and III gliomas and P = .015 between grade III and IV gliomas. In differentiating low-grade from high-grade gliomas, AUCs for K(trans)_φ, V(p_φ), K(trans)_SI, and V(p_)SI were 0.87 (0.73-1), 0.84 (0.69-0.98), 0.81 (0.59-1), and 0.84 (0.66-0.91). The differences between the AUCs were not statistically significant. K(trans)_φ and V(p_)φ are parameters that can help in differentiating low-grade from high-grade gliomas.