Rajanbabu, Venugopal; Pan, Chieh-Yu; Lee, Shang-Chun; Lin, Wei-Ju; Lin, Ching-Chun; Li, Chung-Leung; Chen, Jyh-Yih
2010-01-01
The antimicrobial peptide, tilapia hepcidin (TH) 2-3, belongs to the hepcidin family, and its antibacterial function has been reported. Here, we examined the TH2-3-mediated regulation of proinflammatory cytokines in bacterial endotoxin lipopolysaccharide (LPS)-stimulated mouse macrophages. The presence of TH2-3 in LPS-stimulated cells reduced the amount of tumor necrosis factor (TNF)-α secretion. From a microarray, real-time polymerase chain reaction (PCR), and cytokine array studies, we showed down-regulation of the proinflammatory cytokines TNF-α, interleukin (IL)-1α, IL-1β, IL-6, and the prostaglandin synthesis gene, cyclooxygenase (COX)-2, by TH2-3. Studies with the COX-2-specific inhibitor, melaxicam, and with COX-2-overexpressing cells demonstrated the positive regulation of TNF-α and negative regulation of cAMP degradation-specific phosphodiesterase (PDE) 4D by COX-2. In LPS-stimulated cells, TH2-3 acts like melaxicam and down-regulates COX-2 and up-regulates PDE4D. The reduction in intracellular cAMP by TH2-3 or melaxicam in LPS-stimulated cells supports the negative regulation of PDE4D by COX-2 and TH2-3. This demonstrates that the inhibition of COX-2 is among the mechanisms through which TH2-3 controls TNF-α release. At 1 h after treatment, the presence of TH2-3 in LPS-stimulated cells had suppressed the induction of pERK1/2 and prevented the LPS-stimulated nuclear accumulation of NF-κB family proteins of p65, NF-κB2, and c-Rel. In conclusion, TH2-3 inhibits TNF-α and other proinflammatory cytokines through COX-2-, PDE4D-, and pERK1/2-dependent mechanisms. PMID:20675368
MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharm
MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantlymore » increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.« less
Im, S H; Barchan, D; Maiti, P K; Fuchs, S; Souroujon, M C
2001-06-01
Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent Ab-mediated autoimmune disorders, in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1-type cells and costimulatory factors such as CD40 ligand (CD40L) contribute to disease pathogenesis by producing proinflammatory cytokines and by activating autoreactive B cells. In this study we demonstrate the capacity of CD40L blockade to modulate EAMG, and analyze the mechanism underlying this disease suppression. Anti-CD40L Abs given to rats at the chronic stage of EAMG suppress the clinical progression of the autoimmune process and lead to a decrease in the AChR-specific humoral response and delayed-type hypersensitivity. The cytokine profile of treated rats suggests that the underlying mechanism involves down-regulation of AChR-specific Th1-regulated responses with no significant effect on Th2- and Th3-regulated AChR-specific responses. EAMG suppression is also accompanied by a significant up-regulation of CTLA-4, whereas a series of costimulatory factors remain unchanged. Adoptive transfer of splenocytes from anti-CD40L-treated rats does not protect recipient rats against subsequently induced EAMG. Thus it seems that the suppressed progression of chronic EAMG by anti-CD40L treatment does not induce a switch from Th1 to Th2/Th3 regulation of the AChR-specific immune response and does not induce generation of regulatory cells. The ability of anti-CD40L treatment to suppress ongoing chronic EAMG suggests that blockade of CD40L may serve as a potential approach for the immunotherapy of MG and other Ab-mediated autoimmune diseases.
Takyar, Seyedtaghi; Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren; Elias, Jack A
2013-09-23
Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.
Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren
2013-01-01
Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF–miR-1–Mpl–P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma. PMID:24043765
Glucosamine Modulates T Cell Differentiation through Down-regulating N-Linked Glycosylation of CD25*
Chien, Ming-Wei; Lin, Ming-Hong; Huang, Shing-Hwa; Fu, Shin-Huei; Hsu, Chao-Yuan; Yen, B. Lin-Ju; Chen, Jiann-Torng; Chang, Deh-Ming; Sytwu, Huey-Kang
2015-01-01
Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis. PMID:26468284
Bengtsson, Å; Lundberg, M; Avila-Cariño, J; Jacobsson, G; Holmgren, A; Scheynius, A
2001-01-01
The thiol antioxidant N-acetyl-l-cysteine (NAC), known as a precursor of glutathione (GSH), is used in AIDS treatment trials, as a chemoprotectant in cancer chemotherapy and in treatment of chronic bronchitis. In vitro, GSH and NAC are known to enhance T cell proliferation, production of IL-2 and up-regulation of the IL-2 receptor. The 120-kD CD30 surface antigen belongs to the tumour necrosis factor (TNF) receptor superfamily. It is expressed by activated T helper (Th) cells and its expression is sustained in Th2 cells. We have analysed the effect of GSH and NAC on the cytokine profile and CD30 expression on human allergen-specific T cell clones (TCC). TCC were stimulated with anti-CD3 antibodies in the presence of different concentrations of GSH and NAC. Both thiols caused a dose dependent down-regulation of IL-4, IL-5 and IFN-γ levels in Th0 and Th2 clones, with the most pronounced decrease of IL-4. Furthermore, they down-regulated the surface expression of CD30, and the levels of soluble CD30 (sCD30) in the culture supernatants were decreased. In contrast, the surface expression of CD28 or CD40 ligand (CD40L) was not significantly changed after treatment with 20 mm NAC. These results indicate that GSH and NAC favour a Th1 response by a preferential down-regulation of IL-4. In addition, the expression of CD30 was down regulated by GSH and NAC, suggesting that CD30 expression is dependent on IL-4, or modified by NAC. In the likely event that CD30 and its soluble counterpart prove to contribute to the pathogenesis in Th2 related diseases such as allergy, NAC may be considered as a future therapeutic agent in the treatment of these diseases. PMID:11298119
Gong, Fangyuan; Shen, Yan; Zhang, Qi; Sun, Yang; Tang, Jiayu; Tao, Feifei; Xu, Qiang
2010-07-15
Allograft rejection is a predominantly Th1 immune response. In this study, we showed that obaculactone, a natural compound derived from citrus fruit, prolonged skin graft survival in mice when treated after but not before transplantation. Furthermore, obaculactone inhibited alloantigen-specific production of Th1 cytokine IFN-gamma as well as proinflammatory cytokine IL-2, TNFalpha and IL-6. In parallel, IL-10 production was markedly up-regulated. Obaculactone significantly enhanced the percentage of CD4(+)CD25(+)Foxp3(+) Treg cells in the CD4(+) splenocytes without any effect on their inhibitory function. In vitro and in vivo tests showed obaculactone down-regulated T-bet expression in Th1 effector cells. Taken together, the unique immunomodulatory properties might qualify obaculactone as a putative, therapeutic compound for the treatment of Th1-driven diseases, including transplant rejection. 2010 Elsevier Inc. All rights reserved.
Xiang, Lianbin; Rehm, Kristina E; Marshall, Gailen D
2014-08-01
Physical stressors, such as strenuous exercise, can have numerous effects on the human body including the immune system. The aim of this study was to evaluate the gene expression profile of Th1/Th2 cytokines and related transcription factor genes in order to investigate possible immune imbalances before and after a marathon. Blood samples were collected from 16 normal volunteers 24-48 h before and one week after completing a marathon race. Gene expression of Th1 and Th2 related cytokines from human peripheral blood mononuclear cells (PBMC) was analyzed using Human Th1-Th2-Th3 RT(2) Profiler PCR Array and qRT-PCR that measured the transcript levels of 84 genes related to T cell activation. We found that PBMC express a characteristic Th2-like gene profile one week post-marathon compared to pre-marathon. The majority of genes up-regulated one week post-marathon such as IL-4, GATA3, and CCR4 were Th2 associated. For Th1-related genes, CXCR3 and IRF1 were up-regulated one week post-marathon. There was a trend of down-regulation of two Th1 related genes, T-bet and STAT1. Th3-related gene expression patterns did not change in the study. The ratios of both IFN-γ/IL-4 and T-bet/GATA3 gene expressions were significantly lower one week after marathon. These findings suggest that a Th1/Th2 immune imbalance persisted at least 1 week after completion of a marathon which offers a mechanistic rationale for the increased risk of upper respiratory tract infections often reported after strenuous exercise. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, Dongkai; Zhang, Shun; Sun, Hongyang; Xu, Xingyun; Hao, Zongbing; Mu, Chenchen; Xu, Xingshun; Wang, Guanghui; Ren, Haigang
2018-04-06
Abelson helper integration site 1 (AHI1) is associated with several neuropsychiatric and brain developmental disorders, such as schizophrenia, depression, autism, and Joubert syndrome. Ahi1 deficiency in mice leads to behaviors typical of depression. However, the mechanisms by which AHI1 regulates behavior remain to be elucidated. Here, we found that down-regulation of expression of the rate-limiting enzyme in dopamine biosynthesis, tyrosine hydroxylase (TH), in the midbrains of Ahi1- knockout (KO) mice is responsible for Ahi1 -deficiency-mediated depressive symptoms. We also found that Rev-Erbα, a TH transcriptional repressor and circadian regulator, is up-regulated in the Ahi1- KO mouse midbrains and Ahi1 -knockdown Neuro-2a cells. Moreover, brain and muscle Arnt-like protein 1 (BMAL1), the Rev-Erb α transcriptional regulator, is also increased in the Ahi1- KO mouse midbrains and Ahi1 -knockdown cells. Our results further revealed that AHI1 decreases BMAL1/Rev-Erbα expression by interacting with and repressing retinoic acid receptor-related orphan receptor α, a nuclear receptor and transcriptional regulator of circadian genes. Of note, Bmal1 deficiency reversed the reduction in TH expression induced by Ahi1 deficiency. Moreover, microinfusion of the Rev-Erbα inhibitor SR8278 into the ventral midbrain of Ahi1- KO mice significantly increased TH expression in the ventral tegmental area and improved their depressive symptoms. These findings provide a mechanistic explanation for a link between AHI1-related behaviors and the circadian clock pathway, indicating an involvement of circadian regulatory proteins in AHI1-regulated mood and behavior. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Park, Hae-Ran; Jo, Sung-Kee; Choi, Nam-Hee; Jung, Uhee
2012-05-01
Whole body irradiated mice appear to experience a down-regulation of the helper T (Th)1-like immune response, and maintain a persistent immunological imbalance. In the current study, we evaluated the effect of HemoHIM (an herbal product made from Angelica Radix, Cnidium officinale , and Paeonia japonica cultivated in Korea) to ameliorate the immunological imbalance induce in fractionated γ-irradiated mice. The mice were exposed to γ rays twice a week (0.5 Gy fractions) for a total dose of 5 Gy, and HemoHIM was administrated orally from 1 week before the first irradiation to 1 week before the final analysis. All experiments were performed 4 and 6 months after their first exposure. HemoHIM ameliorated the Th1- and Th2-related immune responses normally occur in irradiated mice with or without dinitrophenylated keyhole limpet hemocyanin immunization. HemoHIM also restored the natural killer cell activities without changing the percentage of natural killer cells in irradiated mice. Furthermore, the administration of HemoHIM prevented the reduction in levels of interleukin-12p70 in irradiated mice. Finally, we found that HemoHIM enhanced the phosphorylation of signal transducer and activator of transcription (STAT) 4 that was reduced in irradiated mice. Our findings suggest that HemoHIM ameliorates the persistent down-regulation of Th1-like immune responses by modulating the IL-12p70/pSTAT4 signaling pathway.
Subchronic Exposure to Arsenic Represses the TH/TRβ1-CaMK IV Signaling Pathway in Mouse Cerebellum.
Guan, Huai; Li, Shuangyue; Guo, Yanjie; Liu, Xiaofeng; Yang, Yi; Guo, Jinqiu; Li, Sheng; Zhang, Cong; Shang, Lixin; Piao, Fengyuan
2016-01-26
We previously reported that arsenic (As) impaired learning and memory by down-regulating calmodulin-dependent protein kinase IV (CaMK IV) in mouse cerebellum. It has been documented that the thyroid hormone receptor (TR)/retinoid X receptor (RXR) heterodimer and thyroid hormone (TH) may be involved in the regulation of CaMK IV. To investigate whether As affects the TR/RXR heterodimer and TH, we determined As concentration in serum and cerebellum, 3,5,3'-triiodothyronine (T3) and thyroxin (T4) levels in serum, and expression of CaMK IV, TR and RXR in cerebellum of mice exposed to As. Cognition function was examined by the step-down passive avoidance task and Morris water maze (MWM) tests. Morphology of the cerebellum was observed by Hematoxylin-Eosin staining under light microscope. Our results showed that the concentrations of As in the serum and cerebellum of mice both increased with increasing As-exposure level. A significant positive correlation was found between the two processes. Adeficit in learning and memory was found in the exposed mice. Abnormal morphologic changes of Purkinje cells were observed in cerebellum of the exposed mice. Moreover, the cerebellar expressions of CaMK IV protein and the TRβ gene, and TRβ1 protein were significantly lower in As-exposed mice than those in controls. Subchronic exposure to As appears to increase its level in serum and cerebella of mice, impairing learning and memory and down-regulating expression of TRβ1 as well as down-stream CaMK IV. It is also suggested that the increased As may be responsible for down-regulation of TRβ1 and CaMK IV in cerebellum and that the down-regulated TRβ1 may be involved in As-induced impairment of learning and memory via inhibiting CaMK IV and its down-stream pathway.
Tokunaga, Masayuki; Baron, Byron; Kitagawa, Takao; Tokuda, Kazuhiro; Kuramitsu, Yasuhiro
2015-11-01
Active hexose-correlated compound (AHCC) is an extract of a basidiomycete mushroom that enhances the therapeutic effects and reduces the side-effects of chemotherapy. Our previous studies demonstrated that heat-shock protein 27 (HSP27) was involved in gemcitabine-resistance of pancreatic cancer cells and it was down-regulated by AHCC-treatment. However, how AHCC down-regulated HSP27 is unknown. In the present study, we focused on two transcription factors reported to induce HSP27, heat shock factor 1 (HSF1) and high-mobility group box 1 (HMGB1) and investigated the effect of AHCC on their expression. KLM1-R cells were treated with AHCC and the protein expression of HSF1 and HMGB1 were analyzed by western blotting. The protein expression of HSF1 in KLM1-R was down-regulated by AHCC treatment. On the other hand, the protein expression of HMGB1 was not reduced in KLM1-R cells after AHCC treatment. The possibility that AHCC down-regulated HSP27 through down-regulation of the HSF1, was herein shown. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Huang, T J; MacAry, P A; Eynott, P; Moussavi, A; Daniel, K C; Askenase, P W; Kemeny, D M; Chung, K F
2001-01-01
Th2 T cell immune-driven inflammation plays an important role in allergic asthma. We studied the effect of counterbalancing Th1 T cells in an asthma model in Brown Norway rats that favors Th2 responses. Rats received i.v. transfers of syngeneic allergen-specific Th1 or Th2 cells, 24 h before aerosol exposure to allergen, and were studied 18-24 h later. Adoptive transfer of OVA-specific Th2 cells, but not Th1 cells, and OVA, but not BSA exposure, induced bronchial hyperresponsiveness (BHR) to acetylcholine and eosinophilia in a cell number-dependent manner. Importantly, cotransfer of OVA-specific Th1 cells dose-dependently reversed BHR and bronchoalveolar lavage (BAL) eosinophilia, but not mucosal eosinophilia. OVA-specific Th1 cells transferred alone induced mucosal eosinophilia, but neither BHR nor BAL eosinophilia. Th1 suppression of BHR and BAL eosinophilia was allergen specific, since cotransfer of BSA-specific Th1 cells with the OVA-specific Th2 cells was not inhibitory when OVA aerosol alone was used, but was suppressive with OVA and BSA challenge. Furthermore, recipients of Th1 cells alone had increased gene expression for IFN-gamma in the lungs, while those receiving Th2 cells alone showed increased IL-4 mRNA. Importantly, induction of these Th2 cytokines was inhibited in recipients of combined Th1 and Th2 cells. Anti-IFN-gamma treatment attenuated the down-regulatory effect of Th1 cells. Allergen-specific Th1 cells down-regulate efferent Th2 cytokine-dependent BHR and BAL eosinophilia in an asthma model via mechanisms that depend on IFN-gamma. Therapy designed to control the efferent phase of established asthma by augmenting down-regulatory Th1 counterbalancing mechanisms should be effective.
Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue
2015-08-15
Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway. Copyright © 2015 Elsevier Inc. All rights reserved.
Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S
2001-10-01
Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.
Lu, Dong-Hong; Guo, Xiao-Yun; Qin, Shan-Yu; Luo, Wei; Huang, Xiao-Li; Chen, Mei; Wang, Jia-Xu; Ma, Shi-Jia; Yang, Xian-Wen; Jiang, Hai-Xing
2015-01-01
AIM: To investigate the effect of interleukin (IL)-22 on hepatic fibrosis in mice and the possible mechanism involved. METHODS: Liver fibrosis was induced in male BALB/c mice by CCl4. Recombinant IL-22 (rmIL-22) was administered intraperitoneally in CCl4-treated mice. Fibrosis was assessed by histology and Masson staining. The activation of hepatic stellate cells (HSCs) was investigated by analysis of α-smooth muscle actin expression. The frequencies of T helper (Th) 22 cells, Th17 cells and Th1 cells, the expression of inflammatory cytokines [IL-22, IL-17A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-1β] and transcription factors [aryl hydrocarbon receptor (AHR), RAR-related orphan receptor (RORγt), T-bet] mRNA in the liver were investigated. In addition, the plasma levels of IL-22, IL-17A, IFN-γ, TNF-α, IL-6 and IL-1β were evaluated. RESULTS: Significant elevations in circulating Th22 cells, Th17 cells, Th1 cells, IL-22, IL-17A, and IFN-γ were observed in the hepatic fibrosis group compared with the control group (P < 0.01). Treatment with rmIL-22 in mice with hepatic fibrosis ameliorated the severity of hepatic fibrosis, which was confirmed by lower hepatic fibrosis pathological scores (P < 0.01). RmIL-22 decreased the frequencies of Th22 cells (6.71% ± 0.97% vs 8.09% ± 0.74%, P < 0.01), Th17 cells (4.34% ± 0.37% vs 5.71% ± 0.24%, P < 0.01), Th1 cells (3.09% ± 0.49% vs 4.91% ± 0.73%, P < 0.01), and the levels of IL-22 (56.23 ± 3.08 vs 70.29 ± 3.01, P < 0.01), IL-17A (30.74 ± 2.77 vs 45.68 ± 2.71, P < 0.01), and IFN-γ (74.78 ± 2.61 vs 124.89 ± 2.82, P < 0.01). Down-regulation of IL-22, IL-17A, IFN-γ, TNF-α, IL-6, IL-1β, AHR RORγt, and T-bet gene expression in the liver was observed in the rmIL-22 group (P < 0.01). CONCLUSION: The frequencies of Th22, Th17 and Th1 cells are elevated in hepatic fibrosis. RmIL-22 can attenuate HSC activation and down-regulate the levels of inflammatory cytokines, thereby ameliorating liver fibrogenesis. PMID:25663772
Zhu, Yongxia; Wei, Wei; Ye, Tinghong; Liu, Zhihao; Liu, Li; Luo, Yong; Zhang, Lidan; Gao, Chao; Wang, Ningyu; Yu, Luoting
2016-01-01
Cancer is still a major public health issue worldwide, and new therapeutics with anti-tumor activity are still urgently needed. The anti-tumor activity of TH-39, which shows potent anti-proliferative activity against K562 cells with an IC50 of 0.78 µM, was investigated using immunoblot, co-immunoprecipitation, the MTT assay, and flow cytometry. Mechanistically, TH-39 may disrupt the interaction between Hec1 and Nek2 in K562 cells. Moreover, TH-39 inhibited cell proliferation in a concentration- and time-dependent manner by influencing the morphology of K562 cells and inducing G0/G1 phase arrest. G0/G1 phase arrest was associated with down-regulation of CDK2-cyclin E complex and CDK4/6-cyclin D complex activities. Furthermore, TH-39 also induced cell apoptosis, which was associated with activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax. TH-39 could also decrease mitochondrial membrane potential (Δψm) and increase reactive oxygen species (ROS) accumulation in K562 cells. The results indicated that TH-39 might induce apoptosis via the ROS-mitochondrial apoptotic pathway. This study highlights the potential therapeutic efficacy of the anti-cancer compound TH-39 in treatment-resistant chronic myeloid leukemia. © 2016 The Author(s) Published by S. Karger AG, Basel.
Gao, Yuan; Min, Kyungji; Zhang, Yibing; Su, John; Greenwood, Matthew; Gronert, Karsten
2015-01-01
Immune-driven dry eye disease primarily affects women; the cause for this sex-specific prevalence is unknown. PMN have distinct phenotypes that drive inflammation but also regulate lymphocytes and are the rate-limiting cell for generating anti-inflammatory lipoxin A4 (LXA4). Estrogen regulates the LXA4 circuit to induce delayed female-specific wound healing in the cornea. However, the role of PMN in dry eye disease remains unexplored. We discovered a LXA4-producing tissue-PMN population in the corneal limbus, lacrimal glands and cervical lymph nodes of healthy male and female mice. These tissue-PMN, unlike inflammatory-PMN, expressed a highly amplified LXA4 circuit and were sex-specifically regulated during immune-driven dry eye disease. Desiccating stress in females, unlike in males, triggered a remarkable decrease in lymph node PMN and LXA4 formation that remained depressed during dry eye disease. Depressed lymph node PMN and LXA4 in females correlated with an increase in T effector cells (TH1 and TH17), a decrease in regulatory T cells (Treg) and increased dry eye pathogenesis. Antibody depletion of tissue-PMN abrogated LXA4 formation in lymph nodes, caused a marked increase in TH1 and TH17 and decrease in Treg cells. To establish an immune regulatory role for PMN-derived LXA4 in dry eye females were treated with LXA4. LXA4 treatment markedly inhibited TH1 and TH17 and amplified Treg cells in draining lymph nodes, while reducing dry eye pathogenesis. These results identify female-specific regulation of LXA4-producing tissue-PMN as a potential key factor in aberrant T effector cell activation and initiation of immune-driven dry eye disease. PMID:26324767
Sela, Uri; Park, Chae Gyu; Park, Andrew; Olds, Peter; Wang, Shu; Fischetti, Vincent A.
2016-01-01
Cytokines secreted from dendritic cells (DCs) play an important role in the regulation of T helper (Th) cell differentiation and activation into effector cells. Therefore, controlling cytokine secretion from DCs may potentially regulate Th differentiation/activation. DCs also induce de-novo generation of regulatory T cells (Treg) that modulate the immune response. In the current study we used the mixed leukocyte reaction (MLR) to investigate the effect of allospecific Treg on IL-12, TNFα and IL-6 secretion by DCs. Treg cells were found to markedly down-regulate IL-12 secretion from DCs following stimulation with TLR7/8 agonist. This down-regulation of IL-12 was neither due to a direct suppression of its production by the DCs nor a result of marked DC death. We found that IL-12 was rather actively consumed by Treg cells. IL-12 consumption was mediated by a subpopulation of IL-12Rβ2-expressing Treg cells and was dependent on MHC class-II expressed on dendritic cells. Furthermore, IL-12 consumption by Tregs increased their suppressive effect on T cell proliferation and Th1 activation. These results provide a new pathway of Th1 response regulation where IL-12 secreted by DCs is consumed by a sub-population of IL-12Rβ2-expressing Treg cells. Consumption of IL-12 by Tregs not only reduces the availability of IL-12 to Th effector cells but also enhances the Treg immunosuppressive effect. This DC-induced IL-12Rβ2-expressing Treg subpopulation may have a therapeutic advantage in suppressing Th1 mediated autoimmunity. PMID:26745371
Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon
2012-12-01
In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.
Chiurchiù, Valerio; Leuti, Alessandro; Dalli, Jesmond; Jacobsson, Anders; Battistini, Luca; Maccarrone, Mauro; Serhan, Charles N
2016-08-24
Resolution of inflammation is a finely regulated process mediated by specialized proresolving lipid mediators (SPMs), including docosahexaenoic acid (DHA)-derived resolvins and maresins. The immunomodulatory role of SPMs in adaptive immune cells is of interest. We report that D-series resolvins (resolvin D1 and resolvin D2) and maresin 1 modulate adaptive immune responses in human peripheral blood lymphocytes. These lipid mediators reduce cytokine production by activated CD8(+) T cells and CD4(+) T helper 1 (TH1) and TH17 cells but do not modulate T cell inhibitory receptors or abrogate their capacity to proliferate. Moreover, these SPMs prevented naïve CD4(+) T cell differentiation into TH1 and TH17 by down-regulating their signature transcription factors, T-bet and Rorc, in a mechanism mediated by the GPR32 and ALX/FPR2 receptors; they concomitantly enhanced de novo generation and function of Foxp3(+) regulatory T (Treg) cells via the GPR32 receptor. These results were also supported in vivo in a mouse deficient for DHA synthesis (Elovl2(-/-)) that showed an increase in TH1/TH17 cells and a decrease in Treg cells compared to wild-type mice. Additionally, either DHA supplementation in Elovl2(-/-) mice or in vivo administration of resolvin D1 significantly reduced cytokine production upon specific stimulation of T cells. These findings demonstrate actions of specific SPMs on adaptive immunity and provide a new avenue for SPM-based approaches to modulate chronic inflammation. Copyright © 2016, American Association for the Advancement of Science.
Gene expression profiles associated with depression in patients with chronic hepatitis C (CH-C)
Birerdinc, Aybike; Afendy, Arian; Stepanova, Maria; Younossi, Issah; Baranova, Ancha; Younossi, Zobair M
2012-01-01
The standard treatment for CH-C, pegylated interferon-α and ribavirin (PEG-IFN + RBV), is associated with depression. Recent studies have proposed a new role for cytokines in the pathogenesis of depression. We aimed to assess differential gene expression related to depression in CH-C patients treated with PEG-IFN + RBV. We included 67 CH-C patients being treated with PEG-IFN+RBV. Of the entire study cohort, 22% had pre-existing depression, while another 37% developed new depression in course of the treatment. Pretreatment blood samples were collected into PAXgene™ RNA tubes, the RNAs extracted from peripheral blood mononuclear cells (PBMCs) were used for one step RT-PCR to profile 160 mRNAs. Differentially expressed genes were separated into up- and down-regulated genes according to presence or absence of depression at baseline (pre-existing depression) or following the initiation of treatment (treatment-related depression). The mRNA expression profile associated with any depression and with treatment-related depression included four and six genes, respectively. Our data demonstrate a significant down-regulation of TGF-β1 and the shift of Th1-Th2 cytokine balance in the depression associated with IFN-based treatment of HCV infection. We propose that TGF-β1 plays an important role in the imbalance of Th1/Th2 in patients with CH-C and depression. With further validation, TGF-β1 and other components of Th1/Th2 regulation pathway may provide a future marker for CH-C patients predisposed to depression. PMID:23139898
Gene expression profiles associated with depression in patients with chronic hepatitis C (CH-C).
Birerdinc, Aybike; Afendy, Arian; Stepanova, Maria; Younossi, Issah; Baranova, Ancha; Younossi, Zobair M
2012-09-01
The standard treatment for CH-C, pegylated interferon-α and ribavirin (PEG-IFN + RBV), is associated with depression. Recent studies have proposed a new role for cytokines in the pathogenesis of depression. We aimed to assess differential gene expression related to depression in CH-C patients treated with PEG-IFN + RBV. We included 67 CH-C patients being treated with PEG-IFN+RBV. Of the entire study cohort, 22% had pre-existing depression, while another 37% developed new depression in course of the treatment. Pretreatment blood samples were collected into PAXgene™ RNA tubes, the RNAs extracted from peripheral blood mononuclear cells (PBMCs) were used for one step RT-PCR to profile 160 mRNAs. Differentially expressed genes were separated into up- and down-regulated genes according to presence or absence of depression at baseline (pre-existing depression) or following the initiation of treatment (treatment-related depression). The mRNA expression profile associated with any depression and with treatment-related depression included four and six genes, respectively. Our data demonstrate a significant down-regulation of TGF-β1 and the shift of Th1-Th2 cytokine balance in the depression associated with IFN-based treatment of HCV infection. We propose that TGF-β1 plays an important role in the imbalance of Th1/Th2 in patients with CH-C and depression. With further validation, TGF-β1 and other components of Th1/Th2 regulation pathway may provide a future marker for CH-C patients predisposed to depression.
Alkaline Cytosolic pH and High Sodium Hydrogen Exchanger 1 (NHE1) Activity in Th9 Cells.
Singh, Yogesh; Zhou, Yuetao; Shi, Xiaolong; Zhang, Shaqiu; Umbach, Anja T; Salker, Madhuri S; Lang, Karl S; Lang, Florian
2016-11-04
CD4 + T helper 9 (Th9) cells are a newly discovered Th cell subset that produce the pleiotropic cytokine IL-9. Th9 cells can protect against tumors and provide resistance against helminth infections. Given their pivotal role in the adaptive immune system, understanding Th9 cell development and the regulation of IL-9 production could open novel immunotherapeutic opportunities. The Na + /H + exchanger 1 (NHE1; gene name Slc9α1)) is critically important for regulating intracellular pH (pH i ), cell volume, migration, and cell survival. The pH i influences cytokine secretion, activities of membrane-associated enzymes, ion transport, and other effector signaling molecules such as ATP and Ca 2+ levels. However, whether NHE1 regulates Th9 cell development or IL-9 secretion has not yet been defined. The present study explored the role of NHE1 in Th9 cell development and function. Th cell subsets were characterized by flow cytometry and pH i was measured using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-acetoxymethyl ester (BCECF-AM) dye. NHE1 functional activity was estimated from the rate of realkalinization following an ammonium pulse. Surprisingly, in Th9 cells pH i and NHE1 activity were significantly higher than in all other Th cell subsets (Th1/Th2/Th17 and induced regulatory T cells (iTregs)). NHE1 transcript levels and protein abundance were significantly higher in Th9 cells than in other Th cell subsets. Inhibition of NHE1 by siRNA-NHE1 or with cariporide in Th9 cells down-regulated IL-9 and ATP production. NHE1 activity, Th9 cell development, and IL-9 production were further blunted by pharmacological inhibition of protein kinase Akt1/Akt2. Our findings reveal that Akt1/Akt2 control of NHE1 could be an important physiological regulator of Th9 cell differentiation, IL-9 secretion, and ATP production. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Jimenez-Sousa, Maria Angeles; Almansa, Raquel; de la Fuente, Concha; Caro-Paton, Agustín; Ruiz, Lourdes; Sanchez-Antolín, Gloria; Gonzalez, Jose Manuel; Aller, Rocio; Alcaide, Noelia; Largo, Pilar; Resino, Salvador; de Lejarazu, Raul Ortiz; Bermejo-Martin, Jesus F
2010-06-01
Hepatitis C virus causes significant morbidity and mortality worldwide. The infection induces up-regulation of cytokine and chemokines commonly linked to the development of cellular and pro-inflammatory antiviral responses. The current standard in hepatitis C treatment consists of combination regimens of pegylated interferon-alpha plus ribavirin. The impact of combined treatment in the host immune response is still poorly understood. In the present study, we profiled 27 cytokines, chemokines and growth factors involved in the innate and adaptive responses to the virus in the serum of 27 hepatitis C virus-infected patients, before and after 12 weeks of combined treatment, and compared them to 10 healthy controls. Hepatitis C virus infection induced not only the secretion of chemokines and cytokines participating in Th1 responses (MIP-1 alpha, IP-10, TNF-alpha, IL-12p70, IL-2), but also cytokines involved in the development of Th17 responses (IL-6, IL-8, IL-9 and IL-17) and two pro-fibrotic factors (FGF-b, VEGF). The most important increases included MIP-1 alpha (4.7-fold increase compared to the control group), TNF-alpha (3.0-fold), FGF-b (3.4-fold), VEGF (3.5-fold), IP-10 (3.6-fold), IL-17 (107.0-fold), IL-9 (7.5-fold), IL-12p70 (7.0-fold), IL-2 (5.6-fold) and IL-7 (5.6-fold). Combined treatment with pegylated interferon-alpha plus ribavirin down-modulated the secretion of key Th1 and Th17 pro-inflammatory mediators, and pro-fibrotic growth factors as early as 12 weeks after treatment initiation. MIP-1 alpha, FGF-b, IL-17 decreased in a more dramatic manner in the group of responder patients than in the group of non-responders (fold-change in cEVR; fold-change in NcEVR): MIP-1 alpha (4.72;1.71), FGF-b (4.54;1.21), IL-17 (107.1;1.8). Correlation studies demonstrated that the decreases in the levels of these mediators were significantly associated with each other, pointing to a coordinated effect of the treatment on their secretion (r coefficient; p value): [ FGF-b versus IL-17 (0.90; 0.00), IL-17 versus VEGF (0.88; 0.00), MIP-1 alpha versus IL-17 (0.84;0.00), FGF-b versus MIP-1 alpha (0.96;0.00), FGF-b versus IL-12p70 (0.90; 0.00), VEGF versus IL-12p70 (0.89; 0.00)]. Th17 immunity has been previously associated with autoimmune diseases and asthma, but this is the first work reporting a role for this profile in viral hepatitis. These results provide an opportunity to evaluate the impact of the treatment with Peg-INF-alpha and RBV on the prevention of immune-driven tissue damage in infected patients.
40 CFR 52.1675 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-down; One boiler converted; South Campus—Boiler Plant: Converted; North Campus Science and Physical Education Building: October 1, 1980. (b) Harlem Hospital, 135th St. and Lenox Ave., Manhattan: April 1, 1981...
Chen, Qian-Qian; Yan, Li; Wang, Chang-Zheng; Wang, Wei-Hua; Shi, Hui; Su, Bin-Bin; Zeng, Qing-Huan; Du, Hai-Tao; Wan, Jun
2013-01-01
AIM: To investigate the potential therapeutic effects of mesenchymal stem cells (MSCs) in inflammatory bowel disease (IBD), we transplanted MSCs into an experimental model of IBD. METHODS: A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg body weight) was administered to female BALB/c mice. Bone marrow mesenchymal stem cells (BMSCs) were derived from male green fluorescent protein (GFP) transgenic mice and were transplanted intravenously into the experimental animals after disease onset. Clinical activity scores and histological changes were evaluated. GFP and Sex determining region Y gene (SRY) expression were used for cell tracking. Ki67 positive cells and Lgr5-expressing cells were determined to measure proliferative activity. Inflammatory response was determined by measuring the levels of different inflammatory mediators in the colon and serum. The inflammatory cytokines included tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-6, IL-17, IL-4, IL-10, and transforming growth factor (TGF-β). Master regulators of Th1 cells (T-box expressed in T cells, T-bet), Th17 cells (retinoid related orphan receptor gamma(t), RORγt), Th2 cells (GATA family of transcription factors 3, GATA3) and regulatory T cells (forkhead box P3, Foxp3) were also determined. RESULTS: Systemic infusion of GFP-BMSCs ameliorated the clinical and histopathologic severity of colitis, including body weight loss, diarrhea and inflammation, and increased survival (P < 0.05). The cell tracking study showed that MSCs homed to the injured colon. MSCs promoted proliferation of intestinal epithelial cells and differentiation of intestinal stem cells (P < 0.01). This therapeutic effect was mainly mediated by down-regulation of both Th1-Th17-driven autoimmune and inflammatory responses (IL-2, TNF-α, IFN-γ, T-bet; IL-6, IL-17, RORγt), and by up-regulation of Th2 activities (IL-4, IL-10, GATA-3) (P < 0.05). MSCs also induced activated CD4+CD25+Foxp3+ regulatory T cells (TGF-β, IL-10, Foxp3) with a suppressive capacity on Th1-Th17 effecter responses and promoted Th2 differentiation in vivo (P < 0.05). CONCLUSION: MSCs are key regulators of immune and inflammatory responses and may be an attractive candidate for cell-based therapy of IBD. PMID:23922467
Cytokine networking of innate immunity cells: a potential target of therapy.
Striz, Ilja; Brabcova, Eva; Kolesar, Libor; Sekerkova, Alena
2014-05-01
Innate immune cells, particularly macrophages and epithelial cells, play a key role in multiple layers of immune responses. Alarmins and pro-inflammatory cytokines from the IL (interleukin)-1 and TNF (tumour necrosis factor) families initiate the cascade of events by inducing chemokine release from bystander cells and by the up-regulation of adhesion molecules required for transendothelial trafficking of immune cells. Furthermore, innate cytokines produced by dendritic cells, macrophages, epithelial cells and innate lymphoid cells seem to play a critical role in polarization of helper T-cell cytokine profiles into specific subsets of Th1/Th2/Th17 effector cells or regulatory T-cells. Lastly, the innate immune system down-regulates effector mechanisms and restores homoeostasis in injured tissue via cytokines from the IL-10 and TGF (transforming growth factor) families mainly released from macrophages, preferentially the M2 subset, which have a capacity to induce regulatory T-cells, inhibit the production of pro-inflammatory cytokines and induce healing of the tissue by regulating extracellular matrix protein deposition and angiogenesis. Cytokines produced by innate immune cells represent an attractive target for therapeutic intervention, and multiple molecules are currently being tested clinically in patients with inflammatory bowel disease, rheumatoid arthritis, systemic diseases, autoinflammatory syndromes, fibrosing processes or malignancies. In addition to the already widely used blockers of TNFα and the tested inhibitors of IL-1 and IL-6, multiple therapeutic molecules are currently in clinical trials targeting TNF-related molecules [APRIL (a proliferation-inducing ligand) and BAFF (B-cell-activating factor belonging to the TNF family)], chemokine receptors, IL-17, TGFβ and other cytokines.
Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease.
Kidd, Parris
2003-08-01
One theory of immune regulation involves homeostasis between T-helper 1 (Th1) and T-helper 2 (Th2) activity. The Th1/Th2 hypothesis arose from 1986 research suggesting mouse T-helper cells expressed differing cytokine patterns. This hypothesis was adapted to human immunity, with Th1- and Th2-helper cells directing different immune response pathways. Th1 cells drive the type-1 pathway ("cellular immunity") to fight viruses and other intracellular pathogens, eliminate cancerous cells, and stimulate delayed-type hypersensitivity (DTH) skin reactions. Th2 cells drive the type-2 pathway ("humoral immunity") and up-regulate antibody production to fight extracellular organisms; type 2 dominance is credited with tolerance of xenografts and of the fetus during pregnancy. Overactivation of either pattern can cause disease, and either pathway can down-regulate the other. But the hypothesis has major inconsistencies; human cytokine activities rarely fall into exclusive pro-Th1 or -Th2 patterns. The non-helper regulatory T cells, or the antigen-presenting cells (APC), likely influence immunity in a manner comparable to Th1 and Th2 cells. Many diseases previously classified as Th1 or Th2 dominant fail to meet the set criteria. Experimentally, Th1 polarization is readily transformed to Th2 dominance through depletion of intracellular glutathione, and vice versa. Mercury depletes glutathione and polarizes toward Th2 dominance. Several nutrients and hormones measurably influence Th1/Th2 balance, including plant sterols/sterolins, melatonin, probiotics, progesterone, and the minerals selenium and zinc. The long-chain omega-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) significantly benefit diverse inflammatory and autoimmune conditions without any specific Th1/Th2 effect. Th1/Th2-based immunotherapies, e.g., T-cell receptor (TCR) peptides and interleukin-4 (IL-4) injections, have produced mixed results to date.
Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.
Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D; Miyasaka, Masayuki; Yang, Bo-Gie; Jang, Myoung Ho
2016-04-04
Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. © 2016 Sugawara et al.
Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist
Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D.; Miyasaka, Masayuki
2016-01-01
Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4+ T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra−deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. PMID:26951334
Yang, Chao; Li, Zhuo; Kang, Wei; Tian, Yu; Yan, Yuzhu; Chen, Wei
2016-10-10
It has been considered that epigenetic modulation can affect a diverse array of cellular activities, in which ten eleven translocation (TET) methylcytosine dioxygenase family members refer to a group of fundamental components involved in catalyzation of 5-hydroxymethylcytosine and modification of gene expression. Even though the function of TET proteins has been gradually revealed, their roles in immune regulation are still largely unknown. Recent studies provided clues that TET2 could regulate several innate immune-related inflammatory mediators in mammals. This study sought to explore the function of TET family members in potential T-helper (Th) cell differentiation involved in adaptive immunity by utilizing a zebrafish model. As shown by results, soluble antigens could induce expression of zebrafish IL-4/13A (i.e. a pivotal Th2-type cytokine essential in Th2 cell differentiation and functions), and further trigger the expression of Th1- and Th2-related genes. It is noteworthy that this response was accompanied by the up-regulation of two TET family members (TET1 and TET3) both in immune organs (spleen and kidney) and cells (peripheral lymphocytes). Knocking-down of TET1 and TET3 will give rise to the decreased responses of IL-4/13A induction against exogenous soluble antigen stimulation, and further restrain the expression of Th2-related genes, which indicates a restrained Th2 cell differentiation. Nonetheless, TET2 did not exhibit effect on the modification of Th1/Th2 related gene expression. Hence, these data showed that TET1 and TET3 might be two significant epigenetic regulators involved in Th2 differentiation through regulation of IL-4/13A expression. This is the first report to show that TET family members play indispensable roles in Th2-type immunity, indicating an epigenetic modulation manner involved in adaptive immune regulations and responses. Copyright © 2016 Elsevier B.V. All rights reserved.
2009-01-01
Background Gingival overgrowth (GO) is a common side effect of the chronic use of cyclosporine (CsA), an immunosuppressant widely used to prevent rejection in transplant patients. Recent studies have reported elevated levels of specific cytokines in gingival overgrowth tissue, particularly TGF-beta, suggesting that this growth factor plays a role in the accumulation of extracellular matrix materials. The effectiveness of azithromycin, a macrolide antibiotic, in the regression of this undesirable side effect has also been demonstrated. Methods In this study, we created an experimental model for assessing the therapeutic effect of roxithromycin in GO and the expression of transforming growth factor beta (TGF-beta2) through immunohistochemistry. We used four groups of rats totaling 32 individuals. GO was induced during five weeks and drug treatment was given on the 6th week as follows: group 1 received saline; group 2 received CsA and was treated with saline on the 6th week; group 3 received CsA and, on the 6th week, ampicilin; and group 4 received CsA during 5 weeks and, on the 6th week, was treated with roxithromycin. Results The results demonstrated that roxithromycin treatment was effective in reducing cyclosporine-induced GO in rats. Both epithelial and connective tissue showed a decrease in thickness and a significant reduction in TGF-beta2 expression, with a lower number of fibroblasts, reduction in fibrotic areas and decrease in inflammatory infiltrate. Conclusion The present data suggest that the down-regulation of TGF-beta2 expression may be an important mechanism of action by which roxithromycin inhibits GO. PMID:19995419
Therapeutic action of ghrelin in a mouse model of colitis.
Gonzalez-Rey, Elena; Chorny, Alejo; Delgado, Mario
2006-05-01
Ghrelin is a novel growth hormone-releasing peptide with potential endogenous anti-inflammatory activities ameliorating some pathologic inflammatory conditions. Crohn's disease is a chronic debilitating disease characterized by severe T helper cell (Th)1-driven inflammation of the colon. The aim of this study was to investigate the therapeutic effect of ghrelin in a murine model of colitis. We examined the anti-inflammatory action of ghrelin in the colitis induced by intracolonic administration of trinitrobenzene sulfonic acid. Diverse clinical signs of the disease were evaluated, including weight loss, diarrhea, colitis, and histopathology. We also investigated the mechanisms involved in the potential therapeutic effect of ghrelin, such as inflammatory cytokines and chemokines, Th1-type response, and regulatory factors. Ghrelin ameliorated significantly the clinical and histopathologic severity of the trinitrobenzene sulfonic acid-induced colitis; abrogating body weight loss, diarrhea, and inflammation; and increasing survival. The therapeutic effect was associated with down-regulation of both inflammatory and Th1-driven autoimmune response through the regulation of a wide spectrum of inflammatory mediators. In addition, a partial involvement of interluekin-10/transforming growth factor-beta1-secreting regulatory T cells in this therapeutic effect was demonstrated. Importantly, the ghrelin treatment was therapeutically effective in established colitis and avoided the recurrence of the disease. Our data demonstrate novel anti-inflammatory actions for ghrelin in the gastrointestinal tract, ie, the capacity to deactivate the intestinal inflammatory response and to restore mucosal immune tolerance at multiple levels. Consequently, ghrelin administration represents a novel possible therapeutic approach for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis.
Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi
2018-05-09
Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.
Ohshima, Koichi; Karube, Kennosuke; Hamasaki, Makoto; Tutiya, Takeshi; Yamaguchi, Takahiro; Suefuji, Hiroaki; Suzuki, Keiko; Suzumiya, Junji; Ohga, Shouichi; Kikuchi, Masahiro
2003-08-01
T cell immunity plays an important role in the clinicopathology of Epstein-Barr virus (EBV)-associated diseases. Acute EBV-induced infectious mononucleosis (IM) is a common self-limiting disease, however, other EBV-associated diseases, including chronic active EBV infection (CAEBV), NK cell lymphoma (NKL), and Hodgkin's lymphoma (HL), exhibit distinct clinical features. Chemokines are members of a family of small-secreted proteins. The relationships between chemokines and the chemokine receptor (R) are thought to be important for selectivity of local immunity. Some chemokines, chemokine R and cytokines closely associate with the T cell subtypes, Th1 and Th2 T cells and cytotoxic cells. To clarify the role of T cell immunity in EBV-associated diseases, we conducted gene expression profiling, using chemokine, chemokine R and cytokine DNA chips. Compared to EBV negative non-specific lymphadenitis, CAEBV and NKL exhibited diffuse down- and up-regulation, respectively, of these gene profiles. IM had a predominantly Th1-type profile, whereas HL had a mixed Th1/Th2-type profile. Reduction of the Th1-type cytokine interferon gamma (IFN-gamma) in CAEBV was confirmed by Reverse transcriptase-polymerase chain reaction, whereas IFN-gamma expression was markedly enhanced in NKL, and moderately enhanced in IM. Compared to IM, CAEBV showed slight elevation of "regulated upon activation, normal T expressed and secreted" (RANTES), but almost all other genes assayed were down-regulated. NKL exhibited elevated expression of numerous genes, particularly IFN-gamma-inducible-10 (IP-10) and monokine induced by IFN-gamma (MIG). HL showed variable elevated and reduced expression of various genes, with increased expression of IL-13 receptor and MIG. Our study demonstrated the enormous potential of gene expression profiling for clarifying the pathogenesis of EBV-associated diseases.
Sanchez-Guajardo, Vanesa; Borghans, José A M; Marquez, Maria-Elena; Garcia, Sylvie; Freitas, Antonio A
2005-02-01
The outcome of an immune response relies on the competitive capacities acquired through differentiation of CD4(+) T cells into Th1 or Th2 effector cells. Because Stat4 and Stat6 proteins are implicated in the Th1 vs Th2 generation and maintenance, respectively, we compare in this study the kinetics of Stat4(-/-) and Stat6(-/-) CD4(+) T cells during competitive bone marrow reconstitution and lymphopenia-driven proliferation. After bone marrow transplantation, both populations reconstitute the peripheral T cell pools equally well. After transfer into lymphopenic hosts, wild-type and Stat6(-/-) CD4(+) T cells show a proliferation advantage, which is early associated with the expression of an active phospho-Stat4 and the down-regulation of Stat6. Despite these differences, Stat4- and Stat6-deficient T cells reach similar steady state numbers. However, when both Stat4(-/-) and Stat6(-/-) CD4(+) T cells are coinjected into the same hosts, the Stat6(-/-) cells become dominant and out-compete Stat4(-/-) cells. These findings suggest that cell activation, through the Stat4 pathway and the down-regulation of Stat6, confers to pro-Th1 T cells a slight proliferation advantage that in a competitive situation has major late repercussions, because it modifies the final homeostatic equilibrium of the populations and favors the establishment of Th1 CD4(+) T cell dominance.
Long, Meixiao; Slaiby, Aaron M.; Hagymasi, Adam T.; Mihalyo, Marianne A.; Lichtler, Alexander C.; Reiner, Steven L.; Adler, Adam J.
2010-01-01
When Th1 effector CD4 cells encounter tolerizing Ag in vivo, their capacity to express the effector cytokines IFN-γ and TNF-α is lost more rapidly than noneffector functions such as IL-2 production and proliferation. To localize the relevant intracellular signaling defects, cytokine expression was compared following restimulation with Ag vs agents that bypass TCR-proximal signaling. IFN-γ and TNF-α expression were both partially rescued when TCR-proximal signaling was bypassed, indicating that both TCR-proximal and -distal signaling defects impair the expression of these two effector cytokines. In contrast, bypassing TCR-proximal signaling fully rescued IL-2 expression. T-bet, a transcription and chromatin remodeling factor that is required to direct the differentiation of naive CD4 cells into IFN-γ -expressing Th1 effectors, was partially down-modulated in tolerized Th1 effectors. Enforcing T-bet expression during tolerization selectively rescued the ability to express IFN-γ, but not TNF-α. Conversely, expression of a dominant-negative T-bet in Th1 effectors selectively impaired the ability to express IFN-γ, but not TNF-α. Analysis of histone acetylation at the IFN-γ promoter further suggested that down-modulation of T-bet expression during Th1 effector CD4 cell tolerization does not impair IFN-γ expression potential through alterations in chromatin structure. PMID:16393991
Jacquier, Vincent; Estellé, Jordi; Schmaltz-Panneau, Barbara; Lecardonnel, Jérôme; Moroldo, Marco; Lemonnier, Gaëtan; Turner-Maier, Jason; Duranthon, Véronique; Oswald, Isabelle P; Gidenne, Thierry; Rogel-Gaillard, Claire
2015-01-23
Our purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome. The LPS affected 15 to 20 times fewer genes than PMA-Ionomycin after both 4 hours (T4) and 24 hours (T24), of in vitro stimulation, in comparison with mock-stimulated PBMCs. LPS induced an inflammatory response as shown by a significant up-regulation of IL12A and CXCL11 at T4, followed by an increased transcription of IL6, IL1B, IL1A, IL36, IL37, TNF, and CCL4 at T24. Surprisingly, we could not find an up-regulation of IL8 either at T4 or at T24, and detected a down-regulation of DEFB1 and BPI at T24. A concerted up-regulation of SAA1, S100A12 and F3 was found upon stimulation by LPS. PMA-Ionomycin induced a very early expression of Th1, Th2, Treg, and Th17 responses by PBMCs at T4. The Th1 response increased at T24 as shown by the increase of the transcription of IFNG and by contrast to other cytokines which significantly decreased from T4 to T24 (IL2, IL4, IL10, IL13, IL17A, CD69) by comparison to mock-stimulation. The granulocyte-macrophage colony-stimulating factor (CSF2) was by far the most over-expressed gene at both T4 and T24 by comparison to mock-stimulated cells, confirming a major impact of PMA-Ionomycin on cell growth and proliferation. A significant down-regulation of IL16 was observed at T4 and T24, in agreement with a role of IL16 in PBMC apoptosis. We report new data on the responses of PBMCs to LPS and PMA-Ionomycin in the rabbit species, thus enlarging the set of mammalian species for which such reports exist. The availability of the rabbit genome assembly together with high throughput genomic tools should pave the way for more intense genomic studies for this species, which is known to be a very relevant biomedical model in immunology and physiology.
Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis.
Singh, Rakesh K; Srivastava, Ankita; Singh, Nisha
2012-09-06
The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis. Copyright © 2012 Elsevier GmbH. All rights reserved.
Khare, P; Jaiswal, A K; Tripathi, C D P; Sundar, S; Dube, A
2016-08-01
It is well known that a patient in clinical remission of visceral leishmaniasis (VL) remains immune to reinfection, which provides a rationale for the feasibility of a vaccine against this deadly disease. In earlier studies, observation of significant cellular responses in treated Leishmania patients as well as in hamsters against leishmanial antigens from different fractions led to its further proteomic characterization, wherein S-adenosyl-L-homocysteine hydrolase (AdoHcy) was identified as a helper type 1 (Th1) stimulatory protein. The present study includes immunological characterization of this protein, its cellular responses [lymphoproliferation, nitric oxide (NO) production and cytokine responses] in treated Leishmania-infected hamsters and patients as well as prophylactic efficacy against Leishmania challenge in hamsters and the immune responses generated thereof. Significantly higher cellular responses were noticed against recombinant L. donovani S-adenosyl-L-homocysteine hydrolase (rLdAdoHcy) compared to soluble L. donovani antigen in treated samples. Moreover, stimulation of peripheral blood mononuclear cells with rLdAdoHcy up-regulated the levels of interferon (IFN)-γ, interleukin (IL)-12 and down-regulated IL-10. Furthermore, vaccination with rLdAdoHcy generated perceptible delayed-type hypersensitivity response and exerted considerably good prophylactic efficacy (∼70% inhibition) against L. donovani challenge. The efficacy was confirmed by the increased expression levels of inducible NO synthase and Th1-type cytokines, IFN-γ and IL-12 and down-regulation of IL-4, IL-10 and transforming growth factor (TGF)-β. The results indicate the potentiality of rLdAdoHcy protein as a suitable vaccine candidate against VL. © 2016 British Society for Immunology.
Huang, R P; Fan, Y; Peng, A; Zeng, Z L; Reed, J C; Adamson, E D; Boynton, A L
1998-09-11
Previously, we showed that the transcription factor Egr-1 suppressed the proliferation of v-sis transformed NIH3T3 cells and also a number of human tumor cells. Here, we investigate the possible mechanisms responsible for this function. We show that transfected Egr-1 in human fibrosarcoma cells HT1080 leads to down-regulation of Bcl-2. Transient CAT transfection assays reveal that expression of Egr-1 suppresses Bcl-2 promoter activity in a dose-dependent manner. Furthermore, overexpression of Bcl-2 in Egr-1-expressing HT1080 cells enhanced cell proliferation in monolayer culture and increased anchorage-independent growth. Our results suggest that suppression of tumor cell proliferation by Egr-1 may be at least partially mediated through the down-regulation of Bcl-2.
Dissanayake, Senarath; Khan, Nasir; Shahin, Allen; Wijesinghe, Shanaka; Lukic, Miodrag
2002-01-01
T helper type 2 (Th2) -polarized immune responses are characteristically dominant in helminth infections. Two murine models that show a Th1 to Th2 polarization with infection progression are those of Schistosoma mansoni and Taenia crassiceps. In both, an early Th1 response is replaced by a late Th2 response. We report that the nucleic acid-, protein- and lipid-free carbohydrate fraction of T. crassiceps metacestodes (denoted T-CHO) possesses Th2-like immunomodulatory activity. Immunization of two strains of rats (Dark Agouti and Albino Oxford) and BALB/c mice with chicken albumin in the presence of T-CHO resulted in selective enhancement of immunoglobulin G1 (IgG1) antibodies, considered to be associated with Th2 responses in both rats and mice. Interleukin-6 (IL-6) followed by IL-10 were the dominant cytokines detected in in vitro cultures of mouse spleen cells stimulated with T-CHO. IL-4 and IL-5 were not detected in these culture supernates. Furthermore, Taenia carbohydrates were mitogenic to spleen cells, activated serine phosphorylation of proteins and up-regulated the expression of the anti-apoptotic protein, Bcl-2. When mouse spleen cells were cultured in the presence of Taenia carbohydrates, a concentration-dependent down-regulation of IL-2 and an overlapping up-regulation of IL-6 secretion were seen. PMID:12460185
Jiang, Mingjin; Chen, Yifei; Li, Chan; Peng, Qiuxian; Fang, Miao; Liu, Wei; Kang, Qunzhao; Lin, Yingbo; Yung, Ken Kin Lam; Mo, Zhixian
2016-07-04
Others and we have reported that rhynchophylline reverses amphetamine-induced conditioned place preference (CPP) effect which may be partly mediated by amelioration of central neurotransmitters and N-methyl-d-aspartate receptor 2B (NR2B) levels in the rat brains. The current study investigated the inhibiting effects of rhynchophylline on methamphetamine-induced (METH-induced) CPP in adult zebrafish and METH-induced locomotor activity in tyrosine hydroxylase-green fluorescent protein (TH-GFP) transgenic zebrafish larvae and attempted to confirm the hypothesis that these effects were mediated via regulation of neurotransmitters and dopaminergic and glutamatergic systems. After baseline preference test (on days 1-3), zebrafish were injected intraperitoneally METH (on days 4, 6 and 8) or the same volume of fish physiological saline (on days 5 and 7) and were immediately conditioned. Rhynchophylline was administered at 12h after injection of METH. On day 9, zebrafish were tested for METH-induced CPP. Results revealed that rhynchophylline (100mg/kg) significantly inhibited the acquisition of METH-induced CPP, reduced the content of dopamine and glutamate and down-regulated the expression of TH and NR2B in the CPP zebrafish brains. Furthermore, the influence of rhynchophylline on METH-induced locomotor activity was also observed in TH-GFP transgenic zebrafish larvae. Results showed that rhynchophylline (50mg/L) treatment led to a significant reduction on the locomotor activity and TH expression in TH-GFP transgenic zebrafish larvae. Taken together, these data indicate that the inhibition of the formation of METH dependence by rhynchophylline in zebrafish is associated with amelioration of the neurotransmitters dopamine and glutamate content and down-regulation of TH and NR2B expression. Copyright © 2016 Elsevier Inc. All rights reserved.
Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones.
Devadas, Krishnakumar; Biswas, Santanu; Ragupathy, Viswanath; Lee, Sherwin; Dayton, Andrew; Hewlett, Indira
2018-01-01
Significant sex specific differences in the progression of HIV/AIDS have been reported. Several studies have implicated steroid hormones in regulating host factor expression and modulating HIV transmission and replication. However, the exact mechanism exerted by steroid hormones estrogen and progesterone in the regulation of HIV-1 replication is still unclear. Results from the current study indicated a dose dependent down regulation of HIV-1 replication in monocyte derived macrophages pre-treated with high concentrations of estrogen or progesterone. To elucidate the molecular mechanisms associated with the down regulation of HIV-1 replication by estrogen and progesterone we used PCR arrays to analyze the expression profile of host genes involved in antiviral responses. Several chemokines, cytokines, transcription factors, interferon stimulated genes and genes involved in type-1 interferon signaling were down regulated in cells infected with HIV-1 pre-treated with high concentrations of estrogen or progesterone compared to untreated HIV-1 infected cells or HIV-1 infected cells treated with low concentrations of estrogen or progesterone. The down regulation of CXCL9, CXCL10 and CXCL11 chemokines and IL-1β, IL-6 cytokines in response to high concentrations of estrogen and progesterone pre-treatment in HIV-1 infected cells was confirmed at the protein level by quantitating chemokine and cytokine concentrations in the culture supernatant. These results demonstrate that a potent anti-inflammatory response is mediated by pre-treatment with high concentrations of estrogen and progesterone. Thus, our study suggests a strong correlation between the down-modulation of anti-viral and pro-inflammatory responses mediated by estrogen and progesterone pre-treatment and the down regulation of HIV-1 replication. These findings may be relevant to clinical observations of sex specific differences in patient populations and point to the need for further investigation.
Gazzin, Silvia; Berengeno, Andrea Lorena; Strazielle, Nathalie; Fazzari, Francesco; Raseni, Alan; Ostrow, J. Donald; Wennberg, Richard; Ghersi-Egea, Jean-François; Tiribelli, Claudio
2011-01-01
Accumulation of unconjugated bilirubin (UCB) in the brain causes bilirubin encephalopathy. Pgp (ABCb1) and Mrp1 (ABCc1), highly expressed in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj) Gunn rats compared to heterozygous, not jaundiced (Jj) littermates at different developmental stages (2, 9, 17 and 60 days after birth). BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16–27% of adult values), despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17–P60, respectively); Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60–70% of the adult values) in both jj and Jj at P2, but was markedly (50%) down-regulated in jj pups starting at P9, particularly in the 4th ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity. PMID:21297965
Gazzin, Silvia; Berengeno, Andrea Lorena; Strazielle, Nathalie; Fazzari, Francesco; Raseni, Alan; Ostrow, J Donald; Wennberg, Richard; Ghersi-Egea, Jean-François; Tiribelli, Claudio
2011-01-31
Accumulation of unconjugated bilirubin (UCB) in the brain causes bilirubin encephalopathy. Pgp (ABCb1) and Mrp1 (ABCc1), highly expressed in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj) Gunn rats compared to heterozygous, not jaundiced (Jj) littermates at different developmental stages (2, 9, 17 and 60 days after birth). BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16-27% of adult values), despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17-P60, respectively); Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60-70% of the adult values) in both jj and Jj at P2, but was markedly (50%) down-regulated in jj pups starting at P9, particularly in the 4(th) ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity.
Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.
2015-01-01
Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610
Yeh, Chun-Chang; Sun, Hsiao-Lun; Huang, Chi-Jung; Wong, Chih-Shung; Cherng, Chen-Hwan; Huh, Billy Keon; Wang, Jinn-Shyan; Chien, Chih-Cheng
2015-11-13
Pulsed radiofrequency (PRF) is effective in the treatment of neuropathic pain in clinical practice. Its application to sites proximal to nerve injury can inhibit the activity of extra-cellular signal-regulated kinase (ERK) for up to 28 days. The spared nerve injury (SNI)+ immPRF group (immediate exposure to PRF for 6 min after SNI) exhibited a greater anti-allodynic effect compared with the control group (SNI alone) or the SNI + postPRF group (application of PRF for 6 min on the 14th day after SNI). Insulin-like growth factor 2 (IGF2) was selected using microarray assays and according to web-based gene ontology annotations in the SNI + immPRF group. An increase in IGF2 and activation of ERK1/2 were attenuated by the immPRF treatment compared with an SNI control group. Using immunofluorescent staining, we detected co-localized phosphorylated ERK1/2 and IGF2 in the dorsal horn regions of rats from the SNI group, where the IGF2 protein predominantly arose in CD11b- or NeuN-positive cells, whereas IGF2 immunoreactivity was not detected in the SNI + immPRF group. Taken together, these results suggest that PRF treatment immediately after nerve injury significantly inhibited the development of neuropathic pain with a lasting effect, most likely through IGF2 down-regulation and the inhibition of ERK1/2 activity primarily in microglial cells.
Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei
2014-09-26
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Huang, Xue-Feng; Chen, Zhe-Min; Shao, Li-Yang; Cen, Ke-Fa; Sheng, De-Ren; Chen, Jun; Zhou, Hao
2008-02-01
A refractive index sensor based on the thinned and microstructure fiber Bragg grating (ThMs-FBG) was proposed and realized as a chemical sensing. The numerical simulation for the reflectance spectrum of the ThMs-FBG was calculated and the phase shift down-peak could be observed from the reflectance spectrum. Many factors influencing the reflectance spectrum were considered in detail for simulation, including the etched depth, length, and position. The sandwich-solution etching method was utilized to realize the microstructure of the ThMs-FBG, and the photographs of the microstructure were obtained. Experimental results demonstrated that the reflectance spectrum, phase shift down-peak wavelength, and reflected optical intensity of the ThMs-FBG all depended on the surrounding refractive index. However, only the down-peak wavelength of the ThMs-FBG changed with the surrounding temperature. Under the condition that the length and cladding diameter of the ThMs-FBG microstructure were 800 and 14 mum, respectively, and the position of the microstructure of the ThMs-FBG is in the middle of grating region, the refractive index sensitivity of the ThMs-FBG was 0.79 nm/refractive index unit with the wide range of 1.33-1.457 and a high resolution of 1.2 x 10(-3). The temperature sensitivity was 0.0103 nm/ degrees C, which was approximately equal to that of common FBG.
Chomiski, Verônica; Gragnani, Alfredo; Bonucci, Jéssica; Correa, Silvana Aparecida Alves; Noronha, Samuel Marcos Ribeiro de; Ferreira, Lydia Masako
2016-08-01
To evaluate the effect of keratinocyte growth factor (KGF) treatment on the expression of wound-healing-related genes in cultured keratinocytes from burn patients. Keratinocytes were cultured and divided into 4 groups (n=4 in each group): TKB (KGF-treated keratinocytes from burn patients), UKB (untreated keratinocytes from burn patients), TKC (KGF-treated keratinocytes from controls), and UKC (untreated keratinocytes from controls). Gene expression analysis using quantitative polymerase chain reaction (qPCR) array was performed to compare (1) TKC versus UKC, (2) UKB versus UKC, (3) TKB versus UKC, (4) TKB versus UKB, (5) TKB versus TKC, and (6) UKB versus TKC. Comparison 1 showed one down-regulated and one up-regulated gene; comparisons 2 and 3 resulted in the same five down-regulated genes; comparison 4 had no significant difference in relative gene expression; comparison 5 showed 26 down-regulated and 7 up-regulated genes; and comparison 6 showed 25 down-regulated and 11 up-regulated genes. There was no differential expression of wound-healing-related genes in cultured primary keratinocytes from burn patients treated with keratinocyte growth factor.
Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A
2005-06-01
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
Ke, Fang; Zhang, Lingyun; Liu, Zhaoyuan; Yan, Sha; Xu, Zhenyao; Bai, Jing; Zhu, Huiyuan; Lou, Fangzhou; Cai, Wei; Sun, Yang; Gao, Yuanyuan; Wang, Hong
2016-01-01
T helper 17 (Th17) cells play an important role in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Th17 cell differentiation from naïve T cells can be induced in vitro by the cytokines transforming growth factor β1 and interleukin-6. However, it remains unclear whether other regulatory factors control the differentiation of Th17 cells. Mesenchymal stem cells (MSCs) have emerged as a promising candidate for inhibiting Th17 cell differentiation and autoimmune diseases. Despite the fact that several molecules have been linked to the immunomodulatory function of MSCs, many other key MSC-secreted regulators that are involved in inhibiting Th17 cell polarization are ill-defined. In this study, we demonstrated that the intraperitoneal administration of skin-derived MSCs (S-MSCs) substantially ameliorated the development of EAE in mice. We found that the proinflammatory cytokine tumor necrosis factor (TNF)-α, a key mediator in the pathophysiology of MS and EAE, was capable of promoting Th17 cell differentiation. Moreover, under inflammatory conditions, we demonstrated that S-MSCs produced high amounts of soluble TNF receptor 1 (sTNFR1), which binds TNF-α and antagonizes its function. Knockdown of sTNFR1 in S-MSCs decreased their inhibitory effect on Th17 cell differentiation ex vivo and in vivo. Thus, our data identified sTNFR1 and its target TNF-α as critical regulators for Th17 cell differentiation, suggesting a previously unrecognized mechanism for MSC therapy in Th17-mediated autoimmune diseases. Significance This study showed that administration of skin-derived mesenchymal stem cells (S-MSCs) was able to alleviate the clinical score of experimental autoimmune encephalomyelitis by inhibiting the differentiation of T helper 17 (Th17) cells. Tumor necrosis factor (TNF)-α is a critical cytokine for promoting Th17 cell differentiation. It was discovered that activated S-MSCs produced high amount of soluble TNF receptor 1 (sTNFR1), which neutralized TNF-α and inhibited Th17 cell polarization. The data identified S-MSC-secreted sTNFR1 and its target TNF-α as essential regulators for Th17 cell differentiation and revealed a novel mechanism underlying MSC-mediated immunomodulatory function in autoimmunity. PMID:26819253
Taneja, Manish; Salim, Samina; Saha, Kaustuv; Happe, H. Kevin; Qutna, Nidal; Petty, Frederick; Bylund, David B.; Eikenburg, Douglas C.
2011-01-01
Exposure of rats to unpredictable, inescapable stress results in two distinct behaviors during subsequent escape testing. One behavior, suggestive of lack of stress resilience, is prolonged escape latency compared to non-stressed rats and is labeled learned helplessness (LH). The other behavior suggestive of stress resilience is normal escape latency and is labeled non-helpless (NH). This study examines the effects of unpredictable, inescapable tail-shock stress (TSS) on alpha2-adrenoceptor (α2-AR) and corticotropin-releasing factor 1 receptor (CRF1) regulation as well as protein levels of G protein-coupled receptor kinase 3 (GRK3), GRK2, tyrosine hydroxylase (TH) plus carbonylated protein levels in locus coeruleus (LC), amygdala (AMG), cortex (COR) and striatum (STR). In NH rats, α2-AR and CRF1 receptors were significantly down-regulated in LC after TSS. No changes in these receptor levels were observed in the LC of LH rats. GRK3, which phosphorylates receptors and thereby contributes to α2-AR and CRF1 receptor down-regulation, was reduced in the LC of LH but not NH rats. GRK2 levels were unchanged. In AMG, GRK3 but not GRK2 levels were reduced in LH but not NH rats, and receptor regulation was impaired in LH rats. In STR, no changes in GRK3 or GRK2 levels were observed. Finally, protein carbonylation, an index of oxidative stress, was increased in the LC and AMG of LH but not NH rats. We suggest that reduced stress resilience after TSS may be related to oxidative stress, depletion of GRK3 and impaired regulation of α2-AR and CRF1 receptor in LC. PMID:21333691
Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T cell differentiation
Ding, Xilai; Chepelev, Iouri; Zhou, Xikun; Zhao, Wei; Wei, Gang; Cui, Jun; Zhao, Keji; Wang, Helen Y.; Wang, Rong-Fu
2014-01-01
Epigenetic factors have been implicated in the regulation of CD4+ T cell differentiation. Jmjd3 plays a role in many biological processes, but its in vivo function in T cell differentiation remains unknown. Here, we report that Jmjd3 ablation promotes CD4+ T cell differentiation into Th2 and Th17 cells in the small intestine and colon, and inhibits T cell differentiation into Th1 cells under different cytokine-polarizing conditions and in a Th1-dependent colitis model. Jmjd3 deficiency also restrains the plasticity of the conversion of Th2, Th17 or Treg cells to Th1 cells. The skewing of T cell differentiation is concomitant with changes in the expression of key transcription factors and cytokines. H3K27me3 and H3K4me3 levels in Jmjd3-deficient cells are correlated with altered gene expression through interactions with specific transcription factors. Our results identify Jmjd3 as an epigenetic factor in T cell differentiation via changes in histone methylation and target gene expression. PMID:25531312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, Zhilong; Lu, Weiqi; Ton, Saixiong
2007-08-31
Gallbladder carcinoma (GBC), an aggressive and mostly lethal malignancy, is known to be resistant to a number of drug stimuli. Here, we demonstrated that arsenic trioxide inhibited the proliferation of gallbladder carcinoma in vivo and in vitro as well as the transcription of cell cycle-related protein Cyclin D1. And, Cyclin D1 overexpression inhibited the negative role of arsenic trioxide in cell cycle progression. We further explored the mechanisms by which arsenic trioxide affected Cyclin D1 transcription and found that the Sp1 transcription factor was down-regulated by arsenic trioxide, with a corresponding decrease in Cyclin D1 promoter activity. Taken together, thesemore » results suggested that arsenic trioxide inhibited gallbladder carcinoma cell proliferation via down-regulation of Cyclin D1 transcription in a Sp1-dependent manner, which provided a new mechanism of arsenic trioxide-involved cell proliferation and may have important therapeutic implications in gallbladder carcinoma patients.« less
Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model.
Guo, Hong-Wei; Yun, Chen-Xia; Hou, Guang-Han; Du, Jun; Huang, Xin; Lu, Yi; Keller, Evan T; Zhang, Jian; Deng, Jia-Gang
2014-01-01
Mangiferin is a major bioactive ingredient in Mangifera indica Linn. (Anacardiaceae) leaves. Aqueous extract of such leaves have been used as an indigenous remedy for respiratory diseases like asthma and coughing in traditional Chinese medicine. However, underlying molecular mechanisms of mangiferin on anti-asthma remain unclear. In our present study, we investigated the anti-asthmatic effect of mangiferin on Th1/Th2 cytokine profiles and explored its underlying immunoregulatory mechanism in mouse model of allergic asthma. Mangiferin significantly reduced the total inflammatory cell counts and eosinophil infiltration, decreased the production of ovalbumin-specific IgE in serum and PGD2 in BALF. The antibody array analysis showed that mangiferin down-regulated the levels of one group of cytokines/chemokines including Th2-related IL-4, IL-5, IL-13, and others IL-3, IL-9, IL-17, RANTES, TNF-α, but simultaneously up-regulated Th1-related IFN-γ, IL-2 and IL-10 and IL-12 expression in serum. Thus it attenuates the imbalance of Th1/Th2 cells ratio by diminishing the abnormal mRNA levels of Th1 cytokines (IFN-γ and IL-12) and Th2 cytokines (IL-4, IL-5 and IL-13). Finally, mangiferin substantially inhibited the activation and expression of STAT-6 and GATA-3 in excised lung tissues. Our results suggest that mangiferin can exert anti-asthmatic effect. The underlying mechanism may attribute to the modulation of Th1/Th2 cytokine imbalance via inhibiting the STAT6 signaling pathway.
Mangiferin Attenuates Th1/Th2 Cytokine Imbalance in an Ovalbumin-Induced Asthmatic Mouse Model
Hou, Guang-Han; Du, Jun; Huang, Xin; Lu, Yi; Keller, Evan T.; Zhang, Jian; Deng, Jia-Gang
2014-01-01
Mangiferin is a major bioactive ingredient in Mangifera indica Linn. (Anacardiaceae) leaves. Aqueous extract of such leaves have been used as an indigenous remedy for respiratory diseases like asthma and coughing in traditional Chinese medicine. However, underlying molecular mechanisms of mangiferin on anti-asthma remain unclear. In our present study, we investigated the anti-asthmatic effect of mangiferin on Th1/Th2 cytokine profiles and explored its underlying immunoregulatory mechanism in mouse model of allergic asthma. Mangiferin significantly reduced the total inflammatory cell counts and eosinophil infiltration, decreased the production of ovalbumin-specific IgE in serum and PGD2 in BALF. The antibody array analysis showed that mangiferin down-regulated the levels of one group of cytokines/chemokines including Th2-related IL-4, IL-5, IL-13, and others IL-3, IL-9, IL-17, RANTES, TNF-α, but simultaneously up-regulated Th1-related IFN-γ, IL-2 and IL-10 and IL-12 expression in serum. Thus it attenuates the imbalance of Th1/Th2 cells ratio by diminishing the abnormal mRNA levels of Th1 cytokines (IFN-γ and IL-12) and Th2 cytokines (IL-4, IL-5 and IL-13). Finally, mangiferin substantially inhibited the activation and expression of STAT-6 and GATA-3 in excised lung tissues. Our results suggest that mangiferin can exert anti-asthmatic effect. The underlying mechanism may attribute to the modulation of Th1/Th2 cytokine imbalance via inhibiting the STAT6 signaling pathway. PMID:24955743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Department of Geriatrics, Zhu Jiang Hospital, Southern Medical University, Guangzhou, Guangdong; Hu, Fang
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions tomore » mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting TGF-β1/Smad3 signaling in high-glucose-treated human MCs.« less
Röschmann, K I L; Luiten, S; Jonker, M J; Breit, T M; Fokkens, W J; Petersen, A; van Drunen, C M
2011-06-01
Grass pollen allergy is one of the most common allergies worldwide and airborne allergens are the major cause of allergic rhinitis. Airway epithelial cells (AECs) are the first to encounter and respond to aeroallergens and are therefore interesting targets for the development of new therapeutics. Our understanding of the epithelial contribution to immune responses is limited as most studies focus on only a few individual genes or proteins. To describe in detail the Timothy grass pollen extract (GPE)-induced gene expression in AECs. NCI-H292 cells were exposed to GPE for 24 h, and isolated RNA and cell culture supernatants were used for microarray analysis and multiplex ELISA, respectively. Eleven thousand and seven hundred fifty-eight transcripts were affected after exposure to GPE, with 141 genes up-regulated and 121 genes down-regulated by more than threefold. The gene ontology group cell communication was among the most prominent categories. Network analysis revealed that a substantial part of regulated genes are related to the cytokines IL-6, IL-8, IL-1A, and the transcription factor FOS. After analysing significantly regulated signalling pathways, we found, among others, epidermal growth factor receptor 1, IL-1, Notch-, and Wnt-related signalling members. Unexpectedly, we found Jagged to be down-regulated and an increased release of IL-12, in line with a more Th1-biased response induced by GPE. Our data show that the stimulation of AECs with GPE results in the induction of a broad response on RNA and protein level by which they are able to affect the initiation and regulation of local immune responses. Detailed understanding of GPE-induced genes and signalling pathways will allow us to better define the pathogenesis of the allergic response and to identify new targets for treatment. © 2011 Blackwell Publishing Ltd.
H. pylori attenuates TNBS-induced colitis via increasing mucosal Th2 cells in mice.
Wu, Yi-Zhong; Tan, Gao; Wu, Fang; Zhi, Fa-Chao
2017-09-26
There is an epidemiological inverse relationship between Helicobacter pylori ( H. pylori ) infection and Crohn's disease (CD). However, whether H. pylori plays a protective role against CD remains unclear. Since 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis is thought to resemble CD, we investigated whether H. pylori can attenuate TNBS-induced colitis in mice. Here we show that H. pylori can attenuate the severity of TNBS-induced colitis. In addition, H. pylori not only down-regulates Th17 and Th1 cytokine expression, but can up-regulate Th2 cytokine expression and increase the Th2:Th17 ratio of CD4 + T in the colonic mucosa of TNBS-induced colitis. Our results indicate that H. pylori attenuates TNBS-induced colitis mainly through increasing Th2 cells in murine colonic mucosa. Our finding offers a novel view on the role of H. pylori in regulating gastrointestinal immunity, and may open a new avenue for development of therapeutic strategies in CD by making use of asymptomatic H. pylori colonization.
Lee, Jin Hwan; Wei, Zheng Z; Cao, Wenyuan; Won, Soonmi; Gu, Xiaohuan; Winter, Megan; Dix, Thomas A.; Wei, Ling; Yu, Shan Ping
2016-01-01
Stroke is a leading threat to human life and health in the US and around the globe, while very few effective treatments are available for stroke patients. Preclinical and clinical studies have shown that therapeutic hypothermia (TH) is a potential treatment for stroke. Using novel neurotensin receptor 1 (NTR1) agonists, we have demonstrated pharmacologically induced hypothermia and protective effects against brain damages after ischemic stroke, hemorrhage stroke, and traumatic brain injury (TBI) in rodent models. To further characterize the mechanism of TH-induced brain protection, we examined the effect of TH (at ±33°C for 6 hrs) induced by the NTR1 agonist HPI-201 or physical (ice/cold air) cooling on inflammatory responses after ischemic stroke in mice and oxygen glucose deprivation (OGD) in cortical neuronal cultures. Seven days after focal cortical ischemia, microglia activation in the penumbra reached a peak level, which was significantly attenuated by TH treatments commenced 30 min after stroke. The TH treatment decreased the expression of M1 type reactive factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-12, IL-23, and inducible nitric oxide synthase (iNOS) measured by RT-PCR and Western blot analyses. Meanwhile, TH treatments increased the expression of M2 type reactive factors including IL-10, Fizz1, Ym1, and arginase-1. In the ischemic brain and in cortical neuronal/BV2 microglia cultures subjected to OGD, TH attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), two key chemokines in the regulation of microglia activation and infiltration. Consistently, physical cooling during OGD significantly decreased microglia migration 16 hrs after OGD. Finally, TH improved functional recovery at 1, 3, and 7 days after stroke. This study reveals the first evidence for hypothermia mediated regulation on inflammatory factor expression, microglia polarization, migration and indicates that the anti-inflammatory effect is an important mechanism underlying the brain protective effects of a TH therapy. PMID:27659107
Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuyama, Yoshiko; Tokuhara, Daisuke; Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639
Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FLmore » activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.« less
Polymorphisms in DENND1B gene are associated with asthma and atopy phenotypes in Brazilian children.
Fiuza, Bianca S D; Silva, Milca de J; Alcântara-Neves, Neuza M; Barreto, Maurício L; Costa, Ryan Dos S; Figueiredo, Camila A
2017-10-01
Asthma is a heterogeneous disease associated with a complex basis involving environmental factors and individual variabilities. The DENN Domain Containing 1B (DENND1B) gene has an important role on T cell receptor (TCR) down-regulation on Th2 cells and studies have shown that mutations or loss of this factor can be associated with increased Th2 responses and asthma. The aim of this work is to evaluate the association of polymorphisms in the DENND1B with asthma and allergy markers phenotypes in Brazilian children. Genotyping was performed using a commercial panel from Illumina (2.5 Human Omni bead chip) in 1309 participants of SCAALA (Social Change, Asthma, Allergy in Latin American) program. Logistic regressions for asthma and atopy markers were performed using PLINK software 1.9. The analyzes were adjusted for sex, age, helminth infections and ancestry markers. The DENND1B gene was associated with different phenotypes such as severe asthma and atopic markers (specific IgE production, skin prick test and IL-13 production). Among the 166 SNPs analyzed, 72 were associated with asthma and/or allergy markers. In conclusion, polymorphisms in the DENND1B are significantly associated with development of asthma and atopy and these polymorphisms can influence DENND1B expression and consequently, asthma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T
2009-10-01
Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.
Dauletbaev, N; Herscovitch, K; Das, M; Chen, H; Bernier, J; Matouk, E; Bérubé, J; Rousseau, S; Lands, L C
2015-01-01
Background and Purpose There is current interest in vitamin D as a potential anti-inflammatory treatment for chronic inflammatory lung disease, including cystic fibrosis (CF). Vitamin D transcriptionally up-regulates the anti-inflammatory gene DUSP1, which partly controls production of the inflammatory chemokine IL-8. IL-8 is overabundant in CF airways, potentially due to hyperinflammatory responses of CF macrophages. We tested the ability of vitamin D metabolites to down-regulate IL-8 production in CF macrophages. Experimental Approach CF and healthy monocyte-derived macrophages (MDM) were treated with two vitamin D metabolites, 25-hydroxyvitamin D3 (25OHD3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), or paricalcitol, synthetic analogue of 1,25(OH)2D3. 25OHD3 was tested at doses of 25–150 nM, whereas 1,25(OH)2D3 and paricalcitol at doses of up to 100 nM. IL-8 was stimulated by bacterial virulence factors. As potential anti-inflammatory mechanism of vitamin D metabolites, we assessed up-regulation of DUSP1. Key Results MDM from patients with CF and some healthy donors showed excessive production of stimulated IL-8, highlighting their hyperinflammatory phenotype. Vitamin D metabolites down-regulated stimulated IL-8 only in those hyperinflammatory MDM, and only when used at high doses (>100 nM for 25OHD3, or >1 nM for 1,25(OH)2D3 and paricalcitol). The magnitude of IL-8 down-regulation by vitamin D metabolites or paricalcitol was moderate (∼30% vs. >70% by low-dose dexamethasone). Transcriptional up-regulation of DUSP1 by vitamin D metabolites was seen in all tested MDM, regardless of IL-8 down-regulation. Conclusions and Implications Vitamin D metabolites and their analogues moderately down-regulate IL-8 in hyperinflammatory macrophages, including those from CF. This down-regulation appears to go through DUSP1-independent mechanisms. PMID:26178144
Dauletbaev, N; Herscovitch, K; Das, M; Chen, H; Bernier, J; Matouk, E; Bérubé, J; Rousseau, S; Lands, L C
2015-10-01
There is current interest in vitamin D as a potential anti-inflammatory treatment for chronic inflammatory lung disease, including cystic fibrosis (CF). Vitamin D transcriptionally up-regulates the anti-inflammatory gene DUSP1, which partly controls production of the inflammatory chemokine IL-8. IL-8 is overabundant in CF airways, potentially due to hyperinflammatory responses of CF macrophages. We tested the ability of vitamin D metabolites to down-regulate IL-8 production in CF macrophages. CF and healthy monocyte-derived macrophages (MDM) were treated with two vitamin D metabolites, 25-hydroxyvitamin D3 (25OHD3 ) and 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), or paricalcitol, synthetic analogue of 1,25(OH)2 D3 . 25OHD3 was tested at doses of 25-150 nM, whereas 1,25(OH)2 D3 and paricalcitol at doses of up to 100 nM. IL-8 was stimulated by bacterial virulence factors. As potential anti-inflammatory mechanism of vitamin D metabolites, we assessed up-regulation of DUSP1. MDM from patients with CF and some healthy donors showed excessive production of stimulated IL-8, highlighting their hyperinflammatory phenotype. Vitamin D metabolites down-regulated stimulated IL-8 only in those hyperinflammatory MDM, and only when used at high doses (>100 nM for 25OHD3 , or >1 nM for 1,25(OH)2 D3 and paricalcitol). The magnitude of IL-8 down-regulation by vitamin D metabolites or paricalcitol was moderate (∼30% vs. >70% by low-dose dexamethasone). Transcriptional up-regulation of DUSP1 by vitamin D metabolites was seen in all tested MDM, regardless of IL-8 down-regulation. Vitamin D metabolites and their analogues moderately down-regulate IL-8 in hyperinflammatory macrophages, including those from CF. This down-regulation appears to go through DUSP1-independent mechanisms. © 2015 The British Pharmacological Society.
Ragno, Silvia; Romano, Maria; Howell, Steven; Pappin, Darryl J C; Jenner, Peter J; Colston, Michael J
2001-01-01
We investigated the changes which occur in gene expression in the human macrophage cell line, THP1, at 1, 6 and 12 hr following infection with Mycobacterium tuberculosis. The analysis was carried out at the transcriptome level, using microarrays consisting of 375 human genes generally thought to be involved in immunoregulation, and at the proteomic level, using two-dimensional gel electrophoresis and mass spectrometry. The analysis of the transcriptome using microarrays revealed that many genes were up-regulated at 6 and 12 hr. Most of these genes encoded proteins involved in cell migration and homing, including the chemokines interleukin (IL)-8, osteopontin, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), regulated on activation, normal, T-cell expressed and secreted (RANTES), MIP-1β, MIP-3α, myeloid progenitor inhibitory factor-1 (MPIF-1), pulmonary and activation regulated chemokine (PARC), growth regulated gene-β (GRO-β), GRO-γ, MCP-2, I-309, and the T helper 2 (Th2) and eosinophil-attracting chemokine, eotaxin. Other genes involved in cell migration which were up-regulated included the matrix metalloproteinase MMP-9, vascular endothelial growth factor (VEGF) and its receptor Flk-1, the chemokine receptor CCR3, and the cell adhesion molecules vesicular cell adhesion molecule-1 (VCAM-1) and integrin a3. In addition to the chemokine response, genes encoding the proinflammatory cytokines IL-1β (showing a 433-fold induction), IL-2 and tumour necrosis factor-α (TNF-α), were also found to be induced at 6 and/or 12 hr. It was more difficult to detect changes using the proteomic approach. Nevertheless, IL-1β was again shown to be strongly up-regulated. The enzyme manganese superoxide dismutase was also found to be strongly up-regulated; this enzyme was found to be macrophage-, rather than M. tuberculosis, derived. The heat-shock protein hsp27 was found to be down-regulated following infection. We also identified a mycobacterial protein, the product of the atpD gene (thought to be involved in the regulation of cytoplasmic pH) in the infected macrophage extracts. PMID:11576227
Pashaiasl, Maryam; Ebrahimi, Mansour; Ebrahimie, Esmaeil
2016-09-01
Diminished ovarian reserve (DOR) is one of the reasons for infertility that not only affects both older and young women. Ovarian reserve assessment can be used as a new prognostic tool for infertility treatment decision making. Here, up- and down-regulated gene expression profiles of granulosa cells were analysed to generate a putative interaction map of the involved genes. In addition, gene ontology (GO) analysis was used to get insight intol the biological processes and molecular functions of involved proteins in DOR. Eleven up-regulated genes and nine down-regulated genes were identified and assessed by constructing interaction networks based on their biological processes. PTGS2, CTGF, LHCGR, CITED, SOCS2, STAR and FSTL3 were the key nodes in the up-regulated networks, while the IGF2, AMH, GREM, and FOXC1 proteins were key in the down-regulated networks. MIRN101-1, MIRN153-1 and MIRN194-1 inhibited the expression of SOCS2, while CSH1 and BMP2 positively regulated IGF1 and IGF2. Ossification, ovarian follicle development, vasculogenesis, sequence-specific DNA binding transcription factor activity, and golgi apparatus are the major differential groups between up-regulated and down-regulated genes in DOR. Meta-analysis of publicly available transcriptomic data highlighted the high coexpression of CTGF, connective tissue growth factor, with the other key regulators of DOR. CTGF is involved in organ senescence and focal adhesion pathway according to GO analysis. These findings provide a comprehensive system biology based insight into the aetiology of DOR through network and gene ontology analyses.
Zhou, Zhenting; Lin, Haiyan; Chen, Chun; Huang, Peng; Huang, Weiliang; Zhou, Chuying; Huang, Shaohui; Nie, Linghui; Liu, Ye; Chen, Youming; Zhou, Daqiao; Lv, Zhiping
2017-01-01
Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular rate-limiting enzyme in the metabolism of tryptophan along the kynurenine pathway, subsequently mediating the immune response; however, the role of IDO1 in liver fibrosis and cirrhosis is still unclear. In this study, we investigated the role of IDO1 in the development of hepatic fibrosis and cirrhosis. Patients with hepatitis B virus-induced cirrhosis and healthy volunteers were enrolled. For animals, carbon tetrachloride (CCl4) was used to establish liver fibrosis in wild-type and IDO1 knockout mice. Additionally, an IDO1 inhibitor (1-methyl-D-tryptophan) was administered to WT fibrosis mice. Liver lesions were positively correlated with serum IDO1 levels in both the clinical subjects and hepatic fibrosis mice. A positive correlation between serum IDO1 levels and liver stiffness values was found in the cirrhosis patients. Notably, IDO1 knockout mice were protected from CCl4-induced liver fibrosis, as reflected by unchanged serum alanine transaminase and aspartate transaminase levels and lower collagen deposition, α-smooth muscle actin expression and apoptotic cell death rates. On the other hand, tryptophan 2,3-dioxygenase (TDO), another systemic tryptophan metabolism enzyme, exhibited a compensatory increase as a result of IDO1 deficiency. Moreover, hepatic interleukin-17a, a characteristic cytokine of T helper 17 (Th17) cells, and downstream cytokines’ mRNA levels showed lower expression in the IDO1–/– model mice. IDO1 appears to be a potential hallmark of liver lesions, and its deficiency protects mice from CCl4-induced fibrosis mediated by Th17 cells down-regulation and TDO compensation. PMID:28465467
Effect of major abdominal surgery on the host immune response to infection.
Buttenschoen, Klaus; Fathimani, Kamran; Buttenschoen, Daniela Carli
2010-06-01
The present review summarizes key studies on the effects of major abdominal surgery on the host response to infection published during the last 18 months. Surgical trauma causes stereotyped systemic proinflammatory and compensatory anti-inflammatory reactions. It is leukocyte reprogramming rather than general immune suppression. The list of recent findings is long. Preoperative infectious challenge was found to increase survival. Obesity is associated with increased production of interleukin-17A in peritonitis. Abdominal surgery alters expression of toll-like receptors (TLRs). The acute phase reaction down-regulates the transcription factor carbohydrate response element binding protein. Myosin light chain kinase activation is a final pathway of acute tight junction regulation of gut barrier and zonula occludens 1 protein is an essential effector. The brain is involved in regulating the immune and gut system. Elimination of lipopolysaccharide is challenging. Th1/Th2 ratio is lowered in patients with postoperative complications. Cholinergic anti-inflammatory pathways can inhibit tissue damage. The new substance PXL01 prevents adhesions. Postoperative infection causes incisional hernias. Hypothermia reduced human leukocyte antigen DR surface expression and delayed tumor necrosis factor clearance. Systems biology identified interferon regulatory factor 3 as the negative regulator of TLR signaling. Protective immunity could contribute defeating surgical infections. Systemic inflammation is the usual response to trauma. All organs seem to be involved and linked up in cybernetic systems aiming at reconstitution of homeostasis. Although knowledge is still fragmentary, it is already difficult to integrate known facts and new technologies are required for information processing. Defining criteria to develop therapeutic strategies requires much more insight into molecular mechanisms and cybernetics of organ systems.
Liu, Ying; Ao, Xiang; Jia, Zhaojun; Bai, Xiao-Yan; Xu, Zhaowei; Hu, Gaolei; Jiang, Xiao; Chen, Min; Wu, Huijian
2015-03-05
Estrogen receptors (ERs) are critical regulators of breast cancer development. Identification of molecules that regulate the function of ERs may facilitate the development of more effective breast cancer treatment strategies. In this study, we showed that the forkhead transcription factor FOXK2 interacted with ERα, and inhibited ERα-regulated transcriptional activities by enhancing the ubiquitin-mediated degradation of ERα. This process involved the interaction between FOXK2 and BRCA1/BARD1, the E3 ubiquitin ligase of ERα. FOXK2 interacted with BARD1 and acted as a scaffold protein for BRCA1/BARD1 and ERα, leading to enhanced degradation of ERα, which eventually accounted for its decreased transcriptional activity. Consistent with these observations, overexpression of FOXK2 inhibited the transcriptional activity of ERα, decreased the transcription of ERα target genes, and suppressed the proliferation of ERα-positive breast cancer cells. In contract, knockdown of FOXK2 in MCF-7 cells promoted cell proliferation. However, when ERα was also knocked down, knockdown of FOXK2 had no effect on cell proliferation. These findings suggested that FOXK2 might act as a negative regulator of ERα, and its association with both ERα and BRCA1/BARD1 could lead to the down-regulation of ERα transcriptional activity, effectively regulating the function of ERα.
Early Events Leading to the Host Protective Th2 Immune Response to an Intestinal Nematode Parasite
2005-01-01
expansion, eosinophilia , and IL-4 production (51;52). Similar down regulations of Th2 associated cytokines were observed using monoclonal antibodies...1. Kightlinger,L.K., Seed,J.R., and Kightlinger,M.B., The epidemiology of Ascaris lumbricoides, Trichuris trichiura, and hookworm in children in...Copyright Statement The author hereby certifies that the use of any copyrighted material in the thesis manuscript entitled: “Early Events
Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N; Gieryńska, Małgorzata
2017-01-01
Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM-comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo .
Wan, Cheng-Fu; Zheng, Li-Li; Liu, Yan; Yu, Xue
2016-01-01
Oxaliplatin is a widely used anti-advanced colorectal cancer drug, while it could induce neuropathy. Houttuynia cordata Thunb (HCT) has a wide range of biological activities, such as anti-inflammation, anti-cancer, and immune regulation. In the present study, we investigated the effect of HCT on oxaliplatin-induced neuropathy in rat models. HCT (1000 mg/kg/day) significantly decreased the number of withdrawal responses and the withdrawal latency in oxaliplatin-treated rats. HCT could down-regulated the serum levels of Interleukin-6 (IL-6) and macrophage inflammatory protein1-α (MIP-1α) in oxaliplatin-treated rats. Th17/Treg balance was reversed by HCT in oxaliplatin-treated rats by regulating PI3K/Akt/mTOR signaling pathway. The present results suggest that HCT is useful as a therapeutic drug for oxaliplatin-induced neuropathic pain.
Wan, Cheng-Fu; Zheng, Li-Li; Liu, Yan; Yu, Xue
2016-01-01
Oxaliplatin is a widely used anti-advanced colorectal cancer drug, while it could induce neuropathy. Houttuynia cordata Thunb (HCT) has a wide range of biological activities, such as anti-inflammation, anti-cancer, and immune regulation. In the present study, we investigated the effect of HCT on oxaliplatin-induced neuropathy in rat models. HCT (1000 mg/kg/day) significantly decreased the number of withdrawal responses and the withdrawal latency in oxaliplatin-treated rats. HCT could down-regulated the serum levels of Interleukin-6 (IL-6) and macrophage inflammatory protein1-α (MIP-1α) in oxaliplatin-treated rats. Th17/Treg balance was reversed by HCT in oxaliplatin-treated rats by regulating PI3K/Akt/mTOR signaling pathway. The present results suggest that HCT is useful as a therapeutic drug for oxaliplatin-induced neuropathic pain. PMID:27186286
Cheng, Zhi-An; Han, Ling; Wei, Jian-An; Sun, Jing; Duan, Xiao-Dong
2013-02-01
To study the effects of Chinese medical recipes for invigorating Shen on rat bone marrow mesenchymal stem cells (BMSCs)-derived preadipocytes' differentiation to osteoblasts. The BMSCs were cultured using whole bone marrow adherence wall method. The BMSCs were induced to preadipocytes by classic chemical method. The osteogenic differentiation process of preadipocytes was intervened by Liuwei Dihuang Pill (LDP), Jingui Shenqi Pill (JSP), or Jiangu Erxian Pill (JEP)-containing serums (with the concentRation of 10%, on behalf of tonifying Shen yin, tonifying Shen yang, and tonifying Shen essence). Reverse transcription-real time fluorescent quantitative-PCR (RT real time qPCR) was used to detect RUNX2, ALP, BGP, BMP2, BMP4, SPP1, and IGF1 mRNA expressions of osteogenic differentiation-related genes, mRNA expressions of LPL, FABP4, and PPARgamma of adipogenic differentiation-related genes on the 6th, the 12th, and the 18th day. As for the osteogenic differentiation-related gene, when compared with the control group, there was no statistical difference in the gene expression level in the experimental groups on the 6th day (2.0 > Ratio > 0.5). On the 12th day, the mRNA expressions of IGF1 and Runx2 increased more significantly in the JSP group, with their relative quantification (Ratio) being 2.97 and 1.81 respectively. On the 18th day the IGF1 mRNA expression significantly increased, being the Ratio value of 3.74, 12.60, and 8.35, respectively, in the LDP group, the JSP group, and the JEP group. The SPP1 mRNA expression also significantly increased, with the Ratio value of 2.94, 3.18, and 2.62, respectively, in the LDP group, the JSP group, and the JEP group. As for adipogenic differentiation-related genes, on the 6th day, when compared with the control group, FABP4 mRNA expression significantly decreased in the LDP group and the JSP group (with the Ratio value of 0.47 and 0.40 respectively). The expression levels of other genes were all down-regulated, but not significantly. On the 12th day and 18th day, there was no statistical change in the adipogenic differentiation-related genes expressions (2.0 > Ratio > 0.5). Up-regulation of osteogenic differentiation-related genes expression occurred in later time, while down-regulation of adipogenic differentiation-related genes expression occurred in earlier time after treatment by Chinese medical recipes for invigorating Shen. In general, above data indicated that tonifying Shen yang was more effective in promoting osteogenic differentiation and inhibiting adipogenic differentiation of BMSCs.
Wang, Lixin; Brugge, Joan S; Janes, Kevin A
2011-10-04
Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.
PU.1 regulates TCR expression by modulating GATA-3 activity
Chang, Hua-Chen; Han, Ling; Jabeen, Rukhsana; Carotta, Sebastian; Nutt, Stephen L.; Kaplan, Mark H.
2009-01-01
The Ets transcription factor PU.1 is a master regulator for the development of multiple lineages during hematopoiesis. The expression pattern of PU.1 is dynamically regulated during early T lineage development in the thymus. We previously revealed that PU.1 delineates heterogeneity of effector Th2 populations. In this study, we further define the function of PU.1 on the Th2 phenotype using mice that specifically lack PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1lck-/-). While deletion of PU.1 by the lck-Cre transgene does not affect T cell development, Sfpi1lck-/- T cells have a lower activation threshold than wild type T cells. When TCR engagement is limiting, Sfpi1lck-/- T cells cultured in Th2 polarizing conditions secrete higher levels of Th2 cytokines and have greater cytokine homogeneity than wild type cells. We show that PU.1 modulates the levels of TCR expression in CD4+ T cells by regulating the DNA-binding activity of GATA-3 and limiting GATA-3 regulation of TCR gene expression. GATA-3 dependent regulation of TCR expression is also observed in Th1 and Th2 cells. In CD4+ T cells, PU.1 expression segregates into subpopulations of cells that have lower levels of surface TCR, suggesting that PU.1 contributes to the heterogeneity of TCR expression. Thus, we have identified a mechanism whereby increased GATA-3 function in the absence of the antagonizing activity of PU.1 leads to increased TCR expression, a reduced activation threshold and increased homogeneity in Th2 populations. PMID:19801513
Cui, J G; Zhao, Y; Sethi, P; Li, Y Y; Mahta, A; Culicchia, F; Lukiw, W J
2010-07-01
High density micro-RNA (miRNA) arrays, fluorescent-reporter miRNA assay and Northern miRNA dot-blot analysis show that a brain-enriched miRNA-128 is significantly down-regulated in glioblastoma multiforme (GBM) and in GBM cell lines when compared to age-matched controls. The down-regulation of miRNA-128 was found to inversely correlate with WHO tumor grade. Three bioinformatics-verified miRNA-128 targets, angiopoietin-related growth factor protein 5 (ARP5; ANGPTL6), a transcription suppressor that promotes stem cell renewal and inhibits the expression of known tumor suppressor genes involved in senescence and differentiation, Bmi-1, and a transcription factor critical for the control of cell-cycle progression, E2F-3a, were found to be up-regulated. Addition of exogenous miRNA-128 to CRL-1690 and CRL-2610 GBM cell lines (a) restored 'homeostatic' ARP5 (ANGPTL6), Bmi-1 and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and CRL-2610 cell lines. Our data suggests that down-regulation of miRNA-128 may contribute to glioma and GBM, in part, by coordinately up-regulating ARP5 (ANGPTL6), Bmi-1 and E2F-3a, resulting in the proliferation of undifferentiated GBM cells.
Kan, Xuefeng; Zhang, Wanli; You, Ruxu; Niu, Yanfeng; Guo, Jianrong; Xue, Jun
2017-01-13
Previous studies showed Scutellaria barbata D. Don extract (SBE) is a potent inhibitor in hepatoma and could improve immune function of hepatoma H22-bearing mice. However, the immunomodulatory function of SBE on the tumor growth of hepatoma remains unclear. This study aimed to investigate the anti-tumor effects of SBE on hepatoma H22-bearing mice and explore the underlying immunomodulatory function. The hepatoma H22-bearing mice were treated by SBE for 30 days. The effect of SBE on the proliferation of HepG2 cells in vitro, the growth of transplanted tumor, the cytotoxicity of natural killer (NK) cells in spleen, the amount of CD4 + CD25 + Foxp3 + Treg cells and Th17 cells in tumor tissue, and the levels of IL-10, TGF-β, IL-17A, IL-2, and IFN-γ in serum of the hepatoma H22-bearing mice was observered. IL-17A was injected to the SBE treated mice from day 9 post H22 inoculation to examine its effect on tumor growth. SBE treatment inhibited the proliferation of HepG2 cells in vitro with a dose-dependent manner and significantly suppressed the tumor growth of hepatoma H22-bearing mice. Meanwhile, it increased NK cells' cytotoxicity in spleen, down-regulated the amount of CD4 + CD25 + Foxp3 + Treg cells and Th17 cells in tumor tissue, and decreased IL-10, TGF-β, and IL-17A levels (P < 0.01) whereas increased IL-2 and IFN-γ levels (P < 0.01) in the serum of hepatoma H22-bearing mice. Moreover, administration of recombinant mouse IL-17A reversed the anti-tumor effects of SBE. SBE could inhibit the proliferation of HepG2 cells in vitro. Meanwhile, SBE also could inhibit the growth of H22 implanted tumor in hepatoma H22-bearing mice, and this function might be associated with immunomodulatory activity through down-regulating of Treg cells and manipulating Th1/Th17 immune response.
Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients.
Li, Qifeng; Zhang, Hui; Yu, Liang; Wu, Chao; Luo, Xinhui; Sun, He; Ding, Jianbing
2018-01-01
Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients. Copyright © 2017. Published by Elsevier B.V.
Diniz, Gabriela Placoná; Lino, Caroline Antunes; Guedes, Elaine Castilho; Moreira, Luana do Nascimento; Barreto-Chaves, Maria Luiza Morais
2015-09-01
Elevated thyroid hormone (TH) levels induce cardiac hypertrophy partially via type 1 Angiotensin II receptor (AT1R). MicroRNAs (miRNAs) are key regulators of cardiac homeostasis, and miR-133 has been shown to be involved in cardiac hypertrophy. However, the potential role of miR-133 in cardiac growth induced by TH is unknown. Thus, we aimed to investigate the miR-133 expression, as well as its potential role in cardiac hypertrophy in response to TH. Wistar rats were subjected to hyperthyroidism combined or not with the AT1R blocker. T3 serum levels were assessed to confirm the hyperthyroid status. TH induced cardiac hypertrophy, as evidenced by higher cardiac weight/tibia length ratio and α-actin mRNA levels, which was prevented by AT1R blocker. miR-133 expression was decreased in TH-induced cardiac hypertrophy in part through the AT1R. Additionally, the cardiac mRNA levels of miR-133 targets, SERCA2a and calcineurin were increased in hyperthyroidism partially via AT1R, as evaluated by real-time RT-PCR. Interestingly, miR-133 levels were unchanged in T3-induced cardiomyocyte hypertrophy in vitro. However, a gain-of-function study revealed that miR-133 mimic blunted the T3-induced cardiomyocyte hypertrophy in vitro. Together, our data indicate that miR-133 expression is reduced in TH-induced cardiac hypertrophy partially by the AT1R and that miR-133 mimic prevents the cardiomyocyte hypertrophy in response to T3 in vitro. These findings provide new insights regarding the mechanisms involved in the cardiac growth mediated by TH, suggesting that miR-133 plays a key role in TH-induced cardiomyocyte hypertrophy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki
Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cellmore » responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection.« less
Zhao, Luqing; Tang, Min; Hu, Zheyu; Yan, Bin; Pi, Weiwei; Li, Zhi; Zhang, Jing; Zhang, Liqin; Jiang, Wuzhong; Li, Guo; Qiu, Yuanzheng; Hu, Fang; Liu, Feng; Lu, Jingchen; Chen, Xue; Xiao, Lanbo; Xu, Zhijie; Tao, Yongguang; Yang, Lifang; Bode, Ann M.; Dong, Zigang; Zhou, Jian; Fan, Jia; Sun, Lunquan; Cao, Ya
2015-01-01
microRNAs (miRNAs) are involved in the various processes of DNA damage repair and play crucial roles in regulating response of tumors to radiation therapy. Here, we used nasopharyngeal carcinoma (NPC) radio-resistant cell lines as models and found that the expression of miR-504 was significantly up-regulated. In contrast, the expression of nuclear respiratory factor 1 (NRF1) and other mitochondrial metabolism factors, including mitochondrial transcription factor A (TFAM) and oxidative phosphorylation (OXPHOS) complex III were down-regulated in these cell lines. At the same time, the Seahorse cell mitochondrial stress test results indicated that the mitochondrial respiratory capacity was impaired in NPC radio-resistant cell lines and in a miR-504 over-expressing cell line. We also conducted dual luciferase reporter assays and verified that miR-504 could directly target NRF1. Additionally, miR-504 could down-regulate the expression of TFAM and OXPHOS complexes I, III, and IV and impaired the mitochondrial respiratory function of NPC cells. Furthermore, serum from NPC patients showed that miR-504 was up-regulated during different weeks of radiotherapy and correlated with tumor, lymph nodes and metastasis (TNM) stages and total tumor volume. The radio-therapeutic effect at three months after radiotherapy was evaluated. Results indicated that patients with high expression of miR-504 exhibited a relatively lower therapeutic effect ratio of complete response (CR), but a higher ratio of partial response (PR), compared to patients with low expression of miR-504. Taken together, these results demonstrated that miR-504 affected the radio-resistance of NPC by down-regulating the expression of NRF1 and disturbing mitochondrial respiratory function. Thus, miR-504 might become a promising biomarker of NPC radio-resistance and targeting miR-504 might improve tumor radiation response. PMID:26201446
Jutooru, Indira; Chadalapaka, Gayathri; Lei, Ping; Safe, Stephen
2010-01-01
Curcumin activates diverse anticancer activities that lead to inhibition of cancer cell and tumor growth, induction of apoptosis, and antiangiogenic responses. In this study, we observed that curcumin inhibits Panc28 and L3.6pL pancreatic cancer cell and tumor growth in nude mice bearing L3.6pL cells as xenografts. In addition, curcumin decreased expression of p50 and p65 proteins and NFκB-dependent transactivation and also decreased Sp1, Sp3, and Sp4 transcription factors that are overexpressed in pancreatic cancer cells. Because both Sp transcription factors and NFκB regulate several common genes such as cyclin D1, survivin, and vascular endothelial growth factor that contribute to the cancer phenotype, we also investigated interactions between Sp and NFκB transcription factors. Results of Sp1, Sp3, and Sp4 knockdown by RNA interference demonstrate that both p50 and p65 are Sp-regulated genes and that inhibition of constitutive or tumor necrosis factor-induced NFκB by curcumin is dependent on down-regulation of Sp1, Sp3, and Sp4 proteins by this compound. Curcumin also decreased mitochondrial membrane potential and induced reactive oxygen species in pancreatic cancer cells, and this pathway is required for down-regulation of Sp proteins in these cells, demonstrating that the mitochondriotoxic effects of curcumin are important for its anticancer activities. PMID:20538607
ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum
Chen, Wenjie; Zhang, Bo; Wang, Daowen; Liu, Dengcai; Zhang, Huaigang
2017-01-01
Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1) transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH) transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like) of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding. PMID:28704468
Umeshappa, Channakeshava Sokke; Xie, Yufeng; Xu, Shulin; Nanjundappa, Roopa Hebbandi; Freywald, Andrew; Deng, Yulin; Ma, Hong; Xiang, Jim
2013-01-01
Involvement of CD4(+) helper T (Th) cells is crucial for CD8(+) cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4(+) Th's signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4(+) Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4(+) T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2K(b)/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4(+) Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4(+) Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4(+) Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.
Meyer Zu Horste, Gerd; Przybylski, Dariusz; Schramm, Markus A; Wang, Chao; Schnell, Alexandra; Lee, Youjin; Sobel, Raymond; Regev, Aviv; Kuchroo, Vijay K
2018-03-20
The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity. Copyright © 2018. Published by Elsevier Inc.
Hypopigmentary action of dihydropyranocoumarin D2, a decursin derivative, as a MITF-degrading agent.
Kim, Dong-Seok; Park, So-Hee; Lee, Hyun-Kyung; Choo, Soo-Jin; Lee, Jee Hyun; Song, Gyu Yong; Yoo, Ick-Dong; Kwon, Sun-Bang; Na, Jung-Im; Park, Kyoung-Chan
2010-05-28
In this study, the decursin derivative dihydropyranocoumarin D2 (1) was selected for its effects on melanogenesis using a spontaneously immortalized mouse melanocyte cell line (Mel-Ab). The results showed that 1 effectively inhibited melanin synthesis in a concentration-dependent manner, but that it did not inhibit tyrosinase in a cell-free system. In addition, the changes in ERK, Akt, and microphthalmia-associated transcription factor (MITF) in response to treatment with 1 were assessed. The results revealed that ERK was dramatically up-regulated and MITF was down-regulated in response to treatment with 1, but that Akt was unchanged. Therefore, the effects of 1 on melanogenesis were examined in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway). PD98059 restored hypopigmentation and the down-regulation of MITF induced by 1. Finally, MITF down-regulation by 1 was clearly restored by both chloroquine, a lysosomal proteolysis inhibitor, and MG132, a proteasome inhibitor.
The ESR1 and GPX1 gene expression level in human malignant and non-malignant breast tissues.
Król, Magdalena B; Galicki, Michał; Grešner, Peter; Wieczorek, Edyta; Jabłońska, Ewa; Reszka, Edyta; Morawiec, Zbigniew; Wąsowicz, Wojciech; Gromadzińska, Jolanta
2018-01-01
The aim of this study was to establish whether the gene expression of estrogen receptor alpha (encoded by ESR1) correlates with the expression of glutathione peroxidase 1 (encoded by GPX1) in the tumor and adjacent tumor-free breast tissue, and whether this correlation is affected by breast cancer. Such relationships may give further insights into breast cancer pathology with respect to the status of estrogen receptor. We used the quantitative real-time PCR technique to analyze differences in the expression levels of the ESR1 and GPX1 genes in paired malignant and non-malignant tissues from breast cancer patients. ESR1 and GPX1 expression levels were found to be significantly down-regulated by 14.7% and 7.4% (respectively) in the tumorous breast tissue when compared to the non-malignant one. Down-regulation of these genes was independent of the tumor histopathology classification and clinicopathological factors, while the ESR1 mRNA level was reduced with increasing tumor grade (G1: 103% vs. G2: 85.8% vs. G3: 84.5%; p<0.05). In the non-malignant and malignant breast tissues, the expression levels of ESR1 and GPX1 were significantly correlated with each other (Rs=0.450 and Rs=0.360; respectively). Our data suggest that down-regulation of ESR1 and GPX1 was independent of clinicopathological factors. Down-regulation of ESR1 gene expression was enhanced by the development of the disease. Moreover, GPX1 and ESR1 gene expression was interdependent in the malignant breast tissue and further work is needed to determine the mechanism underlying this relationship.
Wang, Yuanyuan; Jiang, Xuefeng; Zhu, Junfeng; Dan Yue; Zhang, Xiaoqing; Wang, Xiao; You, Yong; Wang, Biao; Xu, Ying; Lu, Changlong; Sun, Xun; Yoshikai, Yasunobu
2016-01-01
Serum level of IL-21 is increased in patients with inflammatory bowel diseases (IBD), suggesting that IL-21/IL-21 receptor (IL-21R) signaling may be involved in the pathogenesis of IBD. However, the role of IL-21/IL-21 receptor signaling plays in the pathogenesis of IBD is not very clear. In this study, using IL-21R.KO mice, we tested the role of IL-21/IL-21R signaling in the regulation of T helper cell responses during intestinal inflammation. Here we found that IL-21R.KO mice were more susceptible to DSS-induced colitis as compared with C57BL/6 mice. The spontaneous inflammatory cytokines released by macrophages in LP of colon were significantly increased, and Th2, Th17 and Treg responses were down-regulated markedly. However, Th1 responses were significantly up-regulated in IL-21R.KO mice. Meanwhile, the population of CD8+CD44+IFN-γ+ T cells was markedly elevated in LP of inflammatory intestine of IL-21RKO mice. In vivo, after disease onset, DSS-induced intestinal inflammation was ameliorated in C57BL/6 mice treated with rIL-21. Our results demonstrate that IL-21/IL-21R signaling contributes to protection against DSS-induced acute colitis through suppression of Th1 and activation of Th2, Th17 and Treg responses in mice. Therefore, therapeutic manipulation of IL-21/IL-21R activity may allow improved immunotherapy for IBD and other inflammatory diseases associated with Th cell responses. PMID:27545302
Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H
2008-08-01
Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.
Spleen lymphocyte function modulated by a cocoa-enriched diet.
Ramiro-Puig, E; Pérez-Cano, F J; Ramírez-Santana, C; Castellote, C; Izquierdo-Pulido, M; Permanyer, J; Franch, A; Castell, M
2007-09-01
Previous studies have shown the down-regulating in vitro effect of cocoa flavonoids on lymphocyte and macrophage activation. In the present paper, we report the capacity of a long-term rich cocoa diet to modulate macrophage cytokine secretion and lymphocyte function in young rats. Weaned rats received natural cocoa (4% or 10% food intake), containing 32 mg flavonoids/g, for 3 weeks. Spleen immune function was then evaluated through the analysis of lymphocyte composition, their proliferative response and their ability to secrete cytokines and Ig. In addition, the status of activated peritoneal macrophages was established through tumour necrosis factor (TNF)-alpha secretion. The richest cocoa diet (10%) caused a reduction of TNF-alpha secretion by peritoneal macrophages showing anti-inflammatory activity. Similarly, although a 10% cocoa diet increased lymphocyte proliferation rate, it down-regulated T helper 2 (Th2)-related cytokines and decreased Ig secretion. These changes were accompanied by an increase in spleen B cell proportion and a decrease in Th cell percentage. In summary, these results demonstrate the functional activity of a cocoa-high dosage in down-regulating the immune response that might be beneficial in hypersensitivity and autoimmunity.
Spleen lymphocyte function modulated by a cocoa-enriched diet
Ramiro-Puig, E; Pérez-Cano, F J; Ramírez-Santana, C; Castellote, C; Izquierdo-Pulido, M; Permanyer, J; Franch, A; Castell, M
2007-01-01
Previous studies have shown the down-regulating in vitro effect of cocoa flavonoids on lymphocyte and macrophage activation. In the present paper, we report the capacity of a long-term rich cocoa diet to modulate macrophage cytokine secretion and lymphocyte function in young rats. Weaned rats received natural cocoa (4% or 10% food intake), containing 32 mg flavonoids/g, for 3 weeks. Spleen immune function was then evaluated through the analysis of lymphocyte composition, their proliferative response and their ability to secrete cytokines and Ig. In addition, the status of activated peritoneal macrophages was established through tumour necrosis factor (TNF)-α secretion. The richest cocoa diet (10%) caused a reduction of TNF-α secretion by peritoneal macrophages showing anti-inflammatory activity. Similarly, although a 10% cocoa diet increased lymphocyte proliferation rate, it down-regulated T helper 2 (Th2)-related cytokines and decreased Ig secretion. These changes were accompanied by an increase in spleen B cell proportion and a decrease in Th cell percentage. In summary, these results demonstrate the functional activity of a cocoa-high dosage in down-regulating the immune response that might be beneficial in hypersensitivity and autoimmunity. PMID:17565606
TGF-β1 is critical for Wallerian degeneration after rat sciatic nerve injury.
Li, M; Zhang, P; Li, H; Zhu, Y; Cui, S; Yao, D
2015-01-22
Wallerian degeneration (WD) is a process of axonal degeneration distal to the injury site followed by a robust regenerative response. It involves degeneration and regeneration which can be directly induced by nerve injury and activated by transcription factors. Although WD has been studied extensively, the precise mechanisms of transcription factors regulating WD are still elusive. In this study, we reported the effect of transforming growth factor-β1 (TGF-β1) on WD after rat sciatic nerve injury. The data showed that TGF-β1 may express in injured rat sciatic nerve and cultured Schwann cells (SCs). Knock down of TGF-β1 expressions resulted in the reduction of SC proliferation and apoptosis, up regulation of cytokines and Smad2, 4. Enhanced expression of TGF-β1 could promote SC proliferation and apoptosis, down regulation of cytokines and Smad2, 4. Altered expressions of TGF-β1 may affect Smad and AKT but not c-Jun and extracellular regulated protein kinase (ERK) pathways. Our results revealed the role of TGF-β1 on WD and provided the basis for the molecular mechanisms of TGF-β1-regulated nerve degeneration and/or regeneration. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Immunoevasive Aspergillus virulence factors.
Chotirmall, Sanjay H; Mirkovic, Bojana; Lavelle, Gillian M; McElvaney, Noel G
2014-12-01
Individuals with structural lung disease or defective immunity are predisposed to Aspergillus-associated disease. Manifestations range from allergic to cavitary or angio-invasive syndromes. Despite daily spore inhalation, immunocompetence facilitates clearance through initiation of innate and adaptive host responses. These include mechanical barriers, phagocyte activation, antimicrobial peptide release and pattern recognition receptor activation. Adaptive responses include Th1 and Th2 approaches. Understanding Aspergillus virulence mechanisms remains critical to the development of effective research and treatment strategies to counteract the fungi. Major virulence factors relate to fungal structure, protease release and allergens; however, mechanisms utilized to evade immune recognition continue to be important in establishing infection. These include the fungal rodlet layer, dihydroxynaphthalene-melanin, detoxifying systems for reactive oxygen species and toxin release. One major immunoevasive toxin, gliotoxin, plays a key role in mediating Aspergillus-associated colonization in the context of cystic fibrosis. Here, it down-regulates vitamin D receptor expression which following itraconazole therapy is rescued concurrent with decreased Th2 cytokine (IL-5 and IL-13) concentrations in the CF airway. This review focuses on the interaction between Aspergillus pathogenic mechanisms, host immune responses and the immunoevasive strategies employed by the organism during disease states such as that observed in cystic fibrosis.
Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats.
Pérez-Berezo, Teresa; Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Castell, Margarida
2009-03-01
Previous studies in young rats have reported the impact of 3 weeks of high cocoa intake on healthy immune status. The present article describes the effects of a longer-term cocoa-enriched diet (9 weeks) on the specific immune response to ovalbumin (OVA) in adult Wistar rats. At 4 weeks after immunization, control rats produced anti-OVA antibodies, which, according their amount and isotype, were arranged as follows: IgG1 > IgG2a > IgM > IgG2b > IgG2c. Both cocoa diets studied (4% and 10%) down-modulated OVA-specific antibody levels of IgG1 (main subclass associated with the Th2 immune response in rats), IgG2a, IgG2c and IgM isotypes. Conversely, cocoa-fed rats presented equal or higher levels of anti-OVA IgG2b antibodies (subclass linked to the Th1 response). Spleen and lymph node cells from OVA-immunized control and cocoa-fed animals proliferated similarly under OVA stimulation. However, spleen cells from cocoa-fed animals showed decreased interleukin-4 secretion (main Th2 cytokine), and lymph node cells from the same rats displayed higher interferon-gamma secretion (main Th1 cytokine). These changes were accompanied by a reduction in the number of anti-OVA IgG-secreting cells in spleen. In conclusion, cocoa diets induced attenuation of antibody synthesis that may be attributable to specific down-regulation of the Th2 immune response.
Umeshappa, Channakeshava Sokke; Xie, Yufeng; Xu, Shulin; Nanjundappa, Roopa Hebbandi; Freywald, Andrew; Deng, Yulin; Ma, Hong; Xiang, Jim
2013-01-01
Involvement of CD4+ helper T (Th) cells is crucial for CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4+ Th’s signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2Kb/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy. PMID:23785406
Xu, Hongyun; Shi, Xinxin; Wang, Zhibo; Gao, Caiqiu; Wang, Chao; Wang, Yucheng
2017-08-01
WRKY transcription factors play important roles in many biological processes, and mainly bind to the W-box element to regulate gene expression. Previously, we characterized a WRKY gene from Tamarix hispida, ThWRKY4, in response to abiotic stress, and showed that it bound to the W-box motif. However, whether ThWRKY4 could bind to other motifs remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ThWRKY4. In addition to the W-box core cis-element (termed W-box), we identified that ThWRKY4 could bind to two other motifs: the RAV1A element (CAACA) and a novel motif with sequence of GTCTA (W-box like sequence, WLS). The distributions of these motifs were screened in the promoter regions of genes regulated by some WRKYs. The results showed that the W-box, RAV1A, and WLS motifs were all present in high numbers, suggesting that they play key roles in gene expression mediated by WRKYs. Furthermore, five WRKY proteins from different WRKY subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the RAV1A and WLS motifs, indicating that they are recognized commonly by WRKYs. These findings will help to further reveal the functions of WRKY proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Dasgupta, Nirmalya; Thakur, Bhupesh Kumar; Ta, Atri; Das, Sayan; Banik, George; Das, Santasabuj
2017-07-01
Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-01-01
Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN induces reactive astrocytosis and acutely inhibits TH+ neuron survival in ipsilateral SNpc, an effect efficiently prevented by pharmacological activation of β-catenin signaling within the SNpc. Conclusion These results defining a novel Wnt1/Fzd-1/β-catenin astrocyte-DA autoprotective loop provide a new mechanistic inside into the regulation of pro-survival processes, with potentially relevant consequences for drug design or drug action in Parkinson's disease. PMID:21752258
Gelber, C; Gemmell, L; McAteer, D; Homola, M; Swain, P; Liu, A; Wilson, K J; Gefter, M
1997-03-01
Immune regulation of contact sensitivity to the poison ivy/oak catechol was studied at the level of class II MHC-restricted T cell recognition of hapten:peptide conjugates. In this study we have shown that 1) T cells from C3H/HeN (H-2k) mice, immunized with a synthetic I-Ak binding peptide coupled to 3-pentadecyl-catechol (PDC; a representative catechol in urushiol), recognized peptides derived from syngeneic cells linked to the same catechol; 2) T cells from draining lymph nodes of C3H/HeN mice skin-painted with PDC proliferated in response to a peptide carrier:PDC conjugate only when it was linked at the 7th, but not the 4th or the 10th, position on the peptide carrier; and 3) tolerization studies confirmed down-regulation of PDC-induced delayed-type hypersensitivity following treatment with a single I-Ak binding peptide carrying PDC covalently bound to a lysine residue at the middle (7th) TCR contact position. Tolerization with peptide:PDC conjugate resulted in abrogation of hapten-specific T cell proliferative responses that correlated with diminished IL-2 secretion. On the basis of these data we propose that it may be sufficient to couple the hapten at a single, well-chosen position on a carrier peptide to target a relevant population of T cells involved in contact sensitivity.
Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N.; Gieryńska, Małgorzata
2017-01-01
Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM—comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo. PMID:29312229
Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P
2007-05-01
We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.
NBR1 is a new PB1 signalling adapter in Th2 differentiation and allergic airway inflammation in vivo
Yang, Jun-Qi; Liu, Hongzhu; Diaz-Meco, Maria T; Moscat, Jorge
2010-01-01
Allergic airway inflammation is a disease in which T helper 2 (Th2) cells have a critical function. The molecular mechanisms controlling Th2 differentiation and function are of paramount importance in biology and immunology. Recently, a network of PB1-containing adapters and kinases has been shown to be essential in this process owing to its function in regulating cell polarity and the activation of critical transcription factors. Here, we show in vivo data showing that T-cell-specific NBR1-deficient mice show impaired lung inflammation and have defective Th2 differentiation ex vivo with alterations in T-cell polarity and the selective inhibition of Gata3 and nuclear factor of activated T c1 activation. These results establish NBR1 as a novel PB1 adapter in Th2 differentiation and asthma. PMID:20808283
Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.
Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho
2016-02-27
Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.
Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye
Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.
2014-01-01
Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef−/− mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef−/− mice revealed down-regulation of goblet cell–specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef−/− mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. PMID:23665202
Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.
Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K
2013-07-01
Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Lee, Chang Youn; Shin, Sunhye; Lee, Jiyun; Seo, Hyang-Hee; Lim, Kyu Hee; Kim, Hyemin; Choi, Jung-Won; Kim, Sang Woo; Lee, Seahyung; Lim, Soyeon; Hwang, Ki-Chul
2016-10-20
Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs) has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS) production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs) might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs) based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs) and on rat myocardial infarction (MI) models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.
Macaubas, C; Lee, P T; Smallacombe, T B; Holt, B J; Wee, C; Sly, P D; Holt, P G
2002-01-01
T helper (Th)2 cytokines are considered to play a central role in the induction and expression of allergic disease. However, the relative importance of individual cytokines is unclear, and overall disease pathogenesis appears to involve the coordinate activities of a range of Th2 cytokines acting in sequence or in parallel. The present study examines an alternative approach to the study of cytokine gene function in atopy, focusing instead upon T cell transcription factors (TFs) which play a role in the regulation of multiple cytokine genes. To investigate the allergen-induced expression of the TF GATA-3 and c-Maf in peripheral blood mononuclear cells (PBMCs) and in cytokine-driven Th polarization. PBMC from house dust mite (HDM)-atopic and non-atopics were stimulated in vitro with allergen or anti-CD3/IL-2. TF expression was analysed by semiquantitative RT-PCR and major findings were validated by real-time PCR. Cell separations were performed to analyse the contribution of CD45RO+ cells. CD4+ cord blood cells were Th1 or Th2 polarized in vitro by exogenous cytokines and TF expression analysed by Northern blot and real-time PCR. Results We demonstrate for the first time that during differentiation of CD4+ CD45RA+ naïve human T cells towards Th2 commitment, and during allergen-specific reactivation of peripheral CD4+ CD45RO+ Th2 memory cells in established atopics, expression of the Th2-associated TF GATA-3 is rapidly up-regulated, whereas T cells from non-atopics display equally rapid GATA-3 down-regulation under identical conditions of allergen stimulation. These findings identify Th2-associated TFs as key determinants of the atopic phenotype, suggesting their unique potential as therapeutic targets for disease control.
Wang, Qiyan; Li, Chun; Zhang, Qian; Wang, Yuanyuan; Shi, Tianjiao; Lu, Linghui; Zhang, Yi; Wang, Yong; Wang, Wei
2016-12-12
DanQi pill (DQP) is prescribed widely in China and has definite cardioprotective effect on coronary heart disease. Our previous studies proved that DQP could effectively regulate plasma levels of high density lipoprotein (HDL) and low density lipoprotein (LDL). However, the regulatory mechanisms of DQP and its major components Salvianolic acids and Panax notoginseng saponins (DS) on lipid metabolism disorders haven't been comprehensively studied so far. Rat model of coronary heart disease was induced by left anterior descending (LAD) artery ligation operations. Rats were divided into sham, model, DQP treated, DS treated and positive drug (clofibrate) treated groups. At 28 days after surgery, cardiac functions were assessed by echocardiography. Expressions of transcription factors and key molecules in energy metabolism pathway were measured by reverse transcriptase polymerase chain reaction or western blotting. In ischemic heart model, cardiac functions were severely injured but improved by treatments of DQP and DS. Expression of LPL was down-regulated in model group. Both DQP and DS could up-regulate the mRNA expression of LPL. Membrane proteins involved in lipid transport and uptake, such as FABP4 and CPT-1A, were down-regulated in ischemic heart tissues. Treatment with DQP and DS regulated lipid metabolisms by up-regulating expressions of FABP4 and CPT-1A. DQP and DS also suppressed expression of cytochrome P450. Furthermore, transcriptional factors, such as PPARα, PPARγ, RXRA and PGC-1α, were down-regulated in ischemic model group. DQP and DS could up-regulate expressions of these factors. However, DS showed a better efficacy than DQP on PGC-1α, a coactivator of PPARs. Key molecules in signaling pathways such as AKT1/2, ERK and PI3K were also regulated by DQP and DS simultaneously. Salvianolic acids and Panax notoginseng are the major effective components of DanQi pill in improving lipid metabolism in ischemic heart model. The effects may be mediated by regulating transcriptional factors such as PPARs, RXRA and PGC-1α.
Shin, Min-Kyoung; Shin, Seung Won; Jung, Myunghwan; Park, Hongtae; Park, Hyun-Eui; Yoo, Han Sang
2015-07-01
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease, which causes considerable economic loss in the dairy industry and has a possible relationship to Crohn's disease (CD) in humans. As MAP has been detected in retail pasteurized milk samples, its transmission via milk is of concern. Despite its possible role in the etiology of CD, there have been few studies examining the interactions between MAP and human cells. In the current study, we applied Ingenuity Pathway Analysis to the transcription profiles generated from a murine model with MAP infection as part of a previously conducted study. Twenty-one genes were selected as potential host immune responses, compared with the transcriptional profiles in naturally MAP-infected cattle, and validated in MAP-infected human monocyte-derived macrophage THP-1 cells. Of these, the potential host responses included up-regulation of genes related to immune response (CD14, S100A8, S100A9, LTF, HP and CHCIL3), up-regulation of Th1-polarizing factor (CCL4, CCL5, CXCL9 and CXCL10), down-regulation of genes related to metabolism (ELANE, IGF1, TCF7L2 and MPO) and no significant response of other genes (GADD45a, GPNMB, HMOX1, IFNG and NQO1) in THP-1 cells infected with MAP. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes.
Chen, Kai-Yi; Cong, Bin; Wing, Rod; Vrebalov, Julia; Tanksley, Steven D
2007-10-26
We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.
Noman, Abu Shadat M; Koide, Naoki; Hassan, Ferdaus; I-E-Khuda, Imtiaz; Dagvadorj, Jargalsaikhan; Tumurkhuu, Gantsetseg; Islam, Shamima; Naiki, Yoshikazu; Yoshida, Tomoaki; Yokochi, Takashi
2009-02-01
The effect of thalidomide on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production was studied by using RAW 264.7 murine macrophage-like cells. Thalidomide significantly inhibited LPS-induced TNF-alpha production. Thalidomide prevented the activation of nuclear factor (NF)-KB by down-regulating phosphorylation of inhibitory KB factor (IKB), and IKB kinase (IKK)-alpha and IKK-beta Moreover, thalidomide inhibited LPS-induced phosphorylation of AKT, p38 and stress-activated protein kinase (SAPK)/JNK. The expression of myeloid differentiation factor 88 (MyD88) protein and mRNA was markedly reduced in thalidomide-treated RAW 264.7 cells but there was no significant alteration in the expression of interleukin-1 receptor-associated kinase (IRAK) 1 and TNF receptor-associated factor (TRAF) 6 in the cells. Thalidomide did not affect the cell surface expression of Toll-like receptor (TLR) 4 and CD14, suggesting the impairment of intracellular LPS signalling in thalidomide-treated RAW 264.7 cells. Thalidomide significantly inhibited the TNF-alpha production in response to palmitoyl-Cys(RS)-2,3-di(palmitoyloxy) propyl)-Ala-Gly-OH (Pam(3)Cys) as a MyD88-dependent TLR2 ligand. Therefore, it is suggested that thalidomide might impair LPS signalling via down-regulation of MyD88 protein and mRNA and inhibit LPS-induced TNF-alpha production. The putative mechanism of thalidomide-induced MyD88 down-regulation is discussed.
2010-01-01
Background Successful embryonic implantation depends on a synchronized embryo-maternal dialogue. Chemokines, such as chemokine ligand 1 (CXCL1), play essential roles in the maternal reproductive tract leading to morphological changes during decidualization, mediating maternal acceptance towards the semi-allograft embryo and induction of angiogenesis. Chemokine binding to their classical G-protein coupled receptors is essentially supported by the syndecan (Sdc) family of heparan sulfate proteoglycans. The aim of this study was to identify the involvement of Sdc-1 at the embryo-maternal interface regarding changes of the chemokine and angiogenic profile of the decidua during the process of decidualization and implantation in human endometrium. Methods A stable Sdc-1 knock-down was generated in the immortalized human endometrial stromal cell line St-T1 and was named KdS1. The ability of KdS1 to decidualize was proven by Insulin-like growth factor binding 1 (IGFBP1) and prolactin (PRL) confirmation on mRNA level before further experiments were carried out. Dot blot protein analyses of decidualized knock-down cells vs non-transfected controls were performed. In order to imitate embryonic implantation, decidualized KdS1 were then incubated with IL-1beta, an embryo secretion product, vs controls. Statistical analyses were performed applying the Student's t-test with p < 0.05, p < 0.02 and p < 0.01 and one way post-hoc ANOVA test with p < 0.05 as cut-offs for statistical significance. Results The induction of the Sdc-1 knock-down revealed significant changes in cytokine and angiogenic factor expression profiles of dKdS1 vs decidualized controls. Incubation with embryonic IL-1beta altered the expression patterns of KdS1 chemokines and angiogenic factors towards inflammatory-associated molecules and factors involved in matrix regulation. Conclusions Sdc-1 knock-down in human endometrial stroma cells led to fulminant changes regarding cytokine and angiogenic factor expression profiles upon decidualization and imitation of embryonic contact. Sdc-1 appears to play an important role as a co-receptor and storage factor for many cytokines and angiogenic factors during decidualization and implantation period, supporting proper implantation and angiogenesis by regulation of chemokine and angiogenic factor secretion in favour of the implanting embryo. PMID:21044331
Czerednik, Anna; Busscher, Marco; Bielen, Bram A.M.; Wolters-Arts, Mieke; de Maagd, Ruud A.; Angenent, Gerco C.
2012-01-01
Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development. PMID:22282536
Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas
2004-09-24
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.
Th-POK regulates mammary gland lactation through mTOR-SREBP pathway.
Zhang, Rui; Ma, Huimin; Gao, Yuan; Wu, Yanjun; Qiao, Yuemei; Geng, Ajun; Cai, Cheguo; Han, Yingying; Zeng, Yi Arial; Liu, Xiaolong; Ge, Gaoxiang
2018-02-01
The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation.
Th-POK regulates mammary gland lactation through mTOR-SREBP pathway
Wu, Yanjun; Qiao, Yuemei; Geng, Ajun; Cai, Cheguo; Han, Yingying; Zeng, Yi Arial
2018-01-01
The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation. PMID:29420538
Breivik, T; Rook, G A W
2000-01-01
Periodontal disease is a bacterial dental plaque-induced destructive inflammatory condition of the tooth-supporting tissues, which is thought to be mediated by T lymphocytes secreting T helper 2 (Th2) cytokines, resulting in recruitment of high numbers of antibody-producing B lymphocytes/plasma cells as well as polymorphonuclear leucocytes (PMN) secreting tissue-destructive components, such at matrix metalloproteinases and reactive oxygen metabolites into the gingival connective tissues. One treatment strategy may be to down-regulate the Th2 response to those dental plaque microorganisms which induce the destructive inflammatory response. In this study we have examined the effects of a potent down-regulator of Th2 responses on ligature-induced periodontal disease in an experimental rat model. A single s.c. injection into Wistar rats of 0·1 or 1 mg of SRL172, a preparation of heat-killed Mycobacterium vaccae (NCTC 11659), 13 days before application of the ligature, significantly reduced the subsequent destruction of the tooth-supporting tissues, as measured by loss of periodontal attachment fibres (P < 0·001) and bone (P < 0·002). This protective effect occurred not only on the experimental (ligatured) side but also on the control unligatured side. SRL172 has undergone extensive toxicological studies and safety assessments in humans, and it is suggested that it may provide a safe and novel therapeutic approach to periodontal disease. PMID:10844524
Hu, Lifang; Su, Peihong; Yin, Chong; Zhang, Yan; Li, Runzhi; Yan, Kun; Chen, Zhihao; Li, Dijie; Zhang, Ge; Wang, Liping; Miao, Zhiping; Qian, Airong; Xian, Cory J
2018-02-01
Osteoblast differentiation is a multistep process delicately regulated by many factors, including cytoskeletal dynamics and signaling pathways. Microtubule actin crosslinking factor 1 (MACF1), a key cytoskeletal linker, has been shown to play key roles in signal transduction and in diverse cellular processes; however, its role in regulating osteoblast differentiation is still needed to be elucidated. To further uncover the functions and mechanisms of action of MACF1 in osteoblast differentiation, we examined effects of MACF1 knockdown (MACF1-KD) in MC3T3-E1 osteoblastic cells on their osteoblast differentiation and associated molecular mechanisms. The results showed that knockdown of MACF1 significantly suppressed mineralization of MC3T3-E1 cells, down-regulated the expression of key osteogenic genes alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and type I collagen α1 (Col Iα1). Knockdown of MACF1 dramatically reduced the nuclear translocation of β-catenin, decreased the transcriptional activation of T cell factor 1 (TCF1), and down-regulated the expression of TCF1, lymphoid enhancer-binding factor 1 (LEF1), and Runx2, a target gene of β-catenin/TCF1. In addition, MACF1-KD increased the active level of glycogen synthase kinase-3β (GSK-3β), which is a key regulator for β-catenin signal transduction. Moreover, the reduction of nuclear β-catenin amount and decreased expression of TCF1 and Runx2 were significantly reversed in MACF1-KD cells when treated with lithium chloride, an agonist for β-catenin by inhibiting GSK-3β activity. Taken together, these findings suggest that knockdown of MACF1 in osteoblastic cells inhibits osteoblast differentiation through suppressing the β-catenin/TCF1-Runx2 axis. Thus, a novel role of MACF1 in and a new mechanistic insight of osteoblast differentiation are uncovered. © 2017 Wiley Periodicals, Inc.
2011-01-01
Background We have previously reported that RAS-MEK (Cancer Res. 2003 May 1;63(9):2088-95) and TGF-β (Cancer Res. 2006 Feb 1;66(3):1648-57) signaling negatively regulate coxsackie virus and adenovirus receptor (CAR) cell-surface expression and adenovirus uptake. In the case of TGF-β, down-regulation of CAR occurred in context of epithelial-to-mesenchymal transition (EMT), a process associated with transcriptional repression of E-cadherin by, for instance, the E2 box-binding factors Snail, Slug, SIP1 or ZEB1. While EMT is crucial in embryonic development, it has been proposed to contribute to the formation of invasive and metastatic carcinomas by reducing cell-cell contacts and increasing cell migration. Results Here, we show that ZEB1 represses CAR expression in both PANC-1 (pancreatic) and MDA-MB-231 (breast) human cancer cells. We demonstrate that ZEB1 physically associates with at least one of two closely spaced and conserved E2 boxes within the minimal CAR promoter here defined as genomic region -291 to -1 relative to the translational start ATG. In agreement with ZEB1's established role as a negative regulator of the epithelial phenotype, silencing its expression in MDA-MB-231 cells induced a partial Mesenchymal-to-Epithelial Transition (MET) characterized by increased levels of E-cadherin and CAR, and decreased expression of fibronectin. Conversely, knockdown of ZEB1 in PANC-1 cells antagonized both the TGF-β-induced down-regulation of E-cadherin and CAR and the reduction of adenovirus uptake. Interestingly, even though ZEB1 clearly contributes to the TGF-β-induced mesenchymal phenotype of PANC-1 cells, TGF-β did not seem to affect ZEB1's protein levels or subcellular localization. These findings suggest that TGF-β may inhibit CAR expression by regulating factor(s) that cooperate with ZEB1 to repress the CAR promoter, rather than by regulating ZEB1 expression levels. In addition to the negative E2 box-mediated regulation the minimal CAR promoter is positively regulated through conserved ETS and CRE elements. Conclusions This report provides evidence that inhibition of ZEB1 may improve adenovirus uptake of cancer cells that have undergone EMT and for which ZEB1 is necessary to maintain the mesenchymal phenotype. Targeting of ZEB1 may reverse some aspects of EMT including the down-regulation of CAR. PMID:21791114
Park, Jae-Woo; Bae, Hyunsu; Lee, Gihyun; Hong, Beom-Gi; Yoo, Hye Hyun; Lim, Sung-Jig; Lee, Kyungjin; Kim, Jinsung; Ryu, Bongha; Lee, Beom-Joon; Bae, Jinhyun; Lee, Hyejung; Bu, Youngmin
2013-01-28
Inflammatory bowel diseases (IBD) are chronically relapsing inflammatory disorders of the intestine. Although some therapeutic agents, including steroids, are available for the treatment of IBD, these agents have limited use. Therefore, dietary supplements have emerged as possible interventions for IBD. Japanese honeysuckle flower, the flower of Lonicera japonica, is a well-known dietary supplement and has been used to prevent or treat various inflammatory diseases. In the present study, we investigated the effects of L. japonica on experimental murine colitis. Colitis was induced by 5 % dextran sulphate sodium (DSS) in Balb/c mice. The water extract of L. japonica (LJE) at doses of 20, 100 or 500 mg/kg was orally administered to mice twice per day for 7 d. Body weight, colon length and a histological damage score were assessed to determine the effects on colitis. Cytokine profiles were assessed to examine the effects on helper T (Th) cell-related immunological responses. In addition, CD4⁺CD25⁺Foxp3⁺T cells were analysed in vivo and in vitro for investigating the effects on regulatory T (Treg) cells. LJE showed dose-dependent inhibitory effects against colon shortening, weight loss and histological damage. LJE down-regulated IL-1β, TNF-α, interferon-γ, IL-6, IL-12 and IL-17. However, LJE did not show any significant effects on IL-10, IL-23, transforming growth factor-β1 and Treg cell populations. In conclusion, LJE showed protective effects against DSS-induced colitis via the Th1/Th17 pathway and not via Treg cell-related mechanisms.
Wang, Hong; Stier, Genevieve; Lin, Jing; Liu, Gang; Zhang, Zhen; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong
2013-01-01
Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of etr1-1 to be initiated at the desired time and stage of development. Here, we showed that transgenic plants grew and developed normally without a chemical inducer. Semi-quantitative RT-PCR demonstrated that the abundance of transcripts of Arabidopsis etr1-1 gene was substantially induced in flowers with 30 μM dexamethasone (DEX). Consequently, t he life of the flowers was almost doubled and the peak of ethylene production was delayed. We compared gene expression changes of petals with DEX to those without DEX at 24 h and 48 h by microarray. Our results indicated that transcripts of many putative genes encoding transcription factors were down-regulated by etr1-1 induced expression at the early stage. In addition, putative genes involved in gibberellin biosynthesis, response to jasmonic acid/gibberellins stimulus, cell wall modification, ethylene biosynthesis, and cell death were down-regulated associating with etr1-1 induced expression. We investigated time-course gene expression profiles and found two profiles which displayed totally opposite expression patterns under these two treatments. In these profiles, 'the regulation of transcription' was predominant in GO categories. Taking all results together, we concluded those transcription factors down-regulated at early stage might exert a major role in regulating the senescence process which were consequently characterized by cell wall modification and cell death.
Lin, Jing; Liu, Gang; Zhang, Zhen; Chang, Youhong; Reid, Michael S.; Jiang, Cai-Zhong
2013-01-01
Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of etr1-1 to be initiated at the desired time and stage of development. Here, we showed that transgenic plants grew and developed normally without a chemical inducer. Semi-quantitative RT-PCR demonstrated that the abundance of transcripts of Arabidopsis etr1-1 gene was substantially induced in flowers with 30 μM dexamethasone (DEX). Consequently, t he life of the flowers was almost doubled and the peak of ethylene production was delayed. We compared gene expression changes of petals with DEX to those without DEX at 24 h and 48 h by microarray. Our results indicated that transcripts of many putative genes encoding transcription factors were down-regulated by etr1-1 induced expression at the early stage. In addition, putative genes involved in gibberellin biosynthesis, response to jasmonic acid/gibberellins stimulus, cell wall modification, ethylene biosynthesis, and cell death were down-regulated associating with etr1-1 induced expression. We investigated time-course gene expression profiles and found two profiles which displayed totally opposite expression patterns under these two treatments. In these profiles, ‘the regulation of transcription’ was predominant in GO categories. Taking all results together, we concluded those transcription factors down-regulated at early stage might exert a major role in regulating the senescence process which were consequently characterized by cell wall modification and cell death. PMID:23874385
GARP: a key receptor controlling FOXP3 in human regulatory T cells.
Probst-Kepper, M; Geffers, R; Kröger, A; Viegas, N; Erck, C; Hecht, H-J; Lünsdorf, H; Roubin, R; Moharregh-Khiabani, D; Wagner, K; Ocklenburg, F; Jeron, A; Garritsen, H; Arstila, T P; Kekäläinen, E; Balling, R; Hauser, H; Buer, J; Weiss, S
2009-09-01
Recent evidence suggests that regulatory pathways might control sustained high levels of FOXP3 in regulatory CD4(+)CD25(hi) T (T(reg)) cells. Based on transcriptional profiling of ex vivo activated T(reg) and helper CD4(+)CD25(-) T (T(h)) cells we have identified GARP (glycoprotein-A repetitions predominant), LGALS3 (lectin, galactoside-binding, soluble, 3) and LGMN (legumain) as novel genes implicated in human T(reg) cell function, which are induced upon T-cell receptor stimulation. Retroviral overexpression of GARP in antigen-specific T(h) cells leads to an efficient and stable re-programming of an effector T cell towards a regulatory T cell, which involves up-regulation of FOXP3, LGALS3, LGMN and other T(reg)-associated markers. In contrast, overexpression of LGALS3 and LGMN enhance FOXP3 and GARP expression, but only partially induced a regulatory phenotype. Lentiviral down-regulation of GARP in T(reg) cells significantly impaired the suppressor function and was associated with down-regulation of FOXP3. Moreover, down-regulation of FOXP3 resulted in similar phenotypic changes and down-regulation of GARP. This provides compelling evidence for a GARP-FOXP3 positive feedback loop and provides a rational molecular basis for the known difference between natural and transforming growth factor-beta induced T(reg) cells as we show here that the latter do not up-regulate GARP. In summary, we have identified GARP as a key receptor controlling FOXP3 in T(reg) cells following T-cell activation in a positive feedback loop assisted by LGALS3 and LGMN, which represents a promising new system for the therapeutic manipulation of T cells in human disease.
Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi
2009-03-06
Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Cong; Wang, Jingchao; Guo, Wei
Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated thatmore » triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.« less
Nuclear matrix protein SMAR1 control regulatory T-cell fate during inflammatory bowel disease (IBD)
Mirlekar, B; Ghorai, S; Khetmalas, M; Bopanna, R; Chattopadhyay, S
2015-01-01
Regulatory T (Treg) cells are essential for self-tolerance and immune homeostasis. Transcription factor Foxp3, a positive regulator of Treg cell differentiation, has been studied to some extent. Signal transducer and activator of transcription factor 3 (STAT3) is known to negatively regulate Foxp3. It is not clear how STAT3 is regulated during Treg differentiation. We show that SMAR1, a known transcription factor and tumor suppressor, is directly involved in maintaining Treg cell fate decision. T-cell-specific conditional knockdown of SMAR1 exhibits increased susceptibility towards inflammatory disorders, such as colitis. The suppressive function of Treg cells is compromised in the absence of SMAR1 leading to increased T helper type 17 (Th17) differentiation and inflammation. Compared with wild-type, the SMAR1−/− Treg cells showed increased susceptibility of inflammatory bowel disease in Rag1−/− mice, indicating the role of SMAR1 in compromising Treg cell differentiation resulting in severe colitis. We show that SMAR1 negatively regulate STAT3 expression favoring Foxp3 expression and Treg cell differentiation. SMAR1 binds to the MAR element of STAT3 promoter, present adjacent to interleukin-6 response elements. Thus Foxp3, a major driver of Treg cell differentiation, is regulated by SMAR1 via STAT3 and a fine-tune balance between Treg and Th17 phenotype is maintained. PMID:25993445
Schaarschmidt, Sara; Gresshoff, Peter M; Hause, Bettina
2013-06-18
Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Marriott, Andrew S.; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A.; McLennan, Alexander G.; Jones, Nigel J.
2016-01-01
Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis. PMID:27144453
Marriott, Andrew S; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A; McLennan, Alexander G; Jones, Nigel J
2016-01-01
Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis.
Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner
2010-05-05
Transcription elongation of many eukaryotic genes is regulated. Two negative transcription elongation factors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) are known to stall collaboratively RNA polymerase II promoter proximally. We discovered that DSIF and NELF are linked to hormone expression in rat pituitary GH4C1 cells. When NELF-E, a subunit of NELF or Spt5, a subunit of DSIF was stably knocked-down, prolactin (PRL) expression was increased both at the mRNA and protein levels. In contrast, stable knock-down of only Spt5 abolished growth hormone (GH) expression. Transient NELF-E knock-down increased coincidentally PRL expression and enhanced transcription of a PRL-promoter reporter gene. However, no direct interaction of NELF with the PRL gene could be demonstrated by chromatin immuno-precipitation. Thus, NELF suppressed PRL promoter activity indirectly. In conclusion, transcription regulation by NELF and DSIF is continuously involved in the control of hormone production and may contribute to neuroendocrine cell differentiation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Enhanced Keratinocyte Proliferation and Migration in Co-culture with Fibroblasts
Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin
2012-01-01
Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11th to 15th day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage. PMID:22911722
Feng, Lin; Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Tang, Ling; Kuang, Sheng-Yao; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu
2017-04-01
This study firstly aimed to test the impact of dietary isoleucine (Ile) on tight junction protein, inflammation, apoptosis, antioxidant defense and related signaling molecule gene expression in the gill of fish. Young grass carp (Ctenopharyngodon idella) (weighing 256.8 ± 3.5 g) were fed six diets containing graded levels of Ile, namely, 3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg diet for 8 weeks. The results firstly revealed that Ile deficiency down-regulated the mRNA expressions of claudin-3, claudin-b, claudin-c, occludin and zonula occludens-1 (ZO-1) and up-regulated the mRNA expression of claudin-12, which led to the intercellular structure damage of fish gill. These effects were partially ascribed to the up-regulation of pro-inflammatory cytokines [interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-α (TNF-α)] mRNA expressions that referring to up-regulated nuclear factor κB P65 (NF-κB P65) mRNA expression and down-regulated inhibitor factor κBα (IκBα) mRNA expression, and the down-regulation of anti-inflammatory cytokines [interleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1)] mRNA expressions that referring to the down-regulated TOR and S6K1 mRNA expression. Interestingly, no change in claudin 15 mRNA level was observed among every treatment. At the same time, the results firstly indicated that Ile deficiency also resulted in the cellular structure damage of fish gill: (1) DNA fragmentation partially due to the up-regulation of caspase-3, caspase-8 and caspase-9 mRNA expression; (2) increase in protein carbonyl (PC), malondialdehyde (MDA) and ROS contents, which may be partially attributed to the impaired antioxidant defense [indicated by decreased glutathione (GSH) level and depressed anti-superoxide anion (ASA), anti-hydroxyl radical (a-HR), copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and glutathione peroxidase (GPx) activities] that referring to the down-regulation of corresponding antioxidant enzyme mRNA expressions and the related signaling molecules Nrf2 mRNA expression. Ile excess caused similar negative effects that observed in Ile-deficient group, whereas these negative effects were reversed with appropriate Ile supplementation. In conclusion, our results indicated that Ile deficiency or excess disrupted the structural integrity of fish gill, partially due to the trigger of apoptosis, the impairment of antioxidant defense, and the regulation of tight junction protein, inflammatory cytokines, apoptosis-related, antioxidant enzymes and related signaling molecules mRNA expressions in the fish gill. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tu, Min; Li, Zhanjun; Liu, Xian; Lv, Nan; Xi, Chunhua; Lu, Zipeng; Wei, Jishu; Song, Guoxin; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Wang, Shui; Gao, Wentao; Miao, Yi
2017-03-01
Vasohibin 2 (VASH2) is identified as an angiogenic factor, and has been implicated in tumor angiogenesis, proliferation and epithelial-mesenchymal transition (EMT). To investigate the EMT role of VASH2 in breast cancer, we overexpressed or knocked down expression of VASH2 in human breast cancer cell lines. We observed that VASH2 induced EMT in vitro and in vivo. The transforming growth factor β1 (TGFβ1) pathway was activated by VASH2, and expression of a dominant negative TGFβ type II receptor could block VASH2-mediated EMT. In clinical breast cancer tissues VASH2 positively correlated with TGFβ1 expression, but negatively correlated with E-cadherin (a marker of EMT) expression. Under hypoxic conditions in vitro or in vivo, we found that down-regulation of estrogen receptor 1 (ESR1) in VASH2 overexpressing ESR1 positive cells suppressed E-cadherin. Correlation coefficient analysis indicated that VASH2 and ESR1 expression were negatively correlated in clinical human breast cancer tissues. Further study revealed that a transcription factor of ESR1, GATA-binding factor 3 (GATA3), was down-regulated by VASH2 under hypoxia or in vivo. These findings suggest that VASH2 drives breast cancer cells to undergo EMT by activation of the TGFβ1 pathway and hypoxia dependent repression GATA3-ESR1 pathway, leading to cancer metastasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping
2014-09-01
Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Miao, Yin-Sha; Zhao, Ying-Yu; Zhao, Li-Ni; Wang, Ping; Liu, Yun-Hui; Ma, Jun; Xue, Yi-Xue
2015-01-01
The purposes of this study were to investigate the possible molecular mechanisms of miR-18a regulating the permeability of blood-tumor barrier (BTB) via down-regulated expression and distribution of runt-related transcription factor 1 (RUNX1). An in vitro BTB model was established with hCMEC/D3 cells and U87MG cells to obtain glioma vascular endothelial cells (GECs). The endogenous expressions of miR-18a and RUNX1 were converse in GECs. The overexpression of miR-18a significantly impaired the integrity and increased the permeability of BTB, which respectively were detected by TEER and HRP flux assays, accompanied by down-regulated mRNA and protein expressions and distributions of ZO-1, occludin and claudin-5 in GECs. Dual-luciferase reporter assay was carried out and revealed RUNX1 is a target gene of miR-18a. Meanwhile, mRNA and protein expressions and distribution of RUNX1 were downregulated by miR-18a. Most important, miR-18a and RUNX1 could reversely regulate the permeability of BTB as well as the expressions and distributions of ZO-1, occludin and claudin-5. Finally, chromatin immunoprecipitation verified that RUNX1 interacted with "TGGGGT" DNA sequence in promoter region of ZO-1, occludin and claudin-5 respectively. Taken together, our present study indicated that miR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of tight junction related proteins ZO-1, occludin and claudin-5, which would attract more attention to miR-18a and RUNX1 as potential targets of drug delivery across BTB and provide novel strategies for glioma treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Okamura, Masumi; Yamanaka, Yasutaka; Shigemoto, Maki; Kitadani, Yuya; Kobayashi, Yuhko; Kambe, Taiho; Nagao, Masaya; Kobayashi, Issei; Okumura, Katsuzumi
2018-01-01
DBP5, also known as DDX19, GLE1 and inositol hexakisphosphate (IP6) function in messenger RNA (mRNA) export at the cytoplasmic surface of the nuclear pore complex in eukaryotic cells. DBP5 is a DEAD-box RNA helicase, and its activity is stimulated by interactions with GLE1 and IP6. In addition, these three factors also have unique role(s). To investigate how these factors influenced the cytoplasmic mRNA expression and cell phenotype change, we performed RNA microarray analysis to detect the effect and function of DBP5, GLE1 and IP6 on the cytoplasmic mRNA expression. The expression of some cytoplasmic mRNA subsets (e.g. cell cycle, DNA replication) was commonly suppressed by the knock-down of DBP5, GLE1 and IPPK (IP6 synthetic enzyme). The GLE1 knock-down selectively reduced the cytoplasmic mRNA expression required for mitotic progression, results in an abnormal spindle phenotype and caused the delay of mitotic process. Meanwhile, G1/S cell cycle arrest was observed in DBP5 and IPPK knock-down cells. Several factors that function in immune response were also down-regulated in DBP5 or IPPK knock-down cells. Thereby, IFNβ-1 mRNA transcription evoked by poly(I:C) treatment was suppressed. These results imply that DBP5, GLE1 and IP6 have a conserved and individual function in the cytoplasmic mRNA expression. Variations in phenotype are due to the difference in each function of DBP5, GLE1 and IPPK in intracellular mRNA metabolism. PMID:29746542
Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa
2015-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages infected with P. aeruginosa: untreated < treated with GM-CSF < treated with IFN-γ < treated with GM-CSF and IFN-γ. PMID:25706389
Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa
2015-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages infected with P. aeruginosa: untreated < treated with GM-CSF < treated with IFN-γ < treated with GM-CSF and IFN-γ.
Sharma, Bal Krishan; Kolhe, Ravindra; Black, Stephen M.; Keller, Jonathan R.; Mivechi, Nahid F.; Satyanarayana, Ande
2016-01-01
Reprograming of metabolism is one of the central hallmarks of cancer. The majority of cancer cells depend on high rates of glycolysis and glutaminolysis for their growth and survival. A number of oncogenes and tumor suppressors have been connected to the regulation of altered glucose and glutamine metabolism in cancer cells. For example, the oncogene c-Myc plays vital roles in cancer cell metabolic adaptation by directly regulating various genes that participate in aerobic glycolysis and glutaminolysis. Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays important roles in cell proliferation, differentiation, and cell fate determination. Overexpression of Id1 causes intestinal adenomas and thymic lymphomas in mice, suggesting that Id1 could function as an oncogene. Despite it being an oncogene, whether Id1 plays any prominent role in cancer cell metabolic reprograming is unknown. Here, we demonstrate that Id1 is strongly expressed in human and mouse liver tumors and in hepatocellular carcinoma (HCC) cell lines, whereas its expression is very low or undetectable in normal liver tissues. In HCC cells, Id1 expression is regulated by the MAPK/ERK pathway at the transcriptional level. Knockdown of Id1 suppressed aerobic glycolysis and glutaminolysis, suggesting that Id1 promotes a metabolic shift toward aerobic glycolysis. At the molecular level, Id1 mediates its metabolic effects by regulating the expression levels of c-Myc. Knockdown of Id1 resulted in down-regulation (∼75%) of c-Myc, whereas overexpression of Id1 strongly induced (3-fold) c-Myc levels. Interestingly, knockdown of c-Myc resulted in down-regulation (∼60%) of Id1, suggesting a positive feedback-loop regulatory mechanism between Id1 and c-Myc. Under anaerobic conditions, both Id1 and c-Myc are down-regulated (50–70%), and overexpression of oxygen-insensitive hypoxia-inducible factor 1α (Hif1α) or its downstream target Mxi1 resulted in a significant reduction of c-Myc and Id1 (∼70%), suggesting that Hif1α suppresses Id1 and c-Myc under anaerobic conditions via Mxi1. Together, our findings indicate a prominent novel role for Id1 in liver cancer cell metabolic adaptation.—Sharma, B. K., Kolhe, R., Black, S. M., Keller, J. R., Mivechi, N. F., Satyanarayana, A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. PMID:26330493
Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio
2011-01-01
Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.
Dorado, Beatriz; Area, Estela; Akman, Hasan O.; Hirano, Michio
2011-01-01
Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2−/−). Although normal until postnatal day 8, Tk2−/− mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2−/− mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2−/− heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2−/− heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency. PMID:20940150
Wu, Xin; Tong, Bei; Yang, Yan; Luo, Jinque; Yuan, Xusheng; Wei, Zhifeng; Yue, Mengfan; Xia, Yufeng; Dai, Yue
2016-12-20
Arctigenin was previously proven to inhibit Th17 cell differentiation and thereby attenuate colitis in mice by down-regulating the activation of mechanistic target of rapamycin complex 1 (mTORC1). The present study was performed to address its underlying mechanism in view of estrogen receptor (ER). The specific antagonist PHTPP or siRNA of ERβ largely diminished the inhibitory effect of arctigenin on the mTORC1 activation in T cell lines and primary CD4+ T cells under Th17-polarization condition, suggesting that arctigenin functioned in an ERβ-dependent manner. Moreover, arctigenin was recognized to be an agonist of ERβ, which could bind to ERβ with a moderate affinity, promote dissociation of ERβ/HSP90 complex and nuclear translocation and phosphorylation of ERβ, and increase the transcription activity. Following activation of ERβ, arctigenin inhibited the activity of mTORC1 by disruption of ERβ-raptor-mTOR complex assembly. Deficiency of ERβ markedly abolished arctigenin-mediated inhibition of Th17 cell differentiation. In colitis mice, the activation of ERβ, inhibition of mTORC1 activation and Th17 response by arctigenin were abolished by PHTPP treatment. In conclusion, ERβ might be the target protein of arctigenin responsible for inhibition of mTORC1 activation and resultant prevention of Th17 cell differentiation and colitis development.
Wu, Xin; Tong, Bei; Yang, Yan; Luo, Jinque; Yuan, Xusheng; Wei, Zhifeng; Yue, Mengfan; Xia, Yufeng; Dai, Yue
2016-01-01
Arctigenin was previously proven to inhibit Th17 cell differentiation and thereby attenuate colitis in mice by down-regulating the activation of mechanistic target of rapamycin complex 1 (mTORC1). The present study was performed to address its underlying mechanism in view of estrogen receptor (ER). The specific antagonist PHTPP or siRNA of ERβ largely diminished the inhibitory effect of arctigenin on the mTORC1 activation in T cell lines and primary CD4+ T cells under Th17-polarization condition, suggesting that arctigenin functioned in an ERβ-dependent manner. Moreover, arctigenin was recognized to be an agonist of ERβ, which could bind to ERβ with a moderate affinity, promote dissociation of ERβ/HSP90 complex and nuclear translocation and phosphorylation of ERβ, and increase the transcription activity. Following activation of ERβ, arctigenin inhibited the activity of mTORC1 by disruption of ERβ-raptor-mTOR complex assembly. Deficiency of ERβ markedly abolished arctigenin-mediated inhibition of Th17 cell differentiation. In colitis mice, the activation of ERβ, inhibition of mTORC1 activation and Th17 response by arctigenin were abolished by PHTPP treatment. In conclusion, ERβ might be the target protein of arctigenin responsible for inhibition of mTORC1 activation and resultant prevention of Th17 cell differentiation and colitis development. PMID:27863380
Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver
2015-03-17
Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be important for fungal clearance and protective immunity. We show that farnesol is able to enhance inflammation by inducing activation of neutrophils and monocytes. At the same time, farnesol impairs differentiation of monocytes into immature dendritic cells (iDC) by modulating surface phenotype, cytokine release and migrational behavior. Consequently, iDC generated in the presence of farnesol are unable to induce proper T cell responses and fail to secrete Th1 promoting interleukin 12 (IL-12). As farnesol induced down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor, desensitization to GM-CSF could potentially explain transcriptional reprofiling of iDC effector molecules. Taken together, our data show that farnesol can also mediate Candida-host communication and is able to act as a virulence factor. Copyright © 2015 Leonhardt et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Gunhyuk, E-mail: uranos5@kiom.re.kr
Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α) + IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-likemore » skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. - Highlights: • 6-Shogaol inhibited Th2/1-mediated inflammatory mediators in vitro and in vivo. • 6-Shogaol regulated ROS/MAPKs/Nrf2 signaling pathway. • 6-Shogaol can protect against the development of AD-like skin lesions.« less
Grinberg, Stan; Hasko, Gyorgy; Wu, Dianqing; Leibovich, Samuel Joseph
2009-01-01
Toll-like receptor (TLR) 2, 4, 7, and 9 agonists, together with adenosine A2A receptor (A2AR) agonists, switch macrophages from an inflammatory (M1) to an angiogenic (M2-like) phenotype. This switch involves induction of A2ARs by TLR agonists, down-regulation of tumor necrosis factor α (TNFα) and interleukin-12, and up-regulation of vascular endothelial growth factor (VEGF) and interleukin-10 expression. We show here that the TLR4 agonist lipopolysaccharide (LPS) induces rapid and specific post-transcriptional down-regulation of phospholipase C(PLC)β1 and β2 expression in macrophages by de-stabilizing their mRNAs. The PLCβ inhibitor U73122 down-regulates TNFα expression by macrophages, and in the presence of A2AR agonists, up-regulates VEGF, mimicking the synergistic action of LPS with A2AR agonists. Selective down-regulation of PLCβ2, but not PLCβ1, using small-interfering RNA resulted in increased VEGF expression in response to A2AR agonists, but did not suppress TNFα expression. Macrophages from PLCβ2−/− mice also expressed increased VEGF in response to A2AR agonists. LPS-mediated suppression of PLCβ1 and β2 is MyD88-dependent. In a model of endotoxic shock, LPS (35 μg/mouse, i.p.) suppressed PLCβ1 and β2 expression in spleen, liver, and lung of wild-type but not MyD88−/− mice. These studies indicate that LPS suppresses PLCβ1 and β2 expression in macrophages in vitro and in several tissues in vivo. These results suggest that suppression of PLCβ2 plays an important role in switching M1 macrophages into an M2-like state. PMID:19850892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jin Kyeong; Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; Kim, Sung-Wan
ABSTRACT: Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a combination of synovium joint inflammation, synovium hyperplasia, and destruction of cartilage and bone. Oleanolic acid acetate (OAA), a compound isolated from Vigna angularis, has been known to possess pharmacological activities, including anti-inflammation and anti-bone destruction. In this study, we investigated the effects of OAA on RA and the underlying mechanisms of action by using a type-II collagen-induced arthritis (CIA) mouse model and tumor necrosis factor (TNF)-α-stimulated RA synovial fibroblasts. Oral administration of OAA decreased the clinical arthritis symptoms, paw thickness, histologic and radiologic changes, and serum total andmore » anti-type II collagen IgG, IgG1, and IgG2a levels. OAA administration reduced Th1/Th17 phenotype CD4{sup +} T lymphocyte expansions and inflammatory cytokine productions in T cell activated draining lymph nodes and spleen. OAA reduced the expression and production of inflammatory mediators, such as cytokines and matrix metalloproteinase (MMP)-1/3, in the ankle joint tissue and RA synovial fibroblasts by down-regulating Akt, mitogen-activated protein kinases, and nuclear factor-κB. Our results clearly support that OAA plays a therapeutic role in RA pathogenesis by modulating helper T cell immune responses and matrix-degrading enzymes. The immunosuppressive effects of OAA were comparable to dexamethasone and ketoprofen. We provide evidences that OAA could be a potential therapeutic candidate for RA. - Highlights: • OAA attenuated chronic CIA symptoms. • OAA had a regulating effect on the T helper cell immune reaction for CIA. • The effect of OAA on the RA was comparable to the dexamethasone or ketoprofen. • OAA might be a candidate for the treatment of arthritic diseases.« less
Alavilli, Hemasundar; Lee, Hyoungseok; Park, Mira; Lee, Byeong-ha
2017-01-01
Polytrichastrum alpinum is one of the moss species that survives extreme conditions in the Antarctic. In order to explore the functional benefits of moss genetic resources, P. alpinum multiprotein-bridging factor 1c gene (PaMBF1c) was isolated and characterized. The deduced amino acid sequence of PaMBF1c comprises of a multiprotein-bridging factor (MBF1) domain and a helix-turn-helix (HTH) domain. PaMBF1c expression was induced by different abiotic stresses in P. alpinum, implying its roles in stress responses. We overexpressed PaMBF1c in Arabidopsis and analyzed the resulting phenotypes in comparison with wild type and/or Arabidopsis MBF1c (AtMBF1c) overexpressors. Overexpression of PaMBF1c in Arabidopsis resulted in enhanced tolerance to salt and osmotic stress, as well as to cold and heat stress. More specifically, enhanced salt tolerance was observed in PaMBF1c overexpressors in comparison to wild type but not clearly observable in AtMBF1c overexpressing lines. Thus, these results implicate the evolution of PaMBF1c under salt-enriched Antarctic soil. RNA-Seq profiling of NaCl-treated plants revealed that 10 salt-stress inducible genes were already up-regulated in PaMBF1c overexpressing plants even before NaCl treatment. Gene ontology enrichment analysis with salt up-regulated genes in each line uncovered that the terms lipid metabolic process, ion transport, and cellular amino acid biosynthetic process were significantly enriched in PaMBF1c overexpressors. Additionally, gene enrichment analysis with salt down-regulated genes in each line revealed that the enriched categories in wild type were not significantly overrepresented in PaMBF1c overexpressing lines. The up-regulation of several genes only in PaMBF1c overexpressing lines suggest that enhanced salt tolerance in PaMBF1c-OE might involve reactive oxygen species detoxification, maintenance of ATP homeostasis, and facilitation of Ca2+ signaling. Interestingly, many salt down-regulated ribosome- and translation-related genes were not down-regulated in PaMBF1c overexpressing lines under salt stress. These differentially regulated genes by PaMBF1c overexpression could contribute to the enhanced tolerance in PaMBF1c overexpressing lines under salt stress. PMID:28744295
ZO-1 expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular endothelial cells.
Zhang, Hu; Zhang, Shuhong; Zhang, Jilin; Liu, Dongxin; Wei, Jiayi; Fang, Wengang; Zhao, Weidong; Chen, Yuhua; Shang, Deshu
2018-05-01
The level of granulocyte-macrophage colony-stimulating factor (GM-CSF) increases in some disorders such as vascular dementia, Alzheimer's disease, and multiple sclerosis. We previously reported that in Alzheimer's disease patients, a high level of GM-CSF in the brain parenchyma downregulated expression of ZO-1, a blood-brain barrier tight junction protein, and facilitated the infiltration of peripheral monocytes across the blood-brain barrier. However, the molecular mechanism underlying regulation of ZO-1 expression by GM-CSF is unclear. Herein, we found that the erythroblast transformation-specific (ETS) transcription factor ERG cooperated with the proto-oncogene protein c-MYC in regulation of ZO-1 transcription in brain microvascular endothelial cells (BMECs). The ERG expression was suppressed by miR-96 which was increased by GM-CSF through the phosphoinositide-3 kinase (PI3K)/Akt pathway. Inhibition of miR-96 prevented ZO-1 down-regulation induced by GM-CSF both in vitro and in vivo. Our results revealed the mechanism of ZO-1 expression reduced by GM-CSF, and provided a potential target, miR-96, which could block ZO-1 down-regulation caused by GM-CSF in BMECs.
Sojka, Dorothy K.; Fowell, Deborah J.
2011-01-01
CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707
Romano, Giulia; Acunzo, Mario; Garofalo, Michela; Di Leva, Gianpiero; Cascione, Luciano; Zanca, Ciro; Bolon, Brad; Condorelli, Gerolama; Croce, Carlo M.
2012-01-01
MicroRNAs (miRNAs) have an important role in the development of chemosensitivity or chemoresistance in different types of cancer. Activation of the ERK1/2 pathway is a major determinant of diverse cellular processes and cancer development and is responsible for the transcription of several important miRNAs. Here we show a link between the ERK1/2 pathway and BIM expression through miR-494. We blocked ERK1/2 nuclear activity through the overexpression of an ERK1/2 natural interactor, the protein PED/PEA15, and we performed a microRNA expression profile. miR-494 was the most down-regulated microRNA after ERK1/2 inactivation. Moreover, we found that miR-494 induced Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance in non–small-cell lung cancer (NSCLC) through the down-modulation of BIM. Elucidation of this undiscovered ERK1/2 pathway that regulates apoptosis and cell proliferation through miR-494 in NSCLC will greatly enhance our understanding of the mechanisms responsible for TRAIL resistance and will provide an additional arm for the development of anticancer therapies. PMID:23012423
Williams, Andrew R; Klaver, Elsenoor J; Laan, Lisa C; Ramsay, Aina; Fryganas, Christos; Difborg, Rolf; Kringel, Helene; Reed, Jess D; Mueller-Harvey, Irene; Skov, Søren; van Die, Irma; Thamsborg, Stig M
2017-03-01
Interactions between dendritic cells (DCs) and environmental, dietary and pathogen antigens play a key role in immune homeostasis and regulation of inflammation. Dietary polyphenols such as proanthocyanidins (PAC) may reduce inflammation, and we therefore hypothesized that PAC may suppress lipopolysaccharide (LPS) -induced responses in human DCs and subsequent T helper type 1 (Th1) -type responses in naive T cells. Moreover, we proposed that, because DCs are likely to be exposed to multiple stimuli, the activity of PAC may synergise with other bioactive molecules that have anti-inflammatory activity, e.g. soluble products from the helminth parasite Trichuris suis (TsSP). We show that PAC are endocytosed by monocyte-derived DCs and selectively induce CD86 expression. Subsequently, PAC suppress the LPS-induced secretion of interleukin-6 (IL-6) and IL-12p70, while enhancing secretion of IL-10. Incubation of DCs with PAC did not affect lymphocyte proliferation; however, subsequent interferon-γ production was markedly suppressed, while IL-4 production was unaffected. The activity of PAC was confined to oligomers (degree of polymerization ≥ 4). Co-pulsing DCs with TsSP and PAC synergistically reduced secretion of tumour necrosis factor-α, IL-6 and IL-12p70 while increasing IL-10 secretion. Moreover, both TsSP and PAC alone induced Th2-associated OX40L expression in DCs, and together synergized to up-regulate OX40L. These data suggest that PAC induce an anti-inflammatory phenotype in human DCs that selectively down-regulates Th1 response in naive T cells, and that they also act cooperatively with TsSP. Our results indicate a novel interaction between dietary compounds and parasite products to influence immune function, and may suggest that combinations of PAC and TsSP can have therapeutic potential for inflammatory disorders. © 2016 John Wiley & Sons Ltd.
Immunity drives TET1 regulation in cancer through NF-κB
Canale, Annalisa; Bizet, Martin; Dedeurwaerder, Sarah; Garaud, Soizic; Naveaux, Céline; Barham, Whitney; Wilson, Andrew; Bouchat, Sophie; Van Lint, Carine; Yull, Fiona; Sotiriou, Christos; Noel, Agnès; Fuks, François
2018-01-01
Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.
Prade, Elke; Tobiasch, Moritz; Hitkova, Ivana; Schäffer, Isabell; Lian, Fan; Xing, Xiangbin; Tänzer, Marc; Rauser, Sandra; Walch, Axel; Feith, Marcus; Post, Stefan; Röcken, Christoph; Schmid, Roland M.; Ebert, Matthias P.A.
2012-01-01
Bile acids are synthesized from cholesterol and are major risk factors for Barrett adenocarcinoma (BAC) of the esophagus. Caveolin-1 (Cav1), a scaffold protein of membrane caveolae, is transcriptionally regulated by cholesterol via sterol-responsive element-binding protein-1 (SREBP1). Cav1 protects squamous epithelia by controlling cell growth and stabilizing cell junctions and matrix adhesion. Cav1 is frequently down-regulated in human cancers; however, the molecular mechanisms that lead to this event are unknown. We show that the basal layer of the nonneoplastic human esophageal squamous epithelium expressed Cav1 mainly at intercellular junctions. In contrast, Cav1 was lost in 95% of tissue specimens from BAC patients (n = 100). A strong cytoplasmic expression of Cav1 correlated with poor survival in a small subgroup (n = 5) of BAC patients, and stable expression of an oncogenic Cav1 variant (Cav1-P132L) in the human BAC cell line OE19 promoted proliferation. Cav1 was also detectable in immortalized human squamous epithelial, Barrett esophagus (CPC), and squamous cell carcinoma cells (OE21), but was low in BAC cell lines (OE19, OE33). Mechanistically, bile acids down-regulated Cav1 expression by inhibition of the proteolytic cleavage of 125-kDa pre-SREBP1 from the endoplasmic reticulum/Golgi apparatus and nuclear translocation of active 68-kDa SREBP1. This block in SREBP1's posttranslational processing impaired transcriptional activation of SREBP1 response elements in the proximal human Cav1 promoter. Cav1 was also down-regulated in esophagi from C57BL/6 mice on a diet enriched with 1% (wt/wt) chenodeoxycholic acid. Mice deficient for Cav1 or the nuclear bile acid receptor farnesoid X receptor showed hyperplasia and hyperkeratosis of the basal cell layer of esophageal epithelia, respectively. These data indicate that bile acid-mediated down-regulation of Cav1 marks early changes in the squamous epithelium, which may contribute to onset of Barrett esophagus metaplasia and progression to BAC. PMID:22474125
Van Herck, Stijn L J; Delbaere, Joke; Bourgeois, Nele M A; McAllan, Bronwyn M; Richardson, Samantha J; Darras, Veerle M
2015-04-01
Thyroid hormones (THs) are key regulators in the development of the vertebrate brain. Therefore, TH access to the developing brain needs to be strictly regulated. The brain barriers separate the central nervous system from the rest of the body and impose specific transport mechanisms on the exchange of molecules between the general circulation and the nervous system. As such they form ideal structures for regulating TH exchange between the blood and the brain. To investigate the mechanism by which the developing brain regulates TH availability, we investigated the ontogenetic expression profiles of TH transporters, deiodinases and the TH distributor protein transthyretin (TTR) at the brain barriers during embryonic and early postnatal development using the chicken as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), organic anion transporting polypeptide 1C1 (OATP1C1) and L-type amino acid transporter 1 (LAT1) and the inactivating type 3 deiodinase (D3) in the choroid plexus which forms the blood-cerebrospinal fluid barrier. This was confirmed by quantitative PCR which additionally indicated strongly increasing expression of TTR as well as detectable expression of the activating type 2 deiodinase (D2) and the (in)activating type 1 deiodinase (D1). In the brain capillaries forming the blood-brain barrier in situ hybridisation showed exclusive expression of LAT1 and D2. The combined presence of LAT1 and D2 in brain capillaries suggests that the blood-brain barrier forms the main route for receptor-active T3 uptake into the embryonic chicken brain. Expression of multiple transporters, deiodinases and TTR in the choroid plexus indicates that the blood-cerebrospinal fluid barrier is also important in regulating early TH availability. The impact of these barrier systems can be deduced from the clear difference in T3 and T4 levels as well as the T3/T4 ratio between the developing brain and the general circulation. We conclude that the tight regulation of TH exchange at the brain barriers from early embryonic stages is one of the factors needed to allow the brain to develop within a relative microenvironment. Copyright © 2015 Elsevier Inc. All rights reserved.
Chi, Hsiang-Cheng; Chen, Shen-Liang; Cheng, Yi-Hung; Lin, Tzu-Kang; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Huang, Ya-Hui; Lin, Kwang-Huei
2016-01-01
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and systemic chemotherapy is the major treatment strategy for late-stage HCC patients. Poor prognosis following chemotherapy is the general outcome owing to recurrent resistance. Recent studies have suggested that in addition to cytotoxic effects on tumor cells, chemotherapy can induce an alternative cascade that supports tumor growth and metastasis. In the present investigation, we showed that thyroid hormone (TH), a potent hormone-mediating cellular differentiation and metabolism, acts as an antiapoptosis factor upon challenge of thyroid hormone receptor (TR)-expressing HCC cells with cancer therapy drugs, including cisplatin, doxorubicin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TH/TR signaling promoted chemotherapy resistance through negatively regulating the pro-apoptotic protein, Bim, resulting in doxorubicin-induced metastasis of chemotherapy-resistant HCC cells. Ectopic expression of Bim in hepatoma cells challenged with chemotherapeutic drugs abolished TH/TR-triggered apoptosis resistance and metastasis. Furthermore, Bim expression was directly transactivated by Forkhead box protein O1 (FoxO1), which was negatively regulated by TH/TR. TH/TR suppressed FoxO1 activity through both transcriptional downregulation and nuclear exclusion of FoxO1 triggered by Akt-mediated phosphorylation. Ectopic expression of the constitutively active FoxO1 mutant, FoxO1-AAA, but not FoxO1-wt, diminished the suppressive effect of TH/TR on Bim. Our findings collectively suggest that expression of Bim is mediated by FoxO1 and indirectly downregulated by TH/TR, leading to chemotherapy resistance and doxorubicin-promoted metastasis of hepatoma cells. PMID:27490929
Chen, Fengyang; Ye, Xiaodi; Yang, Yadong; Teng, Tianli; Li, Xiaoyu; Xu, Shifang; Ye, Yiping
2015-04-15
The leaves and bark of Metasequoia glyptostroboides are used as anti-microbic, analgesic and anti-inflammatory drug for dermatic diseases in Chinese folk medicine. However, the pharmacological effects and material basis responsible for the therapeutic use of this herb have not yet been well studied. The objectives of this study were to evaluate the anti-inflammatory effects of the proanthocyanidin fraction from the bark of M. glyptostroboides (MGEB) and to elucidate its immunological mechanisms. The anti-inflammatory activity of MGEB was evaluated using 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in mice. Its potential mechanisms were further investigated by determining its effects on Con A-induced T cell activation and Th1/Th17 responses in vitro. Both intraperitoneal injection and oral administration of MGEB significantly reduced the ear swelling in DNFB-induced ACD mice. MGEB inhibited Con A-induced proliferation and the expression levels of cell surface molecules CD69 and CD25 of T cells in vitro. MGEB also significantly decreased the production of Th1/Th17 specific cytokines (IL-2, IFN-γ and IL-17) and down-regulated their mRNA expression levels in activated T-cells. MGEB could ameliorate ACD, at least in part, through directly inhibiting T cells activation and Th1/Th17 responses. Copyright © 2015 Elsevier GmbH. All rights reserved.
E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury.
Xue, Pengfei; Liu, Xiaojuan; Shen, Yiming; Ju, Yuanyuan; Lu, Xiongsong; Zhang, Jinlong; Xu, Guanhua; Sun, Yuyu; Chen, Jiajia; Gu, Haiyan; Cui, Zhiming; Bao, Guofeng
2018-06-22
E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1β and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.
The effect of calorie restriction on growth and development in silkworm, Bombyx mori.
Li, Yijia; Chen, Keping; Yao, Qin; Li, Jun; Wang, Yong; Liu, Haijun; Zhang, Chiyu; Huang, Guoping
2009-07-01
Caloric restriction (CR) is known to extend the life span in different species from yeast to mammals. In this report, a simple organism silkworm (Bombyx mori) was used to study the effect of moderate CR on the growth and development processes of insects. Here we show that an extension of life span upon moderate CR was observed in the silkworm. The total protein level in the 5th instar larvae hemolymph appeared to decline significantly under CR. SDS-PAGE analysis showed that the influence of CR was sex-dependent. The CR effects on female animals were much more significant than on the males. The MALDI-TOF MS study identified 16 proteins that expressed differentially among six groups of the male or female larvae fed at different time frequencies. Four of them, storage protein 1 (SP1), arylphorin (SP2), imaginal disk growth factor (IDGF), and 30-kDa lipoprotein, showed significant differences. It was demonstrated that these four proteins were up-regulated when the larvae were over-fed and down-regulated when the larvae were less-fed. (c) 2009 Wiley Periodicals, Inc.
Zhang, Yiguo; Qiu, Lu; Li, Shaojun; Xiang, Yuancai; Chen, Jiayu; Ren, Yonggang
2014-01-01
The C-terminal domain (CTD, aa 686-741) of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1) shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L) CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein) and its shorter isoform LCR-F1/Nrf1β (55-kDa). Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER) membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE)-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST) domain and acidic domain 2 (AD2). Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ.
Yao, Chenjuan; Purwanti, Nunuk; Karabasil, Mileva Ratko; Azlina, Ahmad; Javkhlan, Purevjav; Hasegawa, Takahiro; Akamatsu, Tetsuya; Hosoi, Toru; Ozawa, Koichiro; Hosoi, Kazuo
2010-08-01
The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.
Xing, Weirong; Govoni, Kristen E; Donahue, Leah Rae; Kesavan, Chandrasekhar; Wergedal, Jon; Long, Carlin; Bassett, J H Duncan; Gogakos, Apostolos; Wojcicka, Anna; Williams, Graham R; Mohan, Subburaman
2012-05-01
Understanding how bone growth is regulated by hormonal and mechanical factors during early growth periods is important for optimizing the attainment of peak bone mass to prevent or postpone the occurrence of fragility fractures later in life. Using genetic mouse models that are deficient in thyroid hormone (TH) (Tshr(-/-) and Duox2(-/-)), growth hormone (GH) (Ghrhr(lit/lit)), or both (Tshr(-/-); Ghrhr(lit/lit)), we demonstrate that there is an important period prior to puberty when the effects of GH are surprisingly small and TH plays a critical role in the regulation of skeletal growth. Daily administration of T3/T4 during days 5 to 14, the time when serum levels of T3 increase rapidly in mice, rescued the skeletal deficit in TH-deficient mice but not in mice lacking both TH and GH. However, treatment of double-mutant mice with both GH and T3/T4 rescued the bone density deficit. Increased body fat in the TH-deficient as well as TH/GH double-mutant mice was rescued by T3/T4 treatment during days 5 to 14. In vitro studies in osteoblasts revealed that T3 in the presence of TH receptor (TR) α1 bound to a TH response element in intron 1 of the IGF-I gene to stimulate transcription. In vivo studies using TRα and TRβ knockout mice revealed evidence for differential regulation of insulin-like growth factor (IGF)-I expression by the two receptors. Furthermore, blockade of IGF-I action partially inhibited the biological effects of TH, thus suggesting that both IGF-I-dependent and IGF-I-independent mechanisms contribute to TH effects on prepubertal bone acquisition. Copyright © 2012 American Society for Bone and Mineral Research.
Zhu, Longdong; Kong, Ming; Han, Yuan-Ping; Bai, Li; Zhang, Xiaohui; Chen, Yu; Zheng, Sujun; Yuan, Hong; Duan, Zhongping
2015-05-01
Epidemiological studies have revealed an association between vitamin D deficiency and various chronic liver diseases. However, it is not known whether lack of vitamin D can induce spontaneous liver fibrosis in an animal model. To study this, mice were fed either a control diet or a vitamin D deficient diet (VDD diet). For the positive control, liver fibrosis was induced with carbon tetrachloride. Here we show, for the first time, that liver fibrosis spontaneously developed in mice fed the VDD diet. Long-term administration of a VDD diet resulted in necro-inflammation and liver fibrosis. Inflammatory mediators including tumor necrosis factor-α, interleulin-1, interleukin-6, Toll-like-receptor 4, and monocyte chemotactic protein-1 were up-regulated in the livers of the mice fed the VDD diet. Conversely, the expression of Th2/M2 markers such as IL-10, IL-13, arginase 1, and heme oxygenase-1 were down-regulated in the livers of mice fed the VDD diet. Transforming growth factor-β1 and matrix metalloproteinase 13, which are important for fibrosis, were induced in the livers of mice fed the VDD diet. Moreover, the VDD diet triggered apoptosis in the parenchymal cells, in agreement with the increased levels of Fas and FasL, and decreased Bcl2 and Bclx. Thus, long-term vitamin D deficiency can provoke chronic inflammation that can induce liver apoptosis, which consequently activates hepatic stellate cells to initiate liver fibrosis.
Yang, Mingfu; Pan, Yong; Zhou, Yue
2014-12-20
MicroRNAs (miRNAs) are a class of small non-coding RNAs with important roles in various biological and pathological processes, including osteoblast differentiation. Here, we identified miR-96 as a positive regulator of osteogenic differentiation in a mouse osteoblastic cell line (MC3T3-E1) and in mouse bone marrow-derived mesenchymal stem cells. Moreover, we found that miR-96 down-regulates post-transcriptional expression of heparin-binding EGF-like growth factor (HB-EGF) by specifically binding to the 3'untranslated region of HB-EGF mRNA. Furthermore, in MC3T3-E1 cells, miR-96-induced HB-EGF down-regulation suppressed the phosphorylation of epidermal growth factor receptor (EGFR) and of extracellular signal-regulated kinase 1 (ERK1) and AKT, which both lie downstream of EGFR activation. Taken together, miR-96 promotes osteogenic differentiation by inhibiting HB-EGF and by blocking the HB-EGF-EGFR signaling pathway in osteoblastic cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.
2009-01-01
The ectoparasitic mite, Sarcoptes scabiei, produces molecules that depress initiation of host inflammatory and immune responses. Some of these down-regulate expression of adhesion molecules or secretion of chemokines or cytokines on and by cultured dermal endothelial cells (HMVEC-D). This study was undertaken to determine if the response of HMVEC-D to scabies is altered in the presence of various proinflammatory cytokines (tumor necrosis factor α and interleukins 1α, 1β and 6), histamine, and lipid-derived mediators (prostaglandins D2 and E2, leukotriene B4, platelet activation factor) that likely occur in scabietic lesions in vivo. Scabies extract down-regulated the TNFα-induced expression of VCAM-1 by HMVEC-D and this down-regulation still occurred in the presence of the other proinflammatory cytokines, histamine or the lipid-derived mediators. Scabies inhibited the IL-1α and IL-1β-induced secretion of IL-6, while a combination of scabies and histamine or LTB4 reduced the TNFα-induced secretion of IL-6. Scabies extract inhibited secretion of IL-8. Histamine, PGD2, PGE2, LTB4, PAF, and IL-6 alone had no effect on this inhibition, but the scabies-induced inhibition of IL-8 secretion was reduced in a dose-dependent fashion in the presence of IL-1α and IL-1β. PMID:19523846
Cui, Xiaotong; Mino, Takashi; Yoshinaga, Masanori; Nakatsuka, Yoshinari; Hia, Fabian; Yamasoba, Daichi; Tsujimura, Tohru; Tomonaga, Keizo; Suzuki, Yutaka; Uehata, Takuya; Takeuchi, Osamu
2017-12-15
Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng , but not Il4 or Il17a Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1 , via their 3' untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically. Copyright © 2017 by The American Association of Immunologists, Inc.
Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1
NASA Astrophysics Data System (ADS)
Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael
1999-03-01
The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.
Activation of mixed glia by Abeta-specific Th1 and Th17 cells and its regulation by Th2 cells.
McQuillan, K; Lynch, Marina A; Mills, Kingston H G
2010-05-01
Microglia are innate immune cells of the CNS, that act as antigen-presenting cells (APC) for antigen-specific T cells and respond to inflammatory stimuli, such as amyloid-beta (Abeta), resulting in the release of neurotoxic factors and pro-inflammatory cytokines. Astrocytes can also act as APC and modulate the function of microglia. However, the role of distinct T cell subtypes, in particular Th17 cells, in glial activation and subsequent modulatory effects of Th2 cells are poorly understood. Here, we generated Abeta-specific Th1, Th2, and Th17 cells and examined their role in modulating Abeta-induced activation of microglia in a mixed glial culture, a preparation which mimics the complex APC types in the brain. We demonstrated that mixed glia acted as an effective APC for Abeta-specific Th1 and Th17 cells. Addition of Abeta-specific Th2 cells suppressed the Abeta-induced IFN-gamma production by Th1 cells and IL-17 production by Th17 cells with glia as the APC. Co-culture of Abeta-specific Th1 or Th17 cells with glia markedly enhanced Abeta-induced pro-inflammatory cytokine production and expression of MHC class II and co-stimulatory molecules on the microglia. Addition of Abeta-specific Th2 cells inhibited Th17 cell-induced IL-1beta and IL-6 production by mixed glia and attenuated Th1 cell-induced CD86 and CD40 expression on microglia. The modest enhancement of MHC class II and CD86 expression on astrocytes by Abeta-specific Th1 and Th17 was not attenuated by Th2 cells. These data indicate that Abeta-specific Th1 and Th17 cells induce inflammatory activation of glia, and that this is in part regulated by Th2 cells. Copyright 2010 Elsevier Inc. All rights reserved.
Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1.
Lin, Ling; Peng, Stanford L
2006-04-15
Forkhead transcription factors play critical roles in the maintenance of immune homeostasis. In this study, we demonstrate that this regulation most likely involves intricate interactions between the forkhead family members and inflammatory transcription factors: the forkhead member Foxd1 coordinates the regulation of the activity of two key inflammatory transcription factors, NF-AT and NF-kappaB, with Foxd1 deficiency resulting in multiorgan, systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autologous MLRs. Foxd1-deficient T cells possess increased activity of both NF-AT and NF-kappaB: the former correlates with the ability of Foxd1 to regulate casein kinase 1, an NF-AT inhibitory kinase; the latter with the ability of Foxd1 to regulate Foxj1, which regulates the NF-kappaB inhibitory subunit IkappaB beta. Thus, Foxd1 modulates inflammatory reactions and prevents autoimmunity by directly regulating anti-inflammatory regulators of the NF-AT pathway, and by coordinating the suppression of the NF-kappaB pathway via Foxj1. These findings indicate the presence of a general network of forkhead proteins that enforce T cell quiescence.
MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Li-Juan; Liao, Lan; Yang, Li
MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and blockmore » of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.« less
Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You
2014-01-01
Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix–loop–helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008
Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells.
Escalera-Cueto, Manuel; Medina-Martínez, Ingrid; del Angel, Rosa M; Berumen-Campos, Jaime; Gutiérrez-Escolano, Ana Lorena; Yocupicio-Monroy, Martha
2015-01-22
MicroRNAs (miRNAs) constitute an important class of non-coding RNA implicated in gene expression regulation. More than 1900 miRNA molecules have been identified in humans and their modulation during viral infection and it is recognized to play a role in latency regulation or in establishing an antiviral state. The liver cells are targets during DENV infection, and alteration of liver functions contributes to severe disease. In this work the miRNAs expression profile of the human hepatoma cell line, Huh-7, infected with DENV-2 was determined using microarray and real-time PCR. Let-7c is one of the miRNAs up-regulated during DENV infection in the hepatic Huh-7 as well as in the macrophage-monocytic cell line U937-DC-SIGN. Let-7c overexpression down-regulates both DENV-2 and DENV-4 infection. Additionally, we found that the transcription factor BACH1, a let-7c target, is also down-regulated during DENV infection. In accordance with this finding, HO-1, the main responsive factor of BACH1 was found up-regulated. The up-regulation of HO-1 may contribute to the stress oxidative response in infected cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer
Charité, Jeroen; McFadden, David G.; Merlo, Giorgio; Levi, Giovanni; Clouthier, David E.; Yanagisawa, Masashi; Richardson, James A.; Olson, Eric N.
2001-01-01
Neural crest cells play a key role in craniofacial development. The endothelin family of secreted polypeptides regulates development of several neural crest sublineages, including the branchial arch neural crest. The basic helix–loop–helix transcription factor dHAND is also required for craniofacial development, and in endothelin-1 (ET-1) mutant embryos, dHAND expression in the branchial arches is down-regulated, implicating it as a transcriptional effector of ET-1 action. To determine the mechanism that links ET-1 signaling to dHAND transcription, we analyzed the dHAND gene for cis-regulatory elements that control transcription in the branchial arches. We describe an evolutionarily conserved dHAND enhancer that requires ET-1 signaling for activity. This enhancer contains four homeodomain binding sites that are required for branchial arch expression. By comparing protein binding to these sites in branchial arch extracts from endothelin receptor A (EdnrA) mutant and wild-type mouse embryos, we identified Dlx6, a member of the Distal-less family of homeodomain proteins, as an ET-1-dependent binding factor. Consistent with this conclusion, Dlx6 was down-regulated in branchial arches from EdnrA mutant mice. These results suggest that Dlx6 acts as an intermediary between ET-1 signaling and dHAND transcription during craniofacial morphogenesis. PMID:11711438
Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre
2014-12-01
Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis.
Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Kristiansson, Helena; Duke, Cindy M. P.; Choe, Gina; Flannery, Clare; Kallen, Caleb B.
2014-01-01
Background: Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3′-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. Objective: The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Methods: Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. Results: We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Conclusions: Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis. PMID:25140393
Elk-3 is a transcriptional repressor of nitric-oxide synthase 2.
Chen, Yen-Hsu; Layne, Matthew D; Chung, Su Wol; Ejima, Kuniaki; Baron, Rebecca M; Yet, Shaw-Fang; Perrella, Mark A
2003-10-10
The inducible isoform of nitric-oxide synthase (NOS2), a key enzyme catalyzing the dramatic increase in nitric oxide by lipopolysaccharide (LPS), plays an important role in the pathophysiology of endotoxemia and sepsis. Recent evidence suggests that Ets transcription factors may contribute to NOS2 induction by inflammatory stimuli. In this study, we investigated the role of Ets transcription factors in the regulation of NOS2 by LPS and transforming growth factor (TGF)-beta 1. Transient transfection assays in macrophages showed that Ets-2 produced an increase in NOS2 promoter activity, whereas the induction by Ets-1 was modest and NERF2 had no effect. Elk-3 (Net/Erp/Sap-2a) markedly repressed NOS2 promoter activity in a dose-dependent fashion, and overexpression of Elk-3 blunted the induction of endogenous NOS2 message. Mutation of the Net inhibitory domain of Elk-3, but not the C-terminal-binding protein interaction domain, partially alleviated this repressive effect. We also found that deletion of the Ets domain of Elk-3 completely abolished its repressive effect on the NOS2 promoter. LPS administration to macrophages led to a dose-dependent decrease in endogenous Elk-3 mRNA levels, and this decrease in Elk-3 preceded the induction of NOS2 mRNA. In a mouse model of endotoxemia, the expression of Elk-3 in kidney, lung, and heart was significantly down-regulated after systemic administration of LPS, and this down-regulation also preceded NOS2 induction. Moreover, TGF-beta 1 significantly increased endogenous Elk-3 mRNA levels that had been down-regulated by LPS in macrophages. This increase in Elk-3 correlated with a TGF-beta 1-induced down-regulation of NOS2. Taken together, our data suggest that Elk-3 is a strong repressor of NOS2 promoter activity and mRNA levels and that endogenous expression of Elk-3 inversely correlates with NOS2. Thus, Elk-3 may serve as an important mediator of NOS2 gene expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tung, Chun-Liang; Jian, Yi-Jun; Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan
2015-05-15
Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreasedmore » XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.« less
Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin
2016-04-16
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration.
Zhang, W; Zou, A; Miao, J; Yin, Y; Tian, R; Pang, Y; Yang, R; Qi, J; Yang, Y
2011-03-01
We previously showed that ethylene might be involved in the process of shikonin biosynthesis regulated by light signals. Here, we cloned a full-length cDNA of LeERF-1, a putative ethylene response factor gene, from Lithospermum erythrorhizon using the RACE (rapid amplification of cDNA ends) method. Phylogenetic analysis revealed that LeERF-1 was classified in the B3 subfamily, together with ERF1 and ORA59 of Arabidopsis. Heterologous expression of LeERF-1 in Arabidopsis showed that LeERF-1:eGFP fusion protein was precisely localised to the nucleus, implying that it might function as a transcription factor. Detailed expression analysis with real-time PCR showed that LeERF-1 was significantly down-regulated by white, blue and red light, although the inhibitory effect of red light was relatively weak compared to other light conditions. Tissue-specific expression analysis also indicated that LeERF-1 was dominantly expressed in the roots, which grow in soil in darkness. These patterns are all consistent with the effects of different light signals on regulating formation of shikonin and its derivatives, indicating that LeERF-1 might be a crucial positive regulator, like other B3 subfamily proteins (such as ORCA3 and ORA59), in regulating biosynthesis of secondary metabolites. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
Counotte, J; Drexhage, H A; Wijkhuijs, J M; Pot-Kolder, R; Bergink, V; Hoek, H W; Veling, W
2018-03-01
Psychotic disorders are characterized by a deranged immune system, including altered number and function of Natural Killer (NK) and T cells. Psychotic disorders arise from an interaction between genetic vulnerability and exposure to environmental risk factors. Exposure to social adversity during early life is particularly relevant to psychosis risk and is thought to increase reactivity to subsequent minor daily social stressors. Virtual reality allows controlled experimental exposure to virtual social stressors. To investigate the interplay between social adversity during early life, cell numbers of NK cells and T helper subsets and social stress reactivity in relation to psychosis liability. Circulating numbers of Th1, Th2, Th17, T regulator and NK cells were determined using flow cytometry in 80 participants with low psychosis liability (46 healthy controls and 34 siblings) and 53 participants with high psychosis liability (14 ultra-high risk (UHR) patients and 39 recent-onset psychosis patients), with and without the experience of childhood trauma. We examined if cell numbers predicted subjective stress when participants were exposed to social stressors (crowdedness, hostility and being part of an ethnic minority) in a virtual reality environment. There were no significant group differences in Th1, Th2, Th17, T regulator and NK cell numbers between groups with a high or low liability for psychosis. However, in the high psychosis liability group, childhood trauma was associated with increased Th17 cell numbers (p = 0.028). Moreover, in the high psychosis liability group increased T regulator and decreased NK cell numbers predicted stress experience during exposure to virtual social stressors (p = 0.015 and p = 0.009 for T regulator and NK cells, respectively). A deranged Th17/T regulator balance and a reduced NK cell number are associated intermediate biological factors in the relation childhood trauma, psychosis liability and social stress reactivity. Copyright © 2018 Elsevier Inc. All rights reserved.
Shim, Jae Sung; Jung, Choonkyun; Lee, Sangjoon; Min, Kyunghun; Lee, Yin-Won; Choi, Yeonhee; Lee, Jong Seob; Song, Jong Tae; Kim, Ju-Kon; Choi, Yang Do
2013-02-01
The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. β-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.
hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer
Franklin, Renty B; Feng, Pei; Milon, B; Desouki, Mohamed M; Singh, Keshav K; Kajdacsy-Balla, André; Bagasra, Omar; Costello, Leslie C
2005-01-01
Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous glands is likely due to in situ gene silencing. These observations, coupled with the numerous and consistent reports of loss of zinc accumulation in malignant cells in prostate cancer, lead to the plausible proposal that down regulation of hZIP1 is a critical early event in the development prostate cancer. PMID:16153295
Ahmed, Maha A E; El-Awdan, Sally A
2015-07-01
Behavioral perturbations associated with nandrolone decanoate abuse by athletes and adolescents may be attributed to oxidative stress and inflammation. However, the underlying mechanisms are not yet fully explored. On the other hand, the natural antioxidant lipoic acid can pass the blood brain barrier and enhance Nrf2/HO-1 (nuclear factor erythroid-2 related factor 2/heme oxygenase-1) pathway. In addition, the phosphodiesterase-IV inhibitor xanthine derivative pentoxifylline has a remarkable inhibitory effect on tumor necrosis factor-alpha (TNF-α). Therefore, this study aimed at investigation of the possible protective effects of lipoic acid and/or pentoxifylline against nandrolone-induced neurobehavioral alterations in rats. Accordingly, male albino rats were randomly distributed into seven groups and treated with either vehicle, nandrolone (15mg/kg, every third day, s.c.), lipoic acid (100mg/kg/day, p.o.), pentoxifylline (200mg/kg/day, i.p.), or nandrolone with lipoic acid and/or pentoxifylline. Rats were challenged in the open field, rewarded T-maze, Morris water maze, and resident-intruder aggression behavioral tests. The present findings showed that nandrolone induced hyperlocomotion, anxiety, memory impairment, and aggression in rats. These behavioral abnormalities were accompanied by several biochemical changes, including altered levels of brain monoamines, GABA, and acetylcholine, enhanced levels of malondialdehyde and TNF-α, elevated activity of acetylcholinesterase, and up-regulated expression of TNF-α receptor-1 (TNFR1). In addition, inhibited catalase activity, down-regulated Nrf2/HO-1 pathway, and suppressed acetylcholine receptor expression were observed. Lipoic acid and pentoxifylline combination significantly mitigated all the previously mentioned deleterious effects mainly via up-regulation of Nrf2/HO-1 pathway, inhibition of TNF-α and down-regulation of TNFR1 expression. In conclusion, the biochemical and histopathological findings of this study revealed the protective mechanisms of lipoic acid and pentoxifylline against nandrolone-induced behavioral changes and neurotoxicity in rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma
Gamble, Laura D.; Hogarty, Michael D.; Liu, Xueyuan; Ziegler, David S.; Marshall, Glenn; Norris, Murray D.; Haber, Michelle
2012-01-01
Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma, and targeting polyamine homeostasis may therefore provide an attractive therapeutic approach. ODC1, an oncogenic MYCN target, is rate-limiting for polyamine synthesis, and is overexpressed in many cancers including neuroblastoma. Inhibition of ODC1 by difluoromethylornithine (DFMO) decreased tumor penetrance in TH-MYCN mice treated pre-emptively, and extended survival and synergized with chemotherapy in treating established tumors in both TH-MYCN and xenograft models. Efforts to augment DFMO activity, or otherwise maximally reduce polyamine levels, are focused on antagonizing polyamine uptake or augmenting polyamine export or catabolism. Since polyamine inhibition appears to be clinically well tolerated, these approaches, particularly when combined with chemotherapy, have great potential for improving neuroblastoma outcome in both MYCN amplified and non-MYCN amplified neuroblastomas. PMID:23181218
Applications and mechanisms of immunotherapy in allergic rhinitis and asthma.
Kappen, Jasper H; Durham, Stephen R; Veen, Hans In 't; Shamji, Mohamed H
2017-01-01
Clinical and immunologic tolerance are hallmarks of successful allergen immunotherapy (AIT). Clinical benefits such as reduced symptoms, pharmacotherapy intake and improvement of quality of life persist following cessation of treatment. Successful AIT is associated with suppression of allergic inflammatory cells such as mast cells, eosinophils and basophils in target organs. Furthermore, AIT down-regulates type 2 innate lymphoid cells and allergen-specific type 2 T-helper (Th2) cells. The immunologic tolerant state following AIT is associated with the induction of distinct phenotypes of regulatory T-cells (T-regs) including interleukin (IL)-10-, IL-35- and transforming growth factor (TGF)-β- producing T-regs and FoxP3 + T-regs. B-cell responses, including the induction of IL-10 + regulatory B-cells (B-regs) and the production of IgG4-associated blocking antibodies are also induced following successful AIT. These events are associated with the suppression of antigen-specific Th2 responses and delayed immune deviation in favour of Th1 type responses. Insight into the mechanisms of AIT has allowed identification of novel biomarkers with potential to predict the clinical response to AIT and also novel therapeutic strategies for more effective and safer AIT.
USDA-ARS?s Scientific Manuscript database
Transcription factors (TFs) mediate stress resistance indirectly via physiological mechanisms driven by the array of genes they regulate. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with different genetic backgrounds. Here, we fine-mapped th...
Ma, Wei; Gee, Katrina; Lim, Wilfred; Chambers, Kelly; Angel, Jonathan B; Kozlowski, Maya; Kumar, Ashok
2004-01-01
IL-12 plays a critical role in the development of cell-mediated immune responses and in the pathogenesis of inflammatory and autoimmune disorders. Dexamethasone (DXM), an anti-inflammatory glucocorticoid, has been shown to inhibit IL-12p40 production in LPS-stimulated monocytic cells. In this study, we investigated the molecular mechanism by which DXM inhibits IL-12p40 production by studying the role of the mitogen-activated protein kinases (MAPKs), and the key transcription factors involved in human IL-12p40 production in LPS-stimulated monocytic cells. A role for c-Jun N-terminal kinase (JNK) MAPK in LPS-induced IL-12p40 regulation in a promonocytic THP-1/CD14 cell line was demonstrated by using specific inhibitors of JNK activation, SP600125 and a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase-1 mutant. To identify transcription factors regulating IL-12p40 gene transcription, extensive deletion analyses of the IL-12p40 promoter was performed. The results revealed the involvement of a sequence encompassing the AP-1-binding site, in addition to that of NF-kappaB. The role of AP-1 in IL-12p40 transcription was confirmed by using antisense c-fos and c-jun oligonucleotides. Studies conducted to understand the regulation of AP-1 and NF-kappaB activation by JNK MAPK revealed that both DXM and SP600125 inhibited IL-12p40 gene transcription by inhibiting the activation of AP-1 and NF-kappaB transcription factors as revealed by luciferase reporter and gel mobility shift assays. Taken together, our results suggest that DXM may inhibit IL-12p40 production in LPS-stimulated human monocytic cells by down-regulating the activation of JNK MAPK, the AP-1, and NF-kappaB transcription factors.
Deniaud, Emmanuelle; Baguet, Joël; Chalard, Roxane; Blanquier, Bariza; Brinza, Lilia; Meunier, Julien; Michallet, Marie-Cécile; Laugraud, Aurélie; Ah-Soon, Claudette; Wierinckx, Anne; Castellazzi, Marc; Lachuer, Joël; Gautier, Christian
2009-01-01
Background The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. Methodology and Principal Findings We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. Conclusion This study shows that the binding to DNA of overexpressed Sp1 induces an inhibition of cell cycle progression that precedes apoptosis and a transcriptional response targeting genes containing Sp1 binding sites in their promoter or not suggesting both direct Sp1-driven transcription and indirect mechanisms. PMID:19753117
Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra
2012-01-01
We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121
Prabakaran, Ashok Daniel; Karakkat, Jimsheena Valiyakath; Vijayan, Ranjit; Chalissery, Jisha; Ibrahim, Marwa F; Kaimala, Suneesh; Adeghate, Ernest A; Al-Marzouqi, Ahmed Hassan; Ansari, Suraiya Anjum; Mensah-Brown, Eric; Emerald, Bright Starling
2018-03-01
Although the existence of a close relationship between the early maternal developmental environment, fetal size at birth and the risk of developing disease in adulthood has been suggested, most studies, however, employed experimentally induced intrauterine growth restriction as a model to link this with later adult disease. Because embryonic size variation also occurs under normal growth and differentiation, elucidating the molecular mechanisms underlying these changes and their relevance to later adult disease risk becomes important. The birth weight of rat pups vary according to the uterine horn positions. Using birth weight as a marker, we compared two groups of rat pups - lower birth weight (LBW, 5th to 25th percentile) and average birth weight (ABW, 50th to 75th percentile) - using morphological, biochemical and molecular biology, and genetic techniques. Our results show that insulin metabolism, Pi3k/Akt and Pparγ signaling and the genes regulating growth and metabolism are significantly different in these groups. Methylation at the promoter of the InsII ( Ins2 ) gene and DNA methyltransferase 1 in LBW pups are both increased. Additionally, the Dnmt1 repressor complex, which includes Hdac1, Rb (Rb1) and E2f1, was also upregulated in LBW pups. We conclude that the Dnmt1 repressor complex, which regulates the restriction point of the cell cycle, retards the rate at which cells traverse the G1 or G0 phase of the cell cycle in LBW pups, thereby slowing down growth. This regulatory mechanism mediated by Dnmt1 might contribute to the production of small-size pups and altered physiology and pathology in adult life. © 2018. Published by The Company of Biologists Ltd.
Prabakaran, Ashok Daniel; Karakkat, Jimsheena Valiyakath; Chalissery, Jisha; Ibrahim, Marwa F.; Kaimala, Suneesh; Adeghate, Ernest A.; Al-Marzouqi, Ahmed Hassan; Ansari, Suraiya Anjum
2018-01-01
ABSTRACT Although the existence of a close relationship between the early maternal developmental environment, fetal size at birth and the risk of developing disease in adulthood has been suggested, most studies, however, employed experimentally induced intrauterine growth restriction as a model to link this with later adult disease. Because embryonic size variation also occurs under normal growth and differentiation, elucidating the molecular mechanisms underlying these changes and their relevance to later adult disease risk becomes important. The birth weight of rat pups vary according to the uterine horn positions. Using birth weight as a marker, we compared two groups of rat pups – lower birth weight (LBW, 5th to 25th percentile) and average birth weight (ABW, 50th to 75th percentile) – using morphological, biochemical and molecular biology, and genetic techniques. Our results show that insulin metabolism, Pi3k/Akt and Pparγ signaling and the genes regulating growth and metabolism are significantly different in these groups. Methylation at the promoter of the InsII (Ins2) gene and DNA methyltransferase 1 in LBW pups are both increased. Additionally, the Dnmt1 repressor complex, which includes Hdac1, Rb (Rb1) and E2f1, was also upregulated in LBW pups. We conclude that the Dnmt1 repressor complex, which regulates the restriction point of the cell cycle, retards the rate at which cells traverse the G1 or G0 phase of the cell cycle in LBW pups, thereby slowing down growth. This regulatory mechanism mediated by Dnmt1 might contribute to the production of small-size pups and altered physiology and pathology in adult life. PMID:29434026
Bedini, Andrea; Baiula, Monica; Carbonari, Gioia; Spampinato, Santi
2010-01-01
Mu-opioid receptor expression increases during neurogenesis, regulates the survival of maturing neurons and is implicated in ischemia-induced neuronal death. The repressor element 1 silencing transcription factor (REST), a regulator of a subset of genes in differentiating and post-mitotic neurons, is involved in its transcriptional repression. Extracellular signaling molecules and mechanisms that control the human mu-opioid receptor (hMOR) gene transcription are not clearly understood. We examined the role of protein kinase C (PKC) on hMOR transcription in a model of neuronal cells and in the context of the potential influence of REST. In native SH-SY5Y neuroblastoma cells, PKC activation with phorbol 12-myristate 13-acetate (PMA, 16 nM, 24h) down-regulated hMOR transcription and concomitantly elevated the REST binding activity to repressor element 1 of the hMOR promoter. In contrast, PMA activated hMOR gene transcription when REST expression was knocked down by an antisense strategy or by retinoic acid-induced cell differentiation. PMA acts through a PKC-dependent pathway requiring downstream MAP kinases and the transcription factor AP-1. In a series of hMOR-luciferase promoter/reporter constructs transfected into SH-SY5Y cells and PC12 cells, PMA up-regulated hMOR transcription in PC12 cells lacking REST, and in SH-SY5Y cells either transfected with constructs deficient in the REST DNA binding element or when REST was down-regulated in retinoic acid-differentiated cells. These findings help explain how hMOR transcription is regulated and may clarify its contribution to epigenetic modifications and reprogramming of differentiated neuronal cells exposed to PKC-activating agents. Copyright 2009 Elsevier Ltd. All rights reserved.
Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei
2017-08-04
The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revet, Ingrid; Huizenga, Gerda; Chan, Alvin
Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneuralmore » gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.« less
Wang, Dongfang; Qin, Jingkai; Jia, Jirong; Yan, Peipei; Li, Wensheng
2017-01-29
This study aims to determine the post-transcriptional regulation mechanism of the transcription factor pou1f1 (pou class 1 homeobox 1), which is the key gene for pituitary development, somatic growth in vertebrates, and transcription of several hormone genes in teleost fish. MicroRNA miR-223-3p was identified as a bona fide target of pou1f; overexpression of miR-223-3p in primary pituitary cells led to the down-regulation of pou1f1 and downstream genes, and inhibition of miR-223-3p led to the up-regulation of pou1f1 in Nile tilapia dispersed primary pituitary cells. An adenylate-uridylate-rich element (AU-Rich element) was found in the 3'UTR of pou1f1 mRNA, and deletion of the AU-Rich element led to slower mRNA decay and therefore more protein output. A potential mutual relationship between miR-223-3p and the AU-rich element was also investigated, and the results demonstrated that with or without the AU-Rich element, miR-223-3p induced the up-regulation of a reporter system under serum starvation conditions, indicating that miR-223-3p and the AU-Rich element function independent of each other. This study is the first to investigate the post-transcriptional mechanism of pou1f1, which revealed that miR-223-3p down-regulated pou1f1 and downstream gene expressions, and the AU-Rich element led to rapid decay of pou1f1 mRNA. MicroRNA miR-223-3p and the AU-Rich element co-regulated the post-transcriptional expression of pou1f1 independently in Nile tilapia, demonstrating that pou1f1 is under the control of a dual post-transcription regulation mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, Weiguang; Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou; Wu, Qinqin
Highlights: • Down-regulation of TPP1 shortened telomere length in telomerase-negative cells. • Down-regulation of TPP1 induced cell apoptosis in telomerase-negative cells. • Down-regulation of TPP1 increased radiosensitivity in telomerase-negative cells. - Abstract: Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and thatmore » overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.« less
Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua
2016-03-01
Myocardial infarction (MI) results in decreased inward-rectifier K⁺ current (IK1), which is mediated primarily by the Kir2.1 protein and is accompanied by upregulated T cells. Interferon γ (IFN-γ), secreted predominantly by Th1 cells, causes a decrease in IK1 in microglia. Whether Th1 cells can induce IK1/Kir2.1 remodeling following MI and whether valsartan can ameliorate this phenomenon remain unclear. Rats experiencing MI received either valsartan or saline for 7 days. Th1-enriched lymphocytes and myocytes were cocultured with or without valsartan treatment. Th1 cells were monitored by flow cytometry. The protein levels of Kir2.1 were detected by Western blot analyses. IK1 was recorded through whole-cell patch clamping. The plasma levels of IFN-γ, interleukin 2, and tumor necrosis factor α were detected by enzyme-linked immunosorbent assay. Th1 cell number and cytokine expression levels were higher following MI, and the Kir2.1 protein level was decreased. In MI rats, valsartan reduced Th1 cell number and cytokine expression levels and increased the Kir2.1 expression and the IK1 current compared with the rats that received saline treatment; these results are consistent with the effect of valsartan in cocultured lymphocytes and myocytes. In vitro, IFN-γ overexpression suppressed the IK1 current, whereas interleukin 2 and tumor necrosis factor α had no significant effect on the current, establishing that Th1 cell regulation of IK1/Kir2.1 expression is mainly dependent on IFN-γ. Valsartan ameliorates IK1/Kir2.1 remodeling by downregulating the Th1 immune response following MI.
Chen, Xiaoli; Zhou, Xiaoyang; Xi, Lin; Li, Junxiang; Zhao, Ruiyan; Ma, Nan; Zhao, Liangjun
2013-01-01
The diverse plasticity of plant architecture is largely determined by shoot branching. Shoot branching is an event regulated by multiple environmental, developmental and hormonal stimuli through triggering lateral bud response. After perceiving these signals, the lateral buds will respond and make a decision on whether to grow out. TCP transcriptional factors, BRC1/TB1/FC1, were previously proven to be involved in local inhibition of shoot branching in Arabidopsis, pea, tomato, maize and rice. To investigate the function of BRC1, we isolated the BRC1 homolog from chrysanthemum. There were two transcripts of DgBRC1 coming from two alleles in one locus, both of which complemented the multiple branches phenotype of Arabidopsis brc1-1, indicating that both are functionally conserved. DgBRC1 was mainly expressed in dormant axillary buds, and down-regulated at the bud activation stage, and up-regulated by higher planting densities. DgBRC1 transcripts could respond to apical auxin supply and polar auxin transport. Moreover, we found that the acropetal cytokinin stream promoted branch outgrowth whether or not apical auxin was present. Basipetal cytokinin promoted outgrowth of branches in the absence of apical auxin, while strengthening the inhibitory effects on lower buds in the presence of apical auxin. The influence of auxin and strigolactons (SLs) on the production of cytokinin was investigated, we found that auxin locally down-regulated biosynthesis of cytokinin in nodes, SLs also down-regulated the biosynthesis of cytokinin, the interactions among these phytohormones need further investigation. PMID:23613914
Greenup, Aaron G.; Sasani, Shahryar; Oliver, Sandra N.; Talbot, Mark J.; Dennis, Elizabeth S.; Hemming, Megan N.; Trevaskis, Ben
2010-01-01
In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis. PMID:20431086
Correlation of PD-1/PD-L1 Signaling Pathway with Treg/Th17 Imbalance from Asthmatic Children.
Xi, Xia; Liu, Jing-Mei; Guo, Jun-Ying
2018-06-06
The balance between T helper 17 (Th17) and regulatory T cells (Treg) is a new paradigm in asthma pathogenesis, but no therapeutic targets could modulate the Th17/Treg balance specifically for asthma. Since previous studies have shown the programmed cell death-1(PD-1)/PD-ligand 1 (PD-L1) pathway is critical to immune homeostasis in this disease, we hypothesized that the PD-1/PD-L1 pathway might be involved in the regulation of Treg/Th17 imbalance in asthmatic children. The percentage of Treg and Th17 cells and the expression of PD-1 and PD-L1 were detected by flow cytometry in children with asthma and healthy controls. CD4+ T cells were stimulated with Th17 and Treg differentiating factors, and treated with anti-PD-1. Then cells were harvested and measured for Th17 and Treg percentages and Foxp3 and RORγt levels using RT-PCR. We observed an inverse correlation between the percentages of Treg and Th17 cells, and the expression of PD-1 and PD-L1 in the two subsets also changed in the mild persistent and moderate to severe persistent groups compared with healthy controls. In vitro, administration of anti-PD-1 could decrease Th17 percentages and RORγt mRNA, and increase Treg percentages and Foxp3 mRNA in CD4+ T cells of children with asthma in the mild persistent and moderate to persistent groups. Additionally, the role played by anti-PD-1 in regulating Treg/Th17 balance was further confirmed in an asthmatic mouse model. Alteration of the PD-1/PD-L1 pathway can modulate Treg/Th17 balance in asthmatic children. Treatment with anti-PD-1 posed protective effects on asthma models, providing a novel theoretical target for asthma. © 2018 S. Karger AG, Basel.
Zhang, Yiguo; Qiu, Lu; Li, Shaojun; Xiang, Yuancai; Chen, Jiayu; Ren, Yonggang
2014-01-01
The C-terminal domain (CTD, aa 686–741) of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1) shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L) CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein) and its shorter isoform LCR-F1/Nrf1β (55-kDa). Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER) membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE)-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST) domain and acidic domain 2 (AD2). Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ. PMID:25290918
Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants
Walworth, Aaron E.; Chai, Benli; Song, Guo-qing
2016-01-01
In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these VcFT downstream genes. These results suggest that VcFT’s down-stream genes appear conserved in blueberry. PMID:27271296
Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.
Walworth, Aaron E; Chai, Benli; Song, Guo-Qing
2016-01-01
In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these VcFT downstream genes. These results suggest that VcFT's down-stream genes appear conserved in blueberry.
Van Lith, J M
1992-06-01
The Dutch Working Party on Prenatal Diagnosis has initiated a study on the possibilities of first-trimester screening for fetal chromosomal disorders. We report on maternal serum human chorionic gonadotrophin (MS-hCG) measurements in 1348 pregnancies with a chromosomally normal fetus and 53 pregnancies with a chromosomally abnormal fetus. The median MS-hCG concentration in 24 pregnancies with Down's syndrome was 1.19 multiples of the normal median (MoM). The MS-hCG distributions in normal and Down's syndrome pregnancies did not differ significantly (t-test: t = 1.945, p greater than 0.05). We also found no difference between normal pregnancies and pregnancies with other chromosomal disorders (six cases of trisomy 18, MoM = 0.80; four cases of sex chromosome abnormality, MoM = 1.01; 17 cases of chromosomal mosaicism in chorionic villi, MoM = 1.11). Selecting an upper limit at the 90th centile could detect 25 per cent of pregnancies with Down's syndrome. We conclude that, in the first trimester, MS-hCG as a screening factor for Down's syndrome is of minor value. However, MS-hCG could be a useful factor in a first-trimester screening programme based on a combination of markers.
Genomic analysis of wig-1 pathways.
Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P
2012-01-01
Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer.
Genomic Analysis of wig-1 Pathways
Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P.
2012-01-01
Background Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Methods and Results Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Conclusion Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer. PMID:22347364
Garro, Ana P; Chiapello, Laura S; Baronetti, José L; Masih, Diana T
2011-01-01
Experimental Cryptococcus neoformans infection in rats has been shown to have similarities with human cryptococcosis, revealing a strong granulomatous response and a low susceptibility to dissemination. Moreover, it has been shown that eosinophils are components of the inflammatory response to C. neoformans infections. In this in vitro study, we demonstrated that rat peritoneal eosinophils phagocytose opsonized live yeasts of C. neoformans, and that the phenomenon involves the engagement of FcγRII and CD18. Moreover, our results showed that the phagocytosis of opsonized C. neoformans triggers eosinophil activation, as indicated by (i) the up-regulation of major histocompatibility complex (MHC) class I, MHC class II and costimulatory molecules, and (ii) an increase in interleukin (IL)-12, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production. However, nitric oxide (NO) and hydrogen peroxide (H2O2) synthesis by eosinophils was down-regulated after interaction with C. neoformans. Furthermore, this work demonstrated that CD4+ and CD8+ T lymphocytes isolated from spleens of infected rats and cultured with C. neoformans-pulsed eosinophils proliferate in an MHC class II- and class I-dependent manner, respectively, and produce important amounts of T-helper 1 (Th1) type cytokines, such as TNF-α and IFN-γ, in the absence of T-helper 2 (Th2) cytokine synthesis. In summary, the present study demonstrates that eosinophils act as fungal antigen-presenting cells and suggests that C. neoformans-loaded eosinophils might participate in the adaptive immune response. PMID:21039463
McKallip, Robert J; Nagarkatti, Mitzi; Nagarkatti, Prakash S
2005-03-15
In the current study, we tested the central hypothesis that exposure to Delta-9-tetrahydrocannabinol (Delta9-THC), the major psychoactive component in marijuana, can lead to enhanced growth of tumors that express low to undetectable levels of cannabinoid receptors by specifically suppressing the antitumor immune response. We demonstrated that the human breast cancer cell lines MCF-7 and MDA-MB-231 and the mouse mammary carcinoma 4T1 express low to undetectable levels of cannabinoid receptors, CB1 and CB2, and that these cells are resistant to Delta9-THC-induced cytotoxicity. Furthermore, exposure of mice to Delta9-THC led to significantly elevated 4T1 tumor growth and metastasis due to inhibition of the specific antitumor immune response in vivo. The suppression of the antitumor immune response was mediated primarily through CB2 as opposed to CB1. Furthermore, exposure to Delta9-THC led to increased production of IL-4 and IL-10, suggesting that Delta9-THC exposure may specifically suppress the cell-mediated Th1 response by enhancing Th2-associated cytokines. This possibility was further supported by microarray data demonstrating the up-regulation of a number of Th2-related genes and the down-regulation of a number of Th1-related genes following exposure to Delta9-THC. Finally, injection of anti-IL-4 and anti-IL-10 mAbs led to a partial reversal of the Delta9-THC-induced suppression of the immune response to 4T1. Such findings suggest that marijuana exposure either recreationally or medicinally may increase the susceptibility to and/or incidence of breast cancer as well as other cancers that do not express cannabinoid receptors and are resistant to Delta9-THC-induced apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica
Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 wasmore » down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of Drp1 in islets evokes loss of glucose-stimulated insulin secretion.« less
Wu, Wei-Hua; Chen, Yi-Fang
2016-01-01
The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression. PMID:26829043
Wan, Yi-gang; Sun, Wei; Dou, Chen-hui
2011-04-01
To explore the potential molecular mechanisms of multi-glycoside of Tripterygium wilfordii Hook. f. (GTW) for ameliorating glomerulosclerosis (GS) by observing its intervention effect on transforming growth factor (TGF)-beta1/Smad signaling pathway in adriamycin-induced nephropathy (ADRN) model rat. Fifteen female Sprague-Dawley (SD) rats were randomly divided into three groups, the sham-operation group (A), the untreated model group (B), and the GTW treated model group (C). Rats in Group B and C were made into ADRN model by right nephrectomy and intravenous injection of adriamycin (ADR, 0. 4 mL and 0. 2 mL respectively in 4 weeks). After the model was successfully established, rats in Group C were orally given GTW (50 mg/kg per day), while rats in Group B were intervened with distilled water. The intervention for two groups was 6 weeks. Rats' body weight were weighed and 24 h urinary protein excretion (Upro) detected by the end of the 2nd, 4th, 8th and 10th week. All rats were sacrificed at the end of 10th week after operation to withdraw blood and kidney tissue to examine serum biochemical parameters, glomerular morphological changes, alpha-smooth muscle actin (alpha-SMA), and collagen type I expression. Besides, the mRNA expressions of TGF-beta1, Smad3 and Smad7, as well as protein expressions of TGF-beta1, and phosphorylated Smad2/3 (p-Smad2/3) in glomeruli were detected by RT-PCR or Western blotting. As compared with Group B, in Group C, Upro and serum albumin were improved significantly, but no difference between groups was found in levels of blood urea nitrogen(BUN), serum creatinine(SCr), or hepatic cell injury. Mesangial cell proliferation, extracellular matrix (ECM) and collagen deposition were suppressed by GTW. Expressions of alpha-SMA and collagen type I decreased, and the characteristic changes of GS were attenuated. The mRNA expressions of TGF-P,31, Smad3 and protein expression of TGF-beta1, p-Smad2/3 in renal tissues were down-regulated, while the protein expression of Smad7 mRNA was up-regulated. GTW showed effect in ameliorating GS in vivo. It could reduce the ECM deposition and improve GS by way of intervening TGF-beta1/Smad signaling pathway in the kidney through regulating the mRNA or protein expressions of key signal molecules, such as Smad3 and p-Smad2/3.
[Identification of candidate genes and expression profiles, as doping biomarkers].
Paparini, A; Impagnatiello, F; Pistilli, A; Rinaldi, M; Gianfranceschi, G; Signori, E; Stabile, A M; Fazio, V; Rende, M; Romano Spica, V
2007-01-01
Administration of prohibited substances to enhance athletic performance represents an emerging medical, social, ethical and legal issue. Traditional controls are based on direct detection of substances or their catabolites. However out-of-competition doping may not be easily revealed by standard analytical methods. Alternative indirect control strategies are based on the evaluation of mid- and long-term effects of doping in tissues. Drug-induced long-lasting changes of gene expression may be taken as effective indicators of doping exposure. To validate this approach, we used real-time PCR to monitor the expression pattern of selected genes in human haematopoietic cells exposed to nandrolone, insulin-like growth factor I (IGF-I) or growth hormone (GH). Some candidate genes were found significantly and consistently modulated by treatments. Nandrolone up-regulated AR, ESR2 and PGR in K562 cells, and SRD5A1, PPARA and JAK2 in Jurkat cells; IGF-I up-regulated EPOR and PGR in HL60 cells, and SRD5A1 in Jurkat; GH up-regulated SRD5A1 and GHR in K562. GATA1 expression was down-regulated in IGF-1-treated HL60, ESR2 was down-regulated in nandrolone-treated Jurkat, and AR and PGR were down-regulated in GH-treated Jurkat. This pilot study shows the potential of molecular biology-based strategies in anti-doping controls.
Overexpression of Prdx1 in hilar cholangiocarcinoma: a predictor for recurrence and prognosis.
Zhou, Jie; Shen, Weiwen; He, Xiaojing; Qian, Jing; Liu, Shiyuan; Yu, Guanzhen
2015-01-01
Prdx1 is an important member of peroxiredoxins (Prdxs) regulating various cellular signaling and differentiation. Prdx1 confers an aggressive survival phenotype of cancer cells and drug-resistance, yet its role in hilar cholangiocarcinoma is not fully investigated. In present study, we detected the expression profile of Prdx1 in 88 hilar cholangiocarcinoma by tissue arrays and immunohistochemistry. Prdx1 level was down-regulated by specific Prdx1-shRNA in vitro and the possible mechanism was investigated. Overexpression of Prdx1 was observed in 53 of 88 cases (60.2%). Prdx1 expression was significantly associated with tumor invasion, nodal metastasis, advanced disease stage. Down-regulation of Prdx1 inhibited cell proliferation and colony formation of QBC939 cells and reduced the level of SNAT1 expression. Patients with Prdx1 overexpression had a shorter disease-free survival and overall survival than those without Prdx1 expression. Multivariate analysis showed that Prdx1 was an independent prognostic factor for patients with hilar cholangiocarcinoma. The data indicate that Prdx1 may contribute to the development and progression of hilar cholangiocarcinoma, partially through regulating SNAT1 expression, and may be used as a biomarker in predicting the outcome of patients with hilar cholangiocarcinoma.
Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila
2017-06-01
Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Klaver, Elsenoor J.; Kuijk, Loes M.; Lindhorst, Thisbe K.; Cummings, Richard D.; van Die, Irma
2015-01-01
Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses. PMID:25897665
Klaver, Elsenoor J; Kuijk, Loes M; Lindhorst, Thisbe K; Cummings, Richard D; van Die, Irma
2015-01-01
Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses.
Wang, C; Ye, Z; Kijlstra, A; Zhou, Y; Yang, P
2014-08-01
Aryl hydrocarbon receptor (AhR) is well known for mediating the toxic effects of dioxin-containing pollutants, but has also been shown to be involved in the natural regulation of the immune response. In this study, we investigated the effect of AhR activation by its endogenous ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the differentiation, maturation and function of monocyte-derived DCs in Behçet's disease (BD) patients. In this study, we showed that AhR activation by FICZ and ITE down-regulated the expression of co-stimulatory molecules including human leucocyte antigen D-related (HLA-DR), CD80 and CD86, while it had no effect on the expression of CD83 and CD40 on DCs derived from BD patients and normal controls. Lipopolysaccharide (LPS)-treated dendritic cells (DCs) from active BD patients showed a higher level of interleukin (IL)-1β, IL-6, IL-23 and tumour necrosis factor (TNF)-α production. FICZ or ITE significantly inhibited the production of IL-1β, IL-6, IL-23 and TNF-α, but induced IL-10 production by DCs derived from active BD patients and normal controls. FICZ or ITE-treated DCs significantly inhibited the T helper type 17 (Th17) and Th1 cell response. Activation of AhR either by FICZ or ITE inhibits DC differentiation, maturation and function. Further studies are needed to investigate whether manipulation of the AhR pathway may be used to treat BD or other autoimmune diseases. © 2014 British Society for Immunology.
Wang, C; Ye, Z; Kijlstra, A; Zhou, Y; Yang, P
2014-01-01
Aryl hydrocarbon receptor (AhR) is well known for mediating the toxic effects of dioxin-containing pollutants, but has also been shown to be involved in the natural regulation of the immune response. In this study, we investigated the effect of AhR activation by its endogenous ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the differentiation, maturation and function of monocyte-derived DCs in Behçet's disease (BD) patients. In this study, we showed that AhR activation by FICZ and ITE down-regulated the expression of co-stimulatory molecules including human leucocyte antigen D-related (HLA-DR), CD80 and CD86, while it had no effect on the expression of CD83 and CD40 on DCs derived from BD patients and normal controls. Lipopolysaccharide (LPS)-treated dendritic cells (DCs) from active BD patients showed a higher level of interleukin (IL)-1β, IL-6, IL-23 and tumour necrosis factor (TNF)-α production. FICZ or ITE significantly inhibited the production of IL-1β, IL-6, IL-23 and TNF-α, but induced IL-10 production by DCs derived from active BD patients and normal controls. FICZ or ITE-treated DCs significantly inhibited the T helper type 17 (Th17) and Th1 cell response. Activation of AhR either by FICZ or ITE inhibits DC differentiation, maturation and function. Further studies are needed to investigate whether manipulation of the AhR pathway may be used to treat BD or other autoimmune diseases. PMID:24749687
Espinoza, J. Luis; Takami, Akiyoshi; Yoshioka, Katsuji; Nakata, Katsuya; Sato, Tokiharu; Kasahara, Yoshihito; Nakao, Shinji
2012-01-01
Background NKG2D is an activating receptor expressed by natural killer and T cells, which have crucial functions in tumor and microbial immunosurveillance. Several cytokines have been identified as modulators of NKG2D receptor expression. However, little is known about NKG2D gene regulation. In this study, we found that microRNA 1245 attenuated the expression of NKG2D in natural killer cells. Design and Methods We investigated the potential interactions between the 3′-untranslated region of the NKG2D gene and microRNA as well as their functional roles in the regulation of NKG2D expression and cytotoxicity in natural killer cells. Results Transforming growth factor-β1, a major negative regulator of NKG2D expression, post-transcriptionally up-regulated mature microRNA-1245 expression, thus down-regulating NKG2D expression and impairing NKG2D-mediated immune responses in natural killer cells. Conversely, microRNA-1245 down-regulation significantly increased the expression of NKG2D expression in natural killer cells, resulting in more efficient NKG2D-mediated cytotoxicity. Conclusions These results reveal a novel NKG2D regulatory pathway mediated by microRNA-1245, which may represent one of the mechanisms used by transforming growth factor-β1 to attenuate NKG2D expression in natural killer cells. PMID:22491735
Zhu, Min; Li, Mingyang; Zhang, Fan; Feng, Fan; Chen, Weihao; Yang, Yutao; Cui, Jiajun; Zhang, Dong; Linghu, Enqiang
2014-01-01
In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma.
Chen, Weihao; Yang, Yutao; Cui, Jiajun; Zhang, Dong; Linghu, Enqiang
2014-01-01
In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma. PMID:24857950
Ruszová, Ema; Cheel, José; Pávek, Stanislav; Moravcová, Martina; Hermannová, Martina; Matějková, Ilona; Spilková, Jiřina; Velebný, Vladimír; Kubala, Lukáš
2013-09-01
Stress-induced fibroblast senescence is thought to contribute to skin aging. Ultraviolet light (UV) radiation is the most potent environmental risk factor in these processes. An Epilobium angustifolium (EA) extract was evaluated for its capacity to reverse the senescent response of normal human dermal fibroblasts (NHDF) in vitro and to exhibit skin photo-protection in vivo. The HPLC-UV-MS analysis of the EA preparation identified three major polyphenol groups: tannins (oenothein B), phenolic acids (gallic and chlorogenic acids) and flavonoids. EA extract increased the cell viability of senescent NHDF induced by serum deprivation. It diminished connective tissue growth factor and fibronectin gene expressions in senescent NHDF. Down-regulation of the UV-induced release of both matrix metalloproteinase-1 and -3 and the tissue inhibitor of matrix metalloproteinases-1 and -2, and also down-regulation of the gene expression of hyaluronidase 2 were observed in repeatedly UV-irradiated NHDF after EA extract treatment. Interestingly, EA extract diminished the down-regulation of sirtuin 1 dampened by UV-irradiation. The application of EA extract using a sub-irritating dose protected skin against UV-induced erythema formation in vivo. In summary, EA extract diminished stress-induced effects on NHDF, particularly on connective tissue growth factor, fibronectin and matrix metalloproteinases. These results collectively suggest that EA extract may possess anti-aging properties and that the EA polyphenols might account for these benefits.
Bcl11b, a novel GATA3-interacting protein, suppresses Th1 while limiting Th2 cell differentiation.
Fang, Difeng; Cui, Kairong; Hu, Gangqing; Gurram, Rama Krishna; Zhong, Chao; Oler, Andrew J; Yagi, Ryoji; Zhao, Ming; Sharma, Suveena; Liu, Pentao; Sun, Bing; Zhao, Keji; Zhu, Jinfang
2018-05-07
GATA-binding protein 3 (GATA3) acts as the master transcription factor for type 2 T helper (Th2) cell differentiation and function. However, it is still elusive how GATA3 function is precisely regulated in Th2 cells. Here, we show that the transcription factor B cell lymphoma 11b (Bcl11b), a previously unknown component of GATA3 transcriptional complex, is involved in GATA3-mediated gene regulation. Bcl11b binds to GATA3 through protein-protein interaction, and they colocalize at many important cis-regulatory elements in Th2 cells. The expression of type 2 cytokines, including IL-4, IL-5, and IL-13, is up-regulated in Bcl11b -deficient Th2 cells both in vitro and in vivo; such up-regulation is completely GATA3 dependent. Genome-wide analyses of Bcl11b- and GATA3-regulated genes (from RNA sequencing), cobinding patterns (from chromatin immunoprecipitation sequencing), and Bcl11b-modulated epigenetic modification and gene accessibility suggest that GATA3/Bcl11b complex is involved in limiting Th2 gene expression, as well as in inhibiting non-Th2 gene expression. Thus, Bcl11b controls both GATA3-mediated gene activation and repression in Th2 cells. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Rodrigues, A F; Guerreiro, M R; Formas-Oliveira, A S; Fernandes, P; Blechert, A-K; Genzel, Y; Alves, P M; Hu, W S; Coroadinha, A S
2016-01-01
Many mammalian cell lines used in the manufacturing of biopharmaceuticals exhibit high glycolytic flux predominantly channeled to the production of lactate. The accumulation of lactate in culture reduces cell viability and may also decrease product quality. In this work, we engineered a HEK 293 derived cell line producing a recombinant gene therapy retroviral vector, by down-regulating hypoxia inducible factor 1 (HIF1) and pyruvate dehydrogenase kinase (PDK). Specific productivity of infectious viral titers could be increased more than 20-fold for single gene knock-down (HIF1 or PDK) and more than 30-fold under combined down-regulation. Lactate production was reduced up to 4-fold. However, the reduction in lactate production, alone, was not sufficient to enhance the titer: high-titer clones also showed significant enrollment of metabolic routes not related to lactate production. Transcriptome analysis indicated activation of biological amines metabolism, detoxification routes, including glutathione metabolism, pentose phosphate pathway, glycogen biosynthesis and amino acid catabolism. The latter were validated by enzyme activity assays and metabolite profiling, respectively. High-titer clones also presented substantially increased transcript levels of the viral genes expression cassettes. The results herein presented demonstrate the impact of HIF1 and PDK down-regulation on the production performance of a mammalian cell line, reporting one of the highest fold-increase in specific productivity of infectious virus titers achieved by metabolic engineering. They additionally highlight the contribution of secondary pathways, beyond those related to lactate production, that can be also explored to pursue improved metabolic status favoring a high-producing phenotype. © 2015 Wiley Periodicals, Inc.
Guo, Chuang; Hao, Li-Juan; Yang, Zhao-Hui; Chai, Rui; Zhang, Shuai; Gu, Yu; Gao, Hui-Ling; Zhong, Man-Li; Wang, Tao; Li, Jia-Yi; Wang, Zhan-You
2016-06-01
Accumulating evidence suggests that an abnormal accumulation of iron in the substantia nigra (SN) is one of the defining characteristics of Parkinson's disease (PD). Accordingly, the potential neuroprotection of Fe chelators is widely acknowledged for the treatment of PD. Although desferrioxamine (DFO), an iron chelator widely used in clinical settings, has been reported to improve motor deficits and dopaminergic neuronal survival in animal models of PD, DFO has poor penetration to cross the blood-brain barrier and elicits side effects. We evaluated whether an intranasal administration of DFO improves the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of dopaminergic neurons in the nigrostriatal axis and investigated the molecular mechanisms of intranasal DFO treatment in preventing MPTP-induced neurodegeneration. Treatment with DFO efficiently alleviated behavioral deficits, increased the survival of tyrosine hydroxylase (TH)-positive neurons, and decreased the action of astrocytes in the SN and striatum in an MPTP-induced PD mouse model. Interestingly, we found that DFO up-regulated the expression of HIF-1α protein, TH, vascular endothelial growth factor (VEGF), and growth associated protein 43 (GAP43) and down-regulated the expression of α-synuclein, divalent metal transporter with iron-responsive element (DMT1+IRE), and transferrin receptor (TFR). This was accompanied by a decrease in iron-positive cells in the SN and striatum of the DFO-treated group. We further revealed that DFO treatment significantly inhibited the MPTP-induced phosphorylation of the c-Jun N-terminal kinase (JNK) and differentially enhanced the phosphorylation of extracellular regulated protein kinases (ERK) and mitogen-activated protein kinase (MAPK)/P38 kinase. Additionally, the effects of DFO on increasing the Bcl-2/Bax ratio were further validated in vitro and in vivo. In SH-SY5Y cells, the DFO-mediated up-regulation of HIF-1α occurred via the activation of the ERK and P38MAPK signaling pathway. Collectively, the present data suggest that intranasal DFO treatment is effective in reversing MPTP-induced brain abnormalities and that HIF-1-pathway activation is a potential therapy target for the attenuation of neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S
2017-09-02
This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Crapeau, Myriam; Merhi, Ahmad; André, Bruno
2014-01-01
Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation. PMID:24942738
Yukhananov RYu; Larson, A A
1994-08-29
Injected intrathecally, substance P (SP) down-regulates neurokinin-1 (NK-1) binding in the spinal cord and desensitizes rats to the behavioral effect of SP. N-terminal fragments of SP, such as SP(1-7), induce antinociception and play a role in desensitization to SP in mice. The goal of this study was to assess the abilities of N- and C-terminal fragments of SP to down-regulate NK-1 binding. Binding of [3H]SP to mouse spinal cord membranes was inhibited by SP, CP-96,345, and to a lesser extent by SP(5-11), but not SP(1-7), consistent with these binding sites being NK-1 receptors. Injection of SP(5-11) intrathecally did not affect the affinity (Kd) or concentration (Bmax) of [3H]SP binding. However, injection of 1 nmol of SP(1-7) decreased the Bmax of [3H]SP binding in the spinal cord at 6 h after its injection just as this dose of SP decreased the Bmax at 24 h. These data suggest that the N-terminus of SP is responsible for down-regulation of NK-1 binding. As SP(5-11) did not down-regulate NK-1 binding, activation of NK-1 sites does not appear necessary or sufficient for down-regulation of SP binding. In contrast, SP(1-7), in spite of its inability to interact with NK-1 sites, did down-regulate SP binding, suggesting an indirect mechanism dissociated from NK-1 receptors.
Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.
Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald
2013-01-01
Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for the characterisation of macrophage polarisation in situ. Furthermore, CD163 cannot be considered a reliable M2 marker when used on its own.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong
2014-10-01
Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 andmore » CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.« less
Li, Jingjie; Yang, Zhihong; Li, Zheng; Gu, Lijuan; Wang, Yunbo; Sung, Changkeun
2014-01-01
Insulin-like growth factor 1 (IGF-1) increases the growth of cultured hair follicles and plays a role in regulating hair migration during the development of hair follicles in transgenic mice. However, the exogenous effect of IGF-1 on hair growth in wild-type mice has not been reported. In the present study, we examined whether IGF-1 was an important regulator of hair follicle growth in wide-type mice in vivo. C57BL/6 mice were injected with different concentrations of IGF-1 on dorsal skin. The treated tissues were analyzed by immunoassay methods for TGF-β1 and BrdU. Local injection of IGF-1 increased hair follicle number and prolonged the growing phase during the transition from anagen to telogen. Meanwhile, immunology analyses revealed that IGF-1 also stimulated the proliferation of follicle cells in anagen of the matrix and down regulated TGF-β1 expression in hair follicles. These observations suggest that IGF-1 is an effective stimulator of hair follicle development in wide-type mice in vivo and may be a promising drug candidate for baldness therapy. Copyright © 2014. Published by Elsevier Ltd.
Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.
Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E
2017-09-01
We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MiR-29a promotes intestinal epithelial apoptosis in ulcerative colitis by down-regulating Mcl-1.
Lv, Bo; Liu, Zhihui; Wang, Shuping; Liu, Fengbin; Yang, Xiaojun; Hou, Jiangtao; Hou, Zhengkun; Chen, Bin
2014-01-01
While it's widely accepted that the etiology of ulcerative colitis (UC) involves both genetic and environmental factors, the pathogenesis of ulcerative colitis is still poorly understood. Intestinal epithelial apoptosis is one of the most common histopathological changes of UC and the expression of a number of apoptosis genes may contribute to the progression of UC. MicroRNAs have recently emerged as powerful regulators of diverse cellular processes and have been shown to be involved in many immune-mediated disorders such as psoriasis, rheumatoid arthritis, lupus, and asthma. A unique microRNA expression profile has been identified in UC, suggesting that, microRNAs play an important role in the pathogenesis of UC. We investigated the role of miR-29a in intestinal epithelial apoptosis in UC. The expression of miR-29a and Mcl-1, an anti-apoptotic BCL-2 family member, was evaluated in both UC patients and UC mice model induced by dextran sodium sulfate (DSS). The apoptosis rate of intestinal epithelial cells was also evaluated. In UC patients and DSS-induced UC in mice, the expression of miR-29a and Mcl-1, were up-regulated and down-regulated, respectively. We identified a miR-29a binding site (7 nucleotides) on the 3'UTR of mcl-1 and mutation in this binding site on the 3'UTR of mcl-1 led to mis-match between miR-29a and mcl-1. Knockout of Mcl-1 caused apoptosis of the colonic epithelial HT29 cells. In addition, miR-29a regulated intestinal epithelial apoptosis by down-regulating the expression of Mcl-1. miR-29a is involved in the pathogenesis of UC by regulating intestinal epithelial apoptosis via Mcl-1.
Regulation of SFRP-1 expression in the rat dental follicle.
Liu, Dawen; Yao, Shaomian; Wise, Gary E
2012-01-01
Tooth eruption requires osteoclastogenesis and subsequent bone resorption. Secreted frizzled-related protein-1 (SFRP-1) negatively regulates osteoclastogenesis. Our previous studies indicated that SFRP-1 is expressed in the rat dental follicle (DF), with reduced expression at days 3 and 9 close to the times for the major and minor bursts of osteoclastogenesis, respectively; but it remains unclear as to what molecules contribute to its reduced expression at these critical times. Thus, it was the aim of this study to determine which molecules regulate the expression of SFRP-1 in the DF. To that end, the DF cells were treated with cytokines that are maximally expressed at days 3 or 9, and SFRP-1 expression was determined. Our study indicated that colony-stimulating factor-1 (CSF-1), a molecule maximally expressed in the DF at day 3, down-regulated SFRP-1 expression. As to endothelial monocyte-activating polypeptide II (EMAP-II), a highly expressed molecule in the DF at day 3, it had no effect on the expression of SFRP-1. However, when EMAP-II was knocked down by siRNA, the expression of SFRP-1 was elevated, and this elevated SFRP-1 expression could be reduced by adding recombinant EMAP-II protein. This suggests that EMAP-II maintained a lower level of SFRP-1 in the DF. TNF-α is a molecule maximally expressed at day 9, and this study indicated that it also down-regulated the expression of SFRP-1 in the DF cells. In conclusion, CSF-1 and EMAP-II may contribute to the reduced SFRP-1 expression seen on day 3, while TNF-α may contribute to the reduced SFRP-1 expression at day 9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca
Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}mmore » or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.« less
Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung
2014-08-01
α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Xu, Bingfang; Abdel-Fattah, Rana; Yang, Ling; Crenshaw, Sallie A.; Black, Michael B.; Hinton, Barry T.
2011-01-01
The initial segment of the epididymis is vital for male fertility; therefore, it is important to understand the mechanisms that regulate this important region. Deprival of testicular luminal fluid factors/lumicrine factors from the epididymis results in a wave of apoptosis in the initial segment. In this study, a combination of protein array and microarray analyses was used to examine the early changes in downstream signal transduction pathways following loss of lumicrine factors. We discovered the following cascade of events leading to the loss of protection and eventual apoptosis: in the first 6 h after loss of lumicrine factors, down-regulation of the ERK pathway components was observed at the mRNA expression and protein activity levels. Microarray analysis revealed that mRNA levels of several key components of the ERK pathway, Dusp6, Dusp5, and Etv5, decreased sharply, while the analysis from the protein array revealed a decline in the activities of MAP2K1/2 and MAPK1. Immunostaining of phospho-MAPK3/1 indicated that down-regulation of the ERK pathway was specific to the epithelial cells of the initial segment. Subsequently, after 12 h of loss of lumicrine factors, levels of mRNA expression of STAT and NFKB pathway components increased, mRNA levels of several genes encoding cell cycle inhibitors increased, and levels of protein expression of several proapoptotic phosphatases increased. Finally, after 18 h of loss of protection from lumicrine factors, apoptosis was observed. In conclusion, testicular lumicrine factors protect the cells of the initial segment by activating the ERK pathway, repressing STAT and NFKB pathways, and thereby preventing apoptosis. PMID:21311037
S-NPP VIIRS thermal emissive band gain correction during the blackbody warm-up-cool-down cycle
NASA Astrophysics Data System (ADS)
Choi, Taeyoung J.; Cao, Changyong; Weng, Fuzhong
2016-09-01
The Suomi National Polar orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has onboard calibrators called blackbody (BB) and Space View (SV) for Thermal Emissive Band (TEB) radiometric calibration. In normal operation, the BB temperature is set to 292.5 K providing one radiance level. From the NOAA's Integrated Calibration and Validation System (ICVS) monitoring system, the TEB calibration factors (F-factors) have been trended and show very stable responses, however the BB Warm-Up-Cool-Down (WUCD) cycles provide detectors' gain and temperature dependent sensitivity measurements. Since the launch of S-NPP, the NOAA Sea Surface Temperature (SST) group noticed unexpected global SST anomalies during the WUCD cycles. In this study, the TEB Ffactors are calculated during the WUCD cycle on June 17th 2015. The TEB F-factors are analyzed by identifying the VIIRS On-Board Calibrator Intermediate Product (OBCIP) files to be Warm-Up or Cool-Down granules. To correct the SST anomaly, an F-factor correction parameter is calculated by the modified C1 (or b1) values which are derived from the linear portion of C1 coefficient during the WUCD. The F-factor correction factors are applied back to the original VIIRS SST bands showing significantly reducing the F-factor changes. Obvious improvements are observed in M12, M14 and M16, but corrections effects are hardly seen in M16. Further investigation is needed to find out the source of the F-factor oscillations during the WUCD.
p65 down-regulates DEPTOR expression in response to LPS stimulation in hepatocytes.
Yu, Xiaoling; Jin, Dan; Yu, An; Sun, Jun; Chen, Xiaodong; Yang, Zaiqing
2016-09-01
DEPTOR, a novel endogenous inhibitor of mTOR, plays an important role in regulating the inflammatory response in vascular endothelial cells (ECs) and in mouse skeletal muscle. However, the regulatory mechanism of DEPTOR transcription and its effects on liver inflammation are unknown presently. Here we reported the role of DEPTOR in regulating inflammatory response in mouse liver-derived Hepa1-6 cells and in a mouse model with LPS-induced hepatic inflammation. The results revealed that DEPTOR over-expression in Hepa1-6 liver cells increased the mRNA levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1). Contrasting results were observed in Hepa1-6 cells with DEPTOR interference. Treatment Hepa1-6 cells with rapamycin, a specific inhibitor of mTORC1, increased MCP-1 mRNA, but have no significant effect on IL-6 mRNA. DEPTOR expression was down-regulated in Hepa1-6 cells with the treatment of inflammatory stimuli LPS or the over-expression of p65/NF-κB, a key inflammatory transcription factor. NF-κB antagonist (PDTC) and inhibitor (IκBα) blocked the effect of LPS on DEPTOR expression. The study in vivo showed that DEPTOR mRNA and protein were significantly reduced in a mouse model with LPS-induced hepatic inflammation, which was accompanied by a concurrent activation of the mTOR signaling pathway. Further, the transcriptional regulation of DEPTOR was explored, which revealed that DEPTOR promoter activity was significantly down-regulated by NF-κB. The progressive deletions and mutations demonstrated that the NF-κB binding motif situated at -145/-127 region is an essential component required for the DEPTOR promoter activity. Chromatin immunoprecipitation (ChIP) assays determined that p65 can directly interact with the DEPTOR promoter DNA. Those results indicate DEPTOR regulates liver inflammation at least partially via mTORC1 pathway, and is down-regulated by LPS through p65. Copyright © 2016 Elsevier B.V. All rights reserved.
Dou, Lin; Wang, Shuyue; Sun, Libo; Huang, Xiuqing; Zhang, Yang; Shen, Tao; Guo, Jun; Man, Yong; Tang, Weiqing; Li, Jian
2017-01-01
Insulin resistance is a critical factor contributing to the pathogenesis of type 2 diabetes and other metabolic diseases. Recent studies have indicated that miR-338-3p plays an important role in cancer. Here, we investigated whether miR-338-3p mediates tumour necrosis factor-α (TNF-α)-induced hepatic insulin resistance. The activation of the insulin signalling pathway and the level of glycogenesis were examined in the livers of the db/db and high fat diet (HFD)-fed mice and in HEP1-6 cells transfected with miR-338-3p mimic or inhibitor. Computational prediction of microRNA target, luciferase assay and Western blot were used to assess the miR-338-3p target. Chromatin immunoprecipitation (ChIP) assay was used to determine the transcriptional regulator of miR-338-3p. miR-338-3p was down-regulated in the livers of the db/db, HFD-fed and TNF-α-treated C57BL/6J mice, as well as in mouse HEP1-6 hepatocytes treated with TNF-α. Importantly the down-regulation of miR-338-3p induced insulin resistance, as indicated by impaired glucose tolerance and insulin tolerance. Further research showed that the down-regulated miR-338-3p resulted in the impaired AKT/ glycogen synthase kinase 3 beta (GSl·Gβ) signalling pathway and glycogen synthesis. In contrast, hepatic over-expression of miR-338-3p rescued the TNF-α-induced insulin resistance. Moreover, protein phosphatase 4 regulator subunit 1 (PP4R1) was identified as a direct target of miR-338-3p that mediated hepatic insulin signalling by regulating protein phosphatase 4 (PP4). Finally we identified hepatic nuclear factor 4 alpha (HNF-4α) as the transcriptional regulator of miRNA-338-3p. Our studies provide novel insight into the critical role and molecular mechanism by which miR-338-3p is involved in TNF-α-induced hepatic insulin resistance. miR-338-3p might mediate TNF-α-induced hepatic insulin resistance by targeting PP4R1 to regulate PP4 expression. © 2017 The Author(s). Published by S. Karger AG, Basel.
Lim, Wilfred; Ma, Wei; Gee, Katrina; Aucoin, Susan; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok
2002-02-15
The costimulatory molecule B7.2 (CD86) plays a vital role in immune activation and development of Th responses. The molecular mechanisms by which B7.2 expression is regulated are not understood. We investigated the role of mitogen-activated protein kinases (MAPK) in the regulation of B7.2 expression in LPS-stimulated human monocytic cells. LPS stimulation of human monocytes resulted in the down-regulation of B7.2 expression that could be abrogated by anti-IL-10 Abs. Furthermore, SB202190, a specific inhibitor of p38 MAPK, inhibited LPS-induced IL-10 production and reversed B7.2 down-regulation, suggesting that LPS-induced B7.2 down-regulation may be mediated, at least in part, via regulation of IL-10 production by p38 MAPK. In contrast to human promonocytic THP-1 cells that are refractory to the inhibitory effects of IL-10, LPS stimulation enhanced B7.2 expression. This IL-10-independent B7.2 induction was not influenced by specific inhibitors of either p38 or p42/44 MAPK. To ascertain the role of the c-Jun N-terminal kinase (JNK) MAPK, dexamethasone, an inhibitor of JNK activation, was used, which inhibited LPS-induced B7.2 expression. Transfection of THP-1 cells with a plasmid expressing a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase 1 significantly reduced LPS-induced B7.2 expression, thus confirming the involvement of JNK. To study the signaling events downstream of JNK activation, we show that dexamethasone did not inhibit LPS-induced NF-kappaB activation in THP-1 cells, suggesting that JNK may not be involved in NF-kappaB activation leading to B7.2 expression. Taken together, our results reveal the distinct involvement of p38 in IL-10-dependent, and JNK in IL-10-independent regulation of B7.2 expression in LPS-stimulated monocytic cells.
Chen, Xiaoming; Liu, Xinqin; Li, Bin; Zhang, Qian; Wang, Jiye; Zhang, Wenbin; Luo, Wenjing; Chen, Jingyuan
2017-01-01
Background: Neuron apoptosis mediated by hypoxia inducible factor 1α (HIF-1α) in hippocampus is one of the most important factors accounting for the chronic hypobaric hypoxia induced cognitive impairment. As a neuroprotective molecule that is up-regulated in response to various environmental stress, CIRBP was reported to crosstalk with HIF-1α under cellular stress. However, its function under chronic hypobaric hypoxia remains unknown. Objective: In this study, we tried to identify the role of CIRBP in HIF-1α mediated neuron apoptosis under chronic hypobaric hypoxia and find a possible method to maintain its potential neuroprotective in long-term high altitude environmental exposure. Methods: We established a chronic hypobaric hypoxia rat model as well as a tissue culture model where SH-SY5Y cells were exposed to 1% hypoxia. Based on these models, we measured the expressions of HIF-1α and CIRBP under hypoxia exposure and examined the apoptosis of neurons by TUNEL immunofluorescence staining and western blot analysis of apoptosis related proteins. In addition, by establishing HIF-1α shRNA and pEGFP-CIRBP plasmid transfected cells, we confirmed the role of HIF-1α in chronic hypoxia induced neuron apoptosis and identified the influence of CIRBP over-expression upon HIF-1α and neuron apoptosis in the process of exposure. Furthermore, we measured the expression of the reported hypoxia related miRNAs in both models and the influence of miRNAs' over-expression/knock-down upon CIRBP in the process of HIF-1α mediated neuron apoptosis. Results: HIF-1α expression as well as neuron apoptosis was significantly elevated by chronic hypobaric hypoxia both in vivo and in vitro . CIRBP was induced in the early stage of exposure (3d/7d); however as the exposure was prolonged (21d), CIRBP level of the hypoxia group became significantly lower than that of control. In addition, HIF-1α knockdown significantly decreased neuron apoptosis under hypoxia, suggesting HIF-1α may be pro-apoptotic in the process of exposure. CIRBP over-expression significantly suppressed HIF-1α up-regulation in hypoxia and inhibited HIF-1α mediated neuron apoptosis. Interestingly, miR-23a was also induced by hypoxia exposure and showed the same changing tendency with CIRBP (increasing in 3d/7d, decreasing in 21d). In addition, over-expressing miR-23a up-regulated CIRBP, down-regulated HIF-1α and attenuated neuron apoptosis. Conclusion: Cold inducible RNA binding protein is involved in chronic hypoxia induced neuron apoptosis by down-regulating HIF-1α expression, and MiR-23a may be an important tool to maintain CIRBP level and function.
Minchenko, O H; Kharkova, A P; Minchenko, D O; Karbovskyi, L L
2015-01-01
We have studied hypoxic regulation of the expression of different insulin-like growth factor binding protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have demonstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation--of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more signifcant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth.
Zahir-Jouzdani, Forouhe; Mahbod, Mirgholamreza; Soleimani, Masoud; Vakhshiteh, Faezeh; Arefian, Ehsan; Shahosseini, Saeed; Dinarvand, Rasoul; Atyabi, Fatemeh
2018-01-01
Corneal haze, commonly caused by deep physical and chemical injuries, can greatly impair vision. Growth factors facilitate fibroblast proliferation and differentiation, which leads to haze intensity. In this study, the potential effect of chitosan (CS) and thiolated-chitosan (TCS) nanoparticles and solutions on inhibition of fibroblast proliferation, fibroblast to myofibroblast differentiation, neovascularization, extracellular matrix (ECM) deposition, and pro-fibrotic cytokine expression was examined. Transforming growth factor beta-1 (TGFβ 1 ) was induced by interleukin-6 (IL6) in human corneal fibroblasts and expression levels of TGFβ 1 , Platelet-derived growth factor (PDGF), α-smooth muscle actins (α-SMA), collagen type I (Col I), fibronectin (Fn) and vascular endothelial growth factor (VEGF) were quantified using qRT-PCR. To assess wound-healing capacity, TCS-treated mice were examined for α-SMA positive cells, collagen deposition, inflammatory cells and neovascularization through pathological immunohistochemistry. The results revealed that CS and TCS could down-regulate the expression levels of TGFβ 1 and PDGF comparable to that of TGFβ 1 knockdown experiment. However, down-regulation of TGFβ 1 was not regulated through miR29b induction. Neovascularization along with α-SMA and ECM deposition were significantly diminished. According to these findings, CS and TCS can be considered as potential anti-fibrotic and anti-angiogenic therapeutics. Furthermore, TCS, thiolated derivative of CS, will increase mucoadhesion of the polymer at the corneal surface which makes the polymer efficient and non-toxic therapeutic approach for corneal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lodge, Robert; Gilmore, Julian C; Ferreira Barbosa, Jérémy A; Lombard-Vadnais, Félix; Cohen, Éric A
2017-12-30
Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4 R ) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4 R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.
Gilmore, Julian C.; Ferreira Barbosa, Jérémy A.; Lombard-Vadnais, Félix
2017-01-01
Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary. PMID:29301198
TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans
McCallum, Katie C.; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A.
2016-01-01
The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. PMID:26920757
TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.
McCallum, Katie C; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A
2016-05-01
The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. Copyright © 2016 by the Genetics Society of America.
Fu, Shin-Huei; Yeh, Li-Tzu; Chu, Chin-Chen; Yen, B Lin-Ju; Sytwu, Huey-Kang
2017-07-21
B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3 + regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8 + T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8 + T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.
Thyroid hormone regulates muscle fiber type conversion via miR-133a1.
Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-Cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua; Ying, Hao
2014-12-22
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. © 2014 Zhang et al.
Thyroid hormone regulates muscle fiber type conversion via miR-133a1
Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua
2014-01-01
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. PMID:25512392
Nelson, Sven K.; Ariizumi, Tohru; Steber, Camille M.
2017-01-01
Plant embryos can survive years in a desiccated, quiescent state within seeds. In many species, seeds are dormant and unable to germinate at maturity. They acquire the capacity to germinate through a period of dry storage called after-ripening (AR), a biological process that occurs at 5–15% moisture when most metabolic processes cease. Because stored transcripts are among the first proteins translated upon water uptake, they likely impact germination potential. Transcriptome changes associated with the increased seed dormancy of the GA-insensitive sly1-2 mutant, and with dormancy loss through long sly1-2 after-ripening (19 months) were characterized in dry seeds. The SLY1 gene was needed for proper down-regulation of translation-associated genes in mature dry seeds, and for AR up-regulation of these genes in germinating seeds. Thus, sly1-2 seed dormancy may result partly from failure to properly regulate protein translation, and partly from observed differences in transcription factor mRNA levels. Two positive regulators of seed dormancy, DELLA GAI (GA-INSENSITIVE) and the histone deacetylase HDA6/SIL1 (MODIFIERS OF SILENCING1) were strongly AR-down-regulated. These transcriptional changes appeared to be functionally relevant since loss of GAI function and application of a histone deacetylase inhibitor led to decreased sly1-2 seed dormancy. Thus, after-ripening may increase germination potential over time by reducing dormancy-promoting stored transcript levels. Differences in transcript accumulation with after-ripening correlated to differences in transcript stability, such that stable mRNAs appeared AR-up-regulated, and unstable transcripts AR-down-regulated. Thus, relative transcript levels may change with dry after-ripening partly as a consequence of differences in mRNA turnover. PMID:29312402
Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Pitchaimani, Vigneshwaran; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Nomoto, Mayumi; Miyashita, Shizuka; Suzuki, Kenji; Nakamura, Masahiko; Ueno, Kazuyuki; Watanabe, Kenichi
2015-12-01
Polyphenolic compound tannic acid, which is mainly found in grapes and green tea, is a potent antioxidant with anticarcinogenic activities. In this present study, we hypothesized that tannic acid could inhibit nuclear factor (NF)κB signaling and inflammation in atopic dermatitis (AD) NC/Nga mice. We have analyzed the effects of tannic acid on dermatitis severity, histopathology and expression of inflammatory signaling proteins in house dust mite extract induced AD mouse skin. In addition, serum levels of T helper (Th) cytokines (interferon (IFN)γ, interleukin (IL)-4) were measured by enzyme-linked immunosorbent assay. Treatment with tannic acid ameliorated the development of AD-like clinical symptoms and effectively inhibited hyperkeratosis, parakeratosis, acanthosis, mast cells and infiltration of inflammatory cells in the AD mouse skin. Serum levels of IFNγ and IL-4 were significantly down-regulated by tannic acid. Furthermore, tannic acid treatment inhibited DfE induced tumor necrosis factor (TNF)α, high mobility group protein (HMG)B1, receptor for advanced glycation end products (RAGE), extracellular signal-regulated kinase (ERK)1/2, NFκB, cyclooxygenase (COX)2, IL-1β and increased the protein expression of peroxisome proliferator-activated receptor (PPAR)γ. Taken together, our results demonstrate that, DfE induced skin inflammation might be mediated through NFκB signaling and tannic acid may be a potential therapeutic agent for AD, which may possibly act via induction of PPARγ protein. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genome wide gene expression regulation by HIP1 Protein Interactor, HIPPI: prediction and validation.
Datta, Moumita; Choudhury, Ananyo; Lahiri, Ansuman; Bhattacharyya, Nitai P
2011-09-26
HIP1 Protein Interactor (HIPPI) is a pro-apoptotic protein that induces Caspase8 mediated apoptosis in cell. We have shown earlier that HIPPI could interact with a specific 9 bp sequence motif, defined as the HIPPI binding site (HBS), present in the upstream promoter of Caspase1 gene and regulate its expression. We also have shown that HIPPI, without any known nuclear localization signal, could be transported to the nucleus by HIP1, a NLS containing nucleo-cytoplasmic shuttling protein. Thus our present work aims at the investigation of the role of HIPPI as a global transcription regulator. We carried out genome wide search for the presence of HBS in the upstream sequences of genes. Our result suggests that HBS was predominantly located within 2 Kb upstream from transcription start site. Transcription factors like CREBP1, TBP, OCT1, EVI1 and P53 half site were significantly enriched in the 100 bp vicinity of HBS indicating that they might co-operate with HIPPI for transcription regulation. To illustrate the role of HIPPI on transcriptome, we performed gene expression profiling by microarray. Exogenous expression of HIPPI in HeLa cells resulted in up-regulation of 580 genes (p < 0.05) while 457 genes were down-regulated. Several transcription factors including CBP, REST, C/EBP beta were altered by HIPPI in this study. HIPPI also interacted with P53 in the protein level. This interaction occurred exclusively in the nuclear compartment and was absent in cells where HIP1 was knocked down. HIPPI-P53 interaction was necessary for HIPPI mediated up-regulation of Caspase1 gene. Finally, we analyzed published microarray data obtained with post mortem brains of Huntington's disease (HD) patients to investigate the possible involvement of HIPPI in HD pathogenesis. We observed that along with the transcription factors like CREB, P300, SREBP1, Sp1 etc. which are already known to be involved in HD, HIPPI binding site was also significantly over-represented in the upstream sequences of genes altered in HD. Taken together, the results suggest that HIPPI could act as an important transcription regulator in cell regulating a vast array of genes, particularly transcription factors and at least, in part, play a role in transcription deregulation observed in HD.
Genome wide gene expression regulation by HIP1 Protein Interactor, HIPPI: Prediction and validation
2011-01-01
Background HIP1 Protein Interactor (HIPPI) is a pro-apoptotic protein that induces Caspase8 mediated apoptosis in cell. We have shown earlier that HIPPI could interact with a specific 9 bp sequence motif, defined as the HIPPI binding site (HBS), present in the upstream promoter of Caspase1 gene and regulate its expression. We also have shown that HIPPI, without any known nuclear localization signal, could be transported to the nucleus by HIP1, a NLS containing nucleo-cytoplasmic shuttling protein. Thus our present work aims at the investigation of the role of HIPPI as a global transcription regulator. Results We carried out genome wide search for the presence of HBS in the upstream sequences of genes. Our result suggests that HBS was predominantly located within 2 Kb upstream from transcription start site. Transcription factors like CREBP1, TBP, OCT1, EVI1 and P53 half site were significantly enriched in the 100 bp vicinity of HBS indicating that they might co-operate with HIPPI for transcription regulation. To illustrate the role of HIPPI on transcriptome, we performed gene expression profiling by microarray. Exogenous expression of HIPPI in HeLa cells resulted in up-regulation of 580 genes (p < 0.05) while 457 genes were down-regulated. Several transcription factors including CBP, REST, C/EBP beta were altered by HIPPI in this study. HIPPI also interacted with P53 in the protein level. This interaction occurred exclusively in the nuclear compartment and was absent in cells where HIP1 was knocked down. HIPPI-P53 interaction was necessary for HIPPI mediated up-regulation of Caspase1 gene. Finally, we analyzed published microarray data obtained with post mortem brains of Huntington's disease (HD) patients to investigate the possible involvement of HIPPI in HD pathogenesis. We observed that along with the transcription factors like CREB, P300, SREBP1, Sp1 etc. which are already known to be involved in HD, HIPPI binding site was also significantly over-represented in the upstream sequences of genes altered in HD. Conclusions Taken together, the results suggest that HIPPI could act as an important transcription regulator in cell regulating a vast array of genes, particularly transcription factors and at least, in part, play a role in transcription deregulation observed in HD. PMID:21943362
Priego, Neibla; Arechederra, María; Sequera, Celia; Bragado, Paloma; Vázquez-Carballo, Ana; Gutiérrez-Uzquiza, Álvaro; Martín-Granado, Víctor; Ventura, Juan José; Kazanietz, Marcelo G.; Guerrero, Carmen; Porras, Almudena
2016-01-01
C3G, a Guanine nucleotide Exchange Factor (GEF) for Rap1 and R-Ras, has been shown to play important roles in development and cancer. Previous studies determined that C3G regulates cell death through down-regulation of p38α MAPK activity. Here, we found that C3G knock-down in MEFs and HCT116 cells promotes migration and invasion through Rap1-mediated p38α hyper-activation. These effects of C3G were inhibited by Rap1 knock-down or inactivation. The enhanced migration observed in C3G depleted HCT116 cells was associated with reduction in E-cadherin expression, internalization of ZO-1, actin cytoskeleton reorganization and decreased adhesion. We also found that matrix metalloproteases MMP2 and MMP9 are involved in the pro-invasive effect of C3G down-regulation. Additionally, our studies revealed that both C3G and p38α collaborate to promote growth of HCT116 cells in vitro and in vivo, possibly by enhancing cell survival. In fact, knocking-down C3G or p38α individually or together promoted cell death in vitro, although only the double C3G-p38α silencing was able to increase cell death within tumors. Notably, we found that the pro-tumorigenic function of C3G does not depend on p38α or Rap1 activation. Altogether, our studies uncover novel mechanisms by which C3G controls key aspects of tumorigenesis. PMID:27286263
Pim1 kinase regulates c-Kit gene translation.
An, Ningfei; Cen, Bo; Cai, Houjian; Song, Jin H; Kraft, Andrew; Kang, Yubin
2016-01-01
Receptor tyrosine kinase, c-Kit (CD117) plays a pivotal role in the maintenance and expansion of hematopoietic stem/progenitor cells (HSPCs). Additionally, over-expression and/or mutational activation of c-Kit have been implicated in numerous malignant diseases including acute myeloid leukemia. However, the translational regulation of c-Kit expression remains largely unknown. We demonstrated that loss of Pim1 led to specific down-regulation of c-Kit expression in HSPCs of Pim1 -/- mice and Pim1 -/- 2 -/- 3 -/- triple knockout (TKO) mice, and resulted in attenuated ERK and STAT3 signaling in response to stimulation with stem cell factor. Transduction of c-Kit restored the defects in colony forming capacity seen in HSPCs from Pim1 -/- and TKO mice. Pharmacologic inhibition and genetic modification studies using human megakaryoblastic leukemia cells confirmed the regulation of c-Kit expression by Pim1 kinase: i.e., Pim1-specific shRNA knockdown down-regulated the expression of c-Kit whereas overexpression of Pim1 up-regulated the expression of c-Kit. Mechanistically, inhibition or knockout of Pim1 kinase did not affect the transcription of c-Kit gene. Pim1 kinase enhanced c-Kit 35 S methionine labeling and increased the incorporation of c-Kit mRNAs into the polysomes and monosomes, demonstrating that Pim1 kinase regulates c-Kit expression at the translational level. Our study provides the first evidence that Pim1 regulates c-Kit gene translation and has important implications in hematopoietic stem cell transplantation and cancer treatment.
König, Hans-Georg; Fenner, Beau J; Byrne, Jennifer C; Schwamborn, Robert F; Bernas, Tytus; Jefferies, Caroline A; Prehn, Jochen H M
2012-12-15
Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12), in the regulation of NF-κB activity in mature neurons. FHFs have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF-κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays, confirmed the interaction of FHF1 and NEMO and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.
Park, Gunhyuk; Oh, Dal-Seok; Lee, Mi Gi; Lee, Chang Eon; Kim, Yong-Ung
2016-11-01
Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α)+IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-like skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Min; Yan, Jingjun; He, Xingxing; Zhong, Qiang; Zhan, Chengye; Li, Shusheng
2016-04-18
Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory lung injury as well as a major cause of acute respiratory failure. Although researchers have made significant progresses in elucidating the pathophysiology of this complex syndrome over the years, the absence of a universal detail disease mechanism up until now has led to a series of practical problems for a definitive treatment. This study aimed to predict some genes or pathways associated with sepsis-related ARDS based on a public microarray dataset and to further explore the molecular mechanism of ARDS. A total of 122 up-regulated DEGs and 91 down-regulated differentially expressed genes (DEGs) were obtained. The up- and down-regulated DEGs were mainly involved in functions like mitotic cell cycle and pathway like cell cycle. Protein-protein interaction network of ARDS analysis revealed 20 hub genes including cyclin B1 (CCNB1), cyclin B2 (CCNB2) and topoisomerase II alpha (TOP2A). A total of seven transcription factors including forkhead box protein M1 (FOXM1) and 30 target genes were revealed in the transcription factor-target gene regulation network. Furthermore, co-cited genes including CCNB2-CCNB1 were revealed in literature mining for the relations ARDS related genes. Pathways like mitotic cell cycle were closed related with the development of ARDS. Genes including CCNB1, CCNB2 and TOP2A, as well as transcription factors like FOXM1 might be used as the novel gene therapy targets for sepsis related ARDS.
Chronology and regulation of gene expression of RANKL in the rat dental follicle.
Liu, D; Yao, S; Pan, F; Wise, G E
2005-10-01
Tooth eruption in the rat requires bone resorption resulting from a major burst of osteoclastogenesis on postnatal day 3 and a minor burst of osteoclastogenesis on postnatal day 10 in the alveolar bone of the first mandibular molar. The dental follicle regulates the major burst on postnatal day 3 by down-regulating its osteoprotegerin (OPG) gene expression to enable osteoclastogenesis to occur. To determine the role of receptor activator of nuclear factor-kappa B ligand (RANKL) in tooth eruption, its gene expression was measured on postnatal days 1-11 in the dental follicle. The results show that RANKL expression was significantly elevated on postnatal days 9-11 in comparison to low expression levels at earlier time-points. As OPG expression is high at this latter time-point, this increase in RANKL expression would be needed for stimulating the minor burst of osteoclastogenesis. Tumor necrosis factor-alpha enhances RANKL gene expression in vitro and it may be responsible for up-regulating RANKL in vivo. Transforming growth factor-beta1 and interleukin-1alpha also enhance RANKL gene expression in vitro but probably have no effect in vivo because they are maximally expressed early. Bone morphogenetic protein-2 acts to down-regulate RANKL expression in vitro and, in vivo, may promote alveolar bone growth in the basal region of the tooth.
Wang, Chenyin; Saar, Valeria; Leung, Ka Lai; Chen, Liang; Wong, Garry
2018-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of extracellular amyloid plaques consisting of Amyloid-β peptide (Aβ) aggregates and neurofibrillary tangles formed by aggregation of hyperphosphorylated microtubule-associated protein tau. We generated a novel invertebrate model of AD by crossing Aβ1-42 (strain CL2355) with either pro-aggregating tau (strain BR5270) or anti-aggregating tau (strain BR5271) pan-neuronal expressing transgenic Caenorhabditis elegans. The lifespan and progeny viability of the double transgenic strains were significantly decreased compared with wild type N2 (P<0.0001). In addition, co-expression of these transgenes interfered with neurotransmitter signaling pathways, caused deficits in chemotaxis associative learning, increased protein aggregation visualized by Congo red staining, and increased neuronal loss. Global transcriptomic RNA-seq analysis revealed 248 up- and 805 down-regulated genes in N2 wild type versus Aβ1-42+pro-aggregating tau animals, compared to 293 up- and 295 down-regulated genes in N2 wild type versus Aβ1-42+anti-aggregating tau animals. Gene set enrichment analysis of Aβ1-42+pro-aggregating tau animals uncovered up-regulated annotation clusters UDP-glucuronosyltransferase (5 genes, P<4.2E-4), protein phosphorylation (5 genes, P<2.60E-02), and aging (5 genes, P<8.1E-2) while the down-regulated clusters included nematode cuticle collagen (36 genes, P<1.5E-21). RNA interference of 13 available top up-regulated genes in Aβ1-42+pro-aggregating tau animals revealed that F-box family genes and nep-4 could enhance life span deficits and chemotaxis deficits while Y39G8C.2 (TTBK2) could suppress these behaviors. Comparing the list of regulated genes from C. elegans to the top 60 genes related to human AD confirmed an overlap of 8 genes: patched homolog 1, PTCH1 (ptc-3), the Rab GTPase activating protein, TBC1D16 (tbc-16), the WD repeat and FYVE domain-containing protein 3, WDFY3 (wdfy-3), ADP-ribosylation factor guanine nucleotide exchange factor 2, ARFGEF2 (agef-1), Early B-cell Factor, EBF1 (unc-3), d-amino-acid oxidase, DAO (daao-1), glutamate receptor, metabotropic 1, GRM1 (mgl-2), prolyl 4-hydroxylase subunit alpha 2, P4HA2 (dpy-18 and phy-2). Taken together, our C. elegans double transgenic model provides insight on the fundamental neurobiologic processes underlying human AD and recapitulates selected transcriptomic changes observed in human AD brains. Copyright © 2017 Elsevier Inc. All rights reserved.
Xu, Hui-Jun; Jiang, Wei-Dan; Feng, Lin; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu
2016-11-01
This study explored the effects of vitamin C on the physical barriers and immune barriers, and relative mRNA levels of signaling molecules in the gill of grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) (1) increased reactive oxygen species, malondialdehyde and protein carbonyl (PC) contents (P < 0.05), decreased the copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and mRNA levels (P < 0.05), and glutathione and vitamin C contents (P < 0.05), down-regulated NF-E2-related factor 2 mRNA level (P < 0.05), and up-regulated Kelch-like ECH-associating protein (Keap) 1a (rather than Keap1b) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency induced oxidative injury in fish gill; (2) up-regulated caspase-3, -7, -8, -9, Fas ligand, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1 mRNA levels (P < 0.05), and down-regulated inhibitor of apoptosis protein and B-cell lymphoma-2 (rather than myeloid cell leukemia-1) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated cell apoptosis in fish gill; (3) up-regulated pore-forming TJs Claudin-12, 15a, -15b, and related signaling molecules myosin light chain kinase, p38 mitogen-activated protein kinase (rather than c-Jun N-terminal kinases) mRNA levels (P < 0.05), and down-regulated barrier-forming TJs Occludin, zonula occludens (ZO) 1, ZO-2, Claudin-c, -3c, -7a, -7b mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency disrupted tight junctional complexes in fish gill; (4) decreased lysozyme and acid phosphatase (ACP) activities, and complement 3 (C3), C4 and IgM contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, Hepcidin, β-defensin mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency decrease fish gill immune function; (5) down-regulated the mRNA levels of anti-inflammatory cytokines-related factors interleukin 10 (IL-10), IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBa and eIF4E-binding protein 1 (4E-BP1) (rather than 4E-BP2) (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35, IL-12 P40, nuclear factor κB (NF-κB) p65 (rather than NF-κB p52), IκB kinases (IKK) (only IKKα and IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated fish gill inflammation. In conclusion, vitamin C deficiency disrupted physical barriers and immune barriers, and regulated relative mRNA levels of signaling molecules in fish gill. The vitamin C requirement for against gill rot morbidity of grass carp (264-1031 g) was estimated to be 156.0 mg/kg diet. In addition, based on the gill biochemical indices (antioxidant indices MDA, PC and vitamin C contents, and immune indices LA and ACP activity) the vitamin C requirements for grass carp (264-1031 g) were estimated to be 116.8, 156.6, 110.8, 57.8 and 134.9 mg/kg diet, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ahmed, Salahuddin; Silverman, Matthew D.; Marotte, Hubert; Kwan, Kevin; Matuszczak, Natalie; Koch, Alisa E.
2010-01-01
Objective Overexpression of the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) in rheumatoid arthritis (RA) synovial fibroblasts is a major cause of their resistance to tumor necrosis factor α (TNFα)–induced apoptosis. This study was undertaken to evaluate the efficacy of epigallocatechin-3-gallate (EGCG) in down-regulating Mcl-1 expression and its mechanism of RA synovial fibroblast sensitization to TNFα-induced apoptosis. Methods EGCG effects on cultured RA synovial fibroblast cell morphology, proliferation, and viability over 72 hours were determined by microscopy and a fluorescent cell enumeration assay. Caspase 3 activity was determined by a colorimetric assay. Western blotting was used to evaluate the apoptosis mediators poly(ADP-ribose) polymerase (PARP), Mcl-1, Bcl-2, Akt, and nuclear translocation of NF-κB. Results In RA synovial fibroblasts, EGCG (5–50 μM) inhibited constitutive and TNFα-induced Mcl-1 protein expression in a concentration- and time-dependent manner (P < 0.05). Importantly, EGCG specifically abrogated Mcl-1 expression in RA synovial fibroblasts and affected Mcl-1 expression to a lesser extent in osteoarthritis and normal synovial fibroblasts or endothelial cells. Inhibition of Mcl-1 by EGCG triggered caspase 3 activity in RA synovial fibroblasts, which was mediated via down-regulation of the TNFα-induced Akt and NF-κB pathways. Caspase 3 activation by EGCG also suppressed RA synovial fibroblast growth, and this effect was mimicked by Akt and NF-κB inhibitors. Interestingly, Mcl-1 degradation by EGCG sensitized RA synovial fibroblasts to TNFα-induced PARP cleavage and apoptotic cell death. Conclusion Our findings indicate that EGCG itself induces apoptosis and further sensitizes RA synovial fibroblasts to TNFα-induced apoptosis by specifically blocking Mcl-1 expression and, hence, may be of promising adjunct therapeutic value in regulating the invasive growth of synovial fibroblasts in RA. PMID:19404960
Primetta, Anja K; Karppinen, Katja; Riihinen, Kaisu R; Jaakola, Laura
2015-09-01
MYBPA1-type R2R3 MYB transcription factor shows down-regulation in white mutant berries of Vaccinium uliginosum deficient in anthocyanins but not proanthocyanidins suggesting a role in the regulation of anthocyanin biosynthesis. Berries of the genus Vaccinium are among the best natural sources of flavonoids. In this study, the expression of structural and regulatory flavonoid biosynthetic genes and the accumulation of flavonoids in white mutant and blue-colored wild-type bog bilberry (V. uliginosum) fruits were measured at different stages of berry development. In contrast to high contents of anthocyanins in ripe blue-colored berries, only traces were detected by HPLC-ESI-MS in ripe white mutant berries. However, similar profile and high levels of flavonol glycosides and proanthocyanidins were quantified in both ripe white and ripe wild-type berries. Analysis with qRT-PCR showed strong down-regulation of structural genes chalcone synthase (VuCHS), dihydroflavonol 4-reductase (VuDFR) and anthocyanidin synthase (VuANS) as well as MYBPA1-type transcription factor VuMYBPA1 in white berries during ripening compared to wild-type berries. The profiles of transcript accumulation of chalcone isomerase (VuCHI), anthocyanidin reductase (VuANR), leucoanthocyanidin reductase (VuLAR) and flavonoid 3'5' hydroxylase (VuF3'5'H) were more similar between the white and the wild-type berries during fruit development, while expression of UDP-glucose: flavonoid 3-O-glucosyltransferase (VuUFGT) showed similar trend but fourfold lower level in white mutant. VuMYBPA1, the R2R3 MYB family member, is a homologue of VmMYB2 of V. myrtillus and VcMYBPA1 of V. corymbosum and belongs to MYBPA1-type MYB family which members are shown in some species to be related with proanthocyanidin biosynthesis in fruits. Our results combined with earlier data of the role of VmMYB2 in white mutant berries of V. myrtillus suggest that the regulation of anthocyanin biosynthesis in Vaccinium species could differ from other species studied.
Choi, Dae Woon; Kwon, Da-Ae; Jung, Sung Keun; See, Hye-Jeong; Jung, Sun Young; Shon, Dong-Hwa; Shin, Hee Soon
2018-05-26
Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by hapten-specific immune response. Silkworm droppings are known to exert beneficial effects during the treatment of inflammatory diseases. Here, we studied whether topical treatment and oral administration of silkworm dropping extract (SDE) ameliorate trimellitic anhydride (TMA)-induced ACD. In ACD mice model, SDE treatment significantly suppressed the increase in both ear thickness and serum IgE levels. Furthermore, IL-1β and TNF-α levels were reduced by SDE. In allergic responses, SDE treatment significantly attenuated the production of the Th2-associated cytokine IL-4 in both ear tissue and draining lymph nodes. However, it increased the production of the Th1-mediated cytokine IL-12. Thus, these results showed that SDE attenuated TMA-induced ACD symptoms through regulation of Th1/Th2 immune response. Taken together, we suggest that SDE treatment might be a potential agent in the prevention or therapy of Th2-mediated inflammatory skin diseases such as ACD and atopic dermatitis. ACD: allergic contact dermatitis; AD: atopic dermatitis; APC: antigen presenting cells; CCL: chemokine (C-C motif) ligand; CCR: C-C chemokine receptor; Dex: dexamethasone; ELISA: enzyme-linked immunosorbent assay; IFN: interferon; Ig: immunoglobulin; IL: interleukin; OVA: ovalbumin; PS: prednisolone; SDE: silkworm dropping extract; Th: T helper; TMA: trimellitic anhydride; TNF: tumor necrosis factor.
Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M; Dombkowski, Alan A; Buck, Steven A; Boerner, Julie L; Taub, Jeffrey W; Matherly, Larry H; Ge, Yubin
2009-09-24
RUNX1 (AML1) encodes the core binding factor alpha subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the delta catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)-kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease.
Soong, Joanne; Chen, Yulin; Shustef, Elina; Scott, Glynis
2011-01-01
Semaphorins are secreted and membrane bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilins receptors. We recently reported that Plexin B1, the Semaphorin 4D receptor, is a tumor suppressor protein for melanoma, in part, through inhibition of the oncogenic c-Met tyrosine kinase receptor. In this report we show that Sema4D is a protective paracrine factor for normal human melanocyte survival in response to ultraviolet irradiation, that it stimulates proliferation, and regulates the activity of the c-Met receptor. c-Met receptor signaling stimulates melanocyte migration, in part through down-regulation of the cell adhesion molecule E-cadherin. Sema4D suppressed activation of c-Met in response to its ligand hepatocyte growth factor (HGF), and partially blocked the suppressive effects of HGF on E-cadherin expression in melanocytes and HGF-dependent migration. These data demonstrate a role for Plexin B1 in maintenance of melanocyte survival and proliferation in the skin, and suggest that Semaphorin 4D and Plexin B1 act cooperatively with HGF and c-Met to regulate c-Met dependent effects in human melanocytes. Because our data show that Plexin B1 is profoundly down-regulated by UVB in melanocytes, loss of Plexin B1 may accentuate HGF dependent effects on melanocytes, including melanocyte migration. PMID:22189792
Regulation of apoptosis by peroxisome proliferators.
Roberts, Ruth A; Michel, Cecile; Coyle, Beth; Freathy, Caroline; Cain, Kelvin; Boitier, Eric
2004-04-01
Peroxisome proliferators (PPs) constitute a large and chemically diverse family of non-genotoxic rodent hepatocarcinogens that activate the PP-activated receptor alpha (PPARalpha). In order to investigate the hypothesis that PPs elicit their carcinogenic effects through the suppression of apoptosis, we established an in vitro assay for apoptosis using both primary rat hepatocytes and the FaO rat hepatoma cell line. Apoptosis was induced by transforming growth factor beta1 (TGFbeta1), the physiological negative regulator of liver growth. In this system, PPs could suppress both spontaneous and TGFbeta1-induced apoptosis. In order to understand the mechanisms of this regulation of apoptosis, we conducted microarray analysis followed by pathway-specific gene clustering in TGFbeta1-treated cells. After treatment, 76 genes were up-regulated and 185 were down-regulated more than 1.5-fold. Cluster analysis of up-regulated genes revealed three clusters, A-C. Cluster A (4h) was associated with 12% apoptosis and consisted of genes mainly of the cytoskeleton and extracellular matrix such as troponin and the proteoglycan SDC4. In cluster B (8h; 25% apoptosis), there were many pro- and anti-apoptotic genes such as XIAP, BAK1 and BAD, whereas at 16h (40% apoptosis) the regulated genes were mainly those of the cellular stress pathways such as the genes implicated in the activation of the transcription factor NFkappab. Genes found down-regulated in response to TGFbeta1 were mainly those associated with oxidative stress and several genes implicated in glutathione production and maintenance. Thus, TGFbeta1 may induce apoptosis via a down regulation of oxidant defence leading to the generation of reactive oxygen species. The ability of PPs to impact on these apoptosis pathways remains to be determined. To approach this question, we have developed a technique using laser capture microdissection of livers treated with the PP, clofibric acid coupled with gene expression array analysis. Results show that some of the key steps of the LCM process had an impact on the gene profiles generated. However, this did not preclude accurate determination of a PP-specific molecular signature. Thus, the choice of appropriate controls will ensure that meaningful gene expression analyses can be performed on tissue microdissected from the foci generated in clofibric acid treated livers. These data will allow the identification of specific genes that are regulated by PPs leading to changes in apoptosis and ultimately to tumours.
A role for Waldeyer's ring in immunological response to allergens.
Masieri, Simonetta; Trabattoni, Daria; Incorvaia, Cristoforo; De Luca, Maria Cristina; Dell'Albani, Ilaria; Leo, Gualtiero; Frati, Franco
2014-02-01
Adenoids, tubal tonsil, palatine tonsil, and lingual tonsil are immunological organs included in the Waldeyer's ring, the basic function of which is the antibody production to common environmental antigens. Adenoidal hypertrophy (AH) is a major medical issue in children, and adenoidectomy is still the most used treatment worldwide. The response of adenoids to allergens is a good model to evaluate their immunological function. This report assessed the immunological changes in adenoid tissues from children with allergic rhinitis (AR) undergoing sublingual immunotherapy (SLIT). Adenoid samples from 16 children (seven males, nine females, mean age 7.12 years) with AH and clinical indication to adenoidectomy were collected. Of them, five children were not allergic and 11 had house dust mite and grass pollen-induced AR. Among allergic children, in four AR was treated by antihistamines while in seven AR was treated by high-dose SLIT during 4-6 months. The evaluation addressed the T helper 1 (Th1), Th2, and Th3 cells by performing a PCR array on mRNA extracted from adenoid samples. In non-allergic children, a typical Th1 pattern was found. SLIT induced a strong down-regulation of genes involved in Th2 and Th1 activation and function. In particular, in SLIT-treated allergic children IL-4, CCR2, CCR3, and PTGDR2 (Th2 related genes) and CD28, IL-2, and INHA (Th1 related genes) expression was reduced, compared with children treated with antihistamines. These preliminary findings warrant investigation in trials including larger numbers of patients, but indicate that hypertrophic adenoids of allergic children have the typical response to the specific allergen administered by SLIT. This should suggest that one should reconsider the immunological role of adenoids.
Overexpression of Prdx1 in hilar cholangiocarcinoma: a predictor for recurrence and prognosis
Zhou, Jie; Shen, Weiwen; He, Xiaojing; Qian, Jing; Liu, Shiyuan; Yu, Guanzhen
2015-01-01
Prdx1 is an important member of peroxiredoxins (Prdxs) regulating various cellular signaling and differentiation. Prdx1 confers an aggressive survival phenotype of cancer cells and drug-resistance, yet its role in hilar cholangiocarcinoma is not fully investigated. In present study, we detected the expression profile of Prdx1 in 88 hilar cholangiocarcinoma by tissue arrays and immunohistochemistry. Prdx1 level was down-regulated by specific Prdx1-shRNA in vitro and the possible mechanism was investigated. Overexpression of Prdx1 was observed in 53 of 88 cases (60.2%). Prdx1 expression was significantly associated with tumor invasion, nodal metastasis, advanced disease stage. Down-regulation of Prdx1 inhibited cell proliferation and colony formation of QBC939 cells and reduced the level of SNAT1 expression. Patients with Prdx1 overexpression had a shorter disease-free survival and overall survival than those without Prdx1 expression. Multivariate analysis showed that Prdx1 was an independent prognostic factor for patients with hilar cholangiocarcinoma. The data indicate that Prdx1 may contribute to the development and progression of hilar cholangiocarcinoma, partially through regulating SNAT1 expression, and may be used as a biomarker in predicting the outcome of patients with hilar cholangiocarcinoma. PMID:26617696
Kähkönen, T E; Ivaska, K K; Jiang, M; Büki, K G; Väänänen, H K; Härkönen, P L
2018-02-05
Fibroblast growth factors (FGF) and their receptors (FGFRs) regulate many developmental processes including differentiation of mesenchymal stromal cells (MSC). We developed two MSC lines capable of differentiating to osteoblasts and adipocytes and studied the role of FGFRs in this process. We identified FGFR2 and fibroblast growth factor receptor like-1 (FGFRL1) as possible actors in MSC differentiation with gene microarray and qRT-PCR. FGFR2 and FGFRL1 mRNA expression strongly increased during MSC differentiation to osteoblasts. FGF2 treatment, resulting in downregulation of FGFR2, or silencing FGFR2 expression with siRNAs inhibited osteoblast differentiation. During adipocyte differentiation expression of FGFR1 and FGFRL1 increased and was down-regulated by FGF2. FGFR1 knockdown inhibited adipocyte differentiation. Silencing FGFR2 and FGFR1 in MSCs was associated with decreased FGFRL1 expression in osteoblasts and adipocytes, respectively. Our results suggest that FGFR1 and FGFR2 regulate FGFRL1 expression. FGFRL1 may mediate or modulate FGFR regulation of MSC differentiation together with FGFR2 in osteoblastic and FGFR1 in adipocytic lineage. Copyright © 2017 Elsevier B.V. All rights reserved.
Dash, Pujarini; Kar, Banya; Mishra, Arpita; Sahoo, P K
2014-03-01
The monogenean ectoparasite, Dactylogyrus sp. is a major pathogen in freshwater aquaculture. The immune responses in parasitized fish were analyzed by quantitation of innate immune factors (natural agglutinin level, haemolysin titre, antiprotease, lysozyme and myeloperoxidase activities) in serum and immune-relevant gene expression in gill and anterior kidney. The antiprotease activity and natural agglutinin level were found to be significantly higher and lysozyme activity was significantly lower in parasitized fish. Most of the genes viz., beta2-microglobulin (beta2M), major histocompatibility complex I (MHCI), MHCII, tumor necrosis factor alpha (TNFalpha) and toll-like receptor 22 (TLR22) in gill samples were significantly down-regulated in the experimental group. In the anterior kidney, the expression of superoxide dismutase and interleukin 1beta (IL1beta) were significantly up-regulated whereas a significant down regulation of MHCII and TNFalpha was also observed. The down-regulation of most of the genes viz, MHCI, beta2M, MHCII, TLR22 and TNFalpha in infected gills indicated a well evolved mechanism in this parasite to escape the host immune response. The modulation of innate and adaptive immunity by this parasite can be further explored to understand host susceptibility.
2011-01-01
Background The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. Methods Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL). For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. Results We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. Conclusions Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new transcription factors orchestrating the CERTL opens new alternatives for understanding gene expression regulation in uterine function. PMID:21272326
Xu, Tianle; Tao, Hui; Chang, Guangjun; Zhang, Kai; Xu, Lei; Shen, Xiangzhen
2015-03-07
Dairy cows are often fed a high-concentrate diet to meet lactating demands, yet long-term concentrate feeding induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat. Stearoyl-CoA desaturase1 (SCD1) participates in fatty acid biosynthesis in the liver of lactating ruminants. Here, we conducted this study to investigate the impact of lipopolysaccharide derived from the rumen on SCD1 expression and on fatty acid composition in the liver of dairy cows fed a high-concentrate diet. Eight multiparous mid-lactating Holstein cows (455 ± 28 kg) were randomly assigned into two groups in the experiment and were fed a low-concentrate diet (LC) or high-concentrate diet (HC) for 18 weeks. The results showed that the total volatile fatty acids and lactic acid accumulated in the rumen, leading to a decreased rumen pH and elevated lipopolysaccharides (LPSs) in the HC group. The long chain fatty acid profile in the rumen and hepatic vein was remarkably altered in the animals fed the HC diet. The triglyceride (TG), non-esterified fatty acid (NEFA) and total cholesterol (TCH) content in the plasma was significantly decreased, whereas plasma glucose and insulin levels were increased. The expression of SCD1 in the liver was significantly down-regulated in the HC group. In regards to transcriptional regulators, the expression of sterol regulatory element binding transcription factors (SREBF1c, SREBF2) and SREBP cleavage activating protein (SCAP) was down-regulated, while peroxisome proliferator-activated receptor α (PPARα) was up-regulated. These data indicate that lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet.
Chen, Lei; Meng, Jun; Zhai, Junmiao; Xu, Pinsan; Luan, Yushi
2017-12-01
Plants have evolved a variety of mechanisms to perceive and resist the assault of pathogens. The biotrophs, necrotrophs and hemibiotrophs are types of plant pathogens that activate diverse salicylic acid (SA) and jasmonic acid (JA) signaling pathways. In this study we showed that the expressions of miR396a-5p and -3p in Solanum lycopersicum (S. lycopersicum) were both down-regulated after infection by hemibiotroph Phytophthora infestans (P. infestans) and necrotroph Botrytis cinerea (B. cinerea) infection. Overexpression of miR396a-5p and -3p in transgenic tomato enhanced the susceptibility of S. lycopersicum to P. infestans and B. cinerea infection and the tendency to produce reactive oxygen species (ROS) under pathogen-related biotic stress. Additionally, miR396a regulated growth-regulating factor1 (GRF1), salicylic acid carboxyl methyltransferase (SAMT), glycosyl hydrolases (GH) and nucleotide-binding site-leucine-rich repeat (NBS-LRR) and down-regulated their levels. This ultimately led to inhibition of the expression of pathogenesis-related 1 (PR1), TGA transcription factors1 and 2 (TGA1 and TGA2) and JA-dependent proteinase inhibitors I and II (PI I and II), but enhanced the endogenous SA content and nonexpressor of pathogenesis-related genes 1 (NPR1) expression. Taken together, our results showed that negative regulation of target genes and their downstream genes expressions by miR396a-5p and -3p are critical for tomato abiotic stresses via affecting SA or JA signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin
2015-01-01
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.
Bartel, Sabine; Schulz, Nikola; Alessandrini, Francesca; Schamberger, Andrea C.; Pagel, Philipp; Theis, Fabian J.; Milger, Katrin; Noessner, Elfriede; Stick, Stephen M.; Kicic, Anthony; Eickelberg, Oliver; Freishtat, Robert J.; Krauss-Etschmann, Susanne
2017-01-01
Asthma is highly prevalent, but current therapies cannot influence the chronic course of the disease. It is thus important to understand underlying early molecular events. In this study, we aimed to use microRNAs (miRNAs) - which are critical regulators of signaling cascades - to identify so far uncharacterized asthma pathogenesis pathways. Therefore, deregulation of miRNAs was assessed in whole lungs from mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI). In silico predicted target genes were confirmed in reporter assays and in house-dust-mite (HDM) induced AAI and primary human bronchial epithelial cells (NHBE) cultured at the air-liquid interface. We identified and validated the transcription factor cAMP-responsive element binding protein (Creb1) and its transcriptional co-activators (Crtc1-3) as targets of miR-17, miR-144, and miR-21. Sec14-like 3 (Sec14l3) - a putative target of Creb1 - was down-regulated in both asthma models and in NHBE cells upon IL13 treatment, while it’s expression correlated with ciliated cell development and decreased along with increasing goblet cell metaplasia. Finally, we propose that Creb1/Crtc1-3 and Sec14l3 could be important for early responses of the bronchial epithelium to Th2-stimuli. This study shows that miRNA profiles can be used to identify novel targets that would be overlooked in mRNA based strategies. PMID:28383034
Bartel, Sabine; Schulz, Nikola; Alessandrini, Francesca; Schamberger, Andrea C; Pagel, Philipp; Theis, Fabian J; Milger, Katrin; Noessner, Elfriede; Stick, Stephen M; Kicic, Anthony; Eickelberg, Oliver; Freishtat, Robert J; Krauss-Etschmann, Susanne
2017-04-06
Asthma is highly prevalent, but current therapies cannot influence the chronic course of the disease. It is thus important to understand underlying early molecular events. In this study, we aimed to use microRNAs (miRNAs) - which are critical regulators of signaling cascades - to identify so far uncharacterized asthma pathogenesis pathways. Therefore, deregulation of miRNAs was assessed in whole lungs from mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI). In silico predicted target genes were confirmed in reporter assays and in house-dust-mite (HDM) induced AAI and primary human bronchial epithelial cells (NHBE) cultured at the air-liquid interface. We identified and validated the transcription factor cAMP-responsive element binding protein (Creb1) and its transcriptional co-activators (Crtc1-3) as targets of miR-17, miR-144, and miR-21. Sec14-like 3 (Sec14l3) - a putative target of Creb1 - was down-regulated in both asthma models and in NHBE cells upon IL13 treatment, while it's expression correlated with ciliated cell development and decreased along with increasing goblet cell metaplasia. Finally, we propose that Creb1/Crtc1-3 and Sec14l3 could be important for early responses of the bronchial epithelium to Th2-stimuli. This study shows that miRNA profiles can be used to identify novel targets that would be overlooked in mRNA based strategies.
The validation and translation of Multidimensional Measure of Informed Choice in Greek.
Gourounti, Kleanthi; Sandall, Jane
2011-04-01
to translate the original English version of the Multidimensional Measure of Informed Choice (MMIC) into Greek, to adapt it culturally to Greece, and to determine its psychometric properties for the assessment of informed choice in antenatal screening for Down syndrome. survey using self-administrated questionnaires. public hospital in Athens, Greece. 135 pregnant women with gestational age between 11th and 20th week just prior to having antenatal screening for Down syndrome. 96% of women had a positive attitude towards screening and 45% had a good level of knowledge concerning the screening process for Down syndrome. Using a standard measure of informed choice, validated for use in Greek, it was found that 44% of women made an informed choice, and thus 56% of women made an uninformed choice. The internal consistency of the scales was good; Cronbach's alpha was found to be 0.76 for the attitude scale and 0.64 for the knowledge scale, suggesting that all items were appropriate to measure. The performed factor analysis of the attitude scale indicated three factors with an eigenvalue over 1.0. Those factors were responsible for 87% of the variance. this study indicates that the Greek version of the MMIC appears to be a reliable and valid tool for measuring informed choice in antenatal screening for Down syndrome. Due to its short length and consumption of time, it seems to be a practical instrument for use in Greek antenatal clinics. Copyright © 2009 Elsevier Ltd. All rights reserved.
2013-01-01
Background The bottom-up (food resources) and top-down (grazing pressure) controls, with other environmental parameters (water temperature, pH) are the main factors regulating the abundance and structure of microbial communities in aquatic ecosystems. It is still not definitively decided which of the two control mechanisms is more important. The significance of bottom-up versus top-down controls may alter with lake productivity and season. In oligo- and/or mesotrophic environments, the bottom-up control is mostly important in regulating bacterial abundances, while in eutrophic systems, the top-down control may be more significant. Results The abundance of bacteria, heterotrophic (HNF) and autotrophic (ANF) nanoflagellates and ciliates, as well as bacterial production (BP) and metabolically active cells of bacteria (CTC, NuCC, EST) were studied in eutrophic lakes (Mazurian Lake District, Poland) during spring. The studied lakes were characterized by high nanoflagellate (mean 17.36 ± 8.57 × 103 cells ml-1) and ciliate abundances (mean 59.9 ± 22.4 ind. ml-1) that were higher in the euphotic zone than in the bottom waters, with relatively low bacterial densities (4.76 ± 2.08 × 106 cells ml-1) that were lower in the euphotic zone compared to the profundal zone. Oligotrichida (Rimostrombidium spp.), Prostomatida (Urotricha spp.) and Scuticociliatida (Histiobalantium bodamicum) dominated in the euphotic zone, whereas oligotrichs Tintinnidium sp. and prostomatids Urotricha spp. were most numerous in the bottom waters. Among the staining methods used to examine bacterial cellular metabolic activity, the lowest percentage of active cells was recorded with the CTC (1.5–15.4%) and EST (2.7–14.2%) assay in contrast to the NuCC (28.8–97.3%) method. Conclusions In the euphotic zone, the bottom-up factors (TP and DOC concentrations) played a more important role than top-down control (grazing by protists) in regulating bacterial numbers and activity. None of the single analyzed factors controlled bacterial abundance in the bottom waters. The results of this study suggest that both control mechanisms, bottom-up and top-down, simultaneously regulated bacterial community and their activity in the profundal zone of the studied lakes during spring. In both lake water layers, food availability (algae, nanoflagellates) was probably the major factor determining ciliate abundance and their composition. In the bottom waters, both groups of protists appeared to be also influenced by oxygen, temperature, and total phosphorus. PMID:23566491
Feng, Lin; Luo, Jian-Bo; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu
2015-08-01
This study investigated the effects of dietary valine on tight junction protein transcription, antioxidant status and apoptosis on grass carp gills (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of valine (4.3, 8.0, 10.6, 13.1, 16.7, 19.1 g/kg). The results indicated that valine deficiency decreased Claudin b, Claudin 3, Occludin and ZO-1 transcription and increased Claudin 15 expression in the fish gill (P < 0.05). These effects were partly due to the down-regulation of interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and IκB α and the up-regulation of relative mRNA expression of interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and nuclear factor κB P65 (NF-κB P65) (P < 0.05). However, valine deficiency and valine supplementation did not have a significant effect on Claudin c and Claudin 12 expression in grass carp gills (P > 0.05). Valine deficiency also disrupted antioxidant status in the gill by decreasing anti-superoxide radicals and hydroxyl radical capacity, glutathione contents and the activities and mRNA levels of Cu/Zn superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) (P < 0.05). These results may be ascribed to the down-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the up-regulation of Kelch-like-ECH-associated protein 1 (Keap1) (P < 0.05). Additionally, valine deficiency induced DNA fragmentation via the up-regulation of Caspase 3, Caspase 8 and Caspase 9 expressions (P < 0.05). These results may be ascribed to the improvement in ROS levels in the fish gill (P < 0.05). Taken together, the results showed that valine deficiency impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, antioxidant enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gill. Copyright © 2015 Elsevier Ltd. All rights reserved.
mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation
Chornoguz, Olesya; Hagan, Robert S.; Haile, Azeb; Arwood, Matthew L.; Gamper, Christopher J.; Banerjee, Arnob; Powell, Jonathan D.
2017-01-01
CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFNγ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis – multiple reaction monitoring mass spectrometry (MRM-MS). We used MRM-MS to detect and quantify predicted phospho-peptides derived from T-bet. By analyzing activated murine WT and Rheb deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify 6 T-bet phosphorylation sites. Five of these are novel, and 4 sites are consistently dephosphorylated in both Rheb deficient CD4+ T-cells and T-cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the 6 phosphorylation sites was tested for the ability to impair IFNγ expression. Single phosphorylation site mutants still support induction of IFNγ expression, however simultaneous mutation of 3 of the mTORC1-dependent sites results in significantly reduced IFNγ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation. PMID:28424242
Rusz, Orsolya; Pál, Margit; Szilágyi, Éva; Rovó, László; Varga, Zoltán; Tomisa, Bernadett; Fábián, Gabriella; Kovács, Levente; Nagy, Olga; Mózes, Petra; Reisz, Zita; Tiszlavicz, László; Deák, Péter; Kahán, Zsuzsanna
2017-04-01
DNA damage response failure may influence the efficacy of DNA-damaging treatments. We determined the expression of 16 genes involved in distinct DNA damage response pathways, in association with the response to standard therapy. Twenty patients with locoregionally advanced, squamous cell head and neck carcinoma were enrolled. The treatment included induction chemotherapy (iChT) with docetaxel, cisplatin and 5-fluorouracil followed by concomitant chemoradiotherapy (ChRT) or radiotherapy (RT) alone. The volumetric metabolic therapeutic response was determined by [18F]FDG-PET/CT. In the tumor and matched normal tissues collected before treatment, the gene expressions were examined via the quantitative real-time polymerase chain reaction (qRT-PCR). The down-regulation of TP53 was apparently associated with a poor response to iChT, its up-regulation with complete regression in 2 cases. 7 cases with down-regulated REV1 expression showed complete regression after ChRT/RT, while 1 case with REV1 overexpression was resistant to RT. The overexpression of WRN was an independent predictor of tumor relapse. Our results suggest that an altered expression of REV1 predicts sensitivity to RT, while WRN overexpression is an unfavorable prognostic factor.
Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir
2011-11-04
Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less
Gerlini, Gianni; Tun-Kyi, Adrian; Dudli, Christa; Burg, Günter; Pimpinelli, Nicola; Nestle, Frank O.
2004-01-01
CD1 molecules are expressed by antigen-presenting cells such as dendritic cells and mediate primary immune responses to lipids and glycolipids which have been shown to be expressed by various tumors. Glycolipids are expressed by melanoma cells but, despite their immunogenicity, no efficient spontaneous immune responses are elicited. As IL-10 has previously been shown to down-regulate CD1a on dendritic cells and is known to be expressed by various melanoma cell lines, we investigated if melanoma-derived IL-10 could down-regulate CD1 molecule expression on dendritic cells as a possible way to circumvent immune recognition. We found that CD1a, CD1b, CD1c, and CD1d were significantly down-regulated on dendritic cells in metastatic (n = 10) but not in primary melanoma lesions (n = 10). We further detected significantly higher IL-10 protein levels in metastatic than in primary melanomas. Moreover, supernatants from metastatic melanomas were significantly more effective in down-regulating CD1 molecules on dendritic cells than supernatants from primary melanoma cultures. This effect was blocked using a neutralizing IL-10 antibody in a dose dependent manner. Our findings suggest that metastatic but not primary melanomas can down-regulate CD1 molecules on infiltrating dendritic cells by secreting IL-10 which may represent a novel way to escape the immune response directed against the tumor. PMID:15579430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yu; Cao, Hong; Cu, Fenglong
Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotinemore » exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.« less
CHIP mediates down-regulation of nucleobindin-1 in preosteoblast cell line models.
Xue, Fuying; Wu, Yanping; Zhao, Xinghui; Zhao, Taoran; Meng, Ying; Zhao, Zhanzhong; Guo, Junwei; Chen, Wei
2016-08-01
Nucleobindin-1 (NUCB1), also known as Calnuc, is a highly conserved, multifunctional protein widely expressed in tissues and cells. It contains two EF-hand motifs which have been shown to play a crucial role in binding Ca(2+) ions. In this study, we applied comparative two-dimensional gel electrophoresis to characterize differentially expressed proteins in HA-CHIP over-expressed and endogenous CHIP depleted MC3T3-E1 stable cell lines, identifying NUCB1 as a novel CHIP/Stub1 targeted protein. NUCB1 interacts with and is down-regulated by CHIP by both proteasomal dependent and independent pathways, suggesting that CHIP-mediated down-regulation of nucleobindin-1 might play a role in osteoblast differentiation. The chaperone protein Hsp70 was found to be important for CHIP and NUCB1 interaction as well as CHIP-mediated NUCB1 down-regulation. Our findings provide new insights into understanding the stability regulation of NUCB1. Copyright © 2016 Elsevier Inc. All rights reserved.
Hendricks, Deborah W; Fink, Pamela J
2011-01-27
After intrathymic development, T cells exit the thymus and join the peripheral T-cell pool. Such recent thymic emigrants (RTEs) undergo both phenotypic and functional maturation during the first 3 weeks they reside in the periphery. Using a well-controlled in vitro polarization scheme, we now show that CD4(+) RTEs are defective in T-helper (Th) type 0 (Th0), Th1, Th17, and regulatory T-cell lineage commitment, with dampened cytokine production and transcription factor expression. In contrast, CD4(+) RTES are biased toward the Th2 lineage both in vitro and in vivo, with more robust interleukin-4, interleukin-5, and interleukin-13 production than their mature naive counterparts. Coculture experiments demonstrate that mature naive T cells influence neighboring RTEs in their Th responses. In adoptive hosts, CD4(+) RTEs drive production of the Th2-associated antibody isotype immunoglobulin G1 and mediate airway inflammatory disease. This bias in RTEs likely results from dampened negative regulation of the Th2 lineage by diminished levels of T-bet, a key Th1 transcription factor. CD4(+) RTEs thus represent a transitional population with a distinct interpretation of, and response to, immunologic cues. These characteristics may be beneficial during the postthymic maturation period by leading to the avoidance of inappropriate immune responses, particularly in lymphopenic neonates and adults.
Leitsch, David; Drinić, Mirjana; Kolarich, Daniel; Duchêne, Michael
2012-01-01
The microaerophilic parasite Trichomonas vaginalis is a causative agent of painful vaginitis or urethritis, termed trichomoniasis, and can also cause preterm delivery or stillbirth. Treatment of trichomoniasis is almost exclusively based on the nitroimidazole drugs metronidazole and tinidazole. Metronidazole resistance in T. vaginalis does occur and is often associated with treatment failure. In most cases, metronidazole-resistant isolates remain susceptible to tinidazole, but cross resistance between the two closely related drugs can be a problem. In this study we measured activities of thioredoxin reductase and flavin reductase in four metronidazole-susceptible and five metronidazole-resistant isolates. These enzyme activities had been previously found to be downregulated in T. vaginalis with high-level metronidazole resistance induced in the laboratory. Further, we aimed at identifying factors causing metronidazole resistance and compared the protein expression profiles of all nine isolates by application of two-dimensional gel electrophoresis (2DE). Thioredoxin reductase activity was nearly equal in all strains assayed but flavin reductase activity was clearly down-regulated, or even absent, in metronidazole-resistant strains. Since flavin reductase has been shown to reduce oxygen to hydrogen peroxide, its down-regulation could significantly contribute to the impairment of oxygen scavenging as reported by others for metronidazole-resistant strains. Analysis by 2DE revealed down-regulation of alcohol dehydrogenase 1 (ADH1) in strains with reduced sensitivity to metronidazole, an enzyme that could be involved in detoxification of intracellular acetaldehyde. PMID:22449940
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yanfei; Qin, Huadong; Cui, Yunfu, E-mail: yfma77@126.com
Highlights: •MiR-34a is up- and GAS1 is down-regulated in papillary thyroid carcinoma. •GAS1 is a direct target for miR-34a. •MiR-34a promotes PTC cells proliferation and inhibits apoptosis through PI3K/Akt/Bad pathway. -- Abstract: MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors.more » However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.« less
Jeon, Jin-Woo; Cho, Il-Hoon; Ha, Un-Hwan; Seo, Sung-Kyu; Paek, Se-Hwan
2014-01-01
For monitoring of human cellular response to repetitive bacterial stimulations (e.g., Pseudomonas aeruginosa in a lysate form), we devised a chemiluminescent immuno-analytical system for toll-like receptor 1 (TLR1) as marker present on cell surfaces (e.g., A549). Upon stimulation, TLR1 recognizes pathogen-associated molecular patterns of the infectious agent and are then up-regulated via activation of the nuclear factor-κB (NF-κB) pathway. In this study, the receptor density was quantified by employing an antibody specific to the target receptor and by producing a chemiluminometric signal from an enzyme labeled to the binder. The activated status was then switched back to normal down-regulated stage, by changing the culture medium to one containing animal serum. The major factors affecting activation were the stimulation dose of the bacterial lysate, stimulation timing during starvation, and up- and down-regulation time intervals. Reiterative TLR regulation switching up to three times was not affected by either antibody remained after immunoassay or enzyme substrate (e.g., hydrogen peroxide) in solution. This immuno-analysis for TLRs could be unique to acquire accumulated response of the human cells to repeated stimulations and, therefore, can eventually apply to persistency testing of the cellular regulation in screening of anti-inflammatory substances. PMID:25109895
miR172 down-regulates the translation of cleistogamy 1 in barley
USDA-ARS?s Scientific Manuscript database
Floret opening in barley is induced by the swelling of the lodicule, a trait under the control of the cleistogamy1 (cly1) gene. The product of cly1 is a member of the APETALA2 (AP2) transcription factor family, which inhibits lodicule development. A sequence polymorphism at the miR172 target site wi...
4-1BB regulates NKG2D costimulation in human cord blood CD8+ T cells.
Kim, Young-June; Han, Myung-Kwan; Broxmeyer, Hal E
2008-02-01
Ligation of NKG2D, a potent costimulatory receptor, can be either beneficial or detrimental to CD8(+) cytotoxic T cell (CTL) responses. Factors for these diverse NKG2D effects remain elusive. In this study, we demonstrate that 4-1BB, another costimulatory receptor, is an essential regulator of NKG2D in CD8(+) T cells. Costimulation of NKG2D caused down-modulation of NKG2D, but induced 4-1BB expression on the cell surface, even in the presence of TGF-beta1, which inhibits 4-1BB expression. Resulting NKG2D(-)4-1BB(+) cells were activated but still in an immature state with low cytotoxic activity. However, subsequent 4-1BB costimulation induced cytotoxic activity and restored down-modulated NKG2D. The cytotoxic activity and NKG2D expression induced by 4-1BB on NKG2D(+)4-1BB(+) cells were refractory to TGF-beta1 down-modulation. Such 4-1BB effects were enhanced by IL-12. In contrast, in the presence of IL-4, 4-1BB effects were abolished because IL-4 down-modulated NKG2D and 4-1BB expression in cooperation with TGF-beta1, generating another CD8(+) T-cell type lacking both NKG2D and 4-1BB. These NKG2D(-)4-1BB(-) cells were inert and unable to gain cytotoxic activity. Our results suggest that 4-1BB plays a critical role in protecting NKG2D from TGF-beta1-mediated down-modulation. Co-expression of NKG2D and 4-1BB may represent an important biomarker for defining competency of tumor infiltrating CD8(+) T cells.
Li, Anna; Xia, Xuechun; Yeh, James; Kua, Huiyi; Liu, Huijuan; Mishina, Yuji; Hao, Aijun; Li, Baojie
2014-01-01
Platelet-derived growth factors (PDGFs) play important roles in skeletal development and bone fracture healing, yet how PDGFs execute their functions remains incompletely understood. Here we show that PDGF-AA, but not -AB or -BB, could activate the BMP-Smad1/5/8 pathway in mesenchymal stem cells (MSCs), which requires BMPRIA as well as PDGFRα. PDGF-AA promotes MSC osteogenic differentiation through the BMP-Smad1/5/8-Runx2/Osx axis and MSC migration via the BMP-Smad1/5/8-Twist1/Atf4 axis. Mechanistic studies show that PDGF-AA activates BMP-Smad1/5/8 signaling by feedback down-regulating PDGFRα, which frees BMPRI and allows for BMPRI-BMPRII complex formation to activate smad1/5/8, using BMP molecules in the microenvironment. This study unravels a physical and functional interaction between PDGFRα and BMPRI, which plays an important role in MSC differentiation and migration, and establishes a link between PDGF-AA and BMPs pathways, two essential regulators of embryonic development and tissue homeostasis.
Joining the immunological dots in recurrent miscarriage.
Bansal, Amolak Singh
2010-11-01
While raised cellular immunity mediated by T helper (Th) 1 type cells may be harmful for the developing embryo/foetus, it is likely that Th2 type immunity may be helpful. The role of natural killer (NK) cells is presently underestimated, although they are clearly important in angiogenesis and the coordinated invasion of the decidua by the trophoblast. Deficient T regulatory cell (Treg) function is evident in women with recurrent miscarriage particularly when this occurs in early pregnancy. The role of the pro-inflammatory Th17 cells is presently unclear. However, early evidence suggests that excessive Th17 activity may promote miscarriage and preterm delivery. This may relate to the ability of these cells to produce those cytokines that encourage Th1 and NK cell activity. As such recurrent miscarriage may be caused not only by chromosomal abnormalities, autoimmunity and uterine abnormalities but also by subclinical uterine infection and inflammation which by stimulating interleukin 6 favours Th17 development over Tregs. This review examines the role of these different cells in early pregnancy and suggests a schema that may join the dots of the immunological puzzle called pregnancy. Finally, suggestions are made as to how inappropriate immunity in recurrent miscarriage may be down-regulated using currently available therapies. © 2010 John Wiley & Sons A/S.
Dmrta1 regulates proneural gene expression downstream of Pax6 in the mammalian telencephalon.
Kikkawa, Takako; Obayashi, Takeshi; Takahashi, Masanori; Fukuzaki-Dohi, Urara; Numayama-Tsuruta, Keiko; Osumi, Noriko
2013-08-01
The transcription factor Pax6 balances cell proliferation and neuronal differentiation in the mammalian developing neocortex by regulating the expression of target genes. Using microarray analysis, we observed the down-regulation of Dmrta1 (doublesex and mab-3-related transcription factor-like family A1) in the telencephalon of Pax6 homozygous mutant rats (rSey(2) /rSey(2) ). Dmrta1 expression was restricted to the neural stem/progenitor cells of the dorsal telencephalon. Overexpression of Dmrta1 induced the expression of the proneural gene Neurogenin2 (Neurog2) and conversely repressed Ascl1 (Mash1), a proneural gene expressed in the ventral telencephalon. We found that another Dmrt family molecule, Dmrt3, induced Neurog2 expression in the dorsal telencephalon. Our novel findings suggest that dual regulation of proneural genes mediated by Pax6 and Dmrt family members is crucial for cortical neurogenesis. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Kuo, Yung-Ting; Jheng, Jhong-Huei; Lo, Mei-Chen; Chen, Wei-Lu; Wang, Shyang-Guang; Lee, Horng-Mo
2018-06-04
Iron or oxygen regulates the stability of hypoxia inducible factor-1α (HIF-1α). We investigated whether ferrous glycinate would affect HIF-1α accumulation, aerobic glycolysis and mitochondrial energy metabolism in human A549 lung cancer cells. Incubation of A549 cells with ferrous glycinate decreased the protein levels of HIF-1α, which was abrogated by proteosome inhibitor, or prolyl hydroxylase inhibitor. The addition of ferrous glycinate decreased protein levels of glucose transporter-1, hexokinase-2, and lactate dehydrogenase A, and decreased pyruvate dehydrogenase kinase-1 (PDK-1) and pyruvate dehydrogenase (PDH) phosphorylation in A549 cells. Ferrous glycinate also increased the expression of the mitochondrial transcription factor A (TFAM), and the mitochondrial protein, cytochrome c oxidase (COX-IV). Silencing of HIF-1α expression mimicked the effects of ferrous glycinate on PDK-1, PDH, TFAM and COX-IV in A549 cells. Ferrous glycinate increased mitochondrial membrane potential and ATP production in A549 cells. These results suggest that ferrous glycinate may reverse Warburg effect through down regulating HIF-1α in A549 cells.
Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai
2011-07-15
Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less
Wang, Jianzhang; Man, Gene Chi Wai; Chan, Tak Hang; Kwong, Joseph; Wang, Chi Chiu
2018-01-01
Anti-angiogenesis effect of a prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) in malignant tumors is not well studied. Here, we investigated how the treatment with Pro-EGCG inhibited tumor angiogenesis in endometrial cancer. Tumor xenografts of human endometrial cancer were established and subjected to microarray analysis after Pro-EGCG treatment. First, we showed Pro-EGCG inhibited tumor angiogenesis in xenograft models through down-regulation of vascular endothelial growth factor A (VEGFA) and hypoxia inducible factor 1 alpha (HIF1α) in tumor cells and chemokine (C-X-C motif) ligand 12 (CXCL12) in host stroma by immunohistochemical staining. Next, we investigated how HIF1α/VEGFA was down-regulated and how the reduction of CXCL12 inhibited tumor angiogenesis. We found that VEGFA secretion from endometrial cancer cells was decreased by Pro-EGCG treatment through inhibiting PI3K/AKT/mTOR/HIF1α pathway. Furthermore, the down-regulation of CXCL12 in stromal cells by Pro-EGCG treatment restricted migration and differentiation of macrophages thereby inhibited infiltration of VEGFA-expressing tumor-associated macrophages (TAMs). Taken together, we demonstrated that treatment with Pro-EGCG not only decreases cancer cell-secreted VEGFA but also inhibits TAM-secreted VEGFA in endometrial cancer. These findings demonstrate that Pro-EGCG is a novel angiogenesis inhibitor for endometrial cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Nan; Yu, Hai-Ying; Shen, Xiao-Feng; Gao, Zhi-Qin; Yang, Chun; Yang, Jian-Jun
2015-01-01
Objectives. Active inflammatory responses play an important role in the pathogenesis of depression. We hypothesized that the rapid antidepressant effect of ketamine is associated with the down-regulation of pro-inflammatory mediators. Methods. Forty-eight rats were equally randomized into six groups (a control and five chronic unpredictable mild stress (CUMS) groups) and given either saline or 10 mg/kg ketamine, respectively. The forced swimming test was performed, and the hippocampus was subsequently harvested for the determination of levels of interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), indoleamine 2,3-dioxygenase (IDO), kynurenine (KYN), and tryptophan (TRP). Results. CUMS induced depression-like behaviours and up-regulated the hippocampal levels of IL-1β, IL-6, TNF-α, IDO, and the KYN/TRP ratio, which were attenuated by a sub-anaesthetic dose of ketamine. Conclusion. CUMS-induced depression-like behaviours are associated with a reduction in hippocampal inflammatory mediators, whereas ketamine’s antidepressant effect is associated with a down-regulation of pro-inflammatory cytokines in the rat hippocampus. PMID:26220286
Kim, Ji Yeon; Hwang, Joo-Yeon; Lee, Dae Yeon; Song, Eun Hyun; Park, Keon Jae; Kim, Gyu Hee; Jeong, Eun Ae; Lee, Yoo Jeong; Go, Min Jin; Kim, Dae Jin; Lee, Seong Su; Kim, Bong-Jo; Song, Jihyun; Roh, Gu Seob; Gao, Bin; Kim, Won-Ho
2014-09-26
Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from -287 to -158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Wen, Qing; Wang, Yuqian; Tang, Jixin; Cheng, C Yan; Liu, Yi-Xun
2016-01-01
Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.
Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro
2015-12-25
Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Gong, Cuihua; Sun, Shangtong; Liu, Bing; Wang, Jing; Chen, Xiaodong
2017-06-01
The study aimed to identify the potential target genes and key miRNAs as well as to explore the underlying mechanisms in the pathogenesis of oral lichen planus (OLP) by bioinformatics analysis. The microarray data of GSE38617 were downloaded from Gene Expression Omnibus (GEO) database. A total of 7 OLP and 7 normal samples were used to identify the differentially expressed genes (DEGs) and miRNAs. The DEGs were then performed functional enrichment analyses. Furthermore, DEG-miRNA network and miRNA-function network were constructed by Cytoscape software. Total 1758 DEGs (598 up- and 1160 down-regulated genes) and 40 miRNAs (17 up- and 23 down-regulated miRNAs) were selected. The up-regulated genes were related to nuclear factor-Kappa B (NF-κB) signaling pathway, while down-regulated genes were mainly enriched in the function of ribosome. Tumor necrosis factor (TNF), caspase recruitment domain family, member 11 (CARD11) and mitochondrial ribosomal protein (MRP) genes were identified in these functions. In addition, miR-302 was a hub node in DEG-miRNA network and regulated cyclin D1 (CCND1). MiR-548a-2 was the key miRNA in miRNA-function network by regulating multiple functions including ribosomal function. The NF-κB signaling pathway and ribosome function may be the pathogenic mechanisms of OLP. The genes such as TNF, CARD11, MRP genes and CCND1 may be potential therapeutic target genes in OLP. MiR-548a-2 and miR-302 may play important roles in OLP development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Castro-Garcia, Paola; Díaz-Moreno, María; Gil-Gas, Carmen; Fernández-Gómez, Francisco J; Honrubia-Gómez, Paloma; Álvarez-Simón, Carmen Belén; Sánchez-Sánchez, Francisco; Cano, Juan Carlos Castillo; Almeida, Francisco; Blanco, Vicente; Jordán, Joaquín; Mira, Helena; Ramírez-Castillejo, Carmen
2015-04-01
We studied potential changes in the subventricular zone (SVZ) stem cell niche of the senescence-accelerated mouse prone-8 (SAM-P8) aging model. Bromodeoxyuridine (BrdU) assays with longtime survival revealed a lower number of label-retaining stem cells in the SAM-P8 SVZ compared with the SAM-Resistant 1 (SAM-R1) control strain. We also found that in SAM-P8 niche signaling is attenuated and the stem cell pool is less responsive to the self-renewal niche factor pigmented epithelium-derived factor (PEDF). Protein analysis demonstrated stable amounts of the PEDF ligand in the SAM-P8 SVZ niche; however, SAM-P8 stem cells present a significant expression decrease of patatin-like phospholipase domain containing 2, a receptor for PEDF (PNPLA2-PEDF) receptor, but not of laminin receptor (LR), a receptor for PEDF (LR-PEDF) receptor. We observed changes in self-renewal related genes (hairy and enhancer of split 1 (Hes1), hairy and enhancer of split 1 (Hes5), Sox2] and report that although these genes are down-regulated in SAM-P8, differentiation genes (Pax6) are up-regulated and neurogenesis is increased. Finally, sheltering mammalian telomere complexes might be also involved given a down-regulation of telomeric repeat binding factor 1 (Terf1) expression was observed in SAM-P8 at young age periods. Differences between these 2 models, SAM-P8 and SAM-R1 controls, have been previously detected at more advanced ages. We now describe alterations in the PEDF signaling pathway and stem cell self-renewal at a very young age, which could be involved in the premature senescence observed in the SAM-P8 model. © FASEB.
Monocytic cell junction proteins serve important roles in atherosclerosis via the endoglin pathway
Chen, Lina; Chen, Zhongliang; Ge, Menghua; Tang, Oushan; Cheng, Yinhong; Zhou, Haoliang; Shen, Yu; Qin, Fengming
2017-01-01
The formation of atherosclerosis is recognized to be caused by multiple factors including pathogenesis in monocytes during inflammation. The current study provided evidence that monocytic junctions were significantly altered in patients with atherosclerosis, which suggested an association between cell junctions and atherosclerosis. Claudin-1, occludin-1 and ZO-1 were significantly enhanced in atherosclerosis, indicating that the tight junction pathway was activated during the pathogenesis of atherosclerosis. In addition, the gene expression of 5 connexin members involved in the gap junction pathway were quantified, indicating that connexin 43 and 46 were significantly up-regulated in atherosclerosis. Furthermore, inflammatory factors including endoglin and SMAD were observed, suggesting that immune regulative factors were down-regulated in this pathway. Silicon-based analysis additionally identified that connexins and tight junctions were altered in association with monocytic inflammation regulations, endoglin pathway. The results imply that reduced expression of the immune regulation pathway in monocytes is correlated with the generation of gap junctions and tight junctions which serve important roles in atherosclerosis. PMID:28901429
Regulation of type 17 helper T-cell function by nitric oxide during inflammation
Niedbala, Wanda; Alves-Filho, Jose C.; Fukada, Sandra Y.; Vieira, Silvio Manfredo; Mitani, Akio; Sonego, Fabiane; Mirchandani, Ananda; Nascimento, Daniele C.; Cunha, Fernando Q.; Liew, Foo Y.
2011-01-01
Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2−/−) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants. PMID:21576463
Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew
2011-12-01
All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.
Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi
2011-01-01
Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID:22194879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp; Oda, Hideaki
2012-04-27
Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116more » and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.« less
Pan, Di; Li, Wei; Miao, Hanchi; Yao, Jing; Li, Zhiyu; Wei, Libin; Zhao, Li; Guo, Qinglong
2014-02-15
In this study, the anticancer effect of LW-214, a newly synthesized flavonoid, against MCF-7 human breast cancer cells and the underlying mechanisms were investigated. LW-214 triggered the mitochondrial apoptotic pathway by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm) and caspase-9 activation, degradation of poly (ADP-ribose) polymerase (PARP), cytochrome c (Cyt c) release and apoptosis-inducing factor (AIF) transposition. Further research revealed that both the reactive oxygen species (ROS) generation and the apoptosis signal regulating kinase 1 (ASK1) activation by LW-214 were induced by down-regulating the thioredoxin-1 (Trx-1) expression. The ROS elevation and ASK1 activation induced a sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, as known as JNK inhibitor, almost reversed LW-214-induced apoptosis in MCF-7 cells. Overexpression of Trx-1 in MCF-7 cells attenuated LW-214-mediated apoptosis as well as the JNK activation and reversed the expression of mitochondrial apoptosis-related protein. Accordingly, the in vivo study showed that LW-214 exhibited a potential antitumor effect in BALB/c species mice inoculated MCF-7 tumor with low systemic toxicity, and the mechanism was the same as in vitro study. Taken together, these findings indicated that LW-214 may down-regulated Trx-1 function, causing intracellular ROS generation and releasing the ASK1, and lead to JNK activation, which consequently induced the mitochondrial apoptosis in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.
Bedini, Andrea; Baiula, Monica; Spampinato, Santi
2008-06-01
The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. We investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I up-regulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 signaling pathway and this transcription factor, binding to the signal transducer and activator of transcription-1/3 DNA element located in the promoter, increases OPRM1 transcription. We propose that a reduction in REST is a critical switch enabling IGF-I to up-regulate hMOPr. These findings help clarify how hMOPr expression is regulated in neuronal cells.
Barrera, G J; Tortolero, G Sanchez
2016-01-01
Trefoil factors are effector molecules in gastrointestinal tract physiology. Each one improves healing of the gastrointestinal tract. Trefoil factors may be grouped into three classes: the gastric peptides (TFF1), spasmolytic peptide (TFF2) and intestinal trefoil factor (TFF3). Significant amounts of TFF3 are present in human breast milk. Previously, we have reported that trefoil factor 3 isolated from human breast milk produces down regulation of cytokines and promotes human beta defensins expression in intestinal epithelial cells. This study aimed to determine the molecular mechanism involved. Here we showed that the presence of TFF3 strongly correlated with protease activated receptors 2 (PAR-2) activation in human intestinal cells. Intracellular calcium ((Ca2+)i)mobilization was induced by the treatment with: 1) TFF3, 2) synthetic PAR-2 agonist peptide. The co-treatment with a synthetic PAR-2 antagonist peptide and TFF3 eliminates the latter's effect. Additionally, we demonstrated the existence of interactions among TFF3 and PAR-2 receptors through far Western blot and co-precipitation. Finally, down regulation of PAR-2 by siRNA resulted in a decrease of TFF3 induced intracellular (Ca2+)i mobilization, cytokine regulation and defensins expression. These findings suggest that TFF3 activates intestinal cells through PAR-2 (Fig. 4, Ref. 19).
Chang, Sung-Hee; Lu, Yi-Chien; Li, Xi; Hsieh, Wan-Ying; Xiong, Yuquan; Ghosh, Mallika; Evans, Todd; Elemento, Olivier; Hla, Timothy
2013-01-01
HuR, also known as Elavl1, is an RNA-binding protein that regulates embryonic development, progenitor cell survival, and cell stress responses. The role of HuR in angiogenesis is not known. Using a myeloid-specific HuR knock-out mouse model (Elavl1Mø KO), we show that HuR expression in bone marrow-derived macrophages (BMDMs) is needed to maintain the expression of genes enriched in AU-rich elements and U-rich elements in the 3′-UTR. In addition, BMDMs from Elavl1Mø KO mice also showed alterations in expression of several miRNAs. Interestingly, computational analysis suggested that miR-200b, which is up-regulated in Elavl1Mø KO BMDMs, interacts with myeloid mRNAs very close to the HuR binding sites, suggesting competitive regulation of gene expression. One such mRNA encodes vascular endothelial growth factor (VEGF)-A, a major regulator of angiogenesis. Immunoprecipitation of RNA-protein complexes and luciferase reporter assays indicate that HuR antagonizes the suppressive activity of miR-200b, down-regulates miR-200b expression, and promotes VEGF-A expression. Indeed, Vegf-a and other angiogenic regulatory transcripts were down-regulated in Elavl1Mø KO BMDMs. Interestingly, tumor growth, angiogenesis, vascular sprouting, branching, and permeability were significantly attenuated in Elavl1Mø KO mice, suggesting that HuR-regulated myeloid-derived factors modulate tumor angiogenesis in trans. Zebrafish embryos injected with an elavl1 morpholino oligomer or miR-200b mimic showed angiogenesis defects in the subintestinal vein plexus, and elavl1 mRNA rescued the repressive effect of miR-200b. In addition, miR-200b and HuR morpholino oligomer suppressed the activity of a zVEGF 3′-UTR luciferase reporter construct. Together, these studies reveal an evolutionarily conserved post-transcriptional mechanism involving competitive interactions between HuR and miR-200b that controls angiogenesis. PMID:23223443
Jung, A-Ram; Ahn, Sang-Hyun; Park, In-Sik; Park, Sun-Young; Jeong, Seung-Il; Cheon, Jin-Hong; Kim, Kibong
2016-10-24
Douchi (fermented Glycine max Merr.) is produced from fermented soybeans, which is widely used in traditional herbal medicine. In this study, we investigated whether Douchi attenuates protein kinase C (PKC) and interleukin (IL)-4 response and cutaneous inflammation in Atopic dermatitis (AD)-like NC/Nga mice. To induce AD-like skin lesions, D. farinae antigen was applied to the dorsal skin of 3-week-old NC/Nga mice. After inducing AD, Douchi extract was administered 20 mg/kg daily for 3 weeks to the Douchi-treated mice group. We identified the changes of skin barrier and Th2 differentiation through PKC and IL-4 by immunohistochemistry. Douchi treatment of NC/Nga mice significantly reduced clinical scores (p < 0.01) and histological features. The levels of PKC and IL-4 were significantly reduced in the Douchi-treated group (p < 0.01). The reduction of IL-4 and PKC led to decrease of inflammatory factors such as substance P, inducible nitric oxide synthase (iNOS) and Matrix metallopeptidase 9 (MMP-9) (all p < 0.01). Douchi also down-regulated Th1 markers (IL-12, TNF-α) as well as Th2 markers (IL-4, p-IκB) (p < 0.01). Douchi alleviates AD-like skin lesions through suppressing of PKC and IL-4. These results also lead to diminish levels of substance P, iNOS and MMP-9 in skin lesions. Therefore, Douchi may have potential applications for the prevention and treatment of AD.
Datta, Moumita; Bhattacharyya, Nitai P.
2011-01-01
Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease. PMID:21832040
Datta, Moumita; Bhattacharyya, Nitai P
2011-09-30
Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease.
FoxM1 Promotes Glioma Cells Progression by Up-Regulating Anxa1 Expression
Cheng, Shi-Xiang; Tu, Yue; Zhang, Sai
2013-01-01
Forkhead box M1 (FoxM1) is a member of the forkhead transcription factor family and is overexpression in malignant gliomas. However, the molecular mechanisms by which FoxM1lead to glioma carcinogenesis and progression are still not well known. In the present study, we show that Anxa1 was overexpression in gliomas and predicted the poor outcome. Furthermore, Anxa1 closely related to the FoxM1 expression and was a direct transcriptional target of FoxM1. Overexpression of FoxM1 up-regulated Anxa1 expression, whereas suppression of FoxM1 expression down-regulated Anxa1 expression in glioma cells. Finally, FoxM1 enhanced the proliferation, migration, and angiogenesis in Anxa1-dependent manner both in vitro and in vivo. Our findings provide both clinical and mechanistic evidences that FoxM1 contributes to glioma development by directly up-regulating Anxa1 expression. PMID:23991102
Jiang, Li-hua; Yuan, Xiao-lin; Yang, Nian-yun; Ren, Li; Zhao, Feng-ming; Luo, Ban-xin; Bian, Yao-yao; Xu, Jian-ya; Lu, Da-xiang; Zheng, Yuan-yuan; Zhang, Chuan-juan; Diao, Yuan-ming; Xia, Bao-mei; Chen, Gang
2015-08-01
We previously reported that daucosterol (a sterolin) up-regulates the expression of insulin-like growth factor I (IGF1)(1) protein in neural stem cells. In this study, we investigated the effects of daucosterol on the survival of cultured cortical neurons after neurons were subjected to oxygen and glucose deprivation and simulated reperfusion (OGD/R)(2), and determined the corresponding molecular mechanism. The results showed that post-treatment of daucosterol significantly reduced neuronal loss, as well as apoptotic rate and caspase-3 activity, displaying the neuroprotective activity. We also found that daucosterol increased the expression level of IGF1 protein, diminished the down-regulation of p-AKT(3) and p-GSK-3β(4), thus activating the AKT(5) signal pathway. Additionally, it diminished the down-regulation of the anti-apoptotic proteins Mcl-1(6) and Bcl-2(7), and decreased the expression level of the pro-apoptotic protein Bax(8), thus raising the ratio of Bcl-2/Bax. The neuroprotective effect of daucosterol was inhibited in the presence of picropodophyllin (PPP)(9), the inhibitor of insulin-like growth factor I receptors (IGF1R)(10). Our study provided information about daucosterol as an efficient and inexpensive neuroprotectants, to which the IGF1-like activity of daucosterol contributes. Daucosterol could be potentially developed as a medicine for ischemic stroke treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
van de Kooij, Bert; Verbrugge, Inge; de Vries, Evert; Gijsen, Merel; Montserrat, Veronica; Maas, Chiel; Neefjes, Jacques; Borst, Jannie
2013-01-01
The eleven members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family are relatively unexplored. Upon exogenous (over)expression, a number of these ligases can affect the trafficking of membrane molecules. However, only for MARCH-1 endogenous functions have been demonstrated. For the other endogenous MARCH proteins, no functions or substrates are known. We report here that TRAIL-R1 is a physiological substrate of the endogenous MARCH-8 ligase. Human TRAIL-R1 and R2 play a role in immunosurveillance and are targets for cancer therapy, because they selectively induce apoptosis in tumor cells. We demonstrate that TRAIL-R1 is down-regulated from the cell surface, with great preference over TRAIL-R2, by exogenous expression of MARCH ligases that are implicated in endosomal trafficking, such as MARCH-1 and -8. MARCH-8 attenuated TRAIL-R1 cell surface expression and apoptosis signaling by virtue of its ligase activity. This suggested that ubiquitination of TRAIL-R1 was instrumental in its down-regulation by MARCH-8. Indeed, in cells with endogenous MARCH expression, TRAIL-R1 was ubiquitinated at steady-state, with the conserved membrane-proximal lysine 273 as one of the potential acceptor sites. This residue was also essential for the interaction of TRAIL-R1 with MARCH-1 and MARCH-8 and its down-regulation by these ligases. Gene silencing identified MARCH-8 as the endogenous ligase that ubiquitinates TRAIL-R1 and attenuates its cell surface expression. These findings reveal that endogenous MARCH-8 regulates the steady-state cell surface expression of TRAIL-R1. PMID:23300075
Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret
2012-04-01
In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.
2013-01-01
Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value < 0.05; fold change cut-off 1.3). Gene Set Enrichment Analysis revealed pathways enriched in Th1Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non-toxic agonists may contribute to limiting covert HIV replication and disease progression during antiretroviral treatment. PMID:24359430
Nam, KeeSoo; Son, Seog-Ho; Oh, Sunhwa; Jeon, Donghwan; Kim, Hyungjoo; Noh, Dong-Young; Kim, Sangmin; Shin, Incheol
2017-05-30
Galectin-1 is a β-galactoside binding protein secreted by many types of aggressive cancer cells. Although many studies have focused on the role of galectin-1 in cancer progression, relatively little attention has been paid to galectin-1 as an extracellular therapeutic target. To elucidate the molecular mechanisms underlying galectin-1-mediated cancer progression, we established galectin-1 knock-down cells via retroviral delivery of short hairpin RNA (shRNA) against galectin-1 in two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T. Ablation of galectin-1 expression decreased cell proliferation, migration, invasion, and doxorubicin resistance. We found that these effects were caused by decreased galectin-1-integrin β1 interactions and suppression of the downstream focal adhesion kinase (FAK)/c-Src pathway. We also found that silencing of galectin-1 inhibited extracellular signal-regulated kinase (ERK)/signal transducer and activator of transcription 3 (STAT3) signaling, thereby down-regulating survivin expression. This finding implicates STAT3 as a transcription factor for survivin. Finally, rescue of endogenous galectin-1 knock-down and recombinant galectin-1 treatment both recovered signaling through the FAK/c-Src/ERK/STAT3/survivin pathway. Taken together, these results suggest that extracellular galectin-1 contributes to cancer progression and doxorubicin resistance in TNBC cells. These effects appear to be mediated by galectin-1-induced up-regulation of the integrin β1/FAK/c-Src/ERK/STAT3/survivin pathway. Our results imply that extracellular galectin-1 has potential as a therapeutic target for triple-negative breast cancer.
Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Park, Young Joo; Cho, Bo Youn
2007-10-01
To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.
Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Cho, Bo Youn
2007-01-01
To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation. PMID:17982240
Gomes, Bruna Lima; Mila, Isabelle; Frasse, Pierre; Zouine, Mohamed; Bouzayen, Mondher
2016-01-01
Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234
Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan
2009-09-01
DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.
Gosset, P; Charbonnier, A S; Delerive, P; Fontaine, J; Staels, B; Pestel, J; Tonnel, A B; Trottein, F
2001-10-01
Peroxisome proliferator-activated receptor gamma (PPARgamma ), a member of the nuclear receptor superfamily, has recently been described as a modulator of macrophage functions and as an inhibitor of T cell proliferation. Here, we investigated the role of PPARgamma in dendritic cells (DC), the most potent antigen-presenting cells. We showed that PPARgamma is highly expressed in immature human monocyte-derived DC (MDDC) and that it may affect the immunostimulatory function of MDDC stimulated with lipopolysaccharide (LPS) or via CD40 ligand (CD40L). We found that the synthetic PPARgamma agonist rosiglitazone (as well as pioglitazone and troglitazone) significantly increases on LPS- and CD40L-activated MDDC, the surface expression of CD36 (by 184% and 104%, respectively) and CD86 (by 54% and 48%), whereas it reduces the synthesis of CD80 (by 42% and 42%). Moreover, activation of PPARgamma resulted in a dramatic decreased secretion of the Th1-promoting factor IL-12 in LPS- and CD40L-stimulated cells (by 47% and 62%), while the production of IL-1beta, TNF-alpha, IL-6 and IL-10 was unaffected. Finally, PPARgamma ligands down-modulate the synthesis of IFN-gamma -inducible protein-10 (recently termed as CXCL10) and RANTES (CCL5), both chemokines involved in the recruitment of Th1 lymphocytes (by 49% and 30%), but not the levels of the Th2 cell-attracting chemokines,macrophage-derived chemokine (CCL22) and thymus and activation regulated chemokine (CCL17), in mature MDDC. Taken together, our data suggest that activation of PPARgamma in human DC may have an impact in the orientation of primary and secondary immune responses by favoring type 2 responses.
TGF-β1/Smad3 Signaling Pathway Suppresses Cell Apoptosis in Cerebral Ischemic Stroke Rats
Zhu, Haiping; Gui, Qunfeng; Hui, Xiaobo; Wang, Xiaodong; Jiang, Jian; Ding, Lianshu; Sun, Xiaoyang; Wang, Yanping; Chen, Huaqun
2017-01-01
Background We desired to observe the changes of transforming growth factor-β1/drosophila mothers against decapentaplegic protein (TGF-β1/Smad3) signaling pathway in the hippocampus region of cerebral ischemic stroke rats so that the effects of this pathway on nerve cells can be investigated. Material/Methods The ischemic stroke models were built by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. TGF-β1 and TGF-β1 inhibitors were injected into rat models while TGF-β1, TGF-β1 siRNA, Smad3, and Smad3 siRNA were transfected into cells. Infarct sizes were measured using triphenyltetrazolium chloride (TTC) staining, while the apoptosis rate of cells were calculated by Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining. Levels of TGF-β1, Smad3, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR), immunohistochemical, and Western blot analysis. Results The expressions of TGF-β1/Smad3 signal pathway were significantly increased in both model rats and BV2 cells, whereas the expression of Bcl-2 was down-regulated (P<0.05). The TGF-β1/Smad3 signal pathway exhibited protective effects, including the down-regulation of infarction size in cerebral tissues and the down-regulation of apoptosis rate of BV2 cells by increasing the expression of Bcl-2 (P<0.05). In addition, these effects could be antagonized by the corresponding inhibitors and siRNA (P<0.05). Conclusions The TGF-β1/Smad3 signaling pathway was up-regulated once cerebral ischemic stroke was simulated. TGF-β1 may activate the expression of Bcl-2 via Smad3 to suppress the apoptosis of neurons. PMID:28110342
Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun
2015-01-01
Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells.
Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun
2015-01-01
Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells. PMID:26339343
Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hongyan, E-mail: hongyan_dong@hc-sc.gc.ca; Yauk, Carole L.; Wade, Michael G.
Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined withmore » chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1 compared to control animals. Similarly, the expression of Barhl1 in cultured GH3 decreased with the addition of T3. Given the important role of Barhl1 in brain development, we propose that perturbations of TH-mediated transcriptional control of Barhl1 may play a role in the impaired neurodevelopment induced by hypothyroidism.« less
Tellechea, Mónica; Buxadé, Maria; Tejedor, Sonia; Aramburu, Jose; López-Rodríguez, Cristina
2018-01-01
Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions. Copyright © 2017 by The American Association of Immunologists, Inc.
Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankar, J.; Thippegowda, P.B., E-mail: btprabha@uic.edu; Kanum, S.A.
Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells andmore » arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Hui; Xie, Jing; Peng, Jianjun, E-mail: jianjunpeng@126.com
2015-03-15
Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involvedmore » the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.« less
Wei, Haiyan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Zhang, Juan; Pu, Yuepu
2014-01-01
Previous studies have shown that formaldehyde (FA) could cause immunotoxicity by changing the number of T lymphocytes and that cytokines play a pivotal role in the regulation of T lymphocytes. However, the previously used cytokine detection methods are difficult to use in the measurement of several cytokines in a small amount of sample for one test. Therefore, the cytometric bead array (CBA) technique was used. CBA showed better analytical efficiency and sensitivity than the previous methods. C57BL/6 mice were exposed to the control (normal saline), low FA concentration (0.5 mg/kg), and high FA concentration (2 mg/kg) for 1 week or 1 month. The contents of cytokines, including Th1-related cytokines (IL-2, IFN-γ, and tumor necrosis factor), Th2-related cytokines (IL-4, IL-6, and IL-10), and Th17-related cytokines (IL-17A), were measured by using the BD FACS Canto II Flow Cytometer and analyzed by FCAP ArrayTM Software. Th1/Th2/Th17-related cytokines showed a slightly decreasing trend after low FA exposure. Conversely, a significantly increasing trend was found after high FA exposure. Th1/Th2/Th17-related cytokines all serve important functions in the immune reactions in mice after FA exposure. PMID:25264680
Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J
2008-04-01
In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not found to be down-regulated in neurons treated with 24S-hydroxycholesterol, while apolipoprotein E (apo E), a cholesterol trafficking protein, was found to be up-regulated. Taken together, this data leads to the hypothesis that, in times of cholesterol excess, 24S-hydroxycholesterols signals down-regulation of cholesterol synthesis enzymes through SREBP-2, but up-regulates apo E synthesis (through the liver X receptor) leading to cholesterol storage and restoration of cholesterol balance.
Nakerakanti, Sashidhar S; Kapanadze, Bagrat; Yamasaki, Masaomi; Markiewicz, Margaret; Trojanowska, Maria
2006-09-01
CCN2 (connective tissue growth factor), an important regulator of angiogenesis, chondrogenesis, and wound healing, is overexpressed in a majority of fibrotic diseases and in various tumors. This study investigated regulation of CCN2 gene expression by Ets family of transcription factors, focusing on two members, Fli1 and Ets1, with deregulated expression during fibrosis and tumorigenesis. We show that Ets1 and Fli1 have opposite effects on CCN2 gene expression. Ets1 functions as an activator of CCN2 transcription, whereas Fli1 acts as a repressor. A functional Ets binding site was mapped at -114 within the CCN2 promoter. This site not only mediates stimulation by Ets factors, including Ets1, Ets2, and GABPalpha/beta, but is also required for the transforming growth factor (TGF)-beta response. The contrasting functions of Ets1 and Fli1 in regulation of the CCN2 gene were confirmed by suppressing their endogenous levels using adenoviral vectors expressing specific small interfering RNAs. Additional experiments using chromatin immunoprecipitation assays have revealed that in fibroblasts both Ets1 and Fli1 occupy the CCN2 promoter. TGF-beta stimulation resulted in displacement of Fli1 from the CCN2 promoter and a transient inhibition of Fli1 synthesis. Moreover, reduction of Fli1 expression resulted in up-regulation of COL1A1 and COL1A2 genes and down-regulation of the MMP1 gene. Thus, inhibition of Fli1 recapitulated some of the key effects of TGF-beta, suggesting that Fli1 suppression is involved in activation of the profibrotic gene program in fibroblasts. On the other hand, activation of the CCN2 gene downstream of Ets1 is consistent with its role in angiogenesis and extracellular matrix remodeling. This study strongly supports a critical role of Fli1 and Ets1 in the pathological extracellular matrix regulation during fibrosis and cancer.
Mechanisms involved in epigenetic down-regulation of Gfap under maternal hypothyroidism.
Kumar, Praveen; Godbole, Nachiket M; Chaturvedi, Chandra P; Singh, Ravi S; George, Nelson; Upadhyay, Aditya; Anjum, B; Godbole, Madan M; Sinha, Rohit A
2018-07-20
Thyroid hormones (TH) of maternal origin are crucial regulator of mammalian brain development during embryonic period. Although maternal TH deficiency during the critical periods of embryonic neo-cortical development often results in irreversible clinical outcomes, the fundamental basis of these abnormalities at a molecular level is still obscure. One of the key developmental process affected by maternal TH insufficiency is the delay in astrocyte maturation. Glial fibrillary acidic protein (Gfap) is a predominant cell marker of mature astrocyte and is regulated by TH status. Inspite, of being a TH responsive gene during neocortical development the mechanistic basis of Gfap transcriptional regulation by TH has remained elusive. In this study using rat model of maternal hypothyroidism, we provide evidence for an epigenetic silencing of Gfap under TH insufficiency and its recovery upon TH supplementation. Our results demonstrate increased DNA methylation coupled with decreased histone acetylation at the Gfap promoter leading to suppression of Gfap expression under maternal hypothyroidism. In concordance, we also observed a significant increase in histone deacetylase (HDAC) activity in neocortex of TH deficient embryos. Collectively, these results provide novel insight into the role of TH regulated epigenetic mechanisms, including DNA methylation, and histone modifications, which are critically important in mediating precise temporal neural gene regulation. Copyright © 2018 Elsevier Inc. All rights reserved.
Llosa, Nicolas J.; Cruise, Michael; Tam, Ada; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Taube, Janis M.; Blosser, Lee; Fan, Hongni; Wang, Hao; Luber, Brandon; Zhang, Ming; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Sears, Cynthia L.; Anders, Robert A.; Pardoll, Drew M.; Housseau, Franck
2014-01-01
We examined the immune microenvironment of primary colorectal cancer (CRC) using immunohistochemistry, laser capture microdissection/qRT-PCR, flow cytometry and functional analysis of tumor infiltrating lymphocytes. A subset of CRC displayed high infiltration with activated CD8+ CTL as well as activated Th1 cells characterized by IFN-γ production and the Th1 transcription factor Tbet. Parallel analysis of tumor genotypes revealed that virtually all of the tumors with this active Th1/CTL microenvironment had defects in mismatch repair, as evidenced by microsatellite instability (MSI). Counterbalancing this active Th1/CTL microenvironment, MSI tumors selectively demonstrated highly up-regulated expression of multiple immune checkpoints, including five – PD-1, PD-L1, CTLA-4, LAG-3 and IDO – currently being targeted clinically with inhibitors. These findings link tumor genotype with the immune microenvironment, and explain why MSI tumors are not naturally eliminated despite a hostile Th1/CTL microenvironment. They further suggest that blockade of specific checkpoints may be selectively efficacious in the MSI subset of CRC. PMID:25358689
Zhang, Qiong; Wu, Yuan-Zhe; Zhang, Yan-Mei; Ji, Xiao-Hong; Hao, Qun
2015-04-01
Cervical cancer is one of the most common gynaecological women cancer and suggested to be modulated by estrogenic signals. G protein-coupled receptor (GPER), a seven-transmembrane G protein-coupled receptor, has been reported to regulate the cell proliferation of various cancers. But there is no study investigating the effects of GPER on the progression of cervical cancer. In the present study, we revealed for the first time that GPER was also highly expressed in various human cervical cancer cells. Activation of GPER via its specific agonist G-1 induced G2/M cell cycle arrest and down regulation of cyclin B via a time dependent manner. Furthermore, G-1 treatment induced sustained activation of extracellular-signal-regulated kinases (ERK)1/2 via epidermal growth factor receptor (EGFR) signals. Both inhibitors of ERK1/2 and EGFR significantly abolished G-1-induced suppression of cell proliferation and down regulation of cyclin B. Generally, our study revealed that GPER is highly expressed in human cervical cancer cells and its activation inhibits cell proliferation via EGFR/ERK1/2 signals. It suggested that G-1 can be considered as a potential new pharmacological tool to reduce the growth of cervical cancer. Copyright © 2015 John Wiley & Sons, Ltd.
MyD88 expression in the rat dental follicle: Implications for osteoclastogenesis and tooth eruption
Liu, Dawen; Yao, Shaomian; Wise, Gary E.
2010-01-01
Myeloid differentiation factor 88 (MyD88) is a key adaptor molecule in the interleukin-1 (IL-1) and IL-18 Toll-like receptor signaling pathway. Because it is present in dental follicle (DF) cells in vitro, the purpose of this study was to determine its chronological expression in vivo, as well as its possible role in osteoclastogenesis and tooth eruption. An oligo DNA microarray was used to determine gene expression of MyD88 in vivo in the DFs from the first mandibular molars of postnatal rats from days 1–11. The results showed that MyD88 was expressed maximally at day 3. Using siRNA to knock down MyD88 expression in the DF cells also reduced the gene expression of nuclear factor-kappa B-1 (NFKB1) and monocyte chemoattractant protein 1 (MCP-1). IL-1α up-regulated the expression of NFKB1, MCP-1 and receptor activator of nuclear factor kappa B ligand (RANKL), but knockdown of MyD88 nullified this IL-1α effect. Conditioned medium from DF cells with MyD88 knocked down reduced chemotactic activity for mononuclear cells and reduced osteoclastogenesis as opposed to controls. In conclusion, the maximal expression of MyD88 at day 3 in the DF may contribute to the major burst of osteoclastogenesis needed for eruption by up-regulating MCP-1 and RANKL expression. PMID:20662905
Yu, Shi-huan; Liu, Li-jie; Lv, Bin; Che, Chun-li; Fan, Da-ping; Wang, Li-feng; Zhang, Yi-mei
2015-08-01
The study was aimed to investigate the mechanism and administration timing of bone marrow-derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)-induced pulmonary fibrosis mice. Thirty-six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase-1 (TIMP-1), γ-interferon (INF-γ) and transforming growth factor β1 (TGF-β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up-regulated MMP9, TIMP-1, INF-γ and TGF-β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down-regulating MMP9, TIMP-1, INF-γ and TGF-β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Highlights are as follows: 1. BMSCs repair lung injury induced by BLM. 2. BMSCs attenuate pulmonary fibrosis induced by BLM. 3. BMSCs transplantation down-regulates MMP9 and TIMP-1. 4. BMSCs transplantation down-regulates INF-γ and TGF-β. 5. Delayed transplantation timing of BMSCs might exhibit a better effect against BLM. Copyright © 2015 John Wiley & Sons, Ltd.
Lu, Hanxin; Pise-Masison, Cynthia A; Linton, Rebecca; Park, Hyeon Ung; Schiltz, R Louis; Sartorelli, Vittorio; Brady, John N
2004-07-01
Expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by the viral transcriptional activator Tax. Tax activates viral transcription through interaction with the cellular transcription factor CREB and the coactivators CBP/p300. In this study, we have analyzed the role of histone deacetylase 1 (HDAC1) on HTLV-1 gene expression from an integrated template. First we show that trichostatin A, an HDAC inhibitor, enhances Tax expression in HTLV-1-transformed cells. Second, using a cell line containing a single-copy HTLV-1 long terminal repeat, we demonstrate that overexpression of HDAC1 represses Tax transactivation. Furthermore, a chromatin immunoprecipitation assay allowed us to analyze the interaction of transcription factors, coactivators, and HDACs with the basal and activated HTLV-1 promoter. We demonstrate that HDAC1 is associated with the inactive, but not the Tax-transactivated, HTLV-1 promoter. In vitro and in vivo glutathione S-transferase-Tax pull-down and coimmunoprecipitation experiments demonstrated that there is a direct physical association between Tax and HDAC1. Importantly, biotinylated chromatin pull-down assays demonstrated that Tax inhibits and/or dissociates the binding of HDAC1 to the HTLV-1 promoter. Our results provide evidence that Tax interacts directly with HDAC1 and regulates binding of the repressor to the HTLV-1 promoter.
NASA Astrophysics Data System (ADS)
Sakurai, G.; Iizumi, T.; Yokozawa, M.
2011-12-01
The actual impact of elevated [CO2] with the interaction of the other climatic factors on the crop growth is still debated. In many process-based crop models, the response of photosynthesis per single leaf to environmental factors is basically described using the biochemical model of Farquhar et al. (1980). However, the decline in photosynthetic enhancement known as down regulation has not been taken into account. On the other hand, the mechanisms causing photosynthetic down regulation is still unknown, which makes it difficult to include the effect of down regulation into process-based crop models. The current results of Free-air CO2 enrichment (FACE) experiments have reported the effect of down regulation under actual environments. One of the effective approaches to involve these results into future crop yield prediction is developing a semi process-based crop growth model, which includes the effect of photosynthetic down regulation as a statistical model, and assimilating the data obtained in FACE experiments. In this study, we statistically estimated the parameters of a semi process-based model for soybean growth ('SPM-soybean') using a hierarchical Baysian method with the FACE data on soybeans (Morgan et al. 2005). We also evaluated the effect of down regulation on the soybean yield in future climatic conditions. The model selection analysis showed that the effective correction to the overestimation of the Farquhar's biochemical C3 model was to reduce the maximum rate of carboxylation (Vcmax) under elevated [CO2]. However, interestingly, the difference in the estimated final crop yields between the corrected model and the non-corrected model was very slight (Fig.1a) for future projection under climate change scenario (Miroc-ESM). This was due to that the reduction in Vcmax also brought about the reduction of the base dark respiration rate of leaves. Because the dark respiration rate exponentially increases with temperature, the slight difference in base respiration rate becomes a large difference under high temperature under the future climate scenarios. In other words, if the temperature rise is very small or zero under elevated [CO2] condition, the effect of down regulation significantly appears (Fig.1b). This result suggest that further experimental data that considering high CO2 effect and high temperature effect in field conditions should be important and elaborate the model projection of the future crop yield through data assimilation method.
Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes?
Lerner, Aaron; Arleevskaya, Marina; Schmiedl, Andreas; Matthias, Torsten
2017-01-01
The links between microorganisms/viruses and autoimmunity are complex and multidirectional. A huge number of studies demonstrated the triggering impact of microbes and viruses as the major environmental factors on the autoimmune and inflammatory diseases. However, growing evidences suggest that infectious agents can also play a protective role or even abrogate these processes. This protective crosstalk between microbes/viruses and us might represent a mutual beneficial equilibrium relationship between two cohabiting ecosystems. The protective pathways might involve post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2 immune shift, induction of apoptosis, auto-aggressive cells relocation from the target organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive cells by the microbial derived proteins. Our analysis demonstrates that the interaction of the microorganisms/viruses and celiac disease (CD) is always a set of multidirectional processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter pylori demonstrates that the role of these infections, suggested to be potential CD protectors, is not as controversial as for the other infectious agents. The outcome of these interactions might be due to a balance between these multidirectional processes.
Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes?
Lerner, Aaron; Arleevskaya, Marina; Schmiedl, Andreas; Matthias, Torsten
2017-01-01
The links between microorganisms/viruses and autoimmunity are complex and multidirectional. A huge number of studies demonstrated the triggering impact of microbes and viruses as the major environmental factors on the autoimmune and inflammatory diseases. However, growing evidences suggest that infectious agents can also play a protective role or even abrogate these processes. This protective crosstalk between microbes/viruses and us might represent a mutual beneficial equilibrium relationship between two cohabiting ecosystems. The protective pathways might involve post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2 immune shift, induction of apoptosis, auto-aggressive cells relocation from the target organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive cells by the microbial derived proteins. Our analysis demonstrates that the interaction of the microorganisms/viruses and celiac disease (CD) is always a set of multidirectional processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter pylori demonstrates that the role of these infections, suggested to be potential CD protectors, is not as controversial as for the other infectious agents. The outcome of these interactions might be due to a balance between these multidirectional processes. PMID:28824555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Guang; Wang, Yuan; Feng, Jinyan
Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. Inmore » addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Fang; Chen, Rongjing; Liu, Baojun
2012-09-07
Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expressionmore » of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.« less
Fang, Qi; Yao, Shuang; Luo, Guanghua; Zhang, Xiaoying
2018-01-01
While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH-TAM) on ER-positive (ER+) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT-PCR). In human breast tumor tissues, mRNA levels of EIF2Ak2, USP18, DDX58, RBL2, STAT2, PGR, S1000A9, and CCND1 were significantly higher in ER+- than in ER--breast cancer tissues. The mRNA levels of EIF2AK2, TGM2, USP18, DDX58, PARP9, STAT2, STAT1, PGR and CCND1 were all significantly higher in ER+-tumor tissues than in their corresponding tumor-adjacent tissues. These genes, except PGR and CCND1 which were down-regulated, were also up-regulated in ER+ MCF-7 cells by 4-OH-TAM. Total 14 genes mentioned above are involved in regulation of cell proliferation, apoptosis, cell cycles, and estrogen and interferon signal pathways. Bioinformatics analysis also revealed other novel and important regulatory factors that are associated with these genes and involved in the mentioned functional processes. This study has paved a foundation for elucidating TAM anti-breast cancer mechanisms in E2/ER-dependent and independent pathways. PMID:29416786
Fang, Qi; Yao, Shuang; Luo, Guanghua; Zhang, Xiaoying
2018-01-05
While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH-TAM) on ER-positive (ER + ) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC 50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT-PCR). In human breast tumor tissues, mRNA levels of EIF2Ak2, USP18, DDX58, RBL2, STAT2, PGR, S1000A9, and CCND1 were significantly higher in ER + - than in ER - -breast cancer tissues. The mRNA levels of EIF2AK2, TGM2, USP18, DDX58, PARP9, STAT2, STAT1, PGR and CCND1 were all significantly higher in ER + -tumor tissues than in their corresponding tumor-adjacent tissues. These genes, except PGR and CCND1 which were down-regulated, were also up-regulated in ER + MCF-7 cells by 4-OH-TAM. Total 14 genes mentioned above are involved in regulation of cell proliferation, apoptosis, cell cycles, and estrogen and interferon signal pathways. Bioinformatics analysis also revealed other novel and important regulatory factors that are associated with these genes and involved in the mentioned functional processes. This study has paved a foundation for elucidating TAM anti-breast cancer mechanisms in E2/ER-dependent and independent pathways.
Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula
2017-03-01
Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4 + T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection. © Society for Leukocyte Biology.
Modified natural cycle for embryo transfer using frozen-thawed blastocysts: A satisfactory option.
Le, Quoc V; Abhari, Sina; Abuzeid, Omar M; DeAnna, Jennifer; Satti, Mohamed A; Abozaid, Tarek; Khan, Iqbal; Abuzeid, Mostafa I
2017-06-01
To describe pregnancy outcomes of frozen-thawed blastocysts cycles using modified natural cycle frozen embryo transfers (NC-FET) and down-regulated hormonally controlled frozen embryo transfers (HC-FET) protocols. This retrospective cohort study included all patients undergoing either modified NC-FET or down-regulated HC-FET using frozen-thawed day 5 embryos. Cycles with donor blastocysts were excluded. Four hundred twenty eight patients underwent a total of 493 FET cycles. Patients with regular menses and evidence of ovulation underwent modified NC-FET. These patients were given hCG 10,000 IU IM on the day of LH-surge. Vaginal progesterone (P4) was started two days later and blastocyst transfer was planned seven days after detecting the LH surge. Anovulatory patients and some ovulatory patients underwent down-regulated HC-FET. These patients were placed on medroxy-progesterone acetate (10mg) for 10days to bring on menses and were also given a half-dose of GnRH-agonist (GnRH-a) on the third day of medroxy-progesterone acetate. Exogenous estradiol was initiated on the third day of menses. Once serum E2 levels reached >500pg/mL and endometrial lining reached >8mm, intramuscular (IM) P4 in oil was administered. Blastocyst FET was planned 6days after initiating P4. The primary outcomes included clinical pregnancy and delivery rates. There were 197 patients in the modified NC-FET protocol and 181 in the down-regulated HC-FET protocol. Mean age (years), day-3 FSH levels (mIU/mL) and percentage of patients with male factor infertility were significantly higher and mean BMI (kg/m 2 ) was significantly lower in modified NC-FET compared to HC-FET, respectively. Analysis of the first cycle pregnancy outcomes revealed no significant differences in clinical pregnancy rate (54.3% vs. 52.5%) and delivery rate (47.2% vs. 43.6%) between modified NC-FET and HC-FET. Logistic regression analysis showed age (OR=0.939, 95% CI 0.894-0.989, p=0.011), number of blastocysts transferred (OR=1.414, 95% CI 1.046-1.909, p=0.024), and the year of FET (OR=1.127, 95% CI 1.029-1.234, p=0.010) were significant factors impacting clinical pregnancy. An age analysis within three age groups (≤35, 36-39, ≥40) was performed, but no significant difference in clinical pregnancy was observed. Our data suggests that modified NC-FET protocol has comparable pregnancy outcomes to down-regulated HC-FET when utilizing frozen-thawed day 5 embryos. Published by Elsevier B.V.
Murase, Ryuichi; Christian, Rigel T.; Lau, Darryl; Zielinski, Anne J.; Allison, Juanita; Almanza, Carolina; Pakdel, Arash; Lee, Jasmine; Limbad, Chandani; Liu, Yong; Debs, Robert J.; Moore, Dan H.; Desprez, Pierre-Yves
2012-01-01
Invasion and metastasis of aggressive breast cancer cells are the final and fatal steps during cancer progression. Clinically, there are still limited therapeutic interventions for aggressive and metastatic breast cancers available. Therefore, effective, targeted, and non-toxic therapies are urgently required. Id-1, an inhibitor of basic helix-loop-helix transcription factors, has recently been shown to be a key regulator of the metastatic potential of breast and additional cancers. We previously reported that cannabidiol (CBD), a cannabinoid with a low toxicity pro-file, down-regulated Id-1 gene expression in aggressive human breast cancer cells in culture. Using cell proliferation and invasion assays, cell flow cytometry to examine cell cycle and the formation of reactive oxygen species, and Western analysis, we determined pathways leading to the down-regulation of Id-1 expression by CBD and consequently to the inhibition of the proliferative and invasive phenotype of human breast cancer cells. Then, using the mouse 4T1 mammary tumor cell line and the ranksum test, two different syngeneic models of tumor metastasis to the lungs were chosen to determine whether treatment with CBD would reduce metastasis in vivo. We show that CBD inhibits human breast cancer cell proliferation and invasion through differential modulation of the extracellular signal-regulated kinase (ERK) and reactive oxygen species (ROS) pathways, and that both pathways lead to down-regulation of Id-1 expression. Moreover, we demonstrate that CBD up-regulates the pro-differentiation factor, Id-2. Using immune competent mice, we then show that treatment with CBD significantly reduces primary tumor mass as well as the size and number of lung metastatic foci in two models of metastasis. Our data demonstrate the efficacy of CBD in pre-clinical models of breast cancer. The results have the potential to lead to the development of novel non-toxic compounds for the treatment of breast cancer metastasis, and the information gained from these experiments broaden our knowledge of both Id-1 and cannabinoid biology as it pertains to cancer progression. PMID:20859676
Th1, Th2, and Th17 Cytokine Involvement in Thyroid Associated Ophthalmopathy
Shen, Jie; Li, Zhangfang; Li, Wenting; Ge, Ying; Xie, Min; Lv, Meng; Fan, Yanfei; Chen, Zhi; Zhao, Defu; Han, Yajuan
2015-01-01
To determine serum cytokine profiles in Graves' disease (GD) patients with or without active and inactive thyroid associated ophthalmopathy (TAO), we recruited 65 subjects: 10 GD only (without TAO), 25 GD + active TAO, 20 GD + TAO, and 10 healthy controls. Liquid chip assay was used to measure serum Th1/Th2/Th17 cytokines including IFN-γ (interferon-gamma), TNF-α (tumor necrosis factor-alpha), IL-1α (interleukin-1 alpha), IL-1Ra (IL-1 receptor antagonist), IL-2, IL-4, IL-6, and IL-17 and two chemokines: RANTES (regulated upon activation, normal T cell expressed and secreted) and IP-10 (IFN-γ-induced protein 10). Serum levels of TSH (thyroid stimulating hormone) receptor autoantibodies (TRAb) were measured using an enzyme linked immunosorbent assay. Compared with healthy controls, TAO patients showed significantly elevated serum levels of IFN-γ, TNF-α, IL-1α, IL-4, IL-6, IL-17, and IP-10. Comparing active and inactive TAO, serum Th1 cytokines IFN-γ and TNF-α were elevated in active TAO, while serum Th2 cytokine IL-4 was elevated in inactive TAO. Serum Th17 cytokine IL-17 was elevated in GD but reduced in both active and inactive TAO. A positive correlation was found between TRAb and IFN-γ, TNF-α, IL-1α, IL-2, IL-4, and IL-6. Taken together, serum Th1/Th2/Th17 cytokines and chemokines reflect TAO disease activity and may be implicated in TAO pathogenesis. PMID:26089587
Bhardwaj, Jyoti; Chaudhary, Narendra; Seo, Hyo-Jin; Kim, Min-Yong; Shin, Tai-Sun; Kim, Jong-Deog
2014-06-01
The anti-cancer activity of saponins and phenolic compounds present in green tea was previously reported. However, the immunomodulatory and adjuvanticity activity of tea saponin has never been studied. In this study, we investigated the immunomodulatory effect of tea saponin in T-lymphocytes and EL4 cells via regulation of cytokine response and mitogen-activated protein kinases (MAPK) signaling pathway. Quantitative analysis of mRNA expression level of cytokines were performed by reverse transcription polymerase chain reaction following stimulation with tea saponin, ovalbumin (OVA) alone or tea saponin in combination with OVA. Tea saponin inhibited the proliferation of EL4 cells measured in a dose-dependent manner. No cytotoxicity effect of tea saponin was detected in T-lymphocytes; rather, tea saponin enhanced the proliferation of T-lymphocytes. Tea saponin with OVA increased the expression of interleukin (IL)-1, IL-2, IL-12, interferon-γ and tumor necrosis factor (TNF)-α and decreased the expression level of IL-10 and IL-8 in T-lymphocytes. Furthermore, tea saponin, in the presence of OVA, downregulated the MAPK signaling pathway via inhibition of IL-4, IL-8 and nuclear factor kappaB (NF-κB) in EL4 cells. Th1 cytokines enhancer and Th2 cytokines and NF-κB inhibitor, tea saponin can markedly inhibit the proliferation and invasiveness of T-lymphoma (EL4) cells, possibly due to TNF-α- and NF-κB-mediated regulation of MAPK signaling pathway.
Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid
2017-12-01
Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between interferon regulatory factor 1 and hepatitis B virus pathogenesis in a larger population with longer follow-up is needed.
Ma, Yanjie; Cao, Huimin; Li, Zhixin; Fang, Jinzhi; Wei, Xiaomin; Cheng, Peng; Jiao, Rui; Liu, Xiaoran; Li, Ya; Xing, Yun; Tang, Jiali; Jin, Liang; Li, Taiming
2017-10-16
Hyperuricemia (HUA) is related to diabetes. Uric acid-induced inflammation and oxidative stress are risk factors for diabetes and its complications. Human urate transporter 1 (URAT1) regulates the renal tubular reabsorption of uric acid. IA-2(5)-P2-1, a potent immunogenic carrier designed by our laboratory, can induce high-titer specific antibodies when it carries a B cell epitope, such as B cell epitopes of DPP4 (Dipeptidyl peptidase-4), xanthine oxidase. In this report, we describe a novel multi-epitope vaccine composing a peptide of URAT1, an anti-diabetic B epitope of insulinoma antigen-2(IA-2) and a Th2 epitope (P2:IPALDSLTPANED) of P277 peptide in human heat shock protein 60 (HSP60). Immunization with the multi-epitope vaccine in streptozotocin-induced diabetes C57BL/6J mice successfully induced specific anti-URAT1 antibody, which inhibited URAT1 action and uric acid reabsorption, and increased pancreatic insulin level with a lower insulitis incidence. Vaccination with U-IA-2(5)-P2-1 (UIP-1) significantly reduced blood glucose and uric acid level, increased Th2 cytokines interleukin (IL)-10 and IL-4, and regulated immune reactions through a balanced Th1/Th2 ratio. These results demonstrate that the URAT1-based multi-epitope peptide vaccine may be a suitable therapeutic approach for diabetes and its complications.
Sykes, Robert W.; Gjersing, Erica L.; Foutz, Kirk; ...
2015-08-27
In this study, lignocellulosic materials provide an attractive replacement for food-based crops used to produce ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in the lignin biosynthetic pathway. In this study, eucalyptus down-regulated in expression of cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) or p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H, EC 1.14.13.36) were evaluated for cell wall composition and reduced recalcitrance.
Förander, P; Brené, S; Strömberg, I
2000-02-28
Cultured and transplanted adrenal medullary cells respond to ciliary neurotrophic factor (CNTF) with neurite formation and improved cell survival although the presence of the CNTF receptor-alpha (CNTFRalpha) has been unclear. This study show that CNTFRalpha mRNA was expressed in the postnatal day 1 as well as in the adult rat adrenal medulla. The highest CNTFRalpha mRNA signal was found in the ganglion cells of the adrenal medulla. After transplantation of adrenal medullary tissue the CNTFRalpha mRNA levels were down-regulated in the chromaffin cells. CNTF treatment of grafts did not normalize the receptor levels, but treatment with nerve growth factor (NGF) did. Thus, we demonstrate that CNTFRalpha mRNA is expressed in adrenal medulla, the levels becomes down-regulated after transplantation, but normalized after treatment with NGF.
Tong, Yuehong; Tiplitsky, Scott I.; Tar, Moses; Melman, Arnold; Davies, Kelvin P.
2009-01-01
Purpose Several reports have suggested the rat Vcsa1 gene is down-regulated in models of erectile dysfunction (ED). Vcsa’s protein product, sialorphin, is an endogenous neutral endopeptidase (NEP), and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated if down- regulation of Vcsa1 could result in adaptive change in the expression of G-protein coupled receptors (GPCR). Materials and Methods Gene expression in cultured rat corporal smooth muscle cells (CSM) following treatment with siRNA directed against Vcsa1 or the NEP gene was analyzed using microarray and quantitative RT-PCR. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernosal nerves. Using that animal model, we also investigated whether the down-regulation of Vcsa1 is accompanied by similar changes in gene expression observed in the CSM cells where Vcsa1 was knocked-down in vitro. Results Microarray analysis and quantitative RT-PCR demonstrated that CSM cells treated in vitro with siRNA against Vcsa1 resulted in up-regulation of GPCR as a functional group. In contrast, treatment of CSM cells that lowered NEP activity resulted in decreases in GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on NEP. In animals with bilaterally transected cavernous nerves the reduced expression of Vcsa1 is accompanied by increased GPCR expression in cavernosal tissue. Conclusions These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression. PMID:18554633
Tong, Yuehong; Tiplitsky, Scott I; Tar, Moses; Melman, Arnold; Davies, Kelvin P
2008-08-01
Several reports suggest that the rat Vcsa1 gene is down-regulated in models of erectile dysfunction. The Vcsa protein product sialorphin is an endogenous neutral endopeptidase inhibitor and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated whether Vcsa1 down-regulation could result in an adaptive change in GPCR (G-protein coupled receptor) expression. Gene expression in cultured rat corporeal smooth muscle cells following treatment with siRNA directed against Vcsa1 or the neutral endopeptidase gene was analyzed using microarray and quantitative reverse transcriptase-polymerase chain reaction. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernous nerves. In that animal model we also investigated whether Vcsa1 down-regulation was accompanied by similar changes in gene expression in corporeal smooth muscle cells in which Vcsa1 was knocked down in vitro. Microarray analysis and quantitative reverse transcriptase-polymerase chain reaction demonstrated that corporeal smooth muscle cells treated in vitro with siRNA against Vcsa1 resulted in GPCR up-regulation as a functional group. In contrast, treatment of corporeal smooth muscle cells that lowered neutral endopeptidase activity resulted in decreased GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on neutral endopeptidase. In animals with bilaterally transected cavernous nerves the decreased Vcsa1 expression is accompanied by increased GPCR expression in cavernous tissue. These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Suna, E-mail: wangs3@mail.nih.gov; Zhou, Yifu; Andreyev, Oleg
Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, andmore » the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions. • Overexpression of FABP3 inhibits cell growth but advanced the MSC survival under hypoxia. • Overexpression of FABP3 down-regulate the cell cycle and stem cell signaling pathways.« less
NASA Astrophysics Data System (ADS)
Moyano, Ricardo
2016-11-01
We present preliminary results obtained from a spatio-temporal analysis of mountain worship directions at the Atacama Indian community of Socaire, northern Chile (23°35'28''S, 67°52'36''W, 3,274 masl). These results can be linked to cultural, geographical, climatic, psychological and astronomical information from ethno-archaeological data. We propose a"system of offering to mountains" that includes concepts such as ceque (straight line), mayllku or mallku (mountain lord or ancestor), and pacha (space and time), which is understood as the projection of a left human hand in the visible horizon (Tumisa, Lausa, Chiliques, Ipira and Miñiques Mountains) (PAH-Triad). This system regulates annual activities such as planting (August 1st), harvesting (May 1st), cleansing of irrigation channels (October 24-26th), and the Catholic rituals and festivities of Saint Bartholomew (August 24th), Saint Barbara (December 4th), Christmas-Summer solstice (December 25th), Carnival (between February and March), Holy Cross (May 3rd), and Saint John-Winter solstice (June 24th). More importantly: it gives a basis for Socaireños' worldview including categories of"above, here, and down";"right and left";"female and male";"noon and midnight";"north and south";"visible and non-visible", along with the Andean concepts of center (ushnu);"two, three, four and five division"; and"humanized landscape".
Tian, Si; Yong, Min; Zhu, Jiang; Zhang, Li; Pan, Li; Chen, Qing; Li, Kai-Ting; Kong, Yu-Han; Jiang, Yuan; Yu, Ting-He; Yu, Le-Hua; Bai, Ding-Qun
2017-01-01
Emerging evidence indicates that the transcription factor nuclear factor-E2-related factor 2 (Nrf2) plays an essential role in cellular defense against oxidative stress; its activation has been related to cytoprotection. Here, we investigated the role of Nrf2 in improving the efficacy of methyl pyropheophorbide-amediated photodynamic therapy (Mppa-PDT) via the downregulation of Nrf2. Human ovarian cancer A2780 cells and SKOV3 cells were treated with Mppa-PDT and siRNA transfection was performed to inhibit Nrf2. After treated with siRNA and Mppa-PDT, the cell viability was examined with CCK-8 assay; cell apoptosis was detected tested by flow cytometry with Annexin V-FITC/PI; the celluar reactive oxygen species (ROS) and mitochondrial membrane potential were measured with DCFHDA and JC-1 staining; expression of protein was assessed by western blot analysis. We found that Nrf2 translocated from the cytoplasm to the nucleus in vitro and in vivo, and the expression of Nrf2 and P-Nrf2 increased through a possible mechanism regulated by mitogen-activated protein kinase (MAPK) after Mppa-PDT treatment. Furthermore, cytotoxicity and apoptosis induced by Mppa-PDT increased after Nrf2down-regulation. Nrf2 down -regulation increased reactive oxygen species (ROS) levels by attenuating antioxidants or pumping Mppa out of cells,which resulted from the inhibition of Nrf2-HO-1 or Nrf2- ABCG2 signaling. In addition, SKOV3 cells exhibited increased resistance to Mppa-PDT, and the expression levels of P-Nrf2 and ABCG2 were higher in SKOV3 cells than in A2780 cells, suggesting that Nrf2-ABCG2 signaling might be involved in the intrinsic resistanceto Mppa-PDT. These results provided evidence that Nrf2 down-regulation can enhance the effect of Mppa-PDT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.
Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A
2010-05-01
Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.
MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma
Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.
2010-01-01
Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954
Jo, Yoon Kyung; Roh, Seon Ae; Lee, Heejin; Park, Na Yeon; Choi, Eun Sun; Oh, Ju-Hee; Park, So Jung; Shin, Ji Hyun; Suh, Young-Ah; Lee, Eun Kyung; Cho, Dong-Hyung; Kim, Jin Cheon
2017-01-28
Autophagy plays complex roles in tumor initiation and development, and the expression of autophagy-related genes (ATGs) is differentially regulated in various cancer cells, depending on their environment. In this study, we analyzed the expressional relationship between polypyrimidine tract-binding protein 1 (PTBP1) and ATG10 in metastatic colorectal cancer. PTBP1 is associated with tumor metastasis in primary colorectal tumors and colorectal cancer liver metastasis (CLM) tissues. In addition, PTPB1 directly interacts with mRNA of ATG10, and regulates ATG10 expression level in colorectal cancer cells. Ectopic expression of PTBP1 decreased ATG10 expression, whereas down-regulation of PTBP1 increased ATG10 level. In contrast to PTBP1, expression of ATG10 was decreased in CLM tissues. Knock down of ATG10 promoted cell migration and invasion of colorectal cancer cells. Moreover, depletion of ATG10 modulated epithelial-mesenchymal transition-associated proteins in colorectal cancer cells: N-cadherin, TCF-8/ZEB1, and CD44 were up-regulated, whereas E-cadherin was down-regulated. Taken together, our findings suggest that expression of ATG10 negatively regulated by PTBP1 is associated with metastasis of colorectal cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
MANF regulates dopaminergic neuron development in larval zebrafish.
Chen, Y-C; Sundvik, M; Rozov, S; Priyadarshini, M; Panula, P
2012-10-15
Mesencephalic astrocyte derived neurotrophic factor (MANF) is recognized as a dopaminergic neurotrophic factor, which can protect dopaminergic neurons from neurotoxic damage. However, little is known about the function of MANF during the vertebrate development. Here, we report that MANF expression is widespread during embryonic development and in adult organs analyzed by qPCR and in situ hybridization in zebrafish. Knockdown of MANF expression with antisense splice-blocking morpholino oligonucleotides resulted in no apparent abnormal phenotype. Nevertheless, the dopamine level of MANF morphants was lower than that of the wild type larvae, the expression levels of the two tyrosine hydroxylase gene transcripts were decreased and a decrease in neuron number in certain groups of th1 and th2 cells in the diencephalon region in MANF morphants was observed. These defects were rescued by injection of exogenous manf mRNA. Strikingly, manf mRNA could partly restore the decrease of th1 positive cells in Nr4a2-deficient larvae. These results suggest that MANF is involved in the regulation of the development of dopaminergic system in zebrafish. Copyright © 2012 Elsevier Inc. All rights reserved.
Lungu, Gina F; Stoica, George; Wong, Paul K Y
2008-05-01
Moloney murine leukemia virus-temperature sensitive (MoMuLV-ts1)-mediated neuronal death is a result of both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Here the authors propose vascular endothelial growth factor (VEGF) down-regulation as another contributory factor in neuronal degeneration induced by ts1 infection. To determine how ts1 affects VEGF expression in ts1-infected brain, the authors examined the expression of several proteins that are important in regulating the expression of VEGF. The authors found significant decreases in Jun-activating domain-binding protein 1 (Jab1), hypoxia-inducible factor (HIF)-1alpha, and VEGF levels and increases in p53 protein levels in ts1-infected brains compared to noninfected control brains. The authors suggest that a decrease Jab1 expression in ts1 infection leads to accumulation of p53, which binds to HIF-1alpha to accelerate its degradation. A rapid degradation of HIF-1alpha leads to decreased VEGF production and secretion. Considering that endothelial cells are the most conspicuous in virus replication and production in ts1 infection, but are not killed by the infection, the authors examined the expression of these proteins using infected and noninfected mouse cerebrovascular endothelial (CVE) cells. The ts1- infected CVE cells showed decreased Jab1, HIF-1alpha, and VEGF mRNA and protein levels and increased p53 protein levels compared with noninfected cells, consistent with the results found in vivo. These results confirm that ts1 infection results in insufficient secretion of VEGF from endothelial cells and may result in decreased neuroprotection. This study suggested that ts1-mediated neuropathology in mice may result from changes in expression and activity of Jab1, p53, and HIF-1alpha, with a final target on VEGF expression and neuronal degeneration.
Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin
2015-01-01
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987
Shibata, Shun-Ichi; Marushima, Hideki; Asakura, Tadashi; Matsuura, Tomokazu; Eda, Homare; Aoki, Katsuhiko; Matsudaira, Hiroshi; Ueda, Kazu; Ohkawa, Kiyoshi
2009-05-01
To confirm the usefulness of the radial flow type bioreactor (RFB) for a three-dimensional (3D) culture system, which provides a tissue architecture and molecular function mimicking the in vivo environment, molecular expression in the A431 human squamous carcinoma cell line during culture were analyzed under the physically different environments of 3D culture in the RFB, 2D culture in a monolayer as well as in nude mice. Time-dependent accumulation of autocrine transforming growth factor (TGF) beta1 was found in spent culture media obtained only from 3D cultured A431 cancer cells, which grew well with a stratified-sheet morphology. Cells in the RFB overexpressed matrix metalloproteinase 7 (MMP7) and showed an increased release of soluble 80-kDa fragments of E-cadherin into the media time-dependently, resulting in the reduction of E-cadherin protein at the cell surface without down-regulation of the mRNA. beta-Catenin and its nuclear partner, LEF1, were up-regulated and Wnt protein secretion was also accelerated. Additional up-regulation of the transcriptional factors, HMGA2 and down-stream Slug, was noted. TGFbeta1-dependent, MMP7-mediated up-regulation of beta-catenin/LEF1 signaling and TGFbeta1-activated HMGA2 pathways consequently converged with Slug overexpression, due to disassembly and further repression of E-cadherin expression, which was reproducible in the epithelial mesenchymal transition process without any manipulation. Other transcriptional factors, Notch/HEY1 and NF-kappaB, were also up-regulated in 3D-cultured cells. These signals recruited molecules related to extracellular matrix-cell remodeling and angiogenesis. Expression of several representative molecules in the 3D cultured cells was parallel with that in xenotransplanted A431 tumor tissues in nude mice. 3D culture of tumor cells in the RFB is a useful tool for cancer experimental biology and evaluation of cancer therapeutic-like systems in nude mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Kyung-Soo; Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan; Park, Jun-Ik
2012-03-01
SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-cateninmore » expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia-exposed or hypoxic preconditioned cells. ► SIRT1 deacetylates c-Myc and β-catenin ► HIF-1α is up-regulated by down-regulation of c-Myc and β-catenin expression. ► Polyphenolic SIRT1 activators mimics hypoxic preconditioning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian A. Larkins
2012-09-12
Development of the endosperm in cereal grasses entails different phases characterized by cell division, endoreduplication, accumulation of storage metabolites and cell death, which need to be carried out in an orderly fashion. While correct regulation of the cell cycle plays an essential role in endosperm development, the key regulatory factors and how the cell cycle interfaces with other pathways in this developmental context are largely unknown. We investigated the cyclin-dependent kinase (CDK)-retinoblastoma pathway and how it controls the cell cycle and coordinates it with other processes during maize endosperm development. Retinoblastoma-related (RBR) proteins may be inactivated through CDK-mediated phosphorylation, butmore » the identity of the responsible kinase in maize is unknown. We have previously shown that down-regulation of CDKA;1 severely inhibits the endoreduplication cell cycle and suggested that CDK may be an up-stream regulator of the retinoblastoma pathway. We discovered two types of maize RBR genes, RBR1 and RBR3, which differ in terms of structure, regulation and function. Phylogenetic analyses indicate that these genes may be distinctive features of the Poaceae. We found that RBR3 plays a positive rather than a negative role in DNA replication, cell transformation, and the expression of the minichromosome maintenance (MCM)2-7 family of DNA replication factors. These features are a paradigm shift in RBR gene function and appear to be unique within the RBR gene family. They suggest the existence in maize and related cereal crops of specific RBR/E2F-dependent pathways impinging on the cell cycle and development. RBR1 was down-regulated in transgenic endosperm using RNAi approaches. This resulted in the de-repression of a number of down-stream E2F targets, including RBR3, the MCM2-7 gene family, DNA methyltransferase (MET)1, CDKB;1, and the recently identified RBR4 gene. It also increased endosperm ploidy levels, stimulated the production of a larger number of cells, reduced the average cell size, and promoted programmed cell death. To test whether CDKA;1 inhibits RBR1 (through phosphorylation) in the pathway that leads to DNA synthesis and endoreduplication, the two CDKA;1 and RBR1 down-regulated mutants were crossed and their progeny analyzed. Our results indicate that CDKA;1 controls endoreduplication through an RBR1-dependent pathway. However, the ability of RBR1 to repress gene expression programs is independent from CDKA1, suggesting the presence of two differently regulated RBR1 activities in developing endosperm. One type of RBR1 activity controls E2F-dependent gene expression and is largely independent from CDKA;1, while another suppresses endoreduplication and can be inhibited by CDKA;1. In addition, RBR1 is part of a regulatory feedback loop that impinges on CDK activity. Together, these results indicate that the CDKA;1-RBR1 pathway integrates and controls different processes associated with endosperm development. Genome-wide analyses of the transcriptome, metabolome, and epigenetic mechanisms to understand how the cell cycle is coordinated with other pathways at a systems biology level are currently underway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Mi-Bo; Song, Youngwoo; Kim, Changhee
Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element bindingmore » protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.« less
Cárdenas-Rodríguez, Julio; Li, Yuguo; Galons, Jean-Philippe; Cornnell, Heather; Gillies, Robert J; Pagel, Mark D; Baker, Amanda F
2012-09-01
TH-302, a hypoxia-activated anticancer prodrug, was evaluated for antitumor activity and changes in dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) in a mouse model of pancreatic cancer. TH-302 monotherapy resulted in a significant delay in tumor growth compared to vehicle-treated controls. TH-302 treatment was also associated with a significant decrease in the volume transfer constant (K(trans)) compared to vehicle-treated controls 1 day following the first dose measured using DCE-MRI. This early decrease in K(trans) following the first dose as measured is consistent with selective killing of the hypoxic fraction of cells which are associated with enhanced expression of hypoxia inducible transcription factor-1 alpha that regulates expression of permeability and perfusion factors including vascular endothelial growth factor-A. No changes were observed in DW-MRI following treatment with TH-302, which may indicate that this technique is not sensitive enough to detect changes in small hypoxic fractions of the tumor targeted by TH-302. These results suggest that changes in tumor permeability and/or perfusion may be an early imaging biomarker for response to TH-302 therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
Differentiation of Effector CD4 T Cell Populations*
Zhu, Jinfang; Yamane, Hidehiro; Paul, William E.
2012-01-01
CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation. PMID:20192806
Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji
2006-01-01
During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22α and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription. PMID:17030628
Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji
2006-12-01
During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.
Priya, Anusha; Johar, Kaid; Wong-Riley, Margaret T T
2013-01-01
Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.
Pathological and therapeutic roles of innate lymphoid cells in diverse diseases.
Kim, Jisu; Kim, Geon; Min, Hyeyoung
2017-11-01
Innate lymphoid cells (ILCs) are a recently defined type of innate-immunity cells that belong to the lymphoid lineage and have lymphoid morphology but do not express an antigen-specific B cell or T-cell receptor. ILCs regulate immune functions prior to the formation of adaptive immunity and exert effector functions through a cytokine release. ILCs have been classified into three groups according to the transcription factors that regulate their development and function and the effector cytokines they produce. Of note, ILCs resemble T helper (Th) cells, such as Th1, Th2, and Th17 cells, and show a similar dependence on transcription factors and distinct cytokine production. Despite their short history in immunology, ILCs have received much attention, and numerous studies have revealed biological functions of ILCs including host defense against pathogens, inflammation, tissue repair, and metabolic homeostasis. Here, we describe recent findings about the roles of ILCs in the pathogenesis of various diseases and potential therapeutic targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Gao, Yang; Chang, Na
The abnormality of nuclear receptor-related protein 1 (Nurr1) in expression and function can contribute to neurodegeneration of dopaminergic neurons and occurrence of Parkinson's disease (PD). However, its related mechanism in PD is still unknown. In this study, we found that Nurr1 was down-regulated and CCL2 was up-regulated in PD patients and PD mice. CCL2 promoted apoptosis and secretion of TNF-α and IL-1β in SH-SY5Y cells and inhibited cell viability while knockdown of CCL2 exerted the opposite effects. Nurr1 overexpression inhibited apoptosis, the release of TNF-α and IL-1β and promoted viability in α-Syn-treated SH-SY5Y cells, which was markedly promoted by CCL2more » antibody and dramatically reversed by CCL2. Nurr1 overexpression negatively regulated CCL2 expression in vivo and in vitro. Furthermore, Nurr1 overexpression remarkably relieved MPTP-induced movement disorder and spatial memory deficits and played neuroprotective and anti-inflammatory roles in MPTP-induced PD mice by down-regulating CCL2 in vivo. In conclusion, Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 in both in vivo and in vitro PD models, contributing to developing mechanism-based and neuroprotective strategies against PD. - Highlights: • Nurr1 was down-regulated and CCL2 was up-regulated in PD patients and PD mice. • Nurr1 overexpression inhibited apoptosis, release of TNF-α and IL-1β and promoted viability in α-Syn-treated SH-SY5Y cells. • CCL2 reversed the effect of Nurr1 overexpression on apoptosis, inflammatory cytokines secretion and viability. • Nurr1 overexpression negatively regulated CCL2 expression in vivo and in vitro. • Nurr1 overexpression remarkably relieved MPTP-induced movement disorder and spatial memory deficits.« less
Lima, Stella Maris F; Freire, Mirna S; Gomes, Ana Luisa O; Cantuária, Ana Paula C; Dutra, Flávia Rodrigues P; Magalhães, Beatriz S; Sousa, Maurício Gonçalves C; Migliolo, Ludovico; Almeida, Jeeser A; Franco, Octávio L; Rezende, Taia Maria B
2017-09-01
Endodontic treatment is mainly based on root canal disinfection and its failure may be motivated by microbial resistance. Endodontic therapy can be benefitted by host defense peptides (HDPs), which are multifunctional molecules that act against persistent infection and inflammation. This study aimed to evaluate the antimicrobial, cytotoxic and immunomodulatory activity of several HDPs, namely clavanin A, clavanin A modified (MO) and LL-37, compared to intracanal medication Ca(OH) 2 . HDPs and Ca(OH) 2 were evaluated by: (1) antimicrobial assays against Candida albicans and Enterococcus faecalis, (2) cytotoxicity assays and (3) cytokine tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, interleukin (IL)-1α, IL-6, IL-10 and IL-12 and nitric oxide (NO) production by RAW 264.7 cells incubated with or without heat-killed (HK) C. albicans or E. faecalis combined or not with interferon-γ. The minimum inhibitory concentration (MIC) was established only for E. faecalis (LL-37, 57μM). Considering cytotoxicity, clavanin MO was able to reduce cell viability in many groups and demonstrated lowest LC 50 . The Ca(OH) 2 up-regulated the production of MCP-1, TNF-α, IL-12 and IL-6 and down-regulated IL-1α, IL-10 and NO. Clavanins up-regulated the TNF-α and NO and down-regulated IL-10 production. LL-37 demonstrated up-regulation of IL-6 and TNF-α production and down-regulation in IL-10 and NO production. In conclusion, LL-37 demonstrated better antibacterial potential. In addition, Ca(OH) 2 demonstrated a proinflammatory response, while the HDPs modulated the inflammatory response from non-interference with the active cytokines in the osteoclastogenesis process, probably promoting the health of periradicular tissues. Copyright © 2017 Elsevier Inc. All rights reserved.
Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes.
Stoney, Patrick N; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J; McCaffery, Peter
2016-03-01
Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. © 2015 Wiley Periodicals, Inc.
Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1
Ma, Yan; Zhang, Chen; Gao, Xiao-Bo; Luo, Hai-Yan; Chen, Yang; Li, Hui-hua; Ma, Xu; Lu, Cai-Ling
2015-01-01
As a nutritional factor, folic acid can prevent cardiac and neural defects during embryo development. Our previous study showed that arsenic impairs embryo development by down-regulating Dvr1/GDF1 expression in zebrafish. Here, we investigated whether folic acid could protect against arsenic-mediated embryo toxicity. We found that folic acid supplementation increases hatching and survival rates, decreases malformation rate and ameliorates abnormal cardiac and neural development of zebrafish embryos exposed to arsenite. Both real-time PCR analysis and whole in-mount hybridization showed that folic acid significantly rescued the decrease in Dvr1 expression caused by arsenite. Subsequently, our data demonstrated that arsenite significantly decreased cell viability and GDF1 mRNA and protein levels in HEK293ET cells, while folic acid reversed these effects. Folic acid attenuated the increase in subcellular reactive oxygen species (ROS) levels and oxidative adaptor p66Shc protein expression in parallel with the changes in GDF1 expression and cell viability. P66Shc knockdown significantly inhibited the production of ROS and the down-regulation of GDF1 induced by arsenite. Our data demonstrated that folic acid supplementation protected against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1/GDF1, and folic acid enhanced the expression of GDF1 by decreasing p66Shc expression and subcellular ROS levels. PMID:26537450
High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats
You, Li; Sheng, Zheng-yan; Tang, Chuan-ling; Chen, Lin; Pan, Ling; Chen, Jin-yu
2011-01-01
Aim: To investigate the effects of high cholesterol diet on the development of osteoporosis and the underlying mechanisms in rats. Methods: Female Sprague-Dawley rats were randomly separated into 3 groups: (1) the high cholesterol fed rats were fed a high cholesterol diet containing 77% normal diet food, 3% cholesterol and 20% lard for 3 months; (2) ovariectomised (OVX) rats were bilaterally ovariectomised and fed a standard diet; and (3) the control rats were fed the standard diet. Bone mineral density (BMD) of the rats was measured using dual-energy X-ray absorptiometry. Serum levels of oestradiol (E2), osteocalcin (BGP) and carboxy-terminal collagen crosslinks (CTX) were measured using ELISA. Gene expression profile was determined with microarray. Mouse osteoblast cells (MC3T3-E1) were used for in vitro study. Proliferation, differentiation and oxidative stress of the osteoblasts were investigated using MTT, qRT-PCR and biochemical methods. Results: In high cholesterol fed rats, the femur BMD and serum BGP level were significantly reduced, while the CTX level was significantly increased. DNA microarray analysis showed that 2290 genes were down-regulated and 992 genes were up-regulated in this group of rats. Of these genes, 1626 were also down-regulated and 1466 were up-regulated in OVX rats. In total, 370 genes were up-regulated in both groups, and 976 genes were down-regulated. Some of the down-regulated genes were found to code for proteins involved in the transforming growth factor beta (TGF-β)/bone morphogenic protein (BMP) and Wnt signaling pathways. The up-regulated genes were found to code for IL-6 and Ager with bone-resorption functions. Treatment of MC3T3-E1 cells with cholesterol (12.5-50 μg/mL) inhibited the cell proliferation and differentiation in vitro in a concentration-dependent manner. The treatment also concentration-dependently reduced the expression of BMP2 and Cbfa1, and increased the oxidative injury in MC3T3-E1 cells. Conclusion: The results suggest a close correlation between hypercholesterolaemia and osteoporosis. High cholesterol diet increases the risk of osteoporosis, possible via inhibiting the differentiation and proliferation of osteoblasts. PMID:22036861
Manna, Sugata; Mukherjee, Sudeshna; Roy, Anup; Das, Sukta; Panda, Chinmay Kr
2009-05-01
The modulatory influence of tea polyphenols (epigallocatechin gallate, epicatechin gallate and theaflavin) on benzo[a]pyrene (B[a]P)-induced lung carcinogenesis in mice was analyzed using histopathological and molecular parameters. Progression of lung lesions was restricted at the hyperplastic stage by tea polyphenols. A significant reduction in cellular proliferative index and an increase in apoptotic index were noted in the restricted lung lesions. High expression of H-ras, c-myc, cyclin D1 and p53 genes was seen at the inflammatory stage (9th week) and in subsequent premalignant lesions, but down-regulation of H-ras at the hyperplastic stage (17th week). Expression of bcl-2 was high in hyperplastic lesions, whereas the expression of mdm2 and bcl-xl increased only at the moderately dysplastic stage (36th week). The tea polyphenols inhibited inflammatory response in the lung lesions on the 9th week, when decreased expression of H-ras and c-myc and increased expression of bax were noted. Prolonged treatment (>9th week) with tea polyphenols resulted in changes in the expression of some additional genes, such as reduced expression of cyclin D1 (from the 17th week), bcl-2 (from the 26th week; mild dysplasia) and p21 (on the 36th week), and high expression of p53 (from the 17th week) and p27 (on the 36th week). These observations indicate that the tea polyphenols can restrict B[a]P-induced lung carcinogenesis by differential modulation of the expression of p53 and its associated genes such as bax, bcl-2, mdm2, p21 and p27, along with H-ras, c-myc and cyclin D1, at different time points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri
Highlights: Black-Right-Pointing-Pointer 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. Black-Right-Pointing-Pointer 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. Black-Right-Pointing-Pointer 1D10G down-regulates the expression of NF-{kappa}B-, AP1- or IRF3-target genes. Black-Right-Pointing-Pointer MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity thanmore » gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-{kappa}B (NF-{kappa}B) or activating protein 1 (AP1)-target genes such as tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-1{beta}, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-{beta} gene and IFN-{gamma} inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.« less
Oshima, Yoshimi; Shikata, Masahito; Koyama, Tomotsugu; Ohtsubo, Norihiro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru
2013-01-01
The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor WAX INDUCER1/SHINE1 (WIN1/SHN1) regulates the biosynthesis of waxy substances in Arabidopsis thaliana. Here, we show that the MIXTA-like MYB transcription factors MYB106 and MYB16, which regulate epidermal cell morphology, also regulate cuticle development coordinately with WIN1/SHN1 in Arabidopsis and Torenia fournieri. Expression of a MYB106 chimeric repressor fusion (35S:MYB106-SRDX) and knockout/down of MYB106 and MYB16 induced cuticle deficiencies characterized by organ adhesion and reduction of epicuticular wax crystals and cutin nanoridges. A similar organ fusion phenotype was produced by expression of a WIN1/SHN1 chimeric repressor. Conversely, the dominant active form of MYB106 (35S:MYB106-VP16) induced ectopic production of cutin nanoridges and increased expression of WIN1/SHN1 and wax biosynthetic genes. Microarray experiments revealed that MYB106 and WIN1/SHN1 regulate similar sets of genes, predominantly those involved in wax and cutin biosynthesis. Furthermore, WIN1/SHN1 expression was induced by MYB106-VP16 and repressed by MYB106-SRDX. These results indicate that the regulatory cascade of MIXTA-like proteins and WIN1/SHN1 coordinately regulate cutin biosynthesis and wax accumulation. This study reveals an additional key aspect of MIXTA-like protein function and suggests a unique relationship between cuticle development and epidermal cell differentiation. PMID:23709630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Zhijie; Jiang, Hequn; Liu, Ying
MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis inmore » vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future. - Highlights: • Sirt1 is a direct target of miR-133b in HCC. • miR-133b over-expression suppresses HCC progression in vitro and in vivo. • Sirt1 restoration reverses the effect of miR-133b over-expression on HCC cells. • GPC3 down-regulation reverses the effect of Sirt1 up-regulation on HCC cells. • Sirt1 activates Wnt β-catenin signaling by GPC3 in vitro.« less
Singh, R; Upadhyay, G; Kumar, S; Kapoor, A; Kumar, A; Tiwari, M; Godbole, M M
2003-01-01
Thyroid hormone (TH) deficiency results in delayed proliferation and migration of cerebellar granule cells. Although extensive cell loss during the development of the cerebellum under hypothyroid conditions is known, its nature and its mechanism are poorly understood. Bcl-2 family gene expression is known to determine the fate of cells to undergo apoptosis. We evaluated the effect of hypothyroidism on Bcl-2 family gene expression in the developing rat cerebellum. Electrophoresis and Western blotting were used to analyze DNA fragmentation and expression of DNA fragmentation factor (DFF-45), Bcl-2, Bcl-xL and Bax genes respectively. In the hypothyroid condition, extensive DNA fragmentation and enhanced cleavage of DFF-45 were seen throughout development (postnatal day 0 to day 24) and adulthood whereas they were absent in the euthyroid state. The anti-apoptotic genes Bcl-2 and Bcl-xL were down-regulated and the pro-apoptotic gene Bax was expressed at higher levels compared with the euthyroid state. These results suggest that normal levels of TH prevent cerebellar apoptosis to a large extent, whereas hypothyroidism not only increases the extent but also the duration of apoptosis by down-regulating the anti-apoptotic genes and maintaining a high level of the pro-apoptotic gene Bax.
Han, Kyu-Hyun; Park, Jong-Min; Jeong, Migyeong; Han, Young-Min; Go, Eun-Jin; Park, Juyeon; Kim, Hocheol; Han, Jae Gab; Kwon, Oran; Hahm, Ki Baik
2017-01-01
Background/Aims In inflammatory bowel disease (IBD), repeated bouts of remission and relapse occur in patients and can impose a risk of colitis-associated cancer. We hypothesized that plant extracts of Atractylodes macrocephala (AM) or Taraxacum herba (TH) may be better than sulfasalazine for treating this disease because these extracts can promote additional regeneration. Methods Murine intestinal epithelial IEC-6 cells were pretreated with AM or TH before a lipopolysaccharide (LPS)-induced challenge. Acute colitis was induced with 7 days of dextran sulfate sodium (DSS) in male C57BL/6 mice, and extracts of AM and TH were administered for 2 weeks before DSS administration. Results In vitro studies demonstrated that AM or TH treatment reduced LPS-induced COX-2 and tumor necrosis factor-α mRNA levels but increased heme oxygenase-1 (HO-1). Oral preadministration of AM and TH rescued mice from DSS-induced colitis by inhibiting inflammatory mediators via inactivated extracellular signal regulated kinase and repressed nuclear factor κB and signal transducer and activator of transcription 3, but the effect was weaker for sulfasalazine than that for the extracts. Anti-inflammatory activities occurred via the inhibition of macrophage and T lymphocyte infiltrations. Unlike sulfasalazine, which did not induce HO-1, TH extracts afforded significant HO-1 induction. Conclusions Because the AM or TH extracts were far superior in preventing DSS-induced colitis than sulfasalazine, AM or TH extracts can be considered natural agents that can prevent IBD relapse. PMID:28651306
Han, Kyu-Hyun; Park, Jong-Min; Jeong, Migyeong; Han, Young-Min; Go, Eun-Jin; Park, Juyeon; Kim, Hocheol; Han, Jae Gab; Kwon, Oran; Hahm, Ki Baik
2017-09-15
In inflammatory bowel disease (IBD), repeated bouts of remission and relapse occur in patients and can impose a risk of colitis-associated cancer. We hypothesized that plant extracts of Atractylodes macrocephala (AM) or Taraxacum herba (TH) may be better than sulfasalazine for treating this disease because these extracts can promote additional regeneration. Murine intestinal epithelial IEC-6 cells were pretreated with AM or TH before a lipopolysaccharide (LPS)-induced challenge. Acute colitis was induced with 7 days of dextran sulfate sodium (DSS) in male C57BL/6 mice, and extracts of AM and TH were administered for 2 weeks before DSS administration. In vitro studies demonstrated that AM or TH treatment reduced LPS-induced COX -2 and tumor necrosis factor -α mRNA levels but increased heme oxygenase-1 (HO-1). Oral preadministration of AM and TH rescued mice from DSS-induced colitis by inhibiting inflammatory mediators via inactivated extracellular signal regulated kinase and repressed nuclear factor κB and signal transducer and activator of transcription 3, but the effect was weaker for sulfasalazine than that for the extracts. Anti-inflammatory activities occurred via the inhibition of macrophage and T lymphocyte infiltrations. Unlike sulfasalazine, which did not induce HO-1, TH extracts afforded significant HO-1 induction. Because the AM or TH extracts were far superior in preventing DSS-induced colitis than sulfasalazine, AM or TH extracts can be considered natural agents that can prevent IBD relapse.
Attenuation of Choroidal Neovascularization by Histone Deacetylase Inhibitor
Chan, Nymph; He, Shikun; Spee, Christine K.; Ishikawa, Keijiro; Hinton, David R.
2015-01-01
Choroidal neovascularization (CNV) is a blinding complication of age-related macular degeneration that manifests as the growth of immature choroidal blood vessels through Bruch’s membrane, where they can leak fluid or hemorrhage under the retina. Here, we demonstrate that the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) can down-regulate the pro-angiogenic hypoxia-inducible factor-1α and vascular endothelial growth factor (VEGF), and up-regulate the anti-angiogenic and neuro-protective pigment epithelium derived factor in human retinal pigment epithelial (RPE) cells. Most strikingly, TSA markedly down-regulates the expression of VEGF receptor-2 in human vascular endothelial cells and, thus, can knock down pro-angiogenic cell signaling. Additionally, TSA suppresses CNV-associated wound healing response and RPE epithelial-mesenchymal transdifferentiation. In the laser-induced model of CNV using C57Bl/6 mice, systemic administration of TSA significantly reduces fluorescein leakage and the size of CNV lesions at post—laser days 7 and 14 as well as the immunohistochemical expression of VEGF, VEGFR2, and smooth muscle actin in CNV lesions at post-laser day 7. This report suggests that TSA, and possibly HDACi’s in general, should be further evaluated for their therapeutic potential for the treatment of CNV. PMID:25807249
Presence of brown adipose tissue in an adolescent with severe primary hypothyroidism.
Kim, Mimi S; Hu, Houchun H; Aggabao, Patricia C; Geffner, Mitchell E; Gilsanz, Vicente
2014-09-01
Brown adipose tissue (BAT) generates heat during adaptive thermogenesis in response to cold temperature. Thyroid hormone (TH) receptors, type 2 deiodinase, and TSH receptors are present on brown adipocytes, indicating that the thyroid axis regulates BAT. It is unknown whether absent TH in humans would down-regulate development of BAT and its thermogenic function. The objective of the study was to examine BAT by magnetic resonance imaging (MRI) and infrared thermal imaging (IRT) in a pediatric patient with severe primary hypothyroidism before and after TH treatment. This study was a case report with longitudinal follow-up in a tertiary center. BAT fat fraction (FF) by MRI and skin temperature by IRT were measured. An 11.5-year-old female was severely hypothyroid (TSH, 989 μIU/mL; free T4, 0.10 ng/dL; low thyroglobulin, 3.0 ng/mL). Low MRI measures of FF (56.1% ± 3.7%) indicated that BAT was abundantly present in the supraclavicular fossa. IRT showed higher supraclavicular temperature (36.0°C ±0.16°C) than the suprasternal area (34.3°C ± 0.19°C). After 2 months of TH replacement, she was euthyroid (TSH, 4.3 μIU/mL; free T4, 1.49 ng/dL; T3, 102 ng/dL) at which time supraclavicular BAT decreased (increased FF 60.7% ± 3.8%). IRT showed a higher, more homogeneous skin temperature throughout the upper thorax (supraclavicular, 37.1°C ± 0.23°C; suprasternal, 36.4°C ± 0.13°C). The overall size of the supraclavicular fat depot decreased from 84.79 cm(3) to 41.21 cm(3). These findings document the presence of BAT and thermogenesis in profound hypothyroidism and suggest a role for TSH and/or TRH as a potential regulator of BAT.
Shen, Chen; Xu, Yingwu; Huang, Jianqin; Wang, Zhengjia; Qiu, Jiani; Huang, Youjun
2014-10-01
The full ORFs of three floral genes in hickory (Carya cathayensis Sarg.), CcAGL24 (the AGAMOUS-LIKE24 homolog), CcSOC1 (the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 homolog) and CcAP1 (the APETALA1 homolog) are derived using a 5' RACE PCR protocol. Through sequence alignment and phylogenetic analysis, it is demonstrated that the three genes belong to the MADS-Box family. According to the evolutionary trees of the three genes, the homologous genes from the same family cluster well together, while those from different orders doesn't match evolutionary regularity of individual organisms. The result of Quantitative RT-PCR analysis shows that the transcriptional levels of the three genes are up-regulated in early stage and down-regulated in late stage in pistillate floral development. However, it takes different time to reach respective expression peak among the three genes. In staminate floral development, the transcription trend of the three genes is up-regulated, subsequently down-regulated, and then up-regulated again. Nevertheless, those trajectories, peaks, expression levels, inflection points are different in pistillate floral development. The result suggests that their functions are different in between pistillate and staminate floral development. The probable ordinal site of the three genes in the flowering network from top down is CcAGL24, CcSOC1, and CcAP1, which is identical to that in herbaceous plants. Moreover, several adverse environmental factors trigger several negative genes and then confine the development of staminate floral buds. Our results suggest the possible relationship among the three critical floral genes and their functions throughout the floral development in hickory. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Zhang, Gui-Zhi; Jin, Shang-Hui; Li, Pan; Jiang, Xiao-Yi; Li, Yan-Jie; Hou, Bing-Kai
2017-12-01
Ectopic expression of auxin glycosyltransferase UGT84A2 in Arabidopsis can delay flowering through increased indole-3-butyric acid and suppressed transcription of ARF6, ARF8 and flowering-related genes FT, SOC1, AP1 and LFY. Auxins are critical regulators for plant growth and developmental processes. Auxin homeostasis is thus an important issue for plant biology. Here, we identified an indole-3-butyric acid (IBA)-specific glycosyltransferase, UGT84A2, and characterized its role in Arabidopsis flowering development. UGT84A2 could catalyze the glycosylation of IBA, but not indole-3-acetic acid (IAA). UGT84A2 transcription expression was clearly induced by IBA. When ectopically expressing in Arabidopsis, UGT84A2 caused obvious delay in flowering. Correspondingly, the increase of IBA level, the down-regulation of AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, and the down-regulation of flowering-related genes such as FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1), APETALA1 (AP1), and LEAFY(LFY) were observed in transgenic plants. When exogenously applying IBA to wild-type plants, the late flowering phenotype, the down-regulation of ARF6, ARF8 and flowering-related genes recurred. We examined the arf6arf8 double mutants and found that the expression of flowering-related genes was also substantially decreased in these mutants. Together, our results suggest that glycosyltransferase UGT84A2 may be involved in flowering regulation through indole-3-butyric acid-mediated transcriptional repression of ARF6, ARF8 and downstream flowering pathway genes.
Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.
Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil
2008-06-01
T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.
Kandhare, Amit D; Ghosh, Pinaki; Bodhankar, Subhash L
2014-08-05
Chronic, unhealed diabetic foot ulcer (DFU) is one of the most severe complications of diabetes mellitus (DM). Naringin, a flavanone glycoside antioxidant, was reported to have antidiabetic and anti-apoptotic properties. In the present study DM was induced experimentally by streptozotocin (STZ, 55 mg/kg, i.p.). In surgically introduced wounds on the dorsal surface of the hind paw of rats, the healing potential of naringin was investigated. Rats were treated with naringin (20, 40 and 80 mg/kg, p.o.), insulin (10 IU/kg, s.c.) and tetrachlorodecaoxide (TCDO) (1 drop, twice a day, topically) for 16 days. The wound area was measured every second day, and on day 17 various biochemical parameters were determined in serum, wound tissue, and histopathological examination of the wound was performed. Naringin (40 and 80 mg/kg) significantly (P<0.05) improved wound area, serum glucose level, glycated Hb and serum insulin. Naringin treatment at 40 and 80 mg/kg resulted in significant (P<0.05) up-regulation of mRNA expression of growth factor (IFG-1, TGF-β and VEGF-c), Ang-1 and collagen-1 whereas mRNA expression of inflammatory mediators (TNF-α, IL-1β and IL-6) was down-regulated. Furthermore, naringin significantly (P<0.05) attenuated STZ-induced apoptosis and stimulated angiogenesis in the wound tissue. Further results suggest that angiogenesis was improved via naringin-mediated inhibition of hyperglycemia, oxidative stress, down-regulation of inflammatory mediator expression and up-regulation of growth factor expression, leading to improved wound healing of DFU. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lin-Jie; He, Si-Yang; Niu, Dong-Bin; Guo, Jian-Ping; Xu, Yun-Long; Wang, De-Sheng; Cao, Yi; Zhao, Qi; Tan, Cheng; Li, Zhi-Li; Tang, Guo-Hua; Li, Yin-Hui; Bai, Yan-Qiang
2013-11-01
Dynamic variations in early selective attention to the color and direction of moving stimuli were explored during a 30 days period of head-down bed rest. Event-related potentials (ERPs) were recorded at F5, F6, P5, P6 scalp locations in seven male subjects who attended to pairs of bicolored light emitting diodes that flashed sequentially to produce a perception of movement. Subjects were required to attend selectively to a critical feature of the moving target, e.g., color or direction. The tasks included: a no response task, a color selective response task, a moving direction selective response task, and a combined color-direction selective response task. Subjects were asked to perform these four tasks on: the 3rd day before bed rest; the 3rd, 15th and 30th day during the bed rest; and the 5th day after bed rest. Subjects responded quickly to the color than moving direction and combined color-direction response. And they had a longer reaction time during bed rest on the 15th and 30th day during bed rest after a relatively quicker response on the 3rd day. Using brain event-related potentials technique, we found that in the color selective response task, the mean amplitudes of P1 and N1 for target ERPs decreased in the 3rd day during bed rest and 5th day after bed rest in comparison with pre-bed rest, 15th day and 30th day during bed rest. In the combined color-direction selective response task, the P1 latencies for target ERPs on the 3rd and 30th day during bed rest were longer than on the 15th day during bed rest. As 3rd day during bed rest was in the acute adaptation period and 30th day during bed rest was in the relatively adaptation stage of head-down bed rest, the results help to clarify the effects of bed rest on different task loads and patterns of attention. It was suggested that subjects expended more time to give correct decision in the head-down tilt bed rest state. A difficulty in the recruitment of brain resources was found in feature selection task, but no variations were detected in the no response and direction selective response tasks. It is suggested that the negative shift in color selective response task on the 3rd day of bed rest are a result of fluid redistribution. And feature selection was more affected than motion selection in the head down bed rest. The variations in cognitive processing speed observed for the combined color-direction selective response task are suggested to reflect the interaction between top-down mechanisms and hierarchical physiological characteristics during 30 days head-down bed rest.
Nemoto, Takayuki; Yanagita, Toshihiko; Kanai, Tasuku; Wada, Akihiko
2009-02-01
Glycogen synthase kinase-3 (GSK-3) is constitutively active in nonstimulated cells, where the majority of its substrates undergo inactivation/proteolysis by phosphorylation. Extracellular stimuli (e.g., insulin) catalyze inhibitory Ser(9)-phosphorylation of GSK-3beta, turning on signaling and causing other biological consequences otherwise constitutively suppressed by GSK-3beta. Regulated and dysregulated activities of GSK-3beta are pivotal to health, disease, and therapeutics (e.g., insulin resistance, neurodegeneration, tumorigenesis, inflammation); however, the underlying mechanisms of multifunctional GSK-3beta remain elusive. In cultured bovine adrenal chromaffin cells, 1) constitutive and negatively-regulated activities of GSK-3beta up- and down-regulated insulin receptor, insulin receptor substrate-1 (IRS-1), IRS-2, and Akt levels via controlling proteasomal degradation and protein synthesis; 2) nicotinic receptor/protein kinase C-alpha (PKC-alpha)/extracellular signal-regulated kinase (ERK) pathway up-regulated IRS-1 and IRS-2 levels, enhancing insulin-induced the phosphoinositide 3-kinase (PI3K)/Akt/GSK-3beta pathway; 3) inhibition of calcineurin by cyclosporin A or FK506 down-regulated IRS-2 level, attenuating insulin-like growth factor-I (IGF-I)-induced ERK and GSK-3beta pathways; and 4) insulin, IGF-I or therapeutics (e.g., lithium) up-regulated the voltage-dependent Na(v)1.7 sodium channel.
Getz, Jean; Lin, Dingbo; Medeiros, Denis M
2011-10-01
Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.
Neurofibromin Regulates Seizure Attacks in the Rat Pilocarpine-Induced Model of Epilepsy.
Ren, Min; Li, Kunyi; Wang, Dan; Guo, Jiamei; Li, Jing; Yang, Guang; Long, Xianghua; Shen, Wenjing; Hu, Rong; Wang, Xuefeng; Zeng, Kebin
2016-11-01
Studies have shown that neurofibromin (NF1) restricts GABA release at inhibitory synapses and regulates dendritic spine formation, which may play an important role in temporal lobe epilepsy (TLE). NF1 expression was detected by double-label immunofluorescence, immunohistochemistry, and western blot analysis in the brains of pilocarpine-induced epilepsy model rats at 6 h, 24 h, 72 h, 7 days, 14 days, 30 days, and 60 days after kindling. NF1 was localized primarily in the nucleus and cytoplasm of neurons. NF1 protein levels significantly increased in the chronic phase (from 7 days until 60 days) in this epileptic rat model. After NF1 expression was knocked down by specific siRNA, the effects of kindling with pilocarpine were evaluated on the 7th day after kindling. The onset latencies of pilocarpine-induced seizures were elevated, and the seizure frequency and duration were reduced in these rats. Our study demonstrates that NF1 promoted seizure attacks in rats with pilocarpine-induced epilepsy.
Liu, Shuai; Li, Meijuan; Su, Liangchen; Ge, Kui; Li, Limei; Li, Xiaoyun; Liu, Xu; Li, Ling
2016-01-01
Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut. PMID:27892506
TARGET (Translational Approaches for the Reversal, Genetic Evaluation and Treatment) of Lung Cancer
2005-09-01
AM, Belloni P, Nettesheim P (2002) Overexpression of mucin genes induced by interleukin-l beta, tumor necrosis factor - alpha , lipopolysaccharide, and...WNT, cell cycle and apoptosis, which include the mitochondrially and tumor necrosis factor (TNF)-regulated pathways], and the proliferation...part, mediated by the down- reg~llation of angiogenic molecules, such as vascular endothelial growth factor , IL-1P, tumor necrosis factor -a, IL-6
Mo, X; Xu, L; Yang, Q; Feng, H; Peng, J; Zhang, Y; Yuan, W; Wang, Y; Li, Y; Deng, Y; Wan, Y; Chen, Z; Li, F; Wu, X
2011-08-01
To study the common molecular mechanisms of various viruses infections that might result in congential cardiovascular diseases in perinatal period, changes in mRNA expression levels of ECV304 cells infected by rubella virus (RUBV), human cytomegalovirus (HCMV), and herpes simplex virus type 2 (HSV-2) were analyzed using a microarray system representing 18,716 human genes. 99 genes were found to exhibit differential expression (80 up-regulated and 19 down-regulated). Biological process analysis showed that 33 signaling pathways including 22 genes were relevant significantly to RV, HCMV and HSV-II infections. Of these 33 biological processes, 28 belong to one-gene biological processes and 5 belong to multiple-gene biological processes. Gene annotation indicated that the 5 multiple-gene biological processes including regulation of cell growth, collagen fibril organization, mRNA transport, cell adhesion and regulation of cell shape, and seven down- or up-regulated genes [CRIM1 (cysteine rich transmembrane BMP regulator 1), WISP2 (WNT1 inducible signaling pathway protein 2), COL12A1 (collagen, type XII, alpha 1), COL11A2 (collagen, type XI, alpha 2), CNTN5 (contactin 5), DDR1 (discoidin domain receptor tyrosine kinase 1), VEGF (vascular endothelial growth factor precursor)], are significantly correlated to RUBV, HCMV and HSV-2 infections in ECV304 cells. The results obtained in this study suggested the common molecular mechanisms of viruses infections that might result in congential cardiovascular diseases.
Zhang, Zheng; Xu, Xiangsheng; Lu, Jiyun; Zhang, Shuye; Gu, Lanlan; Fu, Junliang; Jin, Lei; Li, Haiying; Zhao, Min; Zhang, Jiyuan; Wu, Hao; Su, Lishan; Fu, Yang-Xin
2011-01-01
Background. Nonspecific T-cell hyperactivation is the main driving force for human immunodeficiency virus (HIV)–1 disease progression, but the reasons why the excess immune response is not properly shut off are poorly defined. Methods. Eighty-five HIV-1–infected individuals were enrolled to characterize B and T lymphocyte attenuator (BTLA) expression and function. Infection and blockade assays were used to dissect the factors that influenced BTLA signaling in vitro. Results. BTLA expression on overall CD4+ and CD8+ T cells was progressively decreased in HIV-1 infection, which was directly correlated with disease progression and CD4+ T-cell differentiation and activation. BTLA+CD4+ T cells from HIV-1–infected patients also displayed an altered immune status, which was indicated by reduced expression of naive markers but increased activation and exhaustion markers. Cross-linking of BTLA can substantially decrease CD4+ T-cell activation in vitro. This responsiveness of CD4+ T cells to BTLA-mediated inhibitory signaling was further found to be impaired in HIV-1–infected patients. Furthermore, HIV-1 NL4-3 down-regulated BTLA expression on CD4+ T cells dependent on plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α. Blockade of IFN-α or depletion of pDCs prevents HIV-1-induced BTLA down-regulation. Conclusions. HIV-1 infection potentially impairs BTLA-mediated signaling dependent on pDC-derived IFN-α, which may contribute to broad T-cell hyperactivation induced by chronic HIV-1 infection. PMID:21592997
Mahiti, Macdonald; Brumme, Zabrina L; Jessen, Heiko; Brockman, Mark A; Ueno, Takamasa
2015-07-31
HLA class II-restricted CD4(+) T lymphocytes play an important role in controlling HIV-1 replication, especially in the acute/early infection stage. But, HIV-1 Nef counteracts this immune response by down-regulating HLA-DR and up-regulating the invariant chain associated with immature HLA-II (Ii). Although functional heterogeneity of various Nef activities, including down-regulation of HLA class I (HLA-I), is well documented, our understanding of Nef-mediated evasion of HLA-II-restricted immune responses during acute/early infection remains limited. Here, we examined the ability of Nef clones from 47 subjects with acute/early progressive infection and 46 subjects with chronic progressive infection to up-regulate Ii and down-regulate HLA-DR and HLA-I from the surface of HIV-infected cells. HLA-I down-regulation function was preserved among acute/early Nef clones, whereas both HLA-DR down-regulation and Ii up-regulation functions displayed relatively broad dynamic ranges. Nef's ability to down-regulate HLA-DR and up-regulate Ii correlated positively at this stage, suggesting they are functionally linked in vivo. Acute/early Nef clones also exhibited higher HLA-DR down-regulation and lower Ii up-regulation functions compared to chronic Nef clones. Taken together, our results support enhanced Nef-mediated HLA class II immune evasion activities in acute/early compared to chronic infection, highlighting the potential importance of these functions following transmission. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, Yen-Chun; Kuo, Chang-Hung; Tsai, Ying-Ming; Lin, Yi-Ching; Hsiao, Hui-Pin; Chen, Bai-Hsiun; Chen, Yi-Ting; Wang, Shih-Ling; Hung, Chih-Hsing
2018-04-09
Type 1 and type 2 diabetes mellitus (DM) are chronic T-cell-mediated inflammatory diseases. Metformin is a widely used drug for type 2 DM that reduces the need for insulin in type 1 DM. However, whether metformin has an anti-inflammatory effect for treating DM is unknown. We investigated the anti-inflammatory mechanism of metformin in the human monocytic leukemia cell line THP-1. The human monocytic leukemia cell line THP-1 was pretreated with metformin and stimulated with lipopolysaccharide (LPS). The production of T-helper (Th)-1-related chemokines including interferon-γ-induced protein-10 (IP-10) and monocyte chemoattractant protein-1 (MCP-1), Th2-related chemokine macrophage-derived chemokine, and the proinflammatory chemokine tumor necrosis factor-α was measured using enzyme-linked immunosorbent assay. Intracellular signaling pathways were investigated using Western blot analysis and chromatin immunoprecipitation assay. Metformin suppressed LPS-induced IP-10 and MCP-1 production as well as LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB). Moreover, metformin suppressed LPS-induced acetylation of histones H3 and H4 at the IP-10 promoter. Metformin suppressed the production of Th1-related chemokines IP-10 and MCP-1 in THP-1 cells. Suppressive effects of metformin on IP-10 production might be attributed at least partially to the JNK, p38, ERK, and NF-κB pathways as well as to epigenetic regulation through the acetylation of histones H3 and H4. These results indicated the therapeutic anti-inflammatory potential of metformin.
Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3
Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Campos-Martínez, Gisselle A.; Meizoso-Huesca, Aldo; García-Sáinz, J. Adolfo
2015-01-01
Results The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes. PMID:26473723
Lubben, Nienke B.; Sahlender, Daniela A.; Motley, Alison M.; Lehner, Paul J.; Benaroch, Philippe
2007-01-01
Major histocompatibility complex class I is down-regulated from the surface of human immunodeficiency virus (HIV)-1-infected cells by Nef, a virally encoded protein that is thought to reroute MHC-I to the trans-Golgi network (TGN) in a phosphofurin acidic cluster sorting protein (PACS) 1, adaptor protein (AP)-1, and clathrin-dependent manner. More recently, an alternative model has been proposed, in which Nef uses AP-1 to direct MHC-I to endosomes and lysosomes. Here, we show that knocking down either AP-1 or clathrin with small interfering RNA inhibits the down-regulation of HLA-A2 (an MHC-I isotype) by Nef in HeLa cells. However, knocking down PACS-1 has no effect, not only on Nef-induced down-regulation of HLA-A2 but also on the localization of other proteins containing acidic cluster motifs. Surprisingly, knocking down AP-2 actually enhances Nef activity. Immuno-electron microscopy labeling of Nef-expressing cells indicates that HLA-A2 is rerouted not to the TGN, but to endosomes. In AP-2–depleted cells, more of the HLA-A2 localizes to the inner vesicles of multivesicular bodies. We propose that depleting AP-2 potentiates Nef activity by altering the membrane composition and dynamics of endosomes and causing increased delivery of HLA-A2 to a prelysosomal compartment. PMID:17581864
Jensen, P; Ducray, A D; Widmer, H R; Meyer, M
2015-12-03
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Activation of neurokinin-1 receptor by substance P inhibits melanogenesis in B16-F10 melanoma cells.
Ping, Fengfeng; Shang, Jing; Zhou, Jia; Song, Jing; Zhang, Luyong
2012-12-01
Skin pigmentation plays a number of valuable roles and its regulation is a complex process that is controlled by different factors. Substance P (SP) regulates many biological functions, including neurogenic inflammation, pain, and stress. However, to date, the regulatory role of SP in the control of melanogenesis has not been elucidated. The present study was designed to investigate the effects of SP on melanogenesis and to elucidate its underlying mechanism(s). After treatment for 48 h in mouse B16-F10 melanoma cells, SP (1 and 10nM) significantly down-regulated tyrosinase activity and melanin content. Importantly, western blot analysis revealed the presence of neurokinin-1 receptor (NK-1 R) in B16-F10 cells and the activation of it after SP treatment. It was also found that preincubation with NK-1 receptor antagonist Spantide I could partially reversed SP-induced down-regulations of tyrosinase activity, melanin content and the expression of tyrosinase and tyrosinase-related protein 1. Furthermore, SP could remarkably inhibit the expressions of microphtalmia-associated transcription factor (MITF) and p-p38 MAPK and stimulated p-p70 S6K1. These effects could also be partially reversed by the pretreatment with Spantide I. These results collectively suggested that SP inhibited melanogenesis in B16-F10 cells, which might be attributed to the fact that SP induces the activation of NK-1 receptor, stimulates the phosphorylation of p70 S6K1 and inhibits that of p38 MAPK, decreases the tyrosinase and tyrosinase-related protein 1 expression through MITF, finally resulting in the suppression of melanogenesis. These observations in vitro indicated that the regulation of the SP/NK-1 receptor system might be a useful novel management for skin pigmentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon
2014-01-01
This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3-L1 cells and HFD adipose tissue. PMID:25181477
Yang, Peng; Han, Jinfeng; Huang, Jinling
2014-01-01
Cytoplasmic male sterility (CMS) is the failure to produce functional pollen, which is inherited maternally. And it is known that anther development is modulated through complicated interactions between nuclear and mitochondrial genes in sporophytic and gametophytic tissues. However, an unbiased transcriptome sequencing analysis of CMS in cotton is currently lacking in the literature. This study compared differentially expressed (DE) genes of floral buds at the sporogenous cells stage (SS) and microsporocyte stage (MS) (the two most important stages for pollen abortion in JA-CMS) between JA-CMS and its fertile maintainer line JB cotton plants, using the Illumina HiSeq 2000 sequencing platform. A total of 709 (1.8%) DE genes including 293 up-regulated and 416 down-regulated genes were identified in JA-CMS line comparing with its maintainer line at the SS stage, and 644 (1.6%) DE genes with 263 up-regulated and 381 down-regulated genes were detected at the MS stage. By comparing the two stages in the same material, there were 8 up-regulated and 9 down-regulated DE genes in JA-CMS line and 29 up-regulated and 9 down-regulated DE genes in JB maintainer line at the MS stage. Quantitative RT-PCR was used to validate 7 randomly selected DE genes. Bioinformatics analysis revealed that genes involved in reduction-oxidation reactions and alpha-linolenic acid metabolism were down-regulated, while genes pertaining to photosynthesis and flavonoid biosynthesis were up-regulated in JA-CMS floral buds compared with their JB counterparts at the SS and/or MS stages. All these four biological processes play important roles in reactive oxygen species (ROS) homeostasis, which may be an important factor contributing to the sterile trait of JA-CMS. Further experiments are warranted to elucidate molecular mechanisms of these genes that lead to CMS.
Yang, Peng; Han, Jinfeng; Huang, Jinling
2014-01-01
Cytoplasmic male sterility (CMS) is the failure to produce functional pollen, which is inherited maternally. And it is known that anther development is modulated through complicated interactions between nuclear and mitochondrial genes in sporophytic and gametophytic tissues. However, an unbiased transcriptome sequencing analysis of CMS in cotton is currently lacking in the literature. This study compared differentially expressed (DE) genes of floral buds at the sporogenous cells stage (SS) and microsporocyte stage (MS) (the two most important stages for pollen abortion in JA-CMS) between JA-CMS and its fertile maintainer line JB cotton plants, using the Illumina HiSeq 2000 sequencing platform. A total of 709 (1.8%) DE genes including 293 up-regulated and 416 down-regulated genes were identified in JA-CMS line comparing with its maintainer line at the SS stage, and 644 (1.6%) DE genes with 263 up-regulated and 381 down-regulated genes were detected at the MS stage. By comparing the two stages in the same material, there were 8 up-regulated and 9 down-regulated DE genes in JA-CMS line and 29 up-regulated and 9 down-regulated DE genes in JB maintainer line at the MS stage. Quantitative RT-PCR was used to validate 7 randomly selected DE genes. Bioinformatics analysis revealed that genes involved in reduction-oxidation reactions and alpha-linolenic acid metabolism were down-regulated, while genes pertaining to photosynthesis and flavonoid biosynthesis were up-regulated in JA-CMS floral buds compared with their JB counterparts at the SS and/or MS stages. All these four biological processes play important roles in reactive oxygen species (ROS) homeostasis, which may be an important factor contributing to the sterile trait of JA-CMS. Further experiments are warranted to elucidate molecular mechanisms of these genes that lead to CMS. PMID:25372034
Camacho-Barquero, Laura; Villegas, Isabel; Sánchez-Calvo, Juan Manuel; Talero, Elena; Sánchez-Fidalgo, Susana; Motilva, Virginia; Alarcón de la Lastra, Catalina
2007-03-01
Ulcerative colitis (UC) is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration and up-regulation of pro-inflammatory cytokines. Mitogen-activated protein kinases (MAPKs), such as the p38 and the c-Jun N-terminal kinase (JNK) modulate the transcription of many genes involved in the inflammatory process. Curcumin is a polyphenol derived from Curcuma longa, which is known to have anti-inflammatory activity. The aim of this study was to study the effects and mechanisms of action of curcumin, on chronic colitis in rats. Inflammation response was assessed by histology and myeloperoxidase activity (MPO). We determined the production of Th1 and Th2 cytokines and nitrites in colon mucosa, as well as the expression of inducible nitric oxide synthase (iNOS), cyclo-oxygenase(COX)-1 and-2 by western blotting and inmmunohistochemistry. Finally, we studied the involvement of MAPKs signaling in the protective effect of curcumin in chronic colonic inflammation. Curcumin (50-100 mg/kg/day) were administered by oral gavage 24 h after trinitrobenzensulfonic acid (TNBS) instillation, and daily during 2 weeks before sacrifice. Curcumin significantly attenuated the damage and caused substantial reductions of the rise in MPO activity and tumour necrosis factor alpha (TNF)-alpha. Also curcumine was able to reduce nitrites colonic levels and induced down-regulation of COX-2 and iNOS expression, and a reduction in the activation of p38 MAPK; however, no changes in the activation of JNK could be observed. In conclusion, we suggest that inhibition of p38 MAPK signaling by curcumin could explain the reduced COX-2 and iNOS immunosignals and the nitrite production in colonic mucosa reducing the development of chronic experimental colitis.
Villalpando-Arteaga, Edgar Vinicio; Mendieta-Condado, Edgar; Esquivel-Solís, Hugo; Canales-Aguirre, Arturo Alejandro; Gálvez-Gastélum, Francisco Javier; Mateos-Díaz, Juan Carlos; Rodríguez-González, Jorge Alberto; Márquez-Aguirre, Ana Laura
2013-04-25
The growing incidence of obesity is a worldwide public health problem leading to a risk factor for non-alcoholic fatty liver disease, which extends from steatosis to steatohepatitis and cirrhosis. We investigated whether the aqueous extract of Hibiscus sabdariffa L. (Hs) reduces body weight gain and protects the liver by improving lipid metabolism in high fat diet-induced obese C57BL/6NHsd mice. We found that oral administration of the Hs extract reduced fat tissue accumulation, diminished body weight gain and normalized the glycemic index as well as reduced dyslipidemia compared to the obese mice group that did not receive Hs treatment. In addition, Hs treatment attenuated liver steatosis, down-regulated SREBP-1c and PPAR-γ, blocked the increase of IL-1, TNF-α mRNA and lipoperoxidation and increased catalase mRNA. Our results suggest that the anti-obesity, anti-lipidemic and hepatoprotective effects of the Hs extract are related to the regulation of PPAR-γ and SREBP-1c in the liver.
Zhu, Liye; Gao, Jing; Huang, Kunlun; Luo, Yunbo; Zhang, Boyang; Xu, Wentao
2015-01-01
Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/β-catenin signaling pathway by target gene β-catenin. Anti-miR-34a can significantly relieved the down-regulated β-catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/β-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis. PMID:26567713
Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing
Munding, Elizabeth M.; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel
2013-01-01
Summary During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells RPG repression by rapamycin treatment also increases splicing efficiency. Down-regulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and pre-mRNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s) but also on those of competing pre-mRNAs. Competition between RNAs for limiting RNA processing factors appears to be a general condition in eukaryotic cells important for function of a variety of post-transcriptional control mechanisms including miRNA repression, polyadenylation and splicing. PMID:23891561
Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong
2017-03-01
The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2-related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2-related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury. Kelch-like ECH-associated protein 1 down-regulation-dependent nuclear factor-E2-related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.
Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan; Zhou, Yuan
2016-01-12
Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.
Exacerbation of lupus nephritis by high sodium chloride related to activation of SGK1 pathway.
Yang, Xi; Yao, Genhong; Chen, Weiwei; Tang, Xiaojun; Feng, Xuebing; Sun, Lingyun
2015-12-01
The objective of this study is to explore the effects of high salt diet (HSD) on the severity of lupus nephritis (LN) and its mechanism. MRL/lpr mice were randomly divided into two groups, which were fed with normal diet or sodium-rich chow and tap. C57BL/6 mice were selected as control. Spleen Th1, Th2, Th17 and Treg cells were detected by flow cytometry. Serum TGF-β and IL-17 were measured by enzyme-linked immunosorbent assay. CD4(+) T cells from Systemic Lupus Erythematosus (SLE) patients and healthy donors were treated by NaCl with or without SGK1 inhibitor. Then, Th17 and Treg cells were detected. The HSD MRL/lpr mice had decreased survival rate and increased disease severity. The frequencies of Th1 and Th17 cells increased in HSD treatment group. The ratios of Th1/Th2 and Th17/Treg in HSD treated MRL/lpr mice significantly increased. Serum TGF-β increased after HSD treatment. In vitro, high salt could up-regulate Th17 cells of CD4(+) T cells. The effects of high salt treatment on CD4(+) T cells were reversed by SGK1 inhibitor. Our findings demonstrated that excessive intake of salt in diet is an aggravating factor for LN. High salt diet may deteriorate LN through SGK1 pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Suppression of CYP1 members of the AHR response by pathogen-associated molecular patterns.
Peres, Adam G; Zamboni, Robert; King, Irah L; Madrenas, Joaquín
2017-12-01
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that triggers a broad response, which includes the regulation of proinflammatory cytokine production by monocytes and macrophages. AHR is negatively regulated by a set of genes that it transcriptionally activates, including the AHR repressor ( Ahrr ) and the cytochrome P450 1 ( Cyp1 ) family, which are critical for preventing exacerbated AHR activity. An imbalance in these regulatory mechanisms has been shown to cause severe defects in lymphoid cells. Therefore, we wanted to assess how AHR activation is regulated in monocytes and macrophages in the context of innate immune responses induced by pathogen-associated molecular patterns (PAMPs). We found that concomitant stimulation of primary human monocytes with PAMPs and the AHR agonist 6-formylindolo(3,2-b)carbazole (FICZ) led to a selective dose-dependent inhibition of Cyp1 family members induction. Two other AHR-dependent genes [ Ahrr and NADPH quinone dehydrogenase 1 ( Nqo1 )] were not affected under these conditions, suggesting a split in the AHR regulation by PAMPs. This down-regulation of Cyp1 family members did not require de novo protein production nor signaling through p38, ERK, or PI3K-Akt-mammalian target of rapamycin (mTOR) pathways. Furthermore, such a split regulation of the AHR response was more apparent in GM-CSF-derived macrophages, a finding corroborated at the functional level by decreased CYP1 activity and decreased proinflammatory cytokine production in response to FICZ and LPS. Collectively, our findings identify a role for pattern recognition receptor (PRR) signaling in regulating the AHR response through selective down-regulation of Cyp1 expression in human monocytes and macrophages. © Society for Leukocyte Biology.
Gao, Li; Zhang, Li-Jie; Li, Sheng-Hua; Wei, Li-Li; Luo, Bin; He, Rong-Quan; Xia, Shuang
2018-03-06
MiR-452-5p has been reported to be down-regulated in prostate cancer, affecting the development of this type of cancer. However, the molecular mechanism of miR-452-5p in prostate cancer remains unclear. Therefore, we investigated the network of target genes of miR-452-5p in prostate cancer using bioinformatics analyses. We first analyzed the expression profiles and prognostic value of miR-452-5p in prostate cancer tissues from a public database. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), PANTHER pathway analyses, and a disease ontology (DG) analysis were performed to find the molecular functions of the target genes from GSE datasets and miRWalk. Finally, we validated hub genes from the protein-protein interaction (PPI) networks of the target genes in the Human Protein Atlas (HPA) database and Gene Expression Profiling Interactive Analysis (GEPIA). Narrowing down the optimal target genes was conducted by seeking the common parts of up-regulated genes from GEPIA, down-regulated genes from GSE datasets, and predicted genes in miRWalk. Based on mining of GEO and ArrayExpress microarray chips and miRNA-Seq data in the TCGA database, which includes 1007 prostate cancer samples and 387 non-cancer samples, miR-452-5p is shown to be down-regulated in prostate cancer. GO, KEGG, and PANTHER pathway analyses suggested that the target genes might participate in important biological processes, such as transforming growth factor beta signaling and the positive regulation of brown fat cell differentiation and mesenchymal cell differentiation, as well as the Ras signaling pathway and pathways regulating the pluripotency of stem cells and arrhythmogenic right ventricular cardiomyopathy (ARVC). Nine genes-GABBR, PNISR, NTSR1, DOCK1, EREG, SFRP1, PTGS2, LEF1, and BMP2-were defined as hub genes in the PPI network. Three genes-FAM174B, SLC30A4, and SLIT1-were jointly shared by GEPIA, the GSE datasets, and miRWalk. Down-regulated miR-452-5p might play an essential role in the tumorigenesis of prostate cancer. Copyright © 2018. Published by Elsevier GmbH.
COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development.
Guo, L; Lynch, J; Nakamura, K; Fliegel, L; Kasahara, H; Izumo, S; Komuro, I; Agellon, L B; Michalak, M
2001-01-26
Calreticulin, a Ca(2+) binding chaperone of the endoplasmic reticulum, is also highly expressed in the embryonic heart, and knockout of the calreticulin gene is lethal during embryogenesis because of impaired cardiac development. The protein is down-regulated after birth, and elevated expression of calreticulin in newborn hearts is associated with severe cardiac pathology and death. Here we show that the transcription factor Nkx2.5 activates expression of the calreticulin gene in the heart. Binding of chicken ovalbumin upstream promoter-transcription factor 1 to the Nkx2.5 binding site suppresses transcription from the calreticulin promoter. Nkx2.5 and chicken ovalbumin upstream promoter-transcription factor 1 play antagonistic roles in regulating the expression of calreticulin during cardiac development. These studies indicate that cardiac-specific transcription factor Nkx2.5 plays a central role in activating calreticulin expression and that there is a cooperation between chicken ovalbumin upstream promoter-transcription factor 1 and Nkx2.5 at the calreticulin promoter.
Turner, Joseph D.; Jenkins, Gavin R.; Hogg, Karen G.; Aynsley, Sarah A.; Paveley, Ross A.; Cook, Peter C.; Coles, Mark C.; Mountford, Adrian P.
2011-01-01
Eggs of the helminth Schistosoma mansoni accumulate in the colon following infection and generate Th2-biassed inflammatory granulomas which become down- modulated in size as the infection proceeds to chronicity. However, although CD4+CD25+FoxP3+regulatory T cells (Tregs) are known to suppress Th1-mediated colitis, it is not clear whether they control Th2 –associated pathologies of the large intestine which characterise several helminth infections. Here we used a novel 3D-multiphoton confocal microscopy approach to visualise and quantify changes in the size and composition of colonic granulomas at the acute and chronic phases of S. mansoni infection. We observed decreased granuloma size, as well as reductions in the abundance of DsRed+ T cells and collagen deposition at 14 weeks (chronic) compared to 8 weeks (acute) post-infection. Th2 cytokine production (i.e. IL-4, IL-5) in the colonic tissue and draining mesenteric lymph node (mLN) decreased during the chronic phase of infection, whilst levels of TGF-β1 increased, co-incident with reduced mLN proliferative responses, granuloma size and fibrosis. The proportion of CD4+CD25+FoxP3+Tregs: CD4+ cells in the mLN increased during chronic disease, while within colonic granulomas there was an approximate 4-fold increase. The proportion of CD4+CD25+FoxP3+Tregs in the mLN that were CD103+ and CCR5+ also increased indicating an enhanced potential to home to intestinal sites. CD4+CD25+ cells suppressed antigen-specific Th2 mLN cell proliferation in vitro, while their removal during chronic disease resulted in significantly larger granulomas, partial reversal of Th2 hypo-responsiveness and an increase in the number of eosinophils in colonic granulomas. Finally, transfer of schistosome infection-expanded CD4+CD25+Tregs down-modulated the development of colonic granulomas, including collagen deposition. Therefore, CD4+CD25+FoxP3+Tregs appear to control Th2 colonic granulomas during chronic infection, and are likely to play a role in containing pathology during intestinal schistosomiasis. PMID:21858239
Down-regulation of Cyclooxygenase-2 by the Carboxyl Tail of the Angiotensin II Type 1 Receptor*
Sood, Rapita; Minzel, Waleed; Rimon, Gilad; Tal, Sharon; Barki-Harrington, Liza
2014-01-01
The enzyme cyclooxygenase-2 (COX-2) plays an important role in the kidney by up-regulating the production of the vasoconstrictor hormone angiotensin II (AngII), which in turn down-regulates COX-2 expression via activation of the angiotensin II type 1 receptor (AT1) receptor. Chemical inhibition of the catalytic activity of COX-2 is a well-established strategy for treating inflammation but little is known of cellular mechanisms that dispose of the protein itself. Here we show that in addition to its indirect negative feedback on COX-2, AT1 also down-regulates the expression of the COX-2 protein via a pathway that does not involve G-protein or β-arrestin-dependent signaling. Instead, AT1 enhances the ubiquitination and subsequent degradation of the enzyme in the proteasome through elements in its cytosolic carboxyl tail (CT). We find that a mutant receptor that lacks the last 35 amino acids of its CT (Δ324) is devoid of its ability to reduce COX-2, and that expression of the CT sequence alone is sufficient to down-regulate COX-2. Collectively these results propose a new role for AT1 in regulating COX-2 expression in a mechanism that deviates from its canonical signaling pathways. Down-regulation of COX-2 by a short peptide that originates from AT1 may present as a basis for novel therapeutic means of eliminating excess COX-2 protein. PMID:25231994
FoxO1 regulates apoptosis induced by asbestos in the MT-2 human T-cell line.
Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kumagai-Takei, Naoko; Nishimura, Yasumitsu; Otsuki, Takemi
2016-09-01
Asbestos is known to cause malignant mesothelioma and lung cancer. Recent studies implicate tumor immunity in the development of various tumors, including malignant mesothelioma. In order to establish an in vitro T-cell model to clarify the effects of long-term exposure of asbestos on tumor immunity, in this study, human T-cell line MT-2 cells were cultured with asbestos for longer than 8 months and the resultant cells (MT-2Rst) were assessed for the expression of forkhead transcription factor FoxO1. Gene expression analysis revealed that the amount of FoxO1 mRNA decreased after long-term exposure of the MT-2 cells to asbestos. In accordance with this reduction in FoxO1, pro-apoptotic Foxo1 target genes Puma, Fas ligand and Bim were also seen to be down-regulated in MT-2Rst cells. Furthermore, shRNA-mediated knock-down of FoxO1 reduced the number of apoptotic parental MT-2 cells after treatment with asbestos. On the other hand, over-expression of FoxO1 did not affect asbestos-induced apoptosis in MT-2Rst cells. These results suggested that FoxO1 played an important role in regulating asbestos-induced apoptosis and confirmed the presence of multiple pathways regulating resistance to asbestos in MT-2Rst cells.
Qin, Xike; Jiang, Yongjun; Tse, Yiu Chung; Wang, Yunling; Wong, Tak Pan; Paudel, Hemant K.
2015-01-01
The N-methyl-d-aspartate receptor (NMDAR) controls synaptic plasticity and memory function and is one of the major inducers of transcription factor Egr-1 in the hippocampus. However, how Egr-1 mediates the NMDAR signal in neurons has remained unclear. Here, we show that the hippocampus of mice lacking Egr-1 displays electrophysiology properties and ultrastructure that are similar to mice overexpressing PSD-95, a major scaffolding protein of postsynaptic density involved in synapse formation, synaptic plasticity, and synaptic targeting of AMPA receptors (AMPARs), which mediate the vast majority of excitatory transmission in the CNS. We demonstrate that Egr-1 is a transcription repressor of the PSD-95 gene and is recruited to the PSD-95 promoter in response to NMDAR activation. Knockdown of Egr-1 in rat hippocampal primary neurons blocks NMDAR-induced PSD-95 down-regulation and AMPAR endocytosis. Likewise, overexpression of Egr-1 in rat hippocampal primary neurons causes reduction in PSD-95 protein level and promotes AMPAR endocytosis. Our data indicate that Egr-1 is involved in NMDAR-mediated PSD-95 down-regulation and AMPAR endocytosis, a process important in the expression of long term depression. PMID:26475861
Recent changes in ecologically-relevant streamflows in North America
NASA Astrophysics Data System (ADS)
Ficklin, D. L.; Abatzoglou, J. T.; Knouft, J.; Robeson, S. M.
2017-12-01
The streamflow regime is a primary regulator of the composition and functioning of freshwater ecosystems. Growth, behavior, and/or reproduction of most freshwater organisms are influenced in some way by the amount of water, including high and low flows, and seasonal fluctuations in water availability in a particular habitat. This work examines trends in ecologically-relevant measures of streamflows from 1980-2015 for over 3,000 streamflow gauges located throughout Canada and United States. Specifically, we examine trends in water year mean flow and variability, as well as trends in high (95th and 99th percentile), low (1st and 5th percentile), and 7- and 3-day maximum and minimum streamflows. The results indicate a clear regional delineation of significant increases of ecologically-relevant streamflows in the northern Central Plains/south-central Canada, upper Midwest (except Michigan and Wisconsin) and northeastern United States/southeastern Canada, while significant decreases are found throughout the southeastern and southwestern United States. The regional agreement between streamflow trends in regulated and unregulated watersheds indicate a widespread climatic influence that is not masked by human alteration of streamflows. We explore the degree to which climate factors explain both interannual variability and observed trends in streamflow to better elucidate the role of top-down climate drivers versus bottom-up land surface drivers on recent trends in ecologically-relevant streamflow. We also explore how these changes in streamflow are affecting water quality such as water temperature and sediment concentration. This type of analysis will aid in highlighting streamflow regions in the United States that are currently sensitive to changes in climate, but may also aid in understanding which regions may be sensitive to future climatic changes.
Vallejo, Griselda; Mestre-Citrinovitz, Ana C.; Ballaré, Cecilia; Beato, Miguel; Saragüeta, Patricia
2014-01-01
Although non-genomic steroid receptor pathways have been studied over the past decade, little is known about the direct gene expression changes that take place as a consequence of their activation. Progesterone controls proliferation of rat endometrial stromal cells during the peri-implantation phase of pregnancy. We showed that picomolar concentration of progestin R5020 mimics this control in UIII endometrial stromal cells via ERK1-2 and AKT activation mediated by interaction of Progesterone Receptor (PR) with Estrogen Receptor beta (ERb) and without transcriptional activity of endogenous PR and ER. Here we identify early downstream targets of cytoplasmic PR signaling and their possible role in endometrial stromal cell proliferation. Microarray analysis of global gene expression changes in UIII cells treated for 45 min with progestin identified 97 up- and 341 down-regulated genes. The most over-represented molecular functions were transcription factors and regulatory factors associated with cell proliferation and cell cycle, a large fraction of which were repressors down-regulated by hormone. Further analysis verified that progestins regulate Ccnd1, JunD, Usf1, Gfi1, Cyr61, and Cdkn1b through PR-mediated activation of ligand-free ER, ERK1-2 or AKT, in the absence of genomic PR binding. ChIP experiments show that progestin promoted the interaction of USF1 with the proximal promoter of the Cdc2 gene. Usf1 knockdown abolished Cdc2 progestin-dependent transcriptional regulation and cell proliferation, which also blocked Cdc2 knockdown. We conclude that progestin-induced proliferation of endometrial stromal cells is mediated by ERK1-2 and AKT dependent early regulation of USF1, which directly induces Cdc2. To our knowledge, this is the first description of early target genes of progestin-activated classical PR via crosstalk with protein kinases and independently of hormone receptor binding to the genomic targets. PMID:24859236
Kur-Piotrowska, Anna; Kopcewicz, Marta; Kozak, Leslie P; Sachadyn, Pawel; Grabowska, Anna; Gawronska-Kozak, Barbara
2017-01-09
Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny among mammals. The resemblance of gene expression profiles in the skin of both nude and E14 mice are direct or indirect consequences of the Foxn1 deficiency. Foxn1 appears to regulate the balance between cell proliferation and differentiation and its inactivity creates a pro-regenerative environment.
HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells
Araya, Natsumi; Sato, Tomoo; Ando, Hitoshi; Tomaru, Utano; Yoshida, Mari; Coler-Reilly, Ariella; Yagishita, Naoko; Yamauchi, Junji; Hasegawa, Atsuhiko; Kannagi, Mari; Hasegawa, Yasuhiro; Takahashi, Katsunori; Kunitomo, Yasuo; Tanaka, Yuetsu; Nakajima, Toshihiro; Nishioka, Kusuki; Utsunomiya, Atae; Jacobson, Steven; Yamano, Yoshihisa
2014-01-01
Human T-lymphotropic virus type 1 (HTLV-1) is linked to multiple diseases, including the neuroinflammatory disease HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma. Evidence suggests that HTLV-1, via the viral protein Tax, exploits CD4+ T cell plasticity and induces transcriptional changes in infected T cells that cause suppressive CD4+CD25+CCR4+ Tregs to lose expression of the transcription factor FOXP3 and produce IFN-γ, thus promoting inflammation. We hypothesized that transformation of HTLV-1–infected CCR4+ T cells into Th1-like cells plays a key role in the pathogenesis of HAM/TSP. Here, using patient cells and cell lines, we demonstrated that Tax, in cooperation with specificity protein 1 (Sp1), boosts expression of the Th1 master regulator T box transcription factor (T-bet) and consequently promotes production of IFN-γ. Evaluation of CSF and spinal cord lesions of HAM/TSP patients revealed the presence of abundant CD4+CCR4+ T cells that coexpressed the Th1 marker CXCR3 and produced T-bet and IFN-γ. Finally, treatment of isolated PBMCs and CNS cells from HAM/TSP patients with an antibody that targets CCR4+ T cells and induces cytotoxicity in these cells reduced both viral load and IFN-γ production, which suggests that targeting CCR4+ T cells may be a viable treatment option for HAM/TSP. PMID:24960164
Xi, Yuan-Di; Ding, Juan; Han, Jing; Zhang, Dan-Di; Liu, Jin-Meng; Feng, Ling-Li; Xiao, Rong
2015-05-01
Synaptic damage is the key factor of cognitive impairment. The purpose of this study was to understand the effect of soybean isoflavone (SIF) on synaptic damage induced by β-amyloid peptide 1-42 (Aβ1-42) in rats. Adult male Wistar rats were randomly divided into control, Aβ1-42, SIF, and SIF + Aβ1-42 (SIF pretreatment) groups according to body weight. SIF was treated orally by gavage in SIF and SIF + Aβ1-42 groups. After 14 days pretreatment with SIF or vehicle, Aβ1-42 was injected into the lateral cerebral ventricle of rats in Aβ1-42 and SIF + Aβ1-42 groups using miniosmotic pump. The level of Aβ1-42 and the expression of N-methyl-D-aspartic-acid receptor (NMDAR) were observed by immunohistochemistry. Reverse transcriptase polymerase chain reaction was used to detect the mRNA levels of NMDAR, calmodulin (CaM), calcium/CaM-dependent protein kinase II (CaMKII), cAMP-response element binding protein (CREB), and brain-derived neurotrophic factor (BDNF). The results showed that Aβ1-42 down-regulated mRNA and protein expression of the NR1 and NR2B subunits of NMDAR, SIF pretreatment could reverse these changes. The mRNA expression of CaM, CaMKII, CREB, and BDNF were down-regulated by Aβ1-42, but they were all regulated by SIF pretreatment. These results suggest that SIF pretreatment could antagonize the neuron damage in rats induced by Aβ1-42, and its mechanism might be associated with the NMDA receptor and CaM/CaMKII/CREB/BDNF signaling pathway, which are the synaptic plasticity-related molecules.
Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T
2012-11-23
NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.
Nunes, Diana N; Dias-Neto, Emmanuel; Cardó-Vila, Marina; Edwards, Julianna K; Dobroff, Andrey S; Giordano, Ricardo J; Mandelin, Jami; Brentani, Helena P; Hasselgren, Catrin; Yao, Virginia J; Marchiò, Serena; Pereira, Carlos A B; Passetti, Fabio; Calin, George A; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2015-03-24
Six members of the microRNA-17 (miR-17) family were mapped to three different chromosomes, although they share the same seed sequence and are predicted to target common genes, among which are those encoding hypoxia-inducible factor-1α (HIF1A) and VEGFA. Here, we evaluated the in vivo expression profile of the miR-17 family in the murine retinopathy of prematurity (ROP) model, whereby Vegfa expression is highly enhanced at the early stage of retinal neovascularization, and we found simultaneous reduction of all miR-17 family members at this stage. Using gene reporter assays, we observed binding of these miRs to specific sites in the 3' UTRs of Hif1a and Vegfa. Furthermore, overexpression of these miRs decreased HIF1A and VEGFA expression in vitro. Our data indicate that this miR-17 family elicits a regulatory synergistic down-regulation of Hif1a and Vegfa expression in this biological model. We propose the existence of a coordinated regulatory network, in which diverse miRs are synchronously regulated to target the Hif1a transcription factor, which in turn, potentiates and reinforces the regulatory effects of the miRs on Vegfa to trigger and sustain a significant physiological response.
Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde
2004-02-15
The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment withmore » insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.« less
YY1 as a controlling factor for the Peg3 and Gnas imprinted domains
Kim, Jeong Do; Hinz, Angela K.; Choo, Jung Ha; Stubbs, Lisa; Kim, Joomyeong
2007-01-01
Imprinting Control Regions (ICRs) often harbor tandem arrays of transcription factor binding sites, as demonstrated by the identification of multiple YY1 binding sites within the ICRs of Peg3, Nespas, and Xist/Tsix domains. In the current study, we have sought to characterize possible roles of YY1 in transcriptional control and epigenetic modification of these imprinted domains. RNA interference-based knockdown experiments in Neuro2A cells resulted in overall transcriptional up-regulation of most of the imprinted genes within the Peg3 domain and also, concomitantly, caused significant loss in the DNA methylation of Peg3-DMR (Differentially Methylated Regions). A similar overall and coordinated expression change was also observed for the imprinted genes of the Gnas domain: up-regulation of Nespas and down-regulation of Nesp and Gnasxl. YY1 knockdown also resulted in changes in the expression levels of Xist and Snrpn. These results support the idea that YY1 plays a major role, as a trans factor, for the control of these imprinted domains. PMID:17067777
The role of cation-dependent chloride transporters in neuropathic pain following spinal cord injury
Cramer, Samuel W; Baggott, Christopher; Cain, John; Tilghman, Jessica; Allcock, Bradley; Miranpuri, Gurwattan; Rajpal, Sharad; Sun, Dandan; Resnick, Daniel
2008-01-01
Background Altered Cl- homeostasis and GABAergic function are associated with nociceptive input hypersensitivity. This study investigated the role of two major intracellular Cl- regulatory proteins, Na+-K+-Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2), in neuropathic pain following spinal cord injury (SCI). Results Sprague-Dawley rats underwent a contusive SCI at T9 using the MASCIS impactor. The rats developed hyperalgesia between days 21 and 42 post-SCI. Thermal hyperalgesia (TH) was determined by a decrease in hindpaw thermal withdrawal latency time (WLT) between days 21 and 42 post-SCI. Rats with TH were then treated with either vehicle (saline containing 0.25% NaOH) or NKCC1 inhibitor bumetanide (BU, 30 mg/kg, i.p.) in vehicle. TH was then re-measured at 1 h post-injection. Administration of BU significantly increased the mean WLT in rats (p < 0.05). The group administered with the vehicle alone showed no anti-hyperalgesic effects. Moreover, an increase in NKCC1 protein expression occurred in the lesion epicenter of the spinal cord during day 2–14 post-SCI and peaked on day 14 post-SCI (p < 0.05). Concurrently, a down-regulation of KCC2 protein was detected during day 2–14 post-SCI. The rats with TH exhibited a sustained loss of KCC2 protein during post-SCI days 21–42. No significant changes of these proteins were detected in the rostral region of the spinal cord. Conclusion Taken together, expression of NKCC1 and KCC2 proteins was differentially altered following SCI. The anti-hyperalgesic effect of NKCC1 inhibition suggests that normal or elevated NKCC1 function and loss of KCC2 function play a role in the development and maintenance of SCI-induced neuropathic pain. PMID:18799000
Hsu, Yung-Ho; Lin, Wei-Ling; Hou, Yi-Ting; Pu, Yeong-Shiau; Shun, Chia-Tung; Chen, Chi-Ling; Wu, Yih-Yiing; Chen, Jen-Yau; Chen, Tso-Hsiao; Jou, Tzuu-Shuh
2010-01-01
Podocalyxin was initially identified in glomerular podocytes to critically maintain the structural and functional integrity of the glomerular ultrafiltrative apparatus. Lately, it has emerged as a malignant marker in tumors arising from a variety of tissue origins. By immunohistochemistry, we identified that 9.6% of renal cell carcinoma patients overexpress this protein. This subset of patients had significantly shorter disease-specific and overall survivals, and, importantly, we established podocalyxin overexpression as an independent prognostic factor for latent distant metastasis with multivariate analysis. Podocalyxin down-regulation by small interfering RNA led to defective migration in model renal tubular cells, which was corrected by re-expression of podocalyxin. The activity of the small GTPase Rac1, a well-characterized modulator of cell migration, was diminished by podocalyxin knock-down. Conversely, podocalyxin overexpression in human embryonic kidney cells up-regulated Rac1 activity, which depended on a complex formed by podocalyxin, ERM-binding phosphoprotein 50, ezrin, and ARHGEF7, a Rac1 activator. Therefore, podocalyxin can serve as a biomarker to identify renal cell carcinoma patients with higher metastatic potential for more aggressive intervention at earlier clinical stages. PMID:20395446
Albumin-induced podocyte injury and protection are associated with regulation of COX-2.
Agrawal, Shipra; Guess, Adam J.; Chanley, Melinda A.; Smoyer, and William E.
2014-01-01
Albuminuria is both a hallmark and a risk factor for progressive glomerular disease, and results in increased exposure of podocytes to serum albumin with its associated factors. Here in vivo and in vitro models of serum albumin overload were used to test the hypothesis that albumin-induced proteinuria and podocyte injury directly correlate with COX-2 induction. Albumin induced COX-2, MCP-1, CXCL1 and the stress protein HSP25 in both rat glomeruli and cultured podocytes, while B7-1 and HSP70i were also induced in podocytes. Podocyte exposure to albumin induced both mRNA and protein and enhanced the mRNA stability of COX-2, a key regulator of renal hemodynamics and inflammation, which renders podocytes susceptible to injury. Podocyte exposure to albumin also stimulated several kinases (p38 MAPK, MK2, JNK/SAPK and ERK1/2), inhibitors of which (except JNK/SAPK) down-regulated albumin-induced COX-2. Inhibition of AMPK, PKC and NFκB also down-regulated albumin-induced COX-2. Critically, albumin-induced COX-2 was also inhibited by glucocorticoids and thiazolidinediones, both of which directly protect podocytes against injury. Furthermore, specific albumin-associated fatty acids were identified as important contributors to COX-2 induction, podocyte injury and proteinuria. Thus, COX-2 is associated with podocyte injury during albuminuria, as well as with the known podocyte protection imparted by glucocorticoids and thiazolidinediones. Moreover, COX-2 induction, podocyte damage and albuminuria appear mediated largely by serum albumin-associated fatty acids. PMID:24918154
Wei, Tao; Deng, Kejun; Wang, Hongbin; Zhang, Lipeng; Wang, Chunguo; Song, Wenqin; Zhang, Yong; Chen, Chengbin
2018-03-12
In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A -expressing transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904 differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the 'signal transduction mechanisms' category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs associated with "ribosome", "plant hormone signal transduction", photosynthesis", "plant-pathogen interaction", "glycolysis/gluconeogenesis" and "carbon fixation" are hypothesized to perform major functions in drought resistance in AtDREB1A -expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.
Wang, Lihong; Cao, Hailong; Lu, Ning; Liu, Liping; Wang, Bangmao; Hu, Tianhui; Israel, Dawn A.; Peek, Richard M.; Polk, D. Brent; Yan, Fang
2013-01-01
Berberine, an isoquinoline alkaloid, is an active component of Ranunculaceae and Papaveraceae plant families. Berberine has been found to suppress growth of several tumor cell lines in vitro through the cell-type-dependent mechanism. Expression and activation of epidermal growth factor receptor (EGFR) is increased in colonic precancerous lesions and tumours, thus EGFR is considered a tumour promoter. The aim of this study was to investigate the effects and mechanisms of berberine on regulation of EGFR activity and proliferation in colonic tumor cell lines and in vivo. We reported that berberine significantly inhibited basal level and EGF-stimulated EGFR activation and proliferation in the immorto Min mouse colonic epithelial (IMCE) cells carrying the APC min mutation and human colonic carcinoma cell line, HT-29 cells. Berberine acted to inhibit proliferation through inducing G1/S and G2/M cell cycle arrest, which correlated with regulation of the checkpoint protein expression. In this study, we also showed that berberine stimulated ubiquitin ligase Cbl activation and Cbl's interaction with EGFR, and EGFR ubiquitinylation and down-regulation in these two cell lines in the presence or absence of EGF treatment. Knock-down Cbl expression blocked the effects of berberine on down-regulation of EGFR and inhibition of proliferation. Furthermore, berberine suppressed tumor growth in the HT-29 cell xenograft model. Cell proliferation and EGFR expression level was decreased by berberine treatment in this xenograft model and in colon epithelial cells of APC min/+ mice. Taken together, these data indicate that berberine enhances Cbl activity, resulting in down-regulation of EGFR expression and inhibition of proliferation in colon tumor cells. PMID:23457600
PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis
Jiang, Bochen; Shi, Yiting; Zhang, Xiaoyan; Xin, Xiaoyun; Qi, Lijuan; Guo, Hongwei; Li, Jigang; Yang, Shuhua
2017-01-01
Light and temperature are major environmental factors that coordinately control plant growth and survival. However, how plants integrate light and temperature signals to better adapt to environmental stresses is poorly understood. PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), a key transcription factor repressing photomorphogenesis, has been shown to play a pivotal role in mediating plants’ responses to various environmental signals. In this study, we found that PIF3 functions as a negative regulator of Arabidopsis freezing tolerance by directly binding to the promoters of C-REPEAT BINDING FACTOR (CBF) genes to down-regulate their expression. In addition, two F-box proteins, EIN3-BINDING F-BOX 1 (EBF1) and EBF2, directly target PIF3 for 26S proteasome-mediated degradation. Consistently, ebf1 and ebf2 mutants were more sensitive to freezing than were the wild type, and the pif3 mutation suppressed the freezing-sensitive phenotype of ebf1. Furthermore, cold treatment promoted the degradation of EBF1 and EBF2, leading to increased stability of the PIF3 protein and reduced expression of the CBF genes. Together, our study uncovers an important role of PIF3 in Arabidopsis freezing tolerance by negatively regulating the expression of genes in the CBF pathway. PMID:28739888
FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer
2014-01-01
Background Increasing evidence suggests that forkhead box A1 (FOXA1) is frequently dysregulated in many types of human cancers. However, the exact function and mechanism of FOXA1 in human endometrial cancer (EC) remains unclear. Methods FOXA1 expression, androgen receptor (AR) expression, and the relationships of these two markers with clinicopathological factors were determined by immunohistochemistry analysis. FOXA1 and AR were up-regulated by transient transfection with plasmids, and were down-regulated by transfection with siRNA or short hairpin RNA (shRNA). The effects of FOXA1 depletion and FOXA1 overexpression on AR-mediated transcription as well as Notch pathway and their impact on EC cell proliferation were examined by qRT-PCR, western blotting, co-immunoprecipitation, ChIP-PCR, MTT, colony-formation, and xenograft tumor–formation assays. Results We found that the expression of FOXA1 and AR in ECs was significantly higher than that in a typical hyperplasia and normal tissues. FOXA1 expression was significantly correlated with AR expression in clinical tissues. High FOXA1 levels positively correlated with pathological grade and depth of myometrial invasion in EC. High AR levels also positively correlated with pathological grade in EC. Moreover, the expression of XBP1, MYC, ZBTB16, and UHRF1, which are downstream targets of AR, was promoted by FOXA1 up-regulation or inhibited by FOXA1 down-regulation. Co-immunoprecipitation showed that FOXA1 interacted with AR in EC cells. ChIP-PCR assays showed that FOXA1 and AR could directly bind to the promoter and enhancer regions upstream of MYC. Mechanistic investigation revealed that over-expression of Notch1 and Hes1 proteins by FOXA1 could be reversed by AR depletion. In addition, we showed that down-regulation of AR attenuated FOXA1-up-regulated cell proliferation. However, AR didn’t influence the promotion effect of FOXA1 on cell migration and invasion. In vivo xenograft model, FOXA1 knockdown reduced the rate of tumor growth. Conclusions These results suggest that FOXA1 promotes cell proliferation by AR and activates Notch pathway. It indicated that FOXA1 and AR may serve as potential gene therapy in EC. PMID:24512546
Tringali, Cristina; Lupo, Barbara; Silvestri, Ilaria; Papini, Nadia; Anastasia, Luigi; Tettamanti, Guido; Venerando, Bruno
2012-01-01
The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy. PMID:23139422
Crescenzi, Elvira; Raia, Zelinda; Pacifico, Francesco; Mellone, Stefano; Moscato, Fortunato; Palumbo, Giuseppe; Leonardi, Antonio
2013-01-01
Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. PMID:23612976
Benzenediamine analog FC-99 inhibits TLR2 and TLR4 signaling in peritoneal macrophage in vitro.
Yang, Liu; Dou, Huan; Song, Yuxian; Hou, Yayi
2016-01-01
Inflammatory bowel disease (IBD) is an inflammatory disorder, characterized by abnormally increased expression of Toll-like receptors TLR2 and TLR4 in the colon and increased pro-inflammatory cytokine production by macrophages. In the present study, we explored the effect of FC-99, a novel benzenediamine analog, on dextran sulfate sodium (DSS)-induced mouse colitis and investigated its potential mechanism. The results revealed that FC-99 improved the colon morphology and the clinical parameters in DSS-induced mouse colitis. FC-99 inhibited the increase of DSS-induced T helper cells (Th) 1 and Th17 and enhanced the number of regulatory T cells (Treg) in mesenteric lymph nodes (MLN), but had no effect on Th2 cells. FC-99 also suppressed the DSS-induced secretion of interleukin (IL)-1β, IL-6, and the tumor necrosis factor (TNF)-α in the colon and hindered the infiltration of macrophages into colon lamina propria. Flow cytometric analysis also confirmed that FC-99 reduced CD11b(+)F4/80(+) colon macrophages, and down-regulated TNF-α level in situ. Moreover, FC-99 inhibited concentration-dependently the expression of TNF-α and IL-6 in vitro from mouse peritoneal macrophages, which were induced by TLR ligands: PamCSK4 and peptidoglycan (PGN, TLR2 ligand) as well as LPS (TLR4 ligand). Of note, FC-99 also suppressed the activation of TLR2 and TLR4 signaling pathways and the downstream nuclear factor-κB (NF-κB) in the DSS-induced mouse colitis. FC-99 improved the condition of DSS-induced mouse colitis by inhibiting the activation of TLR2 and TLR4 signaling pathways in macrophage. These results suggest that FC-99 may be developed as a new therapeutic drug for IBD. Copyright © 2015 Elsevier Inc. All rights reserved.
PROTEASOME INHIBITOR TREATMENT REDUCED FATTY ACID, TRIACYLGLYCEROL AND CHOLESTEROL SYNTHESIS
Oliva, Joan; French, Samuel W.; Li, Jun; Bardag-Gorce, Fawzia
2014-01-01
In the present study, the beneficial effects of proteasome inhibitor treatment in reducing ethanol-induced steatosis were investigated. A microarray analysis was performed on the liver of rats injected with PS-341 (Bortezomib, Velcade®), and the results showed that proteasome inhibitor treatment significantly reduced the mRNA expression of SREBP-1c, and the downstream lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ELOVL6, which is responsible for fatty acids long chain elongation, was also significantly down regulated by proteasome inhibitor treatment. Moreover, PS-341 administration significantly reduced the expression of acyl-glycerol-3-phosphate acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT), enzyme involved in triacylglycerol (TAG) synthesis. Finally, PS-341 was found to down regulate the enzymes 3-hydroxy-3-methylglutaryl-CoenzymeA synthase (HMG-CoA synthase) that is responsible for cholesterol synthesis. Proteasome inhibitor was also found to play a role in intestinal lipid adsorption because apolipoproteins A (apoA-I, apoAII, apoA-IV and ApoCIII) were down regulated by proteasome inhibitor treatment, especially ApoA-II that is known to be a marker of alcohol consumption. Proteasome inhibitor treatment also decreased apobec-1 complementation factor (ACF) leading to lower level of editing and production of ApoB protein. Moreover apolipoprotein C-III, a major component of chylomicrons was significantly down regulated. However, lipoprotein lipase (Lpl) and High density lipoprotein binding protein (Hdlbp) mRNA levels were increased by proteasome inhibitor treatment. These results suggested that proteasome inhibitor treatment could be used to reduce the alcohol-enhanced lipogenesis and alcohol-induced liver steatosis. A morphologic analysis, performed on the liver of rats fed ethanol for one month and treated with PS-341, showed that proteasome inhibitor treatment significantly decreased ethanol-induced liver steatosis. SREBP-1c, FAS and ACC were increased by ethanol feeding alone, but were significantly decreased when proteasome inhibitor was administered to rats fed ethanol. Our results also show that both mRNA and protein levels of these lipogenic enzymes, up regulated by ethanol, were then down regulated when proteasome inhibitor was administered to rats fed ethanol. It was also confirmed that alcohol feeding caused an increase in AGPAT and DGAT, which was prevented by proteasome inhibitor treatment of the animal fed ethanol. Chronic alcohol feeding did not affect the gene expression of HMG-CoA synthase. However, PS341 administration significantly reduced the HMG-CoA synthase mRNA levels, confirming the results obtained with the microarray analysis. C/EBP transcription factors alpha (CCAAT/enhancer-binding protein alpha) has been shown to positively regulate SREBP-1c mRNA expression, thus regulating lipogenesis. Proteasome inhibition caused a decrease in C/EBP alpha mRNA expression, indicating that C/EBP down regulation may be the mechanism by which proteasome inhibitor treatment reduced lipogenesis. In conclusion, our results indicate that proteasome activity is not only involved in down regulating fatty acid synthesis and triacylglycerol synthesis, but also cholesterol synthesis and intestinal lipid adsorption. Proteasome inhibitor, administrated at a non-toxic low dose, played a beneficial role in reducing lipogenesis caused by chronic ethanol feeding and these beneficial effects are obtained because of the specificity and reversibility of the proteasome inhibitor used. PMID:22445925
Huang, Linqiang; Cao, Wei; Deng, Yiyu; Zhu, Gaofeng; Han, Yongli; Zeng, Hongke
2016-10-13
Cerebral oedema is closely related to the permeability of blood-brain barrier, vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) all of which are important blood-brain barrier (BBB) permeability regulatory factors. Zonula occludens 1 (ZO-1) and claudin-5 are also the key components of BBB. Hypertonic saline is widely used to alleviate cerebral oedema. This study aimed to explore the possible mechanisms underlying hypertonic saline that ameliorates cerebral oedema effectively. Middle cerebral artery occlusion (MCAO) model in Sprague-Dawley (SD) rats and of oxygen-glucose deprivation model in primary astrocytes were used in this study. The brain water content (BWC) was used to assess the effect of 10 % HS on cerebral oedema. The assessment of Evans blue (EB) extravasation was performed to evaluate the protective effect of 10 % HS on blood-brain barrier. The quantification of VEGF, VEGFR2, ZO-1 and claudin-5 was used to illustrate the mechanism of 10 % HS ameliorating cerebral oedema. BWC was analysed by wet-to-dry ratios in the ischemic hemisphere of SD rats; it was significantly decreased after 10 % HS treatment (P < 0.05). We also investigated the blood-brain barrier protective effect by 10 % HS which reduced EB extravasation effectively in the peri-ischemic brain tissue. In parallel to the above notably at 24 h following MCAO, mRNA and protein expression of VEGF and VEGFR2 in the peri-ischemic brain tissue was down-regulated after 10 % HS treatment (P < 0.05). Along with this, in vitro studies showed increased VEGF and VEGFR2 mRNA and protein expression in primary astrocytes under hypoxic condition (P < 0.05), but it was suppressed after HS treatment (P < 0.05). In addition, HS inhibited the down-regulation of ZO-1, claudin-5 effectively. The results suggest that 10 % HS could alleviate cerebral oedema possibly through reducing the ischemia induced BBB permeability as a consequence of inhibiting VEGF-VEGFR2-mediated down-regulation of ZO-1, claudin-5.
Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru
2015-07-01
Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.
Th9 Cells: Probable players in ulcerative colitis pathogenesis.
Shohan, Mojtaba; Elahi, Shokrollah; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud; Bagheri, Nader; Soltani, Emad
2018-04-19
T lymphocytes represent an important part of adaptive immune system undertaking different functions to regulate immune responses. CD4+ T cells are the most important activator cells in inflammatory conditions. Depending on the type of induced cells and inflamed sites, expression and activity of different subtypes of helper T cells are changed. Recent studies have confirmed the existence of a new subset of helper T lymphocytes called Th9. Naive T cells can differentiate into Th9 subtypes if they are exposed simultaneously by interleukin (IL) 4 and transforming growth factor β and also secondary activation of a complicated network of transcription factors such as interferon regulatory factor 4 (IRF4) and Smads which are essential for adequate induction of this phenotype. Th9 cells specifically produce interleukin 9 and their probable roles in promoting intestinal inflammation are being investigated in human subjects and experimental models of ulcerative colitis (UC). Recently, infiltration of Th9 cells, overexpression of IL-9, and certain genes associated with Th9 differentiation have been demonstrated in inflammatory microenvironment of UC. Intestinal oversecretion of IL-9 protein is likely to break down epithelial barriers and compromise tolerance to certain commensal microorganisms which leads to inflammation. Th9 pathogenicity has not yet been adequately explored in UC and they are far from being considered as inflammatory cells in this milieu, therefore precise understanding the role of these newly identified cells in particular their potential role in gut pathogenesis may enable us to develop novel therapeutic approaches for inflammatory bowel disease. So, this article tries to discuss the latest knowledge on the above-mentioned field.
Li, Pei-Fang; Lee, Yung-I; Yang, Chang-Hsien
2015-01-01
In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. PMID:26063506
Sun, Tian-Wen; Wu, Zhi-Hong; Weng, Xi-Sheng
2015-01-01
This study aimed to investigate the effect of a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) on the expression of arachidonate-associated inflammatory genes in cultured human normal chondrocytes. Normal chondrocytes were obtained from the cartilage of three different amputated patients without osteoarthritis (OA). Affymetrix Human microarray was used to assess the alterations in gene expression in three groups of cells: untreated cells (negative control group), cells treated with interleukin-1β (IL-1β) (positive control group), and cells treated with IL-1β and celecoxib. The patterns of up-regulation and down-regulation of gene expression were further validated by real-time PCR. A total of 1091 up-regulated genes and 1252 down-regulated genes were identified in the positive control group compared with the negative control group. Among them, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 are known to be involved in chondrocyte inflammation, while VEGFA, BCL2, TRAF1, CYR61, BMP6, DAPK1, DUSP7, IL1RN, MMP13 and TNFSF10 were reported being associated with cytokine and chemokine signaling. 189 up-regulated genes and 177 down-regulated genes were identified in the positive control group compared with intervention group. PTGS1, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 were among the genes down-regulated upon the treatment with celecoxib. Our results demonstrated that the OA chondrocytes are the site of active eicosanoid production. IL-1β can activate inflammation in chondrocytes and trigger the production of various proteins involved in cyclooxygenase pathway. The expression of genes corresponding to these proteins can be down-regulated by celecoxib. The findings indicate that the therapy with prostaglandin E2 (PGE2)-blocking agents may decrease the PGE2 production not only by direct inhibition of COX-2 activity, but also by down-regulating the expression of genes encoding for COX-2, microsomal prostaglandin-endoperoxide synthase 1 (mPGES-1) and prostaglandin E receptors 4 (EP4) in the articular chondrocytes.
Cieply, Benjamin; Farris, Joshua; Denvir, James; Ford, Heide; Frisch, Steven M.
2013-01-01
Epithelial-mesenchymal transition (EMT) in carcinoma cells enhances malignant progression by promoting invasion and survival. EMT is induced by microenvironmental factors including TGF-β and Wnt agonists, and by the E-box-binding transcription factors Twist, Snail and ZEB. Grainyhead-like-2 (GRHL2), a member of the mammalian Grainyhead family of wound healing regulatory transcription factors, suppresses EMT and restores sensitivity to anoikis by repressing ZEB1 expression and inhibiting TGF-β signaling. In this study, we elucidate the functional relationship between GRHL2 and ZEB1 in EMT/MET and tumor biology. At least three homeodomain proteins, Six1, LBX1, and HoxA5, transactivated the ZEB1 promoter, in the case of Six1, through direct protein-promoter interaction. GRHL2 altered the Six1-DNA complex, inhibiting this transactivation. Correspondingly, GRHL2 expression prevented tumor initiation in xenograft assays, sensitized breast cancer cells to paclitaxel and suppressed the emergence of CD44highCD24low cells (defining the cancer stem cell phenotype in the cell type studied). GRHL2 was down-regulated in recurrent mouse tumors that had evolved to an oncogene-independent, EMT-like state, supporting a role for GRHL2 down-regulation in this phenotypic transition, modeling disease recurrence. The combination of TGF-β and Wnt activation repressed GRHL2 expression by direct interaction of ZEB1 with the GRHL2 promoter, inducing EMT. Together, our observations indicate that a reciprocal feedback loop between GRHL2 and ZEB1 controls epithelial vs. mesenchymal phenotypes and EMT-driven tumor progression. PMID:23943797
Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.
Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N
2012-05-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.
Down-regulation of MutS homolog 3 by hypoxia in human colorectal cancer
Li, Jie; Koike, Junichi; Kugoh, Hiroyuki; Arita, Michitsune; Ohhira, Takahito; Kikuchi, Yoshinori; Funahashi, Kimihiko; Takamatsu, Ken; Boland, C. Richard; Koi, Minoru; Hemmi, Hiromichi
2013-01-01
Down-regulation of hMSH3 is associated with elevated microsatellite alterations at selected tetranucleotide repeats and low levels of microsatellite instability in colorectal cancer (CRC). However, the mechanism that down-regulates hMSH3 in CRC is not known. In this study, a significant association between over-expression of glucose transporter 1, a marker for hypoxia, and down-regulation of hMSH3 in CRC tissues was observed. Therefore, we examined the effect of hypoxia on the expression of hMSH3 in human cell lines. When cells with wild type p53 (wt-p53) were exposed to hypoxia, rapid down-regulation of both hMSH2 and hMSH3 occurred. In contrast, when null or mutated p53 (null/mut-p53) cells were exposed to hypoxia, only hMSH3 was down-regulated, and at slower rate than wt-p53 cells. Using a reporter assay, we found that disruption of the two putative hypoxia response elements (HREs) located within the promoter region of the hMSH3 abrogated the suppressive effect of hypoxia on reporter activity regardless of p53 status. In an EMSA, two different forms of HIF-1α complexes that specifically bind to these HREs were detected. A larger complex containing HIF-1α predominantly bound to the HREs in hypoxic null/mut-p53 cells whereas a smaller complex predominated in wt-p53 cells. Finally, HIF-1α knockdown by siRNA significantly inhibited down-regulation of hMSH3 by hypoxia in both wt-p53 and mut-p53 cells. Taken together, our results suggest that the binding of HIF-1α complexes to HRE sites is necessary for down-regulation of hMSH3 in both wt-p53 and mut-p53 cells. PMID:22343000
STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap.
Woroniuk, Anna; Porter, Andrew; White, Gavin; Newman, Daniel T; Diamantopoulou, Zoi; Waring, Thomas; Rooney, Claire; Strathdee, Douglas; Marston, Daniel J; Hahn, Klaus M; Sansom, Owen J; Zech, Tobias; Malliri, Angeliki
2018-05-29
The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.
Pallasch, Christian Philipp; Patz, Michaela; Park, Yoon Jung; Hagist, Susanne; Eggle, Daniela; Claus, Rainer; Debey-Pascher, Svenja; Schulz, Alexandra; Frenzel, Lukas P; Claasen, Julia; Kutsch, Nadine; Krause, Günter; Mayr, Christine; Rosenwald, Andreas; Plass, Christoph; Schultze, Joachim L; Hallek, Michael; Wendtner, Clemens-Martin
2009-10-08
MicroRNAs (miRNA) play a key role in cellular regulation and, if deregulated, in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). RNAs from primary cells of 50 treatment-naive CLL patients and peripheral B cells of 14 healthy donors were applied to miRNA expression profiling using bead chip technology. In CLL cells, a set of 7 up- and 19 down-regulated miRNAs was identified. Among the miRNAs down-regulated in CLL cells, 6 of 10 miRNA promoters examined showed gain of methylation compared with normal B-cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3' untranslated region of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site-directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107, and miR-424. Although expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells compared with the levels in healthy donor B cells. In summary, we could demonstrate disruption of miRNA-mediated translational control, partly due to epigenetic transcriptional silencing of miRNAs, with subsequent overexpression of the oncogenic transcription factor PLAG1 as a putative novel mechanism of CLL pathogenesis.
Pallasch, Christian Philipp; Patz, Michaela; Park, Yoon Jung; Hagist, Susanne; Eggle, Daniela; Claus, Rainer; Debey-Pascher, Svenja; Schulz, Alexandra; Frenzel, Lukas P.; Claasen, Julia; Kutsch, Nadine; Krause, Günter; Mayr, Christine; Rosenwald, Andreas; Plass, Christoph; Schultze, Joachim L.; Hallek, Michael
2009-01-01
MicroRNAs (miRNA) play a key role in cellular regulation and, if deregulated, in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). RNAs from primary cells of 50 treatment-naive CLL patients and peripheral B cells of 14 healthy donors were applied to miRNA expression profiling using bead chip technology. In CLL cells, a set of 7 up- and 19 down-regulated miRNAs was identified. Among the miRNAs down-regulated in CLL cells, 6 of 10 miRNA promoters examined showed gain of methylation compared with normal B-cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3′ untranslated region of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site-directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107, and miR-424. Although expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells compared with the levels in healthy donor B cells. In summary, we could demonstrate disruption of miRNA-mediated translational control, partly due to epigenetic transcriptional silencing of miRNAs, with subsequent overexpression of the oncogenic transcription factor PLAG1 as a putative novel mechanism of CLL pathogenesis. PMID:19692702
Shariati, Molood; Hajigholami, Samira; Veisi Malekshahi, Ziba; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid
2017-10-10
Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.
Gabrilovac, Jelka; Abramić, Marija; Uzarević, Branka; Andreis, Ana; Poljak, Ljiljana
2003-05-30
In this study we examined surface expression of CD26 and the corresponding enzyme activity of dipeptidyl peptidase IV (DPPIV) on the cells of immature murine T-cell line, R1.1. The data obtained have shown that R1.1 cells express high density of surface CD26 as compared to normal thymus cells. This was associated with strong enzyme activity, which, based on substrates and inhibitor specificity, corresponded to DPPIV. The DPPIV enzyme activity of R1.1 cells was 10 times stronger than that found on normal murine thymus cells (V(max) = 39 micromol/min/10(6) cells, vs 3.7 micromol/min/10(6) cells, respectively). Upon activation with anti-CD3, up-regulation of both membrane CD26, as well as of DPPIV enzyme activity on R1.1 cells were observed. The finding of strong DPPIV on R1.1 cells makes them suitable model for testing putative substrates/inhibitors of the enzyme in its natural microenvironment. Since in addition to strong DPPIV, R1.1 cells also express kappa opioid receptors (KOR) [European Journal of Pharmacology 227 (1992) 257], we tested the effect of dynorphin-A(1-17), an endogenous opioid peptide with KOR selectivity, on DPPIV of R1.1 cells. Dynorphin-A(1-17) down-regulated DPPIV in a dose-dependent manner, with the potency similar to that of substance P, a known natural DPPIV substrate [Journal of Pharmacology and Experimental Therapeutics 260 (1992) 1257]. DPPIV down-regulation was resistant to bestatin and thiorphan, the inhibitors of two cell surface peptidases (APN and NEP, respectively) with potential of dynorphin-A(1-17) degradation, suggesting that the mechanism underlying the observed effect does not involve degradative products of dynorphin-A(1-17). DPPIV down-regulation was also resistent to KOR antagonist, NBI, suggesting that the mechanism underlying the observed phenomenon involves neither cointernalization of KOR and DPPIV. Collectively, cells of immature T cell line, R1.1 exert strong DPPIV enzyme activity, which could be down-regulated in the presence of dynorphin-A(1-17) by mechanism that presumably includes non-substrate inhibition. By down-regulating DPPIV, dynorphin-A(1-17) may indirectly affect activity and/or specificity of natural substrates of DPPIV, such as substance P, RANTES, and endomorphins.
The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells
Khor, Bernard; Gagnon, John D; Goel, Gautam; Roche, Marly I; Conway, Kara L; Tran, Khoa; Aldrich, Leslie N; Sundberg, Thomas B; Paterson, Alison M; Mordecai, Scott; Dombkowski, David; Schirmer, Melanie; Tan, Pauline H; Bhan, Atul K; Roychoudhuri, Rahul; Restifo, Nicholas P; O'Shea, John J; Medoff, Benjamin D; Shamji, Alykhan F; Schreiber, Stuart L; Sharpe, Arlene H; Shaw, Stanley Y; Xavier, Ramnik J
2015-01-01
The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity. DOI: http://dx.doi.org/10.7554/eLife.05920.001 PMID:25998054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook
2009-01-09
Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1.more » These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.« less
Beckers, Anja; Alten, Leonie; Viebahn, Christoph; Andre, Philipp; Gossler, Achim
2007-01-01
The mouse homeobox gene Noto represents the homologue of zebrafish floating head (flh) and is expressed in the organizer node and in the nascent notochord. Previous analyses suggested that Noto is required exclusively for the formation of the caudal part of the notochord. Here, we show that Noto is also essential for node morphogenesis, controlling ciliogenesis in the posterior notochord, and the establishment of laterality, whereas organizer functions in anterior–posterior patterning are apparently not compromised. In mutant embryos, left–right asymmetry of internal organs and expression of laterality markers was randomized. Mutant posterior notochord regions were variable in size and shape, cilia were shortened with highly irregular axonemal microtubuli, and basal bodies were, in part, located abnormally deep in the cytoplasm. The transcription factor Foxj1, which regulates the dynein gene Dnahc11 and is required for the correct anchoring of basal bodies in lung epithelial cells, was down-regulated in mutant nodes. Likewise, the transcription factor Rfx3, which regulates cilia growth, was not expressed in Noto mutants, and various other genes important for cilia function or assembly such as Dnahc5 and Nphp3 were down-regulated. Our results establish Noto as an essential regulator of node morphogenesis and ciliogenesis in the posterior notochord, and suggest Noto acts upstream of Foxj1 and Rfx3. PMID:17884984
Liu, H; Li, J; Tillman, B; French, BA; French, SW
2014-01-01
We previously reported the mechanisms involved in the formation of Mallory-Denk bodies (MDBs) in mice fed DDC. To further provide clinical evidence as to how ubiquitin-like protein (Ubls) modification, gene transcript expression in Ufmylation and FATylation were investigated in human archived formalin-fixed, paraffin-embedded (FFPE) liver biopsies and frozen liver sections from DDC re-fed mice were used. Real-time PCR analysis showed that all Ufmylation molecules (Ufm1, Uba5, Ufc1, Ufl1 and UfSPs) were significantly down regulated, both in DDC re-fed mice livers and patients’ livers where MDBs had formed, indicating that gene transcript changes were limited to MDB-forming livers where the protein quality control system was down regulated. FAT10 and subunits of the immunoproteasome (LMP2 and LMP7) were both up regulated as previously shown. An approximate 176- and 5-fold up regulation (respectively) of FAT10 were observed in the DDC re-fed mice liver and in the livers of human alcoholic hepatitis with MDBs present, implying that there was an important role played by this gene. The FAT10-specific E1 and E2 enzymes Uba6 and USE1, however, were found to be down regulated both in patients’ livers and in the liver of DDC re-fed mice. Interestedly, the down regulation of mRNA levels was proportionate to MDB abundance in the liver tissues. Our results show the first systematic demonstration of transcript regulation of Ufmylation and FATylation in the liver of patients who form MDBs, where protein quality control is down regulated. This was also shown in livers of DDC re-fed mice where MDBs had formed. PMID:24893112
Interaction of RNA-binding protein HuR and miR-466i regulates GM-CSF expression.
Chen, Jing; Adamiak, William; Huang, Ganlei; Atasoy, Ulus; Rostami, Abdolmohamad; Yu, Shiguang
2017-12-08
Granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by T helper 17 (Th17) cells plays an essential role in autoimmune diseases. Transcriptional regulation of Th17 cell differentiation has been extensively studied, but post-transcriptional regulation of Th17 cell differentiation has remained less well characterized. The RNA-binding protein HuR functions to promote the stability of target mRNAs via binding the AU-rich elements of the 3' untranslated region (3'UTR) of numerous pro-inflammatory cytokines including IL-4, IL-13, IL-17 and TNF-α. However, whether HuR regulates GM-CSF expression in Th17 cells has not been fully investigated. Here we showed that HuR conditional knockout (KO) Th17 cells have decreased GM-CSF mRNA in comparison with wild-type (WT) Th17 cells, and that HuR binds directly to GM-CSF mRNA 3'UTR. Interestingly, HuR deficiency increased the levels of certain microRNA expression in Th17 cells; for example, miR-466i functioned to mediate GM-CSF and IL-17 mRNA decay, which was confirmed by in vitro luciferase assay. Furthermore, we found that HuR promoted Mxi1 expression to inhibit certain miRNA expression. Taken together, these findings indicate that interaction of HuR and miR-466i orchestrates GM-CSF expression in Th17 cells.
bmo-miR-275 down-regulates expression of Bombyx mori sericin gene 2 in vitro
Qian, Ping; Jiang, Tao; Wang, Xin; Song, Fei; Chen, Chen; Shen, Xingjia
2018-01-01
We hypothesized that bmo-miR-275 has a potential regulatory function regarding the expression of sericin gene 2 (BmSer-2). First, we examined the expression of bmo-miR-275 and its target gene BmSer-2 in seven different tissues from 5th instar day-3 silkworm larvae. The results showed that they were both specifically expressed in the middle silk gland, implying that spatio-temporal conditions are required for bmo-miR-275 to regulate the expression of BmSer-2. To test this hypothesis, we constructed a pri-bmo-miR-275 expressing plasmid pcDNA3.0 [ie1-egfp-pri-bmo-miR-275-SV40] and BmSer-2-3´UTR recombinant reporter plasmids pGL3.0 [A3-luc-Ser-2-3′ UTR-SV40]. Finally, BmN cells were harvested and luciferase activity was detected. Results showed that luciferase activity was reduced significantly (P<0.05) in BmN cells co-transfected with pcDNA3.0 [ie1-egfp-pri-bmo-miR-275-SV40] and pGL3.0 [A3-luc-Ser-2-3’UTR-SV40], suggesting that bmo-miR-275 can down-regulate the expression of BmSer-2 in vitro. Our results improve the understanding of the regulatory function of Bombyx mori miRNA on the expression of genes regulating silk formation. PMID:29381729
Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien
2015-08-01
In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. © 2015 American Society of Plant Biologists. All Rights Reserved.
Yuan, Yujie; Ren, Jianan; Cao, Shougen; Zhang, Weiwei; Li, Jieshou
2012-01-01
The role of complement system in bridging innate and adaptive immunity has been confirmed in various invasive pathogens. It is still obscure how complement proteins promote T cell-mediated immune response during sepsis. The aim of this study is to investigate the role of exogenous C3 protein in the T-cell responses to sepsis. Sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type C57BL/6 mice, sham-operated mice for control. Human purified C3 protein (HuC3, 1 mg) was intraperitoneally injected at 6 h post-surgery, with 200 μl phosphate-buffered saline as control. The levels of C3 and cytokines, the expression of FOXP3 and NF-κB, and the percentages of CD4(+) T-cell subsets were compared among the groups at given time points. The polymicrobial sepsis produced considerable release of TNF-α and IL-10, and caused complement C3 exhaustion. Exogenous C3 administration markedly improved the 48 h survival rate, as compared with nontreatment (40% vs. 5%, P<0.01). The expression of FOXP3 protein was increased during sepsis, but can be suppressed by HuC3 administration. A single injection of HuC3 postponed the decline of differentiated Th1 cells, and depressed the activation of Th2/Th17 cells. Besides, the Th1-Th2 shift in late stage of sepsis can be controlled under C3 supplementation. The suppression of NF-κB pathway might be related to the appearance of immunocompromise. The study confirmed the important role of exogenous C3 in up-regulation of adaptive immune response to sepsis. The complement pathway would be a pivotal target for severe sepsis management. Copyright © 2011 Elsevier B.V. All rights reserved.
López De Padilla, Consuelo M; Crowson, Cynthia S; Hein, Molly S; Strausbauch, Michael A; Aggarwal, Rohit; Levesque, Marc C; Ascherman, Dana P; Oddis, Chester V; Reed, Ann M
2015-01-01
The purpose of this study was to investigate whether serum interferon (IFN)-regulated chemokine and distinct cytokine response profiles are associated with clinical improvement in patients with refractory inflammatory myopathy treated with rituximab. In a randomised, placebo-phase trial Rituximab in Myositis Trial (RIM), 200 refractory adult and paediatric myositis subjects received rituximab. Following rituximab, clinical response and disease activity were assessed. Serum samples and clinical data were collected at baseline and several time-points after rituximab treatment. Multiplexed sandwich immunoassays quantified serum levels of IFN-regulated chemokines and other pro-inflammatory cytokines. Composite IFN-regulated chemokine and Th1, Th2, Th17 and regulatory cytokine scores were computed. Baseline IFN-regulated chemokine, Th1, Th2, Th17 and regulatory cytokine scores correlated with baseline physician global VAS, whereas the baseline Th1, Th2 and Th17 cytokine scores correlated with baseline muscle VAS. We also found baseline IFN-regulated chemokine scores correlated with specific non-muscular targets such as baseline cutaneous (r=0.29; p=0.002) and pulmonary (r=0.18; p=0.02) VAS scores. Among all cytokine/chemokines examined, the baseline score of IFN-regulated chemokines demonstrated the best correlation with changes in muscle VAS at 8 (r=-0.19; p=0.01) and 16 weeks (r=-0.17; p=0.03) following rituximab and physician global VAS at 16 weeks (r=-0.16; p=0.04). In vitro experiments showed increased levels of IL-8 (p=0.04), MCP-1 (p=0.04), IL-6 (p=0.03), IL-1β (p=0.04), IL-13 (p=0.04), IL-10 (p=0.02), IL-2 (p=0.04) and IFN-γ (p=0.02) in supernatants of TLR-3 stimulated PBMCs from non-responder compared to patients responders to rituximab. IFN-regulated chemokines before treatment is associated with improvement in disease activity measures in refractory myositis patients treated with rituximab.
Chance, Mark R.; Chang, Jinsook; Liu, Shuqing; Gokulrangan, Giridharan; Chen, Daniel H.-C.; Lindsay, Aaron; Geng, Ruishuang; Zheng, Qing Y.; Alagramam, Kumar
2010-01-01
Proteins and protein networks associated with cochlear pathogenesis in the Ames waltzer (av) mouse, a model for deafness in Usher syndrome 1F (USH1F), were identified. Cochlear protein from wild-type and av mice at postnatal day 30, a time point in which cochlear pathology is well established, was analyzed by quantitative 2D gel electrophoresis followed by mass spectrometry (MS). The analytic gel resolved 2270 spots; 69 spots showed significant changes in intensity in the av cochlea compared with the control. The cochlin protein was identified in 20 peptide spots, most of which were up-regulated, while a few were down-regulated. Analysis of MS sequence data showed that, in the av cochlea, a set of full-length isoforms of cochlin was up-regulated, while isoforms missing the N-terminal FCH/LCCL domain were down-regulated. Protein interaction network analysis of all differentially expressed proteins was performed with Metacore software. That analysis revealed a number of statistically significant candidate protein networks predicted to be altered in the affected cochlea. Quantitative PCR (qPCR) analysis of select candidates from the proteomic and bioinformatic investigations showed up-regulation of Coch mRNA and those of p53, Brn3a and Nrf2, transcription factors linked to stress response and survival. Increased mRNA of Brn3a and Nrf2 has previously been associated with increased expression of cochlin in human glaucomatous trabecular meshwork. Our report strongly suggests that increased level of cochlin is an important etiologic factor leading to the degeneration of cochlear neuroepithelia in the USH1F model. PMID:20097680
Characterization of the immunological response to Dermanyssus gallinae infestation in domestic fowl.
Harrington, D; Robinson, K; Guy, J; Sparagano, O
2010-04-01
Dermanyssus gallinae is a haematophagous ectoparasite of birds, which adversely affects both production and welfare of commercial poultry. Poultry in commercial production systems chronically exposed to D. gallinae do not appear to develop immunity to the mite. The objective of the current study was to determine the initial immune response of domestic fowl following exposure to D. gallinae. Two groups of birds (11 birds/group) had mite chambers secured to their backs. Controls received no mites, while infested birds received 200 unfed female D. gallinae on day 0 which were then removed on day 1 or 2. Spleen samples were collected on days -1, 1, 2 and 5. The expression of Th1 (IFNgamma, CXCLi2, IL6 and IL18), Th2 (IL4, IL10 and IL13) cytokines/chemokines normalized against a reference gene, GAPDH, were determined by semi-quantitative RT-PCR. Although there were no significant differences between treatments, numerical trends were observed. Th2 cytokine expression was not detected in any birds on any day. IL6, CXCLi2, IFNgamma and IL18 expression was increased on day 1 in the infested group, while on day 2 CXCLi2 and IFNgamma were lower and IL6 and IL18 levels were similar between treatments. The IL18 expression was similar between treatments on day 5, while IL6 and IFNgamma levels were increased and CXCLi2 expression was decreased in the infested group. Data suggest that D. gallinae feeding stimulates Th1 and pro-inflammatory cytokines/chemokines initially (day 1) followed by their subsequent down regulation. This study is the first report of the characterization of the immunological response of the domestic fowl to controlled numbers of D. gallinae.
Impact of prenatal hypoxia on fetal bone growth and osteoporosis in ovariectomized offspring rats.
Yang, Yuxian; Fan, Xiaorong; Tao, Jianying; Xu, Ting; Zhang, Yingying; Zhang, Wenna; Li, Lingjun; Li, Xiang; Ding, Hongmei; Sun, Miao; Gao, Qinqin; Xu, Zhice
2018-03-07
Prenatal hypoxia causes intrauterine growth retardation. It is unclear whether/how hypoxia affects the bone in fetal and offspring life. This study showed that prenatal hypoxia retarded fetal skeletal growth in rats, inhibited extracellular matrix (ECM) synthesis and down-regulated of insulin-like growth factor 1 (IGF1) signaling in fetal growth plate chondrocytes in vivo and in vitro. In addition, ovariectomized (OVX) was used for study of postmenopausal osteoporosis. Compared with the control, OVX offspring in prenatal hypoxic group showed an enhanced osteoporosis in the femurs, associated with reduced proteoglycan and IGF1 signaling. The results indicated prenatal hypoxia not only delayed fetal skeletal growth, but also increased OVX-induced osteoporosis in the elder offspring probably through down-regulated IGF1 signaling and inhibition of ECM synthesis, providing important information of prenatal hypoxia on functional and molecular bone growth and metabolism in fetal and offspring. Copyright © 2018 Elsevier Inc. All rights reserved.
Hoeman, Christine; Dhakal, Mermagya; Zaghouani, Habib
2010-06-01
Neonatal exposure to antigen gives rise to a primary response comprising both T helper 1 (Th1) and T helper 2 (Th2) lymphocytes. However, re-encounter with the same antigen yields an indubitably biased response with minimal Th1 but excessive Th2 cells. Since Th1 cells combat microbes while Th2 cells react to allergens, the neonate faces susceptibility to both microbial infections and allergic reactions. The Th1/Th2 imbalance of neonatal immunity stems from a delayed maturation of dendritic cells that yields limited IL-12 cytokine during the neonatal stage. Th1 cells developing under these circumstances up-regulate the IL-13Ralpha1 chain that physically associates with the IL-4Ralpha chain, forming a potentially hazardous heteroreceptor. During re-challenge with antigen, IL-4 from Th2 cells utilizes the heteroreceptor to signal the death of Th1 cells, leading to the Th2 bias of neonatal immunity. Our view to overcome Th1 deficiency is to supplement neonatal immunizations with toll-like receptor ligands that could stimulate maturation of dendritic cells and augment IL-12 production to counter IL-13Ralpha1 up-regulation. This regimen would yield Th1 cells devoid of the heteroreceptor and resistant to IL-4-induced apoptosis. Accordingly, the neonate would have balanced Th1/Th2 immunity and withstand both microbes and allergens. Such approaches could open new avenues for better pediatric vaccines and allergy therapies.
Oxygen tension level and human viral infections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr; Université Denis Diderot, Sorbonne Paris Cité Paris, Paris; Casetti, Luana
2013-09-15
The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections andmore » Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.« less
Lal, Ashish; Thomas, Marshall P; Altschuler, Gabriel; Navarro, Francisco; O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy
2011-11-01
A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.
Carballo, Jesús A.; Panizza, Silvia; Serrentino, Maria Elisabetta; Johnson, Anthony L.; Geymonat, Marco; Borde, Valérie; Klein, Franz; Cha, Rita S.
2013-01-01
An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or “DSB homeostasis”, might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks. PMID:23825959
Shintani, T; Takatsu, F; Rosli, S N Z; Usui, E; Hamada, A; Sumi, K; Hayashido, Y; Toratani, S; Okamoto, Tetsuji
2017-10-01
Heparin-binding protein 17 (HBp17)/fibroblast growth factor-binding protein-1 (FGFBP-1) was first purified from medium conditioned by A431 cells for its capacity to bind to fibroblast growth factors 1 and 2 (FGF-1 and -2). Among FGF family members, FGF-2 is a potent mitogen for various cell types, including vascular endothelial cells, fibroblasts, and cancer cells such as oral squamous cell carcinoma (OSCC) cells. Besides being well known in bone metabolism, the active form of vitamin D 3 , i.e., 1α,25(OH) 2 D 3 (1,25D 3 ), was reported to have protective effects for heart disease and cancer. Previously, we reported that 1,25D 3 inhibited HBp17/FGFBP-1 expression in OSCC cell lines through NF-κB inhibition (IκBα activation) and resulted in the inactivation of FGF-2. In this study, we examined the potential anti-tumor effect of ED-71, an analog of 1α,25(OH) 2 D 3 , for squamous cell carcinoma cells in vitro and in vivo. The cell lines used were OSCC cell lines (NA-HO-1-n-1 and UE-HO-1-u-1), established from oral cancer patients in our laboratory, and an epidermoid carcinoma/SCC cell line (A431). The growth assay in serum-free culture revealed that ED-71 inhibited the growth of the cancer cell lines in a dose-dependent manner. In addition, ED-71 suppressed HBp17/FGFBP-1 expression by inhibiting the NF-κB pathway as did 1,25D 3 . Furthermore, a luciferase reporter assay revealed that the promoter activity of HBp17/FGFBP-1 (region between -217 and +61) was down-regulated by ED-71. Oral administration of ED-71 significantly inhibited the growth of A431-derived tumors in athymic nude mice. Immunohistochemical analysis revealed that the expression of HBp17/FGFBP-1, FGF-2, CD31, and Ki-67 in the tumors of ED71-treated group was down-regulated in comparison to control. These results suggest that ED-71 possesses potential anti-tumor activity for SCCs both in vitro and in vivo. This compound may act directly on the tumor cells or on endothelial cells by modulating the tumor microenvironment.
Kim, Jeesun; Hwangbo, Jeon; Wong, Paul K. Y.
2011-01-01
A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm -/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway. PMID:21305053
Proteomic analysis of mouse thymoma EL4 cells treated with bis(tri-n-butyltin)oxide (TBTO).
Osman, Ahmed M; van Kol, Sandra; Peijnenburg, Ad; Blokland, Marco; Pennings, Jeroen L A; Kleinjans, Jos C S; van Loveren, Henk
2009-09-01
Here, we report the results of proteomic analysis of the mouse thymoma EL4 cell line exposed to bis(tri-n-butylin)oxide (TBTO), an immunotoxic organotin compound. The objective of the work was to examine whether TBTO affects the expression of proteins in this cell line and to compare the differentially expressed proteins with the corresponding mRNA expression data. The identified proteins were quantified using a label-free quantitative method based on counting the observed peptides as an index of protein abundance. The calculation of the ratio of peptides obtained from exposed and control samples allowed us to evaluate the effect of TBTO on protein expression and to compare these results to those obtained in gene expression profiling studies. Correlation of some of the differentially expressed proteins and their corresponding mRNAs was observed. The analysis of the protein ratios revealed that 12 proteins were significantly affected. These proteins included cytoskeleton proteins myosin-9, spectrin beta 2 and plectin 8. The first two proteins were down-regulated 3-fold, whereas the third was up-regulated 2-fold. Ras-related Rab1, a GTP binding protein and T-complex protein-1 subunit alpha, a chaperonin, were decreased 2- and 3.6-fold, respectively. The ribosomal S10 and eukaryotic translation factor (eIf4G1), which are involved in protein synthesis, were down-regulated 2.6- and 3.7-fold, respectively. Also, proteins involved in splicing of pre-mRNA and in transcription, splicing factor arginine/serine-rich 2 and chromodomain-helicase-DNA binding protein 4 (Chd4), were decreased 2.6- and 4.5 times, respectively. Nuclear RNA helicase II was reduced 2.8-fold. Finally, prothymosin-alpha (ProTalpha), an essential protein for cell proliferation, and a protein similar to ProTalpha, (with a molecular weight and a pI (3.54) comparable to that of ProTalpha) were also down-regulated 6-and 8-fold, respectively. We propose that the observed down-regulation of the expression level of ProTalpha in the TBTO-exposed cells could account for the previously reported anti-proliferative effect of TBTO.
Coagulation factor Xa drives tumor cells into apoptosis through BH3-only protein Bim up-regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borensztajn, Keren S.; Bijlsma, Maarten F.; Groot, Angelique P.
2007-07-15
Coagulation Factor (F)Xa is a serine protease that plays a crucial role during blood coagulation by converting prothrombin into active thrombin. Recently, however, it emerged that besides this role in coagulation, FXa induces intracellular signaling leading to different cellular effects. Here, we show that coagulation factor (F)Xa drives tumor cells of epithelial origin, but not endothelial cells or monocytes, into apoptosis, whereas it even enhances fibroblast survival. FXa signals through the protease activated receptor (PAR)-1 to activate extracellular-signal regulated kinase (ERK) 1/2 and p38. This activation is associated with phosphorylation of the transcription factor CREB, and in tumor cells withmore » up-regulation of the BH3-only pro-apoptotic protein Bim, leading to caspase-3 cleavage, the main hallmark of apoptosis. Transfection of tumor cells with dominant negative forms of CREB or siRNA for either PAR-1, Bim, ERK1 and/or p38 inhibited the pro-apoptotic effect of FXa. In fibroblasts, FXa-induced PAR-1 activation leads to down-regulation of Bim and pre-treatment with PAR-1 or Bim siRNA abolishes proliferation. We thus provide evidence that beyond its role in blood coagulation, FXa plays a key role in cellular processes in which Bim is the central player in determining cell survival.« less
Sequeira, Adolfo; Morgan, Ling; Walsh, David M; Cartagena, Preston M; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda; Myers, Richard M; Jones, Edward G; Bunney, William E; Vawter, Marquis P
2012-01-01
Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.
Sequeira, Adolfo; Morgan, Ling; Walsh, David M.; Cartagena, Preston M.; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda; Myers, Richard M.; Jones, Edward G.; Bunney, William E.; Vawter, Marquis P.
2012-01-01
Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain. PMID:22558144
Tshikudi Malu, Diane; Bélanger, Benoit; Desautels, François; Kelendji, Karine; Dalko, Esther; Sanchez-Dardon, Jaime; Leng, Lin; Bucala, Richard; Satoskar, Abhay; Scorza, Tatiana
2012-01-01
Neutralization of macrophage migration inhibitory factor (MIF) increases anti-tumor cytotoxic T cell responses in vivo and IFN-γ responses in vitro, suggesting a plausible regulatory role for MIF in T cell activation. Considering that IFN-γ production by CD4+ T cells is pivotal to resolve murine malaria and that secretion of MIF is induced by Plasmodium chabaudi adami parasites, we investigated the effect of MIF deficiency on the infection with this pathogen. Infections with P.c. adami DK parasites were more efficiently controlled in MIF-neutralized and MIF-deficient (KO) BALB/c mice. The reduction in parasitemia was associated with reduced production of IL-4 by non-T/non-B cells throughout patent infection. At day 4 post-infection, higher numbers of activated CD4+ cells were measured in MIF KO mice, which secreted more IFN-γ, less IL-4 and less IL-10 than CD4+ T cells from WT mice. Enhanced IFN-γ and decreased IL-4 responses also were measured in MIF KO CD4+ T cells stimulated with or without IL-12 and anti-IL-4 blocking antibody to induce Th1 polarization. However, MIF KO CD4+ T cells efficiently acquired a Th2 phenotype when stimulated in the presence of IL-4 and anti-IL-12 antibody, indicating normal responsiveness to IL-4/STAT6 signaling. These results suggest that by promoting IL-4 responses in cells other than T/B cells during early P.c. adami infection, MIF decreases IFN-γ secretion in CD4+ T cells and in addition, has the intrinsic ability to render CD4+ T cells less capable of acquiring a robust Th1 phenotype when stimulated in the presence of IL-12. PMID:21518974
Dendritic cell MST1 inhibits Th17 differentiation
Li, Chunxiao; Bi, Yujing; Li, Yan; Yang, Hui; Yu, Qing; Wang, Jian; Wang, Yu; Su, Huilin; Jia, Anna; Hu, Ying; Han, Linian; Zhang, Jiangyuan; Li, Simin; Tao, Wufan; Liu, Guangwei
2017-01-01
Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. PMID:28145433
Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.
Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D
2009-06-26
Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiles, Katie M.; Center for Oral Health Research, School of Dental Medicine University of Pennsylvania, Philadelphia, PA 19104; Milne, Richard S.B.
2008-03-30
During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated.more » Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry.« less
Warnes, G; Biggerstaff, J P; Francis, J L
1998-07-01
Recent studies have investigated the use of anti-inflammatory cytokine, interleukin 10 (IL-10) to control the development of disseminated intravascular coagulation (DIC) in sepsis by down-regulation of monocyte tissue factor (MTF) induced by lipopolysaccharide (LPS) in the initial phase of the disease. In vitro and in vivo human studies have shown that a minimal (<1 h) delay in IL-10 treatment significantly reduces the cytokines ability to inhibit LPS-induced MTF expression and the end products of coagulation. In this whole blood in vitro study we investigated the role of lymphocyte and platelet interactions with monocytes to up-regulate MTF expression in the presence of IL-10 in the initial phase of exposure to LPS. Individual blockade of monocyte B7 or platelet P-selectin significantly (35%) reduced MTF expression (P<0.05). IL-10 showed a dose-dependent inhibition of LPS (0.1 microg/ml) induced MTF expression, with 56% inhibition at 1 ng/ml, maximizing at 5 ng/ml IL-10 (75%; P<0.05). Simultaneous exposure to LPS and IL-10 (1 ng/ml) or addition of IL-10 1 h after LPS, with individual B7 and P-selectin blockade significantly enhanced the inhibition of MTF expression by IL-10 (P<0.05). We conclude that the efficacy of IL-10 to control DIC could be enhanced by a simultaneous B7 and P-selectin blockade.
A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞
Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.
2008-01-01
Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798
El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha
2014-01-01
Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173
El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha
2014-01-01
Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.