Sample records for factor xa-binding site

  1. Kinetic characterization of factor Xa binding using a quenched fluorescent substrate based on the reactive site of factor Xa inhibitor from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L V; Andrade, S A; Juliano, M A; Sallai, R C; Torquato, R J; Sampaio, M U; Pott, V J; Sampaio, C A M

    2003-07-01

    The specific Kunitz Bauhinia ungulata factor Xa inhibitor (BuXI) and the Bauhinia variegata trypsin inhibitor (BvTI) blocked the activity of trypsin, chymotrypsin, plasmin, plasma kallikrein and factor XIIa, and factor Xa inhibition was achieved only by BuXI (K(i) 14 nM). BuXI and BvTI are highly homologous (70%). The major differences are the methionine residues at BuXI reactive site, which are involved in the inhibition, since the oxidized protein no longer inhibits factor Xa but maintains the trypsin inhibition. Quenched fluorescent substrates based on the reactive site sequence of the inhibitors were synthesized and the kinetic parameters of the hydrolysis were determined using factor Xa and trypsin. The catalytic efficiency k(cat)/K(m) 4.3 x 10(7) M(-1)sec(>-1) for Abz-VMIAALPRTMFIQ-EDDnp (lead peptide) hydrolysis by factor Xa was 10(4)-fold higher than that of Boc-Ile-Glu-Gly-Arg-AMC, widely used as factor Xa substrate. Lengthening of the substrate changed its susceptibility to factor Xa hydrolysis. Both methionine residues in the substrate influence the binding to factor Xa. Serine replacement of threonine (P(1)') decreases the catalytic efficiency by four orders of magnitude. Factor Xa did not hydrolyze the substrate containing the reactive site sequence of BvTI, that inhibits trypsin inhibitor but not factor Xa. Abz-VMIAALPRTMFIQ-EDDnp prolonged both the prothrombin time and the activated partial thromboplastin time, and the other modified substrates used in this experiment altered blood-clotting assays.

  2. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  3. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  5. Human plasma kallikrein and tissue kallikrein binding to a substrate based on the reactive site of a factor Xa inhibitor isolated from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L; Andrade, S A; Batista, I F; Sampaio, M U; Juliano, M; Fritz, H; Auerswald, E A; Sampaio, C A

    1999-12-01

    Kunitz type Bauhinia ungulata factor Xa inhibitor (BuXI) was purified from B. ungulata seeds. BuXI inactivates factor Xa and human plasma kallikrein (HuPK) with Ki values of 18.4 and 6.9 nM, respectively. However, Bauhinia variegata trypsin inhibitor (BvTI) which is 70% homologous to BuXI does not inhibit factor Xa and is less efficient on HuPK (Ki = 80 nM). The comparison between BuXI and BvTI reactive site structure indicates differences at Met59, Thr66 and Met67 residues. The hydrolysis rate of quenched fluorescence peptide substrates based on BuXI reactive site sequence, Abz-VMIAALPRTMFIQ-EDDnp (leading peptide), by HuPK and porcine pancreatic kallikrein (PoPK) is low, but hydrolysis is enhanced with Abz-VMIAALPRTMQ-EDDnp, derived from the leading peptide shortened by removing the dipeptide Phe-Ileu from the C-terminal portion, for HuPK (Km = 0.68 microM, k(cat)/Km = 1.3 x 10(6) M(-1) s(-1)), and the shorter substrate Abz-LPRTMQ-EDDnp is better for PoPK (Km = 0.66 microM, k(cat)/Km = 2.2 x 10(3) M(-1) s(-1)). The contribution of substrate methionine residues to HuPK and PoPK hydrolysis differs from that observed with factor Xa. The determined Km and k(cat) values suggest that the substrates interact with kallikreins the same as an enzyme and inhibitor interacts to form complexes.

  6. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa.

    PubMed

    Lu, Genmin; DeGuzman, Francis R; Hollenbach, Stanley J; Karbarz, Mark J; Abe, Keith; Lee, Gail; Luan, Peng; Hutchaleelaha, Athiwat; Inagaki, Mayuko; Conley, Pamela B; Phillips, David R; Sinha, Uma

    2013-04-01

    Inhibitors of coagulation factor Xa (fXa) have emerged as a new class of antithrombotics but lack effective antidotes for patients experiencing serious bleeding. We designed and expressed a modified form of fXa as an antidote for fXa inhibitors. This recombinant protein (r-Antidote, PRT064445) is catalytically inactive and lacks the membrane-binding γ-carboxyglutamic acid domain of native fXa but retains the ability of native fXa to bind direct fXa inhibitors as well as low molecular weight heparin-activated antithrombin III (ATIII). r-Antidote dose-dependently reversed the inhibition of fXa by direct fXa inhibitors and corrected the prolongation of ex vivo clotting times by such inhibitors. In rabbits treated with the direct fXa inhibitor rivaroxaban, r-Antidote restored hemostasis in a liver laceration model. The effect of r-Antidote was mediated by reducing plasma anti-fXa activity and the non-protein bound fraction of the fXa inhibitor in plasma. In rats, r-Antidote administration dose-dependently and completely corrected increases in blood loss resulting from ATIII-dependent anticoagulation by enoxaparin or fondaparinux. r-Antidote has the potential to be used as a universal antidote for a broad range of fXa inhibitors.

  7. Daboxin P, a Major Phospholipase A2 Enzyme from the Indian Daboia russelii russelii Venom Targets Factor X and Factor Xa for Its Anticoagulant Activity

    PubMed Central

    Iyer, Janaki Krishnamurthy; Shih, Norrapat; Majumder, Munmi; Mattaparthi, Venkata Satish Kumar; Mukhopadhyay, Rupak; Doley, Robin

    2016-01-01

    In the present study a major protein has been purified from the venom of Indian Daboia russelii russelii using gel filtration, ion exchange and Rp-HPLC techniques. The purified protein, named daboxin P accounts for ~24% of the total protein of the crude venom and has a molecular mass of 13.597 kDa. It exhibits strong anticoagulant and phospholipase A2 activity but is devoid of any cytotoxic effect on the tested normal or cancerous cell lines. Its primary structure was deduced by N-terminal sequencing and chemical cleavage using Edman degradation and tandem mass spectrometry. It is composed of 121 amino acids with 14 cysteine residues and catalytically active His48 -Asp49 pair. The secondary structure of daboxin P constitutes 42.73% of α-helix and 12.36% of β-sheet. It is found to be stable at acidic (pH 3.0) and neutral pH (pH 7.0) and has a Tm value of 71.59 ± 0.46°C. Daboxin P exhibits anticoagulant effect under in-vitro and in-vivo conditions. It does not inhibit the catalytic activity of the serine proteases but inhibits the activation of factor X to factor Xa by the tenase complexes both in the presence and absence of phospholipids. It also inhibits the tenase complexes when active site residue (His48) was alkylated suggesting its non-enzymatic mode of anticoagulant activity. Moreover, it also inhibits prothrombinase complex when pre-incubated with factor Xa prior to factor Va addition. Fluorescence emission spectroscopy and affinity chromatography suggest the probable interaction of daboxin P with factor X and factor Xa. Molecular docking analysis reveals the interaction of the Ca+2 binding loop; helix C; anticoagulant region and C-terminal region of daboxin P with the heavy chain of factor Xa. This is the first report of a phospholipase A2 enzyme from Indian viper venom which targets both factor X and factor Xa for its anticoagulant activity. PMID:27089306

  8. Antithrombotic effects of factor Xa inhibition with DU-176b: Phase-I study of an oral, direct factor Xa inhibitor using an ex-vivo flow chamber.

    PubMed

    Zafar, Mohammad Urooj; Vorchheimer, David A; Gaztanaga, Juan; Velez, Mauricio; Yadegar, Daniel; Moreno, Pedro R; Kunitada, Satoshi; Pagan, Juan; Fuster, Valentin; Badimon, Juan J

    2007-10-01

    Direct and specific inhibition of factor Xa is an emerging therapeutic strategy for atherothrombotic disease. Parenteral factor Xa inhibitors promise efficacy comparable to standard therapies, which could be extended to ambulatory patients with oral agents. We evaluated the antithrombotic effect of the oral, direct factor Xa inhibitor DU-176b in a phase-I study. Healthy subjects (n = 12) received a single, 60 mg dose of DU-176b. Antithrombotic effects were assessed by comparing ex-vivo thrombus formation at 1.5, 5, and 12 hours post-dose versus baseline, along with factor Xa activity, thrombin generation and clotting parameters. Under venous flow after 1.5 and 5 hours, the thrombus was 28% and 21% smaller versus baseline, respectively (p < 0.05). Under arterial condition, the reduction was 26% and 17% (p < 0.05). Thrombin generation decreased by 28% at 1.5 hours and 10% at 5 hours. Changes in PT and INR correlated well with plasma drug concentrations (R2 = 0.79 and 0.78). Direct and specific inhibition of factor Xa by DU-176b significantly reduced ex-vivo thrombus formation at both venous and arterial rheologies, up to 5 hours post-dose. The effects mirrored changes in clotting parameters, suggesting their potential usefulness for monitoring in a clinical setting.

  9. Chemoenzymatic Synthesis of Heparin Oligosaccharides with both Anti-factor Xa and Anti-factor IIa Activities*

    PubMed Central

    Xu, Yongmei; Pempe, Elizabeth H.; Liu, Jian

    2012-01-01

    Heparan sulfate (HS) and heparin are highly sulfated polysaccharides. Heparin is a commonly used anticoagulant drug that inhibits the activities of factors Xa and IIa (also known as thrombin) to prevent blood clot formation. Here, we report the synthesis of a series of size-defined oligosaccharides to probe the minimum size requirement for an oligosaccharide with anti-IIa activity. The synthesis was completed by a chemoenzymatic approach involving glycosyltransferases, HS sulfotransferases, and C5-epimerase. We demonstrate the ability to synthesize highly purified N-sulfo-oligosaccharides having up to 21 saccharide residues. The results from anti-Xa and anti-IIa activity measurements revealed that an oligosaccharide longer than 19 saccharide residues is necessary to display anti-IIa activity. The oligosaccharides also exhibit low binding toward platelet factor 4, raising the possibility of preparing a synthetic heparin with a reduced effect of heparin-induced thrombocytopenia. The results from this study demonstrate the ability to synthesize large HS oligosaccharides and provide a unique tool to probe the structure and function relationships of HS that require the use of large HS fragments. PMID:22773834

  10. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity.

    PubMed

    Caddell, Daniel F; Park, Chang-Jin; Thomas, Nicholas C; Canlas, Patrick E; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.

  11. Functional assembly of intrinsic coagulation proteases on monocytes and platelets. Comparison between cofactor activities induced by thrombin and factor Xa

    PubMed Central

    1992-01-01

    Generation of coagulation factor Xa by the intrinsic pathway protease complex is essential for normal activation of the coagulation cascade in vivo. Monocytes and platelets provide membrane sites for assembly of components of this protease complex, factors IXa and VIII. Under biologically relevant conditions, expression of functional activity by this complex is associated with activation of factor VIII to VIIIa. In the present studies, autocatalytic regulatory pathways operating on monocyte and platelet membranes were investigated by comparing the cofactor function of thrombin-activated factor VIII to that of factor Xa-activated factor VIII. Reciprocal functional titrations with purified human factor VIII and factor IXa were performed at fixed concentrations of human monocytes, CaCl2, factor X, and either factor IXa or factor VIII. Factor VIII was preactivated with either thrombin or factor Xa, and reactions were initiated by addition of factor X. Rates of factor X activation were measured using chromogenic substrate specific for factor Xa. The K1/2 values, i.e., concentration of factor VIIIa at which rates were half maximal, were 0.96 nM with thrombin- activated factor VIII and 1.1 nM with factor Xa-activated factor VIII. These values are close to factor VIII concentration in plasma. The Vsat, i.e., rates at saturating concentrations of factor VIII, were 33.3 and 13.6 nM factor Xa/min, respectively. The K1/2 and Vsat values obtained in titrations with factor IXa were not significantly different from those obtained with factor VIII. In titrations with factor X, the values of Michaelis-Menten coefficients (Km) were 31.7 nM with thrombin- activated factor VIII, and 14.2 nM with factor Xa-activated factor VIII. Maximal rates were 23.4 and 4.9 nM factor Xa/min, respectively. The apparent catalytic efficiency was similar with either form of factor VIIIa. Kinetic profiles obtained with platelets as a source of membrane were comparable to those obtained with monocytes

  12. Molecular recognition of avirulence protein (avrxa5) by eukaryotic transcription factor xa5 of rice (Oryza sativa L.): insights from molecular dynamics simulations.

    PubMed

    Dehury, Budheswar; Maharana, Jitendra; Sahoo, Bikash Ranjan; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Barooah, Madhumita

    2015-04-01

    The avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein. From the best three binding poses predicted by molecular docking, MD simulations were performed to explore the dynamic binding mechanism of xa5 and avrxa5. Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) techniques were employed to calculate the binding free energy and to uncover the thriving force behind the molecular recognition of avrxa5 by eukaryotic transcription factor xa5. Binding free energy analysis revealed van der Waals term as the most constructive component that favors the xa5 and avrxa5 interaction. In addition, hydrogen bonds (H-bonds) and essential electrostatic interactions analysis highlighted amino acid residues Lys54/Asp870, Lys56/Ala868, Lys56/Ala866, Lys56/Glu871, Ile59/His862, Gly61/Phe858, His62/Arg841, His62/Leu856, Ser101/Ala872 and Ser105/Asp870 plays pivotal role for the energetically stability of the R-Avr complex. Insights gained from the present study are expected to unveil the molecular mechanisms that define the transcriptional activator mediated transcriptome modification in host plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Measuring Anti–Factor Xa Activity to Monitor Low-Molecular-Weight Heparin in Obesity: A Critical Review

    PubMed Central

    Egan, Gregory; Ensom, Mary H H

    2015-01-01

    Background: The choice of whether to monitor anti–factor Xa (anti-Xa) activity in patients who are obese and who are receiving low-molecular-weight heparin (LMWH) therapy is controversial. To the authors’ knowledge, no systematic review of monitoring of anti-Xa activity in such patients has been published to date. Objective: To systematically ascertain the utility of monitoring anti-Xa concentrations for LMWH therapy in obese patients. Data Sources: MEDLINE (1946 to September 2014), the Cochrane Database of Systematic Reviews, Embase (1974 to September 2014), PubMed (1947 to September 2014), International Pharmaceutical Abstracts (1970 to September 2014), and Scopus were searched using the terms obesity, morbid obesity, thrombosis, venous thrombosis, embolism, venous thromboembolism, pulmonary embolism, low-molecular weight heparin, enoxaparin, dalteparin, tinzaparin, anti-factor Xa, anti-factor Xa monitoring, anti-factor Xa activity, and anti-factor Xa assay. The reference lists of retrieved articles were also reviewed. Study Selection and Data Extraction: English-language studies describing obese patients treated with LMWH or reporting anti-Xa activity were reviewed using a 9-step decision-making algorithm to determine whether monitoring of LMWH therapy by means of anti-Xa activity in obesity is warranted. Studies published in abstract form were excluded. Data Synthesis: The analysis showed that anti-Xa concentrations are not strongly associated with thrombosis or hemorrhage. In clinical studies of LMWH for thromboprophylaxis in bariatric surgery, orthopedic surgery, general surgery, and medical patients, and for treatment of venous thrombo embolism and acute coronary syndrome, anti-Xa activity can be predicted from dose of LMWH and total body weight; no difference in clinical outcome was found between obese and non-obese participants. Conclusions: Routinely determining anti-Xa concentrations in obese patients to monitor the clinical effectiveness of LMWH is

  14. Searching for transcription factor binding sites in vector spaces

    PubMed Central

    2012-01-01

    Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular transcription factor, one usually has to compare a handful of methods. Hence, it is highly desirable for a method to perform automatic optimization for individual transcription factors. Results We proposed to search for transcription factor binding sites in vector spaces. This framework allows us to identify the best method for each individual transcription factor. We further introduced two novel methods, the negative-to-positive vector (NPV) and optimal discriminating vector (ODV) methods, to construct query vectors to search for binding sites in vector spaces. Extensive cross-validation experiments showed that the proposed methods significantly outperformed the ungapped likelihood under positional background method, a state-of-the-art method, and the widely-used position-specific scoring matrix method. We further demonstrated that motif subtypes of a TF can be readily identified in this framework and two variants called the k NPV and k ODV methods benefited significantly from motif subtype identification. Finally, independent validation on ChIP-seq data showed that the ODV and NPV methods significantly outperformed the other compared methods. Conclusions We conclude that the proposed framework is highly flexible. It enables the two novel methods to automatically identify a TF-specific subspace to search for binding sites. Implementations are available as source code at: http://biogrid.engr.uconn.edu/tfbs_search/. PMID:23244338

  15. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  16. Identification of potent orally active factor Xa inhibitors based on conjugation strategy and application of predictable fragment recommender system.

    PubMed

    Ishihara, Tsukasa; Koga, Yuji; Iwatsuki, Yoshiyuki; Hirayama, Fukushi

    2015-01-15

    Anticoagulant agents have emerged as a promising class of therapeutic drugs for the treatment and prevention of arterial and venous thrombosis. We investigated a series of novel orally active factor Xa inhibitors designed using our previously reported conjugation strategy to boost oral anticoagulant effect. Structural optimization of anthranilamide derivative 3 as a lead compound with installation of phenolic hydroxyl group and extensive exploration of the P1 binding element led to the identification of 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzamide (33, AS1468240) as a potent factor Xa inhibitor with significant oral anticoagulant activity. We also reported a newly developed Free-Wilson-like fragment recommender system based on the integration of R-group decomposition with collaborative filtering for the structural optimization process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Selective Photoaffinity Labeling Identifies the Signal Peptide Binding Domain on SecA

    PubMed Central

    Musial-Siwek, Monika; Rusch, Sharyn L.; Kendall, Debra A.

    2007-01-01

    SecA, an ATPase crucial to the Sec-dependent translocation machinery in Escherichia coli, recognizes and directly binds the N-terminal signal peptide of an exported preprotein. This interaction plays a central role in the targeting and transport of preproteins via the SecYEG channel. Here we identify the Signal Peptide Binding Groove (SPBG) on SecA addressing a key issue regarding the SecA-preprotein interaction. We employ a synthetic signal peptide containing the photoreactive benzoylphenylalanine to efficiently and specifically label SecA containing a unique Factor Xa site. Comparison of the photolabeled fragment from the subsequent proteolysis of several SecAs, which vary only in the location of the Factor Xa site, reveals one 53-residue segment in common with the entire series. The covalently modified SecA segment produced is the same in aqueous solution and in lipid vesicles. This spans amino acids 269 to 322 of the E. coli protein, which is distinct from a previously proposed signal peptide binding site, and contributes to a hydrophobic peptide binding groove evident in molecular models of SecA. PMID:17084862

  18. Novel factor Xa inhibitors: a patent review.

    PubMed

    de Candia, Modesto; Lopopolo, Gianfranco; Altomare, Cosimo

    2009-11-01

    New oral anticoagulants with favorable safety profiles and fixed doses are required for the management of thromboembolism and stroke prevention in patients with atrial fibrillation. Among them, fXa inhibitors (the so-called xabans) are attractive options that can overcome limitations (e.g., bleeding) of the current oral antithrombotic therapy. The rational design of small-molecule direct fXa inhibitors, whose importance is testified by the growing number of publications and patents recently registered, has been fully supported by the X-ray crystallography of enzyme-ligand complexes. Pubmed, SciFinder Scholar, ISI web of knowledge(SM), http://ep.espacenet.com/ and Google websites were used as the main sources for literature retrieving, and > 100 patents filed between 2006 and April 2009, reviewed and discussed herein, highlight the variety among the P1 and P4 moieties on suitable scaffolds. The replacement of the benzamidine P1 moiety, which characterizes the first generation, with less basic bioisosteric or nonpolar neutral P1 groups led to the disclosure of numerous fXa inhibitors with high potency, selectivity and oral bioavailability. Novel selective fXa inhibitors with stable pharmacokinetics, better therapeutic windows and ease-of-use than the existing anticoagulants are currently under advanced stage clinical trials. Available data from Phase II and Phase III studies reflect the drive towards fXa inhibitors as potentially more effective and safer antithrombotic drugs. Their development is expected to address two major needs for anticoagulation, namely safety and ease-of-use, and to significantly affect the anticoagulant market.

  19. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    PubMed

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  20. Biophysical Fitness Landscapes for Transcription Factor Binding Sites

    PubMed Central

    Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.

    2014-01-01

    Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228

  1. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.

    PubMed

    Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M

    2017-07-24

    Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.

  2. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine

    PubMed Central

    Novakovic, Valerie A.; Shi, Jialan; Rasmussen, Jan; Pipe, Steven W.

    2015-01-01

    Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites. PMID:26162408

  3. How useful is determination of anti-factor Xa activity to guide bridging therapy with enoxaparin? A pilot study.

    PubMed

    Hammerstingl, Christoph; Omran, Heyder; Tripp, Christian; Poetzsch, Bernd

    2009-02-01

    Low-molecular-weight heparins (LMWH) are commonly used as peri-procedural bridging anticoagulants. The usefulness of measurement of anti-factor Xa activity (anti-Xa) to guide bridging therapy with LMWH is unknown. It was the objective of this study to determine levels of anti-Xa during standard bridging therapy with enoxaparin, and to examine predictors for residual anti-Xa. Consecutive patients receiving enoxaparin at a dosage of 1 mg/kg body weight/12 hours for temporary interruption of phenprocoumon were prospectively enrolled to the study. Blood-samples were obtained 14 hours after LMWH-application immediately pre- procedurally. Procedural details, clinical and demographic data were collected and subsequently analyzed. Seventy patients were included (age 75.2 +/- 10.8 years, Cr Cl 55.7 +/- 21.7ml/min, body mass index [BMI] 27.1 +/- 4.9). LMWH- therapy was for a mean of 4.2 +/- 1.6 days; overall anti-Xa was 0.58 +/- 0.32 U/ml. In 37 (52.8%) of patients anti-Xa was > or U/ml, including 10 (14.3%) patients with anti-Xa > 1U/ml. Linear regression analysis of single variables and logistic multivariable regression analysis failed to prove a correlation between anti-Xa and single or combined factors. No major bleeding, no thromboembolism and four (5.7%) minor haemorrhages were observed. When bridging OAC with therapeutic doses of enoxaparin a high percentage of patients undergo interventions with high residual anti-Xa. The levels of anti-Xa vary largely and are independent of single or combined clinical variables. Since the anti-Xa-related outcome of patients receiving bridging therapy with LMWH is not investigated, no firm recommendation on the usefulness of monitoring of anti-Xa can be given at this stage.

  4. Identification of anthranilamide derivatives as potential factor Xa inhibitors: drug design, synthesis and biological evaluation.

    PubMed

    Xing, Junhao; Yang, Lingyun; Li, Hui; Li, Qing; Zhao, Leilei; Wang, Xinning; Zhang, Yuan; Zhou, Muxing; Zhou, Jinpei; Zhang, Huibin

    2015-05-05

    The coagulation enzyme factor Xa (fXa) plays a crucial role in the blood coagulation cascade. In this study, three-dimensional fragment based drug design (FBDD) combined with structure-based pharmacophore (SBP) model and structural consensus docking were employed to identify novel fXa inhibitors. After a multi-stage virtual screening (VS) workflow, two hit compounds 3780 and 319 having persistent high performance were identified. Then, these two hit compounds and several analogs were synthesized and screened for in-vitro inhibition of fXa. The experimental data showed that most of the designed compounds displayed significant in vitro potency against fXa. Among them, compound 9b displayed the greatest in vitro potency against fXa with the IC50 value of 23 nM and excellent selectivity versus thrombin (IC50 = 40 μM). Moreover, the prolongation of the prothrombin time (PT) was measured for compound 9b to evaluate its in vitro anticoagulant activity. As a result, compound 9b exhibited pronounced anticoagulant activity with the 2 × PT value of 8.7 μM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Position specific variation in the rate of evolution in transcription factor binding sites

    PubMed Central

    Moses, Alan M; Chiang, Derek Y; Kellis, Manolis; Lander, Eric S; Eisen, Michael B

    2003-01-01

    Background The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Results Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. Conclusion As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the

  6. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern

    PubMed Central

    Xu, Feifei; Tang, Yongchao; Gao, Ying

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  7. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern.

    PubMed

    Cui, Hua; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Zhao, Kaijun

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  8. Factor Xa inhibitors versus vitamin K antagonists for preventing cerebral or systemic embolism in patients with atrial fibrillation.

    PubMed

    Bruins Slot, Karsten M H; Berge, Eivind

    2013-08-08

    Anticoagulant treatment with vitamin K antagonists (VKAs) is aimed at preventing thromboembolic complications and has been the therapy of choice for most people with non-valvular atrial fibrillation (AF) for many decades. A new class of anticoagulants, the factor Xa inhibitors, appear to have several pharmacological and practical advantages over VKAs. To assess the effectiveness and safety of treatment with factor Xa inhibitors versus VKAs for the prevention of cerebral or systemic embolic events in people with AF. We searched the trials registers of the Cochrane Stroke Group and the Cochrane Heart Group (June 2012), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 10), MEDLINE (1950 to April 2013) and EMBASE (1980 to April 2013). In an effort to identify further published, unpublished and ongoing trials we searched trials registers and Google Scholar (July 2012). We also screened reference lists and contacted pharmaceutical companies, authors and sponsors of relevant published trials. Randomised controlled trials that directly compared the effects of long-term treatment (more than four weeks) with factor Xa inhibitors and VKAs for the prevention of cerebral and systemic embolism in patients with AF. We included patients with and without a previous stroke or TIA. The primary efficacy outcome was the composite endpoint of all strokes and other systemic embolic events. Two authors independently assessed trial quality and the risk of bias, and extracted data. We calculated a weighted estimate of the typical treatment effect across trials using the odds ratio (OR) with 95% confidence interval (CI) by means of a fixed-effect model. However, in the case of moderate or high heterogeneity of treatment effects, we used a random-effects model to compare the overall treatment effects and performed a pre-specified sensitivity analysis excluding any fully open-label studies. We included data from 42,084 participants randomised into

  9. Incorporating evolution of transcription factor binding sites into annotated alignments.

    PubMed

    Bais, Abha S; Grossmann, Stefen; Vingron, Martin

    2007-08-01

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do

  10. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence

    PubMed Central

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R.; Kehn-Hall, Kylene; Omichinski, James G.

    2015-01-01

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH. PMID:25918396

  11. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence.

    PubMed

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R; Kehn-Hall, Kylene; Omichinski, James G

    2015-05-12

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH.

  12. Potent arterial antithrombotic effect of direct factor-Xa inhibition with ZK-807834 administered to coronary artery disease patients.

    PubMed

    Zafar, M Urooj; Farkouh, Michael E; Osende, Julio; Shimbo, Daichi; Palencia, Stella; Crook, Julia; Leadley, Robert; Fuster, Valentin; Chesebro, James H

    2007-03-01

    It was the objective of this study to evaluate the anti-thrombotic potency of direct factor-Xa inhibition with ZK-807834 in stable coronary patients, using an ex-vivo model of arterial thrombus formation. Tissue factor pathway is important in atherothrombosis. Direct factor-Xa blockade may more potently reduce thrombosis and prevent coronary events. Badimon Perfusion Chamber 5-minute quantitative studies have shown 40-55% arterial thrombus reduction with abciximab, 23% with clopidogrel, but none with heparin. Coronary patients (n = 18, 59 +/- 9 years, 55% males) were blindly randomized to four groups receiving 24-hour infusion of a low, medium or high dose of direct factor- Xa inhibitor ZK-807834, or placebo. Arterial thrombus formation was measured in Badimon Chamber at baseline, end-of-infusion [EoI], and four hours and eight hours after EoI, and factor-X activity, prothrombin time [PT] ratio and plasma drug levels were measured simultaneously. For the low-, medium- and high-dose ZK-807834 groups, mean percent-reduction in thrombus size from baseline to EoI were 29%, 34% and 68%, respectively (p < 0.001), and at 8-h post EoI were 11%, 19% and 27%, respectively (p < 0.01). Mean PT-ratio prolongation showed a strong linear relationship (Pearson's r = 0.93) with ZK-807834 plasma concentration. Mean percent-reduction in factor-X activity from baseline was 13%, 42% and 58%, respectively. Placebo had no effect on thrombus size or factor-X activity. In conclusion, direct factor-Xa inhibition with ZK-807834 markedly reduces ex-vivo arterial thrombus formation and factor-X activity in a dose-dependent manner. Plasma levels of ZK-807834 show a strong linear correlation with PT ratio. This direct factor-Xa inhibitor may reduce the need for additional potent glycoprotein IIbIIIa inhibition.

  13. Factor Xa inhibitors versus vitamin K antagonists for preventing cerebral or systemic embolism in patients with atrial fibrillation.

    PubMed

    Bruins Slot, Karsten Mh; Berge, Eivind

    2018-03-06

    Factor Xa inhibitors and vitamin K antagonists (VKAs) are now recommended in treatment guidelines for preventing stroke and systemic embolic events in people with atrial fibrillation (AF). This is an update of a Cochrane review previously published in 2013. To assess the effectiveness and safety of treatment with factor Xa inhibitors versus VKAs for preventing cerebral or systemic embolic events in people with AF. We searched the trials registers of the Cochrane Stroke Group and the Cochrane Heart Group (September 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (August 2017), MEDLINE (1950 to April 2017), and Embase (1980 to April 2017). We also contacted pharmaceutical companies, authors and sponsors of relevant published trials. We used outcome data from marketing authorisation applications of apixaban, edoxaban and rivaroxaban that were submitted to regulatory authorities in Europe and the USA. We included randomised controlled trials (RCTs) that directly compared the effects of long-term treatment (lasting more than four weeks) with factor Xa inhibitors versus VKAs for preventing cerebral and systemic embolism in people with AF. The primary efficacy outcome was the composite endpoint of all strokes and systemic embolic events. Two review authors independently extracted data, and assessed the quality of the trials and the risk of bias. We calculated a weighted estimate of the typical treatment effect across trials using the odds ratio (OR) with 95% confidence interval (CI) by means of a fixed-effect model. In case of moderate or high heterogeneity of treatment effects, we used a random-effects model to compare the overall treatment effects. We also performed a pre-specified sensitivity analysis excluding any open-label studies. We included data from 67,688 participants randomised into 13 RCTs. The included trials directly compared dose-adjusted warfarin with either apixaban, betrixaban, darexaban, edoxaban, idraparinux, idrabiotaparinux, or

  14. Nontraumatic spinal subdural hematoma complicating direct factor Xa inhibitor treatment (rivaroxaban): a challenging management.

    PubMed

    Dargazanli, Cyril; Lonjon, Nicolas; Gras-Combe, Guillaume

    2016-05-01

    We report on a 72-year-old male patient who developed a nontraumatic spinal subdural hematoma (SSDH) during rivaroxaban therapy, a relatively new orally administered direct factor Xa inhibitor. The patient sustained a sudden onset of interscapular pain, followed by gait impairment and paraplegia. Magnetic resonance imaging (MRI) of the spine demonstrated SSDH from T6 to T8. Laboratory tests revealed a high rivaroxaban level, associated with a major hemorrhagic risk. Surgery was, therefore, performed the following morning, after normalization of coagulation parameters. Determining the time of safe surgery remains challenging when hemorrhagic complications happen with direct factor Xa inhibitor, especially when neurological prognosis is engaged. Spinal subdural hematoma has not previously been reported following rivaroxaban therapy.

  15. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    PubMed

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  16. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome

    PubMed Central

    Dresch, Jacqueline M.; Zellers, Rowan G.; Bork, Daniel K.; Drewell, Robert A.

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development. PMID:27330274

  17. Clinical Scenarios for Discordant Anti-Xa

    PubMed Central

    Vera-Aguilera, Jesus; Yousef, Hindi; Beltran-Melgarejo, Diego; Teng, Teng Hugh; Jan, Ramos; Mok, Mary; Vera-Aguilera, Carlos; Moreno-Aguilera, Eduardo

    2016-01-01

    Anti-Xa test measures the activity of heparin against the activity of activated coagulation factor X; significant variability of anti-Xa levels in common clinical scenarios has been observed. Objective. To review the most common clinical settings in which anti-Xa results can be bias. Evidence Review. Guidelines and current literature search: we used PubMed, Medline, Embase, and MEDION, from 2000 to October 2013. Results. Anti-Xa test is widely used; however the assay underestimates heparin concentration in the presence of significant AT deficiency, pregnancy, end stage renal disease, and postthrombolysis and in patients with hyperbilirubinemia; limited published data evaluating the safety and effectiveness of anti-Xa assays for managing UH therapy is available. Conclusions and Relevance. To our knowledge this is the first paper that summarizes the most common causes in which this assay can be affected, several “day to day” clinical scenarios can modify the outcomes, and we concur that these rarely recognized scenarios can be affected by negative outcomes in the daily practice. PMID:27293440

  18. An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors

    PubMed Central

    Chen, Xuewei; Zuo, Shimin; Schwessinger, Benjamin; Chern, Mawsheng; Canlas, Patrick E.; Ruan, Deling; Zhou, Xiaogang; Wang, Jing; Daudi, Arsalan; Petzold, Christopher J.; Heazlewood, Joshua L.; Ronald, Pamela C.

    2014-01-01

    The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR. PMID:24482436

  19. Future therapeutic directions for factor Xa inhibition in the prophylaxis and treatment of thrombotic disorders.

    PubMed

    Turpie, Alexander G G

    2003-11-15

    The targeted mechanism of factor Xa inhibition has been studied extensively, initially as prophylaxis for venous thromboembolism (VTE) in the orthopedic surgical setting. Future therapeutic directions for selective factor Xa inhibition in the management of other thrombotic diseases are discussed. Thromboembolic diseases can occur in the venous or arterial sides of the circulatory system. Factor Xa inhibition is a targeted approach to anticoagulation that resulted from significant advances in our understanding of the coagulation cascade. The factor Xa inhibitor fondaparinux has been studied extensively in the orthopedic surgical setting for the prophylaxis of VTE. Current investigations that are under way or completed evaluate the efficacy and safety of fondaparinux for the management of various thrombotic diseases. The future development of fondaparinux resides primarily in three therapeutic areas: prevention of VTE, treatment of VTE, and treatment of acute coronary syndromes. For the prevention of VTE, fondaparinux has been studied as extended prophylaxis following hip fracture surgery (PENTHIFRA Plus), for use in high-risk abdominal surgical patients (PEGASUS and APOLLO), and for use in medical patients (ARTEMIS). Studies evaluating fondaparinux for the treatment of VTE are part of the large MATISSE clinical program (MATISSE DVT and MATISSE PE). Fondaparinux was investigated in phase 2 studies for the treatment of acute coronary syndromes, including acute ST-segment myocardial infarction (PENTALYSE) and unstable angina (PENTUA). Encouraging data from these trials are the basis for phase 3 programs in this area (MICHELANGELO). The orthopedic prophylactic and nonorthopedic clinical programs for fondaparinux in the management of thrombosis support the concept that targeted inhibition of coagulation is an effective advance in antithrombotic therapy.

  20. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    PubMed

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  1. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    PubMed

    Müller-Molina, Arnoldo J; Schöler, Hans R; Araúzo-Bravo, Marcos J

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  2. Comprehensive Human Transcription Factor Binding Site Map for Combinatory Binding Motifs Discovery

    PubMed Central

    Müller-Molina, Arnoldo J.; Schöler, Hans R.; Araúzo-Bravo, Marcos J.

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%–20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory “DNA words.” From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%—far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of “DNA words,” newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters. PMID:23209563

  3. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites.

    PubMed

    Narad, Priyanka; Kumar, Abhishek; Chakraborty, Amlan; Patni, Pranav; Sengupta, Abhishek; Wadhwa, Gulshan; Upadhyaya, K C

    2017-09-01

    Transcription factors are trans-acting proteins that interact with specific nucleotide sequences known as transcription factor binding site (TFBS), and these interactions are implicated in regulation of the gene expression. Regulation of transcriptional activation of a gene often involves multiple interactions of transcription factors with various sequence elements. Identification of these sequence elements is the first step in understanding the underlying molecular mechanism(s) that regulate the gene expression. For in silico identification of these sequence elements, we have developed an online computational tool named transcription factor information system (TFIS) for detecting TFBS for the first time using a collection of JAVA programs and is mainly based on TFBS detection using position weight matrix (PWM). The database used for obtaining position frequency matrices (PFM) is JASPAR and HOCOMOCO, which is an open-access database of transcription factor binding profiles. Pseudo-counts are used while converting PFM to PWM, and TFBS detection is carried out on the basis of percent score taken as threshold value. TFIS is equipped with advanced features such as direct sequence retrieving from NCBI database using gene identification number and accession number, detecting binding site for common TF in a batch of gene sequences, and TFBS detection after generating PWM from known raw binding sequences in addition to general detection methods. TFIS can detect the presence of potential TFBSs in both the directions at the same time. This feature increases its efficiency. And the results for this dual detection are presented in different colors specific to the orientation of the binding site. Results obtained by the TFIS are more detailed and specific to the detected TFs as integration of more informative links from various related web servers are added in the result pages like Gene Ontology, PAZAR database and Transcription Factor Encyclopedia in addition to NCBI and Uni

  4. Identification of candidate transcription factor binding sites in the cattle genome

    USDA-ARS?s Scientific Manuscript database

    A resource that provides candidate transcription factor binding sites does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future 'omics studies to develop transcriptional regulation hypotheses. In order to generate this resour...

  5. Facilitated dissociation of transcription factors from single DNA binding sites

    PubMed Central

    Kamar, Ramsey I.; Banigan, Edward J.; Erbas, Aykut; Giuntoli, Rebecca D.; Olvera de la Cruz, Monica; Johnson, Reid C.; Marko, John F.

    2017-01-01

    The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate ∼1×104 M−1s−1, establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap. PMID:28364020

  6. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice.

    PubMed

    Wang, Chunlian; Zhang, Xiaoping; Fan, Yinglun; Gao, Ying; Zhu, Qinlong; Zheng, Chongke; Qin, Tengfei; Li, Yanqiang; Che, Jinying; Zhang, Mingwei; Yang, Bing; Liu, Yaoguang; Zhao, Kaijun

    2015-02-01

    The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  7. SP transcription factor paralogs and DNA-binding sites coevolve and adaptively converge in mammals and birds.

    PubMed

    Yokoyama, Ken Daigoro; Pollock, David D

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.

  8. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    PubMed Central

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  9. The cytochrome complex SoxXA of Paracoccus pantotrophus is produced in Escherichia coli and functional in the reconstituted sulfur-oxidizing enzyme system.

    PubMed

    Rother, Dagmar; Friedrich, Cornelius G

    2002-07-29

    The heterodimeric c-type cytochrome complex SoxXA of Paracoccus pantotrophus was produced in Escherichia coli. The soxX and soxA genes, separated by two genes in the sox gene cluster of P. pantotrophus, were fused with ribosome binding sites optimal for E. coli and combined to give soxXA in pRD133.27. The cytochrome complex SoxXA was produced in E. coli M15 containing pRD133.27, pREP4 encoding the Lac repressor and plasmid pEC86, carrying essential cytochrome c maturation genes. SoxX and SoxA were formed in a ratio of about 2.5:1. SoxA appeared to be unstable when not complexed with SoxX. The cytochrome complex SoxXA, purified to homogeneity from periplasmic extracts of E. coli M15 (pRD133.27, pREP4, pEC86), exhibited identical biochemical and biophysical properties as compared to SoxXA of P. pantotrophus. Moreover, this cytochrome complex was shown to be equally catalytically active with respect to rates and reactivity with different sulfur substrates in the reconstituted sulfur-oxidizing enzyme system using homogeneous Sox-proteins of P. pantotrophus. Homogeneous SoxX was catalytically inactive.

  10. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice.

    PubMed

    Wang, Chunlian; Zhang, Xiaoping; Fan, Yinglun; Gao, Ying; Zhu, Qinlong; Zheng, Chongke; Qin, Tengfei; Li, Yanqiang; Che, Jinying; Zhang, Mingwei; Yang, Bing; Liu, Yaoguang; Zhao, Kaijun

    2014-11-09

    The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE) associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from the wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113-amino acid protein that shares 50% identity to the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23, but differs in promoter region by lacking the TALE binding-element (EBE) for AvrXa23. XA23 can trigger strong hypersensitive response in rice, tobacco and tomato. Our results provide the first evidence that plant genomes have an executor R gene family in which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in pathogen. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  11. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.

    PubMed

    Keilwagen, Jens; Grau, Jan; Paponov, Ivan A; Posch, Stefan; Strickert, Marc; Grosse, Ivo

    2011-02-10

    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open

  12. Andexanet alfa to reverse the anticoagulant activity of factor Xa inhibitors: a review of design, development and potential place in therapy.

    PubMed

    Sartori, Michelangelo; Cosmi, Benilde

    2018-04-01

    Direct oral anticoagulants are associated with rates of major bleeding which are not negligible, albeit lower than those associated with vitamin K antagonists. No specific reversal agent for factor Xa (FXa) direct inhibitors is currently available for clinical use. A modified activated human FXa decoy protein, andexanet alfa, is being developed that binds FXa direct inhibitors in their active site, thus reversing their anticoagulant effect. The purpose of this article is to review the design, development and clinical trials of andexanet alfa. Andexanet alfa was shown to reverse FXa inhibitors anticoagulant activity both in thrombosis animal models, healthy volunteers and patients with acute major bleeding. Andexanet alfa has been studied in double-blind, placebo-controlled phase II and III studies. A preliminary report of the phase III study showed that an effective hemostasis was obtained after andexanet alfa infusion in the majority of the patients with acute major bleeding associated with FXa inhibitors. Additional studies are ongoing and andexanet alfa is expected to be launched in the market in the near future.

  13. CORE_TF: a user-friendly interface to identify evolutionary conserved transcription factor binding sites in sets of co-regulated genes

    PubMed Central

    Hestand, Matthew S; van Galen, Michiel; Villerius, Michel P; van Ommen, Gert-Jan B; den Dunnen, Johan T; 't Hoen, Peter AC

    2008-01-01

    Background The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set of similarly regulated promoters or to look for conservation in orthologous promoter alignments. Results We have developed a novel tool, "CORE_TF" (Conserved and Over-REpresented Transcription Factor binding sites) that identifies common transcription factor binding sites in promoters of co-regulated genes. To improve upon existing binding site predictions, the tool searches for position weight matrices from the TRANSFACR database that are over-represented in an experimental set compared to a random set of promoters and identifies cross-species conservation of the predicted transcription factor binding sites. The algorithm has been evaluated with expression and chromatin-immunoprecipitation on microarray data. We also implement and demonstrate the importance of matching the random set of promoters to the experimental promoters by GC content, which is a unique feature of our tool. Conclusion The program CORE_TF is accessible in a user friendly web interface at . It provides a table of over-represented transcription factor binding sites in the users input genes' promoters and a graphical view of evolutionary conserved transcription factor binding sites. In our test data sets it successfully predicts target transcription factors and their binding sites. PMID:19036135

  14. The emergence of factor Xa inhibitors for the treatment of cardiovascular diseases: a patent review.

    PubMed

    Pinto, Donald J P; Qiao, Jennifer X; Knabb, Robert M

    2012-06-01

    Factor Xa (FXa) is a critical enzyme in the coagulation cascade responsible for thrombin generation, the final enzyme that leads to fibrin clot formation. Significant success has recently been reported with compounds such as rivaroxaban, apixaban and edoxaban in the treatment and prevention of venous thromboembolism (VTE) and more recently in the prevention of stroke in atrial fibrillation (AF). The success these agents have demonstrated is now being reflected by a narrowing of new FXa patents over the past few years. The new patents appear to be structural modifications of previously published, small molecule inhibitors and bind in a similar manner to the FXa enzyme. SciFinder®, PubMed and Google websites were used as the main source of literature retrieval. Patent searches were conducted in the patent databases: HCAPlus, WPIX and the full text databases (USPAT2, USPATFULL, EPFULL, PCTFULL) using the following keywords: ((FXa) OR (F OR factor) (W) (Xa)) (S) (inhibit? or block? or modulat? or antagonist? or regulat?). The search was restricted to patent documents with the entry date on or after 1 January 2009. Literature and information related to clinical development was retrieved from Thomson Reuter's Pharma. A large body of Phase II and Phase III data is now available for FXa inhibitors such as rivaroxaban, apixaban, edoxaban and betrixaban. The clinical data demonstrate favorable benefit-risk profiles compared with the standards of care for short- and long-term anticoagulation (i.e., low molecular weight heparins (LMWHs) and wafarin). The potential exists that these agents will eventually be the agents of choice for the treatment of a host of cardiovascular disease states, offering improved efficacy, safety, and ease of use compared with existing anticoagulants.

  15. Safety of 4-factor prothrombin complex concentrate (4F-PCC) for emergent reversal of factor Xa inhibitors.

    PubMed

    Tao, Jing; Bukanova, Elena N; Akhtar, Shamsuddin

    2018-01-01

    Although factor Xa inhibitors have become a popular choice for chronic oral anticoagulation, effective drug reversal remains difficult due to a lack of specific antidote. Currently, 4-factor prothrombin complex concentrate (4F-PCC) is considered the treatment of choice for factor Xa inhibitor-related major bleeding. However, safety of 4F-PCC and its risk of thrombosis when used for this off-label purpose remain unclear. The purpose of this retrospective study is to determine the rate of thromboembolism when 4F-PCC is used for the emergent reversal of factor Xa inhibitors. We conducted a single-center retrospective review of medical records between 2013 and 2017. Patients were included if they received 4F-PCC to reverse rivaroxaban, apixaban, or edoxaban for emergent invasive procedures or during episodes of major bleeding defined as bleeding with hemodynamic instability, fall in hemoglobin of 2 g/dL, or bleeding requiring blood transfusion. Thrombotic events including myocardial infarction, pulmonary embolism, deep vein thrombosis, cerebral vascular accident, and arterial thrombosis of the limb or mesentery were recorded if they occurred within 14 days of 4F-PCC administration. Data was analyzed using point and interval estimation to approximate the rate and confidence interval of thromboembolic events. Forty-three patients were identified in our review. Doses of 4F-PCC were determined by the treating physician and mainly ranged from 25 to 50 IU/kg. Twenty-two patients (51.2%) received both sequential compression devices (SCDs) and subcutaneous heparin for DVT prophylaxis. Twenty-one patients (48.8%) were placed on SCDs only. Three patients received concomitant FFP. Thrombotic events within 14 days of 4F-PCC administration occurred in 1 out of 43 patients (2.1%, 95% CI [0.1-12.3]). This thrombotic event was an upper extremity DVT which occurred 1 day after the patient received 1325 IU (25 IU/kg) of 4F-PCC to reverse rivaroxaban for traumatic intracranial

  16. Unfractionated heparin activity measured by anti-factor Xa levels is associated with the need for extracorporeal membrane oxygenation circuit/membrane oxygenator change: a retrospective pediatric study.

    PubMed

    Irby, Katherine; Swearingen, Christopher; Byrnes, Jonathan; Bryant, Joshua; Prodhan, Parthak; Fiser, Richard

    2014-05-01

    Investigate whether anti-Factor Xa levels are associated with the need for change of circuit/membrane oxygenator secondary to thrombus formation in pediatric patients. Retrospective single institution study. Retrospective record review of 62 pediatric patients supported with extracorporeal membrane oxygenation from 2009 to 2011. Data on standard demographic characteristics, indications for extracorporeal membrane oxygenation, duration of extracorporeal membrane oxygenation, activated clotting time measurements, anti-Factor Xa measurements, and heparin infusion rate were collected. Generalized linear models were used to associate anti-Factor Xa concentrations and need for change of either entire circuit/membrane oxygenator secondary to thrombus formation. Sixty-two patients met study inclusion criteria. No-circuit change was required in 45 of 62 patients. Of 62 patients, 17 required change of circuit/membrane oxygenator due to thrombus formation. Multivariate analysis of daily anti-Factor Xa measurements throughout duration of extracorporeal membrane oxygenation support estimated a mean anti-Factor Xa concentration of 0.20 IU/mL (95% CI, 0.16, 0.24) in no-complete-circuit group that was significantly higher than the estimated concentration of 0.13 IU/mL (95% CI, 0.12, 0.14) in complete-circuit group (p = 0.001). A 0.01 IU/mL decrease in anti-Factor Xa increased odds of need for circuit/membrane oxygenator change by 5% (odds ratio = 1.105; 95% CI, 1.00, 1.10; p = 0.044). Based on the observed anti-Factor Xa concentrations, complete-circuit group had 41% increased odds for requiring circuit/membrane oxygenator change compared with no-complete-circuit group (odds ratio = 1.41; 95% CI, 1.01, 1.96; p = 0.044). Mean daily activated clotting time measurement (p = 0.192) was not different between groups, but mean daily heparin infusion rate (p < 0.001) was significantly different between the two groups. Higher anti-Factor Xa concentrations were associated with freedom from

  17. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific bindingmore » of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.« less

  18. Reproducibility of the anti-Factor Xa and anti-Factor IIa assays applied to enoxaparin solution.

    PubMed

    Martinez, Céline; Savadogo, Adama; Agut, Christophe; Anger, Pascal

    2013-01-01

    Enoxaparin is a widely used subcutaneously administered antithrombotic agent comprising a complex mixture of glycosaminoglycan chains. Owing to this complexity, its antithrombotic potency cannot be defined by physicochemical methods and is therefore evaluated using an enzymatic assay of anti-Xa and anti-IIa activity. Maintaining consistent anti-Xa activity in the final medicinal product allows physicians to ensure administration of the appropriate dosage to their patients. Bioassays are usually complex and display poorer reproducibility than physicochemical tests such as HPLC assays. Here, we describe the implementation of a common robotic platform and standard release potency testing procedures for enoxaparin sodium injection (Lovenox, Sanofi, Paris, France) products at seven quality control sites within Sanofi. Qualification and analytical procedures, as well as data handling, were optimized and harmonized to improve assay reproducibility. An inter-laboratory study was performed in routine-release conditions. The coefficients of variation for repeatability and reproducibility in assessments of anti-Xa activity were 1.0% and 1.2%, respectively. The tolerance interval in reproducibility precision conditions, expressed as percentage potency, was 96.8-103.2% of the drug product target of 10,000 IU/ml, comparing favorably with the United States of America Pharmacopeia specification (90-110%). The maximum difference between assays in two different laboratories is expected to be 4.1%. The reproducibility characteristics of anti-IIa activity assessments were found to be similar. These results demonstrate the effectiveness of the standardization process established and allow for further improvements to quality control in Lovenox manufacture. This process guarantees closeness between actual and target potencies, as exemplified by the results of release assays obtained during a three-year period. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.

    PubMed

    Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry

    2014-01-01

    We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.

  20. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of deep vein thrombosis.

    PubMed

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-06-30

    Deep vein thrombosis (DVT) is a condition in which a clot forms in the deep veins, most commonly of the leg. It occurs in approximately 1 in 1,000 people. If left untreated, the clot can travel up to the lungs and cause a potentially life-threatening pulmonary embolism (PE). Previously, a DVT was treated with the anticoagulants heparin and vitamin K antagonists. However, two forms of novel oral anticoagulants (NOACs) have been developed: oral direct thrombin inhibitors (DTI) and oral factor Xa inhibitors. The new drugs have characteristics that may be favourable over conventional treatment, including oral administration, a predictable effect, lack of frequent monitoring or re-dosing and few known drug interactions. To date, no Cochrane review has measured the effectiveness and safety of these drugs in the treatment of DVT. To assess the effectiveness of oral DTIs and oral factor Xa inhibitors for the treatment of DVT. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched January 2015) and the Cochrane Register of Studies (last searched January 2015). We searched clinical trials databases for details of ongoing or unpublished studies and the reference lists of relevant articles retrieved by electronic searches for additional citations. We included randomised controlled trials in which people with a DVT confirmed by standard imaging techniques, were allocated to receive an oral DTI or an oral factor Xa inhibitor for the treatment of DVT. Two review authors (LR, JM) independently extracted the data and assessed the risk of bias in the trials. Any disagreements were resolved by discussion with the third review author (PK). We performed meta-analyses when we considered heterogeneity low. The two primary outcomes were recurrent VTE and PE. Other outcomes included all-cause mortality and major bleeding. We calculated all outcomes using an odds ratio (OR) with a 95% confidence interval (CI). We included

  1. Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.

    PubMed

    Cirillo, A; Arruti, C; Courtois, Y; Jeanny, J C

    1990-12-01

    We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.

  2. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  3. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  4. SAR and X-ray Structures of Enantiopure 1,2-cis-(1R,2S)-cyclopentyldiamine and Cyclohexyldiamine Derivativies as Inhibitors of Coagulation Factor Xa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao,J.; Chang, C.; Cheney, D.

    In the search of Factor Xa (FXa) inhibitors structurally different from the pyrazole-based series, we identified a viable series of enantiopure cis-(1R,2S)-cycloalkyldiamine derivatives as potent and selective inhibitors of FXa. Among them, cyclohexyldiamide 7 and cyclopentyldiamide 9 were the most potent neutral compounds, and had good anticoagulant activity comparable to the pyrazole-based analogs. Crystal structures of 7-FXa and 9-FXa illustrate binding similarities and differences between the five- and the six-membered core systems, and provide rationales for the observed SAR of P1 and linker moieties.

  5. Identification of Candidate Transcription Factor Binding Sites in the Cattle Genome

    PubMed Central

    Bickhart, Derek M.; Liu, George E.

    2013-01-01

    A resource that provides candidate transcription factor binding sites (TFBSs) does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future omics studies to develop transcriptional regulation hypotheses. In order to generate this resource, we employed a phylogenetic footprinting approach—using sequence conservation across cattle, human and dog—and position-specific scoring matrices to identify 379,333 putative TFBSs upstream of nearly 8000 Mammalian Gene Collection (MGC) annotated genes within the cattle genome. Comparisons of our predictions to known binding site loci within the PCK1, ACTA1 and G6PC promoter regions revealed 75% sensitivity for our method of discovery. Additionally, we intersected our predictions with known cattle SNP variants in dbSNP and on the Illumina BovineHD 770k and Bos 1 SNP chips, finding 7534, 444 and 346 overlaps, respectively. Due to our stringent filtering criteria, these results represent high quality predictions of putative TFBSs within the cattle genome. All binding site predictions are freely available at http://bfgl.anri.barc.usda.gov/BovineTFBS/ or http://199.133.54.77/BovineTFBS. PMID:23433959

  6. Marker-aided Incorporation of Xa38, a Novel Bacterial Blight Resistance Gene, in PB1121 and Comparison of its Resistance Spectrum with xa13 + Xa21.

    PubMed

    Ellur, Ranjith K; Khanna, Apurva; S, Gopala Krishnan; Bhowmick, Prolay K; Vinod, K K; Nagarajan, M; Mondal, Kalyan K; Singh, Nagendra K; Singh, Kuldeep; Prabhu, Kumble Vinod; Singh, Ashok K

    2016-07-11

    Basmati rice is preferred internationally because of its appealing taste, mouth feel and aroma. Pusa Basmati 1121 (PB1121) is a widely grown variety known for its excellent grain and cooking quality in the international and domestic market. It contributes approximately USD 3 billion to India's forex earning annually by being the most traded variety. However, PB1121 is highly susceptible to bacterial blight (BB) disease. A novel BB resistance gene Xa38 was incorporated in PB1121 from donor parent PR114-Xa38 using a modified marker-assisted backcross breeding (MABB) scheme. Phenotypic selection prior to background selection was instrumental in identifying the novel recombinants with maximum recovery of recurrent parent phenome. The strategy was effective in delimiting the linkage drag to <0.5 mb upstream and <1.9 mb downstream of Xa38 with recurrent parent genome recovery upto 96.9% in the developed NILs. The NILs of PB1121 carrying Xa38 were compared with PB1121 NILs carrying xa13 + Xa21 (developed earlier in our lab) for their resistance to BB. Both NILs showed resistance against the Xoo races 1, 2, 3 and 6. Additionally, Xa38 also resisted Xoo race 5 to which xa13 + Xa21 was susceptible. The PB1121 NILs carrying Xa38 gene will provide effective control of BB in the Basmati growing region.

  7. Anticoagulation by factor Xa inhibitors.

    PubMed

    Orfeo, T; Butenas, S; Brummel-Ziedins, K E; Gissel, M; Mann, K G

    2010-08-01

    Therapeutic agents that regulate blood coagulation are critical to the management of thrombotic disorders, with the selective targeting of factor (F) Xa emerging as a promising approach. To assess anticoagulant strategies targeting FXa. A deterministic computational model of tissue factor (Tf)-initiated thrombin generation and two empirical experimental systems (a synthetic coagulation proteome reconstruction using purified proteins and a whole blood model) were used to evaluate clinically relevant examples of the two available types of FXa-directed anticoagulants [an antithrombin (AT)-dependent agent, fondaparinux, and an AT-independent inhibitor, Rivaroxaban] in experimental regimens relevant to long-term (suppression of new Tf-initiated events) and acute (suppression of ongoing coagulation processes) clinical applications. Computational representations of each anticoagulant's efficacy in suppressing thrombin generation over a range of anticoagulant concentrations in both anticoagulation regimens were validated by results from corresponding empirical reconstructions and were consistent with those recommended for long-term and acute clinical applications, respectively. All three model systems suggested that Rivaroxaban would prove more effective in the suppression of an ongoing coagulation process than fondaparinux, reflecting its much higher reactivity toward the prothrombinase complex. The success of fondaparinux in acute settings in vivo is not explained solely by its properties as an FXa inhibitor. We have reported that FIXa contributes to the long-term capacity of clot-associated catalysts to restart a coagulation process, suggesting that the enhanced anti-FIXa activity of fondaparinux-AT may be critical to its success in acute settings in vivo. © 2010 International Society on Thrombosis and Haemostasis.

  8. Anticoagulation beyond direct thrombin and factor Xa inhibitors: indications for targeting the intrinsic pathway?

    PubMed

    van Montfoort, Maurits L; Meijers, Joost C M

    2013-08-01

    Antithrombotic drugs like vitamin K antagonists and heparin have been the gold standard for the treatment and prevention of thromboembolic disease for many years. Unfortunately, there are several disadvantages of these antithrombotic drugs: they are accompanied by serious bleeding problems, it is necessary to monitor the therapeutic window, and there are various interactions with food and other drugs. This has led to the development of new oral anticoagulants, specifically inhibiting either thrombin or factor Xa. In terms of effectiveness, these drugs are comparable to the currently available anticoagulants; however, they are still associated with issues such as bleeding, reversal of the drug and complicated laboratory monitoring. Vitamin K antagonists, heparin, direct thrombin and factor Xa inhibitors have in common that they target key proteins of the haemostatic system. In an attempt to overcome these difficulties we investigated whether the intrinsic coagulation factors (VIII, IX, XI, XII, prekallikrein and high-molecular-weight kininogen) are superior targets for anticoagulation. We analysed epidemiological data concerning thrombosis and bleeding in patients deficient in one of the intrinsic pathway proteins. Furthermore, we discuss several thrombotic models in intrinsic coagulation factor-deficient animals. The combined results suggest that intrinsic coagulation factors could be suitable targets for anticoagulant drugs.

  9. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  10. Marker-aided Incorporation of Xa38, a Novel Bacterial Blight Resistance Gene, in PB1121 and Comparison of its Resistance Spectrum with xa13 + Xa21

    PubMed Central

    Ellur, Ranjith K.; Khanna, Apurva; S, Gopala Krishnan.; Bhowmick, Prolay K.; Vinod, K. K.; Nagarajan, M.; Mondal, Kalyan K.; Singh, Nagendra K.; Singh, Kuldeep; Prabhu, Kumble Vinod; Singh, Ashok K.

    2016-01-01

    Basmati rice is preferred internationally because of its appealing taste, mouth feel and aroma. Pusa Basmati 1121 (PB1121) is a widely grown variety known for its excellent grain and cooking quality in the international and domestic market. It contributes approximately USD 3 billion to India’s forex earning annually by being the most traded variety. However, PB1121 is highly susceptible to bacterial blight (BB) disease. A novel BB resistance gene Xa38 was incorporated in PB1121 from donor parent PR114-Xa38 using a modified marker-assisted backcross breeding (MABB) scheme. Phenotypic selection prior to background selection was instrumental in identifying the novel recombinants with maximum recovery of recurrent parent phenome. The strategy was effective in delimiting the linkage drag to <0.5 mb upstream and <1.9 mb downstream of Xa38 with recurrent parent genome recovery upto 96.9% in the developed NILs. The NILs of PB1121 carrying Xa38 were compared with PB1121 NILs carrying xa13 + Xa21 (developed earlier in our lab) for their resistance to BB. Both NILs showed resistance against the Xoo races 1, 2, 3 and 6. Additionally, Xa38 also resisted Xoo race 5 to which xa13 + Xa21 was susceptible. The PB1121 NILs carrying Xa38 gene will provide effective control of BB in the Basmati growing region. PMID:27403778

  11. Sulfated, low-molecular-weight lignins are potent inhibitorsof plasmin, in addition to thrombin and factor Xa: Novel opportunity for controlling complex pathologies.

    PubMed

    Henry, Brian L; Abdel Aziz, May; Zhou, Qibing; Desai, Umesh R

    2010-03-01

    Recently we prepared sulfated, low-molecular-weight lignins (LMWLs) to mimic the biological activities of heparin and heparan sulfate. Chemo-enzymatically prepared sulfated LMWLs represent a library of diverse non-sugar, aromatic molecules with structures radically different from the heparins, and have been found to potently inhibit thrombin and factor Xa. To assess their effect on the fibrinolytic system, we studied the interaction of LMWLs with human plasmin. Enzyme inhibition studies indicate that the three sulfated LMWLs studied inhibit plasmin with IC50 values in the range of 0.24 and 1.3 mM, which are marginally affected in the presence of antithrombin. Similarly, plasmin degradation of polymeric fibrin is also inhibited by sulfated LMWLs. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of chromogenic substrates decreases nearly 70% in the presence of LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. Competitive binding studies indicate that the sulfated LMWLs compete with full-length heparin. Comparison with thrombin-heparin crystal structure identifies an anionic region on plasmin as a plausible sulfated LMWL binding site. Overall, the chemo-enzymatic origin coupled with coagulation and fibrinolysis inhibition properties of sulfated LMWLs present novel opportunities for designing new pharmaceutical agents that regulate complex pathologies in which both systems are known to play important roles such as disseminated intravascular coagulation.

  12. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    PubMed

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding

    PubMed Central

    Gilad, Yoav; Pritchard, Jonathan K.; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede. PMID:26406244

  14. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding.

    PubMed

    Raj, Anil; Shim, Heejung; Gilad, Yoav; Pritchard, Jonathan K; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.

  15. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of pulmonary embolism.

    PubMed

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-12-04

    Pulmonary embolism is a potentially life-threatening condition in which a clot can travel from the deep veins, most commonly in the leg, up to the lungs. Previously, a pulmonary embolism was treated with the anticoagulants heparin and vitamin K antagonists. Recently, however, two forms of direct oral anticoagulants (DOACs) have been developed: oral direct thrombin inhibitors (DTI) and oral factor Xa inhibitors. The new drugs have characteristics that may be favourable over conventional treatment, including oral administration, a predictable effect, lack of frequent monitoring or re-dosing and few known drug interactions. To date, no Cochrane review has measured the effectiveness and safety of these drugs in the long-term treatment (minimum duration of three months) of pulmonary embolism. To assess the effectiveness of oral DTIs and oral factor Xa inhibitors for the long-term treatment of pulmonary embolism. The Cochrane Vascular Trials Search Co-ordinator searched the Specialised Register (last searched January 2015) and the Cochrane Register of Studies (last searched January 2015). Clinical trials databases were also searched for details of ongoing or unpublished studies. We searched the reference lists of relevant articles retrieved by electronic searches for additional citations. We included randomised controlled trials in which patients with a pulmonary embolism confirmed by standard imaging techniques were allocated to receive an oral DTI or an oral factor Xa inhibitor for the long-term (minimum duration three months) treatment of pulmonary embolism. Two review authors (LR, JM) independently extracted the data and assessed the risk of bias in the trials. Any disagreements were resolved by discussion with the third author (PK). We used meta-analyses when we considered heterogeneity low. The two primary outcomes were recurrent venous thromboembolism and pulmonary embolism. Other outcomes included all-cause mortality and major bleeding. We calculated all outcomes

  16. Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices

    PubMed Central

    Sriram, K. K.; Yeh, Jia-Wei; Lin, Yii-Lih; Chang, Yi-Ren; Chou, Chia-Fu

    2014-01-01

    Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have mapped out five of the TF binding sites of E. coli RNA polymerase to bacteriophage λ-DNA, where two promoter sites and three pseudo-promoter sites are identified with the corresponding binding frequency of 45% and 30%, respectively. Our method is quick, robust and capable of resolving protein-binding locations with high accuracy (∼ 300 bp), making our system a complementary platform to the methods currently practiced. It is advantageous in parallel analysis and less prone to false positive results over other single molecule mapping techniques such as optical tweezers, atomic force microscopy and molecular combing, and could potentially be extended to general mapping of protein–DNA interaction sites. PMID:24753422

  17. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  19. Predicting conformational ensembles and genome-wide transcription factor binding sites from DNA sequences.

    PubMed

    Andrabi, Munazah; Hutchins, Andrew Paul; Miranda-Saavedra, Diego; Kono, Hidetoshi; Nussinov, Ruth; Mizuguchi, Kenji; Ahmad, Shandar

    2017-06-22

    DNA shape is emerging as an important determinant of transcription factor binding beyond just the DNA sequence. The only tool for large scale DNA shape estimates, DNAshape was derived from Monte-Carlo simulations and predicts four broad and static DNA shape features, Propeller twist, Helical twist, Minor groove width and Roll. The contributions of other shape features e.g. Shift, Slide and Opening cannot be evaluated using DNAshape. Here, we report a novel method DynaSeq, which predicts molecular dynamics-derived ensembles of a more exhaustive set of DNA shape features. We compared the DNAshape and DynaSeq predictions for the common features and applied both to predict the genome-wide binding sites of 1312 TFs available from protein interaction quantification (PIQ) data. The results indicate a good agreement between the two methods for the common shape features and point to advantages in using DynaSeq. Predictive models employing ensembles from individual conformational parameters revealed that base-pair opening - known to be important in strand separation - was the best predictor of transcription factor-binding sites (TFBS) followed by features employed by DNAshape. Of note, TFBS could be predicted not only from the features at the target motif sites, but also from those as far as 200 nucleotides away from the motif.

  20. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    PubMed Central

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  1. Global Analysis of Transcription Factor-Binding Sites in Yeast Using ChIP-Seq

    PubMed Central

    Lefrançois, Philippe; Gallagher, Jennifer E. G.; Snyder, Michael

    2016-01-01

    Transcription factors influence gene expression through their ability to bind DNA at specific regulatory elements. Specific DNA-protein interactions can be isolated through the chromatin immunoprecipitation (ChIP) procedure, in which DNA fragments bound by the protein of interest are recovered. ChIP is followed by high-throughput DNA sequencing (Seq) to determine the genomic provenance of ChIP DNA fragments and their relative abundance in the sample. This chapter describes a ChIP-Seq strategy adapted for budding yeast to enable the genome-wide characterization of binding sites of transcription factors (TFs) and other DNA-binding proteins in an efficient and cost-effective way. Yeast strains with epitope-tagged TFs are most commonly used for ChIP-Seq, along with their matching untagged control strains. The initial step of ChIP involves the cross-linking of DNA and proteins. Next, yeast cells are lysed and sonicated to shear chromatin into smaller fragments. An antibody against an epitope-tagged TF is used to pull down chromatin complexes containing DNA and the TF of interest. DNA is then purified and proteins degraded. Specific barcoded adapters for multiplex DNA sequencing are ligated to ChIP DNA. Short DNA sequence reads (28–36 base pairs) are parsed according to the barcode and aligned against the yeast reference genome, thus generating a nucleotide-resolution map of transcription factor-binding sites and their occupancy. PMID:25213249

  2. DNA breathing dynamics distinguish binding from nonbinding consensus sites for transcription factor YY1 in cells.

    PubMed

    Alexandrov, Boian S; Fukuyo, Yayoi; Lange, Martin; Horikoshi, Nobuo; Gelev, Vladimir; Rasmussen, Kim Ø; Bishop, Alan R; Usheva, Anny

    2012-11-01

    The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.

  3. Characterization and expression analysis of two cDNAs encoding Xa1 and oxysterol binding proteins in sorghum (Sorghum bicolor)

    USDA-ARS?s Scientific Manuscript database

    Using suppression subtractive hybridization (SSH) and subsequent microarray analysis, expression profiles of sorghum genes responsive to greenbug phloem-feeding were obtained and identified. Among the profiles, two cDNAs designated to MM73 and MM95 were identified to encode Xa1 (Xa1) and oxysterol ...

  4. The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity.

    PubMed

    Caddell, Daniel F; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C

    2015-05-05

    Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21 , recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas , and confers robust resistance to X. oryzae pv. oryzae ( Xoo ). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21 . Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression.

  5. The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity

    PubMed Central

    Caddell, Daniel F.; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C.

    2016-01-01

    Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21, recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas, and confers robust resistance to X. oryzae pv. oryzae (Xoo). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21. Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression. PMID:27525297

  6. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  7. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  8. Effects of cytosine methylation on transcription factor binding sites

    PubMed Central

    2014-01-01

    Background DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important. Results We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions. Conclusions Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. PMID:24669864

  9. Structure based drug design: development of potent and selective factor IXa (FIXa) inhibitors.

    PubMed

    Wang, Shouming; Beck, Richard; Burd, Andrew; Blench, Toby; Marlin, Frederic; Ayele, Tenagne; Buxton, Stuart; Dagostin, Claudio; Malic, Maja; Joshi, Rina; Barry, John; Sajad, Mohammed; Cheung, Chiming; Shaikh, Shaheda; Chahwala, Suresh; Chander, Chaman; Baumgartner, Christine; Holthoff, Hans-Peter; Murray, Elizabeth; Blackney, Michael; Giddings, Amanda

    2010-02-25

    On the basis of our understanding on the binding interactions of the benzothiophene template within the FIXa active site by X-ray crystallography and molecular modeling studies, we developed our SAR strategy by targeting the 4-position of the template to access the S1 beta and S2-S4 sites. A number of highly selective and potent factor Xa (FXa) and FIXa inhibitors were identified by simple switch of functional groups with conformational changes toward the S2-S4 sites.

  10. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species

    PubMed Central

    Trapnell, Cole; Davidson, Stuart; Pachter, Lior; Chu, Hou Cheng; Tonkin, Leath A.; Biggin, Mark D.; Eisen, Michael B.

    2010-01-01

    Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances. PMID:20351773

  12. Discovery of Novel Nonactive Site Inhibitors of the Prothrombinase Enzyme Complex.

    PubMed

    Kapoor, Karan; McGill, Nicole; Peterson, Cynthia B; Meyers, Harold V; Blackburn, Michael N; Baudry, Jerome

    2016-03-28

    The risk of serious bleeding is a major liability of anticoagulant drugs that are active-site competitive inhibitors targeting the Factor Xa (FXa) prothrombin (PT) binding site. The present work identifies several new classes of small molecule anticoagulants that can act as nonactive site inhibitors of the prothrombinase (PTase) complex composed of FXa and Factor Va (FVa). These new classes of anticoagulants were identified, using a novel agnostic computational approach to identify previously unrecognized binding pockets at the FXa-FVa interface. From about three million docking calculations of 281,128 compounds in a conformational ensemble of FXa heavy chains identified by molecular dynamics (MD) simulations, 97 compounds and their structural analogues were selected for experimental validation, through a series of inhibition assays. The compound selection was based on their predicted binding affinities to FXa and their ability to successfully bind to multiple protein conformations while showing selectivity for particular binding sites at the FXa/FVa interface. From these, thirty-one (31) compounds were experimentally identified as nonactive site inhibitors. Concentration-based assays further identified 10 compounds represented by four small-molecule families of inhibitors that achieve dose-independent partial inhibition of PTase activity in a nonactive site-dependent and self-limiting mechanism. Several compounds were identified for their ability to bind to protein conformations only seen during MD, highlighting the importance of accounting for protein flexibility in structure-based drug discovery approaches.

  13. Epigenetic priors for identifying active transcription factor binding sites.

    PubMed

    Cuellar-Partida, Gabriel; Buske, Fabian A; McLeay, Robert C; Whitington, Tom; Noble, William Stafford; Bailey, Timothy L

    2012-01-01

    Accurate knowledge of the genome-wide binding of transcription factors in a particular cell type or under a particular condition is necessary for understanding transcriptional regulation. Using epigenetic data such as histone modification and DNase I, accessibility data has been shown to improve motif-based in silico methods for predicting such binding, but this approach has not yet been fully explored. We describe a probabilistic method for combining one or more tracks of epigenetic data with a standard DNA sequence motif model to improve our ability to identify active transcription factor binding sites (TFBSs). We convert each data type into a position-specific probabilistic prior and combine these priors with a traditional probabilistic motif model to compute a log-posterior odds score. Our experiments, using histone modifications H3K4me1, H3K4me3, H3K9ac and H3K27ac, as well as DNase I sensitivity, show conclusively that the log-posterior odds score consistently outperforms a simple binary filter based on the same data. We also show that our approach performs competitively with a more complex method, CENTIPEDE, and suggest that the relative simplicity of the log-posterior odds scoring method makes it an appealing and very general method for identifying functional TFBSs on the basis of DNA and epigenetic evidence. FIMO, part of the MEME Suite software toolkit, now supports log-posterior odds scoring using position-specific priors for motif search. A web server and source code are available at http://meme.nbcr.net. Utilities for creating priors are at http://research.imb.uq.edu.au/t.bailey/SD/Cuellar2011. t.bailey@uq.edu.au Supplementary data are available at Bioinformatics online.

  14. Coagulation factor Xa drives tumor cells into apoptosis through BH3-only protein Bim up-regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borensztajn, Keren S.; Bijlsma, Maarten F.; Groot, Angelique P.

    2007-07-15

    Coagulation Factor (F)Xa is a serine protease that plays a crucial role during blood coagulation by converting prothrombin into active thrombin. Recently, however, it emerged that besides this role in coagulation, FXa induces intracellular signaling leading to different cellular effects. Here, we show that coagulation factor (F)Xa drives tumor cells of epithelial origin, but not endothelial cells or monocytes, into apoptosis, whereas it even enhances fibroblast survival. FXa signals through the protease activated receptor (PAR)-1 to activate extracellular-signal regulated kinase (ERK) 1/2 and p38. This activation is associated with phosphorylation of the transcription factor CREB, and in tumor cells withmore » up-regulation of the BH3-only pro-apoptotic protein Bim, leading to caspase-3 cleavage, the main hallmark of apoptosis. Transfection of tumor cells with dominant negative forms of CREB or siRNA for either PAR-1, Bim, ERK1 and/or p38 inhibited the pro-apoptotic effect of FXa. In fibroblasts, FXa-induced PAR-1 activation leads to down-regulation of Bim and pre-treatment with PAR-1 or Bim siRNA abolishes proliferation. We thus provide evidence that beyond its role in blood coagulation, FXa plays a key role in cellular processes in which Bim is the central player in determining cell survival.« less

  15. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes

    PubMed Central

    Kuang, Zheng; Ji, Zhicheng

    2018-01-01

    Abstract Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. PMID:29325176

  16. Direct thrombin and factor Xa inhibition for stroke prevention in patients with atrial fibrillation.

    PubMed

    Galanis, Taki; Merli, Geno J

    2013-02-01

    Nonvalvular atrial fibrillation (AF) is the most common clinically significant cardiac arrhythmia occurring in patients in the United States. The primary clinical consequence of AF is an increase in the risk and severity of strokes. Treatment guidelines recommend anticoagulation therapy for most patients with AF. One risk-stratification scheme, the CHADS2 index, is simple and widely used to determine the management of patients with AF in regard to stroke prevention. However, new schemes, such as CHA2DS2-VASc, further refine risk stratification to identify patients who would obtain a net clinical benefit from a particular management strategy, thus improving the quality of management. For patients with AF for whom oral anticoagulation (OAC) is advisable, vitamin K antagonist (VKA) therapy is well established and effective. However, OAC with VKAs presents challenges to prescribers and patients in maintaining therapeutic efficacy. Novel OACs may offer alternatives to VKAs. Dabigatran etexilate, a direct thrombin inhibitor, was approved by the US Food and Drug Administration (FDA) in 2010 for reducing the risk of stroke and systemic embolism in patients with nonvalvular AF. The activated factor X (factor Xa) inhibitor rivaroxaban was recently approved by the FDA both for prophylaxis of deep vein thrombosis, which may lead to pulmonary embolism in patients undergoing knee or hip arthroplasty, and for reducing the risk of stroke and systemic embolism in patients with nonvalvular AF. Apixaban, another factor Xa inhibitor, was recently shown to be effective for stroke prevention in patients with nonvalvular AF. This article reviews clinical considerations regarding new agents that may offer alternatives to VKA therapy for the prevention of stroke in patients with AF.

  17. Clinical impact of major bleeding in patients with venous thromboembolism treated with factor Xa inhibitors or vitamin K antagonists. An individual patient data meta-analysis.

    PubMed

    Bleker, Suzanne M; Brekelmans, Marjolein P A; Eerenberg, Elise S; Cohen, Alexander T; Middeldorp, Saskia; Raskob, Gary; Büller, Harry R

    2017-10-05

    Factor Xa (fXa)-inhibitors are as effective and safer than vitamin-K-antagonists (VKA) in the treatment of venous thromboembolism (VTE). We previously classified the severity of clinical presentation and course of all major bleeding events from the EINSTEIN, AMPLIFY and HOKUSAI-VTE trials separately. The current aim was to combine these findings in order to increase precision, assess a class effect and analyse presentation and course for different types of bleeding, i. e. intracranial, gastro-intestinal, and other. We classified the clinical presentation and course of all major bleeding events using pre-defined criteria. Both classifications comprised four categories; one being the mildest, and four the most severe. Odds ratios (OR) were calculated for all events classified as category three or four between fXa-inhibitors and VKA recipients. Also, ORs were computed for different types of bleeding. Major bleeding occurred in 111 fXa-inhibitor recipients and in 187 LMWH/VKA recipients. The clinical presentation was classified as category three or four in 35 % and 48 % of the major bleeds in fXa inhibitor and VKA recipients, respectively (OR 0.59, 95 % CI 0.36-0.97). For intracranial, gastro-intestinal and other bleeding a trend towards a less severe presentation was observed for patients treated with fXa inhibitors. Clinical course was classified as severe in 22 % of the fXa inhibitor and 25 % of the VKA associated bleeds (OR 0.83, 95 % CI 0.47-1.46). In conclusion, FXa inhibitor associated major bleeding events had a significantly less severe presentation and a similar course compared to VKA. This finding was consistent for different types of bleeding.

  18. A Novel Factor Xa-Inhibiting Peptide from Centipedes Venom.

    PubMed

    Kong, Yi; Shao, Yu; Chen, Hao; Ming, Xin; Wang, Jin-Bin; Li, Zhi-Yu; Wei, Ji-Fu

    2013-01-01

    Centipedes have been used as traditional medicine for thousands of years in China. Centipede venoms consist of many biochemical peptides and proteins. Factor Xa (FXa) is a serine endopeptidase that plays the key role in blood coagulation, and has been used as a new target for anti-thrombotic drug development. A novel FXa inhibitor, a natural peptide with the sequence of Thr-Asn-Gly-Tyr-Thr (TNGYT), was isolated from the venom of Scolopendra subspinipes mutilans using a combination of size-exclusion and reverse-phase chromatography. The molecular weight of the TNGYT peptide was 554.3 Da measured by electrospray ionization mass spectrometry. The amino acid sequence of TNGYT was determined by Edman degradation. TNGYT inhibited the activity of FXa in a dose-dependent manner with an IC 50 value of 41.14 mg/ml. It prolonged the partial thromboplastin time and prothrombin time in both in vitro and ex vivo assays. It also significantly prolonged whole blood clotting time and bleeding time in mice. This is the first report that an FXa inhibiting peptide was isolated from centipedes venom.

  19. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.

    2004-08-06

    Background The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. Results We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene,more » and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Conclusions Measuring conservation of sequence features closely linked to function - such as binding-site clustering - makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less

  20. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayedmore » embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less

  1. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  2. Site of ADP-ribosylation and the RNA-binding site are situated in different domains of the elongation factor EF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydova, E.K.

    1987-01-01

    One of the proteins participating in the process of elongation of polypeptide chains - elongation factor 2 (EF-2) - can be ADP-ribosylated at a unique amino acid residue - diphthamide. Since the ADP-ribosylation of EF-2 at dipthamide leads to a loss of affinity of the factor for RNA while the presence of RNA inhibits the ADP-ribosylation reaction, it seemed probable to the authors that diphthamide participated directly in the binding of EF-2 to DNA. The experiments presented in this article showed that this was not the case: diphthamide and the RNA-binding site are situated on different domains of EF-2. Thus,more » ADP-ribosylation of factor EF-2 in one domain leads to a loss of the ability to bind to RNA in the other. The authors investigated the mutual arrangement of diphthamide and the RNA-binding site on the EF-2 molecule by preparing a factor from rabbit reticulocytes and subjecting it to proteolytic digestion with elastase. The factor was incubated with elastase for 15 min at 37/sup 0/C at an enzyme:substrate ratio of 1:100 in buffer solution containing 20 mM Tris-HCl, pH 7.6, 10 mM KCl, 1 mM MgCl/sub 2/, and 2 mM dithiothreitol. The reaction was stopped by adding para-methylsulfonyl fluoride to 50 micro-M. The authors obtained a preparation as a result of proteolysis and applied it on a column with RNA-Sepharose and separated into two fractions: RNA-binding and without affinity for RNA. The initial preparation and its fractions were subjected to exhaustive ADP-ribosylation in the presence of diphtheria toxin and (U-/sup 14/C) nicotinaide adenine dinucleotide ((/sup 14/C)NAD) (296 mCi/mmole). The samples were analyzed electrophoretically in a polyacrylamide gel gradient in the presence of sodium dodecyl sulfate. For the detection of (/sup 14/C) ADP-ribosylated components, the gels were dried and exposed with RM-V x-ray film.« less

  3. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Thomas, Nicholas C; Oksenberg, Nir; Liu, Furong; Caddell, Daniel; Nalyvayko, Alina; Nguyen, Yen; Schwessinger, Benjamin; Ronald, Pamela C

    2018-01-01

    Rice ( Oryza sativa ) plants expressing the XA21 cell-surface receptor kinase are resistant to Xanthomonas oryzae pv. oryzae (Xoo) infection. We previously demonstrated that expressing a chimeric protein containing the ELONGATION FACTOR Tu RECEPTOR (EFR) ectodomain and the XA21 endodomain (EFR:XA21) in rice does not confer robust resistance to Xoo . To test if the XA21 ectodomain is required for Xoo resistance, we produced transgenic rice lines expressing a chimeric protein consisting of the XA21 ectodomain and EFR endodomain (XA21:EFR) and inoculated these lines with Xoo . We also tested if the XA21:EFR rice plants respond to a synthetic sulfated 21 amino acid derivative (RaxX21-sY) of the activator of XA21-mediated immunity, RaxX. We found that five independently transformed XA21:EFR rice lines displayed resistance to Xoo as measured by lesion length analysis, and showed that five lines share characteristic markers of the XA21 defense response (generation of reactive oxygen species and defense response gene expression) after treatment with RaxX21-sY. Our results indicate that expression of the XA21:EFR chimeric receptor in rice confers resistance to Xoo . These results suggest that the endodomain of the EFR and XA21 immune receptors are interchangeable and the XA21 ectodomain is the key determinant conferring robust resistance to Xoo .

  4. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes.

    PubMed

    Kuang, Zheng; Ji, Zhicheng; Boeke, Jef D; Ji, Hongkai

    2018-01-09

    Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Preclinical and Clinical Data for Factor Xa and “Universal” Reversal Agents

    PubMed Central

    Milling, Truman J.; Kaatz, Scott

    2017-01-01

    Oral Factor Xa (FXa) inhibitors, a growing class of direct-acting anticoagulants, are frequently used to prevent stroke and systemic embolism in patients with atrial fibrillation and to prevent and treat venous thromboembolism. These drugs reduce the risk of clotting at the expense of increasing the risk of bleeding, and currently they have no specific reversal agent. However, andexanet alfa, a recombinant modified FXa decoy molecule, is in a late-phase clinical trial in bleeding patients, and ciraparantag, a small molecule that appears to reverse many anticoagulants including the FXa inhibitors, is in development. This review summarizes the published data to date on both drugs, which have the potential to change the management approach to patients with FXa inhibitor–associated major hemorrhage. PMID:27575436

  6. Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites

    PubMed Central

    Diermeier, Sarah D.; Németh, Attila; Rehli, Michael; Grummt, Ingrid; Längst, Gernot

    2013-01-01

    Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes. PMID:24068958

  7. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  8. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules.

    PubMed

    Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques

    2008-01-01

    This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.

  9. Transcription factor target site search and gene regulation in a background of unspecific binding sites.

    PubMed

    Hettich, J; Gebhardt, J C M

    2018-06-02

    Response time and transcription level are vital parameters of gene regulation. They depend on how fast transcription factors (TFs) find and how efficient they occupy their specific target sites. It is well known that target site search is accelerated by TF binding to and sliding along unspecific DNA and that unspecific associations alter the occupation frequency of a gene. However, whether target site search time and occupation frequency can be optimized simultaneously is mostly unclear. We developed a transparent and intuitively accessible state-based formalism to calculate search times to target sites on and occupation frequencies of promoters of arbitrary state structure. Our formalism is based on dissociation rate constants experimentally accessible in live cell experiments. To demonstrate our approach, we consider promoters activated by a single TF, by two coactivators or in the presence of a competitive inhibitor. We find that target site search time and promoter occupancy differentially vary with the unspecific dissociation rate constant. Both parameters can be harmonized by adjusting the specific dissociation rate constant of the TF. However, while measured DNA residence times of various eukaryotic TFs correspond to a fast search time, the occupation frequencies of target sites are generally low. Cells might tolerate low target site occupancies as they enable timely gene regulation in response to a changing environment. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles

    PubMed Central

    Stojnic, Robert; Fu, Audrey Qiuyan; Adryan, Boris

    2012-01-01

    Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM

  11. DNA-binding regulates site-specific ubiquitination of IRF-1.

    PubMed

    Landré, Vivien; Pion, Emmanuelle; Narayan, Vikram; Xirodimas, Dimitris P; Ball, Kathryn L

    2013-02-01

    Understanding the determinants for site-specific ubiquitination by E3 ligase components of the ubiquitin machinery is proving to be a challenge. In the present study we investigate the role of an E3 ligase docking site (Mf2 domain) in an intrinsically disordered domain of IRF-1 [IFN (interferon) regulatory factor-1], a short-lived IFNγ-regulated transcription factor, in ubiquitination of the protein. Ubiquitin modification of full-length IRF-1 by E3 ligases such as CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and MDM2 (murine double minute 2), which dock to the Mf2 domain, was specific for lysine residues found predominantly in loop structures that extend from the DNA-binding domain, whereas no modification was detected in the more conformationally flexible C-terminal half of the protein. The E3 docking site was not available when IRF-1 was in its DNA-bound conformation and cognate DNA-binding sequences strongly suppressed ubiquitination, highlighting a strict relationship between ligase binding and site-specific modification at residues in the DNA-binding domain. Hyperubiquitination of a non-DNA-binding mutant supports a mechanism where an active DNA-bound pool of IRF-1 is protected from polyubiquitination and degradation.

  12. Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor

    PubMed Central

    Muiño, Jose M.; de Bruijn, Suzanne; Pajoro, Alice; Geuten, Koen; Vingron, Martin; Angenent, Gerco C.; Kaufmann, Kerstin

    2016-01-01

    Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon. PMID:26429922

  13. Anticoagulant activity in salivary glands of the insect vector Culicoides variipennis sonorensis by an inhibitor of factor Xa.

    PubMed

    Pérez de León, A A; Valenzuela, J G; Tabachnick, W J

    1998-02-01

    Blood feeding by the insect vector Culicoides variipennis sonorensis involves laceration of superficial host tissues, an injury that would be expected to trigger the coagulation cascade. Accordingly, the salivary glands of C.v. sonorensis were examined for the presence of an antihemostatic that prevents blood coagulation. Assays using salivary gland extracts showed a delay in the recalcification time of plasma devoid of platelets, indicating the presence of anticoagulant activity. Retardation in the formation of a fibrin clot was also observed after the addition of tissue factor to plasma that was preincubated with salivary gland extracts. Similarly, an inhibitory effect by salivary gland extracts was detected in assays that included factors of the intrinsic pathway. Inhibition of the catalytic activity of purified factor Xa toward its chromogenic substrate suggested that it was the target of the salivary anticoagulant of C.v. sonorensis. This was corroborated by the coincidence of anticoagulant and anti-FXa activities obtained by reverse-phase HPLC. The depletion of anti-FXa activity from salivary glands during blood feeding suggests that the FXa inhibitor functions as anticoagulant. Molecular sieving HPLC yielded an apparent molecular mass of 28 kDa for the salivary FXa inhibitor of C.v. sonorensis. Preventing the formation of thrombin through the inhibition of FXa likely facilitates blood feeding by maintaining the pool of blood fluid at the feeding site. The salivary FXa inhibitor of C.v. sonorensis could impair the network of host-defense mechanisms in the skin microenvironment by avoiding blood coagulation at the site of feeding.

  14. Whole-Genome Analysis Reveals That Active Heat Shock Factor Binding Sites Are Mostly Associated with Non-Heat Shock Genes in Drosophila melanogaster

    PubMed Central

    Gonsalves, Sarah E.; Moses, Alan M.; Razak, Zak; Robert, Francois; Westwood, J. Timothy

    2011-01-01

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions. PMID:21264254

  15. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.

    PubMed

    Gonsalves, Sarah E; Moses, Alan M; Razak, Zak; Robert, Francois; Westwood, J Timothy

    2011-01-14

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.

  16. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    PubMed Central

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  17. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  18. Muscarinic binding sites in cultured bovine pulmonary arterial endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronstam, R.S.; Catravas, J.D.; Ryan, U.S.

    The authors have previously reported a) the presence of muscarinic binding sites on cultured bovine pulmonary arterial endothelial cells (BPAE; 2,000 sites/cell) and b) that acetylcholine inhibits the release of thromboxane B/sub 2/ fro BPAE. Since the authors findings could reflect muscarinic receptors (mAChR) on BPAE, they have further investigated the nature of BPAE muscarinic binding sites and contrast them to those of known functional mAChR. Muscarinic binding sites on BPAE resembled mAChR in that a) the binding of 3 nM /sup 3/H QNB was inhibited by muscarinic agonists and antagonists; b) /sup 3/H QNB binding was 30 times moremore » sensitive to R(-)- than to S(+)-QNB; c) carbamylcholine binding was resolved into high and low affinity components (IC50's = 0.04 and 2 ..mu..M; d) 5'-guanylylimidodiphosphate (100 ..mu..M) shifted agonist binding curves to the right by a factor of 3; 4) the atropine-sensitive binding of /sup 3/H oxotremorine-M (/sup 3/H-OXO-M) was depressed by the guanine nucleotide (IC50 + 60 ..mu..M). However, although gallamine allosterically regulates mAChR binding in other tissues, it did not affect the rates of dissociation of /sup 3/H QNB, /sup 3/H methylscopolamine or /sup 3/H OXO-M from BPAE binding sites. Thus, BPAE muscarinic binding sites posses many but not all of the properties associated with functional mAChR.« less

  19. Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    PubMed Central

    Gupta, Gagan Deep; Kumar, Vinay

    2012-01-01

    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937

  20. Effect of MCM09, an active site-directed inhibitor of factor Xa, on B16-BL6 melanoma lung colonies in mice.

    PubMed

    Rossi, C; Hess, S; Eckl, R W; di Lena, A; Bruno, A; Thomas, O; Poggi, A

    2006-03-01

    Treatment with anticoagulant drugs has shown potential inhibitory effect on tumor invasion, although the relationship with clotting inhibition was not clear. The aim of our study was to evaluate the potential antitumor activity of MCM09, a newly developed, active site-directed, small molecule inhibitor of factor Xa (FXa) [WO0216312], and to relate the findings to anticlotting potency. MCM09 (0.1-10 mg kg(-1)) or heparin (H; 10 mg kg(-1)) was injected intravenously (i.v.), with 5 x 10(4) B16-BL6 melanoma cells, in C57BL/6 mice. Mice were killed after 18 days, to count lung colonies. Ex vivo anticoagulant activity was measured by activated partial thromboplastin time (APTT) on mouse plasma. MCM09, a selective inhibitor of FXa (IC-50 = 2.4 nm against human FXa), inhibited in a dose-dependent manner B16-BL6 melanoma lung colonies in mice. Mean lung metastasis number was 20.9 +/- 4.8 in controls (n = 10), 1.2 +/- 0.4 in mice treated with H, 10 mg kg(-1) i.v. (P < 0.01), 0.9 +/- 0.3, 9.2 +/- 2.2 and 15.5 +/- 2.6 in mice treated with MCM09, at 10 (P < 0.01), 1 (P < 0.05) and 0.1 mg kg(-1) i.v. (ns), respectively. MCM09 (10 mg kg(-1) i.v.) significantly prolonged APTT (57.1 +/- 10.2 s) 30 min after i.v. injection when compared with controls (25.3 +/- 1.6 s; P < 0.05). Lung colonies were 74.2-72.6% reduced by MCM09 (10 mg kg(-1)) given 60 or 120 min before cells, but not by MCM09 given 60 min thereafter, suggesting a direct cell interaction as a mechanism underlying antitumor activity.

  1. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  2. Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin Surrogates: a Perspective on Experimental Design, Data Analysis, and Open Problems.

    PubMed

    Wei, Yingying; Wu, George; Ji, Hongkai

    2013-05-01

    Mapping genome-wide binding sites of all transcription factors (TFs) in all biological contexts is a critical step toward understanding gene regulation. The state-of-the-art technologies for mapping transcription factor binding sites (TFBSs) couple chromatin immunoprecipitation (ChIP) with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip). These technologies have limitations: they are low-throughput with respect to surveying many TFs. Recent advances in genome-wide chromatin profiling, including development of technologies such as DNase-seq, FAIRE-seq and ChIP-seq for histone modifications, make it possible to predict in vivo TFBSs by analyzing chromatin features at computationally determined DNA motif sites. This promising new approach may allow researchers to monitor the genome-wide binding sites of many TFs simultaneously. In this article, we discuss various experimental design and data analysis issues that arise when applying this approach. Through a systematic analysis of the data from the Encyclopedia Of DNA Elements (ENCODE) project, we compare the predictive power of individual and combinations of chromatin marks using supervised and unsupervised learning methods, and evaluate the value of integrating information from public ChIP and gene expression data. We also highlight the challenges and opportunities for developing novel analytical methods, such as resolving the one-motif-multiple-TF ambiguity and distinguishing functional and non-functional TF binding targets from the predicted binding sites. The online version of this article (doi:10.1007/s12561-012-9066-5) contains supplementary material, which is available to authorized users.

  3. A new peptide (Ruviprase) purified from the venom of Daboia russelii russelii shows potent anticoagulant activity via non-enzymatic inhibition of thrombin and factor Xa.

    PubMed

    Thakur, Rupamoni; Kumar, Ashok; Bose, Biplab; Panda, Dulal; Saikia, Debashree; Chattopadhyay, Pronobesh; Mukherjee, Ashis K

    2014-10-01

    Compounds showing dual inhibition of thrombin and factor Xa (FXa) are the subject of great interest owing to their broader specificity for effective anticoagulation therapy against cardiovascular disorders. This is the first report on the functional characterization and assessment of therapeutic potential of a 4423.6 Da inhibitory peptide (Ruviprase) purified from Daboia russelii russelii venom. The secondary structure of Ruviprase is composed of α-helices (61.9%) and random coils (38.1%). The partial N-terminal sequence (E(1)-V(2)-X(3)-W(4)-W(5)-W(6)-A(7)-Q(8)-L(9)-S(10)) of Ruviprase demonstrated significant similarity (80.0%) with an internal sequence of apoptosis-stimulating protein reported from the venom of Ophiophagus hannah and Python bivittatus; albeit Ruviprase did not show sequence similarity with existing thrombin/FXa inhibitors, suggesting its uniqueness. Ruviprase demonstrated a potent in vitro anticoagulant property and inhibited both thrombin and FXa following slow binding kinetics. Ruviprase inhibited thrombin by binding to its active site via an uncompetitive mechanism with a Ki value and dissociation constant (KD) of 0.42 μM and 0.46 μM, respectively. Conversely, Ruviprase demonstrated mixed inhibition (Ki = 0.16 μM) of FXa towards its physiological substrate prothrombin. Furthermore, the biological properties of Ruviprase could not be neutralized by commercial polyvalent or monovalent antivenom. Ruviprase at a dose of 2.0 mg/kg was non-toxic and showed potent in vivo anticoagulant activity after 6 h of intraperitoneal treatment in mice. Because of the potent anticoagulant property as well as non-toxic nature of Ruviprase, the possible application of the peptide as an antithrombotic agent for combating thrombosis-associated ailments appears promising. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.

    PubMed

    Guo, Wei-Li; Huang, De-Shuang

    2017-08-22

    Transcription factors (TFs) are DNA-binding proteins that have a central role in regulating gene expression. Identification of DNA-binding sites of TFs is a key task in understanding transcriptional regulation, cellular processes and disease. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) enables genome-wide identification of in vivo TF binding sites. However, it is still difficult to map every TF in every cell line owing to cost and biological material availability, which poses an enormous obstacle for integrated analysis of gene regulation. To address this problem, we propose a novel computational approach, TFBSImpute, for predicting additional TF binding profiles by leveraging information from available ChIP-seq TF binding data. TFBSImpute fuses the dataset to a 3-mode tensor and imputes missing TF binding signals via simultaneous completion of multiple TF binding matrices with positional consistency. We show that signals predicted by our method achieve overall similarity with experimental data and that TFBSImpute significantly outperforms baseline approaches, by assessing the performance of imputation methods against observed ChIP-seq TF binding profiles. Besides, motif analysis shows that TFBSImpute preforms better in capturing binding motifs enriched in observed data compared with baselines, indicating that the higher performance of TFBSImpute is not simply due to averaging related samples. We anticipate that our approach will constitute a useful complement to experimental mapping of TF binding, which is beneficial for further study of regulation mechanisms and disease.

  5. ABFs, a family of ABA-responsive element binding factors.

    PubMed

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  6. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less

  7. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease

    PubMed Central

    Romero-Garmendia, Irati; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora

    2018-01-01

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models. PMID:29748492

  8. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease.

    PubMed

    Romero-Garmendia, Irati; Garcia-Etxebarria, Koldo; Hernandez-Vargas, Hector; Santin, Izortze; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora; Bilbao, Jose Ramon

    2018-05-10

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.

  9. L2₁ and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb).

    PubMed

    Wang, Xiaotian; Cheng, Zhenxiang; Wang, Wenhong

    2017-10-20

    For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X₂YZ, i.e., Hf₂VAl, Hf₂CoZ (Z = Ga, In) and Hf₂CrZ (Z = Al, Ga, In). In this work, a series of Hf₂-based Heusler alloys, Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L2₁-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L2₁-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L2₁-type or XA-type structures.

  10. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms.

    PubMed

    Mladic, Marija; Zietek, Barbara M; Iyer, Janaki Krishnamoorthy; Hermarij, Philip; Niessen, Wilfried M A; Somsen, Govert W; Kini, R Manjunatha; Kool, Jeroen

    2016-02-01

    Snake venoms comprise complex mixtures of peptides and proteins causing modulation of diverse physiological functions upon envenomation of the prey organism. The components of snake venoms are studied as research tools and as potential drug candidates. However, the bioactivity determination with subsequent identification and purification of the bioactive compounds is a demanding and often laborious effort involving different analytical and pharmacological techniques. This study describes the development and optimization of an integrated analytical approach for activity profiling and identification of venom constituents targeting the cardiovascular system, thrombin and factor Xa enzymes in particular. The approach developed encompasses reversed-phase liquid chromatography (RPLC) analysis of a crude snake venom with parallel mass spectrometry (MS) and bioactivity analysis. The analytical and pharmacological part in this approach are linked using at-line nanofractionation. This implies that the bioactivity is assessed after high-resolution nanofractionation (6 s/well) onto high-density 384-well microtiter plates and subsequent freeze drying of the plates. The nanofractionation and bioassay conditions were optimized for maintaining LC resolution and achieving good bioassay sensitivity. The developed integrated analytical approach was successfully applied for the fast screening of snake venoms for compounds affecting thrombin and factor Xa activity. Parallel accurate MS measurements provided correlation of observed bioactivity to peptide/protein masses. This resulted in identification of a few interesting peptides with activity towards the drug target factor Xa from a screening campaign involving venoms of 39 snake species. Besides this, many positive protease activity peaks were observed in most venoms analysed. These protease fingerprint chromatograms were found to be similar for evolutionary closely related species and as such might serve as generic snake protease

  11. Preclinical and clinical data for factor Xa and “universal” reversal agents☆,☆☆,★

    PubMed Central

    Milling, Truman J.; Kaatz, Scott

    2017-01-01

    Oral Factor Xa (FXa) inhibitors, a growing class of direct-acting anticoagulants, are frequently used to prevent stroke and systemic embolism in patients with atrial fibrillation and to prevent and treat venous thromboembolism. These drugs reduce the risk of clotting at the expense of increasing the risk of bleeding, and currently they have no specific reversal agent. However, andexanet alfa, a recombinant modified FXa decoymolecule, is in a late-phase clinical trial in bleeding patients, and ciraparantag, a small molecule that appears to reverse many anticoagulants including the FXa inhibitors, is in development. This review summarizes the published data to date on both drugs, which have the potential to change the management approach to patients with FXa inhibitoreassociated major hemorrhage. PMID:27697443

  12. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    PubMed Central

    Augustin, Regina; Lichtenthaler, Stefan F.; Greeff, Michael; Hansen, Jens; Wurst, Wolfgang; Trümbach, Dietrich

    2011-01-01

    The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases. PMID:21559189

  13. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  14. XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.

    PubMed

    Thomas, Nicholas C; Schwessinger, Benjamin; Liu, Furong; Chen, Huamin; Wei, Tong; Nguyen, Yen P; Shaker, Isaac W F; Ronald, Pamela C

    2016-01-01

    The rice XA21 receptor kinase confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae ( Xoo ). We developed a detached leaf infection assay to quickly and reliably measure activation of the XA21-mediated immune response using genetic markers. We used RNA sequencing of elf18 treated EFR:XA21:GFP plants to identify candidate genes that could serve as markers for XA21 activation. From this analysis, we identified eight genes that are up-regulated in both in elf18 treated EFR:XA21:GFP rice leaves and Xoo infected XA21 rice leaves. These results provide a rapid and reliable method to assess bacterial-rice interactions.

  15. Ethylene binding site affinity in ripening apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, S.M.; Sisler, E.C.

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by applemore » tissue.« less

  16. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  17. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    PubMed

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  18. Detecting cis-regulatory binding sites for cooperatively binding proteins

    PubMed Central

    van Oeffelen, Liesbeth; Cornelis, Pierre; Van Delm, Wouter; De Ridder, Fedor; De Moor, Bart; Moreau, Yves

    2008-01-01

    Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account. PMID:18400778

  19. Fast rotation of a subkilometer-sized near-Earth object 2011 XA{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urakawa, Seitaro; Ohtsuka, Katsuhito; Abe, Shinsuke

    2014-05-01

    We present light curve observations and their multiband photometry for near-Earth object (NEO) 2011 XA{sub 3}. The light curve has shown a periodicity of 0.0304 ± 0.0003 days (= 43.8 ± 0.4 minutes). The fast rotation shows that 2011 XA{sub 3} is in a state of tension (i.e., a monolithic asteroid) and cannot be held together by self-gravitation. Moreover, the multiband photometric analysis indicates that the taxonomic class of 2011 XA{sub 3} is S-complex, or V-type. Its estimated effective diameter is 225 ± 97 m (S-complex) and 166 ± 63 m (V-type), respectively. Therefore, 2011 XA{sub 3} is a candidatemore » for the second-largest, fast-rotating, monolithic asteroid. Moreover, the orbital parameters of 2011 XA{sub 3} are apparently similar to those of NEO (3200) Phaethon, but F/B-type. We computed the orbital evolutions of 2011 XA{sub 3} and Phaethon. However, the results of the computation and distinct taxonomy indicate that neither of the asteroids is of common origin.« less

  20. Insights into the complex association of bovine factor Va with acidic-lipid-containing synthetic membranes.

    PubMed Central

    Cutsforth, G A; Koppaka, V; Krishnaswamy, S; Wu, J R; Mann, K G; Lentz, B R

    1996-01-01

    The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic

  1. Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.

    PubMed Central

    Pikler, G M; Webster, R A; Spelsberg, T C

    1976-01-01

    Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147

  2. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms.

    PubMed

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward; Grallert, Harald; Glunk, Viktoria; Berulava, Tea; Lee, Heekyoung; Oskolkov, Nikolay; Fadista, Joao; Ehlers, Kerstin; Wahl, Simone; Hoffmann, Christoph; Qian, Kun; Rönn, Tina; Riess, Helene; Müller-Nurasyid, Martina; Bretschneider, Nancy; Schroeder, Timm; Skurk, Thomas; Horsthemke, Bernhard; Spieler, Derek; Klingenspor, Martin; Seifert, Martin; Kern, Michael J; Mejhert, Niklas; Dahlman, Ingrid; Hansson, Ola; Hauck, Stefanie M; Blüher, Matthias; Arner, Peter; Groop, Leif; Illig, Thomas; Suhre, Karsten; Hsu, Yi-Hsiang; Mellgren, Gunnar; Hauner, Hans; Laumen, Helmut

    2014-01-16

    Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    PubMed

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  4. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  5. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligandmore » spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.« less

  6. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.

    PubMed

    Mudgal, Richa; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-07-01

    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology, and designing enzymes with new functional capabilities. Proteins 2017; 85:1319-1335. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. An ensemble model of competitive multi-factor binding of the genome

    PubMed Central

    Wasson, Todd; Hartemink, Alexander J.

    2009-01-01

    Hundreds of different factors adorn the eukaryotic genome, binding to it in large number. These DNA binding factors (DBFs) include nucleosomes, transcription factors (TFs), and other proteins and protein complexes, such as the origin recognition complex (ORC). DBFs compete with one another for binding along the genome, yet many current models of genome binding do not consider different types of DBFs together simultaneously. Additionally, binding is a stochastic process that results in a continuum of binding probabilities at any position along the genome, but many current models tend to consider positions as being either binding sites or not. Here, we present a model that allows a multitude of DBFs, each at different concentrations, to compete with one another for binding sites along the genome. The result is an “occupancy profile,” a probabilistic description of the DNA occupancy of each factor at each position. We implement our model efficiently as the software package COMPETE. We demonstrate genome-wide and at specific loci how modeling nucleosome binding alters TF binding, and vice versa, and illustrate how factor concentration influences binding occupancy. Binding cooperativity between nearby TFs arises implicitly via mutual competition with nucleosomes. Our method applies not only to TFs, but also recapitulates known occupancy profiles of a well-studied replication origin with and without ORC binding. Importantly, the sequence preferences our model takes as input are derived from in vitro experiments. This ensures that the calculated occupancy profiles are the result of the forces of competition represented explicitly in our model and the inherent sequence affinities of the constituent DBFs. PMID:19720867

  8. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae

    DOE PAGES

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting; ...

    2016-10-05

    Background: The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae( Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods: To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying themore » NLS with the same alanine substitutions ( Ubi-XA21nls-GFP). Results: Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. Discussion: These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.« less

  9. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting; Ronald, Pamela C

    2016-01-01

    The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae ( Xoo ). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi -XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. To determine if the predicted NLS is required for XA21-mediated immunity in planta , we generated transgenic plants overexpressing an XA21 variant carrying the NLS with the same alanine substitutions ( Ubi -XA21nls-GFP). Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.

  10. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting

    Background: The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae( Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods: To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying themore » NLS with the same alanine substitutions ( Ubi-XA21nls-GFP). Results: Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. Discussion: These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.« less

  11. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    PubMed Central

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  12. Investigation of glucose binding sites on insulin.

    PubMed

    Zoete, Vincent; Meuwly, Markus; Karplus, Martin

    2004-05-15

    Possible insulin binding sites for D-glucose have been investigated theoretically by docking and molecular dynamics (MD) simulations. Two different docking programs for small molecules were used; Multiple Copy Simultaneous Search (MCSS) and Solvation Energy for Exhaustive Docking (SEED) programs. The configurations resulting from the MCSS search were evaluated with a scoring function developed to estimate the binding free energy. SEED calculations were performed using various values for the dielectric constant of the solute. It is found that scores emphasizing non-polar interactions gave a preferential binding site in agreement with that inferred from recent fluorescence and NMR NOESY experiments. The calculated binding affinity of -1.4 to -3.5 kcal/mol is within the measured range of -2.0 +/- 0.5 kcal/mol. The validity of the binding site is suggested by the dynamical stability of the bound glucose when examined with MD simulations with explicit solvent. Alternative binding sites were found in the simulations and their relative stabilities were estimated. The motions of the bound glucose during molecular dynamics simulations are correlated with the motions of the insulin side chains that are in contact with it and with larger scale insulin motions. These results raise the question of whether glucose binding to insulin could play a role in its activity. The results establish the complementarity of molecular dynamics simulations and normal mode analyses with the search for binding sites proposed with small molecule docking programs. Copyright 2004 Wiley-Liss, Inc.

  13. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  14. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  15. An alternate binding site for PPARγ ligands

    PubMed Central

    Hughes, Travis S.; Giri, Pankaj Kumar; de Vera, Ian Mitchelle S.; Marciano, David P.; Kuruvilla, Dana S.; Shin, Youseung; Blayo, Anne-Laure; Kamenecka, Theodore M.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.

    2014-01-01

    PPARγ is a target for insulin sensitizing drugs such as glitazones, which improve plasma glucose maintenance in patients with diabetes. Synthetic ligands have been designed to mimic endogenous ligand binding to a canonical ligand-binding pocket to hyperactivate PPARγ. Here we reveal that synthetic PPARγ ligands also bind to an alternate site, leading to unique receptor conformational changes that impact coregulator binding, transactivation and target gene expression. Using structure-function studies we show that alternate site binding occurs at pharmacologically relevant ligand concentrations, and is neither blocked by covalently bound synthetic antagonists nor by endogenous ligands indicating non-overlapping binding with the canonical pocket. Alternate site binding likely contributes to PPARγ hyperactivation in vivo, perhaps explaining why PPARγ full and partial or weak agonists display similar adverse effects. These findings expand our understanding of PPARγ activation by ligands and suggest that allosteric modulators could be designed to fine tune PPARγ activity without competing with endogenous ligands. PMID:24705063

  16. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, andmore » the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.« less

  17. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  18. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    PubMed

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites.

    PubMed

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  20. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.

    PubMed

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh

    2013-09-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action.

  1. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    PubMed

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  2. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes

    PubMed Central

    Ho Sui, Shannan J.; Mortimer, James R.; Arenillas, David J.; Brumm, Jochen; Walsh, Christopher J.; Kennedy, Brian P.; Wasserman, Wyeth W.

    2005-01-01

    Targeted transcript profiling studies can identify sets of co-expressed genes; however, identification of the underlying functional mechanism(s) is a significant challenge. Established methods for the analysis of gene annotations, particularly those based on the Gene Ontology, can identify functional linkages between genes. Similar methods for the identification of over-represented transcription factor binding sites (TFBSs) have been successful in yeast, but extension to human genomics has largely proved ineffective. Creation of a system for the efficient identification of common regulatory mechanisms in a subset of co-expressed human genes promises to break a roadblock in functional genomics research. We have developed an integrated system that searches for evidence of co-regulation by one or more transcription factors (TFs). oPOSSUM combines a pre-computed database of conserved TFBSs in human and mouse promoters with statistical methods for identification of sites over-represented in a set of co-expressed genes. The algorithm successfully identified mediating TFs in control sets of tissue-specific genes and in sets of co-expressed genes from three transcript profiling studies. Simulation studies indicate that oPOSSUM produces few false positives using empirically defined thresholds and can tolerate up to 50% noise in a set of co-expressed genes. PMID:15933209

  3. FISim: A new similarity measure between transcription factor binding sites based on the fuzzy integral

    PubMed Central

    Garcia, Fernando; Lopez, Francisco J; Cano, Carlos; Blanco, Armando

    2009-01-01

    Background Regulatory motifs describe sets of related transcription factor binding sites (TFBSs) and can be represented as position frequency matrices (PFMs). De novo identification of TFBSs is a crucial problem in computational biology which includes the issue of comparing putative motifs with one another and with motifs that are already known. The relative importance of each nucleotide within a given position in the PFMs should be considered in order to compute PFM similarities. Furthermore, biological data are inherently noisy and imprecise. Fuzzy set theory is particularly suitable for modeling imprecise data, whereas fuzzy integrals are highly appropriate for representing the interaction among different information sources. Results We propose FISim, a new similarity measure between PFMs, based on the fuzzy integral of the distance of the nucleotides with respect to the information content of the positions. Unlike existing methods, FISim is designed to consider the higher contribution of better conserved positions to the binding affinity. FISim provides excellent results when dealing with sets of randomly generated motifs, and outperforms the remaining methods when handling real datasets of related motifs. Furthermore, we propose a new cluster methodology based on kernel theory together with FISim to obtain groups of related motifs potentially bound by the same TFs, providing more robust results than existing approaches. Conclusion FISim corrects a design flaw of the most popular methods, whose measures favour similarity of low information content positions. We use our measure to successfully identify motifs that describe binding sites for the same TF and to solve real-life problems. In this study the reliability of fuzzy technology for motif comparison tasks is proven. PMID:19615102

  4. Acceleration of Binding Site Comparisons by Graph Partitioning.

    PubMed

    Krotzky, Timo; Klebe, Gerhard

    2015-08-01

    The comparison of protein binding sites is a prominent task in computational chemistry and has been studied in many different ways. For the automatic detection and comparison of putative binding cavities the Cavbase system has been developed which uses a coarse-grained set of pseudocenters to represent the physicochemical properties of a binding site and employs a graph-based procedure to calculate similarities between two binding sites. However, the comparison of two graphs is computationally quite demanding which makes large-scale studies such as the rapid screening of entire databases hardly feasible. In a recent work, we proposed the method Local Cliques (LC) for the efficient comparison of Cavbase binding sites. It employs a clique heuristic to detect the maximum common subgraph of two binding sites and an extended graph model to additionally compare the shape of individual surface patches. In this study, we present an alternative to further accelerate the LC method by partitioning the binding-site graphs into disjoint components prior to their comparisons. The pseudocenter sets are split with regard to their assigned phyiscochemical type, which leads to seven much smaller graphs than the original one. Applying this approach on the same test scenarios as in the former comprehensive way results in a significant speed-up without sacrificing accuracy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identification and characterization of Hoxa9 binding sites in hematopoietic cells

    PubMed Central

    Huang, Yongsheng; Sitwala, Kajal; Bronstein, Joel; Sanders, Daniel; Dandekar, Monisha; Collins, Cailin; Robertson, Gordon; MacDonald, James; Cezard, Timothee; Bilenky, Misha; Thiessen, Nina; Zhao, Yongjun; Zeng, Thomas; Hirst, Martin; Hero, Alfred; Jones, Steven

    2012-01-01

    The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia. PMID:22072553

  6. Contemporary developments in the discovery of selective factor Xa inhibitors: A review.

    PubMed

    Patel, Nirav R; Patel, Dushyant V; Murumkar, Prashant R; Yadav, Mange Ram

    2016-10-04

    Thrombosis is a leading cause of death in cardiovascular diseases such as myocardial infarction (MI), unstable angina and acute coronary syndrome (ACS) in the industrialized world. Venous thromboembolism is observed in about 1 million people every year in United States causing significant morbidity and mortality. Conventional antithrombotic therapy has been reported to have several disadvantages and limitations like inconvenience in oral administration, bleeding risks (heparin analogs), narrow therapeutic window and undesirable interactions with food and drugs (vitamin K antagonist-warfarin). The unmet medical demand for orally active safe anticoagulants has generated widespread interest among the medicinal chemists engaged in this field. To modulate blood coagulation, various enzymes involved in the coagulation process have received great attention as potential targets by various research groups for the development of oral anticoagulants. Among these enzymes, factor Xa (FXa) has remained the centre of attention in the last decade. Intensive research efforts have been made by various research groups for the development of small, safe and orally bioavailable FXa inhibitors. This review is an attempt to compile the research work of various researchers in the direction of development of FXa inhibitors reported since 2010 onward. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development

    PubMed Central

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh

    2013-01-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein–protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action. PMID:23847101

  8. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication.

    PubMed

    Peixoto, Paul; Liu, Yang; Depauw, Sabine; Hildebrand, Marie-Paule; Boykin, David W; Bailly, Christian; Wilson, W David; David-Cordonnier, Marie-Hélène

    2008-06-01

    The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5'-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds.

  9. A comparative approach expands the protein-protein interaction node of the immune receptor XA21 in wheat and rice

    PubMed Central

    Yang, Baoju; Ruan, Randy; Cantu, Dario; Wang, Xiaodong; Ji, Wanquan; Ronald, Pamela C; Dubcovsky, Jorge

    2016-01-01

    The rice (Oryza sativa) OsXA21 receptor kinase is a well-studied immune receptor that initiates a signal transduction pathway leading to resistance to Xanthomonas oryzae pv. oryzae. Two homologs of OsXA21 were identified in wheat (Triticum aestivum): TaXA21-like1 located in a syntenic region with OsXA21, and TaXA21-like2 located in a non-syntenic region. Proteins encoded by these two wheat genes interact with four wheat orthologs of known OsXA21 interactors. In this study, we screened a wheat yeast-two-hybrid (Y2H) library using the cytosolic portion of TaXA21-like1 as bait to identify additional interactors. Using full-length T. aestivum and T. monococcum proteins and Y2H assays we identified three novel TaXA21-like1 interactors (TaARG, TaPR2, TmSKL1) plus one previously known in rice (TaSGT1). An additional full-length wheat protein (TaCIPK14) interacted with TaXA21-like2 and OsXA21 but not with TaXA21-like1. The interactions of TaXA21-like1 with TmSKL1 and TaSGT1 were also observed in rice protoplasts using bimolecular fluorescence complementation (BiFC) assays. We then cloned the rice homologs of the novel wheat interactors and confirmed that they all interact with OsXA21. This last result suggests that inter-specific comparative interactome analyses can be used not only to transfer known interactions from rice to wheat, but also to identify novel interactions in rice. PMID:23957671

  10. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-11-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery.

  11. Anti-Xa activity in apixaban overdose: a case report.

    PubMed

    Barton, James; Wong, Anselm; Graudins, Andis

    2016-11-01

    Apixaban is a novel oral anticoagulation agent that exerts its effect through direct factor Xa inhibition. We present a case of multi-drug overdose including apixaban with associated apixaban concentrations. A 53 year-old man presented to our metropolitan hospital following a deliberate self-poisoning with 200 mg apixaban, 35 mg ramipril, 105 mg bisoprolol, 280 mg atorvastatin, 6 mg colchicine, 37.4 mg magnesium, 4 × 500 mg paracetamol/9.5 mg codeine/5 mg phenylephrine and alcohol. He developed hypotension that was treated with noradrenaline. His initial and peak apixaban concentration was 1022.6 ng/ml and was associated with only minor bleeding from his femoral central line insertion site, which improved with local compression. Vitamin K 10 mg (at 9 h post-ingestion) and Prothrombinex-VF 2000 units (at 13 h post-ingestion) were also administered without any observed effect on coagulation studies. Apixaban elimination appeared to display first-order kinetics with an elimination half-life of 7.4 h. His plasma apixaban concentration was within the therapeutic dose range 10 h post-ingestion and he recovered uneventfully. A case of apixaban overdose with associated apixaban concentrations is presented. There was rapid resolution of anticoagulation with no demonstrable benefit of currently available clotting factor replacement.

  12. Allosteric binding sites in Rab11 for potential drug candidates

    PubMed Central

    2018-01-01

    Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286

  13. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  14. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  15. Photoaffinity labelling of the ATP-binding site of the epidermal growth factor-dependent protein kinase.

    PubMed

    Kudlow, J E; Leung, Y

    1984-06-15

    Epidermal growth factor (EGF), after binding to its receptor, activates a tyrosine-specific protein kinase which phosphorylates several substrates, including the EGF receptor itself. The effects of a photoaffinity analogue of ATP, 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)adenosine 5'-triphosphate (arylazido-beta-alanyl-ATP) on the EGF-dependent protein kinase in A431 human tumour cell plasma membrane vesicles was investigated. This analogue was capable of inactivating the EGF-receptor kinase in a photodependent manner. Partial inactivation occurred at an analogue concentration of 1 microM and complete inactivation occurred at 10 microM when a 2 min light exposure was used. Arylazido-beta-alanine at 100 microM and ATP at 100 microM were incapable of inactivating the enzyme with 2 min of light exposure. The photodependent inactivation of the enzyme by the analogue could be partially blocked by 20 mM-ATP and more effectively blocked by either 20 mM-adenosine 5'-[beta gamma-imido]triphosphate or 20 mM-guanosine 5'-[beta gamma-imido]triphosphate, indicating nucleotide-binding site specificity. Arylazido-beta-alanyl-[alpha-32P]ATP was capable of labelling membrane proteins in a photodependent manner. Numerous proteins were labelled, the most prominent of which ran with an apparent Mr of 53000 on polyacrylamide-gel electrophoresis. A band of minor intensity was seen of Mr corresponding to the EGF receptor (170000). Immunoprecipitation of affinity-labelled and solubilized membranes with an anti-(EGF receptor) monoclonal antibody demonstrated that the Mr 170000 receptor protein was photoaffinity labelled by the analogue. The Mr 53000 peptide was not specifically bound by the anti-receptor antibody. The affinity labelling of the receptor was not enhanced by EGF, suggesting that EGF stimulation of the kinase activity does not result from changes in the affinity of the kinase for ATP. These studies demonstrate that arylazido-beta-alanyl-ATP interacts with the ATP-binding

  16. Identification and characterization of the sodium-binding site of activated protein C.

    PubMed

    He, X; Rezaie, A R

    1999-02-19

    Activated protein C (APC) requires both Ca2+ and Na+ for its optimal catalytic function. In contrast to the Ca2+-binding sites, the Na+-binding site(s) of APC has not been identified. Based on a recent study with thrombin, the 221-225 loop is predicted to be a potential Na+-binding site in APC. The sequence of this loop is not conserved in trypsin. We engineered a Gla domainless form of protein C (GDPC) in which the 221-225 loop was replaced with the corresponding loop of trypsin. We found that activated GDPC (aGDPC) required Na+ (or other alkali cations) for its amidolytic activity with dissociation constant (Kd(app)) = 44.1 +/- 8.6 mM. In the presence of Ca2+, however, the requirement for Na+ by aGDPC was eliminated, and Na+ stimulated the cleavage rate 5-6-fold with Kd(app) = 2.3 +/- 0.3 mM. Both cations were required for efficient factor Va inactivation by aGDPC. In the presence of Ca2+, the catalytic function of the mutant was independent of Na+. Unlike aGDPC, the mutant did not discriminate among monovalent cations. We conclude that the 221-225 loop is a Na+-binding site in APC and that an allosteric link between the Na+ and Ca2+ binding loops modulates the structure and function of this anticoagulant enzyme.

  17. Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae.

    PubMed

    Kang, J J; Yokoi, T J; Holland, M J

    1995-12-01

    The 190-base pair (bp) rDNA enhancer within the intergenic spacer sequences of Saccharomyces cerevisiae rRNA cistrons activates synthesis of the 35S-rRNA precursor about 20-fold in vivo (Mestel,, R., Yip, M., Holland, J. P., Wang, E., Kang, J., and Holland, M. J. (1989) Mol. Cell. Biol. 9, 1243-1254). We now report identification and analysis of transcriptional activities mediated by three cis-acting sites within a 90-bp portion of the rDNA enhancer designated the modulator region. In vivo, these sequences mediated termination of transcription by RNA polymerase I and potentiated the activity of the rDNA enhancer element. Two trans-acting factors, REB1 and REB2, bind independently to sites within the modulator region (Morrow, B. E., Johnson, S. P., and Warner, J. R. (1989) J. Biol. Chem. 264, 9061-9068). We show that REB2 is identical to the ABF1 protien. Site-directed mutagenesis of REB1 and ABF1 binding sites demonstrated uncoupling of RNA polymerase I-dependent termination from transcriptional activation in vivo. We conclude that REB1 and ABF1 are required for RNA polymerase I-dependent termination and enhancer function, respectively, Since REB1 and ABF1 proteins also regulate expression of class II genes and other nuclear functions, our results suggest further similarities between RNA polymerase I and II regulatory mechanisms. Two rDNA enhancers flanking a rDNA minigene stimulated RNA polymerase I transcription in a "multiplicative" fashion. Deletion mapping analysis showed that similar cis-acting sequences were required for enhancer function when positioned upstream or downstream from a rDNA minigene.

  18. rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loots, G G; Ovcharenko, I

    2004-01-28

    Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Heremore » we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.« less

  19. Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.

    PubMed

    Papadakos, Grigorios A; Nastri, Horacio; Riggs, Paul; Dupureur, Cynthia M

    2007-05-01

    The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.

  20. TEMPLE: analysing population genetic variation at transcription factor binding sites.

    PubMed

    Litovchenko, Maria; Laurent, Stefan

    2016-11-01

    Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle. The current proliferation of genomewide profiling experiments of transcription factor occupancies greatly improves our ability to identify genomic regions involved in specific DNA-protein interactions. Although software exists for predicting transcription factor binding sites (TFBS), and the effects of genetic variants on TFBS specificity, there are no tools currently available for inferring this information jointly with the genetic variation at TFBS in natural populations. We developed the software Transcription Elements Mapping at the Population LEvel (TEMPLE), which predicts TFBS, evaluates the effects of genetic variants on TFBS specificity and summarizes the genetic variation occurring at TFBS in intraspecific sequence alignments. We demonstrate that TEMPLE's TFBS prediction algorithms gives identical results to PATSER, a software distribution commonly used in the field. We also illustrate the unique features of TEMPLE by analysing TFBS diversity for the TF Senseless (SENS) in one ancestral and one cosmopolitan population of the fruit fly Drosophila melanogaster. TEMPLE can be used to localize TFBS that are characterized by strong genetic differentiation across natural populations. This will be particularly useful for studies aiming to identify adaptive mutations. TEMPLE is a java-based cross-platform software that easily maps the genetic diversity at predicted TFBSs using a graphical interface, or from the Unix command line. © 2016 John Wiley & Sons Ltd.

  1. Nuclear factors that bind to the enhancer region of nondefective Friend murine leukemia virus.

    PubMed Central

    Manley, N R; O'Connell, M A; Sharp, P A; Hopkins, N

    1989-01-01

    Nondefective Friend murine leukemia virus (MuLV) causes erythroleukemia when injected into newborn NFS mice, while Moloney MuLV causes T-cell lymphoma. Exchange of the Friend virus enhancer region, a sequence of about 180 nucleotides including the direct repeat and a short 3'-adjacent segment, for the corresponding region in Moloney MuLV confers the ability to cause erythroid disease on Moloney MuLV. We have used the electrophoretic mobility shift assay and methylation interference analysis to identify cellular factors which bind to the Friend virus enhancer region and compared these with factors, previously identified, that bind to the Moloney virus direct repeat (N. A. Speck and D. Baltimore, Mol. Cell. Biol. 7:1101-1110, 1987). We identified five binding sites for sequence-specific DNA-binding proteins in the Friend virus enhancer region. While some binding sites are present in both the Moloney and Friend virus enhancers, both viruses contain unique sites not present in the other. Although none of the factors identified in this report which bind to these unique sites are present exclusively in T cells or erythroid cells, they bind to three regions of the enhancer shown by genetic analysis to encode disease specificity and thus are candidates to mediate the tissue-specific expression and distinct disease specificities encoded by these virus enhancer elements. Images PMID:2778872

  2. Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level

    PubMed Central

    Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.

    2012-01-01

    Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804

  3. Laboratory measurement of apixaban using anti-factor Xa assays in acute ischemic stroke patients with non-valvular atrial fibrillation.

    PubMed

    Shin, Hyoshim; Cho, Min-Chul; Kim, Rock Bum; Kim, Chang-Hun; Choi, Nack-Cheon; Kim, Soo-Kyung; Koh, Eun-Ha

    2018-02-01

    Apixaban is effective and safe for preventing stroke, and its usage has increased exponentially in recent years. However, data concerning the therapeutic range of apixaban is limited. This study determined the trough and peak levels of apixaban-specific anti-factor Xa activity (AFXaA) in acute ischemic stroke patients with non-valvular atrial fibrillation (NVAF) in Korea. The study included 85 patients who received apixaban. Blood samples were taken to measure the trough and peak levels of AFXaA using a chromogenic anti-factor assay, as well as prothrombin time (PT) and activated partial thromboplastin time (aPTT). We also reviewed complications such as major bleeding of patients treated with apixaban. In patients given a 5.0-mg apixaban dose, the median trough and peak levels of AFXaA were 104.5 and 202.0 ng/mL. In patients given a 2.5-mg apixaban dose, the median trough and peak AFXaA levels were 76.0 and 151.0 ng/mL. The PT showed a positive correlation with increased AFXaA activity at both levels (Trough R = 0.486, Peak R = 0.592), but the aPTT had no relationship with AFXaA activity at both levels (Trough R = 0.181, Peak R = 0.129). Two cases with intracranial bleeding belonged to the highest AFXaA quartile (Trough, p = 0.176; Peak, p = 0.053). In conclusion, we determined the trough and peak levels of AFXaA in patients with NVAF while being treated with the apixaban in Korea. Our results could be used as a starting point when setting the reference ranges for laboratories using anti-Xa assay. Large-scale studies are needed to establish the reference range for AFXaA in patients with NVAF.

  4. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  5. FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1

    PubMed Central

    Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  6. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor*

    PubMed Central

    Lawrence, Callum F.; Margetts, Mai B.; Menting, John G.; Smith, Nicholas A.; Smith, Brian J.; Ward, Colin W.; Lawrence, Michael C.

    2016-01-01

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe701 and Phe705. The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  7. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.

    PubMed Central

    Liaw, S. H.; Kuo, I.; Eisenberg, D.

    1995-01-01

    Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS

  8. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site

    PubMed Central

    Sage, Jay M.; Cura, Anthony J.; Lloyd, Kenneth P.

    2015-01-01

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites—the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis. PMID:25715702

  9. Influence of sulfhydryl sites on metal binding by bacteria

    NASA Astrophysics Data System (ADS)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low

  10. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed Central

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-01-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800

  11. High-resolution mapping of transcription factor binding sites on native chromatin

    PubMed Central

    Kasinathan, Sivakanthan; Orsi, Guillermo A.; Zentner, Gabriel E.; Ahmad, Kami; Henikoff, Steven

    2014-01-01

    Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. Formaldehyde cross-linking and sonication followed by Chromatin ImmunoPrecipitation (X-ChIP) is widely used for profiling of TF binding, but is limited by low resolution and poor specificity and sensitivity. We present a simple protocol that starts with micrococcal nuclease-digested uncross-linked chromatin and is followed by affinity purification of TFs and paired-end sequencing. The resulting ORGANIC (Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide highly accurate base-pair resolution maps that are not biased toward accessible chromatin, and do not require input normalization. We also demonstrate the high specificity of our method when applied to larger genomes by profiling Drosophila melanogaster GAGA Factor and Pipsqueak. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. PMID:24336359

  12. Binding-Site Assessment by Virtual Fragment Screening

    PubMed Central

    Huang, Niu; Jacobson, Matthew P.

    2010-01-01

    The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors. PMID:20404926

  13. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  14. Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer.

    PubMed

    Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L

    2003-08-01

    Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.

  15. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, M. E.; Altenberg, G. A.

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we usedmore » luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.« less

  16. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape

  17. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP

    PubMed Central

    Hafner, Markus; Landthaler, Markus; Burger, Lukas; Khorshid, Mohsen; Hausser, Jean; Berninger, Philipp; Rothballer, Andrea; Ascano, Manuel; Jungkamp, Anna-Carina; Munschauer, Mathias; Ulrich, Alexander; Wardle, Greg S.; Dewell, Scott; Zavolan, Mihaela; Tuschl, Thomas

    2010-01-01

    Summary RNA transcripts are subject to post-transcriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases. PMID:20371350

  18. RBind: computational network method to predict RNA binding sites.

    PubMed

    Wang, Kaili; Jian, Yiren; Wang, Huiwen; Zeng, Chen; Zhao, Yunjie

    2018-04-26

    Non-coding RNA molecules play essential roles by interacting with other molecules to perform various biological functions. However, it is difficult to determine RNA structures due to their flexibility. At present, the number of experimentally solved RNA-ligand and RNA-protein structures is still insufficient. Therefore, binding sites prediction of non-coding RNA is required to understand their functions. Current RNA binding site prediction algorithms produce many false positive nucleotides that are distance away from the binding sites. Here, we present a network approach, RBind, to predict the RNA binding sites. We benchmarked RBind in RNA-ligand and RNA-protein datasets. The average accuracy of 0.82 in RNA-ligand and 0.63 in RNA-protein testing showed that this network strategy has a reliable accuracy for binding sites prediction. The codes and datasets are available at https://zhaolab.com.cn/RBind. yjzhaowh@mail.ccnu.edu.cn. Supplementary data are available at Bioinformatics online.

  19. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    NASA Astrophysics Data System (ADS)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  20. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae.

    PubMed

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-03-02

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae ( Xoo ), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo . In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23 ) and JG30 (without Xa23 ), before and after infection of the Xoo strain, PXO99 A , was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99 A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23 -mediated resistance.

  1. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae

    PubMed Central

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23) and JG30 (without Xa23), before and after infection of the Xoo strain, PXO99A, was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23-mediated resistance. PMID:29498672

  2. Glucocorticoids suppress tumor necrosis factor-alpha expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-kappa B and c-Jun-activating transcription factor-2 binding sites in the promoter.

    PubMed

    Steer, J H; Kroeger, K M; Abraham, L J; Joyce, D A

    2000-06-16

    Glucocorticoid drugs suppress tumor necrosis factor-alpha (TNF-alpha) synthesis by activated monocyte/macrophages, contributing to an anti-inflammatory action in vivo. In lipopolysaccharide (LPS)-activated human monocytic THP-1 cells, glucocorticoids acted primarily on the TNF-alpha promoter to suppress a burst of transcriptional activity that occurred between 90 min and 3 h after LPS exposure. LPS increased nuclear c-Jun/ATF-2, NF-kappaB(1)/Rel-A, and Rel-A/C-Rel transcription factor complexes, which bound specifically to oligonucleotide sequences from the -106 to -88 base pair (bp) region of the promoter. The glucocorticoid, dexamethasone, suppressed nuclear binding activity of these complexes prior to and during the critical phase of TNF-alpha transcription. Site-directed mutagenesis in TNF-alpha promoter-luciferase reporter constructs showed that the adjacent c-Jun/ATF-2 (-106 to -99 bp) and NF-kappaB (-97 to -88 bp) binding sites each contributed to the LPS-stimulated expression. Mutating both sites largely prevented dexamethasone from suppressing TNF-alpha promoter-luciferase reporters. LPS exposure also increased nuclear Egr-1 and PU.1 abundance. The Egr-1/Sp1 (-172 to -161 bp) binding sites and the PU.1-binding Ets site (-116 to -110 bp) each contributed to the LPS-stimulated expression but not to glucocorticoid response. Dexamethasone suppressed the abundance of the c-Fos/c-Jun complex in THP-1 cell nuclei, but there was no direct evidence for c-Fos/c-Jun transactivation through sites in the -172 to -52 bp region. Small contributions to glucocorticoid response were attributable to promoter sequences outside the -172 to -88 bp region and to sequences in the TNF-alpha 3'-untranslated region. We conclude that glucocorticoids suppress LPS-stimulated secretion of TNF-alpha from human monocytic cells largely through antagonizing transactivation by c-Jun/ATF-2 and NF-kappaB complexes at binding sites in the -106 to -88 bp region of the TNF-alpha promoter.

  3. Factor Xa Mediates Calcium Flux in Endothelial Cells and is Potentiated by Igg From Patients With Lupus and/or Antiphospholipid Syndrome.

    PubMed

    Artim-Esen, Bahar; Smoktunowicz, Natalia; McDonnell, Thomas; Ripoll, Vera M; Pericleous, Charis; Mackie, Ian; Robinson, Eifion; Isenberg, David; Rahman, Anisur; Ioannou, Yiannis; Chambers, Rachel C; Giles, Ian

    2017-09-07

    Factor (F) Xa reactive IgG isolated from patients with antiphospholipid syndrome (APS) display higher avidity binding to FXa with greater coagulant effects compared to systemic lupus erythematosus (SLE) non APS IgG. FXa signalling via activation of protease-activated receptors (PAR) leads to increased intracellular calcium (Ca 2+ ). Therefore, we measured alterations in Ca 2+ levels in human umbilical vein endothelial cells (HUVEC) following FXa-mediated PAR activation and investigated whether FXa reactive IgG from patients with APS or SLE/APS- alter these responses. We observed concentration-dependent induction of Ca 2+ release by FXa that was potentiated by APS-IgG and SLE/APS- IgG compared to healthy control subjects' IgG, and FXa alone. APS-IgG and SLE/APS- IgG increased FXa mediated NFκB signalling and this effect was fully-retained in the affinity purified anti-FXa IgG sub-fraction. Antagonism of PAR-1 and PAR-2 reduced FXa-induced Ca 2+ release. Treatment with a specific FXa inhibitor, hydroxychloroquine or fluvastatin significantly reduced FXa-induced and IgG-potentiated Ca 2+ release. In conclusion, PAR-1 and PAR-2 are involved in FXa-mediated intracellular Ca 2+ release in HUVEC and FXa reactive IgG from patients with APS and/or SLE potentiate this effect. Further work is required to explore the potential use of IgG FXa reactivity as a novel biomarker to stratify treatment with FXa inhibitors in these patients.

  4. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    NASA Astrophysics Data System (ADS)

    Neverov, V. S.

    XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  5. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus

    PubMed Central

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-01-01

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). PMID:26220934

  6. Architecture of a Fur Binding Site: a Comparative Analysis

    PubMed Central

    Lavrrar, Jennifer L.; McIntosh, Mark A.

    2003-01-01

    Fur is an iron-binding transcriptional repressor that recognizes a 19-bp consensus site of the sequence 5′-GATAATGATAATCATTATC-3′. This site can be defined as three adjacent hexamers of the sequence 5′-GATAAT-3′, with the third being slightly imperfect (an F-F-F configuration), or as two hexamers in the forward orientation separated by one base pair from a third hexamer in the reverse orientation (an F-F-x-R configuration). Although Fur can bind synthetic DNA sequences containing the F-F-F arrangement, most natural binding sites are variations of the F-F-x-R arrangement. The studies presented here compared the ability of Fur to recognize synthetic DNA sequences containing two to four adjacent hexamers with binding to sequences containing variations of the F-F-x-R arrangement (including natural operator sequences from the entS and fepB promoter regions of Escherichia coli). Gel retardation assays showed that the F-F-x-R architecture was necessary for high-affinity Fur-DNA interactions and that contiguous hexamers were not recognized as effectively. In addition, the stoichiometry of Fur at each binding site was determined, showing that Fur interacted with its minimal 19-bp binding site as two overlapping dimers. These data confirm the proposed overlapping-dimer binding model, where the unit of interaction with a single Fur dimer is two inverted hexamers separated by a C:G base pair, with two overlapping units comprising the 19-bp consensus binding site required for the high-affinity interaction with two Fur dimers. PMID:12644489

  7. Twin hydroxymethyluracil-A base pair steps define the binding site for the DNA-binding protein TF1.

    PubMed

    Grove, A; Figueiredo, M L; Galeone, A; Mayol, L; Geiduschek, E P

    1997-05-16

    The DNA-bending protein TF1 is the Bacillus subtilis bacteriophage SPO1-encoded homolog of the bacterial HU proteins and the Escherichia coli integration host factor. We recently proposed that TF1, which binds with high affinity (Kd was approximately 3 nM) to preferred sites within the hydroxymethyluracil (hmU)-containing phage genome, identifies its binding sites based on sequence-dependent DNA flexibility. Here, we show that two hmU-A base pair steps coinciding with two previously proposed sites of DNA distortion are critical for complex formation. The affinity of TF1 is reduced 10-fold when both of these hmU-A base pair steps are replaced with A-hmU, G-C, or C-G steps; only modest changes in affinity result when substitutions are made at other base pairs of the TF1 binding site. Replacement of all hmU residues with thymine decreases the affinity of TF1 greatly; remarkably, the high affinity is restored when the two hmU-A base pair steps corresponding to previously suggested sites of distortion are reintroduced into otherwise T-containing DNA. T-DNA constructs with 3-base bulges spaced apart by 9 base pairs of duplex also generate nM affinity of TF1. We suggest that twin hmU-A base pair steps located at the proposed sites of distortion are key to target site selection by TF1 and that recognition is based largely, if not entirely, on sequence-dependent DNA flexibility.

  8. Materials Testing on the DC-X and DC-XA

    NASA Technical Reports Server (NTRS)

    Smith, Dane; Carroll, Carol; Marschall, Jochen; Pallix, Joan

    1997-01-01

    Flight testing of thermal protection materials has been carried out over a two year period on the base heat shield of the Delta Clipper (DC-X and DC-XA), as well on a body flap. The purpose was to use the vehicle as a test bed for materials and more efficient repair or maintenance processes which would be potentially useful for application on new entry vehicles (i.e., X-33, RLV, planetary probes), as well as on the existing space shuttle orbiters. Panels containing Thermal Protection Systems (TPS) and/or structural materials were constructed either at NASA Ames Research Center or at McDonnell Douglas Aerospace (MDA) and attached between two of the four thrusters in the base heat shield of the DC-X or DC-XA. Three different panels were flown on DC-X flights 6, 7, and 8. A total of 7 panels were flown on DC-XA flights 1, 2, and 3. The panels constructed at Ames contained a variety of ceramic TPS including flexible blankets, tiles with high emissivity coatings, lightweight ceramic ablators and other ceramic composites. The MDS test panels consisted primarily of a variety of metallic composites. This report focuses on the ceramic TPS test results.

  9. Identification of a Second Substrate-binding Site in Solute-Sodium Symporters*

    PubMed Central

    Li, Zheng; Lee, Ashley S. E.; Bracher, Susanne; Jung, Heinrich; Paz, Aviv; Kumar, Jay P.; Abramson, Jeff; Quick, Matthias; Shi, Lei

    2015-01-01

    The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ∼1. In addition, the related and more experimentally tractable SSS member PutP (the Na+/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport. PMID:25398883

  10. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y.D.; Springall, D.R.; Wharton, J.

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with themore » known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.« less

  11. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  12. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A [Poquott, NY; Zamora, Paul O [Gaithersburg, MD; Lin, Xinhua [Plainview, NY; Glass, John D [Shoreham, NY

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  13. A novel substance P binding site in bovine adrenal medulla.

    PubMed

    Geraghty, D P; Livett, B G; Rogerson, F M; Burcher, E

    1990-05-04

    Radioligand binding techniques were used to characterize the substance P (SP) binding site on membranes prepared from bovine adrenal medullae. 125I-labelled Bolton-Hunter substance P (BHSP), which recognises the C-terminally directed, SP-preferring NK1 receptor, showed no specific binding. In contrast, binding of [3H]SP was saturable (at 6 nM) and reversible, with an equilibrium dissociation constant (Kd) 1.46 +/- 0.73 nM, Bmax 0.73 +/- 0.06 pmol/g wet weight and Hill coefficient 0.98 +/- 0.01. Specific binding of [3H]SP was displaced by SP greater than neurokinin A (NKA) greater than SP(3-11) approximately SP(1-9) greater than SP(1-7) approximately SP(1-4) approximately SP(1-6), with neurokinin B (NKB) and SP(1-3) very weak competitors and SP(5-11), SP(7-11) and SP(9-11) causing negligible inhibition (up to 10 microM). This potency order is quite distinct from that seen with binding to an NK1 site, a conclusion confirmed by the lack of BHSP binding. It appears that Lys3 and/or Pro4 are critical for binding, suggesting an anionic binding site. These data suggest the existence of an unusual binding site which may represent a novel SP receptor. This site appears to require the entire sequence of the SP molecule for full recognition.

  14. Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites.

    PubMed

    Field, Jessica J; Pera, Benet; Gallego, Juan Estévez; Calvo, Enrique; Rodríguez-Salarichs, Javier; Sáez-Calvo, Gonzalo; Zuwerra, Didier; Jordi, Michel; Andreu, José M; Prota, Andrea E; Ménchon, Grégory; Miller, John H; Altmann, Karl-Heinz; Díaz, J Fernando

    2018-03-23

    The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites. Tubulin activation by zampanolide does not affect its longitudinal oligomerization but does alter its lateral association properties. The covalent binding of zampanolide to β-tubulin affects both the colchicine site, causing a change of the quantum yield of the bound ligand, and the exchangeable nucleotide binding site, reducing the affinity for the nucleotide. While these global effects do not change the binding affinity of 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC) (a reversible binder of the colchicine site), the binding affinity of a fluorescent analogue of GTP (Mant-GTP) at the nucleotide E-site is reduced from 12 ± 2 × 10 5 M -1 in the case of unmodified tubulin to 1.4 ± 0.3 × 10 5 M -1 in the case of the zampanolide tubulin adduct, indicating signal transmission between the taxane site and the colchicine and nucleotide sites of β-tubulin.

  15. A tool for calculating binding-site residues on proteins from PDB structures.

    PubMed

    Hu, Jing; Yan, Changhui

    2009-08-03

    In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.

  16. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.

    PubMed

    Acevedo-Luna, Natalia; Mariño-Ramírez, Leonardo; Halbert, Armand; Hansen, Ulla; Landsman, David; Spouge, John L

    2016-11-21

    Transcription factors (TFs) form complexes that bind regulatory modules (RMs) within DNA, to control specific sets of genes. Some transcription factor binding sites (TFBSs) near the transcription start site (TSS) display tight positional preferences relative to the TSS. Furthermore, near the TSS, RMs can co-localize TFBSs with each other and the TSS. The proportion of TFBS positional preferences due to TFBS co-localization within RMs is unknown, however. ChIP experiments confirm co-localization of some TFBSs genome-wide, including near the TSS, but they typically examine only a few TFs at a time, using non-physiological conditions that can vary from lab to lab. In contrast, sequence analysis can examine many TFs uniformly and methodically, broadly surveying the co-localization of TFBSs with tight positional preferences relative to the TSS. Our statistics found 43 significant sets of human motifs in the JASPAR TF Database with positional preferences relative to the TSS, with 38 preferences tight (±5 bp). Each set of motifs corresponded to a gene group of 135 to 3304 genes, with 42/43 (98%) gene groups independently validated by DAVID, a gene ontology database, with FDR < 0.05. Motifs corresponding to two TFBSs in a RM should co-occur more than by chance alone, enriching the intersection of the gene groups corresponding to the two TFs. Thus, a gene-group intersection systematically enriched beyond chance alone provides evidence that the two TFs participate in an RM. Of the 903 = 43*42/2 intersections of the 43 significant gene groups, we found 768/903 (85%) pairs of gene groups with significantly enriched intersections, with 564/768 (73%) intersections independently validated by DAVID with FDR < 0.05. A user-friendly web site at http://go.usa.gov/3kjsH permits biologists to explore the interaction network of our TFBSs to identify candidate subunit RMs. Gene duplication and convergent evolution within a genome provide obvious biological mechanisms for

  17. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2016-11-23

    Water plays a significant role in the binding process between protein and ligand. However, the thermodynamics of water molecules are often underestimated, or even ignored, in protein-ligand docking. Usually, the free energies of active-site water molecules are substantially different from those of waters in the bulk region. The binding of a ligand to a protein causes a displacement of these waters from an active site to bulk, and this displacement process substantially contributes to the free energy change of protein-ligand binding. The free energy of active-site water molecules can be calculated by grid inhomogeneous solvation theory (GIST), using molecular dynamics (MD) and the trajectory of a target protein and water molecules. Here, we show a case study of the combination of GIST and a docking program and discuss the effectiveness of the displacing gain of unfavorable water in protein-ligand docking. We combined the GIST-based desolvation function with the scoring function of AutoDock4, which is called AutoDock-GIST. The proposed scoring function was assessed employing 51 ligands of coagulation factor Xa (FXa), and results showed that both scoring accuracy and docking success rate were improved. We also evaluated virtual screening performance of AutoDock-GIST using FXa ligands in the directory of useful decoys-enhanced (DUD-E), thus finding that the displacing gain of unfavorable water is effective for a successful docking campaign.

  18. Bioinformatics approaches to predict target genes from transcription factor binding data.

    PubMed

    Essebier, Alexandra; Lamprecht, Marnie; Piper, Michael; Bodén, Mikael

    2017-12-01

    Transcription factors regulate gene expression and play an essential role in development by maintaining proliferative states, driving cellular differentiation and determining cell fate. Transcription factors are capable of regulating multiple genes over potentially long distances making target gene identification challenging. Currently available experimental approaches to detect distal interactions have multiple weaknesses that have motivated the development of computational approaches. Although an improvement over experimental approaches, existing computational approaches are still limited in their application, with different weaknesses depending on the approach. Here, we review computational approaches with a focus on data dependency, cell type specificity and usability. With the aim of identifying transcription factor target genes, we apply available approaches to typical transcription factor experimental datasets. We show that approaches are not always capable of annotating all transcription factor binding sites; binding sites should be treated disparately; and a combination of approaches can increase the biological relevance of the set of genes identified as targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Nickel binding to NikA: an additional binding site reconciles spectroscopy, calorimetry and crystallography.

    PubMed

    Addy, Christine; Ohara, Masato; Kawai, Fumihiro; Kidera, Akinori; Ikeguchi, Mitsunori; Fuchigami, Sotaro; Osawa, Masanori; Shimada, Ichio; Park, Sam-Yong; Tame, Jeremy R H; Heddle, Jonathan G

    2007-02-01

    Intracellular nickel is required by Escherichia coli as a cofactor for a number of enzymes and is necessary for anaerobic respiration. However, high concentrations of nickel are toxic, so both import and export systems have evolved to control the cellular level of the metal. The nik operon in E. coli encodes a nickel-uptake system that includes the periplasmic nickel-binding protein NikA. The crystal structures of wild-type NikA both bound to nickel and in the apo form have been solved previously. The liganded structure appeared to show an unusual interaction between the nickel and the protein in which no direct bonds are formed. The highly unusual nickel coordination suggested by the crystal structure contrasted strongly with earlier X-ray spectroscopic studies. The known nickel-binding site has been probed by extensive mutagenesis and isothermal titration calorimetry and it has been found that even large numbers of disruptive mutations appear to have little effect on the nickel affinity. The crystal structure of a binding-site mutant with nickel bound has been solved and it is found that nickel is bound to two histidine residues at a position distant from the previously characterized binding site. This novel site immediately resolves the conflict between the crystal structures and other biophysical analyses. The physiological relevance of the two binding sites is discussed.

  20. Impact damage resistance of carbon/epoxy composite tubes for the DC-XA liquid hydrogen feedline

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1995-01-01

    Low-velocity impacts were inflicted upon two elbow sections of carbon/epoxy feedline that are to be a part of the Delta Clipper-XA flight vehicle. A soap-based liquid leak detector solution was used to inspect the impact sites for leaks of pressurized gas that was pumped into the tube. Visual surface damage was noted and recorded for each impact site. After impact testing of each of the two sections of tubes was completed, the damage zones were disected from the tube and cross sectioned through the impact site. These specimens were polished after potting them in epoxy and were examined for microcracking using a fluorescent dye penetrant technique. The results showed that nonvisible damage could cause microcracking, thereby resulting in leaks through the tube wall.

  1. Anatomy of an engineered NAD-binding site.

    PubMed Central

    Mittl, P. R.; Berry, A.; Scrutton, N. S.; Perham, R. N.; Schulz, G. E.

    1994-01-01

    The coenzyme specificity of Escherichia coli glutathione reductase was switched from NADP to NAD by modifying the environment of the 2'-phosphate binding site through a set of point mutations: A179G, A183G, V197E, R198M, K199F, H200D, and R204P (Scrutton NS, Berry A, Perham RN, 1990, Nature 343:38-43). In order to analyze the structural changes involved, we have determined 4 high-resolution crystal structures, i.e., the structures of the wild-type enzyme (1.86 A resolution, R-factor of 16.8%), of the wild-type enzyme ligated with NADP (2.0 A, 20.8%), of the NAD-dependent mutant (1.74 A, 16.8%), and of the NAD-dependent mutant ligated with NAD (2.2 A, 16.9%). A comparison of these structures reveals subtle differences that explain details of the specificity change. In particular, a peptide rotation occurs close to the adenosine ribose, with a concomitant change of the ribose pucker. The mutations cause a contraction of the local chain fold. Furthermore, the engineered NAD-binding site assumes a less rigid structure than the NADP site of the wild-type enzyme. A superposition of the ligated structures shows a displacement of NAD versus NADP such that the electron pathway from the nicotinamide ring to FAD is elongated, which may explain the lower catalytic efficiency of the mutant. Because the nicotinamide is as much as 15 A from the sites of the mutations, this observation reminds us that mutations may have important long-range consequences that are difficult to anticipate. PMID:7833810

  2. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    NASA Astrophysics Data System (ADS)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  3. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus.

    PubMed

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-07-27

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. DeepSite: protein-binding site predictor using 3D-convolutional neural networks.

    PubMed

    Jiménez, J; Doerr, S; Martínez-Rosell, G; Rose, A S; De Fabritiis, G

    2017-10-01

    An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  6. Functional identification and characterization of sodium binding sites in Na symporters

    PubMed Central

    Loo, Donald D. F.; Jiang, Xuan; Gorraitz, Edurne; Hirayama, Bruce A.; Wright, Ernest M.

    2013-01-01

    Sodium cotransporters from several different gene families belong to the leucine transporter (LeuT) structural family. Although the identification of Na+ in binding sites is beyond the resolution of the structures, two Na+ binding sites (Na1 and Na2) have been proposed in LeuT. Na2 is conserved in the LeuT family but Na1 is not. A biophysical method has been used to measure sodium dissociation constants (Kd) of wild-type and mutant human sodium glucose cotransport (hSGLT1) proteins to identify the Na+ binding sites in hSGLT1. The Na1 site is formed by residues in the sugar binding pocket, and their mutation influences sodium binding to Na1 but not to Na2. For the canonical Na2 site formed by two –OH side chains, S392 and S393, and three backbone carbonyls, mutation of S392 to cysteine increased the sodium Kd by sixfold. This was accompanied by a dramatic reduction in the apparent sugar and phlorizin affinities. We suggest that mutation of S392 in the Na2 site produces a structural rearrangement of the sugar binding pocket to disrupt both the binding of the second Na+ and the binding of sugar. In contrast, the S393 mutations produce no significant changes in sodium, sugar, and phlorizin affinities. We conclude that the Na2 site is conserved in hSGLT1, the side chain of S392 and the backbone carbonyl of S393 are important in the first Na+ binding, and that Na+ binding to Na2 promotes binding to Na1 and also sugar binding. PMID:24191006

  7. LTRs of endogenous retroviruses as a source of Tbx6 binding sites

    NASA Astrophysics Data System (ADS)

    Yasuhiko, Yukuto; Hirabayashi, Yoko; Ono, Ryuichi

    2017-06-01

    Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box transcription factors. Moreover, by comparing gene expression between control mice (Tbx6 +/-) and Tbx6-deficient mice (Tbx6 -/-), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1, and Nfxl1, are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis.

  8. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    PubMed

    Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor

  9. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  10. DOUGLAS XA3D-1 #413 AIRPLANE.

    NASA Image and Video Library

    1955-07-27

    DOUGLAS XA3D-1 #413 AIRPLANE MOUNTED IN THE NACA AMES RESEARCH CENTER'S 40X80_FOOT SUBSONIC WIND TUNNEL Testing the boundary layer control of the A3D in the 40 x 80 wind tunnel. Boundary layer control was added to increase the lift of the wing for take off from an aircraft carrier.

  11. Impact of germline and somatic missense variations on drug binding sites.

    PubMed

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  12. Characterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny

    PubMed Central

    Orengo, Dorcas J.; Aguadé, Montserrat

    2017-01-01

    The insulin/TOR signal transduction pathway plays a critical role in determining such important traits as body and organ size, metabolic homeostasis and life span. Although this pathway is highly conserved across the animal kingdom, the affected traits can exhibit important differences even between closely related species. Evolutionary studies of regulatory regions require the reliable identification of transcription factor binding sites. Here we have focused on the Insulin Receptor (InR) expression from its P2 promoter in the Drosophila genus, which in D. melanogaster is up-regulated by hypophosphorylated Drosophila FOXO (dFOXO). We have finely characterized this transcription factor binding sites in vitro along the 1.3 kb region upstream of the InR P2 promoter in five Drosophila species. Moreover, we have tested the effect of mutations in the characterized dFOXO sites of D. melanogaster in transgenic flies. The number of experimentally established binding sites varies across the 1.3 kb region of any particular species, and their distribution also differs among species. In D. melanogaster, InR expression from P2 is differentially affected by dFOXO binding sites at the proximal and distal halves of the species 1.3 kb fragment. The observed uneven distribution of binding sites across this fragment might underlie their differential contribution to regulate InR transcription. PMID:29200426

  13. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2017-10-01

    The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

  14. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    PubMed

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  15. Data on master regulators and transcription factor binding sites found by upstream analysis of multi-omics data on methotrexate resistance of colon cancer.

    PubMed

    Kel, AlexanderE

    2017-02-01

    Computational analysis of master regulators through the search for transcription factor binding sites followed by analysis of signal transduction networks of a cell is a new approach of causal analysis of multi-omics data. This paper contains results on analysis of multi-omics data that include transcriptomics, proteomics and epigenomics data of methotrexate (MTX) resistant colon cancer cell line. The data were used for analysis of mechanisms of resistance and for prediction of potential drug targets and promising compounds for reverting the MTX resistance of these cancer cells. We present all results of the analysis including the lists of identified transcription factors and their binding sites in genome and the list of predicted master regulators - potential drug targets. This data was generated in the study recently published in the article "Multi-omics "Upstream Analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer" (Kel et al., 2016) [4]. These data are of interest for researchers from the field of multi-omics data analysis and for biologists who are interested in identification of novel drug targets against NTX resistance.

  16. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    PubMed Central

    Mazzoni, Esteban O; Mahony, Shaun; Closser, Michael; Morrison, Carolyn A; Nedelec, Stephane; Williams, Damian J; An, Disi; Gifford, David K; Wichterle, Hynek

    2013-01-01

    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types. PMID:23872598

  17. Effect of SanOrg123781A, a synthetic hexadecasaccharide, on clot-bound thrombin and factor Xa in vitro and in vivo.

    PubMed

    Hérault, J-P; Cappelle, M; Bernat, A; Millet, L; Bono, F; Schaeffer, P; Herbert, J-M

    2003-09-01

    Factor (F)Xa and thrombin bound to the clot during its formation contribute to the propensity of thrombi to activate the coagulation system. The aim of this work was to study the inhibition of clot-bound FXa and clot-bound thrombin by SanOrg123781A, a synthetic hexadecasaccharide that enhances the inhibition of thrombin and FXa by antithrombin (AT). SanOrg123781A, designed to exhibit low non-specific binding to proteins other than AT, was compared with heparin. In buffer, heparin and SanOrg123781A inhibited FXa and thrombin at similar concentrations [concentration inhibiting 50% (IC50) of Xa and IIa activity were, respectively: heparin 120 +/- 7 and 3 +/- 1 ng mL-1; SanOrg123781A 77 +/- 5 and 4 +/- 1 ng mL-1]. In human plasma, the activity of both compounds was reduced, although the activity of heparin was much more affected than that of SanOrg123781A (IC50 values for inhibition of FXa and FIIa activity were, respectively: heparin 100 +/- 5 and 800 +/- 40 ng mL-1; SanOrg123781A 10 +/- 5 and 30 +/- 3 ng mL-1). We demonstrated, in agreement with our previous results, that the procoagulant activity of the clot is essentially due to clot-bound FXa and to some extent to clot-bound thrombin. We showed that heparin and SanOrg123781A were able to inhibit fragment F1+2 generation induced by clot-bound FXa with IC50 values of 2 +/- 0.5 micro g mL-1 and 0.6 +/- 0.2 micro g mL-1, respectively. Both compounds also inhibited clot-bound thrombin activity, the IC50 values of heparin and SanOrg123781A being 1 +/- 0.01 micro g mL-1 and 0.1 +/- 0.1 micro g mL-1, respectively. Moreover, both heparin and SanOrg123781A significantly inhibited fibrinopeptide A generated by the action of clot-bound thrombin on fibrinogen but also by free thrombin generated from prothrombin by clot-bound FXa with IC50 values of 4 +/- 0.6 and 1 +/- 0.1 micro g mL-1, respectively. As with clot-bound enzymatic activities, SanOrg123781A was three times more active than heparin in vivo on fibrinogen accretion

  18. Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response

    PubMed Central

    Zhong, Mei; Niu, Wei; Lu, Zhi John; Sarov, Mihail; Murray, John I.; Janette, Judith; Raha, Debasish; Sheaffer, Karyn L.; Lam, Hugo Y. K.; Preston, Elicia; Slightham, Cindie; Hillier, LaDeana W.; Brock, Trisha; Agarwal, Ashish; Auerbach, Raymond; Hyman, Anthony A.; Gerstein, Mark; Mango, Susan E.; Kim, Stuart K.; Waterston, Robert H.; Reinke, Valerie; Snyder, Michael

    2010-01-01

    Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles. PMID:20174564

  19. Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP.

    PubMed

    Page, Stephen H; Wright, Edward K; Gama, Lucio; Clements, Janice E

    2011-01-01

    CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity.

  20. The influence of repressor DNA binding site architecture on transcriptional control.

    PubMed

    Park, Dan M; Kiley, Patricia J

    2014-08-26

    How the architecture of DNA binding sites dictates the extent of repression of promoters is not well understood. Here, we addressed the importance of the number and information content of the three direct repeats (DRs) in the binding and repression of the icdA promoter by the phosphorylated form of the global Escherichia coli repressor ArcA (ArcA-P). We show that decreasing the information content of the two sites with the highest information (DR1 and DR2) eliminated ArcA binding to all three DRs and ArcA repression of icdA. Unexpectedly, we also found that DR3 occupancy functions principally in repression, since mutation of this low-information-content site both eliminated DNA binding to DR3 and significantly weakened icdA repression, despite the fact that binding to DR1 and DR2 was intact. In addition, increasing the information content of any one of the three DRs or addition of a fourth DR increased ArcA-dependent repression but perturbed signal-dependent regulation of repression. Thus, our data show that the information content and number of DR elements are critical architectural features for maintaining a balance between high-affinity binding and signal-dependent regulation of icdA promoter function in response to changes in ArcA-P levels. Optimization of such architectural features may be a common strategy to either dampen or enhance the sensitivity of DNA binding among the members of the large OmpR/PhoB family of regulators as well as other transcription factors. In Escherichia coli, the response regulator ArcA maintains homeostasis of redox carriers under O2-limiting conditions through a comprehensive repression of carbon oxidation pathways that require aerobic respiration to recycle redox carriers. Although a binding site architecture comprised of a variable number of sequence recognition elements has been identified within the promoter regions of ArcA-repressed operons, it is unclear how this variable architecture dictates transcriptional regulation. By

  1. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    Imaging fibrillar amyloid-β deposition in the human brain in vivo by positron emission tomography has improved our understanding of the time course of amyloid-β pathology in Alzheimer's disease. The most widely used amyloid-β imaging tracer so far is (11)C-Pittsburgh compound B, a thioflavin derivative but other (11)C- and (18)F-labelled amyloid-β tracers have been studied in patients with Alzheimer's disease and cognitively normal control subjects. However, it has not yet been established whether different amyloid tracers bind to identical sites on amyloid-β fibrils, offering the same ability to detect the regional amyloid-β burden in the brains. In this study, we characterized (3)H-Pittsburgh compound B binding in autopsied brain regions from 23 patients with Alzheimer's disease and 20 control subjects (aged 50 to 88 years). The binding properties of the amyloid tracers FDDNP, AV-45, AV-1 and BF-227 were also compared with those of (3)H-Pittsburgh compound B in the frontal cortices of patients with Alzheimer's disease. Saturation binding studies revealed the presence of high- and low-affinity (3)H-Pittsburgh compound B binding sites in the frontal cortex (K(d1): 3.5 ± 1.6 nM; K(d2): 133 ± 30 nM) and hippocampus (K(d1):5.6 ± 2.2 nM; K(d2): 181 ± 132 nM) of Alzheimer's disease brains. The relative proportion of high-affinity to low-affinity sites was 6:1 in the frontal cortex and 3:1 in the hippocampus. One control showed both high- and low-affinity (3)H-Pittsburgh compound B binding sites (K(d1): 1.6 nM; K(d2): 330 nM) in the cortex while the others only had a low-affinity site (K(d2): 191 ± 70 nM). (3)H-Pittsburgh compound B binding in Alzheimer's disease brains was higher in the frontal and parietal cortices than in the caudate nucleus and hippocampus, and negligible in the cerebellum. Competitive binding studies with (3)H-Pittsburgh compound B in the frontal cortices of Alzheimer's disease brains revealed high- and low-affinity binding sites for BTA

  2. DOUGLAS XA3D-1 #413 AIRPLANE.

    NASA Image and Video Library

    1955-07-27

    DOUGLAS XA3D-1 #413 AIRPLANE MOUNTED IN THE NACA AMES RESEARCH CENTER'S 40X80_FOOT SUBSONIC WIND TUNNEL sweptback wing Testing the wing boundary layer control of the A3D in the 40 x 80 wind tunnel. Boundary layer control was added to increase the lift of the wing for aircraft carrier take off and landing.

  3. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.

    PubMed

    Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried

    2017-06-01

    Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p

  4. An additional substrate binding site in a bacterial phenylalanine hydroxylase

    PubMed Central

    Ronau, Judith A.; Paul, Lake N.; Fuchs, Julian E.; Corn, Isaac R.; Wagner, Kyle T.; Liedl, Klaus R.; Abu-Omar, Mahdi M.; Das, Chittaranjan

    2014-01-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes phenylalanine oxidation to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH features a regulatory domain where binding of the substrate leads to allosteric activation of the enzyme. However, existence of PAH regulation in evolutionarily distant organisms, such as certain bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum (cPAH), a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site, 15.7Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 µM for phenylalanine. Under the same conditions, no detectable binding was observed in ITC for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) lead to impaired binding, consistent with the presence of distal site binding in solution. Kinetic analysis reveals that the distal site mutants suffer a discernible loss in their catalytic activity. However, x-ray structures of Y155A and F258A, two of the mutants showing more noticeable defect in their activity, show no discernible change in their active site structure, suggesting that the effect of distal binding may transpire through protein dynamics in solution. PMID:23860686

  5. Thrombin and factor Xa link the coagulation system with liver fibrosis.

    PubMed

    Dhar, Ameet; Sadiq, Fouzia; Anstee, Quentin M; Levene, Adam P; Goldin, Robert D; Thursz, Mark R

    2018-05-08

    Thrombin activates hepatic stellate cells via protease-activated receptor-1. The role of Factor Xa (FXa) in hepatic fibrosis has not been elucidated. We aimed to evaluate the impact of FXa and thrombin in vitro on stellate cells and their respective inhibition in vivo using a rodent model of hepatic fibrosis. HSC-LX2 cells were incubated with FXa and/or thrombin in cell culture, stained for αSMA and relative gene expression and gel contraction calculated. C57BL/6 J mice were administered thioacetamide (TAA) for 8 weeks with Rivaroxaban (n = 15) or Dabigatran (n = 15). Control animals received TAA alone (n = 15). Fibrosis was scored and quantified using digital image analysis and hepatic tissue hydroxyproline estimated. Stellate cells treated with FXa and thrombin demonstrated upregulation of procollagen, TGF-beta, αSMA and significant cell contraction (43.48%+/- 4.12) compared to culturing with FXa or thrombin alone (26.90%+/- 8.90, p = 0.02; 13.1%+/- 9.84, p < 0.001). Mean fibrosis score, percentage area of fibrosis and hepatic hydroxyproline content (2.46 vs 4.08, p = 0.008; 2.02% vs 3.76%, p = 0.012; 276.0 vs 651.3, p = 0.0001) were significantly reduced in mice treated with the FXa inhibitor compared to control mice. FXa inhibition was significantly more effective than thrombin inhibition in reducing percentage area of fibrosis and hepatic hydroxyproline content (2.02% vs 3.70%,p = 0.031; 276.0 vs 413.1,p = 0.001). FXa promotes stellate cell contractility and activation. Early inhibition of coagulation using a FXa inhibitor significantly reduces TAA induced murine liver fibrosis and may be a viable treatment for liver fibrosis in patients.

  6. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckel, M.E.; Freund-Mercier, M.J.

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experimentsmore » showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.« less

  7. Receptor-ligand binding sites and virtual screening.

    PubMed

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  8. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation.

    PubMed

    Fogelson, Aaron L; Tania, Nessy

    2005-01-01

    A mathematical model of intravascular coagulation is presented; it encompasses the biochemistry of the tissue factor pathway, platelet activation and deposition on the subendothelium, and flow- and diffusion-mediated transport of coagulation proteins and platelets. Simulation experiments carried out with the model indicate the predominant role played by the physical processes of platelet deposition and flow-mediated removal of enzymes in inhibiting coagulation in the vicinity of vascular injury. Sufficiently rapid production of factors IXa and Xa by the TF:VIIa complex can overcome this inhibition and lead to formation of significant amounts of the tenase complex on the surface of activated platelets and, as a consequence, to substantial thrombin production. Chemical inhibitors are seen to play almost no (TFPI) or little (AT-III and APC) role in determining whether substantial thrombin production will occur. The role of APC is limited by the necessity for diffusion of thrombin from the site of injury to nearby endothelial cells to form the thrombomodulin-thrombin complex and for diffusion in the reverse direction of the APC made by this complex. TFPI plays an insignificant part in inhibiting the TF:VIIa complex under the conditions studied whether its action involves sequential binding of TFPI to Xa and then TFPI:Xa to TF:VIIa, or direct binding of TFPI to Xa already bound to the TF:VIIa complex. Copyright 2005 S. Karger AG, Basel.

  9. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins†

    PubMed Central

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.

    2011-01-01

    Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and a R122L/S124A mutant in which electrostatic interactions viewed as essential to fatty acid binding were removed. For wild-type LFABP the results compared favorably with previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, 1H/15N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535

  11. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    PubMed

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  12. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  13. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  14. Inhibition by Siomycin and Thiostrepton of Both Aminoacyl-tRNA and Factor G Binding to Ribosomes

    PubMed Central

    Ll, Juan Modole; Cabrer, Bartolomé; Parmeggiani, Andrea; Azquez, David V

    1971-01-01

    Siomycin, a peptide antibiotic that interacts with the 50S ribosomal subunit and inhibits binding of factor G, is shown also to inhibit binding of aminoacyl-tRNA; however, it does not impair binding of fMet-tRNA and completion of the initiation complex. Moreover, unlike other inhibitors of aminoacyl-tRNA binding (tetracycline, sparsomycin, and streptogramin A), siomycin completely abolishes the GTPase activity associated with the binding of aminoacyl-tRNA catalyzed by factor Tu. A single-site interaction of siomycin appears to be responsible for its effect on both the binding of the aminoacyl-tRNA-Tu-GTP complex and that of factor G. PMID:4331558

  15. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.

    2017-06-30

    Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA ismore » polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.« less

  16. Substance P binding sites in the nucleus tractus solitarius of the cat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maley, B.E.; Sasek, C.A.; Seybold, V.S.

    1988-11-01

    Substance P binding sites in the nucleus tractus solitarius were visualized with receptor autoradiography using Bolton-Hunter (/sup 125/I)substance P. Substance P binding sites were found to have distinct patterns within the cat nucleus tractus solitarius. The majority of substance P binding sites were present in the medial, intermediate and the peripheral rim of the parvocellular subdivisions. Lower amounts of substance P binding sites were present in the commissural, ventrolateral, interstitial and dorsolateral subdivisions. No substance P binding sites were present in the central region of the parvocellular subdivision or the solitary tract. The localization of substance P binding sites inmore » the nucleus tractus solitarius is very similar to the patterns of substance P immunoreactive fibers previously described for this region. Results of this study add further support for a functional role of substance P in synaptic circuits of the nucleus tractus solitarius.« less

  17. Identification of the HrpS binding site in the hrpL promoter and effect of the RpoN binding site of HrpS on the regulation of the type III secretion system in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Sundin, George W; Zhao, Youfu

    2016-06-01

    The type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by an RpoN-HrpL sigma factor cascade, which is activated by the bacterial alarmone (p)ppGpp. In this study, the binding site of HrpS, an enhancer binding protein, was identified for the first time in plant-pathogenic bacteria. Complementation of the hrpL mutant with promoter deletion constructs of the hrpL gene and promoter activity analyses using various lengths of the hrpL promoter fused to a promoter-less green fluorescent protein (gfp) reporter gene delineated the upstream region for HrpS binding. Sequence analysis revealed a dyad symmetry sequence between -138 and -125 nucleotides (TGCAA-N4-TTGCA) as the potential HrpS binding site, which is conserved in the promoter of the hrpL gene among plant enterobacterial pathogens. Results of quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and electrophoresis mobility shift assay coupled with site-directed mutagenesis (SDM) analysis showed that the intact dyad symmetry sequence was essential for HrpS binding, full activation of T3SS gene expression and virulence. In addition, the role of the GAYTGA motif (RpoN binding site) of HrpS in the regulation of T3SS gene expression in E. amylovora was characterized by complementation of the hrpS mutant using mutant variants generated by SDM. Results showed that a Y100F substitution of HrpS complemented the hrpS mutant, whereas Y100A and Y101A substitutions did not. These results suggest that tyrosine (Y) and phenylalanine (F) function interchangeably in the conserved GAYTGA motif of HrpS in E. amylovora. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  18. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function.

    PubMed

    Ciolkowski, Ingo; Wanke, Dierk; Birkenbihl, Rainer P; Somssich, Imre E

    2008-09-01

    WRKY transcription factors have been shown to play a major role in regulating, both positively and negatively, the plant defense transcriptome. Nearly all studied WRKY factors appear to have a stereotypic binding preference to one DNA element termed the W-box. How specificity for certain promoters is accomplished therefore remains completely unknown. In this study, we tested five distinct Arabidopsis WRKY transcription factor subfamily members for their DNA binding selectivity towards variants of the W-box embedded in neighboring DNA sequences. These studies revealed for the first time differences in their binding site preferences, which are partly dependent on additional adjacent DNA sequences outside of the TTGACY-core motif. A consensus WRKY binding site derived from these studies was used for in silico analysis to identify potential target genes within the Arabidopsis genome. Furthermore, we show that even subtle amino acid substitutions within the DNA binding region of AtWRKY11 strongly impinge on its binding activity. Additionally, all five factors were found localized exclusively to the plant cell nucleus and to be capable of trans-activating expression of a reporter gene construct in vivo.

  19. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  20. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  1. Cryptic binding sites on proteins: definition, detection, and druggability.

    PubMed

    Vajda, Sandor; Beglov, Dmitri; Wakefield, Amanda E; Egbert, Megan; Whitty, Adrian

    2018-05-22

    Many proteins in their unbound structures lack surface pockets appropriately sized for drug binding. Hence, a variety of experimental and computational tools have been developed for the identification of cryptic sites that are not evident in the unbound protein but form upon ligand binding, and can provide tractable drug target sites. The goal of this review is to discuss the definition, detection, and druggability of such sites, and their potential value for drug discovery. Novel methods based on molecular dynamics simulations are particularly promising and yield a large number of transient pockets, but it has been shown that only a minority of such sites are generally capable of binding ligands with substantial affinity. Based on recent studies, current methodology can be improved by combining molecular dynamics with fragment docking and machine learning approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Tranexamic Acid Failed to Reverse the Anticoagulant Effect and Bleeding by an Oral Direct Factor Xa Inhibitor Edoxaban.

    PubMed

    Honda, Yuko; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2018-01-01

    Agents to reverse the anticoagulant effect of edoxaban, an oral direct factor Xa inhibitor, would be desirable in emergency situations. The aim of this study is to determine the effect of tranexamic acid, an antifibrinolytic agent, on the anticoagulant activity and bleeding by edoxaban in rats. A supratherapeutic dose of edoxaban (3 mg/kg) was intravenously administered to rats. Three minutes after dosing, tranexamic acid (100 mg/kg) was given intravenously. Bleeding was induced by making an incision with a blade on the planta 8 min after edoxaban injection and bleeding time was measured. Prothrombin time (PT) and clot lysis were examined. A supratherapeutic dose of edoxaban significantly prolonged PT and bleeding time. Tranexamic acid did not affect PT or bleeding time prolonged by edoxaban, although tranexamic acid significantly inhibited clot lysis in rat plasma. An antifibrinolytic agent tranexamic acid failed to reverse the anticoagulant effect and bleeding by edoxaban in rats. © 2017 S. Karger AG, Basel.

  3. Influence of apixaban on antifactor Xa levels in a patient with acute kidney injury.

    PubMed

    Wendte, Jodi; Voss, Glenn; VanOverschelde, Beau

    2016-04-15

    The case of a patient requiring conversion from apixaban to heparin in the setting of acute kidney injury is reported. A 70-year-old man was initiated on apixaban 5 mg twice daily for new-onset, nonvalvular atrial fibrillation with a CHA2DS2-VASc score of 4, indicating a high risk of stroke. Soon after starting apixaban, he experienced pulmonary edema with pneumonia requiring hospitalization. During the course of hospitalization, the patient developed acute kidney injury requiring hemodialysis, and apixaban was stopped due to concerns about altered pharmacokinetics and impaired drug elimination in this setting. A heparin infusion was started 36 hours after the last dose of apixaban was administered. Antifactor Xa levels were monitored consistent with the hospital's standard practice protocols. The initial and repeat antifactor Xa concentrations were elevated (1.8-4.4 IU/mL) for up 72 hours after stopping the heparin infusion. Given the suspected interference of apixaban with standard antifactor Xa level monitoring, the heparin protocol was modified to reflect drip-rate adjustments based on activated partial thromboplastin times (aPTTs). The hospital protocol for heparin infusions was reinstituted on hospital day 7, with dosage adjustments based on antifactor Xa levels. The patient remained on a continuous heparin infusion for atrial fibrillation for the remainder of his hospitalization without complications or bleeding events. A 70-year-old man with new-onset nonvalvular atrial fibrillation and receiving apixaban discontinued this therapy and was given heparin instead due to acute kidney injury. His heparin dosage was successfully adjusted based on antifactor Xa levels and aPPTs. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  4. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment ismore » achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.« less

  5. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  6. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    PubMed

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  7. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Duan, Hong; Patel, Dinshaw J.

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain (“BEN-solo” factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  8. Revisiting the X:A signal that specifies Caenorhabditis elegans sexual fate.

    PubMed

    Gladden, John M; Farboud, Behnom; Meyer, Barbara J

    2007-11-01

    In Caenorhabditis elegans, sex is determined by the opposing actions of X-signal elements (XSEs) and autosomal signal elements (ASEs), which communicate the ratio of X chromosomes to sets of autosomes (X:A signal). This study delves more deeply into the mechanism by which XSEs transmit X chromosome dose. We determined the relative contributions of individual XSEs to the X:A signal and showed the order of XSE strength to be sex-1 > sex-2 > fox-1 > ceh-39 >/= region 1 XSE. sex-1 exerts a more potent influence on sex determination and dosage compensation than any other XSE by functioning in two separate capacities in the pathway: sex-1 acts upstream as an XSE to repress xol-1 and downstream as an activator of hermaphrodite development and dosage compensation. Furthermore, the process of dosage compensation affects expression of the very XSEs that control it; XSEs become fully dosage compensated once sex is determined. The X:A signal is then equivalent between XO and XX animals, causing sexual differentiation to be controlled by genes downstream of xol-1 in the sex-determination pathway. Prior to the onset of dosage compensation, the difference in XSE expression between XX and XO embryos appears to be greater than twofold, making X chromosome counting a robust process.

  9. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  10. Oligomycin frames a common drug-binding site in the ATP synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100%more » conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.« less

  11. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11

    PubMed Central

    Ngondo-Mbongo, Richard Patryk; Myslinski, Evelyne; Aster, Jon C.; Carbon, Philippe

    2013-01-01

    ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation. PMID:23408857

  13. Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site.

    PubMed Central

    Pintor, J.; Torres, M.; Castro, E.; Miras-Portugal, M. T.

    1991-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide, which is stored in secretory granules, presents two types of high affinity binding sites in chromaffin cells. A Kd value of 8 +/- 0.65 x 10(-11) M and Bmax value of 5420 +/- 450 sites per cell were obtained for the high affinity binding site. A Kd value of 5.6 +/- 0.53 x 10(-9) M and a Bmax value close to 70,000 sites per cell were obtained for the second binding site with high affinity. 2. The diadenosine polyphosphates, Ap3A, Ap4A, Ap5A and Ap6A, displaced [3H]-Ap4A from the two binding sites, the Ki values being 1.0 nM, 0.013 nM, 0.013 nM and 0.013 nM for the very high affinity binding site and 0.5 microM, 0.13 microM, 0.062 microM and 0.75 microM for the second binding site. 3. The ATP analogues displaced [3H]-Ap4A with the potency order of the P2y receptors, adenosine 5'-O-(2 thiodiphosphate) (ADP-beta-S) greater than 5'-adenylyl imidodiphosphate (AMP-PNP) greater than alpha, beta-methylene ATP (alpha, beta-MeATP), in both binding sites. The Ki values were respectively 0.075 nM, 0.2 nM and 0.75 nM for the very high affinity binding site and 0.125 microM, 0.5 microM and 0.9 microM for the second binding site. PMID:1912985

  14. Rate constants for proteins binding to substrates with multiple binding sites using a generalized forward flux sampling expression

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2018-03-01

    To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.

  15. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nye, J.S.

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one classmore » of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.« less

  16. A 5′ Splice Site-Proximal Enhancer Binds SF1 and Activates Exon Bridging of a Microexon

    PubMed Central

    Carlo, Troy; Sierra, Rebecca; Berget, Susan M.

    2000-01-01

    Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3′ and 5′ splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5′ splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3′ splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon. PMID:10805741

  17. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K [Idaho Falls, ID

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  18. Identification of the Catalytic Ubiquinone-binding Site of Vibrio cholerae Sodium-dependent NADH Dehydrogenase

    PubMed Central

    Tuz, Karina; Li, Chen; Fang, Xuan; Raba, Daniel A.; Liang, Pingdong; Minh, David D. L.; Juárez, Oscar

    2017-01-01

    The sodium-dependent NADH dehydrogenase (Na+-NQR) is a key component of the respiratory chain of diverse prokaryotic species, including pathogenic bacteria. Na+-NQR uses the energy released by electron transfer between NADH and ubiquinone (UQ) to pump sodium, producing a gradient that sustains many essential homeostatic processes as well as virulence factor secretion and the elimination of drugs. The location of the UQ binding site has been controversial, with two main hypotheses that suggest that this site could be located in the cytosolic subunit A or in the membrane-bound subunit B. In this work, we performed alanine scanning mutagenesis of aromatic residues located in transmembrane helices II, IV, and V of subunit B, near glycine residues 140 and 141. These two critical glycine residues form part of the structures that regulate the site's accessibility. Our results indicate that the elimination of phenylalanine residue 211 or 213 abolishes the UQ-dependent activity, produces a leak of electrons to oxygen, and completely blocks the binding of UQ and the inhibitor HQNO. Molecular docking calculations predict that UQ interacts with phenylalanine 211 and pinpoints the location of the binding site in the interface of subunits B and D. The mutagenesis and structural analysis allow us to propose a novel UQ-binding motif, which is completely different compared with the sites of other respiratory photosynthetic complexes. These results are essential to understanding the electron transfer pathways and mechanism of Na+-NQR catalysis. PMID:28053088

  19. Rapid comparison of protein binding site surfaces with Property Encoded Shape Distributions (PESD)

    PubMed Central

    Das, Sourav; Kokardekar, Arshad

    2009-01-01

    Patterns in shape and property distributions on the surface of binding sites are often conserved across functional proteins without significant conservation of the underlying amino-acid residues. To explore similarities of these sites from the viewpoint of a ligand, a sequence and fold-independent method was created to rapidly and accurately compare binding sites of proteins represented by property-mapped triangulated Gauss-Connolly surfaces. Within this paradigm, signatures for each binding site surface are produced by calculating their property-encoded shape distributions (PESD), a measure of the probability that a particular property will be at a specific distance to another on the molecular surface. Similarity between the signatures can then be treated as a measure of similarity between binding sites. As postulated, the PESD method rapidly detected high levels of similarity in binding site surface characteristics even in cases where there was very low similarity at the sequence level. In a screening experiment involving each member of the PDBBind 2005 dataset as a query against the rest of the set, PESD was able to retrieve a binding site with identical E.C. (Enzyme Commission) numbers as the top match in 79.5% of cases. The ability of the method in detecting similarity in binding sites with low sequence conservations were compared with state-of-the-art binding site comparison methods. PMID:19919089

  20. Solubilization and characterization of haloperidol-sensitive (+)-( sup 3 H)SKF-10,047 binding sites (sigma sites) from rat liver membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, D.J.; Su, T.P.

    1991-05-01

    The zwitterionic detergent 3-((3-cholamidopropyl)dimethylamino)-1-propanesulfonate (CHAPS) produced optimal solubilization of (+)-({sup 3}H)SKF-10,047 binding sites from rat liver membranes at a concentration of 0.2%, well below the critical micellular concentration of the detergent. The pharmacological selectivity of the liver (+)-({sup 3}H)SKF-10,047 binding sites corresponds to that of sigma sites from rat and guinea pig brain. When the affinities of 18 different drugs at (+)-({sup 3}H)SKF-10,047 binding sites in membranes and solubilized preparations were compared, a correlation coefficient of 0.99 and a slope of 1.03 were obtained, indicating that the pharmacological selectivity of rat liver sigma sites is retained after solubilization. In addition,more » the binding of 20 nM ({sup 3}H)progesterone to solubilized rat liver preparations was found to exhibit a pharmacological selectivity appropriate for sigma sites. A stimulatory effect of phenytoin on (+)-({sup 3}H)SKF-10,047 binding to sigma sites persisted after solubilization. When the solubilized preparation was subjected to molecular sizing chromatography, a single peak exhibiting specific (+)-({sup 3}H)SKF-10,047 binding was obtained. The binding activity of this peak was stimulated symmetrically when assays were performed in the presence of 300 microM phenytoin. The molecular weight of the CHAPS-solubilized sigma site complex was estimated to be 450,000 daltons. After solubilization with CHAPS, rat liver sigma sites were enriched to 12 pmol/mg of protein. The present results demonstrate a successful solubilization of sigma sites from rat liver membranes and provide direct evidence that the gonadal steroid progesterone binds to sigma sites. The results also suggest that the anticonvulsant phenytoin binds to an associated allosteric site on the sigma site complex.« less

  1. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites

    PubMed Central

    Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent

    2017-01-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis. PMID:28336543

  2. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium.

    PubMed

    Pruitt, Rory N; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R; Chan, Leanne Jade G; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B; Sonti, Ramesh V; Petzold, Christopher J; Liu, Chang C; Brodbelt, Jennifer S; Felix, Georg; Ronald, Pamela C

    2015-07-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21-amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals.

  3. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium

    PubMed Central

    Pruitt, Rory N.; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R.; Chan, Leanne Jade G.; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L.; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B.; Sonti, Ramesh V.; Petzold, Christopher J.; Liu, Chang C.; Brodbelt, Jennifer S.; Felix, Georg; Ronald, Pamela C.

    2015-01-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21–amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals. PMID:26601222

  4. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.

  5. Elucidation of the Hsp90 C-terminal Inhibitor Binding Site

    PubMed Central

    Matts, Robert L.; Dixit, Anshuman; Peterson, Laura B.; Sun, Liang; Voruganti, Sudhakar; Kalyanaraman, Palgunan; Hartson, Steve D.; Verkhivker, Gennady M.; Blagg, Brian S. J.

    2011-01-01

    The Hsp90 chaperone machine is required for the folding, activation and/or stabilization of more than 50 proteins directly related to malignant progression. Hsp90 contains small molecule binding sites at both its N- and C-terminal domains, however, limited structural and biochemical data regarding the C-terminal binding site is available. In this report, the small molecule binding site in the Hsp90 C-terminal domain was revealed by protease fingerprinting and photoaffinity labeling utilizing LC-MS/MS. The identified site was characterized by generation of a homology model for hHsp90α using the SAXS open structure of HtpG and docking the bioactive conformation of NB into the generated model. The resulting model for the bioactive conformation of NB bound to Hsp90α is presented herein. PMID:21548602

  6. Cloud Computing for Protein-Ligand Binding Site Comparison

    PubMed Central

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  7. Analysis of Factors Influencing Hydration Site Prediction Based on Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Water contributes significantly to the binding of small molecules to proteins in biochemical systems. Molecular dynamics (MD) simulation based programs such as WaterMap and WATsite have been used to probe the locations and thermodynamic properties of hydration sites at the surface or in the binding site of proteins generating important information for structure-based drug design. However, questions associated with the influence of the simulation protocol on hydration site analysis remain. In this study, we use WATsite to investigate the influence of factors such as simulation length and variations in initial protein conformations on hydration site prediction. We find that 4 ns MD simulation is appropriate to obtain a reliable prediction of the locations and thermodynamic properties of hydration sites. In addition, hydration site prediction can be largely affected by the initial protein conformations used for MD simulations. Here, we provide a first quantification of this effect and further indicate that similar conformations of binding site residues (RMSD < 0.5 Å) are required to obtain consistent hydration site predictions. PMID:25252619

  8. Analysis of factors influencing hydration site prediction based on molecular dynamics simulations.

    PubMed

    Yang, Ying; Hu, Bingjie; Lill, Markus A

    2014-10-27

    Water contributes significantly to the binding of small molecules to proteins in biochemical systems. Molecular dynamics (MD) simulation based programs such as WaterMap and WATsite have been used to probe the locations and thermodynamic properties of hydration sites at the surface or in the binding site of proteins generating important information for structure-based drug design. However, questions associated with the influence of the simulation protocol on hydration site analysis remain. In this study, we use WATsite to investigate the influence of factors such as simulation length and variations in initial protein conformations on hydration site prediction. We find that 4 ns MD simulation is appropriate to obtain a reliable prediction of the locations and thermodynamic properties of hydration sites. In addition, hydration site prediction can be largely affected by the initial protein conformations used for MD simulations. Here, we provide a first quantification of this effect and further indicate that similar conformations of binding site residues (RMSD < 0.5 Å) are required to obtain consistent hydration site predictions.

  9. Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice.

    PubMed

    Omar, Ahmad A; Murata, Mayara M; El-Shamy, Hesham A; Graham, James H; Grosser, Jude W

    2018-04-01

    Genetic engineering approaches offer an alternative method to the conventional breeding of Citrus sp. 'W. Murcott' mandarin (a hybrid of 'Murcott' and an unknown pollen parent) is one of the most commercially important cultivars grown in many regions around the world. Transformation of 'W. Murcott' mandarin was achieved by direct DNA uptake using a protoplast transformation system. DNA construct (pAO3), encoding Green Fluorescent Protein (GFP) and the cDNA of Xa21, a Xanthomonas resistance gene from rice, was used to transform protoplasts of 'W. Murcott' mandarin. Following citrus protoplast culture and regeneration, transformed micro calli were microscopically designated via GFP expression, physically isolated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. More than 150 transgenic embryos were recovered and from them, ten transgenic lines were regenerated and cultured on rooting medium for shoot elongation. Transgenic shoots were micrografted and established in the greenhouse with 3-5 replicates per line. The insertion of Xa21 and GFP was confirmed by PCR and southern blot analysis. GFP expression was verified by fluorescence microscopy and western blot analysis revealed expression of Xa21 although it was variable among transgenic lines, as shown by RT-qPCR. Transgenic plants challenged with the citrus canker pathogen by syringe inoculation showed a reduction in lesion number and bacterial populations within lesions compared to non-transgenic control plants. Transgenic 'W. Murcott' mandarin lines with improved canker resistance via protoplast transformation from embryogenic callus with the Xa21 gene from rice are being evaluated under field conditions to validate the level of resistance.

  10. The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5' Splice Sites

    NASA Astrophysics Data System (ADS)

    Zuo, Ping; Manley, James L.

    1994-04-01

    ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.

  11. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    PubMed

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation.

    PubMed Central

    Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A

    2003-01-01

    Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173

  13. Synthesis and characterization of (18)F-labeled active site inhibited factor VII (ASIS).

    PubMed

    Erlandsson, Maria; Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Jesper B; Petersen, Lars C; Madsen, Jacob; Kjaer, Andreas

    2015-05-15

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress. Copyright © 2015 John Wiley & Sons, Ltd.

  14. [3H]MK-801 binding sites in post-mortem human frontal cortex.

    PubMed

    Kornhuber, J; Mack-Burkhardt, F; Kornhuber, M E; Riederer, P

    1989-03-29

    The binding of [3H]MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) was investigated in extensively washed homogenates of post-mortem human frontal cortex. The association of [3H]MK-801 proceeded slowly (t1/2 = 553 min) and reached equilibrium only after a prolonged incubation (greater than 24 h). The dissociation of [3H]MK-801 from the binding site was also slow (t1/2 = 244 min). Glutamate, glycine and magnesium markedly increased the rate of association (t1/2 = 14.8 min) and dissociation (t1/2 = 36.5 min). At equilibrium, the binding was not altered by these substances. Specific binding was linear with protein concentration, was saturable, reversible, stereoselective, heat-labile and was nearly absent in the white matter. Scatchard analysis of the saturation curves obtained at equilibrium indicated that there was a high-affinity (Kd1 1.39 +/- 0.21 nM, Bmax1 0.483 +/- 0.084 pmol/mg protein) and a low-affinity (Kd2 116.25 +/- 50.79 nM, Bmax2 3.251 +/- 0.991 pmol/mg protein) binding site. All competition curves obtained with (+)-MK-801, (-)-MK-801, phencyclidine and ketamine had Hill coefficients of less than unity and were best explained by a two-site model. Thus, our results demonstrate the presence of binding sites for MK-801 in post-mortem human brains and provide evidence for binding site heterogeneity. Furthermore, glutamate, glycine and magnesium accelerate the association and dissociation of [3H]MK-801 to and from its binding sites. The results add support to the hypothesis that MK-801, glutamate, glycine and magnesium all bind to different sites on the NMDA receptor-ion channel complex.

  15. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  17. Identification and grafting of a unique peptide-binding site in the Fab framework of monoclonal antibodies

    DOE PAGES

    Donaldson, Joshua M.; Zer, Cindy; Avery, Kendra N.; ...

    2013-10-07

    Capitalizing on their extraordinary specificity, monoclonal antibodies (mAbs) have become one of the most reengineered classes of biological molecules. A major goal in many of these engineering efforts is to add new functionality to the parental mAb, including the addition of cytotoxins and imaging agents for medical applications. Herein, we present a unique peptide-binding site within the central cavity of the fragment antigen binding framework region of the chimeric, anti-epidermal growth factor receptor mAb cetuximab. We demonstrate through diffraction methods, biophysical studies, and sequence analysis that this peptide, a meditope, has moderate affinity for the Fab, is specific to cetuximabmore » (i.e., does not bind to human IgGs), and has no significant effect on antigen binding. We further demonstrate by diffraction studies and biophysical methods that the meditope binding site can be grafted onto the anti-human epidermal growth factor receptor 2 mAb trastuzumab, and that the antigen binding affinity of the grafted trastuzumab is indistinguishable from the parental mAb. Lastly, we demonstrate a bivalent meditope variant binds specifically and stably to antigen-bearing cells only in the presence of the meditope-enabled mAbs. Collectively, this finding and the subsequent characterization and engineering efforts indicate that this unique interface could serve as a noncovalent “linker” for any meditope-enabled mAb with applications in multiple mAb-based technologies including diagnostics, imaging, and therapeutic delivery.« less

  18. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin

    PubMed Central

    Treuheit, Nicholas A.; Beach, Muneera A.; Komives, Elizabeth A.

    2011-01-01

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethylketone to the active site serine, as well as non-covalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1, however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-L-arginine-(3-methyl-1,5-pantanediyl) amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause the same reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or to exosite 1. PMID:21526769

  19. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    PubMed

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  20. HMG I(Y) interferes with the DNA binding of NF-AT factors and the induction of the interleukin 4 promoter in T cells

    PubMed Central

    Klein-Hessling, Stefan; Schneider, Günter; Heinfling, Annette; Chuvpilo, Sergei; Serfling, Edgar

    1996-01-01

    HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells. PMID:8986808

  1. CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1-Csy2 heterodimer in the type I-F CRISPR-Cas system.

    PubMed

    Hong, Suji; Ka, Donghyun; Yoon, Seo Jeong; Suh, Nayoung; Jeong, Migyeong; Suh, Jeong-Yong; Bae, Euiyoung

    2018-02-23

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide microbial adaptive immunity against bacteriophages. In type I-F CRISPR-Cas systems, multiple Cas proteins (Csy1-4) compose a surveillance complex (Csy complex) with CRISPR RNA (crRNA) for target recognition. Here, we report the biochemical characterization of the Csy1-Csy2 subcomplex from Xanthomonas albilineans , including the analysis of its interaction with crRNA and AcrF2, an anti-CRISPR (Acr) protein from a phage that infects Pseudomonas aeruginosa The X. albilineans Csy1 and Csy2 proteins (XaCsy1 and XaCsy2, respectively) formed a stable heterodimeric complex that specifically bound the 8-nucleotide (nt) 5'-handle of the crRNA. In contrast, the XaCsy1-XaCsy2 heterodimer exhibited reduced affinity for the 28-nt X. albilineans CRISPR repeat RNA containing the 5'-handle sequence. Chromatographic and calorimetric analyses revealed tight binding between the Acr protein from the P. aeruginosa phage and the heterodimeric subunit of the X. albilineans Csy complex, suggesting that AcrF2 recognizes conserved features of Csy1-Csy2 heterodimers. We found that neither XaCsy1 nor XaCsy2 alone forms a stable complex with AcrF2 and the 5'-handle RNA, indicating that XaCsy1-XaCsy2 heterodimerization is required for binding them. We also solved the crystal structure of AcrF2 to a resolution of 1.34 Å, enabling a more detailed structural analysis of the residues involved in the interactions with the Csy1-Csy2 heterodimer. Our results provide information about the order of events during the formation of the multisubunit crRNA-guided surveillance complex and suggest that the Acr protein inactivating type I-F CRISPR-Cas systems has broad specificity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Bioinformatic and experimental survey of 14-3-3-binding sites

    PubMed Central

    Johnson, Catherine; Crowther, Sandra; Stafford, Margaret J.; Campbell, David G.; Toth, Rachel; MacKintosh, Carol

    2010-01-01

    More than 200 phosphorylated 14-3-3-binding sites in the literature were analysed to define 14-3-3 specificities, identify relevant protein kinases, and give insights into how cellular 14-3-3/phosphoprotein networks work. Mode I RXX(pS/pT)XP motifs dominate, although the +2 proline residue occurs in less than half, and LX(R/K)SX(pS/pT)XP is prominent in plant 14-3-3-binding sites. Proline at +1 is rarely reported, and such motifs did not stand up to experimental reanalysis of human Ndel1. Instead, we discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders. These data conform with the general findings that there are different subtypes of 14-3-3-binding sites that overlap with the specificities of different basophilic AGC (protein kinase A/protein kinase G/protein kinase C family) and CaMK (Ca2+/calmodulin-dependent protein kinase) protein kinases, and a 14-3-3 dimer often engages with two tandem phosphorylated sites, which is a configuration with special signalling, mechanical and evolutionary properties. Thus 14-3-3 dimers can be digital logic gates that integrate more than one input to generate an action, and coincidence detectors when the two binding sites are phosphorylated by different protein kinases. Paired sites are generally located within disordered regions and/or straddle either side of functional domains, indicating how 14-3-3 dimers modulate the conformations and/or interactions of their targets. Finally, 14-3-3 proteins bind to members of several multi-protein families. Two 14-3-3-binding sites are conserved across the class IIa histone deacetylases, whereas other protein families display differential regulation by 14-3-3s. We speculate that 14-3-3 dimers may have contributed to the evolution of such families, tailoring regulatory inputs to different physiological demands. PMID:20141511

  3. Genome-Wide Screens for In Vivo Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures

    PubMed Central

    Jin, Hong; Stojnic, Robert; Adryan, Boris; Ozdemir, Anil; Stathopoulos, Angelike; Frasch, Manfred

    2013-01-01

    The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP) from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ∼50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites. PMID:23326246

  4. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  5. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding.

    PubMed

    Li, Changyan; Wei, Jing; Lin, Yongjun; Chen, Hao

    2012-05-01

    Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes.

  6. Photoactivable antibody binding protein: site-selective and covalent coupling of antibody.

    PubMed

    Jung, Yongwon; Lee, Jeong Min; Kim, Jung-won; Yoon, Jeongwon; Cho, Hyunmin; Chung, Bong Hyun

    2009-02-01

    Here we report new photoactivable antibody binding proteins, which site-selectively capture antibodies and form covalent conjugates with captured antibodies upon irradiation. The proteins allow the site-selective tagging and/or immobilization of antibodies with a highly preferred orientation and omit the need for prior antibody modifications. The minimal Fc-binding domain of protein G, a widely used antibody binding protein, was genetically and chemically engineered to contain a site-specific photo cross-linker, benzophenone. In addition, the domain was further mutated to have an enhanced Fc-targeting ability. This small engineered protein was successfully cross-linked only to the Fc region of the antibody without any nonspecific reactivity. SPR analysis indicated that antibodies can be site-selectively biotinylated through the present photoactivable protein. Furthermore, the system enabled light-induced covalent immobilization of antibodies directly on various solid surfaces, such as those of glass slides, gold chips, and small particles. Antibody coupling via photoactivable antibody binding proteins overcomes several limitations of conventional approaches, such as random chemical reactions or reversible protein binding, and offers a versatile tool for the field of immunosensors.

  7. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{supmore » 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.« less

  8. Comparative study of Factor Xa fluorogenic substrates and their influence on the quantification of LMWHs.

    PubMed

    Castro-López, Vanessa; Harris, Leanne F; O'Donnell, James S; Killard, Anthony J

    2011-01-01

    Low molecular weight heparins (LMWHs) are recognised as the preferred anticoagulants in the prevention and treatment of venous thromboembolism. Anti-Factor Xa (anti-FXa) levels are used to monitor the anticoagulant effect of LMWHs and such assays are routinely employed in hospital diagnostic laboratories. In this study, a fluorogenic anti-FXa assay was developed using a commercially available fluorogenic substrate with an attached 6-amino-1-naphthalene-sulfonamide (ANSN) fluorophore and was used for the determination of two LMWHs, enoxaparin and tinzaparin and the heparinoid, danaparoid. The assay was based on the complexation of heparinised plasma with 100 nM exogenous FXa and 25 μM of the fluorogenic substrate Mes-D-LGR-ANSN (C(2)H(5))(2) (SN-7). The assay was tested with pooled plasma samples spiked with anticoagulant concentrations in the range 0-1.6 U mL(-1). The statistically sensitive assay range was 0-0.4 U mL(-1) for enoxaparin and tinzaparin and 0-0.2 U mL(-1) for danaparoid, with assay variation typically below 10.5%. This assay was then compared with a previously published fluorogenic anti-FXa assay developed with the peptide substrate, methylsulfonyl-D: -cyclohexylalanyl-glycyl-arginine-7-amino-4-methylcoumarin acetate (Pefafluor FXa). Both assays were compared in terms of fluorescence intensity, lag times and sensitivity to anticoagulants.

  9. Developing an Anti-Xa-Based Anticoagulation Protocol for Patients with Percutaneous Ventricular Assist Devices.

    PubMed

    Sieg, Adam; Mardis, B Andrew; Mardis, Caitlin R; Huber, Michelle R; New, James P; Meadows, Holly B; Cook, Jennifer L; Toole, J Matthew; Uber, Walter E

    2015-01-01

    Because of the complexities associated with anticoagulation in temporary percutaneous ventricular assist device (pVAD) recipients, a lack of standardization exists in their management. This retrospective analysis evaluates current anticoagulation practices at a single center with the aim of identifying an optimal anticoagulation strategy and protocol. Patients were divided into two cohorts based on pVAD implanted (CentriMag (Thoratec; Pleasanton, CA) / TandemHeart (CardiacAssist; Pittsburgh, PA) or Impella (Abiomed, Danvers, MA)), with each group individually analyzed for bleeding and thrombotic complications. Patients in the CentriMag/TandemHeart cohort were subdivided based on the anticoagulation monitoring strategy (activated partial thromboplastin time (aPTT) or antifactor Xa unfractionated heparin (anti-Xa) values). In the CentriMag/TandemHeart cohort, there were five patients with anticoagulation titrated based on anti-Xa values; one patient developed a device thrombosis and a major bleed, whereas another patient experienced major bleeding. Eight patients received an Impella pVAD. Seven total major bleeds in three patients and no thrombotic events were detected. Based on distinct differences between the devices, anti-Xa values, and outcomes, two protocols were created to guide anticoagulation adjustments. However, anticoagulation in patients who require pVAD support is complex with constantly evolving anticoagulation goals. The ideal level of anticoagulation should be individually determined using several coagulation laboratory parameters in concert with hemodynamic changes in the patient's clinical status, the device, and the device cannulation.

  10. LTRs of Endogenous Retroviruses as a Source of Tbx6 Binding Sites.

    PubMed

    Yasuhiko, Yukuto; Hirabayashi, Yoko; Ono, Ryuichi

    2017-01-01

    Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C, and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box TFs. Moreover, by comparing gene expression between control mice (Tbx6 +/-) and Tbx6-deficient mice (Tbx6 -/-), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1 , and Nfxl1 , are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis.

  11. Single-molecule DNA unzipping reveals asymmetric modulation of a transcription factor by its binding site sequence and context

    PubMed Central

    Rudnizky, Sergei; Khamis, Hadeel; Malik, Omri; Squires, Allison H; Meller, Amit; Melamed, Philippa

    2018-01-01

    Abstract Most functional transcription factor (TF) binding sites deviate from their ‘consensus’ recognition motif, although their sites and flanking sequences are often conserved across species. Here, we used single-molecule DNA unzipping with optical tweezers to study how Egr-1, a TF harboring three zinc fingers (ZF1, ZF2 and ZF3), is modulated by the sequence and context of its functional sites in the Lhb gene promoter. We find that both the core 9 bp bound to Egr-1 in each of the sites, and the base pairs flanking them, modulate the affinity and structure of the protein–DNA complex. The effect of the flanking sequences is asymmetric, with a stronger effect for the sequence flanking ZF3. Characterization of the dissociation time of Egr-1 revealed that a local, mechanical perturbation of the interactions of ZF3 destabilizes the complex more effectively than a perturbation of the ZF1 interactions. Our results reveal a novel role for ZF3 in the interaction of Egr-1 with other proteins and the DNA, providing insight on the regulation of Lhb and other genes by Egr-1. Moreover, our findings reveal the potential of small changes in DNA sequence to alter transcriptional regulation, and may shed light on the organization of regulatory elements at promoters. PMID:29253225

  12. An interferon regulatory factor binding site in the U5 region of the bovine leukemia virus long terminal repeat stimulates Tax-independent gene expression.

    PubMed

    Kiermer, V; Van Lint, C; Briclet, D; Vanhulle, C; Kettmann, R; Verdin, E; Burny, A; Droogmans, L

    1998-07-01

    Bovine leukemia virus (BLV) replication is controlled by both cis- and trans-acting elements. The virus-encoded transactivator, Tax, is necessary for efficient transcription from the BLV promoter, although it is not present during the early stages of infection. Therefore, sequences that control Tax-independent transcription must play an important role in the initiation of viral gene expression. This study demonstrates that the R-U5 sequence of BLV stimulates Tax-independent reporter gene expression directed by the BLV promoter. R-U5 was also stimulatory when inserted immediately downstream from the transcription initiation site of a heterologous promoter. Progressive deletion analysis of this region revealed that a 46-bp element corresponding to the 5' half of U5 is principally responsible for the stimulation. This element exhibited enhancer activity when inserted upstream or downstream from the herpes simplex virus thymidine kinase promoter. This enhancer contains a binding site for the interferon regulatory factors IRF-1 and IRF-2. A 3-bp mutation that destroys the IRF recognition site caused a twofold decrease in Tax-independent BLV long terminal repeat-driven gene expression. These observations suggest that the IRF binding site in the U5 region of BLV plays a role in the initiation of virus replication.

  13. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  14. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding sitemore » has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.« less

  15. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature.

    PubMed

    Cohen, Stephen P; Liu, Hongxia; Argueso, Cristiana T; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie; Leach, Jan E

    2017-01-01

    Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic

  16. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature

    PubMed Central

    Argueso, Cristiana T.; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie

    2017-01-01

    Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic

  17. Concentration-Dependent Multiple Binding Sites on Saliva-Treated Hydroxyapatite for Streptococcus sanguis

    PubMed Central

    Gibbons, R. J.; Moreno, E. C.; Etherden, I.

    1983-01-01

    The influence of bacterial cell concentration on estimates of the number of binding sites and the affinity for the adsorption of a strain of Streptococcus sanguis to saliva-treated hydroxyapatite was determined, and the possible presence of multiple binding sites for this organism was tested. The range of concentrations of available bacteria varied from 4.7 × 106 to 5,960 × 106 cells per ml. The numbers of adsorbed bacteria increased over the entire range tested, but a suggestion of a break in an otherwise smooth adsorption isotherm was evident. Values for the number of binding sites and the affinity varied considerably depending upon the range of available bacterial concentrations used to estimate them; high correlation coefficients were obtained in all cases. The use of low bacterial cell concentrations yielded lower values for the number of sites and much higher values for the affinity constant than did the use of high bacterial cell concentrations. When data covering the entire range of bacterial concentrations were employed, values for the number of sites and the affinity were similar to those obtained by using only high bacterial cell concentrations. The simplest explanation for these results is that there are multiple binding sites for S. sanguis on saliva-treated hydroxyapatite surfaces. When present in low concentration, the streptococci evidently attach to more specific high-affinity sites which become saturated when higher bacterial concentrations are employed. The possibility of multiple binding sites was substantiated by comparing estimates of the adsorption parameters from a computer-simulated isotherm with those derived from the experimentally generated isotherm. A mathematical model describing bacterial adsorption to binary binding sites was further evidence for the existence of at least two classes of binding sites for S. sanguis. Far fewer streptococci adsorbed to experimental pellicles prepared from saliva depleted of bacterial aggregating

  18. Residual Enoxaparin Activity, Anti-Xa Levels, and Concerns About the American Society of Regional Anesthesia and Pain Medicine Anticoagulation Guidelines.

    PubMed

    Henshaw, Daryl S; Turner, James D; Forest, Daniel J; Thompson, Garrett R; Weller, Robert S

    Currently, the American Society of Regional Anesthesia and Pain Medicine (ASRA) anticoagulation guidelines recommend that before the performance of a neuraxial procedure a minimum of 24 hours should elapse following a treatment dose of enoxaparin (1 mg/kg twice daily or 1.5 mg/kg once daily). The guidelines have since their inception also consistently recommended against the routine use of anti-Xa level monitoring for patients receiving enoxaparin. However, we noted in our clinical practice that anti-Xa levels were frequently still elevated despite patients meeting the time-based recommendation for treatment dose enoxaparin. To further investigate the possibility that residual anticoagulant activity may persist longer than 24 hours after a treatment dose of enoxaparin, we assessed anti-Xa level activity in patients presenting for elective surgery. Despite nearly universal compliance with ASRA's anticoagulation guidelines (1 sample was drawn at 23.25 hours), anti-Xa activity was found to be elevated in 11 of 19 patients. While 10 patients had an anti-Xa level within the peak prophylactic range (0.2-0.5 IU/mL), 1 patient's level was found to still be in the peak therapeutic range (0.5-1.0 IU/mL). These findings suggest that significant anticoagulant activity may persist longer than previously appreciated after the last treatment dose of enoxaparin and that the current time-based ASRA recommendation may not be conservative enough. Further research is needed to delineate the level of anti-Xa activity below which it is likely safe to proceed with a neuraxial procedure, but it may be time to reconsider the utility of anti-Xa level monitoring when it is available.

  19. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor

    PubMed Central

    Spurny, Radovan; Debaveye, Sarah; Farinha, Ana; Veys, Ken; Vos, Ann M.; Gossas, Thomas; Atack, John; Bertrand, Sonia; Bertrand, Daniel; Danielson, U. Helena; Tresadern, Gary; Ulens, Chris

    2015-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential. PMID:25918415

  20. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors.

    PubMed

    Plass, Mireya; Rasmussen, Simon H; Krogh, Anders

    2017-04-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3'UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing "free" target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer of

  1. Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2.

    PubMed

    Yasuhiko, Yukuto; Kitajima, Satoshi; Takahashi, Yu; Oginuma, Masayuki; Kagiwada, Harumi; Kanno, Jun; Saga, Yumiko

    2008-11-01

    The T-box transcription factor Tbx6 controls the expression of Mesp2, which encodes a basic helix-loop-helix transcription factor that has crucial roles in somitogenesis. In cultured cells, Tbx6 binding to the Mesp2 enhancer region is essential for the activation of Mesp2 by Notch signaling. However, it is not known whether this binding is required in vivo. Here we report that an Mesp2 enhancer knockout mouse bearing mutations in two crucial Tbx6 binding sites does not express Mesp2 in the presomitic mesoderm. This absence leads to impaired skeletal segmentation identical to that reported for Mesp2-null mice, indicating that these Tbx6 binding sites are indispensable for Mesp2 expression. T-box binding to the consensus sequences in the Mesp2 upstream region was confirmed by chromatin immunoprecipitation assays. Further enhancer analyses indicated that the number and spatial organization of the T-box binding sites are critical for initiating Mesp2 transcription via Notch signaling. We also generated a knock-in mouse in which the endogenous Mesp2 enhancer was replaced by the core enhancer of medaka mespb, an ortholog of mouse Mesp2. The homozygous enhancer knock-in mouse was viable and showed normal skeletal segmentation, indicating that the medaka mespb enhancer functionally replaced the mouse Mesp2 enhancer. These results demonstrate that there is significant evolutionary conservation of Mesp regulatory mechanisms between fish and mice.

  2. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    PubMed Central

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  3. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.).

    PubMed Central

    Garris, Amanda J; McCouch, Susan R; Kresovich, Stephen

    2003-01-01

    To assess the usefulness of linkage disequilibrium mapping in an autogamous, domesticated species, we have characterized linkage disequilibrium in the candidate region for xa5, a recessive gene conferring race-specific resistance to bacterial blight in rice. This trait and locus have good mapping information, a tractable phenotype, and available sequence data, but no cloned gene. We sampled 13 short segments from the 70-kb candidate region in 114 accessions of Oryza sativa. Five additional segments were sequenced from the adjacent 45-kb region in resistant accessions to estimate the distance at which linkage disequilibrium decays. The data show significant linkage disequilibrium between sites 100 kb apart. The presence of the xa5 resistant reaction in two ecotypes and in accessions with different haplotypes in the candidate region may indicate multiple origins or genetic heterogeneity for resistance. In addition, genetic differentiation between ecotypes emphasizes the need for controlling for population structure in the design of linkage disequilibrium studies in rice. PMID:14573486

  4. The Dual Regulatory Role of Amino Acids Leu480 and Gln481 of Prothrombin*

    PubMed Central

    Wiencek, Joesph R.; Hirbawi, Jamila; Yee, Vivien C.; Kalafatis, Michael

    2016-01-01

    Prothrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473–487 of FII). rFII molecules bearing overlapping deletions within this significant region first established the minimal stretch of amino acids required for the fVa-dependent recognition exosite for fXa in prothrombinase within the amino acid sequence Ser478–Val479–Leu480–Gln481–Val482. Single, double, and triple point mutations within this stretch of rFII allowed for the identification of Leu480 and Gln481 as the two essential amino acids responsible for the enhanced activation of FII by prothrombinase. Unanticipated results demonstrated that although recombinant wild type α-thrombin and rIIaS478A were able to induce clotting and activate factor V and factor VIII with rates similar to the plasma-derived molecule, rIIaSLQ→AAA with mutations S478A/L480A/Q481A was deficient in clotting activity and unable to efficiently activate the pro-cofactors. This molecule was also impaired in protein C activation. Similar results were obtained with rIIaΔSLQ (where rIIaΔSLQ is recombinant human α-thrombin with amino acids Ser478/Leu480/Gln481 deleted). These data provide new evidence demonstrating that amino acid sequence Leu480–Gln481: 1) is crucial for proper recognition of the fVa-dependent site(s) for fXa within prothrombinase on FII, required for efficient initial cleavage of FII at Arg320; and 2) is compulsory for appropriate tethering of fV, fVIII, and protein C required for their timely activation by IIa. PMID:26601957

  5. Preorganization of molecular binding sites in designed diiron proteins.

    PubMed

    Maglio, Ornella; Nastri, Flavia; Pavone, Vincenzo; Lombardi, Angela; DeGrado, William F

    2003-04-01

    De novo protein design provides an attractive approach to critically test the features that are required for metalloprotein structure and function. Previously we designed and crystallographically characterized an idealized dimeric model for the four-helix bundle class of diiron and dimanganese proteins [Dueferri 1 (DF1)]. Although the protein bound metal ions in the expected manner, access to its active site was blocked by large bulky hydrophobic residues. Subsequently, a substrate-access channel was introduced proximal to the metal-binding center, resulting in a protein with properties more closely resembling those of natural enzymes. Here we delineate the energetic and structural consequences associated with the introduction of these binding sites. To determine the extent to which the binding site was preorganized in the absence of metal ions, the apo structure of DF1 in solution was solved by NMR and compared with the crystal structure of the di-Zn(II) derivative. The overall fold of the apo protein was highly similar to that of the di-Zn(II) derivative, although there was a rotation of one of the helices. We also examined the thermodynamic consequences associated with building a small molecule-binding site within the protein. The protein exists in an equilibrium between folded dimers and unfolded monomers. DF1 is a highly stable protein (K(diss) = 0.001 fM), but the dissociation constant increases to 0.6 nM (deltadeltaG = 5.4 kcalmol monomer) as the active-site cavity is increased to accommodate small molecules.

  6. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.

  7. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  8. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  9. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins

    PubMed Central

    Sitar, Tomasz; Popowicz, Grzegorz M.; Siwanowicz, Igor; Huber, Robert; Holak, Tad A.

    2006-01-01

    Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1. PMID:16924115

  10. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-05

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site.

  11. Inactivation by Phenylglyoxal of the Specific Binding of 1-Naphthyl Acetic Acid with Membrane-Bound Auxin Binding Sites from Maize Coleoptiles

    PubMed Central

    Navé, Jean-François; Benveniste, Pierre

    1984-01-01

    The specific binding of 1-[3H]naphthyl acetic acid (NAA) to membrane-bound binding sites from maize (Zea mays cv INRA 258) coleoptiles is inactivated by phenylglyoxal. The inactivation obeys pseudo first-order kinetics. The rate of inactivation is proportional to phenylglyoxal concentration. Under conditions at which significant binding occurs, NAA, R and S-1-naphthyl 2-propionic acids protect the auxin binding site against inactivation by phenylglyoxal. Scatchard analysis shows that the inhibition of binding corresponds to a decrease in the concentration of sites but not in the affinity. The results of the present chemical modification study indicate that at least one arginyl residue is involved in the positively charged recognition site of the carboxylate anion of NAA. PMID:16663499

  12. The bZIP dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site

    PubMed Central

    Chan, I-San; Al-Sarraj, Taufik; Shahravan, S. Hesam; Fedorova, Anna V.; Shin, Jumi A.

    2012-01-01

    Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4-bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR), and that 5H-LR comprises two 4-bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explored how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP–DNA interactions at a number of full-sites that contain 5H-LR vs. either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo. PMID:22856882

  13. The bZIP dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site.

    PubMed

    Chan, I-San; Al-Sarraj, Taufik; Shahravan, S Hesam; Fedorova, Anna V; Shin, Jumi A

    2012-08-21

    Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4 bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR) and that 5H-LR comprises two 4 bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explore how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP-DNA interactions at a number of full-sites that contain 5H-LR versus either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo.

  14. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed Central

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation. PMID:9062372

  15. [Adenylate cyclase from rabbit heart: substrate binding site].

    PubMed

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  16. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  17. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    PubMed

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. LTRs of Endogenous Retroviruses as a Source of Tbx6 Binding Sites

    PubMed Central

    Yasuhiko, Yukuto; Hirabayashi, Yoko; Ono, Ryuichi

    2017-01-01

    Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C, and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box TFs. Moreover, by comparing gene expression between control mice (Tbx6 +/−) and Tbx6-deficient mice (Tbx6 −/−), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1, and Nfxl1, are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis. PMID:28664156

  19. sc-PDB: a 3D-database of ligandable binding sites--10 years on.

    PubMed

    Desaphy, Jérémy; Bret, Guillaume; Rognan, Didier; Kellenberger, Esther

    2015-01-01

    The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein ismore » designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.« less

  1. Inhibition of coagulation proteases Xa and IIa decreases ischemia-reperfusion injuries in a preclinical renal transplantation model.

    PubMed

    Tillet, Solenne; Giraud, Sébastien; Kerforne, Thomas; Saint-Yves, Thibaut; Joffrion, Sandrine; Goujon, Jean-Michel; Cau, Jerôme; Mauco, Gérard; Petitou, Maurice; Hauet, Thierry

    2016-12-01

    Coagulation is an important pathway in the pathophysiology of ischemia-reperfusion injuries. In particular, deceased after circulatory death (DCD) donors undergo a no-flow period, a strong activator of coagulation. Hence, therapies influencing the coagulation cascade must be developed. We evaluated the effect of a new highly specific and effective anti-Xa/IIa molecule, with an integrated innovative antidote site (EP217609), in a porcine preclinical model mimicking injuries observed in DCD donor kidney transplantation. Kidneys were clamped for 60 minutes (warm ischemia), then flushed and preserved for 24 hours at 4°C in University of Wisconsin (UW) solution (supplemented or not). EP217609-supplemented UW solution (UW-EP), compared with unfractionated heparin-supplemented UW solution (UW-UFH) or UW alone (UW). A mechanistic investigation was conducted in vitro: addition of EP217609 to endothelial cells during hypoxia at 4°C in the UW solution inhibited thrombin generation during reoxygenation at 37°C in human plasma and reduced tumor necrosis factor alpha, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 messenger RNA cell expressions. In vivo, function recovery was markedly improved in the UW-EP group. Interestingly, levels of thrombin-antithrombin complexes (reflecting thrombin generation) were reduced 60 minutes after reperfusion in the UW-EP group. In addition, 3 months after transplantation, lower fibrosis, epithelial-mesenchymal transition, inflammation, and leukocyte infiltration were observed. Using this new dual anticoagulant, anti-Xa/IIa activity during kidney flush and preservation is protected by reducing thrombin generation at revascularization, improving early function recovery, and decreasing chronic lesions. Such an easy-to-deploy clinical strategy could improve marginal graft outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. DNA hypomethylation of a transcription factor binding site within the promoter of a gout risk gene NRBP1 upregulates its expression by inhibition of TFAP2A binding.

    PubMed

    Zhu, Zaihua; Meng, Weida; Liu, Peiru; Zhu, Xiaoxia; Liu, Yun; Zou, Hejian

    2017-01-01

    Genome-wide association studies (GWASs) have identified dozens of loci associated with gout, but for most cases, the risk genes and the underlying molecular mechanisms contributing to these associations are unknown. This study sought to understand the molecular mechanism of a common genetic variant, rs780093, in the development of gout, both in vitro and in vivo. Nuclear receptor binding protein 1 ( NRBP1 ), as a gout risk gene, and its regulatory region, 72 bp upstream of the transcription start site, designated as B1, were identified through integrative analyses of genome-wide genotype and DNA methylation data. We observed elevated NRBP1 expression in human peripheral blood mononuclear cells (PBMCs) from gout patients. In vitro luciferase reporter and protein pulldown assay results showed that DNA methylation could increase the binding of the transcription factor TFAP2A to B1, leading to suppressed gene expression. There results were further confirmed by in vivo bisulfite pyrosequencing showing that hypomethylation on B1 is associated with increased NRBP1 expression in gout patients. Hypomethylation at the promoter region of NRBP1 reduces the binding of TFAP2A and thus leads to elevated NRBP1 expression, which might contribute to the development of gout.

  3. Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†

    PubMed Central

    Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald

    2009-01-01

    A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129

  4. Common Anesthetic-binding Site for Inhibition of Pentameric Ligand-gated Ion Channels.

    PubMed

    Kinde, Monica N; Bu, Weiming; Chen, Qiang; Xu, Yan; Eckenhoff, Roderic G; Tang, Pei

    2016-03-01

    Identifying functionally relevant anesthetic-binding sites in pentameric ligand-gated ion channels (pLGICs) is an important step toward understanding the molecular mechanisms underlying anesthetic action. The anesthetic propofol is known to inhibit cation-conducting pLGICs, including a prokaryotic pLGIC from Erwinia chrysanthemi (ELIC), but the sites responsible for functional inhibition remain undetermined. We photolabeled ELIC with a light-activated derivative of propofol (AziPm) and performed fluorine-19 nuclear magnetic resonance experiments to support propofol binding to a transmembrane domain (TMD) intrasubunit pocket. To differentiate sites responsible for propofol inhibition from those that are functionally irrelevant, we made an ELIC-γ-aminobutyric acid receptor (GABAAR) chimera that replaced the ELIC-TMD with the α1β3GABAAR-TMD and compared functional responses of ELIC-GABAAR and ELIC with propofol modulations. Photolabeling showed multiple AziPm-binding sites in the extracellular domain (ECD) but only one site in the TMD with labeled residues M265 and F308 in the resting state of ELIC. Notably, this TMD site is an intrasubunit pocket that overlaps with binding sites for anesthetics, including propofol, found previously in other pLGICs. Fluorine-19 nuclear magnetic resonance experiments supported propofol binding to this TMD intrasubunit pocket only in the absence of agonist. Functional measurements of ELIC-GABAAR showed propofol potentiation of the agonist-elicited current instead of inhibition observed on ELIC. The distinctly different responses of ELIC and ELIC-GABAAR to propofol support the functional relevance of propofol binding to the TMD. Combining the newly identified TMD intrasubunit pocket in ELIC with equivalent TMD anesthetic sites found previously in other cationic pLGICs, we propose this TMD pocket as a common site for anesthetic inhibition of pLGICs.

  5. Fold independent structural comparisons of protein-ligand binding sites for exploring functional relationships.

    PubMed

    Gold, Nicola D; Jackson, Richard M

    2006-02-03

    The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.

  6. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    PubMed Central

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  7. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    PubMed

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  8. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    PubMed

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  9. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    PubMed

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.

    PubMed

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J

    2011-04-27

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.

  12. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.

  13. Highly accessible AU-rich regions in 3’ untranslated regions are hotspots for binding of regulatory factors

    PubMed Central

    2017-01-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3’UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing “free” target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer

  14. Identification of an allosteric binding site for RORγt inhibition

    PubMed Central

    Scheepstra, Marcel; Leysen, Seppe; van Almen, Geert C.; Miller, J. Richard; Piesvaux, Jennifer; Kutilek, Victoria; van Eenennaam, Hans; Zhang, Hongjun; Barr, Kenneth; Nagpal, Sunil; Soisson, Stephen M.; Kornienko, Maria; Wiley, Kristen; Elsen, Nathaniel; Sharma, Sujata; Correll, Craig C.; Trotter, B. Wesley; van der Stelt, Mario; Oubrie, Arthur; Ottmann, Christian; Parthasarathy, Gopal; Brunsveld, Luc

    2015-01-01

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors. PMID:26640126

  15. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    PubMed

    Horton, R W; Lowther, S; Chivers, J; Jenner, P; Marsden, C D; Testa, B

    1988-08-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites. 8. Clebopride and Delagrange 2674 are structurally dissimilar to other BDZ ligands and represent another chemical structure to probe brain BDZ binding sites.

  16. n-Dodecyl β-D-maltoside specifically competes with general anesthetics for anesthetic binding sites.

    PubMed

    Xu, Longhe; Matsunaga, Felipe; Xi, Jin; Li, Min; Ma, Jingyuan; Liu, Renyu

    2014-01-01

    We recently demonstrated that the anionic detergent sodium dodecyl sulfate (SDS) specifically interacts with the anesthetic binding site in horse spleen apoferritin, a soluble protein which models anesthetic binding sites in receptors. This raises the possibility of other detergents similarly interacting with and occluding such sites from anesthetics, thereby preventing the proper identification of novel anesthetic binding sites. n-Dodecyl β-D-maltoside (DDM) is a non-ionic detergent commonly used during protein-anesthetic studies because of its mild and non-denaturing properties. In this study, we demonstrate that SDS and DDM occupy anesthetic binding sites in the model proteins human serum albumin (HSA) and horse spleen apoferritin and thereby inhibit the binding of the general anesthetics propofol and isoflurane. DDM specifically interacts with HSA (Kd = 40 μM) with a lower affinity than SDS (Kd = 2 μM). DDM exerts all these effects while not perturbing the native structures of either model protein. Computational calculations corroborated the experimental results by demonstrating that the binding sites for DDM and both anesthetics on the model proteins overlapped. Collectively, our results indicate that DDM and SDS specifically interact with anesthetic binding sites and may thus prevent the identification of novel anesthetic sites. Special precaution should be taken when undertaking and interpreting results from protein-anesthetic investigations utilizing detergents like SDS and DDM.

  17. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  18. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door".

    PubMed

    Simon, S; Le Goff, A; Frobert, Y; Grassi, J; Massoulié, J

    1999-09-24

    We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.

  19. Evaluation of the Significance of Starch Surface Binding Sites on Human Pancreatic α-Amylase.

    PubMed

    Zhang, Xiaohua; Caner, Sami; Kwan, Emily; Li, Chunmin; Brayer, Gary D; Withers, Stephen G

    2016-11-01

    Starch provides the major source of caloric intake in many diets. Cleavage of starch into malto-oligosaccharides in the gut is catalyzed by pancreatic α-amylase. These oligosaccharides are then further cleaved by gut wall α-glucosidases to release glucose, which is absorbed into the bloodstream. Potential surface binding sites for starch on the pancreatic amylase, distinct from the active site of the amylase, have been identified through X-ray crystallographic analyses. The role of these sites in the degradation of both starch granules and soluble starch was probed by the generation of a series of surface variants modified at each site to disrupt binding. Kinetic analysis of the binding and/or cleavage of substrates ranging from simple maltotriosides to soluble starch and insoluble starch granules has allowed evaluation of the potential role of each such surface site. In this way, two key surface binding sites, on the same face as the active site, are identified. One site, containing a pair of aromatic residues, is responsible for attachment to starch granules, while a second site featuring a tryptophan residue around which a malto-oligosaccharide wraps is shown to heavily influence soluble starch binding and hydrolysis. These studies provide insights into the mechanisms by which enzymes tackle the degradation of largely insoluble polymers and also present some new approaches to the interrogation of the binding sites involved.

  20. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor

    PubMed Central

    Frost, Charles E; Byon, Wonkyung; Song, Yan; Wang, Jessie; Schuster, Alan E; Boyd, Rebecca A; Zhang, Donglu; Yu, Zhigang; Dias, Clapton; Shenker, Andrew; LaCreta, Frank

    2015-01-01

    Aim Apixaban is an orally active inhibitor of coagulation factor Xa and is eliminated by multiple pathways, including renal and non-renal elimination. Non-renal elimination pathways consist of metabolism by cytochrome P450 (CYP) enzymes, primarily CYP3A4, as well as direct intestinal excretion. Two single sequence studies evaluated the effect of ketoconazole (a strong dual inhibitor of CYP3A4 and P-glycoprotein [P-gp]) and diltiazem (a moderate CYP3A4 inhibitor and a P-gp inhibitor) on apixaban pharmacokinetics in healthy subjects. Method In the ketoconazole study, 18 subjects received apixaban 10 mg on days 1 and 7, and ketoconazole 400 mg once daily on days 4–9. In the diltiazem study, 18 subjects received apixaban 10 mg on days 1 and 11 and diltiazem 360 mg once daily on days 4–13. Results Apixaban maximum plasma concentration and area under the plasma concentration–time curve extrapolated to infinity increased by 62% (90% confidence interval [CI], 47, 78%) and 99% (90% CI, 81, 118%), respectively, with co-administration of ketoconazole, and by 31% (90% CI, 16, 49%) and 40% (90% CI, 23, 59%), respectively, with diltiazem. Conclusion A 2-fold and 1.4-fold increase in apixaban exposure was observed with co-administration of ketoconazole and diltiazem, respectively. PMID:25377242

  1. Sequence characterization of S100A8 gene reveals structural differences of protein and transcriptional factor binding sites in water buffalo and yak.

    PubMed

    Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K

    2011-01-01

    The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC

  2. Study of DNA binding sites using the Rényi parametric entropy measure.

    PubMed

    Krishnamachari, A; moy Mandal, Vijnan; Karmeshu

    2004-04-07

    Shannon's definition of uncertainty or surprisal has been applied extensively to measure the information content of aligned DNA sequences and characterizing DNA binding sites. In contrast to Shannon's uncertainty, this study investigates the applicability and suitability of a parametric uncertainty measure due to Rényi. It is observed that this measure also provides results in agreement with Shannon's measure, pointing to its utility in analysing DNA binding site region. For facilitating the comparison between these uncertainty measures, a dimensionless quantity called "redundancy" has been employed. It is found that Rényi's measure at low parameter values possess a better delineating feature of binding sites (of binding regions) than Shannon's measure. The critical value of the parameter is chosen with an outlier criterion.

  3. Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites.

    PubMed

    Kamalakaran, Sitharthan; Radhakrishnan, Senthil K; Beck, William T

    2005-06-03

    We developed a pipeline to identify novel genes regulated by the steroid hormone-dependent transcription factor, estrogen receptor, through a systematic analysis of upstream regions of all human and mouse genes. We built a data base of putative promoter regions for 23,077 human and 19,984 mouse transcripts from National Center for Biotechnology Information annotation and 8793 human and 6785 mouse promoters from the Data Base of Transcriptional Start Sites. We used this data base of putative promoters to identify potential targets of estrogen receptor by identifying estrogen response elements (EREs) in their promoters. Our program correctly identified EREs in genes known to be regulated by estrogen in addition to several new genes whose putative promoters contained EREs. We validated six genes (KIAA1243, NRIP1, MADH9, NME3, TPD52L, and ABCG2) to be estrogen-responsive in MCF7 cells using reverse transcription PCR. To allow for extensibility of our program in identifying targets of other transcription factors, we have built a Web interface to access our data base and programs. Our Web-based program for Promoter Analysis of Genome, PAGen@UIC, allows a user to identify putative target genes for vertebrate transcription factors through the analysis of their upstream sequences. The interface allows the user to search the human and mouse promoter data bases for potential target genes containing one or more listed transcription factor binding sites (TFBSs) in their upstream elements, using either regular expression-based consensus or position weight matrices. The data base can also be searched for promoters harboring user-defined TFBSs given as a consensus or a position weight matrix. Furthermore, the user can retrieve putative promoter sequences for any given gene together with identified TFBSs located on its promoter. Orthologous promoters are also analyzed to determine conserved elements.

  4. SITEHOUND-web: a server for ligand binding site identification in protein structures.

    PubMed

    Hernandez, Marylens; Ghersi, Dario; Sanchez, Roberto

    2009-07-01

    SITEHOUND-web (http://sitehound.sanchezlab.org) is a binding-site identification server powered by the SITEHOUND program. Given a protein structure in PDB format SITEHOUND-web will identify regions of the protein characterized by favorable interactions with a probe molecule. These regions correspond to putative ligand binding sites. Depending on the probe used in the calculation, sites with preference for different ligands will be identified. Currently, a carbon probe for identification of binding sites for drug-like molecules, and a phosphate probe for phosphorylated ligands (ATP, phoshopeptides, etc.) have been implemented. SITEHOUND-web will display the results in HTML pages including an interactive 3D representation of the protein structure and the putative sites using the Jmol java applet. Various downloadable data files are also provided for offline data analysis.

  5. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites

    PubMed Central

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J.

    2011-01-01

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear (31P and 1H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study. PMID:21516167

  6. Mass Spectrometric Determination of ILPR G-quadruplex Binding Sites in Insulin and IGF-2

    PubMed Central

    Xiao, JunFeng

    2009-01-01

    The insulin-linked polymorphic region (ILPR) of the human insulin gene promoter region forms G-quadruplex structures in vitro. Previous studies show that insulin and insulin-like growth factor-2 (IGF-2) exhibit high affinity binding in vitro to 2-repeat sequences of ILPR variants a and h, but negligible binding to variant i. Two-repeat sequences of variants a and h form intramolecular G-quadruplex structures that are not evidenced for variant i. Here we report on the use of protein digestion combined with affinity capture and MALDI-MS detection to pinpoint ILPR binding sites in insulin and IGF-2. Peptides captured by ILPR variants a and h were sequenced by MALDI-MS/MS, LC-MS and in silico digestion. On-bead digestion of insulin-ILPR variant a complexes supported the conclusions. The results indicate that the sequence VCG(N)RGF is generally present in the captured peptides and is likely involved in the affinity binding interactions of the proteins with the ILPR G-quadruplexes. The significance of arginine in the interactions was studied by comparing the affinities of synthesized peptides VCGERGF and VCGEAGF with ILPR variant a. Peptides from other regions of the proteins that are connected through disulfide linkages were also detected in some capture experiments. Identification of binding sites could facilitate design of DNA binding ligands for capture and detection of insulin and IGF-2. The interactions may have biological significance as well. PMID:19747845

  7. Computational investigation of cholesterol binding sites on mitochondrial VDAC.

    PubMed

    Weiser, Brian P; Salari, Reza; Eckenhoff, Roderic G; Brannigan, Grace

    2014-08-21

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20-30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel.

  8. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.

    PubMed

    Gomes, Antonio L C; Wang, Harris H

    2016-04-01

    ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.

  9. G =  MAT: linking transcription factor expression and DNA binding data.

    PubMed

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-31

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  10. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    PubMed Central

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  11. Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.

    PubMed

    André, S; Ortega, P J; Perez, M A; Roy, R; Gabius, H J

    1999-11-01

    Starburst glycodendrimers offer the potential to serve as high-affinity ligands for clinically relevant sugar receptors. In order to define areas of application, their binding behavior towards sugar receptors with differential binding-site orientation but identical monosaccharide specificity must be evaluated. Using poly(amidoamine) starburst dendrimers of five generations, which contain the p-isothiocyanato derivative of p-aminophenyl-beta-D-lactoside as ligand group, four different types of galactoside-binding proteins were chosen for this purpose, i.e., the (AB)(2)-toxic agglutinin from mistletoe, a human immunoglobulin G fraction, the homodimeric galectin-1 with its two binding sites at opposite ends of the jelly-roll-motif-harboring protein and monomeric galectin-3. Direct solid-phase assays with surface-immobilized glycodendrimers resulted in obvious affinity enhancements by progressive core branching for the plant agglutinin and less pronounced for the antibody and galectin-1. High density of binding of galectin-3 with modest affinity increases only from the level of the 32-mer onwards points to favorable protein-protein interactions of the monomeric lectin and a spherical display of the end groups without a major share of backfolding. When the inhibitory potency of these probes was evaluated as competitor of receptor binding to an immobilized neoglycoprotein or to asialofetuin, a marked selectivity was detected. The 32- and 64-mers were second to none as inhibitors for the plant agglutinin against both ligand-exposing matrices and for galectin-1 on the matrix with a heterogeneous array of interglycoside distances even on the per-sugar basis. In contrast, a neoglycoprotein with the same end group was superior in the case of the antibody and, less pronounced, monomeric galectin-3. Intimate details of topological binding-site presentation and the ligand display on different generations of core assembly are major operative factors which determine the potential

  12. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    PubMed

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. © 2016

  13. Footprinting reveals that nogalamycin and actinomycin shuffle between DNA binding sites.

    PubMed Central

    Fox, K R; Waring, M J

    1986-01-01

    The hypothesis that sequence-selective DNA-binding antibiotics locate their preferred binding sites by a process involving migration from nonspecific sites has been tested by footprinting with DNAase I. Footprinting patterns on the tyrT DNA fragment produced by nogalamycin and actinomycin change with time after mixing the antibiotic with the DNA. Sites of protection as well as enhanced cleavage are seen to develop in a fashion which is both temperature and concentration-dependent. At certain sites cutting is transiently enhanced, then blocked. Limited evidence for slow reaction with echinomycin and mithramycin is presented, but the kinetics of footprinting with daunomycin and distamycin appear instantaneous. The feasibility of adducing direct evidence for shuffling by footprinting seems to be governed by slow dissociation of the antibiotic-DNA complex. It may also be dependent upon the mode of binding, be it intercalative or non-intercalative in character. Images PMID:2421246

  14. Revealing multi-binding sites for taspine to VEGFR-2 by cell membrane chromatography zonal elution.

    PubMed

    Du, Hui; Wang, Sicen; Ren, Jing; Lv, Nan; He, Langchong

    2012-03-01

    A new high-expression vascular endothelial growth factor receptor-2 (VEGFR-2) cell membrane chromatography (CMC) method was developed to investigate the affinity of ligands for VEGFR-2. An HEK293 VEGFR-2/CMC system was applied to specifically recognize ligands acting on VEGFR-2. Sorafenib was used as a mobile phase additive to evaluate the effect of the marker's concentration on the retention of sorafenib and taspine, respectively. The relationship among the retention, the types of binding sites and the affinity of taspine binding to VEGFR-2 has also been concerned. The retention behavior indicated that sorafenib had two major binding regions on VEGFR-2, and that taspine might act as a multi-target VEGFR-2 inhibitor with similar biological activity to sorafenib. The equilibrium dissociation constants (K(D)) obtained from the model are (5.25 ± 0.31) × 10⁻⁷ and (9.88 ± 0.54) × 10⁻⁵ mol L⁻¹ for sorafenib at the high- and low-affinity sites, respectively, and the corresponding values for taspine are (3.88 ± 0.31) × 10⁻⁶ and (7.04 ± 0.49)×10⁻⁵ mol L⁻¹. The two types of binding sites contributed about a 1:2 ratio on the retention of taspine. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Pseudomonas aeruginosa AmrZ Binds to Four Sites in the algD Promoter, Inducing DNA-AmrZ Complex Formation and Transcriptional Activation.

    PubMed

    Xu, Binjie; Soukup, Randal J; Jones, Christopher J; Fishel, Richard; Wozniak, Daniel J

    2016-10-01

    During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely

  16. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  17. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  18. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less

  19. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery

    PubMed Central

    Mais, Christine; Wright, Jane E.; Prieto, José-Luis; Raggett, Samantha L.; McStay, Brian

    2005-01-01

    Human ribosomal genes (rDNA) are located in nucleolar organizer regions (NORs) on the short arms of acrocentric chromosomes. Metaphase NORs that were transcriptionally active in the previous cell cycle appear as prominent chromosomal features termed secondary constrictions that are achromatic in chromosome banding and positive in silver staining. The architectural RNA polymerase I (pol I) transcription factor UBF binds extensively across rDNA throughout the cell cycle. To determine if UBF binding underpins NOR structure, we integrated large arrays of heterologous UBF-binding sequences at ectopic sites on human chromosomes. These arrays efficiently recruit UBF even to sites outside the nucleolus and, during metaphase, form novel silver stainable secondary constrictions, termed pseudo-NORs, morphologically similar to NORs. We demonstrate for the first time that in addition to UBF the other components of the pol I machinery are found associated with sequences across the entire human rDNA repeat. Remarkably, a significant fraction of these same pol I factors are sequestered by pseudo-NORs independent of both transcription and nucleoli. Because of the heterologous nature of the sequence employed, we infer that sequestration is mediated primarily by protein–protein interactions with UBF. These results suggest that extensive binding of UBF is responsible for formation and maintenance of the secondary constriction at active NORs. Furthermore, we propose that UBF mediates recruitment of the pol I machinery to nucleoli independently of promoter elements. PMID:15598984

  20. Binding site and affinity prediction of general anesthetics to protein targets using docking.

    PubMed

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G

    2012-05-01

    The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explored whether a computational method, AutoDock, could serve as such a tool. High-resolution crystal data of water-soluble proteins (cytochrome C, apoferritin, and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus [GLIC]) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (http://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants were compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent cocrystallization data. Docking calculations for 6 general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known 50% effective concentration (EC(50)) values were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC(50) values and octanol/water partition coefficients for the 6 general anesthetics. All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (P = 0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site

  1. Binding Site and Affinity Prediction of General Anesthetics to Protein Targets Using Docking

    PubMed Central

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G.

    2012-01-01

    Background The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explore whether a computational method, AutoDock, could serve as such a tool. Methods High-resolution crystal data of water soluble proteins (cytochrome C, apoferritin and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus, GLIC) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (https://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants are compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent co-crystallization data. Docking calculations for six general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known EC50 were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC50s and octanol/water partition coefficients for the six general anesthetics. Results All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (p=0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site located in the

  2. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    PubMed Central

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  3. Transforming growth factor (TGF. beta. ) decreases the proliferation of human bone marrow fibroblasts by inhibiting the platelet-derived growth factor (PDGF) binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryckaert, M.C.; Tobelem, G.; Lindroth, M.

    1988-12-01

    Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classesmore » of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.« less

  4. A web server for analysis, comparison and prediction of protein ligand binding sites.

    PubMed

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  5. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation

    PubMed Central

    Koland, John G.

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  6. [3H]aniracetam binds to specific recognition sites in brain membranes.

    PubMed

    Fallarino, F; Genazzani, A A; Silla, S; L'Episcopo, M R; Camici, O; Corazzi, L; Nicoletti, F; Fioretti, M C

    1995-08-01

    [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4 degrees C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of approximately 70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37 degrees C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  8. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  9. Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics

    PubMed Central

    Gao, Rong

    2015-01-01

    ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501

  10. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    PubMed Central

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons. PMID:27698666

  11. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites.

    PubMed

    Irizarry, Kristopher J L; Bryden, Randall L

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus . Our results provide insight into pigment phenotypes in pythons.

  12. Specific phospholipid binding to Na,K-ATPase at two distinct sites.

    PubMed

    Habeck, Michael; Kapri-Pardes, Einat; Sharon, Michal; Karlish, Steven J D

    2017-03-14

    Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na,K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directed mutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na,K-ATPase (α 1 β 1 ). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic αL8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), αTM2 and αTM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between αTM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the α subunit (site A). PC/PE binds between αTM2, 4, 6, and 9 and accelerates the rate-limiting E 1 P-E 2 P conformational transition (site B). We discuss the potential physiological implications.

  13. Computational Investigation of Cholesterol Binding Sites on Mitochondrial VDAC

    PubMed Central

    2015-01-01

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20–30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel. PMID:25080204

  14. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.

    PubMed

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong

    2017-01-24

    poorly explored for the diversity of CcpA-mediated catabolite regulation. Here, we discovered a novel flexible CcpA-binding site architecture (cre var ) that is highly variable in both length and base composition but follows certain principles, providing new insights into how CcpA can differentially recognize a variety of target genes to form a complicated regulatory network. A comprehensive search further revealed the wide distribution of cre var sites in Gram-positive bacteria, indicating it may have a universal function. This finding is the first to characterize such a highly flexible transcription factor-binding site architecture, which would be valuable for deeper understanding of CcpA-mediated global catabolite regulation in bacteria. Copyright © 2017 Yang et al.

  15. Effect of antemortem and postmortem factors on ( sup 3 H)MK-801 binding in the human brain: Transient elevation during early childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.

    1989-01-01

    The effect of a number of antemortem and postmortem factors on ({sup 3}H)MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years ({sup 3}H)MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex.

  16. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor

    PubMed Central

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal

    2016-01-01

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  17. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2016-01-19

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding.

  18. The Electronic Behavior of Zinc-Finger Protein Binding Sites in the Context of the DNA Extended Ladder Model

    NASA Astrophysics Data System (ADS)

    Oiwa, Nestor; Cordeiro, Claudette; Heermann, Dieter

    2016-05-01

    Instead of ATCG letter alignments, typically used in bioinformatics, we propose a new alignment method using the probability distribution function of the bottom of the occupied molecular orbital (BOMO), highest occupied molecular orbital (HOMO) and lowest unoccupied orbital (LUMO). We apply the technique to transcription factors with Cys2His2 zinc fingers. These transcription factors search for binding sites, probing for the electronic patterns at the minor and major DNA groves. The eukaryotic Cys2His2 zinc finger proteins bind to DNA ubiquitously at highly conserved domains. They are responsible for gene regulation and the spatial organization of DNA. To study and understand these zinc finger DNA-protein interactions, we use the extended ladder in the DNA model proposed by Zhu, Rasmussen, Balatsky & Bishop (2007) te{Zhu-2007}. Considering one single spinless electron in each nucleotide π-orbital along a double DNA chain (dDNA), we find a typical pattern for the bottom of BOMO, HOMO and LUMO along the binding sites. We specifically looked at two members of zinc finger protein family: specificity protein 1 (SP1) and early grown response 1 transcription factors (EGR1). When the valence band is filled, we find electrons in the purines along the nucleotide sequence, compatible with the electric charges of the binding amino acids in SP1 and EGR1 zinc finger.

  19. Organizational requirements of the SaeR binding sites for a functional P1 promoter of the sae operon in Staphylococcus aureus.

    PubMed

    Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; Bae, Taeok

    2012-06-01

    In Staphylococcus aureus, the SaeRS two-component system controls the expression of multiple virulence factors. Of the two promoters in the sae operon, P1 is autoinduced and has two binding sites for the response regulator SaeR. In this study, we examined the organizational requirements of the SaeR binding sites in P1 for transcription activation. Mutational studies showed that both binding sites are essential for binding to phosphorylated SaeR (P-SaeR) and transcription activation. When the 21-bp distance between the centers of the two SaeR binding sites was altered to 26 bp, 31 bp, 36 bp, or 41 bp, only the 31-bp mutant retained approximately 40% of the original promoter activity. When the -1-bp spacing (i.e.,1-bp overlap) between the primary SaeR binding site and the -35 promoter region was altered, all mutant P1 promoters failed to initiate transcription; however, when the first nucleotide of the -35 region was changed from A to T, the mutants with 0-bp or 22-bp spacing showed detectable promoter activity. Although P-SaeR was essential for the binding of RNA polymerase to P1, it was not essential for the binding of the enzyme to the alpha-hemolysin promoter. When the nonoptimal spacing between promoter elements in P1 or the coagulase promoter was altered to the optimal spacing of 17 bp, both promoters failed to initiate transcription. These results suggest that SaeR binding sites are under rather strict organizational restrictions and provide clues for understanding the molecular mechanism of sae-mediated transcription activation.

  20. Characterization and autoradiographic localization of neurotensin binding sites in human sigmoid colon.

    PubMed

    Azriel, Y; Burcher, E

    2001-06-01

    Radioiodinated neurotensin ((125)I-NT) was used to characterize and localize NT binding sites in normal human sigmoid colon. Specimens were obtained from patients (30-77 years old) undergoing resection for colon carcinoma. Specific binding of (125)I-NT to sigmoid circular muscle membranes was enhanced by o-phenanthroline (1 mM) but other peptidase inhibitors were ineffective. (125)I-NT bound to a high-affinity site of K(d) = 0.88 +/- 0.09 nM and B(max) = 4.03 +/- 0.66 fmol/mg of wet weight tissue (n = 14), although in the majority of patients another site, of low but variable affinity, could also be detected. Specific binding of 50 pM (125)I-NT was inhibited by NT(8-13) > NT > SR142948A > or = neuromedin N > or = SR48692, consistent with binding to the NT1 receptor. In autoradiographic studies, dense specific binding of (125)I-NT was seen over myenteric and submucosal ganglia, moderate binding over circular muscle, and sparse binding over longitudinal muscle and taenia coli. Levocabastine, which has affinity for the NT2 receptor, did not inhibit specific binding of (125)I-NT in membrane competition or autoradiographic studies. NT contracted sigmoid colon circular muscle strips with a pD(2) value of 6.8 +/- 0.2 nM (n = 25). The contractile responses to NT were significantly potentiated in the presence of tetrodotoxin (1 microM), indicating a neural component. Results from functional studies support actions for NT on both muscle and enteric neurons, consistent with the presence of NT receptors on circular muscle and ganglia of human sigmoid colon. The lack of inhibition by levocabastine suggests that the second binding site detected does not correspond to the NT2 receptor.

  1. Biochemical study of prolactin binding sites in Xenopus laevis brain and choroid plexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muccioli, G.; Guardabassi, A.; Pattono, P.

    1990-03-01

    The occurrence of prolactin binding sites in some brain structures (telencephalon, ventral hypothalamus, myelencephalon, hypophysis, and choroid plexus) from Xenopus laevis (anuran amphibian) was studied by the in vitro biochemical technique. The higher binding values were obtained at the level of the choroid plexus and above all of the hypothalamus. On the bases of hormonal specificity and high affinity, these binding sites are very similar to those of prolactin receptors of classical target tissues as well as of those described by us in other structures from Xenopus. To our knowledge, the present results provide the first demonstration of the occurrencemore » of prolactin specific binding sites in Xenopus laevis choroid plexus cells.« less

  2. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Gonzalez, M.A.; Calvo, J.R.; Rubio, A.

    The characterization of specific melatonin binding sites in the Harderian gland (HG) and median eminence (ME) of the rat was studied using ({sup 125}I)melatonin. Binding of melatonin to membrane crude preparations of both tissues was dependent on time and temperature. Thus, maximal binding was obtained at 37{degree}C after 30-60 min incubation. Binding was also dependent on protein concentration. The specific binding of ({sup 125}I)melatonin was saturable, exhibiting only the class of binding sites in both tissues. The dissociation constants (Kd) were 170 and 190 pM for ME and HG, respectively. The concentration of the binding sites in ME was 8more » fmol/mg protein, and in the HG 4 fmol/mg protein. In competition studies, binding of ({sup 125}I)melatonin to ME or HG was inhibited by increasing concentration of native melatonin; 50% inhibition was observed at about 702 and 422 nM for ME and HG, respectively. Additionally, the ({sup 125}I)melatonin binding to the crude membranes was not affected by the addition of different drugs such as norepinephrine, isoproterenol, phenylephrine, propranolol, or prazosin. The results confirm the presence of melatonin binding sites in median eminence and show, for the first time, the existence of melatonin binding sites in the Harderian gland.« less

  3. Deletion of transcription factor binding motifs using the CRISPR/spCas9 system in the β-globin LCR.

    PubMed

    Kim, Yea Woon; Kim, AeRi

    2017-07-20

    Transcription factors play roles in gene transcription through direct binding to their motifs in genome, and inhibiting this binding provides an effective strategy for studying their roles. Here we applied the CRISPR/spCas9 system to mutate the binding motifs of transcription factors. Binding motifs for erythroid specific transcription factors were mutated in the locus control region hypersensitive sites of the human β-globin locus. Guide RNAs targeting binding motifs were cloned into lentiviral CRISPR vector containing the spCas9 gene, and transduced into MEL/ch11 cells carrying a human chromosome 11. DNA mutations in clonal cells were initially screened by quantitative PCR in genomic DNA and then clarified by sequencing. Mutations in binding motifs reduced occupancy by transcription factors in a chromatin environment. Characterization of mutations revealed that the CRISPR/spCas9 system mainly induced deletions in short regions of <20 bp and preferentially deleted nucleotides around the fifth nucleotide upstream of Protospacer adjacent motifs. These results indicate that the CRISPR/Cas9 system is suitable for mutating the binding motifs of transcription factors, and, consequently, would contribute to elucidate the direct roles of transcription factors. ©2017 The Author(s).

  4. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  5. Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing

    PubMed Central

    Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav

    2007-01-01

    In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418

  6. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    PubMed

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  7. Cooperativity in Monomeric Enzymes with Single Ligand-Binding Sites

    PubMed Central

    Porter, Carol M.

    2011-01-01

    Cooperativity is widespread in biology. It empowers a variety of regulatory mechanisms and impacts both the kinetic and thermodynamic properties of macromolecular systems. Traditionally, cooperativity is viewed as requiring the participation of multiple, spatially distinct binding sites that communicate via ligand-induced structural rearrangements; however, cooperativity requires neither multiple ligand binding events nor multimeric assemblies. An underappreciated manifestation of cooperativity has been observed in the non-Michaelis-Menten kinetic response of certain monomeric enzymes that possess only a single ligand-binding site. In this review, we present an overview of kinetic cooperativity in monomeric enzymes. We discuss the primary mechanisms postulated to give rise to monomeric cooperativity and highlight modern experimental methods that could offer new insights into the nature of this phenomenon. We conclude with an updated list of single subunit enzymes that are suspected of displaying cooperativity, and a discussion of the biological significance of this unique kinetic response. PMID:22137502

  8. External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agbanyo, F.R.; Cass, C.E.; Paterson, A.R.

    1988-03-01

    Nucleoside transport in erythrocytes of various species is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to high affinity sites associated with nucleoside transport elements of the plasma membrane. The present study examined binding of (/sup 3/H)NBMPR to unsealed ghosts and to sealed right-side-out vesicles (ROVs) and inside-out vesicles (IOVs) prepared from pig erythrocytes. Kd values for NBMPR dissociation from the ligand-site complex in unsealed ghosts, ROVs and IOVs were similar (1.6-2.4 nM), and Bmax values (mean +/- SD) were, respectively, 22.2 +/- 5.5, 25.8 +/- 6.4, and 37.3 +/- 4.0 molecules/fg of protein, reflecting differences in the protein content ofmore » the membrane preparations. When temperatures were decreased from 22 degrees to 4 degrees, NBMPR binding to erythrocyte membrane preparations was reduced in IOVs relative to that in unsealed ghosts and ROVs. At 22 degrees, the association of NBMPR molecules with IOVs was slower than with ROVs and unsealed ghosts, differences that were virtually eliminated by permeabilization of the membrane preparations with saponin. Thus, the binding sites were more accessible to external NBMPR in sealed ROVs and unsealed ghosts than in sealed IOVs, indicating that the NBMPR sites are located on the extracellular aspect of the membrane.« less

  9. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  10. Analysis of zinc binding sites in protein crystal structures.

    PubMed

    Alberts, I L; Nadassy, K; Wodak, S J

    1998-08-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.

  11. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  12. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex*

    PubMed Central

    Douglas, Max E.

    2016-01-01

    Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly (“G1-like”) and high affinity recruitment when CMG assembly takes place (“S-phase-like”). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. PMID:26719337

  13. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex.

    PubMed

    Douglas, Max E; Diffley, John F X

    2016-03-11

    Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly ("G1-like") and high affinity recruitment when CMG assembly takes place ("S-phase-like"). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Does atrial natriuretic factor protect against right ventricular overload II. Tissue binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, L.C.; Yen, S.; Sardella, G.L.

    1989-10-01

    Previous studies have led us to hypothesize that the physiological significance of the diuretic and pulmonary vaso-relaxant effects of atrial natriuretic factor (ANF) is to protect the right heart. This study was designed to evaluate the relative importance of various peripheral tissues as sites of ANF action by tracing the temporal pattern of distribution of {sup 125}I-ANF and quantitating the specific binding sites. An in vivo approach, utilizing trace amount of {sup 125}I-ANF was adopted to simulate physiological conditions. {sup 125}I-ANF injected either intravenously or intra-arterially was quickly bound to peripheral tissues with less than 5% remaining in the circulationmore » after 1 min. The relative binding capacity was greatest in the lung, followed by the kidney, right ventricle, adrenal gland, and left ventricle. The magnitude of specific ANF binding sites per gram of tissue weight followed a similar order. The data demonstrate that ANF released under all circumstances is quickly bound to the target organs, particularly the lung and the kidney, and suggest that these two organs could be the most important target organs of ANF. This evidence provides further support for the proposed hypothesis that a major evolutionary role of ANF is the protection of the right ventricle from mechanical loads.« less

  15. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity.more » The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.« less

  16. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    PubMed

    Patel, Hershna; Kukol, Andreas

    2016-08-23

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.

  17. Expression and GTP sensitivity of peptide histidine isoleucine high-affinity-binding sites in rat.

    PubMed

    Debaigt, Colin; Meunier, Annie-Claire; Goursaud, Stephanie; Montoni, Alicia; Pineau, Nicolas; Couvineau, Alain; Laburthe, Marc; Muller, Jean-Marc; Janet, Thierry

    2006-07-01

    High-affinity-binding sites for the vasoactive intestinal peptide (VIP) analogs peptide histidine/isoleucine-amide (PHI)/carboxyterminal methionine instead of isoleucine (PHM) are expressed in numerous tissues in the body but the nature of their receptors remains to be elucidated. The data presented indicate that PHI discriminated a high-affinity guanosine 5'-triphosphate (GTP)-insensitive-binding subtype that represented the totality of the PHI-binding sites in newborn rat tissues but was differentially expressed in adult animals. The GTP-insensitive PHI/PHM-binding sites were also observed in CHO cells over expressing the VPAC2 but not the VPAC1 VIP receptor.

  18. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.

    PubMed

    Bruschi, Maurizio; Tiberti, Matteo; Guerra, Alessandro; De Gioia, Luca

    2014-02-05

    A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.

  19. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no furthermore » increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.« less

  20. Specific strychnine binding sites on acrosome-associated membranes of golden hamster spermatozoa.

    PubMed

    Llanos, Miguel N; Ronco, Ana M; Aguirre, María C

    2003-06-27

    This study demonstrates for the first time, that membrane vesicles originated from the hamster sperm head after the occurrence of the acrosome reaction, possess specific strychnine binding sites. [3H]Strychnine binding was saturable and reversible, being displaced by unlabeled strychnine (IC(50)=26.7+/-2.3 microM). Kinetic analysis revealed one binding site with K(d)=120nM and B(max)=142fmol/10(6) spermatozoa. Glycine receptor agonists beta-alanine and taurine inhibited strychnine binding by 20-30%. Surprisingly, glycine stimulated binding by about 40-50%. Results obtained in this study strongly suggest the presence of glycine receptors-with distinctive kinetic properties on the periacrosomal plasma membrane of hamster spermatozoa. Localization of this receptor fits well with its previously proposed role in acrosomal exocytosis during mammalian fertilization.

  1. Analysis of the interactions between GMF and Arp2/3 complex in two binding sites by molecular dynamics simulation.

    PubMed

    Popinako, A; Antonov, M; Dibrova, D; Chemeris, A; Sokolova, O S

    2018-02-05

    The Arp2/3 complex plays a key role in nucleating actin filaments branching. The glia maturation factor (GMF) competes with activators for interacting with the Arp2/3 complex and initiates the debranching of actin filaments. In this study, we performed a comparative analysis of interactions between GMF and the Arp2/3 complex and identified new amino acid residues involved in GMF binding to the Arp2/3 complex at two separate sites, revealed by X-ray and single particle EM techniques. Using molecular dynamics simulations we demonstrated the quantitative and qualitative changes in hydrogen bonds upon binding with GMF. We identified the specific amino acid residues in GMF and Arp2/3 complex that stabilize the interactions and estimated the mean force profile for the GMF using umbrella sampling. Phylogenetic and structural analyses of the recently defined GMF binding site on the Arp3 subunit indicate a new mechanism for Arp2/3 complex inactivation that involves interactions between the Arp2/3 complex and GMF at two binding sites. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Inter-species chimeras of leukaemia inhibitory factor define a major human receptor-binding determinant.

    PubMed Central

    Owczarek, C M; Layton, M J; Metcalf, D; Lock, P; Willson, T A; Gough, N M; Nicola, N A

    1993-01-01

    Human leukaemia inhibitory factor (hLIF) binds to both human and mouse LIF receptors (LIF-R), while mouse LIF (mLIF) binds only to mouse LIF-R. Moreover, hLIF binds with higher affinity to the mLIF-R than does mLIF. In order to define the regions of the hLIF molecule responsible for species-specific interaction with the hLIF-R and for the unusual high-affinity binding to the mLIF-R, a series of 15 mouse/human LIF hybrids has been generated. Perhaps surprisingly, both of these properties mapped to the same region of the hLIF molecule. The predominant contribution was from residues in the loop linking the third and fourth helices, with lesser contributions from residues in the third helix and the loop connecting the second and third helices in the predicted three-dimensional structure. Since all chimeras retained full biological activity and receptor-binding activity on mouse cells, and there was little variation in the specific biological activity of the purified proteins, it can be concluded that the overall secondary and tertiary structures of each chimera were intact. This observation also implied that the primary binding sites on mLIF and hLIF for the mLIF-R were unaltered by inter-species domain swapping. Consequently, the site on the hLIF molecule that confers species-specific binding to the hLIF-R and higher affinity binding to the mLIF-R, must constitute an additional interaction site to that used by both mLIF and hLIF to bind to the mLIF-R. These studies define a maximum of 15 amino acid differences between hLIF and mLIF that are responsible for the different properties of these proteins. Images PMID:8253075

  3. Effect of famotidine on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor

    PubMed Central

    Upreti, Vijay V; Song, Yan; Wang, Jessie; Byon, Wonkyung; Boyd, Rebecca A; Pursley, Janice M; LaCreta, Frank; Frost, Charles E

    2013-01-01

    Background Apixaban is an oral, selective, direct factor Xa inhibitor approved for thromboprophylaxis after orthopedic surgery and stroke prevention in patients with atrial fibrillation, and under development for treatment of venous thromboembolism. This study investigated the effect of a gastric acid suppressant, famotidine (a histamine H2-receptor antagonist), on the pharmacokinetics of apixaban in healthy subjects. Methods This two-period, two-treatment crossover study randomized 18 healthy subjects to receive a single oral dose of apixaban 10 mg with and without a single oral dose of famotidine 40 mg administered 3 hours before dosing with apixaban. Plasma apixaban concentrations were measured up to 60 hours post-dose and pharmacokinetic parameters were calculated. Results Famotidine did not affect maximum apixaban plasma concentration (Cmax) or area under the plasma concentration-time curve from zero to infinite time (AUC∞). Point estimates for ratios of geometric means with and without famotidine were close to unity for Cmax (0.978) and AUC∞ (1.007), and 90% confidence intervals were entirely contained within the 80%–125% no-effect interval. Administration of apixaban alone and with famotidine was well tolerated. Conclusion Famotidine does not affect the pharmacokinetics of apixaban, consistent with the physicochemical properties of apixaban (lack of an ionizable group and pH-independent solubility). Apixaban pharmacokinetics would not be affected by an increase in gastrointestinal pH due to underlying conditions (eg, achlorhydria), or by gastrointestinal pH-mediated effects of other histamine H2-receptor antagonists, antacids, or proton pump inhibitors. Given that famotidine is also an inhibitor of the human organic cation transporter (hOCT), these results indicate that apixaban pharmacokinetics are not influenced by hOCT uptake transporter inhibitors. Overall, these results support that apixaban can be administered without regard to coadministration

  4. GenProBiS: web server for mapping of sequence variants to protein binding sites.

    PubMed

    Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka

    2017-07-03

    Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    PubMed Central

    Horton, R. W.; Lowther, S.; Chivers, J.; Jenner, P.; Marsden, C. D.; Testa, B.

    1988-01-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2850059

  6. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  7. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.

    PubMed

    Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W

    2011-05-01

    Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. sc-PDB: a database for identifying variations and multiplicity of 'druggable' binding sites in proteins.

    PubMed

    Meslamani, Jamel; Rognan, Didier; Kellenberger, Esther

    2011-05-01

    The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB.

  9. CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection

    PubMed Central

    2018-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. PMID:29437926

  10. Analysis of the Binding Sites of Porcine Sialoadhesin Receptor with PRRSV

    PubMed Central

    Jiang, Yibo; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Kadariya, Ishwari; Cheng, Zhangrui; Ren, Yuwei; Chen, Xing; Zhou, Ao; Yang, Liguo; Kong, Dexin; Zhang, Shujun

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) can infect pigs and cause enormous economic losses to the pig industry worldwide. Porcine sialoadhesin (pSN) and CD163 have been identified as key viral receptors on porcine alveolar macrophages (PAM), a main target cell infected by PRRSV. In this study, the protein structures of amino acids 1–119 from the pSN and cSN (cattle sialoadhesin) N-termini (excluding the 19-amino acid signal peptide) were modeled via homology modeling based on mSN (mouse sialoadhesin) template structures using bioinformatics tools. Subsequently, pSN and cSN homology structures were superposed onto the mSN protein structure to predict the binding sites of pSN. As a validation experiment, the SN N-terminus (including the wild-type and site-directed-mutant-types of pSN and cSN) was cloned and expressed as a SN-GFP chimera protein. The binding activity between SN and PRRSV was confirmed by WB (Western blotting), FAR-WB (far Western blotting), ELISA (enzyme-linked immunosorbent assay) and immunofluorescence assay. We found that the S107 amino acid residue in the pSN N-terminal played a crucial role in forming a special cavity, as well as a hydrogen bond for enhancing PRRSV binding during PRRSV infection. S107 may be glycosylated during PRRSV infection and may also be involved in forming the cavity for binding PRRSV along with other sites, including W2, Y44, S45, R97, R105, W106 and V109. Additionally, S107 might also be important for pSN binding with PRRSV. However, the function of these binding sites must be confirmed by further studies. PMID:24351868

  11. Fusion proteins comprising annexin V and Kunitz protease inhibitors are highly potent thrombogenic site-directed anticoagulants

    PubMed Central

    Chen, Hsiu-Hui; Vicente, Cristina P.; He, Li; Tollefsen, Douglas M.; Wun, Tze-Chein

    2005-01-01

    The anionic phospholipid, phosphatidyl-l-serine (PS), is sequestered in the inner layer of the plasma membrane in normal cells. Upon injury, activation, and apoptosis, PS becomes exposed on the surfaces of cells and sheds microparticles, which are procoagulant. Coagulation is initiated by formation of a tissue factor/factor VIIa complex on PS-exposed membranes and propagated through the assembly of intrinsic tenase (factor VIIIa/factor IXa), prothrombinase (factor Va/factor Xa), and factor XIa complexes on PS-exposed activated platelets. We constructed a novel series of recombinant anticoagulant fusion proteins by linking annexin V (ANV), a PS-binding protein, to the Kunitz-type protease inhibitor (KPI) domain of tick anticoagulant protein, an aprotinin mutant (6L15), amyloid β-protein precursor, or tissue factor pathway inhibitor. The resulting ANV-KPI fusion proteins were 6- to 86-fold more active than recombinant tissue factor pathway inhibitor and tick anticoagulant protein in an in vitro tissue factor–initiated clotting assay. The in vivo antithrombotic activities of the most active constructs were 3- to 10-fold higher than that of ANV in a mouse arterial thrombosis model. ANV-KPI fusion proteins represent a new class of anticoagulants that specifically target the anionic membrane-associated coagulation enzyme complexes present at sites of thrombogenesis and are potentially useful as antithrombotic agents. PMID:15677561

  12. Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins

    NASA Astrophysics Data System (ADS)

    Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John

    1986-07-01

    The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.

  13. The selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion

    PubMed Central

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-01-01

    The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI: http://dx.doi.org/10.7554/eLife.16616.001 PMID:27490484

  14. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.

    PubMed

    Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua

    2016-07-19

    The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes.

  15. ProMateus—an open research approach to protein-binding sites analysis

    PubMed Central

    Neuvirth, Hani; Heinemann, Uri; Birnbaum, David; Tishby, Naftali; Schreiber, Gideon

    2007-01-01

    The development of bioinformatic tools by individual labs results in the abundance of parallel programs for the same task. For example, identification of binding site regions between interacting proteins is done using: ProMate, WHISCY, PPI-Pred, PINUP and others. All servers first identify unique properties of binding sites and then incorporate them into a predictor. Obviously, the resulting prediction would improve if the most suitable parameters from each of those predictors would be incorporated into one server. However, because of the variation in methods and databases, this is currently not feasible. Here, the protein-binding site prediction server is extended into a general protein-binding sites research tool, ProMateus. This web tool, based on ProMate's infrastructure enables the easy exploration and incorporation of new features and databases by the user, providing an evaluation of the benefit of individual features and their combination within a set framework. This transforms the individual research into a community exercise, bringing out the best from all users for optimized predictions. The analysis is demonstrated on a database of protein protein and protein-DNA interactions. This approach is basically different from that used in generating meta-servers. The implications of the open-research approach are discussed. ProMateus is available at http://bip.weizmann.ac.il/promate. PMID:17488838

  16. Motors and Their Tethers: The Role of Secondary Binding Sites in Processive Motility

    PubMed Central

    Kincaid, Margaret M.; King, Stephen J.

    2007-01-01

    Cytoskeletal motors convert the energy from binding and hydrolyzing ATP into conformational changes that direct movement along a cytoskeletal polymer substrate. These enzymes utilize different mechanisms to generate long-range motion on the order of a micron or more that is required for functions ranging from muscle contraction to transport of growth factors along a nerve axon. Several of the individual cytoskeletal motors are processive, meaning that they have the ability to take sequential steps along their polymer substrate without dissociating from the polymer. This ability to maintain contact with the polymer allows individual motors to move cargos quickly from one cellular location to another. Many of the processive motors have now been found to utilize secondary binding sites that aid in motor processivity. PMID:17172850

  17. Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details.

    PubMed

    Rosenhouse-Dantsker, Avia

    2018-01-01

    In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocampal GIRK channels. In particular, the principal cholesterol-binding site was located in the center of the transmembrane domain in between the inner and outer α-helices of 2 adjacent subunits. Further studies pointed to a similar cholesterol-binding site in GIRK4, a major subunit in atrial GIRK channels. However, a close look at a sequence alignment of the transmembrane helices of the 2 channels reveals surprising differences among the residues that interact with the cholesterol molecule in these 2 channels. Here, we compare the residues that form putative cholesterol-binding sites in GIRK2 and GIRK4 and discuss the similarities and differences among them.

  18. A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1.

    PubMed

    Essen, L O; Perisic, O; Lynch, D E; Katan, M; Williams, R L

    1997-03-11

    We have determined the crystal structures of complexes of phosphoinositide-specific phospholipase C-delta1 from rat with calcium, barium, and lanthanum at 2.5-2.6 A resolution. Binding of these metal ions is observed in the active site of the catalytic TIM barrel and in the calcium binding region (CBR) of the C2 domain. The C2 domain of PLC-delta1 is a circularly permuted topological variant (P-variant) of the synaptotagmin I C2A domain (S-variant). On the basis of sequence analysis, we propose that both the S-variant and P-variant topologies are present among other C2 domains. Multiple adjacent binding sites in the C2 domain were observed for calcium and the other metal/enzyme complexes. The maximum number of binding sites observed was for the calcium analogue lanthanum. This complex shows an array-like binding of three lanthanum ions (sites I-III) in a crevice on one end of the C2 beta-sandwich. Residues involved in metal binding are contained in three loops, CBR1, CBR2, and CBR3. Sites I and II are maintained in the calcium and barium complexes, whereas sites II and III coincide with a binary calcium binding site in the C2A domain of synaptotagmin I. Several conformers for CBR1 are observed. The conformation of CBR1 does not appear to be strictly dependent on metal binding; however, metal binding may stabilize certain conformers. No significant structural changes are observed for CBR2 or CBR3. The surface of this ternary binding site provides a cluster of freely accessible liganding positions for putative phospholipid ligands of the C2 domain. It may be that the ternary metal binding site is also a feature of calcium-dependent phospholipid binding in solution. A ternary metal binding site might be a conserved feature among C2 domains that contain the critical calcium ligands in their CBR's. The high cooperativity of calcium-mediated lipid binding by C2 domains described previously is explained by this novel type of calcium binding site.

  19. Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crankshaw, D.; Gaspar, V.; Pliska, V.

    1990-01-01

    The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The bindingmore » parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.« less

  20. Igs expressed by chronic lymphocytic leukemia B cells show limited binding-site structure variability.

    PubMed

    Marcatili, Paolo; Ghiotto, Fabio; Tenca, Claudya; Chailyan, Anna; Mazzarello, Andrea N; Yan, Xiao-Jie; Colombo, Monica; Albesiano, Emilia; Bagnara, Davide; Cutrona, Giovanna; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Chiorazzi, Nicholas; Tramontano, Anna; Fais, Franco

    2013-06-01

    Ag selection has been suggested to play a role in chronic lymphocytic leukemia (CLL) pathogenesis, but no large-scale analysis has been performed so far on the structure of the Ag-binding sites (ABSs) of leukemic cell Igs. We sequenced both H and L chain V(D)J rearrangements from 366 CLL patients and modeled their three-dimensional structures. The resulting ABS structures were clustered into a small number of discrete sets, each containing ABSs with similar shapes and physicochemical properties. This structural classification correlates well with other known prognostic factors such as Ig mutation status and recurrent (stereotyped) receptors, but it shows a better prognostic value, at least in the case of one structural cluster for which clinical data were available. These findings suggest, for the first time, to our knowledge, on the basis of a structural analysis of the Ab-binding sites, that selection by a finite quota of antigenic structures operates on most CLL cases, whether mutated or unmutated.

  1. Two classes of binding sites for [3H]substance P in rat cerebral cortex.

    PubMed

    Geraghty, D P; Burcher, E

    1993-01-22

    The binding characteristics of [3H]substance P ([3H]SP) were investigated in membranes prepared from rat cerebral cortex. Binding of [3H]SP reached equilibrium after 50 min at 25 degrees C and was saturable at 8 nM. Saturation data could be resolved into high affinity (equilibrium dissociation constant, Kd, 0.22 nM) and low affinity sites (Kd, 2.65 nM). The low affinity sites were more numerous than the high affinity sites, with a ratio of 4:1. The non-hydrolyzable GTP analogue GppNHp had no effect on binding, indicating that the high and low affinity sites are not guanine nucleotide-regulated states of the same (NK-1) receptor. The low affinity sites are unlikely to represent NK-3 receptors since coincubation with the selective NK-3 receptor agonist senktide did not alter the biphasic nature of [3H]SP binding. The rank order of potency for inhibition of [3H]SP (2 nM) binding was SP > or = [Sar9, Met(O2)11]-SP > or = physalaemin > SP(3-11) > NP gamma = [Ala3]-SP > or = SP(4-11) > or = NPK > or = SP(5-11) > or = NKB approximately NKA > SP(1-9), compatible with binding to an NK-1 site. N-terminal fragments and non-amidated analogues were ineffective competitors for [3H]SP binding. However, competition data for several peptides including substance P (SP) and the NK-1 selective agonist [Sar9, Met(O2)11]-SP could be resolved into two components.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.

    PubMed

    Rudling, Axel; Orro, Adolfo; Carlsson, Jens

    2018-02-26

    Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.

  3. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlorvos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultatos, L.G.; Kaushik, R.

    2008-08-01

    The peripheral anionic site of acetylcholinesterase, when occupied by a ligand, is known to modulate reaction rates at the active site of this important enzyme. The current report utilized the peripheral anionic site specific fluorogenic probe thioflavin t to determine if the organophosphates chlorpyrifos oxon and dichlorvos bind to the peripheral anionic site of human recombinant acetylcholinesterase, since certain organophosphates display concentration-dependent kinetics when inhibiting this enzyme. Incubation of 3 nM acetylcholinesterase active sites with 50 nM or 2000 nM inhibitor altered both the B{sub max} and K{sub d} for thioflavin t binding to the peripheral anionic site. However, thesemore » changes resulted from phosphorylation of Ser203 since increasing either inhibitor from 50 nM to 2000 nM did not alter further thioflavin t binding kinetics. Moreover, the organophosphate-induced decrease in B{sub max} did not represent an actual reduction in binding sites, but instead likely resulted from conformational interactions between the acylation and peripheral anionic sites that led to a decrease in the rigidity of bound thioflavin t. A drop in fluorescence quantum yield, leading to an apparent decrease in B{sub max}, would accompany the decreased rigidity of bound thioflavin t molecules. The organophosphate-induced alterations in K{sub d} represented changes in binding affinity of thioflavin t, with diethylphosphorylation of Ser203 increasing K{sub d}, and dimethylphosphorylation of Ser203 decreasing K{sub d}. These results indicate that chlorpyrifos oxon and dichlorvos do not bind directly to the peripheral anionic site of acetylcholinesterase, but can affect binding to that site through phosphorylation of Ser203.« less

  4. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides

    PubMed Central

    Zhao, Wenjing; McCallum, Scott A.; Xiao, Zhongping; Zhang, Fuming; Linhardt, Robert J.

    2011-01-01

    Heparin and heparan sulphate (HS) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS-binding to vascular endothelial growth factor (VEGF) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and that a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that VEGF binding affinity likely depends on the specific structural features of these oligosaccharides including their degree of sulphation and sugar ring stereochemistry and conformation. Notably, the unique 3-O-sulpho group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs. PMID:21658003

  5. GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.

    PubMed

    Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd

    2018-01-01

    In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.

  6. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    PubMed

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Characterization of angiotensin-binding sites in the bovine adrenal and the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogulja, I.

    1989-01-01

    The first study was designed to determine whether systemically administered MSG affects neurons in the CVOs that are potentially important in mediating angiotensin-dependent responses. Rats were pretreated with MSG and the receptors for angiotensin II were assayed by radioligand binding in brain homogenates from the septum anteroventral third ventricular region (AV3V) and the thalamus/hypothalamus region using {sup 125}I-angiotensin II as the radioligand. The results of this experiment indicate that systematically administered MSG in the rat significantly reduced the number (Bmax) of Ang II receptors in a tissue sample which contained both extra blood-brain barrier organs as well as tissue withinmore » the blood-brain barrier with no change in the affinity (Kd) of the binding sites. The second chapter reports the successful solubilization of bovine adrenal {sup 125}I Ang II and {sup 125}I Sar{sup 1},Ile{sup 8}-Ang II binding sites with the detergent CHAPS. The results of our studies indicate the presence of two angiotensin binding sites. The one site is specific for naturally occurring angiotensins as well as sarcosine-1 substituted angiotensin analogues. The other site which can be optimally stabilized be re-addition of 0.3% CHAPS into the incubation assay binds sarcosine-1 substituted angiotensins exclusively. Hydrophobic interaction chromatography experiments suggest that these sites, possibly, represent distinct proteins. The third chapter discusses the successful solubilization and partial characterization of the rat brain angiotensin receptor.« less

  8. Specific minor groove solvation is a crucial determinant of DNA binding site recognition

    PubMed Central

    Harris, Lydia-Ann; Williams, Loren Dean; Koudelka, Gerald B.

    2014-01-01

    The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein. PMID:25429976

  9. Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-NMR study.

    PubMed Central

    Dubois, B W; Cherian, S F; Evers, A S

    1993-01-01

    There is controversy as to the molecular nature of volatile anesthetic target sites. One proposal is that volatile anesthetics bind directly to hydrophobic binding sites on certain sensitive target proteins. Consistent with this hypothesis, we have previously shown that a fluorinated volatile anesthetic, isoflurane, binds saturably [Kd (dissociation constant) = 1.4 +/- 0.2 mM, Bmax = 4.2 +/- 0.3 sites] to fatty acid-displaceable domains on serum albumin. In the current study, we used 19F-NMR T2 relaxation to examine whether other volatile anesthetics bind to the same sites on albumin and, if so, whether they vary in their affinity for these sites. We show that three other fluorinated volatile anesthetics bind with varying affinity to fatty acid-displaceable domains on serum albumin: halothane, Kd = 1.3 +/- 0.2 mM; methoxyflurane, Kd = 2.6 +/- 0.3 mM; and sevoflurane, Kd = 4.5 +/- 0.6 mM. These three anesthetics inhibit isoflurane binding in a competitive manner: halothane, K(i) (inhibition constant) = 1.3 +/- 0.2 mM; methoxyflurane, K(i) = 2.5 +/- 0.4 mM; and sevoflurane, K(i) = 5.4 +/- 0.7 mM--similar to each anesthetic's respective Kd of binding to fatty acid displaceable sites. These results illustrate that a variety of volatile anesthetics can compete for binding to specific sites on a protein. PMID:8341659

  10. Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses

    PubMed Central

    Grünewald, Nora; Salvatico, Charlotte; Kress, Vanessa

    2018-01-01

    Abstract The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 310-helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells. PMID:29464196

  11. Discovery of glycyrrhetinic acid as an orally active, direct inhibitor of blood coagulation factor xa.

    PubMed

    Jiang, Lilong; Wang, Qiong; Shen, Shu; Xiao, Tongshu; Li, Youbin

    2014-03-01

    Factor Xa (FXa) plays an important role in blood coagulation. This study investigated glycyrrhetinic acid, a small molecule derived from Chinese herbs, and whether it has a direct inhibitory effect on FXa to display its anticoagulant activity. Enzyme activities of FXa, plasmin, trypsin and thrombin, inhibition of FXa enzyme kinetics and plasma clotting time by glycyrrhentinic acid were performed in vitro. A rat tail-bleeding model and a rat venous stasis model were also used to evaluate in vivo tail-bleeding time and thrombus formation, respectively. Glycyrrhetinic acid in vitro directly inhibited FXa uncompetitivly with IC50 of 32.6 ± 1.24 μmol/L, and displayed 2-, 14- and 20-fold selectivity for FXa when compared to plasmin, thrombin and trypsin, respectively. The plasma clotting time was increased in a dose-dependent manner. The prothrombin time doubled (PT2), when the concentration of glycyrrhetinic acid reached 2.02 mmol/L. During in vivo experiments intragastric administration of glycyrrhetinic acid caused a dose-dependent reduction in thrombus weight on the rat venous stasis model (all P<0.05). 50 mg/kg glycyrrhetinic acid resulted in 34.8% of venous thrombus weight lost, compared to the control. In addition, 200, 300 and 400 mg/kg doses of glycyrrhetinic acid caused a moderate hemorrhagic effect in the rat tail-bleeding model by prolonging bleeding time 1.1-, 1.5- and 1.9-fold compared to the control, respectively. Glycyrrhetinic acid is a direct inhibitor of FXa that is effective by oral administration, and with further research could be used to treat blood coagulation disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mutation of the C/EBP binding sites in the Rous sarcoma virus long terminal repeat and gag enhancers.

    PubMed Central

    Ryden, T A; de Mars, M; Beemon, K

    1993-01-01

    Several C/EBP binding sites within the Rous sarcoma virus (RSV) long terminal repeat (LTR) and gag enhancers were mutated, and the effect of these mutations on viral gene expression was assessed. Minimal site-specific mutations in each of three adjacent C/EBP binding sites in the LTR reduced steady-state viral RNA levels. Double mutation of the two 5' proximal LTR binding sites resulted in production of 30% of wild-type levels of virus. DNase I footprinting analysis of mutant DNAs indicated that the mutations blocked C/EBP binding at the affected sites. Additional C/EBP binding sites were identified upstream of the 3' LTR and within the 5' end of the LTRs. Point mutations in the RSV gag intragenic enhancer region, which blocked binding of C/EBP at two of three adjacent C/EBP sites, also reduced virus production significantly. Nuclear extracts prepared from both chicken embryo fibroblasts (CEFs) and chicken muscle contained proteins binding to the same RSV DNA sites as did C/EBP, and mutations that prevented C/EBP binding also blocked binding of these chicken proteins. It appears that CEFs and chicken muscle contain distinct proteins binding to these RSV DNA sites; the CEF binding protein was heat stable, as is C/EBP, while the chicken muscle protein was heat sensitive. Images PMID:8386280

  13. The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally

    PubMed Central

    Park, Dan M.; Akhtar, Md. Sohail; Ansari, Aseem Z.; Landick, Robert; Kiley, Patricia J.

    2013-01-01

    Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis. PMID:24146625

  14. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchman, A.R.; Kimmerly, W.J.; Rine, J.

    1988-01-01

    Two DNA-binding factors from Saccharomyces cerevisiae have been characterized, GRFI (general regulatory factor I) and ABFI (ARS-binding factor I), that recognize specific sequences within diverse genetic elements. GRFI bound to sequences at the negative regulatory elements (silencers) of the silent mating type loci HML E and HMR E and to the upstream activating sequence (UAS) required for transcription of the MAT ..cap alpha.. genes. A putative conserved UAS located at genes involved in translation (RPG box) was also recognized by GRFI. In addition, GRFI bound with high affinity to sequences within the (C/sub 1-3/A)-repeat region at yeast telomeres. Binding sitesmore » for GRFI with the highest affinity appeared to be of the form 5'-(A/G)(A/C)ACCCAN NCA(T/C)(T/C)-3', where N is any nucleotide. ABFI-binding sites were located next to autonomously replicating sequences (ARSs) at controlling elements of the silent mating type loci HMR E, HMR I, and HML I and were associated with ARS1, ARS2, and the 2..mu..m plasmid ARS. Two tandem ABFI binding sites were found between the HIS3 and DED1 genes, several kilobase pairs from any ARS, indicating that ABFI-binding sites are not restricted to ARSs. The sequences recognized by AFBI showed partial dyad-symmetry and appeared to be variations of the consensus 5'-TATCATTNNNNACGA-3'. GRFI and ABFI were both abundant DNA-binding factors and did not appear to be encoded by the SIR genes, whose product are required for repression of the silent mating type loci. Together, these results indicate that both GRFI and ABFI play multiple roles within the cell.« less

  15. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution.

    PubMed Central

    Qian, M.; Haser, R.; Payan, F.

    1995-01-01

    The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA. PMID:7613472

  16. Penicillin-binding site on the Escherichia coli cell envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaral, L.; Lee, Y.; Schwarz, U.

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and freemore » epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.« less

  17. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, Thomas F.; Chapman, Michael S., E-mail: chapmami@ohsu.edu

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites ofmore » AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.« less

  18. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, Thomas F.; Chapman, Michael S.

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites ofmore » AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.« less

  19. Discovery of a tetrahydropyrimidin-2(1H)-one derivative (TAK-442) as a potent, selective, and orally active factor Xa inhibitor.

    PubMed

    Fujimoto, Takuya; Imaeda, Yasuhiro; Konishi, Noriko; Hiroe, Katsuhiko; Kawamura, Masaki; Textor, Garret P; Aertgeerts, Kathleen; Kubo, Keiji

    2010-05-13

    Coagulation enzyme factor Xa (FXa) is a particularly promising target for the development of new anticoagulant agents. We previously reported the imidazo[1,5-c]imidazol-3-one derivative 1 as a potent and orally active FXa inhibitor. However, it was found that 1 predominantly undergoes hydrolysis upon incubation with human liver microsomes, and the human specific metabolic pathway made it difficult to predict the human pharmacokinetics. To address this issue, our synthetic efforts were focused on modification of the imidazo[1,5-c]imidazol-3-one moiety of the active metabolite 3a, derived from 1, which resulted in the discovery of the tetrahydropyrimidin-2(1H)-one derivative 5k as a highly potent and selective FXa inhibitor. Compound 5k showed no detectable amide bond cleavage in human liver microsomes, exhibited a good pharmacokinetic profile in monkeys, and had a potent antithrombotic efficacy in a rabbit model without prolongation of bleeding time. Compound 5k is currently under clinical development with the code name TAK-442.

  20. Functional analysis of the EspR binding sites upstream of espR in Mycobacterium tuberculosis.

    PubMed

    Cao, Guangxiang; Howard, Susan T; Zhang, Peipei; Hou, Guihua; Pang, Xiuhua

    2013-11-01

    The ESX-1 secretion system exports substrate proteins into host cells and is crucial for the pathogenesis of Mycobacterium tuberculosis. EspR is one of the characterized transcriptional regulators that modulates the ESX-1 system by binding the conserved EspR binding sites in the promoter of espA, the encoding gene of EspA, which is also a substrate protein of the ESX-1 system and is required for the ESX-1 activity. EspR is autoregulatory and conserved EspR binding sites are present upstream of espR. In this study, we showed that these EspR sites had varying affinities for EspR, with site B being the strongest one. Point mutations of the DNA sequence at site B abolished binding of EspR to oligonucleotides containing site B alone or with other sites, further suggesting that site B is a major binding site for EspR. Complementation studies showed that constructs containing espR, and the upstream intergenic region fully restored espR expression in a ΔespR mutant strain. Although recombinant strains with mutations at more than one EspR site showed minimal differences in espR expression, reduced expression of other EspR target genes was observed, suggesting that slight changes in EspR levels can have downstream regulatory effects. These findings contribute to our understanding of the regulation of the ESX-1 system.

  1. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  2. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve andmore » tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.« less

  3. Bauhinia proteinase inhibitor-based synthetic fluorogenic substrates for enzymes isolated from insect midgut and caterpillar bristles.

    PubMed

    Andrade, Sonia A; Santomauro-Vaz, Eugênio M; Lopes, Adriana R; Chudzinski-Tavassi, Ana M; Juliano, Maria A; Terra, Walter R; Sampaio, Misako U; Sampaio, Claudio A M; Oliva, Maria Luiza V

    2003-03-01

    Bauhinia ungulata factor Xa inhibitor (BuXI) inactivates factor Xa and LOPAP, a prothrombin activator proteinase isolated from the venom of Lonomia obliqua caterpillar bristles. The reactive site of the enzyme-inhibitor interaction was explored to design specific substrates for both enzymes. Methionine is crucial for LOPAP and factor Xa substrate interaction, since the change of both Met residues in the substrates abolished the hydrolysis. Synthetic substrates containing the sequence around the reactive site of BbKI, a plasma kallikrein inhibitor, were shown to be specific for trypsin hydrolysis. Therefore, these substrates may be an alternative in studies aiming at a characterization of trypsin-like enzyme activities, especially non-mammalian enzymes.

  4. A computational model of the nicotinic acetylcholine binding site

    NASA Astrophysics Data System (ADS)

    Gálvez-ruano, Enrique; Iriepa-Canalda, Isabel; Morreale, Antonio; Lipkowitz, Kenny B.

    1999-01-01

    We have derived a model of the nicotinic acetylcholine binding site. This was accomplished by using three known agonists (acetylcholine, nicotine and epibatidine) as templates around which polypeptide side chains, found to be part of the receptor cavity from published molecular biology studies, are allowed to flow freely in molecular dynamics simulations and mold themselves around these templates. The resulting supramolecular complex should thus be a complement, both in terms of steric effects as well as electronic effects, to the agonists and it should be a good estimation of the true receptor cavity structure. The shapes of those minireceptor cavities equilibrated rapidly on the simulation time scale and their structural congruence is very high, implying that a satisfactory model of the nicotinic acetylcholine binding site has been achieved. The computational methodology was internally tested against two rigid and specific antagonists (dihydro-β-erytroidine and erysoidine), that are expected to give rise to a somewhat differently shaped binding site compared to that derived from the agonists. Using these antagonists as templates there were structural reorganizations of the initial receptor cavities leading to distinctly different cavities compared to agonists. This indicates that adequate times and temperatures were used in our computational protocols to achieve equilibrium structures for the agonists. Overall, both minireceptor geometries for agonists and antagonists are similar with the exception of one amino acid (ARG209).

  5. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    PubMed Central

    Bisgaard, Heidi; Larsen, M. Andreas B.; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J.; Gether, Ulrik

    2013-01-01

    Analogues of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homologue LeuT supported a BZT binding site that overlaps with the substrate binding pocket. In agreement, mutations of residues within the pocket, including Val1523.46* to Ala or Ile, Ser4228.60 to Ala and Asn1573.51 to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [3H]dopamine uptake inhibition assays and/or [3H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn1573.51 was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine substituted phenyl ring of JHW007 in close proximity to Ala47910.51/Ala48010.52 in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala47910.51/Ala48010.52. Mutation of Ala47910.51 and Ala48010.52 to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine. PMID:20816875

  6. Specific binding, internalization, and degradation of human neutrophil activating factor by human polymorphonuclear leukocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besemer, J.; Hujber, A.; Kuhn, B.

    1989-10-15

    The interaction of {sup 125}I-labeled recombinant human neutrophil activating factor (NAF) with polymorphonuclear leukocytes (PMN) was studied by means of a radioreceptor assay. The binding was characterized by a rapid transition (t1/2 less than or equal to 1 min) from a pH 3-sensitive state at 4{degree}C to pH 3 resistance at 37{degree}C. This was not caused by internalization of NAF since pH 3-resistant bound iodinated NAF could still be exchanged by an excess of nonlabeled NAF, i.e. was dissociable. Internalized iodinated NAF was processed into trichloroacetic acid-soluble forms. Scatchard transformation of binding isotherms at 4 and 37{degree}C led to nonlinearmore » curves, a finding which is consistent with the expression of two receptor populations, one with high (KD = 11-35 pM) and the other with lower affinity (KD = 640-830 pM) at 4 degrees C. Numbers of the low affinity binding sites were approximately 34,000, and those with high affinity were 5,200/PMN when estimated at 4 degrees C. Binding of iodinated NAF to PMN was specific since it could be competed by an excess of nonlabeled NAF but not by two other activators of PMN function, formylmethionyl-leucyl-phenylalanine or human recombinant granulocyte-macrophage colony-stimulating factor. In addition to human PMN, NAF also bound specifically to two human monocytic cell lines; however, only the low affinity binding site could be detected on these cells.« less

  7. DNA binding site characterization by means of Rényi entropy measures on nucleotide transitions.

    PubMed

    Perera, A; Vallverdu, M; Claria, F; Soria, J M; Caminal, P

    2008-06-01

    In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measures such as Rényi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency-based Rényi measures. Results are reported in this work comparing transition frequencies (i.e., dinucleotides) and base frequencies for Shannon and parametric Rényi entropies for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that the information provided by both approaches is not redundant. Furthermore, under the presence of noise in the binding site matrix we observe overall improved robustness of nucleotide transition-based algorithms when compared with nucleotide frequency-based method.

  8. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites.

    PubMed

    Chen, Baoyu; Chou, Hui-Ting; Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas; Rosen, Michael K

    2017-09-26

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly.

  9. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shima, K.; Kitayama, S.; Nakano, R.

    Gonadotropin binding sites were localized by autoradiography after incubation of human ovarian sections with /sup 125/I-labeled gonadotropins. The binding sites for /sup 125/I-labeled human follicle-stimulating hormone (/sup 125/I-hFSH) were identified in the granulosa cells and in the newly formed corpora lutea. The /sup 125/I-labeled human luteinizing hormone (/sup 125/I-hLH) binding to the thecal cells increased during follicular maturation, and a dramatic increase was preferentially observed in the granulosa cells of the large preovulatory follicle. In the corpora lutea, the binding of /sup 125/I-hLH increased from the early luteal phase and decreased toward the late luteal phase. The changes in 3more » beta-hydroxysteroid dehydrogenase activity in the corpora lutea corresponded to the /sup 125/I-hLH binding. Thus, the changes in gonadotropin binding sites in the follicles and corpora lutea during the menstrual cycle may help in some important way to regulate human ovarian function.« less

  10. From carpet bombing to cruise missiles: the 'second-order' mechanisms used by transcription factors to ensure specific DNA binding in vivo.

    PubMed

    Kodadek, T

    1995-05-01

    Transcription factors generally have only modest specificity for their target sites, yet must find them in a sea of non-specific DNA. Some transcription factors are expressed at very high levels, to ensure that, despite losses to non-specific binding, the promoter is still occupied (the carpet-bombing strategy). Others increase their binding specificity by collaborating with other factors in a variety of ways.

  11. Localization and characterization of (/sup 3/H)desmethylimipramine binding sites in rat brain by quantitative autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegon, A.; Rainbow, T.C.

    1983-05-01

    The high affinity binding sites for the antidepressant desmethlyimipramine (DMI) have been localized in rat brain by quantitative autoradiography. There are high concentrations of binding sites in the locus ceruleus, the anterior ventral thalamus, the ventral portion of the bed nucleus of the stria terminalis, the paraventricular and the dorsomedial nuclei of the hypothalamus. The distribution of DMI binding sites is in striking accord with the distribution of norepinephrine terminals. Pretreatment of rats with the neurotoxin 6-hydroxydopamine, which causes a selective degeneration of catecholamine terminals, results in 60 to 90% decrease in DMI binding. These data support the idea thatmore » high affinity binding sites for DMI are located on presynaptic noradrenergic terminals.« less

  12. The Xanthomonas oryzae pv. oryzae PhoPQ Two-Component System Is Required for AvrXA21 Activity, hrpG Expression, and Virulence▿ †

    PubMed Central

    Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela

    2008-01-01

    The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH. PMID:18203830

  13. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data.

    PubMed

    Chung, Dongjun; Kuan, Pei Fen; Li, Bo; Sanalkumar, Rajendran; Liang, Kun; Bresnick, Emery H; Dewey, Colin; Keleş, Sündüz

    2011-07-01

    Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is rapidly replacing chromatin immunoprecipitation combined with genome-wide tiling array analysis (ChIP-chip) as the preferred approach for mapping transcription-factor binding sites and chromatin modifications. The state of the art for analyzing ChIP-seq data relies on using only reads that map uniquely to a relevant reference genome (uni-reads). This can lead to the omission of up to 30% of alignable reads. We describe a general approach for utilizing reads that map to multiple locations on the reference genome (multi-reads). Our approach is based on allocating multi-reads as fractional counts using a weighted alignment scheme. Using human STAT1 and mouse GATA1 ChIP-seq datasets, we illustrate that incorporation of multi-reads significantly increases sequencing depths, leads to detection of novel peaks that are not otherwise identifiable with uni-reads, and improves detection of peaks in mappable regions. We investigate various genome-wide characteristics of peaks detected only by utilization of multi-reads via computational experiments. Overall, peaks from multi-read analysis have similar characteristics to peaks that are identified by uni-reads except that the majority of them reside in segmental duplications. We further validate a number of GATA1 multi-read only peaks by independent quantitative real-time ChIP analysis and identify novel target genes of GATA1. These computational and experimental results establish that multi-reads can be of critical importance for studying transcription factor binding in highly repetitive regions of genomes with ChIP-seq experiments.

  14. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    PubMed

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  15. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  16. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  17. Activation of Phenylalanine Hydroxylase by Phenylalanine Does Not Require Binding in the Active Site

    PubMed Central

    2015-01-01

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein’s regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The kcat/Kphe value is down 104 for the mutant enzyme, and the Km value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain. PMID:25453233

  18. Structural investigation of C4b-binding protein by molecular modeling: localization of putative binding sites.

    PubMed

    Villoutreix, B O; Härdig, Y; Wallqvist, A; Covell, D G; García de Frutos, P; Dahlbäck, B

    1998-06-01

    C4b-binding protein (C4BP) contributes to the regulation of the classical pathway of the complement system and plays an important role in blood coagulation. The main human C4BP isoform is composed of one beta-chain and seven alpha-chains essentially built from three and eight complement control protein (CCP) modules, respectively, followed by a nonrepeat carboxy-terminal region involved in polymerization of the chains. C4BP is known to interact with heparin, C4b, complement factor I, serum amyloid P component, streptococcal Arp and Sir proteins, and factor VIII/VIIIa via its alpha-chains and with protein S through its beta-chain. The principal aim of the present study was to localize regions of C4BP involved in the interaction with C4b, Arp, and heparin. For this purpose, a computer model of the 8 CCP modules of C4BP alpha-chain was constructed, taking into account data from previous electron microscopy (EM) studies. This structure was investigated in the context of known and/or new experimental data. Analysis of the alpha-chain model, together with monoclonal antibody studies and heparin binding experiments, suggests that a patch of positively charged residues, at the interface between the first and second CCP modules, plays an important role in the interaction between C4BP and C4b/Arp/Sir/heparin. Putative binding sites, secondary-structure prediction for the central core, and an overall reevaluation of the size of the C4BP molecule are also presented. An understanding of these intermolecular interactions should contribute to the rational design of potential therapeutic agents aiming at interfering specifically some of these protein-protein interactions.

  19. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins

    NASA Astrophysics Data System (ADS)

    Poornima, C. S.; Dean, P. M.

    1995-12-01

    Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of `binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.

  20. A sarcoidosis clinician's perspective of MHC functional elements outside the antigen binding site.

    PubMed

    Judson, Marc A

    2018-05-30

    Sarcoidosis is a multisystem granulomatous disease of unknown cause. Evidence supports an integral role for interactions at the MHC binding site in the development of sarcoidosis. However, despite this evidence, there are clinical data that suggest that additional mechanisms are involved in the immunopathogenesis of this disease. This manuscript provides a brief clinical description of sarcoidosis, and a clinician's perspective of the immunopathogenesis of sarcoidosis in terms of the MHC binding site, MHC functional elements beyond the binding site, and other possible alternative mechanisms. Input from clinicians will be essential in establishing the immunologic cause of sarcoidosis as a detailed phenotypic characterization of disease will be required. Copyright © 2018. Published by Elsevier Inc.

  1. Cation binding at the node of Ranvier: I. Localization of binding sites during development.

    PubMed

    Zagoren, J C; Raine, C S; Suzuki, K

    1982-06-17

    Cations are known to bind to the node of Ranvier and the paranodal regions of myelinated fibers. The integrity of these specialized structures is essential for normal conduction. Sites of cation binding can be microscopically identified by the electrondense histochemical reaction product formed by the precipitate of copper sulfate/potassium ferrocyanide. This technique was used to study the distribution of cation binding during normal development of myelinating fibers. Sciatic nerves of C57B1 mice, at 1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 24 and 30 days of age, were prepared for electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde and 1% osmic acid, microdissection and incubation in phosphate-buffered 0.1 M cupric sulfate followed by 0.1 M potassium ferrocyanide. Localization of reaction product was studied by light and electron microscopy. By light microscopy, no reaction product was observed prior to 9 days of age. At 13 days, a few nodes and paranodes exhibited reaction product. This increased in frequency and intensity up to 30 days when almost all nodes or paranodes exhibited reaction product. Ultrastructurally, diffuse reaction product was first observed at 3 days of age in the axoplasm of the node, in the paranodal extracellular space of the terminal loops, in the Schwann cell proper and in the terminal loops of Schwann cell cytoplasm. When myelinated axons fulfilled the criteria for mature nodes, reaction product was no longer observed in the Schwann cell cytoplasm, while the intensity of reaction product in the nodal axoplasm and paranodal extracellular space of the terminal loops increased. Reaction product in the latter site appeared to be interrupted by the transverse bands. These results suggest that cation binding accompanies nodal maturity and that the Schwann cell may play a role in production or storage of the cation binding substance during myelinogenesis and development.

  2. The Binding of Silibinin, the Main Constituent of Silymarin, to Site I on Human Serum Albumin.

    PubMed

    Yamasaki, Keishi; Sato, Hiroki; Minagoshi, Saori; Kyubun, Karin; Anraku, Makoto; Miyamura, Shigeyuki; Watanabe, Hiroshi; Taguchi, Kazuaki; Seo, Hakaru; Maruyama, Toru; Otagiri, Masaki

    2017-01-01

    Silibinin is the main constituent of silymarin, an extract from the seeds of milk thistle (Silybum marianum). Because silibinin has many pharmacological activities, extending its clinical use in the treatment of a wider variety of diseases would be desirable. In this study, we report on the binding of silibinin to plasma proteins, an issue that has not previously been extensively studied. The findings indicated that silibinin mainly binds to human serum albumin (HSA). Mutual displacement experiments using ligands that primarily bind to sites I and II clearly revealed that silibinin binds tightly and selectively to site I (subsites Ia and/or Ic) of HSA, which is located in subdomain IIA. Thermodynamic analyses suggested that hydrogen bonding and van der Waals interactions are major contributors to silibinin-HSA interactions. Furthermore, the binding of silibinin to HSA was found to be decreased with increasing ionic strength and detergent concentration of the media, suggesting that electrostatic and hydrophobic interactions are involved in the binding. Trp214 and Arg218 were identified as being involved in the binding of silibinin to site I, based on binding experiments using chemically modified- and mutant-HSAs. In conclusion, the available evidence indicates that silibinin binds to the region close to Trp214 and Arg218 in site I of HSA with assistance by multiple forces and can displace site I drugs (e.g., warfarin or iodipamide), but not site II drugs (e.g., ibuprofen).

  3. Oxytocin binding sites in bovine mammary tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressinmore » binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.« less

  4. Identification of metal ion binding sites based on amino acid sequences.

    PubMed

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  5. Identification of metal ion binding sites based on amino acid sequences

    PubMed Central

    Cao, Xiaoyong; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html. PMID:28854211

  6. Biocompatible medical implant materials with binding sites for a biodegradable drug-delivery system

    PubMed Central

    Al-Dubai, Haifa; Pittner, Gisela; Pittner, Fritz; Gabor, Franz

    2011-01-01

    Feasibility studies have been carried out for development of a biocompatible coating of medical implant materials allowing the binding of biodegradable drug-delivery systems in a way that their reloading might be possible. These novel coatings, able to bind biodegradable nanoparticles, may serve in the long run as drug carriers to mediate local pharmacological activity. After biodegradation of the nanoparticles, the binding sites could be reloaded with fresh drug-delivering particles. As a suitable receptor system for the nanoparticles, antibodies are anchored. The design of the receptor is of great importance as any bio- or chemorecognitive interaction with other components circulating in the blood has to be avoided. Furthermore, the binding between receptor and the particles has to be strong enough to keep them tightly bound during their lifetime, but on the other hand allow reloading after final degradation of the particles. The nanoparticles suggested as a drug-delivery system for medical implants can be loaded with different pharmaceuticals such as antibiotics, growth factors, or immunosuppressives. This concept may enable the changing of medication, even after implantation of the medical device, if afforded by patients’ needs. PMID:24198488

  7. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    PubMed

    Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U

    2015-01-01

    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  8. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2014-01-15

    Traditional and high-throughput techniques for determining transcription factor (TF) binding specificities are generating large volumes of data of uneven quality, which are scattered across individual databases. FootprintDB integrates some of the most comprehensive freely available libraries of curated DNA binding sites and systematically annotates the binding interfaces of the corresponding TFs. The first release contains 2422 unique TF sequences, 10 112 DNA binding sites and 3662 DNA motifs. A survey of the included data sources, organisms and TF families was performed together with proprietary database TRANSFAC, finding that footprintDB has a similar coverage of multicellular organisms, while also containing bacterial regulatory data. A search engine has been designed that drives the prediction of DNA motifs for input TFs, or conversely of TF sequences that might recognize input regulatory sequences, by comparison with database entries. Such predictions can also be extended to a single proteome chosen by the user, and results are ranked in terms of interface similarity. Benchmark experiments with bacterial, plant and human data were performed to measure the predictive power of footprintDB searches, which were able to correctly recover 10, 55 and 90% of the tested sequences, respectively. Correctly predicted TFs had a higher interface similarity than the average, confirming its diagnostic value. Web site implemented in PHP,Perl, MySQL and Apache. Freely available from http://floresta.eead.csic.es/footprintdb.

  9. Homo sapiens-Specific Binding Site Variants within Brain Exclusive Enhancers Are Subject to Accelerated Divergence across Human Population.

    PubMed

    Zehra, Rabail; Abbasi, Amir Ali

    2018-03-01

    Empirical assessments of human accelerated noncoding DNA frgaments have delineated presence of many cis-regulatory elements. Enhancers make up an important category of such accelerated cis-regulatory elements that efficiently control the spatiotemporal expression of many developmental genes. Establishing plausible reasons for accelerated enhancer sequence divergence in Homo sapiens has been termed significant in various previously published studies. This acceleration by including closely related primates and archaic human data has the potential to open up evolutionary avenues for deducing present-day brain structure. This study relied on empirically confirmed brain exclusive enhancers to avoid any misjudgments about their regulatory status and categorized among them a subset of enhancers with an exceptionally accelerated rate of lineage specific divergence in humans. In this assorted set, 13 distinct transcription factor binding sites were located that possessed unique existence in humans. Three of 13 such sites belonging to transcription factors SOX2, RUNX1/3, and FOS/JUND possessed single nucleotide variants that made them unique to H. sapiens upon comparisons with Neandertal and Denisovan orthologous sequences. These variants modifying the binding sites in modern human lineage were further substantiated as single nucleotide polymorphisms via exploiting 1000 Genomes Project Phase3 data. Long range haplotype based tests laid out evidence of positive selection to be governing in African population on two of the modern human motif modifying alleles with strongest results for SOX2 binding site. In sum, our study acknowledges acceleration in noncoding regulatory landscape of the genome and highlights functional parts within it to have undergone accelerated divergence in present-day human population.

  10. Ropizine concurrently enhances and inhibits ( sup 3 H) dextromethorpan binding to different structures of the guinea pig brain: Autoradiographic evidence for multiple binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canoll, P.D.; Smith, P.R.; and Musacchio, J.M.

    1990-01-01

    Ropizine produces a simultaneous enhancement and inhibition of ({sup 3}H) dextromethorphan (DM) high-affinity binding to different areas of the guinea pig brain. These results imply that there are two distinct types of high-affinity ({sup 3}H)DM binding sites, which are present in variable proportions in different brain structures. The ropizine-enhances ({sup 3}H)DM binding type was preferentially inhibited by (+)-pentazocine. This is consistent with the presumption that the (+)-pentazocine-sensitive site is identical with the common site for DM and 3-(-3-Hydroxphenyl)-N-(1-propyl)piperidine ((+)-3-PPP). The second binding type, which is inhibited by ropizine and is not so sensitive to (+){minus} pentazocine, has not been fullymore » characterized. This study demonstrates that the biphasic effects to ropizine are due, at least in part, to the effects of ropizine on two different types of ({sup 3}H)DM binding sites. However, this study does not rule out that the common DM/(+)-3-PPP site also might be inhibited by higher concentrations of ropizine.« less

  11. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade

    PubMed Central

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2014-01-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it’s plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it’s current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation aggregation. We discuss our findings in the context of tick feeding physiology. PMID:25454607

  12. Insulin-like growth factor binding protein-2: contributions of the C-terminal domain to insulin-like growth factor-1 binding.

    PubMed

    Kibbey, Megan M; Jameson, Mark J; Eaton, Erin M; Rosenzweig, Steven A

    2006-03-01

    Signaling by the insulin-like growth factor (IGF)-1 receptor (IGF-1R) has been implicated in the promotion and aggressiveness of breast, prostate, colorectal, and lung cancers. The IGF binding proteins (IGFBPs) represent a class of natural IGF antagonists that bind to and sequester IGF-1/2 from the IGF-1R, making them attractive candidates as therapeutics for cancer prevention and control. Recombinant human IGFBP-2 significantly attenuated IGF-1-stimulated MCF-7 cell proliferation with coaddition of 20 or 100 nM IGFBP-2 (50 or 80% inhibition, respectively). We previously identified IGF-1 contact sites both upstream and downstream of the CWCV motif (residues 247-250) in human IGFBP-2 (J Biol Chem 276:2880-2889, 2001). To further test their contributions to IGFBP-2 function, the single tryptophan in human IGFBP-2, Trp-248, was selectively cleaved with 2-(2'nitrophenylsulfenyl)-3-methyl-3 bromoindolenine (BNPS-skatole) and the BNPS-skatole products IGFBP-2(1-248) and IGFBP-2(249-289) as well as IGFBP-2(1-190) were expressed as glutathione S-transferase-fusion proteins and purified. Based on competition binding analysis, deletion of residues 249 to 289 caused an approximately 20-fold decrease in IGF-1 binding affinity (IGFBP-2 EC50 = 0.35 nM and IGFBP-2(1-248) = 7 nM). Removal of the remainder of the C-terminal domain had no further effect on affinity (IGFBP-2(1-190) EC50 = 9.2 nM). In kinetic assays, IGFBP-2(1-248) and IGFBP-2(1-190) exhibited more rapid association and dissociation rates than full-length IGFBP-2. These results confirm that regions upstream and downstream of the CWCV motif participate in IGF-1 binding. They further support the development of full-length IGFBP-2 as a cancer therapeutic.

  13. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    PubMed

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-28

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  14. Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer.

    PubMed

    Palsson, Arnar; Wesolowska, Natalia; Reynisdóttir, Sigrún; Ludwig, Michael Z; Kreitman, Martin

    2014-01-01

    Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.

  15. Endogenously Generated Plasmin at the Vascular Wall Injury Site Amplifies Lysine Binding Site-Dependent Plasminogen Accumulation in Microthrombi

    PubMed Central

    Brzoska, Tomasz; Tanaka-Murakami, Aki; Suzuki, Yuko; Sano, Hideto; Kanayama, Naohiro; Urano, Tetsumei

    2015-01-01

    The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP). The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg) on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation. PMID:25806939

  16. Combining fragment homology modeling with molecular dynamics aims at prediction of Ca2+ binding sites in CaBPs

    NASA Astrophysics Data System (ADS)

    Pang, ChunLi; Cao, TianGuang; Li, JunWei; Jia, MengWen; Zhang, SuHua; Ren, ShuXi; An, HaiLong; Zhan, Yong

    2013-08-01

    The family of calcium-binding proteins (CaBPs) consists of dozens of members and contributes to all aspects of the cell's function, from homeostasis to learning and memory. However, the Ca2+-binding mechanism is still unclear for most of CaBPs. To identify the Ca2+-binding sites of CaBPs, this study presented a computational approach which combined the fragment homology modeling with molecular dynamics simulation. For validation, we performed a two-step strategy as follows: first, the approach is used to identify the Ca2+-binding sites of CaBPs, which have the EF-hand Ca2+-binding site and the detailed binding mechanism. To accomplish this, eighteen crystal structures of CaBPs with 49 Ca2+-binding sites are selected to be analyzed including calmodulin. The computational method identified 43 from 49 Ca2+-binding sites. Second, we performed the approach to large-conductance Ca2+-activated K+ (BK) channels which don't have clear Ca2+-binding mechanism. The simulated results are consistent with the experimental data. The computational approach may shed some light on the identification of Ca2+-binding sites in CaBPs.

  17. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crichlow, G.; Lubetsky, J; Leng, L

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic datamore » indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.« less

  18. Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-neutralized Hyperthermostable Sso7d Scaffold Library*

    PubMed Central

    Kiefer, Jonathan D.; Srinivas, Raja R.; Lobner, Elisabeth; Tisdale, Alison W.; Mehta, Naveen K.; Yang, Nicole J.; Tidor, Bruce; Wittrup, K. Dane

    2016-01-01

    The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (Tm of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. PMID:27582495

  19. Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-neutralized Hyperthermostable Sso7d Scaffold Library.

    PubMed

    Traxlmayr, Michael W; Kiefer, Jonathan D; Srinivas, Raja R; Lobner, Elisabeth; Tisdale, Alison W; Mehta, Naveen K; Yang, Nicole J; Tidor, Bruce; Wittrup, K Dane

    2016-10-21

    The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (T m of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Searching for putative binding sites of the bispyridinium compound MB327 in the nicotinic acetylcholine receptor.

    PubMed

    Wein, Thomas; Höfner, Georg; Rappenglück, Sebastian; Sichler, Sonja; Niessen, Karin V; Seeger, Thomas; Worek, Franz; Thiermann, Horst; Wanner, Klaus T

    2018-09-01

    Irreversible inhibition of the acetylcholine esterase upon intoxication with organophosphorus compounds leads to an accumulation of acetylcholine in the synaptic cleft and a subsequent desensitization of nicotinic acetylcholine receptors which may ultimately result in respiratory failure. The bispyridinium compound MB327 has been found to restore functional activity of nAChR thus representing a promising starting point for the development of new drugs for the treatment of organophosphate poisoning. In order to optimize the resensitizing effect of MB327 on nAChR, it would be very helpful to know the MB327 specific binding site to apply structure based molecular modeling. The binding site for MB327 at the nAChR is not known and so far goal of speculations, but it has been shown that MB327 does not bind to the orthosteric acetylcholine binding site. We have used docking calculations to screen the surface of nAChR for possible binding sites of MB327. The results indicate that at least two potential binding sites for MB327 at nAChR are present inside the channel pore. In these binding sites, MB327 intercalates between the γ-α and β-δ subunits of nAChR, respectively. Both putative MB327 binding sites show an unsymmetrical distribution of surrounding hydrophilic and lipophilic amino acids. This suggests that substitution of MB327-related bispyridinium compounds on one of the two pyridinium rings with polar substituents should have a favorable effect on the pharmacological function. Copyright © 2017 Elsevier B.V. All rights reserved.