Sample records for factor-1 igf-1 receptor

  1. Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain.

    PubMed

    Jiang, Guohui; Wang, Wei; Cao, Qingqing; Gu, Juan; Mi, Xiujuan; Wang, Kewei; Chen, Guojun; Wang, Xuefeng

    2015-12-01

    Insulin-like growth factor-1 (IGF-1) is known to promote neurogenesis and survival. However, recent studies have suggested that IGF-1 regulates neuronal firing and excitatory neurotransmission. In the present study, focusing on temporal lobe epilepsy, we found that IGF-1 levels and IGF-1 receptor activation are increased in human epileptogenic tissues, and pilocarpine- and pentylenetetrazole-treated rat models. Using an acute model of seizures, we showed that lateral cerebroventricular infusion of IGF-1 elevates IGF-1 receptor (IGF-1R) signalling before pilocarpine application had proconvulsant effects. In vivo electroencephalogram recordings and power spectrogram analysis of local field potential revealed that IGF-1 promotes epileptiform activities. This effect is diminished by co-application of an IGF-1R inhibitor. In an in vitro electrophysiological study, we demonstrated that IGF-1 enhancement of excitatory neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor- and N-methyl-D-aspartate receptor-mediated currents is inhibited by IGF-1R inhibitor. Finally, activation of extracellular signal-related kinase (ERK)-1/2 and protein kinase B (Akt) in seizures in rats is increased by exogenous IGF-1 and diminished by picropodophyllin. A behavioural study reveals that the ERK1/2 or Akt inhibitor attenuates seizure activity. These results indicate that increased IGF-1 levels after recurrent hippocampal neuronal firings might, in turn, promote seizure activity via IGF-1R-dependent mechanisms. The present study presents a previously unappreciated role of IGF-1R in the development of seizure activity. © 2015 Authors; published by Portland Press Limited.

  2. IGF-1 receptor cleavage in hypertension.

    PubMed

    Cirrik, Selma; Schmid-Schönbein, Geert W

    2018-06-01

    Increased protease activity causes receptor dysfunction due to extracellular cleavage of different membrane receptors in hypertension. The vasodilatory effects of insulin-like growth factor-1 (IGF-1) are decreased in hypertension. Therefore, in the present study the association of an enhanced protease activity and IGF-1 receptor cleavage was investigated using the spontaneously hypertensive rats (SHRs) and their normotensive Wistar Kyoto (WKY) controls (n = 4). Matrix metalloproteinase (MMP) activities were determined using gelatin zymography on plasma and different tissue samples. WKY aorta rings were incubated in WKY or SHR plasma with or without MMP inhibitors, and immunohistochemistry was used to quantify the densities of the alpha and beta IGF-1 receptor (IGF-1R) subunits and to determine receptor cleavage. The pAkt and peNOS levels in the aorta were investigated using immunoblotting as a measure of IGF-IR function. Increased MMP-2 and MMP-9 activities were detected in plasma and peripheral tissues of SHRs. IGF-1R beta labeling was similar in both groups without plasma incubation, but the fraction of immunolabeled area for IGF-1R alpha was lower in the endothelial layer of the SHR aorta (p < 0.05). A 24-h incubation of WKY aorta with SHR plasma did not affect the IGF-1R beta labeling density, but reduced the IGF-1R alpha labeling density in the endothelium (p < 0.05). MMP inhibitors prevented this decrease (p < 0.01). Western blot analyses revealed that the pAkt and peNOS levels under IGF-1-stimulated and -unstimulated conditions were lower in SHRs (p < 0.05). A reduced IGF-1 cellular response in the aorta was associated with the decrease in the IGF-1R alpha subunit in the SHR hypertension model. Our results indicate that MMP-dependent receptor cleavage contributed to the reduced IGF-1 response in SHRs.

  3. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    PubMed

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  4. Can insulin-like growth factor 1 (IGF-1), IGF-1 receptor connective tissue growth factor and Ki-67 labelling index have a prognostic role in pulmonary carcinoids?

    PubMed

    Kanakis, Georgios A; Grimelius, Lars; Papaioannou, Dimitrios; Kaltsas, Gregory; Tsolakis, Apostolos V

    2018-04-27

    Altered expression of Insulin-like Growth Factor-1 (IGF-1), its receptor (IGF-1R), Connective Tissue Growth Factor (CTGF) and Hypoxia Inducible Factor-1 (HIF-1), has been implicated in tumorigenesis. So far, these factors have not been studied systematically in Pulmonary Carcinoids (PCs). To examine IGF-1, IGF-1R, CTGF and HIF-1 expression in PCs, and assess their prognostic value over established factors. Retrospective study of 121 PCs (104 Typical and 17 Atypical). The expression of growth factors was studied immunohistochemically and tumors were considered positive if immunoreactivity appeared in >50% of cells. All studied parameters were expressed in the majority of tumors (IGF-1, IGF-1R, CTGF and HIF-1, in 78.5%, 67%, 72% and 78%, respectively). Their expression tended to be more frequent in TCs and in tumors with Ki-67≤2% (significant only for HIF-1; 82 vs. 53%; p=0.023 and 83 vs. 63%; p=0.025 respectively). CTGF was the only factor correlated with more extensive disease (larger size; presence of lymph node and distant metastases). According to logistic regression analysis, only advanced age, Ki-67≥3.4% and lymph node involvement could predict the development of distant metastases. IGF-1, IGF-1R, CTGF and HIF-1 are avidly expressed in PCs; however, their presence did not appear to be of statistically significant value over established prognostic factors.

  5. Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats.

    PubMed

    Basta-Kaim, Agnieszka; Szczesny, Ewa; Glombik, Katarzyna; Stachowicz, Katarzyna; Slusarczyk, Joanna; Nalepa, Irena; Zelek-Molik, Agnieszka; Rafa-Zablocka, Katarzyna; Budziszewska, Boguslawa; Kubera, Marta; Leskiewicz, Monika; Lason, Wladyslaw

    2014-09-01

    It has been shown that stressful events occurring in early life have a powerful influence on the development of the central nervous system. Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation and survival of both neurons and glial cells and is thought to exert antidepressant-like activity. Thus, it is possible that disturbances in the function of the IGF-1 system may be responsible for disturbances observed over the course of depression. Prenatal stress was used as a valid model of depression. Adult male offspring of control and stressed rat dams were subjected to behavioural testing (forced swim test). The level of IGF-1 in the blood and the expression of IGF-1, IGF-1R, and IRS-1/2 in the hippocampus and frontal cortex using RT-PCR, ELISA and western blotting were measured. In addition the effect of intracerebroventricularly administered IGF-1 and/or the IGF-1R receptor antagonist JB1 in the forced swim test was studied. Prenatally stressed rats showed depressive like behaviour, including increased immobility time as well as decreased mobility and climbing. Intracerebroventricular administration of IGF-1 reversed these effects in stressed animals, whereas concomitant administration of the IGF-1R antagonist JB1 completely blocked the effects. Biochemical analysis of homogenates from the hippocampus and frontal cortex revealed decreases in IGF-1 level and IGF-1R phosphorylation along with disturbances in IRS-1 phosphorylation. These findings reveal that prenatal stress alters IGF-1 signalling, which may contribute to the behavioural changes observed in depression. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  6. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: Interactions between. alpha. beta. heterodimeric receptor halves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilden, P.A.; Treadway, J.L.; Morrison, B.D.

    1989-12-12

    Examination of {sup 125}I-IGF-1 affinity cross-linking and {beta}-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptors into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 receptor complex from the partially purified {alpha}{beta} heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified {alpha}{beta} heterodimers into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulatemore » the protein kinase activity of the purified {alpha}{beta} heterodimeric insulin receptor complex. Incubation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter {sup 125}I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the {alpha}{beta} heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptor complexes into a disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor {alpha}{beta} heterodimers into the {alpha}{sub 2}{beta}{sub 2} heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation.« less

  7. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    PubMed

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  8. Insulin-like Growth Factor (IGF) Signaling Requires αvβ3-IGF1-IGF Type 1 Receptor (IGF1R) Ternary Complex Formation in Anchorage Independence, and the Complex Formation Does Not Require IGF1R and Src Activation

    PubMed Central

    Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu

    2013-01-01

    Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309

  9. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation.

    PubMed

    Girnita, Leonard; Worrall, Claire; Takahashi, Shin-Ichiro; Seregard, Stefan; Girnita, Ada

    2014-07-01

    The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R "borrows" components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.

  10. R1507, an Anti-Insulin-Like Growth Factor-1 Receptor (IGF-1R) Antibody, and EWS/FLI-1 siRNA in Ewing's Sarcoma: Convergence at the IGF/IGFR/Akt Axis

    PubMed Central

    Rodon, Jordi; Sun, Michael; Kuenkele, Klaus-Peter; Parsons, Henrique A.; Trent, Jonathan C.; Kurzrock, Razelle

    2011-01-01

    A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt. PMID:22022506

  11. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

    PubMed

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2018-04-11

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.

  12. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling

    PubMed Central

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian

    2018-01-01

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)−1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. PMID:29661273

  13. S-nitrosylation of the IGF-1 receptor disrupts the cell proliferative action of IGF-1.

    PubMed

    Okada, Kazushi; Zhu, Bao-Ting

    2017-09-30

    The insulin-like growth factor 1 receptor (IGF-1R) is a disulfide-linked heterotetramer containing two α-subunits and two β-subunits. Earlier studies demonstrate that nitric oxide (NO) can adversely affect IGF-1 action in the central nervous system. It is known that NO can induce S-nitrosylation of the cysteine residues in proteins, thereby partly contributing to the regulation of protein function. In the present study, we sought to determine whether S-nitrosylation of the cysteine residues in IGF-1R is an important post-translational modification that regulates its response to IGF-1. Using cultured SH-SY5Y human neuroblastoma cells as an in vitro model, we found that treatment of cells with S-nitroso-cysteine (SNOC), a NO donor that can nitrosylate the cysteine residues in proteins, induces S-nitrosylation of the β subunit of IGF-1R but not its α-subunit. IGF-1Rβ S-nitrosylation by SNOC is coupled with increased dissociation of the IGF-1R protein complex. In addition, disruption of the IGF-1R function resulting from S-nitrosylation of the IGF-1Rβ subunit is associated with disruption of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, we observed that SNOC-induced IGF-1Rβ S-nitrosylation results in a dose-dependent inhibition of cell proliferation and survival. Together, these results suggest that elevated nitrosative stress may result in dysfunction of cellular IGF-1R signaling through S-nitrosylation of the cysteine residues in the IGF-1Rβ subunit, thereby disrupting the downstream PI3K and MAPK signaling functions and ultimately resulting in inhibition of cell proliferation and survival. Copyright © 2017. Published by Elsevier Inc.

  14. Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens.

    PubMed

    Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C

    1996-12-17

    The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P < 0.05, respectively). IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-5 localized in the cytoplasm of sSMCs and in the extracellular matrix. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) performed on de novo atherectomy specimens identified mRNA for IGF-I, IGF-I receptor, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 levels and detected mRNA for IGFBP-3. The expression of IGF-I, IGF-I receptor, and IGFBPs in atherectomy plaques suggests that the development of coronary obstructive lesions may be a result of changes in the IGF system.

  15. Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R).

    PubMed

    Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka

    2003-11-01

    Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved

  16. Customizing the targeting of IGF-1 receptor.

    PubMed

    Baserga, Renato

    2009-02-01

    The type 1 IGF receptor (IGF-IR) is activated by two ligands, IGF-1 and IGF-2, and by insulin at supraphysiological concentrations. It plays a significant role in the growth of normal and abnormal cells, and antibodies against the IGF-IR are now in clinical trials. Targeting of the IGF-IR in cancer cells (by antibodies or other means) can be improved by the appropriate selection of responsive tumors. This review focuses on the optimization of IGF-IR targeting in human cancer.

  17. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D.

    2010-09-03

    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression.more » We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.« less

  18. Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling

    PubMed Central

    Gan, Yujun; Buckels, Ashiya; Liu, Ying; Zhang, Yue; Paterson, Andrew J.; Jiang, Jing; Zinn, Kurt R.

    2014-01-01

    GH signaling yields multiple anabolic and metabolic effects. GH binds the transmembrane GH receptor (GHR) to activate the intracellular GHR-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signals, including signal transducer and activator of transcription 5 (STAT5) activation and IGF-1 gene expression. Some GH effects are partly mediated by GH-induced IGF-1 via IGF-1 receptor (IGF-1R), a tyrosine kinase receptor. We previously demonstrated in non-human cells that GH causes formation of a GHR-JAK2-IGF-1R complex and that presence of IGF-1R (even without IGF-1 binding) augments proximal GH signaling. In this study, we use human LNCaP prostate cancer cells as a model system to further study the IGF-1R's role in GH signaling. GH promoted JAK2 and GHR tyrosine phosphorylation and STAT5 activation in LNCaP cells. By coimmunoprecipitation and a new split luciferase complementation assay, we find that GH augments GHR/IGF-1R complex formation, which is inhibited by a Fab of an antagonistic anti-GHR monoclonal antibody. Short hairpin RNA-mediated IGF-1R silencing in LNCaP cells reduced GH-induced GHR, JAK2, and STAT5 phosphorylation. Similarly, a soluble IGF-1R extracellular domain fragment (sol IGF-1R) interacts with GHR in response to GH and blunts GH signaling. Sol IGF-1R also markedly inhibits GH-induced IGF-1 gene expression in both LNCaP cells and mouse primary osteoblast cells. On the basis of these and other findings, we propose a model in which IGF-1R augments GH signaling by allowing a putative IGF-1R-associated molecule that regulates GH signaling to access the activated GHR/JAK2 complex and envision sol IGF-1R as a dominant-negative inhibitor of this IGF-1R-mediated augmentation. Physiological implications of this new model are discussed. PMID:25211187

  19. Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors.

    PubMed

    Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa; Kahaly, George J; Neumann, Susanne; Gershengorn, Marvin C

    2018-05-01

    Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.

  20. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor (IGF1R) tyrosine kinase in human sperm capacitation.

    PubMed

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-04-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination.

    PubMed

    Mason, Jeffrey L; Xuan, Shouhong; Dragatsis, Ioannis; Efstratiadis, Argiris; Goldman, James E

    2003-08-20

    We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately. We observed that oligodendrocyte progenitors did not accumulate, proliferate, or survive within the mutant mice, compared with wild type, indicating that signaling through the IGF1R plays a critical role in remyelination via effects on oligodendrocyte progenitors.

  2. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor.

    PubMed

    Jang, Donghwan; Kwon, Hayeong; Jeong, Kyuho; Lee, Jaewoong; Pak, Yunbae

    2015-06-01

    Here, we explored flotillin-1-mediated regulation of insulin-like growth factor-1 (IGF-1) signaling. Flotillin-1-deficient cells exhibited a reduction in the activation of IGF-1 receptor (IGF-1R), ERK1/2 and Akt pathways, and the transcriptional activation of Elk-1 and the proliferation in response to IGF-1 were reduced in these cells. We found that IGF-1-independent flotillin-1 palmitoylation at Cys34 in the endoplasmic reticulum (ER) was required for the ER exit and the plasma membrane localization of flotillin-1 and IGF-1R. IGF-1-dependent depalmitoylation and repalmitoylation of flotillin-1 sustained tyrosine kinase activation of the plasma-membrane-targeted IGF-1R. Dysfunction and blocking the turnover of flotillin-1 palmitoylation abrogated cancer cell proliferation after IGF-1R signaling activation. Our data show that flotillin-1 palmitoylation is a new mechanism by which the intracellular localization and activation of IGF-1R are controlled. © 2015. Published by The Company of Biologists Ltd.

  3. Insulin-like growth factor 1 (IGF-1): a growth hormone

    PubMed Central

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  4. Increased expression of both insulin receptor substrates 1 and 2 confers increased sensitivity to IGF-1 stimulated cell migration.

    PubMed

    de Blaquière, Gail E; May, Felicity E B; Westley, Bruce R

    2009-06-01

    Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.

  5. MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream mTORC1 Signaling in Renal Carcinoma Cells*

    PubMed Central

    Das, Falguni; Dey, Nirmalya; Bera, Amit; Kasinath, Balakuntalam S.; Ghosh-Choudhury, Nandini; Choudhury, Goutam Ghosh

    2016-01-01

    Elevated IGF-1/insulin-like growth factor-1 receptor (IGF-1R) autocrine/paracrine signaling in patients with renal cell carcinoma is associated with poor prognosis of the disease independent of their von Hippel-Lindau (VHL) status. Increased expression of IGF-1R in renal cancer cells correlates with their potency of tumor development and progression. The mechanism by which expression of IGF-1R is increased in renal carcinoma is not known. We report that VHL-deficient and VHL-positive renal cancer cells possess significantly decreased levels of mature, pre-, and pri-miR-214 than normal proximal tubular epithelial cells. We identified an miR-214 recognition element in the 3′UTR of IGF-1R mRNA and confirmed its responsiveness to miR-214. Overexpression of miR-214 decreased the IGF-1R protein levels, resulting in the inhibition of Akt kinase activity in both types of renal cancer cells. IGF-1 provoked phosphorylation and inactivation of PRAS40 in an Akt-dependent manner, leading to the activation of mTORC1 signal transduction to increase phosphorylation of S6 kinase and 4EBP-1. Phosphorylation-deficient mutants of PRAS40 and 4EBP-1 significantly inhibited IGF-1R-driven proliferation of renal cancer cells. Expression of miR-214 suppressed IGF-1R-induced phosphorylation of PRAS40, S6 kinase, and 4EBP-1, indicating inhibition of mTORC1 activity. Finally, miR-214 significantly blocked IGF-1R-forced renal cancer cell proliferation, which was reversed by expression of 3′UTR-less IGF-1R and constitutively active mTORC1. Together, our results identify a reciprocal regulation of IGF-1R levels and miR-214 expression in renal cancer cells independent of VHL status. Our data provide evidence for a novel mechanism for IGF-1R-driven renal cancer cell proliferation involving miR-214 and mTORC1. PMID:27226530

  6. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency.

    PubMed

    Laron, Zvi

    2008-01-01

    Primary or secondary IGF1 deficiency has been implicated in shortening of lifespan. This paper reviews available data on the influence of IGF1 deficiency on lifespan and longevity in animals and man. It has been shown that inactivation of the IGF1 gene or of the GH receptor in both invertebrates (C-elegans, flies-Drosphila) and rodents (mice and rats), leading to IGF1 deficiency, prolong life, particularly in females. In man, evaluation of the 2 largest cohorts of patients with Laron syndrome (inactive GH receptor resulting in IGF1 deficiency) in Israel and Ecuador revealed that despite their dwarfism and marked obesity, patients are alive at the ages of 75-78 years, with some having reached even more advanced ages. It is assumed that a major contributing factor is their protection from cancer, a major cause of death in the general population.

  7. Activation of Akt by Advanced Glycation End Products (AGEs): Involvement of IGF-1 Receptor and Caveolin-1

    PubMed Central

    Yang, Su-Jung; Chen, Chen-Yu; Chang, Geen-Dong; Wen, Hui-Chin; Chen, Ching-Yu; Chang, Shi-Chuan; Liao, Jyh-Fei; Chang, Chung-Ho

    2013-01-01

    Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3

  8. 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system.

    PubMed

    Kineman, Rhonda D; Del Rio-Moreno, Mercedes; Sarmento-Cabral, André

    2018-07-01

    It is clear that insulin-like growth factor-1 (IGF1) is important in supporting growth and regulating metabolism. The IGF1 found in the circulation is primarily produced by the liver hepatocytes, but healthy mature hepatocytes do not express appreciable levels of the IGF1 receptor (IGF1R). Therefore, the metabolic actions of IGF1 are thought to be mediated via extra-hepatocyte actions. Given the structural and functional homology between IGF1/IGF1R and insulin receptor (INSR) signaling, and the fact that IGF1, IGF1R and INSR are expressed in most tissues of the body, it is difficult to separate out the tissue-specific contributions of IGF1/IGF1R in maintaining whole body metabolic function. To circumvent this problem, over the last 20 years, investigators have taken advantage of the Cre/loxP system to manipulate IGF1/IGF1R in a tissue-dependent, and more recently, an age-dependent fashion. These studies have revealed that IGF1/IGF1R can alter extra-hepatocyte function to regulate hormonal inputs to the liver and/or alter tissue-specific carbohydrate and lipid metabolism to alter nutrient flux to liver, where these actions are not mutually exclusive, but serve to integrate the function of all tissues to support the metabolic needs of the organism. © 2018 Society for Endocrinology.

  9. TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis

    PubMed Central

    Krieger, Christine C.; Place, Robert F.; Bevilacqua, Carmine; Marcus-Samuels, Bernice; Abel, Brent S.; Skarulis, Monica C.; Kahaly, George J.; Neumann, Susanne

    2016-01-01

    Context: The TSH receptor (TSHR) is considered the main target of stimulatory autoantibodies in the pathogenesis of Graves' ophthalmopathy (GO); however, it has been suggested that stimulatory IGF-1 receptor (IGF-1R) autoantibodies also play a role. Objective: We previously demonstrated that a monoclonal stimulatory TSHR antibody, M22, activates TSHR/IGF-1R cross talk in orbital fibroblasts/preadipocytes obtained from patients with GO (GO fibroblasts [GOFs]). We show that cross talk between TSHR and IGF-1R, not direct IGF-1R activation, is involved in the mediation of GO pathogenesis stimulated by Graves' autoantibodies. Design/Setting/Participants: Immunoglobulins were purified from the sera of 57 GO patients (GO-Igs) and tested for their ability to activate TSHR and/or IGF-1R directly and TSHR/IGF-1R cross talk in primary cultures of GOFs. Cells were treated with M22 or GO-Igs with or without IGF-1R inhibitory antibodies or linsitinib, an IGF-1R kinase inhibitor. Main Outcome Measures: Hyaluronan (hyaluronic acid [HA]) secretion was measured as a major biological response for GOF stimulation. IGF-1R autophosphorylation was used as a measure of direct IGF-1R activation. TSHR activation was determined through cAMP production. Results: A total of 42 out of 57 GO-Ig samples stimulated HA secretion. None of the GO-Ig samples exhibited evidence for IGF-1R autophosphorylation. Both anti-IGF-1R antibodies completely inhibited IGF-1 stimulation of HA secretion. By contrast, only 1 IGF-1R antibody partially blocked HA secretion stimulated by M22 or GO-Igs in a manner similar to linsitinib, whereas the other IGF-1R antibody had no effect on M22 or GO-Ig stimulation. These findings show that the IGF-1R is involved in GO-Igs stimulation of HA secretion without direct activation of IGF-1R. Conclusions: IGF-1R activation by GO-Igs occurs via TSHR/IGF-1R cross talk rather than direct binding to IGF-1R, and this cross talk is important in the pathogenesis of GO. PMID:27043163

  10. Small-Molecule Inhibition and Activation-Loop Trans-Phosphorylation of the IGF1 Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu,J.; Li, W.; Craddock, B.

    2008-01-01

    The insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase (RTK) that has a critical role in mitogenic signalling during embryogenesis and an antiapoptotic role in the survival and progression of many human tumours. Here, we present the crystal structure of the tyrosine kinase domain of IGF1R (IGF1RK), in its unphosphorylated state, in complex with a novel compound, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1, 5-a]pyrazin-8-ylamine (PQIP), which we show is a potent inhibitor of both the unphosphorylated (basal) and phosphorylated (activated) states of the kinase. PQIP interacts with residues in the ATP-binding pocket and in the activation loop, which confers specificity for IGF1RK andmore » the highly related insulin receptor (IR) kinase. In this crystal structure, the IGF1RK active site is occupied by Tyr1135 from the activation loop of an symmetry (two-fold)-related molecule. This dimeric arrangement affords, for the first time, a visualization of the initial trans-phosphorylation event in the activation loop of an RTK, and provides a molecular rationale for a naturally occurring mutation in the activation loop of the IR that causes type II diabetes mellitus.« less

  11. Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.

    1987-05-01

    A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of /sup 125/I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of /sup 125/I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of /sup 125/I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of /sup 125/I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGFmore » I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I.« less

  12. Insulin-Like Growth Factor (IGF) Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes

    PubMed Central

    Assefa, Biruhalem; Mahmoud, Ayman M.; Pfeiffer, Andreas F. H.; Birkenfeld, Andreas L.; Spranger, Joachim

    2017-01-01

    Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism. PMID:29422987

  13. Insulin-Like Growth Factor (IGF) Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes.

    PubMed

    Assefa, Biruhalem; Mahmoud, Ayman M; Pfeiffer, Andreas F H; Birkenfeld, Andreas L; Spranger, Joachim; Arafat, Ayman M

    2017-01-01

    Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKC ζ / λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKC ζ / λ /GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.

  14. Changes in circulating IGF1 receptor stimulating activity do not parallel changes in total IGF1 during GH treatment of GH-deficient adults.

    PubMed

    Varewijck, Aimee J; Lamberts, Steven W J; van der Lely, A J; Neggers, Sebastian J C M M; Hofland, Leo J; Janssen, Joseph A M J L

    2015-08-01

    Previously we demonstrated that IGF1 receptor stimulating activity (IGF1RSA) offers advantages in diagnostic evaluation of adult GH deficiency (GHD). It is unknown whether IGF1RSA can be used to monitor GH therapy. To investigate the value of circulating IGF1RSA for monitoring GH therapy. 106 patients (54 m; 52 f) diagnosed with GHD were included; 22 were GH-naïve, 84 were already on GH treatment and discontinued therapy 4 weeks before baseline values were established. IGF1RSA was determined by the IGF1R kinase receptor activating assay, total IGF1 by immunoassay (Immulite). GH doses were titrated to achieve total IGF1 levels within the normal range. After 12 months, total IGF1 and IGF1RSA increased significantly (total IGF1 from 8.1 (95% CI 7.3-8.9) to 14.9 (95% CI 13.5-16.4) nmol/l and IGF1RSA from 115 (95% CI 104-127) to 181 (95% CI 162-202) pmol/l). After 12 months, total IGF1 normalized in 81% of patients, IGF1RSA in 51% and remained below normal in more than 40% of patients in whom total IGF1 had normalized. During 12 months of GH treatment, changes in IGF1RSA did not parallel changes in total IGF1. Despite normalization of total IGF1, IGF1RSA remained subnormal in a considerable proportion of patients. At present our results have no short-term consequences for GH therapy of GHD patients. However, based on our findings we propose future studies to examine whether titrating GH dose against IGF1RSA results in a better clinical outcome than titrating against total IGF1. © 2015 European Society of Endocrinology.

  15. Targeted Morphoproteomic Profiling of Ewing's Sarcoma Treated with Insulin-Like Growth Factor 1 Receptor (IGF1R) Inhibitors: Response/Resistance Signatures

    PubMed Central

    Subbiah, Vivek; Naing, Aung; Brown, Robert E.; Chen, Helen; Doyle, Laurence; LoRusso, Patricia; Benjamin, Robert; Anderson, Pete; Kurzrock, Razelle

    2011-01-01

    Background Insulin-like growth factor 1 receptor (IGF1R) targeted therapies have resulted in responses in a small number of patients with advanced metastatic Ewing's sarcoma. We performed morphoproteomic profiling to better understand response/resistance mechanisms of Ewing's sarcoma to IGF1R inhibitor-based therapy. Methodology/Principal Findings This pilot study assessed two patients with advanced Ewing's sarcoma treated with IGF1R antibody alone followed by combined IGF1R inhibitor plus mammalian target of rapamycin (mTOR) inhibitor treatment once resistance to single-agent IGF1R inhibitor developed. Immunohistochemical probes were applied to detect p-mTOR (Ser2448), p-Akt (Ser473), p-ERK1/2 (Thr202/Tyr204), nestin, and p-STAT3 (Tyr 705) in the original and recurrent tumor. The initial remarkable radiographic responses to IGF1R-antibody therapy was followed by resistance and then response to combined IGF1R plus mTOR inhibitor therapy in both patients, and then resistance to the combination regimen in one patient. In patient 1, upregulation of p-Akt and p-mTOR in the tumor that relapsed after initial response to IGF1R antibody might explain the resistance that developed, and the subsequent response to combined IGF1R plus mTOR inhibitor therapy. In patient 2, upregulation of mTOR was seen in the primary tumor, perhaps explaining the initial response to the IGF1R and mTOR inhibitor combination, while the resistant tumor that emerged showed activation of the ERK pathway as well. Conclusion/Significance Morphoproteomic analysis revealed that the mTOR pathway was activated in these two patients with advanced Ewing's sarcoma who showed response to combined IGF1R and mTOR inhibition, and the ERK pathway in the patient in whom resistance to this combination emerged. Our pilot results suggests that morphoproteomic assessment of signaling pathway activation in Ewing's sarcoma merits further investigation as a guide to understanding response and resistance signatures. PMID

  16. Prednisolone reduces the ability of serum to activate the IGF1 receptor in vitro without affecting circulating total or free IGF1.

    PubMed

    Frystyk, Jan; Schou, Anders J; Heuck, Carsten; Vorum, Henrik; Lyngholm, Mikkel; Flyvbjerg, Allan; Wolthers, Ole D

    2013-01-01

    End-point bioassays based on thymidine or sulfate incorporation have demonstrated that glucocorticoid (GC) treatment inhibits serum IGF1 action, but the mechanism is unknown as serum IGF1 concentrations have been reported to either increase or remain unchanged. To investigate whether GC treatment affects the ability of serum to activate the IGF1 receptor (IGF1R) in vitro (i.e. bioactive IGF1), using a specific cell-based IGF1 kinase receptor activation assay. Twenty children with stable asthma (age 7.7-13.8 years) treated for 1 week with 5 mg prednisolone in a randomized, double-blind, placebo-controlled crossover study. Non-fasting serum samples were collected in the afternoon after each 7-day period and assayed for bioactive IGF1, free IGF1, total IGFs, IGF-binding proteins (IGFBPs), and insulin. Prednisolone treatment reduced IGF1 bioactivity by 12.6% from 2.22±0.18 to 1.94±0.15 μg/l (P=0.01) compared with placebo. In contrast, no changes were observed for (μg/l; placebo vs prednisolone) total IGF1 (215±27 vs 212±24), free IGF1 (1.50±0.16 vs 1.43±0.17), total IGF2 (815±26 vs 800±31), IGFBP3 (3140±101 vs 3107±95), IGFBP2 (238±21 vs 220±19), IGFBP1 (32±6 vs 42±10), or IGFBP1-bound IGF1 (24±5 vs 26±7). Insulin remained unchanged as did IGFBP levels as estimated by western ligand blotting. Prednisolone had no direct effects on IGF1R phosphorylation. Our study gives evidence that GC treatment induces a circulating substance that is able to inhibit IGF1R activation in vitro without affecting circulating free or total IGF1. This may be one of the mechanisms by which GC inhibits IGF1 action in vivo. However, the nature of this circulating substance remains to be identified.

  17. Cross-talk between IGF-1 and estrogen receptors attenuates intracellular changes in ventral spinal cord 4.1 motoneuron cells due to interferon-gamma exposure

    PubMed Central

    Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A.; Krause, James S.; Banik, Naren L.

    2014-01-01

    Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. In order to examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis related proteases (caspase-3 and −12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. PMID:24188094

  18. The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs

    PubMed Central

    Hoopes, Barbara C.; Rimbault, Maud; Liebers, David; Ostrander, Elaine A.

    2012-01-01

    Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs. PMID:22903739

  19. Type 1 IGF Receptor Localization in Paediatric Gliomas: Significant Association with WHO Grading and Clinical Outcome.

    PubMed

    Clément, Florencia; Martin, Ayelen; Venara, Marcela; de Luján Calcagno, Maria; Mathó, Cecilia; Maglio, Silvana; Lombardi, Mercedes García; Bergadá, Ignacio; Pennisi, Patricia A

    2018-06-01

    Nuclear localization of insulin-like growth factor receptor type 1 (IGF-1R) has been described as adverse prognostic factor in some cancers. We studied the expression and localization of IGF-1R in paediatric patients with gliomas, as well as its association with World Health Organization (WHO) grading and survival. We conducted a single cohort, prospective study of paediatric patients with gliomas. Samples were taken at the time of the initial surgery; IGF-1R expression and localization were characterized by immunohistochemistry (IHC), subcellular fractionation and western blotting. Tumours (47/53) showed positive staining for IGF-1R by IHC. IGF-1R nuclear labelling was observed in 10/47 cases. IGF-1R staining was mostly non-nuclear in low-grade tumours, while IGF-1R nuclear labelling was predominant in high-grade gliomas (p = 0.0001). Survival was significantly longer in patients with gliomas having non-nuclear IGF-1R localization than in patients with nuclear IGF-1R tumours (p = 0.016). In gliomas, IGF-1R nuclear localization was significantly associated with both high-grade tumours and increased risk of death. Based on a prospective design, we provide evidence of a potential usefulness of intracellular localization of IGF-1R as prognostic factor in paediatric patients with gliomas.

  20. Cross-talk between IGF-1 and estrogen receptors attenuates intracellular changes in ventral spinal cord 4.1 motoneuron cells because of interferon-gamma exposure.

    PubMed

    Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A; Krause, James S; Banik, Naren L

    2014-03-01

    Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. To examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis-related proteases (caspase-3 and -12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. © 2013 International Society for Neurochemistry.

  1. TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types.

    PubMed

    Krieger, Christine C; Perry, Joseph D; Morgan, Sarah J; Kahaly, George J; Gershengorn, Marvin C

    2017-10-01

    We previously showed that thyrotropin (TSH)/insulinlike growth factor (IGF)-1 receptor cross-talk appears to be involved in Graves' orbitopathy (GO) pathogenesis and upregulation of thyroid-specific genes in human thyrocytes. In orbital fibroblasts from GO patients, coadministration of TSH and IGF-1 induces synergistic increases in hyaluronan secretion. In human thyrocytes, TSH plus IGF-1 synergistically increased expression of the sodium-iodide symporter that appeared to involve ERK1/2 activation. However, the details of ERK1/2 activation were not known, nor was whether ERK1/2 was involved in this synergism in other cell types. Using primary cultures of GO fibroblasts (GOFs) and human thyrocytes, as well as human embryonic kidney (HEK) 293 cells overexpressing TSH receptors (HEK-TSHRs), we show that simultaneous activation of TSHRs and IGF-1 receptors (IGF-1Rs) causes rapid, synergistic phosphorylation/activation of ERK1 and ERK2 in all three cell types. This effect is partially inhibited by pertussis toxin, an inhibitor of TSHR coupling to Gi/Go proteins. In support of a role for Gi/Go proteins in ERK1/2 phosphorylation, we found that knockdown of Gi(1-3) and Go in HEK-TSHRs inhibited ERK1/2 phosphorylation stimulated by TSH and TSH plus IGF-1. These data demonstrate that the synergistic effects of TSH plus IGF-1 occur early in the TSHR signaling cascade and further support the idea that TSHR/IGF-1R cross-talk is an important mechanism for regulation of human GOFs and thyrocytes.

  2. Comparisons of mRNA expression for insulin-like growth factor (IGF) type 2 receptor (IGF2R) and IGF-1 in small ovarian follicles between cattle selected and not selected for twin ovulations

    USDA-ARS?s Scientific Manuscript database

    Both IGF-1 and -2 stimulate ovarian follicular cell proliferation and antral follicle development. Actions of IGF-1 and -2 are mediated through the IGF type 1 receptor, whereas binding of IGF-2 to the IGF2R results in its degradation. Information on the role of IGF2R in regulating bovine follicula...

  3. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity.

    PubMed

    Dyer, Adam H; Vahdatpour, Cyrus; Sanfeliu, Albert; Tropea, Daniela

    2016-06-14

    Insulin-Like Growth Factor 1 (IGF-1) is a phylogenetically ancient neurotrophic hormone with crucial roles to play in CNS development and maturation. Recently, IGF-1 has been shown to have potent effects on cellular neuroplasticity. Neuroplasticty refers to the adaptive changes made by the CNS in the face of changing functional demands and is crucial in processes such as learning and memory. IGF-1, signaling through its glycoprotein receptor (IGF-1R), and canonical signaling pathways such as the PI3K-Akt and Ras-Raf-MAP pathways, has potent effects on cellular neuroplasticity in the CNS. In the present review, the role of IGF-1 in brain development is reviewed, followed by a detailed discussion of the role played by IGF in cellular neuroplasticity in the CNS. Findings from models of perturbed and reparative plasticity detailing the role played by IGF-1 are discussed, followed by the electrophysiological, structural and functional evidence supporting this role. Finally, the post-lesion and post-injury roles played by IGF-1 are briefly evaluated. We discuss the putative neurobiology underlying these changes, reviewing recent evidence and highlighting areas for further research. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. IGF-1 receptor haploinsufficiency leads to age-dependent development of metabolic syndrome.

    PubMed

    Thakur, Sachin; Garg, Neha; Zhang, Ning; Hussey, Sophie E; Musi, Nicolas; Adamo, Martin L

    2017-05-13

    Individuals born small for gestational age (SGA) are at a higher risk of developing the metabolic syndrome later in life. IGF-1 resistance has been reported in placentae from SGA births and mutations in the Igf1 receptor gene have been reported in several cohorts of SGA subjects. We have used the Igf1r heterozygous (Igf1r +/- ) male mouse as a model to investigate the mechanisms by which Igf1r haploinsufficiency leads to insulin resistance. Despite exhibiting IGF-1 resistance, insulin signaling is enhanced in young Igf1r +/- mice but is attenuated in the muscle of old Igf1r +/- mice. Although smaller than WT (wild type) mice, old-aged Igf1r +/- had increased adiposity and exhibit increased lipogenesis. We hypothesize that IGF-1 resistance initially causes a transient increase in insulin signaling thereby promoting a lipogenic phenotype, which subsequently leads to insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  5. IGF-1 facilitates thrombopoiesis primarily through Akt activation.

    PubMed

    Chen, Shilei; Hu, Mengjia; Shen, Mingqiang; Wang, Song; Wang, Cheng; Chen, Fang; Tang, Yong; Wang, Xinmiao; Zeng, Hao; Chen, Mo; Gao, Jining; Wang, Fengchao; Su, Yongping; Xu, Yang; Wang, Junping

    2018-05-25

    It is known that insulin-like growth factor-1 (IGF-1) also functions as a hematopoietic factor, while its direct effect on thrombopoiesis remains unclear. In this study, we show that IGF-1 is able to promote CD34+ cell differentiation toward megakaryocytes (MKs), as well as the facilitation of proplatelet formation (PPF) and platelet production from cultured MKs. The in vivo study demonstrates that IGF-1 administration accelerates platelet recovery in mice after 6.0Gy of irradiation and in mice that received bone marrow transplantation (BMT) following 10.0Gy of lethal irradiation. Subsequent investigations reveal that ERK1/2 and Akt activation mediate the effect of IGF-1 on thrombopoiesis. Notably, Akt activation induced by IGF-1 is more apparent than that of ERK1/2, compared with that of thrombopoietin (TPO) treatment. Moreover, the effect of IGF-1 on thrombopoiesis is independent of TPO signaling, because IGF-1 treatment can also lead to a significant increase of platelet counts in homozygous TPO receptor mutant mice. Further analysis indicates that the activation of Akt triggered by IGF-1 requires the assistance of steroid receptor coactivator-3 (SRC-3). Therefore, our data reveal a distinct role of IGF-1 in regulating thrombopoiesis, providing new insights into TPO-independent regulation of platelet generation. Copyright © 2018 American Society of Hematology.

  6. Expression of IGF-1, IL-27 and IL-35 Receptors in Adjuvant Induced Rheumatoid Arthritis Model.

    PubMed

    Abdi, Elham; Najafipour, Hamid; Joukar, Siyavash; Dabiri, Shahriar; Esmaeli-Mahani, Saeed; Abbasloo, Elham; Houshmandi, Nasrin; Afsharipour, Abbas

    2018-03-01

    IGF-1 and certain other cytokines have been shown to exert inflammatory/anti-inflammatory roles in chronic joint diseases. To assess the effect of IGF-1, IL-27 and IL-35, their interaction and their receptor expression in a rheumatoid arthritis model. Freund's adjuvant-induced chronic joint inflammation was operated on 160 male rats. Animals were divided into histopathology and receptor expression groups, each composed of 10 subgroups including; control, vehicle, IGF-1, IL-27, IL-35, their antagonists, IGF-1+IL-27 antagonist and IGF-1+IL-35 antagonist. After two weeks, vehicle or agonist/antagonists were injected into the joint space every other day until day 28 where joint histopathology was performed. The expression of IGF-1, IL-27 and IL-35 receptors were assessed by western blot analysis. IGF-1 did not show pro- or anti- inflammatory functions; endogenous IL-27 and IL-35, on the other hand, exerted inflammatory effects. IL-27 and IL-35 antagonists exerted the highest anti-inflammatory effects. The total inflammation scores were 0.55 ± 0.06, 4.63 ± 0.40, 3.63 ± 0.60, 2.50 ± 0.38 and 1.63 ± 0.40 regarding control, vehicle, IGF-1 Ant., IL-27 Ant. and IL-35 Ant., respectively. IGF-1 receptor expression was reduced in chronic joint inflammation and all three antagonists augmented the IGF-1 receptor expression. IL-27 and IL-35 receptors were up-regulated by chronic joint inflammation. Overall, the results demonstrated the pro-inflammatory role of endogenous IL-27 and IL-35 along with the over expression of their receptors in chronic joint inflammation. IL-27 and IL-35 antagonists exerted the most anti-inflammatory effects and increased IGF-1 receptor expression. These two antagonists may be potential agents for new treatment strategies in chronic joint inflammatory diseases.

  7. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hua; Lin, Yingbo; Badin, Margherita

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclearmore » IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to

  8. Serine Phosphorylation of the Insulin-like Growth Factor I (IGF-1) Receptor C-terminal Tail Restrains Kinase Activity and Cell Growth*

    PubMed Central

    Kelly, Geraldine M.; Buckley, Deirdre A.; Kiely, Patrick A.; Adams, David R.; O'Connor, Rosemary

    2012-01-01

    Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the 1248SFYYS1252 motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling. PMID:22685298

  9. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

    PubMed Central

    Gazit, Neta; Vertkin, Irena; Shapira, Ilana; Helm, Martin; Slomowitz, Edden; Sheiba, Maayan; Mor, Yael; Rizzoli, Silvio; Slutsky, Inna

    2016-01-01

    Summary The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer’s disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca2+ transients, while promoting spontaneous transmission and resting Ca2+ level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca2+ buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer’s disease. Video Abstract PMID:26804996

  10. IGF-1 and insulin as growth hormones.

    PubMed

    Laron, Zvi

    2004-01-01

    IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.

  11. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.

    PubMed

    Mulvihill, Mark J; Cooke, Andrew; Rosenfeld-Franklin, Maryland; Buck, Elizabeth; Foreman, Ken; Landfair, Darla; O'Connor, Matthew; Pirritt, Caroline; Sun, Yingchaun; Yao, Yan; Arnold, Lee D; Gibson, Neil W; Ji, Qun-Sheng

    2009-09-01

    The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.

  12. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells.

    PubMed

    Vaziri-Gohar, Ali; Houston, Kevin D

    2016-02-15

    Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. The interaction of protein-tyrosine phosphatase α (PTPα) and RACK1 protein enables insulin-like growth factor 1 (IGF-1)-stimulated Abl-dependent and -independent tyrosine phosphorylation of PTPα.

    PubMed

    Khanna, Ranvikram S; Le, Hoa T; Wang, Jing; Fung, Thomas C H; Pallen, Catherine J

    2015-04-10

    Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Effect of insulin-like growth factor-1 (IGF-1) plus alendronate on bone density during puberty in IGF-1-deficient MIDI mice.

    PubMed

    Stabnov, L; Kasukawa, Y; Guo, R; Amaar, Y; Wergedal, J E; Baylink, D J; Mohan, S

    2002-06-01

    Insulin-like growth factor-1 (IGF-1) increases both bone formation and bone resorption processes. To test the hypothesis that treatment with an antiresorber along with IGF-1, during the pubertal growth phase, would be more effective than IGF-1 alone to increase peak bone mass, we used an IGF-1 MIDI mouse model, which exhibits a >60% reduction in circulating IGF-1 levels. We first determined an optimal IGF-1 delivery by evaluating IGF-1 administration (2 mg/kg body weight/day) by either a single daily injection, three daily injections, or by continuous delivery via a minipump during puberty. Of the three regimens, the three daily IGF-1 injections and IGF-1 through a minipump produced a significant increase in total body bone mineral density (BMD) (6.0% and 4.4%, respectively) and in femoral BMD (4.3% and 6.2%, respectively) compared with the control group. Single subcutaneous (s.c.) administration did not increase BMD. We chose IGF-1 administration three times daily for testing the combined effects of IGF-1 and alendronate (100 microg/kg per day). The treatment of IGF-1 + alendronate for a period of 2 weeks increased total body BMD at 1 week and 3 weeks after treatment (21.1% and 20.5%, respectively) and femoral BMD by 29% at 3 weeks after treatment. These increases were significantly greater than those produced by IGF-1 alone. IGF-1, but not alendronate, increased bone length. IGF-1 and/or alendronate increased both periosteal and endosteal circumference. Combined treatment caused a greater increase in the total body bone mineral content (BMC) and periosteal circumference compared with individual treatment with IGF-1 or alendronate. Our data demonstrate that: (1) inhibition of bone turnover during puberty increases net bone density; and (2) combined treatment with IGF-1 and alendronate is more effective than IGF-1 or alendronate alone in increasing peak bone mass in an IGF-1-deficient MIDI mouse model.

  15. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  16. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    PubMed Central

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  17. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    PubMed

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  19. The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling.

    PubMed

    Beitner-Johnson, D; Blakesley, V A; Shen-Orr, Z; Jimenez, M; Stannard, B; Wang, L M; Pierce, J; LeRoith, D

    1996-04-19

    The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein which we have previously shown to become rapidly tyrosine phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) in NIH-3T3 cells. In order to further characterize the role of Crk in the IGF-I signaling pathway, NIH-3T3 and 293 cells were stably transfected with an expression vector containing the Crk cDNA. The various resultant 3T3-Crk clones expressed Crk at approximately 2-15-fold higher levels than parental 3T3 cells. In 3T3-Crk cells, Crk immunoreactivity was detected in insulin receptor substrate-1 (IRS-1) immunoprecipitates. Stimulation with IGF-I resulted in a dissociation of Crk protein from IRS-1. In contrast, the association of the related adaptor protein Grb2 with IRS-1 was enhanced by IGF-I stimulation. Similar results were obtained in stably transfected 293-Crk cells, which express both IRS-1 and the IRS-1-related signaling protein 4PS. In these cells, IRS-1 and 4PS both associated with Crk, and this association was also decreased by IGF-I treatment, whereas the association of Grb2 with IRS-1 and 4PS was enhanced by IGF-I. Overexpression of Crk also enhanced IGF-I-induced mitogenesis of NIH-3T3 cells, as measured by [3H]thymidine incorporation. The levels of IGF-I-induced mitogenesis were proportional to the level of Crk expression. These results suggest that Crk is a positive effector of IGF-I signaling, and may mediate its effects via interaction with IRS-1 and/or 4PS.

  20. [Correlation of insulin-like growth factor-1 (IGF-1) to angiogenesis of breast cancer in IGF-1-deficient mice].

    PubMed

    Tang, Hong-Bo; Ren, Yu-Ping; Zhang, Jun; Ma, Shi-Hui; Gao, Feng; Wu, Yi-Ping

    2007-11-01

    Insulin-like growth factors (IGFs) play important roles in the development and progression of tumors. But the mechanism of tumorigenesis in relation to IGF-1 is unclear yet. This study was to explore the correlation of circulating IGF-1 level to the angiogenesis of breast cancer in IGF-1-deficient mice. The liver-specific IGF-1-deficient (LID) mice and control mice were injected with 7,12-dimethybenz(a)anthracene (DMBA) to develop breast cancer. Ginsenoside Rg3 was used to intervene tumor growth. The occurrence rates of breast cancer were compared. The expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) was detected by immunohistochemistry. The occurrence rate of breast cancer was 66.67% in untreated control mice, 33.33% in untreated LID mice, 36.00% in Rg3-treated control mice, and 12.00% in Rg3-treated LID mice. The tumor size was (0.79+/-0.20) cm in untreated control mice, (0.37+/-0.08) cm in untreated LID mice, (0.32+/-0.08) cm in Rg3-treated control mice, and (0.15+/-0.05) cm in Rg3-treated LID mice. The average light density and positive rate of VEGF were the highest in untreated control mice (0.34+/-0.10 and 0.04+/-0.02, P<0.05), and the lowest in Rg3-treated LID mice (0.13+/-0.03 and 0.01+/-0.00, P<0.05). The MVD was 31.9+/-5.3 in untreated control mice, 26.8+/-4.9 in untreated LID mice, 20.1+/-4.9 in Rg3-treated control mice, and 14.4+/-4.9 in Rg3-treated LID mice. Circulating IGF-1 plays a role in the onset and development of breast cancer. Degrading serum IGF-1 level could inhibit angiogenesis and growth of breast cancer. Rg3 could promote this effect.

  1. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice.

    PubMed

    Li, Lijun; Byrd, Marcus; Doh, Kwame; Dixon, Patrice D; Lee, Hwal; Tiwari, Swasti; Ecelbarger, Carolyn M

    2016-12-01

    The major site of fructose metabolism in the kidney is the proximal tubule (PT). To test whether insulin and/or IGF1 signaling in the PT is involved in renal structural/functional responses to dietary fructose, we bred mice with dual knockout (KO) of the insulin receptor (IR) and the IGF1 receptor (IGF1R) in PT by Cre-lox recombination, using a γ-glutamyl transferase promoter. KO mice had slightly (~10%) reduced body and kidney weights, as well as, a reduction in mean protein-to-DNA ratio in kidney cortex suggesting smaller cell size. Under control diet, IR and IGF1R protein band densities were 30-50% (P < 0.05) lower than WT, and the relative difference was greater in male animals. Male, but not female KO, also had significantly reduced band densities for Akt (protein kinase B), phosphorylated Akt T308 and IR Y 1162/1163 A high-fructose diet (1-month) led to a significant increase in kidney weight in WT males (12%), but not in KO males or in either genotype of female mice. Kidney enlargement in the WT males was accompanied by a small, insignificant fall in protein-to-DNA ratio, supporting hyperplasia rather than hypertrophy. Fructose feeding of male WT mice led to significantly higher sodium bicarbonate exchanger (NBCe1), sodium hydrogen exchanger (NHE3), sodium phosphate co-transporter (NaPi-2), and transforming growth factor-β (TGF-β) abundances, as compared to male KO, suggesting elevated transport capacity and an early feature of fibrosis may have accompanied the renal enlargement. Overall, IR and/or IGF1R appear to have a role in PT cell size and enlargement in response to high-fructose diet. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia.

    PubMed

    Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC.

  3. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    PubMed

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  4. Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling.

    PubMed

    Shi, Haojun; Fang, Winston; Liu, Minda; Fu, Deliang

    2017-10-01

    Pancreatic cancer shows a remarkable predilection for hepatic metastasis. Complement component 1, q subcomponent binding protein (C1QBP) can mediate growth factor-induced cancer cell chemotaxis and distant metastasis by activation of receptor tyrosine kinases. Coincidentally, insulin-like growth factor-1 (IGF-1) derived from the liver and cancer cells itself has been recognized as a critical inducer of hepatic metastasis. However, the mechanism underlying IGF-1-dependent hepatic metastasis of pancreatic cancer, in which C1QBP may be involved, remains unknown. In the study, we demonstrated a significant association between C1QBP expression and hepatic metastasis in patients with pancreatic cancer. IGF-1 induced the translocation of C1QBP from cytoplasm to lipid rafts and further drove the formation of CD44 variant 6 (CD44v6)/C1QBP complex in pancreatic cancer cells. C1QBP interacting with CD44v6 in lipid rafts promoted phosphorylation of IGF-1R and thus activated downstream PI3K and MAPK signaling pathways which mediated metastatic potential of pancreatic cancer cells including proliferation, apoptosis, invasion, adhesion and energy metabolism. Furthermore, C1QBP knockdown suppressed hepatic metastasis of pancreatic cancer cells in nude mice. We therefore conclude that C1QBP in lipid rafts serves a key regulator of IGF-1/IGF-1R-induced hepatic metastasis from pancreatic cancer. Our findings about C1QBP in lipid rafts provide a novel strategy to block IGF-1/IGF-1R signaling in pancreatic cancer and a reliable premise for more efficient combined modality therapies. © 2017 UICC.

  5. IgA Enhances IGF-1 Mitogenic Activity Via Receptor Modulation in Glomerular Mesangial Cells: Implications for IgA-Induced Nephropathy.

    PubMed

    Al-Eisa, Amal; Dhaunsi, Gursev S

    2017-01-01

    Glomerulonephritis due to mesangial proliferation is responsible for renal dysfunction in IgA nephropathy (IgAN), however molecular mechanisms of pathogenesis are not well known. We examined the effect of IgA on Insulin-like Growth Factor-1 (IGF-1) activity, a potent mitogen with vital role in growth and development of children, and IGF-1 receptor (IGF-1R) in cultures of glomerular mesangial cells (GMC). GMC were isolated from rat kidneys using sieving and enzymatic digestion of tissue homogenates, and cultured in RPMI 1640 medium. GMC cultures were treated with IgA (0-10 µg/ml) in the presence or absence of IGF-1 and fetal bovine serum (FBS), and BrdU incorporation was measured. IGF-1 levels were assayed along with real-time PCR quantification of IGF-1R mRNA. Treatment of GMC with IgA (5 -10 µg/ml) significantly (p < 0.01) increased the BrdU incorporation in the presence or absence of FBS or IGF-1. IgA-mediated effects were more pronounced in IGF-1 treated cells that were significantly (p < 0.01) blocked by pretreatment of cells with IGF-1 receptor antibody or genistein. IgA significantly increased the levels of IGF-1 in culture supernatants and GMC homogenates. IGF-1R mRNA was significantly (p < 0.01) increased in IgA treated cells particularly by co-treatment with IGF-1. These findings show that IgA enhances the IGF-1 activity in GMC via stimulation of IGF-1R gene transcription and suggest a role for IGF-1 in pathogenesis of IgAN. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons.

    PubMed

    George, Caroline; Gontier, Géraldine; Lacube, Philippe; François, Jean-Christophe; Holzenberger, Martin; Aïd, Saba

    2017-07-01

    Seminal studies using post-mortem brains of patients with Alzheimer's disease evidenced aberrant insulin-like growth factor 1 receptor (IGF1R) signalling. Addressing causality, work in animal models recently demonstrated that long-term suppression of IGF1R signalling alleviates Alzheimer's disease progression and promotes neuroprotection. However, the underlying mechanisms remain largely elusive. Here, we showed that genetically ablating IGF1R in neurons of the ageing brain efficiently protects from neuroinflammation, anxiety and memory impairments induced by intracerebroventricular injection of amyloid-β oligomers. In our mutant mice, the suppression of IGF1R signalling also invariably led to small neuronal soma size, indicative of profound changes in cellular homeodynamics. To gain insight into transcriptional signatures leading to Alzheimer's disease-relevant neuronal defence, we performed genome-wide microarray analysis on laser-dissected hippocampal CA1 after neuronal IGF1R knockout, in the presence or absence of APP/PS1 transgenes. Functional analysis comparing neurons in early-stage Alzheimer's disease with IGF1R knockout neurons revealed strongly convergent transcriptomic signatures, notably involving neurite growth, cytoskeleton organization, cellular stress response and neurotransmission. Moreover, in Alzheimer's disease neurons, a high proportion of genes responding to Alzheimer's disease showed a reversed differential expression when IGF1R was deleted. One of the genes consistently highlighted in genome-wide comparison was the neurofilament medium polypeptide Nefm. We found that NEFM accumulated in hippocampus in the presence of amyloid pathology, and decreased to control levels under IGF1R deletion, suggesting that reorganized cytoskeleton likely plays a role in neuroprotection. These findings demonstrated that significant resistance of the brain to amyloid-β can be achieved lifelong by suppressing neuronal IGF1R and identified IGF

  7. Formononetin induces the mitochondrial apoptosis pathway in prostate cancer cells via downregulation of the IGF-1/IGF-1R signaling pathway.

    PubMed

    Huang, Wen-Jun; Bi, Ling-Yun; Li, Zhen-Zhao; Zhang, Xing; Ye, Yu

    2013-12-20

    Abstract Context: Formononetin, an isoflavone, can inhibit the proliferation of cancer cells, including those of the prostate. However, its antitumor mechanism remains unclear. Aim: To investigate whether the insulin-like growth factor 1 (IGF-1)/insulin-like growth factor 1 receptor (IGF-1 R) signaling pathway mediates the formononetin antitumor effect on prostate cancer cells. Materials and methods: The viability of PC-3 cells was measured by MTT assay 48 h after formononetin treatment (25, 50 and 100 μM). Formononetin-induced cell apoptosis was measured by Hoechst 33258 staining and flow cytometry. Expression of Bax mRNA was detected by real-time PCR, and the expression levels of Bax and IGF-1 R proteins were detected by western blots. Results: At concentrations >12.5 μM, formononetin significantly inhibited the proliferation of human prostate cancer cells. Formononetin increased Bax mRNA and protein expression levels and decreased the expression levels of pIGF-1 R protein in a dose-dependent manner. Conclusion: High concentrations of formononetin-induced apoptosis in androgen-independent prostate cancer cells through inhibition of the IGF-1/IGF-1 R pathway.

  8. New insights into IGF-1 signaling in the heart.

    PubMed

    Troncoso, Rodrigo; Ibarra, Cristián; Vicencio, Jose Miguel; Jaimovich, Enrique; Lavandero, Sergio

    2014-03-01

    Insulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein. These pathways involve classic second messengers, phosphorylation cascades, lipid signaling, Ca(2+) transients, and gene expression. In addition, IGF-1R triggers signaling in different subcellular locations including the plasma membrane, perinuclear T tubules, and also in internalized vesicles. In this review, we provide a fresh and updated view of the complex IGF-1 scenario in the heart, including a critical focus on therapeutic strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro.

    PubMed

    Place, Robert F; Krieger, Christine C; Neumann, Susanne; Gershengorn, Marvin C

    2017-02-01

    Crosstalk between thyrotropin (TSH) receptors and insulin-like growth factor 1 (IGF-1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF-1 receptor-dependent and -independent pathways. Although an anti-IGF-1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF-1 versus TSH receptor signalling in GO pathogenesis. TSH and IGF-1 receptor antagonists were used to probe TSH/IGF-1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF-1 receptor -dependent and -independent pathways at all doses of M22; whereas IGF-1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF-1 receptor antagonists exhibited Loewe additivity within the IGF-1 receptor-dependent component of the M22 concentration-response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Our data support TSH and IGF-1 receptors as therapeutic targets for GO, but reveal putative conditions for anti-IGF-1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti-IGF-1 receptor efficacy. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  10. Update of IGF-1 receptor inhibitor (ganitumab, dalotuzumab, cixutumumab, teprotumumab and figitumumab) effects on cancer therapy.

    PubMed

    Qu, Xiao; Wu, Zhinan; Dong, Wei; Zhang, Tiehong; Wang, Liguang; Pang, Zhaofei; Ma, Wei; Du, Jiajun

    2017-04-25

    Prognostic studies of insulin-like growth factor-1 receptor(IGF-1R) inhibitors in cancer therapy had promising results in infratests, which exhibited that IGF-1R signalling was crucial in cancer cells growth. However, the conclusion of later clinical trials revealed a dim future for IGF-1R inhibitors to treat cancer. We conducted this analysis to figure out how IGF-1R inhibitors acted in clinical cancer therapy. We searched up-to-date studies about the single agent of IGF-1R inhibitors or combination with other therapies in solid tumor. Five IGF-1R anti-agents were involved. The primary endpoint was progression-free survival (PFS). The secondary endpoint was overall survival (OS). 17studies were enrolled. The results was not significant in overall survival (I2=37.1%, P=0.080, HR=1.08, 95% CI=0.97-1.21) and in progression-free survival (I2=0.0%, P=0.637, HR=1.05, 95% CI=0.98-1.12). OS for dalotuzumab, breast cancer, colorectal cancer, and PFS for prostate cancer even indicated harmful effects. So far, anti-IGF-1R mono-antibodies did not make significant differences in solid tumor prognosis. On the contrary, pessimistic effects were shown in the dalotuzumab, breast cancer, colorectal cancer and prostate cancer subgroups. Further studies of IGF-1R anti-agents were needed, but unwarranted in unselected patients by predictive biomarkers.

  11. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes.

    PubMed

    Yang, Yong; Wu, Zhihong; Zhao, Taimao; Wang, Hai; Zhao, Dong; Zhang, Jianguo; Wang, Yipeng; Ding, Yaozhong; Qiu, Guixing

    2009-06-01

    The etiology of adolescent idiopathic scoliosis is undetermined despite years of research. A number of hypotheses have been postulated to explain its development, including growth abnormalities. The irregular expression of growth hormone and insulin-like growth factor-1 (IGF-1) may disturb hormone metabolism, result in a gross asymmetry, and promote the progress of adolescent idiopathic scoliosis. Initial association studies in complex diseases have demonstrated the power of candidate gene association. Prior to our study, 1 study in this field had a negative result. A replicable study is vital for reliability. To determine the relationship of growth hormone receptor and IGF-1 genes with adolescent idiopathic scoliosis, a population-based association study was performed. Single nucleotide polymorphisms with potential function were selected from candidate genes and a distribution analysis was performed. A conclusion was made confirming the insufficiency of an association between adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes in Han Chinese.

  12. Insulin-like growth factor-I (IGF-1), IGF-binding protein-3 (IGFBP-3) and mammographic features.

    PubMed

    Izzo, L; Meggiorini, M L; Nofroni, I; Pala, A; De Felice, C; Meloni, P; Simari, T; Izzo, S; Pugliese, F; Impara, L; Merlini, G; Di Cello, P; Cipolla, V; Forcione, A R; Paliotta, A; Domenici, L; Bolognese, A

    2012-05-01

    The IGF system has recently been shown to play an important role in the regulation of breast tumor cell proliferation. However, also breast density is currently considered as the strongest breast cancer risk factor. It is not yet clear whether these factors are interrelated and if and how they are influenced by menopausal status. The purpose of this study was to examine the possible effects of IGF-1 and IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density stratified by menopausal status. A group of 341 Italian women were interviewed to collect the following data: family history of breast cancer, reproductive and menstrual factors, breast biopsies, previous administration of hormonal contraceptive therapy, hormone replacement therapy (HRT) in menopause and lifestyle information. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels. IGF-1/ IGFBP-3 molar ratio was then calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). Student's t-test was employed to assess the association between breast density and plasma level of IGF-1, IGFBP-3 and molar ratio. To assess if this relationship was similar in subgroups of pre- and postmenopausal women, the study population was stratified by menopausal status and Student's t-test was performed. Finally, multivariate analysis was employed to evaluate if there were confounding factors that might influence the relationship between growth factors and breast density. The analysis of the relationship between mammographic density and plasma level of IGF-1, IGFBP-3 and IGF-1/ IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group (IGF-1: 109.6 versus 96.6 ng/ml; p= 0.001 and molar ratio 29.4 versus 25.5 ng/ml; p= 0.001) whereas IGFBP-3 showed similar values in both groups (DB and NDB). Analysis of plasma level of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio

  13. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    PubMed

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and p<0.001) and caused a marked increase of IGF-1 level 30min after the start of suckling (p<0.001). We demonstrated a significant (p<0.05; the correlation coefficient was 0.29) correlation to PRL level during suckling which supports that PRL could induce IGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and p<0.001) while the acute treatment did not have any effect compared to artificial cerebrospinal fluid injection, analysed with two-way repeated measures ANOVA. In conclusion, suckling induces IGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Does IGF-1 play a role in the biology of endometrial cancer?

    PubMed

    Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is a mitogen which plays a key role in regulating cell proliferation, differentiation, and apoptosis. It belongs to the family of proteins also composed of insulin-like growth factor 2 (IGF-2), two types of membrane receptors (IGF-1R and IGF-2R), 6 binding proteins (IGFBP 1-6), hydrolyzing proteases, and reactive molecules binding proteins, which regulate the activity of growth factors. Disturbances in the functioning of IGFBP/IGF/1GF1R can lead to induction of carcinogenesis, which has been demonstrated in breast, prostate or colon cancers. Findings evaluating the role of IGF-1 in endometrial cancer biology are ambiguous and contradictory. Therefore, in the present study, we analyzed the role of IGF-1 in the process of carcinogenesis of endometrial cancer, based on the available literature.

  15. IGF-II-mediated downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α in myoblast cells involves PI3K/Akt/FoxO1 signaling pathway.

    PubMed

    Mu, Xiaoyu; Qi, Weihong; Liu, Yunzhang; Zhou, Jianfeng; Li, Yun; Rong, Xiaozhi; Lu, Ling

    2017-08-01

    Insulin-like growth factor II (IGF-II) can stimulate myogenesis and is critically involved in skeletal muscle differentiation. The presence of negative regulators of this process, however, is not well explored. Here, we showed that in myoblast cells, IGF-II negatively regulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA expression, while constitutive expression of PGC-1α induced myoblast differentiation. These results suggest that the negative regulation of PGC-1α by IGF-II may act as a negative feedback mechanism in IGF-II-induced myogenic differentiation. Reporter assays demonstrated that IGF-II suppresses the basal PGC-1α promoter activity. Blocking the IGF-II signaling pathway increased the endogenous PGC-1α levels. In addition, pharmacological inhibition of PI3 kinase activity prevented the downregulation of PGC-1α but the activation of mTOR was not required for this process. Importantly, further analysis showed that forkhead transcription factor FoxO1 contributes to mediating the effects of IGF-II on PGC-1 promoter activity. These findings indicate that IGF-II reduces PGC-1α expression in skeletal muscle cells through a mechanism involving PI3K-Akt-FoxO1 but not p38 MAPK or Erk1/2 MAPK pathways.

  16. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  17. BRCA1 is expressed in uterine serous carcinoma (USC) and controls insulin-like growth factor I receptor (IGF-IR) gene expression in USC cell lines.

    PubMed

    Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan

    2012-06-01

    The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.

  18. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    PubMed

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells.

    PubMed

    Li, Zheqi; Levine, Kevin M; Bahreini, Amir; Wang, Peilu; Chu, David; Park, Ben Ho; Oesterreich, Steffi; Lee, Adrian V

    2018-01-01

    Increased evidence suggests that somatic mutations in the ligand-binding domain of estrogen receptor [ER (ERα/ESR1)] are critical mediators of endocrine-resistant breast cancer progression. Insulinlike growth factor-1 (IGF1) is an essential regulator of breast development and tumorigenesis and also has a role in endocrine resistance. A recent study showed enhanced crosstalk between IGF1 and ERα in ESR1 mutant cells, but detailed mechanisms are incompletely understood. Using genome-edited MCF-7 and T47D cell lines harboring Y537S and D538G ESR1 mutations, we characterized altered IGF1 signaling. RNA sequencing revealed upregulation of multiple genes in the IGF1 pathway, including insulin receptor substrate-1 (IRS1), consistent in both Y537S and D538G ESR1 mutant cell line models. Higher IRS1 expression was confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting. ESR1 mutant cells also showed increased levels of IGF-regulated genes, reflected by activation of an IGF signature. IGF1 showed increased sensitivity and potency in growth stimulation of ESR1 mutant cells. Analysis of downstream signaling revealed the phosphoinositide 3-kinase (PI3K)-Akt axis as a major pathway mediating the enhanced IGF1 response in ESR1 mutant cells. Decreasing IRS1 expression by small interfering RNA diminished the increased sensitivity to IGF1. Combination treatment with inhibitors against IGF1 receptor (IGF1R; OSI-906) and ER (fulvestrant) showed synergistic growth inhibition in ESR1 mutant cells, particularly at lower effective concentrations. Our study supports a critical role of enhanced IGF1 signaling in ESR1 mutant cell lines, pointing toward a potential for cotargeting IGF1R and ERα in endocrine-resistant breast tumors with mutant ESR1. Copyright © 2018 Endocrine Society.

  20. Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells.

    PubMed

    Avino, Silvia; De Marco, Paola; Cirillo, Francesca; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; Perri, Maria Grazia; Rigiracciolo, Damiano; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria; Vivacqua, Adele

    2016-08-16

    Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies.

  1. Insulin-Like Growth Factor 1 (IGF-1) in Parkinson's Disease: Potential as Trait-, Progression- and Prediction Marker and Confounding Factors.

    PubMed

    Bernhard, Felix P; Heinzel, Sebastian; Binder, Gerhard; Weber, Karin; Apel, Anja; Roeben, Benjamin; Deuschle, Christian; Maechtel, Mirjam; Heger, Tanja; Nussbaum, Susanne; Gasser, Thomas; Maetzler, Walter; Berg, Daniela

    2016-01-01

    Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson's disease (PD) often lack specificity or reliability. Investigating biomarker variance between individuals and over time and the effect of confounding factors is essential for the evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1). IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22 healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual changes in IGF-1 were compared between PD patients and HC while accounting for baseline disease duration (19 early stage: ≤3.5 years; 18 moderate stage: >4 years), age, sex, body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition, associations of baseline IGF-1 with annual changes of motor, cognitive and depressive symptoms and medication dose were investigated. PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1), showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL; p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47, p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were not associated with annual changes of clinical parameters. Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated by several confounders.

  2. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1)

    PubMed Central

    Wolfe, Andrew; Divall, Sara; Wu, Sheng

    2014-01-01

    The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098

  3. Effects of age and insulin-like growth factor-1 on rat neurotrophin receptor expression after nerve injury.

    PubMed

    Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu

    2016-10-01

    Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.

  4. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    PubMed

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P < 0.05). Furthermore, central IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P < 0.05). Taken together, IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells

    PubMed Central

    Tominaga, K; Shimamura, T; Kimura, N; Murayama, T; Matsubara, D; Kanauchi, H; Niida, A; Shimizu, S; Nishioka, K; Tsuji, E-i; Yano, M; Sugano, S; Shimono, Y; Ishii, H; Saya, H; Mori, M; Akashi, K; Tada, K-i; Ogawa, T; Tojo, A; Miyano, S; Gotoh, N

    2017-01-01

    The transcription factor nuclear factor-κB (NF-κB) has important roles for tumorigenesis, but how it regulates cancer stem cells (CSCs) remains largely unclear. We identified insulin-like growth factor 2 (IGF2) is a key target of NF-κB activated by HER2/HER3 signaling to form tumor spheres in breast cancer cells. The IGF2 receptor, IGF1 R, was expressed at high levels in CSC-enriched populations in primary breast cancer cells. Moreover, IGF2-PI3K (IGF2-phosphatidyl inositol 3 kinase) signaling induced expression of a stemness transcription factor, inhibitor of DNA-binding 1 (ID1), and IGF2 itself. ID1 knockdown greatly reduced IGF2 expression, and tumor sphere formation. Finally, treatment with anti-IGF1/2 antibodies blocked tumorigenesis derived from the IGF1Rhigh CSC-enriched population in a patient-derived xenograft model. Thus, NF-κB may trigger IGF2-ID1-IGF2-positive feedback circuits that allow cancer stem-like cells to appear. Then, they may become addicted to the circuits. As the circuits are the Achilles' heels of CSCs, it will be critical to break them for eradication of CSCs. PMID:27546618

  6. Cross-talk between insulin and IGF-1 receptors in the cortical collecting duct principal cells: implication for ENaC-mediated Na+ reabsorption

    PubMed Central

    Ilatovskaya, Daria V.; Levchenko, Vladislav; Brands, Michael W.; Pavlov, Tengis S.

    2015-01-01

    Insulin and IGF-1 are recognized as powerful regulators of the epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron. As previously described, these hormones both acutely increase ENaC activity in freshly isolated split open tubules and cultured principal cortical collecting duct cells. The present study was aimed at differentiating the effects of insulin and IGF-1 on Na+ transport in immortalized mpkCCDcl4 cells and defining their interrelations. We have shown that both insulin and IGF-1 applied basolaterally, but not apically, enhanced transepithelial Na+ transport in the mpkCCDcl4 cell line with EC50 values of 8.8 and 14.5 nM, respectively. Insulin treatment evoked phosphorylation of both insulin and IGF-1 receptors, whereas the effects of IGF-1 were more profound on its own receptor rather than the insulin receptor. AG-1024 and PPP, inhibitors of IGF-1 and insulin receptor tyrosine kinase activity, diminished insulin- and IGF-1-stimulated Na+ transport in mpkCCDcl4 cells. The effects of insulin and IGF-1 on ENaC-mediated currents were found to be additive, with insulin likely stimulating both IGF-1 and insulin receptors. We hypothesize that insulin activates IGF-1 receptors in addition to its own receptors, making the effects of these hormones interconnected. PMID:25651558

  7. The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells.

    PubMed

    Shuang, Tian; Fu, Ming; Yang, Guangdong; Wu, Lingyun; Wang, Rui

    2018-03-01

    Hydrogen sulfide (H 2 S) is mostly produced by cystathionine-gamma-lyase (CSE) in vascular system and it inhibits the proliferation of vascular smooth muscle cells (SMCs). Insulin-like growth factor-1 (IGF-1), via its receptor (IGF-1R), exerts multiple physiological and pathophysiological effects on the vasculature, including stimulating SMC proliferation and migration, and inhibiting SMC apoptosis. Since H 2 S and IGF-1/IGF-1R have opposite effects on SMC proliferation, it becomes imperative to better understand the interaction of these two signaling mechanisms on SMC proliferation. SMCs isolated from small mesenteric arteries of CSE knockout (KO) and wild-type (WT) mice were used in the present study. The effects of IGF-1 and H 2 S on SMC proliferation were evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assays. Protein expression was determined by western blot, and H 2 S-induced protein S-sulfhydration was assessed with a modified biotin switch assay. We found that IGF-1 dose-dependently increased the proliferation of both WT-SMCs and KO-SMCs, and this effect was more significant in KO-SMCs. Supplement of sodium hydrosulfide (NaHS) inhibited IGF-1-induced cell proliferation, while this effect was abolished by blocking IGF-1/IGF-1R signaling with picropodophyllin (PPP) or knocking out of the expression of IGF-1R. H 2 S significantly down-regulates the expression of IGF-1R, stimulates IGF-1R S-sulfhydration, and attenuates the binding of IGF-1 with IGF-1R. This study provides novel insight on the involvement of IGF-1/IGF-1R in H 2 S-inhibited SMC proliferation and suggests H 2 S-based innovative treatment strategies for proliferative cardiovascular diseases such as atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.

    1990-03-01

    Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blotmore » analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin.« less

  9. Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells

    PubMed Central

    Cirillo, Francesca; Santolla, Maria Francesca; Francesco, Ernestina Marianna De; Perri, Maria Grazia; Rigiracciolo, Damiano; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria; Vivacqua, Adele

    2016-01-01

    Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies. PMID:27384677

  10. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma

    PubMed Central

    Worrall, C; Suleymanova, N; Crudden, C; Trocoli Drakensjö, I; Candrea, E; Nedelcu, D; Takahashi, S-I; Girnita, L; Girnita, A

    2017-01-01

    Melanoma tumors usually retain wild-type p53; however, its tumor-suppressor activity is functionally disabled, most commonly through an inactivating interaction with mouse double-minute 2 homolog (Mdm2), indicating p53 release from this complex as a potential therapeutic approach. P53 and the tumor-promoter insulin-like growth factor type 1 receptor (IGF-1R) compete as substrates for the E3 ubiquitin ligase Mdm2, making their relative abundance intricately linked. Hence we investigated the effects of pharmacological Mdm2 release from the Mdm2/p53 complex on the expression and function of the IGF-1R. Nutlin-3 treatment increased IGF-1R/Mdm2 association with enhanced IGF-1R ubiquitination and a dual functional outcome: receptor downregulation and selective downstream signaling activation confined to the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. This Nutlin-3 functional selectivity translated into IGF-1-mediated bioactivities with biphasic effects on the proliferative and metastatic phenotype: an early increase and late decrease in the number of proliferative and migratory cells, while the invasiveness was completely inhibited following Nutlin-3 treatment through an impaired IGF-1-mediated matrix metalloproteinases type 2 activation mechanism. Taken together, these experiments reveal the biased agonistic properties of Nutlin-3 for the mitogen-activated protein kinase pathway, mediated by Mdm2 through IGF-1R ubiquitination and provide fundamental insights into destabilizing p53/Mdm2/IGF-1R circuitry that could be developed for therapeutic gain. PMID:28092675

  11. Insulin-Like Growth Factor 1 (IGF-1) in Parkinson's Disease: Potential as Trait-, Progression- and Prediction Marker and Confounding Factors

    PubMed Central

    Binder, Gerhard; Weber, Karin; Apel, Anja; Roeben, Benjamin; Deuschle, Christian; Maechtel, Mirjam; Heger, Tanja; Nussbaum, Susanne; Gasser, Thomas; Maetzler, Walter; Berg, Daniela

    2016-01-01

    Introduction Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson's disease (PD) often lack specificity or reliability. Investigating biomarker variance between individuals and over time and the effect of confounding factors is essential for the evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1). Materials and Methods IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22 healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual changes in IGF-1 were compared between PD patients and HC while accounting for baseline disease duration (19 early stage: ≤3.5 years; 18 moderate stage: >4 years), age, sex, body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition, associations of baseline IGF-1 with annual changes of motor, cognitive and depressive symptoms and medication dose were investigated. Results PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1), showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL; p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47, p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were not associated with annual changes of clinical parameters. Discussion Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated by several confounders. PMID:26967642

  12. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    PubMed

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  13. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    PubMed

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  14. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine.

    PubMed

    Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J; Datta, Kamal

    2016-08-25

    Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as (56)Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of (56)Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of (56)Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.

  15. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1).

    PubMed

    Wolfe, Andrew; Divall, Sara; Wu, Sheng

    2014-10-01

    The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M.; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-05-01

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  17. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  18. IGF-1/IGF-1R/hsa-let-7c axis regulates the committed differentiation of stem cells from apical papilla

    PubMed Central

    Ma, Shu; Liu, Genxia; Jin, Lin; Pang, Xiyao; Wang, Yanqiu; Wang, Zilu; Yu, Yan; Yu, Jinhua

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) and its receptor IGF-1R play a paramount role in tooth/bone formation while hsa-let-7c actively participates in the osteogenic differentiation of mesenchymal stem cells. However, the interaction between IGF-1/IGF-1R and hsa-let-7c on the committed differentiation of stem cells from apical papilla (SCAPs) remains unclear. In this study, human SCAPs were isolated and treated with IGF-1 and hsa-let-7c over/low-expression viruses. The odonto/osteogenic differentiation of these stem cells and the involvement of mitogen-activated protein kinase (MAPK) pathway were subsequently investigated. Alizarin red staining showed that hsa-let-7c low-expression can significantly promote the mineralization of IGF-1 treated SCAPs, while hsa-let-7c over-expression can decrease the calcium deposition of IGF-1 treated SCAPs. Western blot assay and real-time reverse transcription polymerase chain reaction further demonstrated that the expression of odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, COL-I/COL-I, DSPP/DSP, and DMP-1/DMP-1) in IGF-1 treated SCAPs were significantly upregulated in Let-7c-low group. On the contrary, hsa-let-7c over-expression could downregulate the expression of these odonto/osteogenic markers. Moreover, western blot assay showed that the JNK and p38 MAPK signaling pathways were activated in Let-7c-low SCAPs but inhibited in Let-7c-over SCAPs. Together, the IGF-1/IGF-1R/hsa-let-7c axis can control the odonto/osteogenic differentiation of IGF-1-treated SCAPs via the regulation of JNK and p38 MAPK signaling pathways. PMID:27833148

  19. Aging, Atherosclerosis, and IGF-1

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1–induced reduction in oxidative stress, cell apoptosis, proinflammatory signaling, and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. In this review, we will provide a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging. PMID:22491965

  20. The pro-Forms of Insulin-Like Growth Factor I (IGF-I) Are Predominant in Skeletal Muscle and Alter IGF-I Receptor Activation

    PubMed Central

    Durzyńska, Julia; Philippou, Anastassios; Brisson, Becky K.; Nguyen-McCarty, Michelle

    2013-01-01

    IGF-I is a key regulator of muscle development and growth. The pre-pro-peptide produced by the Igf1gene undergoes several posttranslational processing steps to result in a secreted mature protein, which is thought to be the obligate ligand for the IGF-I receptor (IGF-IR). The goals of this study were to determine what forms of IGF-I exist in skeletal muscle, and whether the mature IGF-I protein was the only form able to activate the IGF-IR. We measured the proportion of IGF-I species in murine skeletal muscle and found that the predominant forms were nonglycosylated pro-IGF-I and glycosylated pro-IGF-I, which retained the C-terminal E peptide extension, instead of mature IGF-I. These forms were validated using samples subjected to viral expression of IGF-I combined with furin and glycosidase digestion. To determine whether the larger molecular weight IGF-I forms were also ligands for the IGF-IR, we generated each specific form through transient transfection of 3T3 cells and used the enriched media to perform kinase receptor activation assays. Compared with mature IGF-I, nonglycosylated pro-IGF-I had similar ability to activate the IGF-IR, whereas glycosylation of pro-IGF-I significantly reduced receptor activation. Thus, it is important to understand not only the quantity, but also the proportion of IGF-I forms produced, to evaluate the true biological activity of this growth factor. PMID:23407451

  1. Yak IGF2 Promotes Fibroblast Proliferation Via Suppression of IGF1R and PI3KCG Expression

    PubMed Central

    Wang, Qi; Gong, Jishang; Du, Jiaxing; Zhang, Yong; Zhao, Xingxu

    2018-01-01

    Insulin-like growth factor 2 (IGF2) recapitulates many of the activities of insulin and promotes differentiation of myoblasts and osteoblasts, which likely contribute to genetic variations of growth potential. However, little is known about the functions and signaling properties of IGF2 variants in yaks. The over-expression vector and knockdown sequence of yak IGF2 were transfected into yak fibroblasts, and the effects were detected by a series of assays. IGF2 expression in yak muscle tissues was significantly lower than that of other tissues. In yak fibroblasts, the up-regulated expression of IGF2 inhibits expression of IGF1 and insulin-like growth factor 2 receptor (IGF2R) and significantly up-regulates expression of IGF1R. Inhibition of IGF2 expression caused the up-regulates expression of IGF1, IGF1R and IGF2R. Both over-expression and knockdown of IGF2 resulted in up-regulation of threonine protein kinase 1 (Akt1) expression and down-regulation of phosphatidylinositol 3-kinase, catalytic subunit gamma (PIK3CG). Cell cycle and cell proliferation assays revealed that over-expression of IGF2 enhanced the DNA synthesis phase and promoted yak fibroblasts proliferation. Conversely, knockdown of IGF2 decreased DNA synthesis and inhibited proliferation. These results suggested that IGF2 was negatively correlated with IGF1R and PIK3CG and demonstrated an association with the IGFs-PI3K-Akt (IGFs-phosphatidylinositol 3-kinase- threonine protein kinase) pathway in cell proliferation and provided evidence supporting the functional role of IGF2 for use in improving the production performance of yaks. PMID:29558395

  2. The IGF-1 Receptor Identifies a Pool of Human Cardiac Stem Cells with Superior Therapeutic Potential for Myocardial Regeneration

    PubMed Central

    D’Amario, Domenico; Cabral-Da-Silva, Mauricio; Zheng, Hanqiao; Fiorini, Claudia; Goichberg, Polina; Steadman, Elisabeth; Ferreira-Martins, João; Sanada, Fumihiro; Piccoli, Marco; Cappetta, Donato; D’Alessandro, David A.; Michler, Robert E.; Hosoda, Toru; Anastasia, Luigi; Rota, Marcello; Leri, Annarosa; Anversa, Piero; Kajstura, Jan

    2012-01-01

    Rationale Age and coronary artery disease may negatively affect the function of human cardiac stem cells (hCSCs) and their potential therapeutic efficacy for autologous cell transplantation in the failing heart. Objective Insulin-like growth factor 1 (IGF-1) and 2 (IGF-2), and angiotensin II (Ang II) and their receptors, IGF-1R, IGF-2R and AT1R, were characterized in c-kit-positive-hCSCs to establish whether these systems would allow us to separate hCSC classes with different growth reserve in the aging and diseased myocardium. Methods and Results C-kit-positive-hCSCs were collected from myocardial samples obtained from 24 patients, 48 to 86 years of age, undergoing elective cardiac surgery for coronary artery disease. The expression of IGF-1R in hCSCs recognized a young cell phenotype defined by long telomeres, high telomerase activity, enhanced cell proliferation and attenuated apoptosis. In addition to IGF-1, IGF-1R-positive-hCSCs secreted IGF-2 that promoted myocyte differentiation. Conversely, the presence of IGF-2R and AT1R, in the absence of IGF-1R, identified senescent hCSCs with impaired growth reserve and increased susceptibility to apoptosis. The ability of IGF-1R-positive-hCSCs to regenerate infarcted myocardium was then compared with that of unselected c-kit-positive-hCSCs. IGF-1R-positive-hCSCs improved cardiomyogenesis and vasculogenesis. Pretreatment of IGF-1R-positive-hCSCs with IGF-2 resulted in the formation of more mature myocytes and superior recovery of ventricular structure. Conclusions hCSCs expressing only IGF-1R synthesize both IGF-1 and IGF-2, which are potent modulators of stem cell replication, commitment to the myocyte lineage and myocyte differentiation, pointing to this hCSC subset as the ideal candidate cell for the management of human heart failure. PMID:21546606

  3. IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma

    PubMed Central

    Svalina, Matthew N.; Kikuchi, Ken; Abraham, Jinu; Lal, Sangeet; Davare, Monika A.; Settelmeyer, Teagan P.; Young, Michael C.; Peckham, Jennifer L.; Cho, Yoon-Jae; Michalek, Joel E.; Hernandez, Brian S.; Berlow, Noah E.; Jackson, Melanie; Guillaume, Daniel J.; Selden, Nathan R.; Bigner, Darell D.; Nazemi, Kellie J.; Green, Sarah C.; Corless, Christopher L.; Gultekin, Sakir; Mansoor, Atiya; Rubin, Brian P.; Woltjer, Randall; Keller, Charles

    2016-01-01

    Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma. PMID:27255663

  4. IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma.

    PubMed

    Svalina, Matthew N; Kikuchi, Ken; Abraham, Jinu; Lal, Sangeet; Davare, Monika A; Settelmeyer, Teagan P; Young, Michael C; Peckham, Jennifer L; Cho, Yoon-Jae; Michalek, Joel E; Hernandez, Brian S; Berlow, Noah E; Jackson, Melanie; Guillaume, Daniel J; Selden, Nathan R; Bigner, Darell D; Nazemi, Kellie J; Green, Sarah C; Corless, Christopher L; Gultekin, Sakir; Mansoor, Atiya; Rubin, Brian P; Woltjer, Randall; Keller, Charles

    2016-06-03

    Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma.

  5. Insulin-like Growth Factor 1 (IGF-1) Stabilizes Nascent Blood Vessels*

    PubMed Central

    Jacobo, Sarah Melissa P.; Kazlauskas, Andrius

    2015-01-01

    Here we report that VEGF-A and IGF-1 differ in their ability to stabilize newly formed blood vessels and endothelial cell tubes. Although VEGF-A failed to support an enduring vascular response, IGF-1 stabilized neovessels generated from primary endothelial cells derived from various vascular beds and mouse retinal explants. In these experimental systems, destabilization/regression was driven by lysophosphatidic acid (LPA). Because previous studies have established that Erk antagonizes LPA-mediated regression, we considered whether Erk was an essential component of IGF-dependent stabilization. Indeed, IGF-1 lost its ability to stabilize neovessels when the Erk pathway was inhibited pharmacologically. Furthermore, stabilization was associated with prolonged Erk activity. In the presence of IGF-1, Erk activity persisted longer than in the presence of VEGF or LPA alone. These studies reveal that VEGF and IGF-1 can have distinct inputs in the angiogenic process. In contrast to VEGF, IGF-1 stabilizes neovessels, which is dependent on Erk activity and associated with prolonged activation. PMID:25564613

  6. A kinome-wide screen identifies the Insulin/IGF-1 receptor pathway as a mechanism of escape from hormone dependence in breast cancer

    PubMed Central

    Fox, Emily M.; Miller, Todd W.; Balko, Justin M.; Kuba, Maria G.; Sánchez, Violeta; Smith, R. Adam; Liu, Shuying; González-Angulo, Ana María; Mills, Gordon B.; Ye, Fei; Shyr, Yu; Manning, H. Charles; Buck, Elizabeth; Arteaga, Carlos L.

    2011-01-01

    Estrogen receptor α (ER)-positive breast cancers adapt to hormone deprivation and become resistant to antiestrogens. In this study, we sought to identify kinases essential for growth of ER+ breast cancer cells resistant to long term estrogen deprivation (LTED). A kinome-wide siRNA screen showed that the insulin receptor (InsR) is required for growth of MCF7/LTED cells. Knockdown of InsR and/or insulin-like growth factor-1 receptor (IGF-1R) inhibited growth of 3/4 LTED cell lines. Inhibition of InsR and IGF-1R with the dual tyrosine kinase inhibitor OSI-906 prevented the emergence of hormone-independent cells and tumors in vivo, inhibited parental and LTED cell growth and PI3K/AKT signaling, and suppressed growth of established MCF-7 xenografts in ovariectomized mice, whereas treatment with the neutralizing IGF-1R monoclonal antibody MAB391 was ineffective. Combined treatment with OSI-906 and the ER downregulator fulvestrant more effectively suppressed hormone-independent tumor growth than either drug alone. Finally, an insulin/IGF-1 gene expression signature predicted recurrence-free survival in patients with ER+ breast cancer treated with the antiestrogen tamoxifen. We conclude that therapeutic targeting of both InsR and IGF-1R should be more effective than targeting IGF-1R alone in abrogating resistance to endocrine therapy in breast cancer. PMID:21908557

  7. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuloaga, R.; Fuentes, E.N.; Molina, A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1more » during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.« less

  8. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-inducedmore » MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.« less

  9. The potential of IGF-1 and TGFbeta1 for promoting "adult" articular cartilage repair: an in vitro study.

    PubMed

    Davies, Lindsay C; Blain, Emma J; Gilbert, Sophie J; Caterson, Bruce; Duance, Victor C

    2008-07-01

    Research into articular cartilage repair, a tissue unable to spontaneously regenerate once injured, has focused on the generation of a biomechanically functional repair tissue with the characteristics of hyaline cartilage. This study was undertaken to provide insight into how to improve ex vivo chondrocyte amplification, without cellular dedifferentiation for cell-based methods of cartilage repair. We investigated the effects of insulin-like growth factor 1 (IGF-1) and transforming growth factor beta 1 (TGFbeta1) on cell proliferation and the de novo synthesis of sulfated glycosaminoglycans and collagen in chondrocytes isolated from skeletally mature bovine articular cartilage, whilst maintaining their chondrocytic phenotype. Here we demonstrate that mature differentiated chondrocytes respond to growth factor stimulation to promote de novo synthesis of matrix macromolecules. Additionally, chondrocytes stimulated with IGF-1 or TGFbeta1 induced receptor expression. We conclude that IGF-1 and TGFbeta1 in addition to autoregulatory effects have differential effects on each other when used in combination. This may be mediated by regulation of receptor expression or endogenous factors; these findings offer further options for improving strategies for repair of cartilage defects.

  10. Bidirectional TSH and IGF-1 receptor cross talk mediates stimulation of hyaluronan secretion by Graves' disease immunoglobins.

    PubMed

    Krieger, Christine C; Neumann, Susanne; Place, Robert F; Marcus-Samuels, Bernice; Gershengorn, Marvin C

    2015-03-01

    There is no pathogenetically linked medical therapy for Graves' ophthalmopathy (GO). Lack of animal models and conflicting in vitro studies have hindered the development of such therapy. Recent reports propose that Graves' Igs bind to and activate thyrotropin receptors (TSHRs) and IGF-1 receptors (IGF-1Rs) on cells in orbital fat, stimulating hyaluronan (HA) secretion, a component of GO. The objective of the study was to investigate potential cross talk between TSHRs and IGF-1Rs in the pathogenesis of GO using a sensitive HA assay. Orbital fibroblasts from GO patients were collected in an academic clinical practice and cultured in a research laboratory. Cells were treated with TSH, IGF-1, and a monoclonal Graves' Ig M22. HA was measured by a modified ELISA. Simultaneous activation by TSH and IGF-1 synergistically increased HA secretion from 320 ± 52 for TSH and 430 ± 65 μg/mL for IGF-1 alone, to 1300 ± 95 μg/mL. IGF-1 shifted the TSH EC50 19-fold to higher potency. The dose response to M22 was biphasic. An IGF-1R antagonist inhibited the higher potency phase but had no effect on the lower potency phase. M22 did not cause IGF-1R autophosphorylation. A TSHR antagonist abolished both phases of M22-stimulated HA secretion. M22 stimulation of HA secretion by GO fibroblasts/preadipocytes involves cross talk between TSHR and IGF-1R. This cross talk relies on TSHR activation rather than direct activation of IGF-1R and leads to synergistic stimulation of HA secretion. These data propose a model for GO pathogenesis that explains previous contradictory results and argues for TSHR as the primary therapeutic target for GO.

  11. Alu-mediated recombination defect in IGF1R: haploinsufficiency in a patient with short stature.

    PubMed

    Harmel, Eva-Maria; Binder, Gerhard; Barnikol-Oettler, Anja; Caliebe, Janina; Kiess, Wieland; Losekoot, Monique; Ranke, Michael B; Rappold, Gudrun A; Schlicke, Marina; Stobbe, Heike; Wit, Jan M; Pfäffle, Roland; Klammt, Jürgen

    2013-01-01

    The insulin-like growth factor (IGF) receptor (IGF1R) is essential for normal development and growth. IGF1R mutations cause IGF-1 resistance resulting in intrauterine and postnatal growth failure. The phenotypic spectrum related to IGF1R mutations remains to be fully understood. Auxological and endocrinological data of a patient identified previously were assessed. The patient's fibroblasts were studied to characterize the IGF1R deletion, mRNA fate, protein expression and signalling capabilities. The boy, who carries a heterozygous IGF1R exon 6 deletion caused by Alu element-mediated recombination and a heterozygous SHOX variant (p.Met240Ile), was born appropriate for gestational age but developed proportionate short stature postnatally. IGF-1 levels were low-normal. None of the stigmata associated with SHOX deficiency or sporadically observed in IGF1R mutation carriers were present. Nonsense-mediated mRNA decay led to a substantial decline of IGF1R dosage and IGF-1-dependent receptor autophosphorylation but not impaired downstream signalling. We present the first detailed report of an intragenic IGF1R deletion identified in a patient who, apart from short stature, deviates from all established markers that qualify a growth-retarded child for IGF1R analysis. Although such children will usually escape routine clinical mutation screenings, they can contribute to the understanding of factors and mechanisms that cooperate with the IGF1R. © 2013 S. Karger AG, Basel.

  12. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas

    PubMed Central

    Huang, Xin; Park, Haein; Greene, Joseph; Zhou, Sophia X.; Albert, Catherine M.; Moy, Fred; Sachdev, Deepali; Yee, Douglas; Rader, Christoph; Hamby, Carl V.; Loeb, David M.; Cairo, Mitchell S.; Zhou, Xianzheng

    2015-01-01

    Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR) T cells targeting the type I insulin-like growth factor receptor (IGF1R) or tyrosine kinase-like orphan receptor 1 (ROR1) molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15) and ROR1 (11/15) were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB) transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients. PMID:26173023

  13. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas.

    PubMed

    Huang, Xin; Park, Haein; Greene, Joseph; Pao, James; Mulvey, Erin; Zhou, Sophia X; Albert, Catherine M; Moy, Fred; Sachdev, Deepali; Yee, Douglas; Rader, Christoph; Hamby, Carl V; Loeb, David M; Cairo, Mitchell S; Zhou, Xianzheng

    2015-01-01

    Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR) T cells targeting the type I insulin-like growth factor receptor (IGF1R) or tyrosine kinase-like orphan receptor 1 (ROR1) molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15) and ROR1 (11/15) were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB) transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients.

  14. The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic

    PubMed Central

    Bieghs, Liesbeth; Lub, Susanne; Fostier, Karel; Maes, Ken; Van Valckenborgh, Els; Menu, Eline; Johnsen, Hans E.; Overgaard, Michael T.; Larsson, Olle; Axelson, Magnus; Nyegaard, Mette; Schots, Rik; Jernberg-Wiklund, Helena

    2014-01-01

    The ABT-analogous 737, 263 and 199 are BH3 mimetics showing potent anti-myeloma (MM) activity, but only on defined molecular subgroups of MM patients presenting a Bcl-2high/Mcl-1low profile. IGF-1 is a major survival factor in MM regulating the expression of Bcl-2 proteins and might therefore be a resistance factor to these ABT-analogous. We first show that IGF-1 protected human MM cell lines (HMCLs) against ABT-737. Concurrently, the IGF-1 receptor inhibitor picropodophyllin (PPP) synergistically sensitized HMCL, primary human MM and murine 5T33MM cells to ABT-737 and ABT-199 by further decreasing cell viability and enhancing apoptosis. Knockdown of Bcl-2 by shRNA protected MM cells to ABT-737, while Mcl-1 shRNA sensitized the cells. PPP overcame the Bcl-2 dependency of ABT-737, but failed to completely overcome the protective effect of Mcl-1. In vivo, co-treatment of 5T33MM bearing mice significantly decreased tumor burden and prolonged overall survival both in a prophylactic and therapeutic setting. Interestingly, proteasome inhibitor resistant CD138− 5T33MM cells were more sensitive to ABT-737, whereas PPP alone targeted the CD138+ cells more effectively. After co-treatment, both subpopulations were targeted equally. Together, the combination of an IGF-1R inhibitor and an ABT-analogue displays synergistic anti-myeloma activity providing the rational for further (pre)clinical testing. PMID:25008202

  15. Tumor suppressor BRCA1 is expressed in prostate cancer and controls IGF-I receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner

    PubMed Central

    Schayek, Hagit; Haugk, Kathy; Sun, Shihua; True, Lawrence D.; Plymate, Stephen R.; Werner, Haim

    2010-01-01

    Purpose The insulin-like growth factor (IGF) system plays an important role in prostate cancer. The BRCA1 gene encodes a transcription factor with tumor suppressor activity. The involvement of BRCA1 in prostate cancer, however, has not yet been elucidated. The purpose of the present study was to examine the functional correlations between BRCA1 and the IGF system in prostate cancer. Experimental Design An immunohistochemical analysis of BRCA1 was performed on Tissue Microarrays comprising 203 primary prostate cancer specimens. In addition, BRCA1 levels were measured in prostate cancer xenografts and in cell lines representing early stages of the disease (P69 cells) and advanced stages (M12 cells). The ability of BRCA1 to regulate IGF-IR expression was studied by coexpression experiments using a BRCA1 expression vector along with an IGF-IR promoter-luciferase reporter. Results We found significantly elevated BRCA1 levels in prostate cancer in comparison to histologically normal prostate tissue (p < 0.001). In addition, an inverse correlation between BRCA1 and IGF-IR levels was observed in the AR-negative P69 and M12 prostate cancer-derived cell lines. Coexpression experiments in M12 cells revealed that BRCA1 was able to suppress IGF-IR promoter activity and endogenous IGF-IR levels. On the other hand, BRCA1 enhanced IGF-IR levels in LnCaP C4-2 cells expressing an endogenous AR. Conclusions We provide evidence that BRCA1 differentially regulates IGF-IR expression in AR positive and negative prostate cancer cells. The mechanism of action of BRCA1 involves modulation of IGF-IR gene transcription. In addition, immunohistochemical data is consistent with a potential survival role of BRCA1 in prostate cancer. PMID:19223505

  16. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta..more » heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.« less

  17. Insulin-like growth factor type-1 receptor down-regulation associated with dwarfism in Holstein calves.

    PubMed

    Blum, J W; Elsasser, T H; Greger, D L; Wittenberg, S; de Vries, F; Distl, O

    2007-10-01

    Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfsIGF-1R mRNA abundance in liver in half-siblings and controls was 2.4- and 2.5-fold higher (P=0.003 and P=0.001, respectively) and in muscle tissue was 2.3- and 1.8-fold higher (P=0.01 and P=0.08, respectively) than in dwarfs. Hepatic IGF-1R protein levels (Western blots) in muscle were 2.5-fold higher (P<0.05) and in liver and muscle (quantitative immunohistochemistry) were higher (P<0.02 and P<0.07, respectively) in half-siblings than in dwarfs. The reduced presence of IGF-1R may have been the underlying cause of dwarfism in studied calves.

  18. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    PubMed Central

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  19. Inhibition of insulin-like growth factor receptor-1 reduces necroptosis-related markers and attenuates LPS-induced lung injury in mice.

    PubMed

    Lee, Su Hwan; Shin, Ju Hye; Song, Joo Han; Leem, Ah Young; Park, Moo Suk; Kim, Young Sam; Chang, Joon; Chung, Kyung Soo

    2018-04-15

    Insulin-like growth factor-1 (IGF-1) levels are known to increase in the bronchoalveolar lavage fluid (BALF) of patients with acute respiratory distress syndrome. Herein, we investigated the role of IGF-1 in lipopolysaccharide (LPS)-induced lung injury. In LPS-treated cells, expressions of receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like protein (MLKL) were decreased in IGF-1 receptor small interfering RNA (siRNA)-treated cells compared to control cells. The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, and macrophage inflammatory protein 2/C-X-C motif chemokine ligand 2 in the supernatant were significantly reduced in IGF-1 receptor siRNA-treated cells compared to control cells. In LPS-induced murine lung injury model, total cell counts, polymorphonuclear leukocytes counts, and pro-inflammatory cytokine levels in the BALF were significantly lower and histologically detected lung injury was less common in the group treated with IGF-1 receptor monoclonal antibody compared to the non-treated group. On western blotting, RIP3 and phosphorylated MLKL expressions were relatively decreased in the IGF-1 receptor monoclonal antibody group compared to the non-treated group. IGF-1 may be associated with RIP3-mediated necroptosis in vitro, while blocking of the IGF-1 pathway may reduce LPS-induced lung injuries in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma

    PubMed Central

    Ma, Yufang; Tang, Nan; Thompson, Reid; Mobley, Bret C.; Clark, Steven W.; Sarkaria, Jann N.; Wang, Jialiang

    2015-01-01

    Purpose Aberrant activation of epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR inhibitors exhibit at best modest efficacy in glioblastoma. This is in sharp contrast to the observations in EGFR-mutant lung cancer. We examined whether activation of functionally redundant receptor tyrosine kinases (RTKs) conferred resistance to EGFR inhibitors in glioblastoma. Experimental Design We collected a panel of patient-derived glioblastoma xenograft (PDX) lines that maintained expression of wild type or mutant EGFR in serial xenotransplantation and tissue cultures. Using this physiologically relevant platform, we tested the abilities of several RTK ligands to protect glioblastoma cells against an EGFR inhibitor, gefitinib. Based on the screening results, we further developed a combination therapy co-targeting EGFR and insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF1R). Results Insulin and IGF1 induced significant protection against gefitinib in the majority of EGFR-dependent PDX lines with one exception that did not expression InsR or IGF1R. Blockade of the InsR/IGF1R pathway synergistically improved sensitivity to gefitinib or dacomitinib. Gefitinib alone effectively attenuated EGFR activities and the downstream MEK/ERK pathway. However, repression of AKT and induction of apoptosis required concurrent inhibition of both EGFR and InsR/IGF1R. A combination of gefitinib and OSI-906, a dual InsR/IGF1R inhibitor, was more effective than either agent alone to treat subcutaneous glioblastoma xenograft tumors. Conclusions Our results suggest that activation of the InsR/IGF1R pathway confers resistance to EGFR inhibitors in EGFR-dependent glioblastoma through AKT regulation. Concurrent blockade of these two pathways holds promise to treat EGFR-dependent glioblastoma. PMID:26561558

  1. Serum insulin-like growth factor-1 (IGF-1) during CF pulmonary exacerbation: trends and biomarker correlations.

    PubMed

    Gifford, A H; Nymon, A B; Ashare, A

    2014-04-01

    Cystic fibrosis (CF) is characterized by low circulating levels of insulin-like growth factor-1 (IGF-1), a hormone produced by the liver that governs anabolism and influences immune cell function. Because treatment of CF pulmonary exacerbation (CFPE) often improves body weight and lung function, we questioned whether serum IGF-1 trends were emblematic of these responses. Initially, we compared serum levels between healthy adults with CF and controls of similar age. We then measured serum IGF-1 throughout the CFPE cycle. We also investigated correlations among IGF-1 and other serum biomarkers during CFPE. Anthopometric, spirometric, and demographic data were collected. Serum IGF-1 concentrations were measured by ELISA. CF subjects in their usual state of health had lower serum IGF-1 levels than controls. Serum IGF-1 concentrations fell significantly from baseline at the beginning of CFPE. Treatment with intravenous antibiotics was associated with significant improvement in serum IGF-1 levels, body mass index (BMI), and percent-predicted forced expiratory volume in 1 sec (FEV1 %). At early and late CFPE, serum IGF-1 was directly correlated with FEV1 %, serum iron, hemoglobin concentration, and transferrin saturation (TSAT) and indirectly correlated with alpha-1-antitrypsin. This study not only supports the paradigm that CF is characterized by IGF-1 deficiency but also that trends in lung function, nutritional status, and serum IGF-1 are related. Improvements in all three parameters after antibiotics for CFPE likely highlight the connection between lung function and nutritional status in CF. Close correlations among IGF-1 and iron-related hematologic parameters suggest that IGF-1 may participate in CF iron homeostasis, another process that is known to be influenced by CFPE. © 2013 Wiley Periodicals, Inc.

  2. [Insulin-like growth factor-1 (IGF-1) - structure and the role in the human body].

    PubMed

    Filus, Alicja; Zdrojewicz, Zygmunt

    2015-01-01

    In the recent years, managed to broadly explore the structure and role of insulin-like growth factors type 1 and 2 (IGF1 I 2). They belong to the structure of polypeptide hormones homologous to proinsulin. They are characterized by a wide range of activities. IGF-1 is a key mediator of most tissue effects of growth hormone (GH). In addition to effects on growth processes of the body, is also an important factor for cell homeostasis, is subject to both endocrine and tissue-specific auto- and paracrine regulation. In this paper, the current, general knowledge on the structure, function and mechanism of biological effects of IGF-1 in the human body was presented. Attention was also drawn to the directions of use of IGf-1 in the treatment of other diseases than the diseases of the hypothalamic-pituitary and growth disorders in children. © Polish Society for Pediatric Endocrinology and Diabetology.

  3. Gut Microbiota and IGF-1.

    PubMed

    Yan, Jing; Charles, Julia F

    2018-04-01

    Microbiota and their hosts have coevolved for millions of years. Microbiota are not only critical for optimal development of the host under normal physiological growth, but also important to ensure proper host development during nutrient scarcity or disease conditions. A large body of research has begun to detail the mechanism(s) of how microbiota cooperate with the host to maintain optimal health status. One crucial host pathway recently demonstrated to be modulated by microbiota is that of the growth factor insulin like growth factor 1 (IGF-1). Gut microbiota are capable of dynamically modulating circulating IGF-1 in the host, with the majority of data suggesting that microbiota induce host IGF-1 synthesis to influence growth. Microbiota-derived metabolites such as short chain fatty acids are sufficient to induce IGF-1. Whether microbiota induction of IGF-1 is mediated by the difference in growth hormone expression or the host sensitivity to growth hormone is still under investigation. This review summarizes the current data detailing the interaction between gut microbiota, IGF-1 and host development.

  4. Role of IGF-1R in ameliorating apoptosis of GNE deficient cells.

    PubMed

    Singh, Reema; Chaudhary, Priyanka; Arya, Ranjana

    2018-05-09

    Sialic acids (SAs) are nine carbon acidic amino sugars, found at the outermost termini of glycoconjugates performing various physiological and pathological functions. SA synthesis is regulated by UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) that catalyzes rate limiting steps. Mutations in GNE result in rare genetic disorders, GNE myopathy and Sialuria. Recent studies indicate an alternate role of GNE in cell apoptosis and adhesion, besides SA biosynthesis. In the present study, using a HEK cell-based model for GNE myopathy, the role of Insulin-like Growth Factor Receptor (IGF-1R) as cell survival receptor protein was studied to counter the apoptotic effect of non-functional GNE. In the absence of functional GNE, IGF-1R was hyposialylated and transduced a downstream signal upon IGF-1 (IGF-1R ligand) treatment. IGF-1 induced activation of IGF-1R led to AKT (Protein Kinase B) phosphorylation that may phosphorylate BAD (BCL2 Associated Death Promoter) and its dissociation from BCL2 to prevent apoptosis. However, reduced ERK (Extracellular signal-regulated kinases) phosphorylation in GNE deficient cells after IGF-1 treatment suggests downregulation of the ERK pathway. A balance between the ERK and AKT pathways may determine the cell fate towards survival or apoptosis. Our study suggests that IGF-1R activation may rescue apoptotic cell death of GNE deficient cell lines and has potential as therapeutic target.

  5. [Effects of pulsed magnetic field on insulin-like growth factor-1 (IGF-1) in cerebrospinal fluid and effects of IGF-1 on functional recovery].

    PubMed

    Song, Cheng-xian; Fan, Jian-zhong; Wu, Hong-ying; Wei, Yi; Zhen, Jian-rong

    2010-10-01

    To study the effects of pulsed magnetic field on insulin-like growth factor-1 (IGF-1) level in the cerebrospinal fluid (CSF) and the association of IGF-1 alterations with the activities of daily living (ADL) of patients with brain injury. Sixty-five patients with brain injury were divided randomly into the control group (n=30) and magnetic therapy group (n=35), both receiving conventional therapy and in the latter group, daily pulsed magnetic field treatment (20-40 mT, 50 Hz, 20 min per time, 1 time per day) for 14 consecutive days were administered. On the first and 14th days of the treatment, 2 ml CSF was collected from the cases patients for IGF-1 measurement by radioimmunoassay, and Barthel index (BI) was used to assess the ADL of the patients. After a 14-day treatment, IGF-1 level in the CSF were significantly increased in the magnetic group in comparison with the level before the treatment and with those in the control group (P<0.05). IGF-1 in the CSF underwent no significant changes in the control group (P>0.05). The scores of BI increased significantly in both groups after the treatment (P<0.01), but the increment was more obvious in the magnetic therapy group (P<0.05). A significant positive correlation was found between IGF-1 level in the CSF and BI in these patients (r=0.283, P=0.022). Pulsed magnetic field might increase IGF-1 level in the CSF of patients with brain injury to promote the recovery of the patients ADL, suggesting its potential clinical value in the treatment of brain injury.

  6. IGF1R blockade with ganitumab results in systemic effects on the GH–IGF axis in mice

    PubMed Central

    Moody, Gordon; Beltran, Pedro J; Mitchell, Petia; Cajulis, Elaina; Chung, Young-Ah; Hwang, David; Kendall, Richard; Radinsky, Robert; Cohen, Pinchas; Calzone, Frank J

    2014-01-01

    Ganitumab is a fully human MAB to the human type 1 IGF receptor (IGF1R). Binding assays showed that ganitumab recognized murine IGF1R with sub-nanomolar affinity (KD=0.22 nM) and inhibited the interaction of murine IGF1R with IGF1 and IGF2. Ganitumab inhibited IGF1-induced activation of IGF1R in murine lungs and CT26 murine colon carcinoma cells and tumors. Addition of ganitumab to 5-fluorouracil resulted in enhanced inhibition of tumor growth in the CT26 model. Pharmacological intervention with ganitumab in naïve nude mice resulted in a number of physiological changes described previously in animals with targeted deletions of Igf1 and Igf1r, including inhibition of weight gain, reduced glucose tolerance and significant increase in serum levels of GH, IGF1 and IGFBP3. Flow cytometric analysis identified GR1/CD11b-positive cells as the highest IGF1R-expressing cells in murine peripheral blood. Administration of ganitumab led to a dose-dependent, reversible decrease in the number of peripheral neutrophils with no effect on erythrocytes or platelets. These findings indicate that acute IGF availability for its receptor plays a critical role in physiological growth, glucose metabolism and neutrophil physiology and support the presence of a pituitary IGF1R-driven negative feedback loop that tightly regulates serum IGF1 levels through Gh signaling. PMID:24492468

  7. IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells.

    PubMed

    Strömberg, Thomas; Ekman, Simon; Girnita, Leonard; Dimberg, Lina Y; Larsson, Olle; Axelson, Magnus; Lennartsson, Johan; Hellman, Ulf; Carlson, Kristina; Osterborg, Anders; Vanderkerken, Karin; Nilsson, Kenneth; Jernberg-Wiklund, Helena

    2006-01-15

    Emerging evidence suggests the insulin-like growth factor-1 receptor (IGF-1R) to be an important mediator of tumor-cell survival and resistance to cytotoxic therapy in multiple myeloma (MM). Recently, members of the cyclolignan family have been shown to selectively inhibit the receptor tyrosine kinase (RTK) activity of the IGF-1R beta-chain. The effects of the cyclolignan picropodophyllin (PPP) were studied in vitro using a panel of 13 MM cell lines and freshly purified tumor cells from 10 patients with MM. PPP clearly inhibited growth in all MM cell lines and primary MM samples cultured in the presence or absence of bone marrow stromal cells. PPP induced a profound accumulation of cells in the G(2)/M-phase and an increased apoptosis. Importantly, IGF-1, IGF-2, insulin, or IL-6 did not reduce the inhibitory effects of PPP. As demonstrated by in vitro kinase assays, PPP down-regulated the IGF-1 RTK activity without inhibiting the insulin RTK activity. This conferred decreased phosphorylation of Erk1/2 and reduced cyclin dependent kinase (CDK1) activity. In addition, the expression of mcl-1 and survivin was reduced. Taken together, we suggest that interfering with the IGF-1 RTK by using the cyclolignan PPP offers a novel and selective therapeutic strategy for MM.

  8. Are Elevated Levels of IGF-1 Caused by Coronary Arteriesoclerosis?: Molecular and Clinical Analysis

    PubMed Central

    Gozdzicka-Jozefiak, Anna; Zurawski, Jakub; Nowak, Witold; Durzynska, Julia; Link, Rafał; Grotowski, Tomasz; Siminiak, Tomasz

    2010-01-01

    The importance of insulin-like growth factor-1 (IGF-1) in coronary artery disease (CAD) due to wide range of its biological effects and its therapeutic potential, has already been described. Our aim was to evaluate possible influence of IGF-1 serum level changes on coronary atherosclerosis. In case of existence of such association our further aim was to verify and explain this phenomenon by examination of promoter P1 of IGF-1gene and receptor gene for IGF-1. The study was performed in 101 consecutive patients undergo for routine coronary angiography. Quantitative and qualitative assessment of coronary atherosclerosis was performed respectively by estimation of the number of culprit lesions in coronary arteries and by Gensini score calculation. IGF-1, IGFBP3 and plasma lipoproteins were measured in all patients. In addition, we evaluated DNA from 101 patients, isolated from blood cells, which was amplified by using PCR with sophisticated primers for P1 promoter of IGF-1 gene and IGF-1 receptor gene, then analyzed utilizing SSCP technique and automatically sequenced. We observed significant increase of serum IGF-1 levels in patients with “3 vessel disease” and with high score in Gensini scale when compared to those without any narrowing lesions in coronary arteries and 0 Gensini score (in group with 3 vessel disease 215.0 ± 71.3 versuss 176.7 ± 34.2 ng/ml p = 0.04 and with high Gensini score 231.4 ± 59.3 versus 181.0 ± 37.8 ng/ml p = 0.01).We found different genotypes for five P1 promoter polymorphisms of IGF-1 gene (RS35767, RS5742612, RS228837, RS11829693, RS17879774). There were no significant associations between the observed single nucleotide polymorphism (SNP) and coronary atherosclerosis nor with levels of circulating IGF-1. We found no structural polymorphism in receptor gene for IGF-1 nor in its extracellular domain(exon 2–4) nor in internal domain (exon 16–21). The effect of increased IGF-1 serum level in our study was probably

  9. Are elevated levels of IGF-1 caused by coronary arteriesoclerosis?: Molecular and clinical analysis.

    PubMed

    Burchardt, Pawel; Gozdzicka-Jozefiak, Anna; Zurawski, Jakub; Nowak, Witold; Durzynska, Julia; Link, Rafał; Grotowski, Tomasz; Siminiak, Tomasz

    2010-11-01

    The importance of insulin-like growth factor-1 (IGF-1) in coronary artery disease (CAD) due to wide range of its biological effects and its therapeutic potential, has already been described. Our aim was to evaluate possible influence of IGF-1 serum level changes on coronary atherosclerosis. In case of existence of such association our further aim was to verify and explain this phenomenon by examination of promoter P1 of IGF-1gene and receptor gene for IGF-1. The study was performed in 101 consecutive patients undergo for routine coronary angiography. Quantitative and qualitative assessment of coronary atherosclerosis was performed respectively by estimation of the number of culprit lesions in coronary arteries and by Gensini score calculation. IGF-1, IGFBP3 and plasma lipoproteins were measured in all patients. In addition, we evaluated DNA from 101 patients, isolated from blood cells, which was amplified by using PCR with sophisticated primers for P1 promoter of IGF-1 gene and IGF-1 receptor gene, then analyzed utilizing SSCP technique and automatically sequenced. We observed significant increase of serum IGF-1 levels in patients with "3 vessel disease" and with high score in Gensini scale when compared to those without any narrowing lesions in coronary arteries and 0 Gensini score (in group with 3 vessel disease 215.0 ± 71.3 versuss 176.7 ± 34.2 ng/ml p = 0.04 and with high Gensini score 231.4 ± 59.3 versus 181.0 ± 37.8 ng/ml p = 0.01).We found different genotypes for five P1 promoter polymorphisms of IGF-1 gene (RS35767, RS5742612, RS228837, RS11829693, RS17879774). There were no significant associations between the observed single nucleotide polymorphism (SNP) and coronary atherosclerosis nor with levels of circulating IGF-1. We found no structural polymorphism in receptor gene for IGF-1 nor in its extracellular domain(exon 2-4) nor in internal domain (exon 16-21). The effect of increased IGF-1 serum level in our study was probably independent

  10. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  11. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment.

    PubMed

    De Francesco, Ernestina M; Sims, Andrew H; Maggiolini, Marcello; Sotgia, Federica; Lisanti, Michael P; Clarke, Robert B

    2017-12-06

    The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor

  12. Role of IGF1 and EFN-EPH signaling in skeletal metabolism.

    PubMed

    Lindsey, Richard C; Rundle, Charles H; Mohan, Subburaman

    2018-07-01

    Insulin-like growth factor 1(IGF1) and ephrin ligand (EFN)-receptor (EPH) signaling are both crucial for bone cell function and skeletal development and maintenance. IGF1 signaling is the major mediator of growth hormone-induced bone growth, but a host of different signals and factors regulate IGF1 signaling at the systemic and local levels. Disruption of the Igf1 gene results in reduced peak bone mass in both experimental animal models and humans. Additionally, EFN-EPH signaling is a complex system which, particularly through cell-cell interactions, contributes to the development and differentiation of many bone cell types. Recent evidence has demonstrated several ways in which the IGF1 and EFN-EPH signaling pathways interact with and depend upon each other to regulate bone cell function. While much remains to be elucidated, the interaction between these two signaling pathways opens a vast array of new opportunities for investigation into the mechanisms of and potential therapies for skeletal conditions such as osteoporosis and fracture repair. © 2018 Society for Endocrinology.

  13. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    PubMed

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  14. Shifting the IGF-axis: An age-related decline in human tear IGF-1 correlates with clinical signs of dry eye.

    PubMed

    Patel, Roshni; Zhu, Meifang; Robertson, Danielle M

    2018-06-01

    The human corneal epithelium expresses both the insulin-like growth factor type 1 receptor (IGF-1R) and the IGF-1R/insulin receptor (INSR) hybrid. Despite the previous identification of IGF-1 in human tear fluid, little is known regarding the regulation of IGF-1 in tear fluid and its role in corneal epithelial homeostasis. In the present study, we investigated the impact of biological parameters on the concentration of human tear levels of IGF-1. Tear levels of IGF-1 were measured in 41 healthy, human volunteers without any reported symptoms of dry eye. All volunteers underwent standard biomicroscopic examination of the cornea and tear film. In a subgroup of volunteers, corneal staining with sodium fluorescein, tear film break up time and tear production using a Schirmer's test strip were measured to assess clinical signs of dry eye. Tears were collected from the inferior tear meniscus using glass microcapillary tubes and IGF-1 levels were measured using a solid phase sandwich ELISA. Tear levels of IGF-1 were highest in young adults and significantly decreased in older adults (P = 0.003). There were no differences in tear IGF-1 between males and females (P = 0.628). Tear IGF-1 levels were correlated with tear film break up time (R = 0.738) and tear production (R = 0.826). These data indicate that there is a progressive decline in tear IGF-1 due to aging that is associated with clinical signs of dry eye. This effect is likely due to age-related changes in the lacrimal gland. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Relationship between serum IGF-1 and skeletal muscle IGF-1 mRNA expression to phosphocreatine recovery after exercise in obese men with reduced GH.

    PubMed

    Hamarneh, Sulaiman R; Murphy, Caitlin A; Shih, Cynthia W; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E; Makimura, Hideo

    2015-02-01

    GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent (31)P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P < .0001) and IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = -0.53; P = .04), trunk fat (r = -0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations.

  16. Relationship Between Serum IGF-1 and Skeletal Muscle IGF-1 mRNA Expression to Phosphocreatine Recovery After Exercise in Obese Men With Reduced GH

    PubMed Central

    Hamarneh, Sulaiman R.; Murphy, Caitlin A.; Shih, Cynthia W.; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E.

    2015-01-01

    Context: GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. Objective: The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Design: Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent 31P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. Results: At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P < .0001) and IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = −0.53; P = .04), trunk fat (r = −0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). Conclusion: These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations. PMID:25375982

  17. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    PubMed

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  18. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye

    2009-11-06

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E proteinmore » were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.« less

  19. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    PubMed Central

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-01-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility. PMID:24633053

  20. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-03-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.

  1. Green tea component EGCG, insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers.

    PubMed

    Wimmer, Robert J; Russell, Sarah J; Schneider, Martin F

    2015-12-01

    Prevention and slowing of skeletal muscle atrophy with nutritional approaches offers the potential to provide far-reaching improvements in the quality of life for our increasingly aging population. Here we show that polyphenol flavonoid epigallocatechin 3-gallate (EGCG), found in the popular beverage green tea (Camellia sinensis), demonstrates similar effects to the endogenous hormones insulin-like growth factor 1 (IGF-1) and insulin in the ability to suppress action of the atrophy-promoting transcription factor Foxo1 through a net translocation of Foxo1 out of the nucleus as monitored by nucleo-cytoplasmic movement of Foxo1-green fluorescent protein (GFP) in live skeletal muscle fibers. Foxo1-GFP nuclear efflux is rapid in IGF-1 or insulin, but delayed by an additional 30 min for EGCG. Once activated, kinetic analysis with a simple mathematical model shows EGCG, IGF-1 and insulin all produce similar apparent rate constants for Foxo1-GFP unidirectional nuclear influx and efflux. Interestingly, EGCG appears to have its effect at least partially via parallel signaling pathways that are independent of IGF-1's (and insulin's) downstream PI3K/Akt/Foxo1 signaling axis. Using the live fiber model system, we also determine the dose-response curve for both IGF-1 and insulin on Foxo1 nucleo-cytoplasmic distribution. The continued understanding of the activation mechanisms of EGCG could allow for nutritional promotion of green tea's antiatrophy skeletal muscle benefits and have implications in the development of a clinically significant parallel pathway for new drugs to target muscle wasting and the reduced insulin receptor sensitivity which causes type II diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Genetic and Dietary Determinants of Insulin-Like Growth Factor (IGF)-1 and IGF Binding Protein (BP)-3 Levels among Chinese Women

    PubMed Central

    Li, Hui; McCullough, Lauren E.; Qi, Ya-na; Li, Jia-yuan; Zhang, Jing; Miller, Erline; Yang, Chun-xia; Smith, Jennifer S.

    2014-01-01

    Background Higher insulin-like growth factor (IGF)-1 and lower IGF binding protein (BP)-3 levels have been associated with higher commoncancer risk, including breast cancer. Dietary factors, genetic polymorphisms, and the combination of both may influence circulating IGF-1 and IGFBP-3 serum concentrations. Methods From September 2011 to July 2012, we collected demographic, reproductive and dietary data on 143 women (≥40 years). We genotyped IGF-1 rs1520220 and IGFBP-3 rs2854744 and measured circulating IGF-1 and IGFBP-3 levels in serum. Covariance analyses were used to estimate the associations of serum levels of IGF-1 and IGFBP-3, and the molar ratio of IGF-1to IGFBP-3 with IGF-1 rs1520220 and IGFBP-3 rs2854744 genotypes. We subsequently assessed the combined influence of genetics and diet (daily intake of protein, fat and soy isoflavones) on IGF-1 and IGFBP-3 levels. Results Among women aged less than 50 years, circulating IGF-1 serum levels were significantly lower for those with CC genotype for IGF-1 rs1520220 than levels for those with the GC or GG genotypes (in recessive model: P = 0.007).In gene-diet analyses among these women, we found carrying CC genotype for IGF-1 rs1520220 and high soy isoflavone intake tend to be associated with lower circulating IGF-1 levels synthetically (P = 0.002). Women with GG or GC genotypes for IGF-1 rs1520220 and with low intake of soy isoflavones had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] µg/L). Comparatively, women with both the CC genotype and high soy intake had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38,378] µg/L). Conclusions IGF-1 serum levels are significantly lower among women with the CC genotype for IGF-1-rs1520220. High soy isoflavone intake may interact with carrying CC genotype for IGF-1-rs1520220 to lower women's serum IGF-1 levels more. PMID:25285521

  3. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat.

    PubMed

    Yan, Han; Mitschelen, Matthew; Toth, Peter; Ashpole, Nicole M; Farley, Julie A; Hodges, Erik L; Warrington, Junie P; Han, Song; Fung, Kar-Ming; Csiszar, Anna; Ungvari, Zoltan; Sonntag, William E

    2014-11-01

    Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  4. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation.

    PubMed

    Thornton, K J; Kamange-Sollo, E; White, M E; Dayton, W R

    2015-09-01

    Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment

  5. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    PubMed Central

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  6. Phosphatidylinositol 3-Kinase (PI3K) Activity Bound to Insulin-like Growth Factor-I (IGF-I) Receptor, which Is Continuously Sustained by IGF-I Stimulation, Is Required for IGF-I-induced Cell Proliferation*

    PubMed Central

    Fukushima, Toshiaki; Nakamura, Yusaku; Yamanaka, Daisuke; Shibano, Takashi; Chida, Kazuhiro; Minami, Shiro; Asano, Tomoichiro; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2012-01-01

    Continuous stimulation of cells with insulin-like growth factors (IGFs) in G1 phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G1 to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G1 phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr1316-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR−/− fibroblasts expressing exogenous mutant IGF-IR in which Tyr1316 was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. PMID:22767591

  7. Administration of growth hormone and nandrolone decanoate alters mRNA expression of the GABAB receptor subunits as well as of the GH receptor, IGF-1, and IGF-2 in rat brain.

    PubMed

    Grönbladh, Alfhild; Johansson, Jenny; Nyberg, Fred; Hallberg, Mathias

    2014-01-01

    The illicit use of anabolic androgenic steroids (AAS), especially among young adults, is of major concern. Among AAS users it is common to combine the AAS nandrolone decanoate (ND), with intake of growth hormone (GH) and a connection between gonadal steroids and the GH system has been suggested. Both AAS and GH affect functions in the brain, for example those associated with the hypothalamus and pituitary, and several GH actions are mediated by growth factors such as insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2). The GABAergic system is implicated in actions induced by AAS and previous studies have provided evidence for a link between GH and GABAB receptors in the brain. Our aim was to examine the impact of AAS administration and a subsequent administration of GH, on the expression of GABAB receptors and important GH mediators in rat brain. The aim was to investigate the CNS effects of a high-dose ND, and to study if a low, but physiological relevant, dose of GH could reverse the ND-induced effects. In the present study, male rats were administered a high dose of ND every third day during three weeks, and subsequently the rats were given recombinant human GH (rhGH) during ten days. Quantitative PCR (qPCR) was used to analyze gene expression in hypothalamus, anterior pituitary, caudate putamen, nucleus accumbens, and amygdala. In the pituitary gland, the expression of GABAB receptor subunits was affected differently by the steroid treatment; the GABAB1 mRNA expression was decreased whereas a distinct elevation of the GABAB2 expression was found. Administration of ND also caused a decrease of GHR, IGF-1, and IGF-2 mRNA expression in the pituitary while the corresponding expression in the hypothalamus, caudate putamen, nucleus accumbens, and amygdala was unaffected. The rhGH administration did not alter the GABAB2 expression but increased the GABAB1 gene expression in the hypothalamus as compared to the AAS treated group. These results

  8. E-Peptides Control Bioavailability of IGF-1

    PubMed Central

    Piszczek, Agnieszka; Perlas, Emarald; Winn, Nadine; Nastasi, Tommaso; Rosenthal, Nadia

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is a potent cytoprotective growth factor that has attracted considerable attention as a promising therapeutic agent. Transgenic over-expression of IGF-1 propeptides facilitates protection and repair in a broad range of tissues, although transgenic mice over-expressing IGF-1 propeptides display little or no increase in IGF-1 serum levels, even with high levels of transgene expression. IGF-1 propeptides are encoded by multiple alternatively spliced transcripts including C-terminal extension (E) peptides, which are highly positively charged. In the present study, we use decellularized mouse tissue to show that the E-peptides facilitate in vitro binding of murine IGF-1 to the extracellular matrix (ECM) with varying affinities. This property is independent of IGF-1, since proteins consisting of the E-peptides fused to relaxin, a related member of the insulin superfamily, bound equally avidly to decellularized ECM. Thus, the E-peptides control IGF-1 bioavailability by preventing systemic circulation, offering a potentially powerful way to tether IGF-1 and other therapeutic proteins to the site of synthesis and/or administration. PMID:23251442

  9. Kinase inhibitors of the IGF-1R as a potential therapeutic agent for rheumatoid arthritis.

    PubMed

    Tsushima, Hiroshi; Morimoto, Shinji; Fujishiro, Maki; Yoshida, Yuko; Hayakawa, Kunihiro; Hirai, Takuya; Miyashita, Tomoko; Ikeda, Keigo; Yamaji, Ken; Takamori, Kenji; Takasaki, Yoshinari; Sekigawa, Iwao; Tamura, Naoto

    2017-08-01

    We have previously shown that the inhibition of connective tissue growth factor (CTGF) is a potential therapeutic strategy against rheumatoid arthritis (RA). CTGF consists of four distinct modules, including the insulin-like growth factor binding protein (IGFBP). In serum, insulin-like growth factors (IGFs) bind IGFBPs, interact with the IGF-1 receptor (IGF-1 R), and regulate anabolic effects and bone metabolism. We investigated the correlation between IGF-1 and the pathogenesis of RA, and the inhibitory effect on osteoclastogenesis and angiogenesis of the small molecular weight kinase inhibitor of the IGF-1 R, NVP-AEW541, against pathogenesis of RA in vitro. Cell proliferation was evaluated by cell count and immunoblotting. The expression of IGF-1 and IGF-1 R was evaluated by RT-PCR. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase staining, a bone resorption assay, and osteoclast-specific enzyme production. Angiogenesis was evaluated by a tube formation assay using human umbilical vein endothelial cells (HUVECs). The proliferation of MH7A cells was found to be inhibited in the presence of NVP-AEW541, and the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt was downregulated in MH7A cells. IGF-1 and IGF-1 R mRNA expression levels were upregulated during formation of M-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL)-mediated osteoclast formation. Moreover, osteoclastogenesis was suppressed in the presence of NVP-AEW541. The formation of the tubular network was enhanced by IGF-1, and this effect was neutralized by NVP-ARE541. Our findings suggest that NVP-AEW541 may be utilized as a potential therapeutic agent in the treatment of RA.

  10. Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma.

    PubMed

    Maniscalco, Lorella; Iussich, Selina; Morello, Emanuela; Martano, Marina; Gattino, Francesca; Miretti, Silvia; Biolatti, Bartolomeo; Accornero, Paolo; Martignani, Eugenio; Sánchez-Céspedes, Raquel; Buracco, Paolo; De Maria, Raffaella

    2015-08-01

    Insulin-like growth factor 1 receptor (IGF-1R) is a cell membrane receptor widely expressed in tissues and involved in different cancers in humans. IGF-1R expression in human osteosarcoma has been associated with the development of tumour metastasis and with prognosis, and represents an attractive therapeutic target. The goal of this study was to investigate the expression of IGF-1R in canine osteosarcoma tissues and cell lines and assess its role and prognostic value. Samples from 34 dogs were examined by immunohistochemistry for IGF-1R expression. IGF-1R/AKT/MAPK signalling was evaluated by western blot and quantitative polymerase chain reaction in the cell lines. In addition, the in vitro inhibition of IGF-1R with pycropodophillin (PPP) was used to evaluate molecular and biological effects. Immunohistochemical data showed that IGF-1R was expressed in 71% of the analysed osteosarcoma samples and that dogs with higher levels of IGF-IR expression (47% of cases) had decreased survival (P < 0.05) when compared to dogs with lower IGF-IR expression. Molecular studies demonstrated that in canine osteosarcoma IGF-IR is activated by IGF-1 mostly in a paracrine or endocrine (rather than autocrine) manner, leading to activation of AKT/MAPK signalling. PPP caused p-IGF-1R dephosphorylation with partial blocking of p-MAPK and p-AKT, as well as apoptosis. It was concluded that IGF-1R is expressed and plays a role in canine osteosarcoma and that its expression is correlated with a poor prognosis. As in humans, IGF-1R may represent a good therapeutic target and a prognostic factor for canine osteosarcoma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor

    PubMed Central

    Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2013-01-01

    States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957

  12. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  13. Mechanisms Underlying Testicular Damage and Dysfunction in Mice With Partial IGF-1 Deficiency and the Effectiveness of IGF-1 Replacement Therapy.

    PubMed

    Castilla-Cortázar, Inma; Gago, Alberto; Muñoz, Úrsula; Ávila-Gallego, Elena; Guerra-Menéndez, Lucía; Sádaba, María Cruz; García-Magariño, Mariano; Olleros Santos-Ruiz, María; Aguirre, G A; Puche, Juan Enrique

    2015-12-01

    To determine whether insulin-like growth factor (IGF-1) deficiency can cause testicular damage and to examine changes of the testicular morphology and testicular function-related gene expression caused by IGF-1 deficiency. Therefore, this study aims to determine the benefits of low doses of IGF-1 and to explore the mechanisms underlying the IGF-1 replacement therapy. A murine model of IGF-1 deficiency was used to avoid any factor that could contribute to testicular damage. Testicular weight, score of histopathological damage, and gene expressions were studied in 3 experimental groups of mice: controls (wild-type Igf1(+/+)), heterozygous Igf1(+/-) with partial IGF-1 deficiency, and heterozygous Igf1(+/-) treated with IGF-1. Results show that the partial IGF-1 deficiency induced testicular damage and altered expression of genes involved in IGF-1 and growth hormone signaling and regulation, testicular hormonal function, extracellular matrix establishment and its regulation, angiogenesis, fibrogenesis, inflammation, and cytoprotection. In addition, proteins involved in tight junction expression were found to be reduced. However, low doses of IGF-1 restored the testicular damage and most of these parameters. IGF-1 deficiency caused the damage of the blood-testis barrier and testicular structure and induced the abnormal testicular function-related gene expressions. However, low doses of IGF-1 constitute an effective replacement therapy that restores the described testicular damage. Data herein show that (1) cytoprotective activities of IGF-1 seem to be mediated by heat shock proteins and that (2) connective tissue growth factor could play a relevant role together with IGF-1 in the extracellular matrix establishment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. IGF-1 induces SOCS-2 but not SOCS-1 and SOCS-3 transcription in juvenile Nile tilapia (Oreochromis niloticus).

    PubMed

    Liu, Cai-Zhi; Luo, Yuan; Limbu, Samwel Mchele; Chen, Li-Qiao; Du, Zhen-Yu

    2018-05-20

    Insulin-like growth factor-1 (IGF-1) plays a crucial role in regulating growth in vertebrates whereas suppressors of cytokine signaling (SOCS) act as feedback inhibitors of the GH/IGF-1 axis. Although SOCS-2 binds the IGF-1 receptor and inhibits IGF-1-induced STAT3 activation, presently there is no clear evidence as to whether IGF-1 could induce SOCS gene expression. The current study aimed to determine whether IGF-1 could induce the transcription of SOCS in juvenile Nile tilapia ( Oreochromis niloticus ). We show that there is a common positive relationship between the mRNA expression of IGF-I and SOCS-2 under different nutritional statuses and stimulants, but not the mRNA expression of SOCS-1 and SOCS-3 Furthermore, rhIGF-1 treatment and transcriptional activity assay confirmed the hypothesis that IGF-1 could induce SOCS-2 expression, whereas it had no effect or even decreased the expression of SOCS-1 and SOCS-3 Overall, we obtained evidence that the transcription of SOCS-2, but not SOCS-1 or SOCS-3, could be induced by IGF signaling, suggesting that SOCS-2 serves as a feedback suppressor of the IGF-1 axis in juvenile Nile tilapia. © 2018. Published by The Company of Biologists Ltd.

  15. IGF-1 and pAKT signaling promote hippocampal CA1 neuronal survival following injury to dentate granule cells.

    PubMed

    Wine, Robert N; McPherson, Christopher A; Harry, G Jean

    2009-10-01

    Insulin-like growth factor-1 (IGF-1) protects neurons from apoptosis and in vivo offers neuroprotective support to hippocampal CA1 pyramidal neurons following ischemia or seizure. IGF-1 signals through IGF-1 receptors activating phosphytidylinositol 3-kinase (PI3K)/Akt or pMAPK pathways. IGF-1 can be induced with injury and microglia and astrocytes may serve as a source of this neurotrophic factor to promote neuronal survival. An acute systemic injection of trimethyltin (TMT; 2 mg/kg, ip) to mice induces apoptosis of dentate granule neurons within 24 h and a differential response of microglia with ramified microglia present in the CA-1 region. Using this model, we studied the role of IGF-1 in the survival of CA-1 pyramidal neurons under conditions of altered synaptic input due to changes in the dentate gyrus. Within 24 h of injection, IGF-1 mRNA levels were elevated in the hippocampus and IGF-1 protein detected in both astrocytes and microglia. IGF-1 was redistributed within the CA-1 neurons corresponding with an increase in cytoplasmic pAkt, elevated PKBalpha/Akt protein levels, and a decrease in the antagonist, Rho. pMAPK was not detected in CA-1 neurons and ERK2 showed a transient decrease followed by a significant increase, suggesting a lack of recruitment of the pMAPK signaling pathway for neuronal survival. In mice deficient for IGF-1, a similar level of apoptosis was observed in dentate granule neurons as compared to wildtype; however, TMT induced a significant level CA-1 neuronal death, further supporting a role for IGF-1 in the survival of CA-1 neurons.

  16. IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

    2011-01-01

    IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000

  17. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    PubMed

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. © 2013 Wiley Periodicals, Inc.

  18. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors.

    PubMed

    Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander

    2015-12-01

    We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review.

    PubMed

    Frater, Julanne; Lie, David; Bartlett, Perry; McGrath, John J

    2018-03-01

    Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. HER receptor signaling confers resistance to the insulin-like growth factor 1 receptor inhibitor, BMS-536924

    PubMed Central

    Haluska, Paul; Carboni, Joan M.; Eyck, Cynthia Ten; Attar, Ricardo M.; Hou, Xiaonan; Yu, Chunrong; Sagar, Malvika; Wong, Tai W.; Gottardis, Marco M.; Erlichman, Charles

    2008-01-01

    We have previously reported the activity of the IGF-1R/InsR inhibitor, BMS-554417, in breast and ovarian cancer cell lines. Further studies indicated treatment of OV202 ovarian cancer cells with BMS-554417 increased phosphorylation of HER2. In addition, treatment with the panHER inhibitor, BMS-599626, resulted in increased phosphorylation of IGF1-R, suggesting a reciprocal crosstalk mechanism. In a panel of five ovarian cancer cell lines simultaneous treatment with the IGF-1R/InsR inhibitor, BMS-536924 and BMS-599626 resulted in a synergistic antiproliferative effect. Furthermore, combination therapy decreased AKT and ERK activation and increased biochemical and nuclear morphological changes consistent with apoptosis as compared to either agent alone. In response to treatment with BMS-536924, increased expression and activation of various members of the HER family of receptors were seen in all five ovarian cancer cell lines, suggesting inhibition of IGF-1R/InsR results in adaptive upregulation of the HER pathway. Using MCF-7 breast cancer cell variants that overexpressed HER1 or HER2, we then tested the hypothesis that HER receptor expression is sufficient to confer resistance to IGF-1R targeted therapy. In the presence of activating ligands EGF or heregulin, respectively, MCF-7 cells expressing HER1 or HER2 were resistant to BMS-536924 as determined in a proliferation and clonogenic assay. These data suggested that simultaneous treatment with inhibitors of the IGF-1 and HER family of receptors may be an effective strategy for clinical investigations of IGF-1R inhibitors in breast and ovarian cancer and that targeting HER1 and HER2 may overcome clinical resistance to IGF-1R inhibitors. PMID:18765823

  1. Nuclear degradation of Wilms tumor 1-associating protein and survivin splice variant switching underlie IGF-1-mediated survival.

    PubMed

    Small, Theodore W; Pickering, J Geoffrey

    2009-09-11

    WTAP (Wilms tumor 1-associating protein) is a recently identified nuclear protein that is essential for mouse embryo development. The Drosophila homolog of WTAP, Fl(2)d, regulates pre-mRNA splicing; however, the role of WTAP in mammalian cells is uncertain. To elucidate a context for WTAP action, we screened growth and survival factors for their effects on WTAP expression in vascular smooth muscle cells (SMCs), a cell type previously found to express WTAP dynamically. This revealed that insulin-like growth factor-1 (IGF-1) uniquely reduced WTAP abundance. This decline in WTAP proved to be necessary for IGF-1 to confer its antiapoptotic properties, which were blocked by transducing the WTAP gene into SMCs. WTAP down-regulation by IGF-1 was mediated by an IGF-1 receptor-phosphatidylinositol 3-kinase-Akt signaling axis that directed WTAP degradation via a nuclear 26 S proteasome. Moreover, by promoting the degradation of WTAP, IGF-1 shifted the pre-mRNA splicing program for the survival factor, survivin, to reduce expression of survivin-2B, which is proapoptotic, and increase expression of survivin, which is antiapoptotic. Knockdown of survivin-2B rescued the ability of IGF-1 to promote survival when WTAP was overexpressed. These data uncover a novel regulatory cascade for human SMC survival based on adjusting the nuclear abundance of WTAP to define the splice variant balance among survivin isoforms.

  2. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  3. Impact of IGF-1, IGF-1R, and IGFBP-3 promoter methylation on the risk and prognosis of esophageal carcinoma.

    PubMed

    Ye, Peng; Qu, Chang-Fa; Hu, Xue-Lin

    2016-05-01

    The aim of this study is to investigate IGF-1, IGF-1R, and IGFBP-3 methylations in esophageal carcinoma (EC) patients and their relationship with the development and prognosis of EC. This study population consisted of 264 patients (case group) whom EC radical resection was performed and 283 healthy individuals (control group). Methylation-specific PCR (MSP) detected the methylation status of IGF-1, IGF-1R, and IGFBP-3 in the peripheral blood in both groups. The expressions of IGF-1, IGF-1R, and IGFBP-3 in EC and adjacent normal tissues were detected by immunohistochemistry (IHC). The methylation rates of IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 in the case group were higher than those in the control group (all P < 0.05). Additionally, there were statistical significances for the methylation rates of IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 IGF-1 among patients of different clinicopathological features (all P < 0.05). The positive expression rates of IGF-1 and IGF-1R in EC were significantly higher than those in adjacent normal tissues (both P < 0.001), and the rate of IGFBP-3 in EC was significantly lower than that in adjacent normal tissues (P < 0.05). Correlation analysis showed that IGF-1 and IGF1R gene promoter methylation was positively correlated with the positive expressions of IGF-1 (r = 0.139, P = 0.024) and IGF-1R (r = 0.135, P = 0.028), while the IGFBP3 methylation was negatively correlated with the positive expression of IGFBP3 (r = -0.133, P = 0.031). The positive expressions of IGF-1, IGF-1R, and IGFBP-3 were related to different clinicopathological features (all P < 0.05). Cox multivariate analysis results showed that methylation status of IGF-1, IGF-1R, and IGF-1 + IGF1R + IGFBP3 ; expressions of IGF-1 and IGF-1R protein; infiltration depth; and lymph node metastasis (LNM) were independent factors of EC prognosis. Our study demonstrated that methylation of IGF-1

  4. IGF-1 and Survival in ESRD

    PubMed Central

    Jia, Ting; Gama Axelsson, Thiane; Heimbürger, Olof; Bárány, Peter; Stenvinkel, Peter; Qureshi, Abdul Rashid

    2014-01-01

    Summary Background and objectives IGF-1 deficiency links to malnutrition in CKD patients; however, it is not clear to what extent it associates with survival among these patients. Design, setting, participants, & measurements Serum IGF-1 and other biochemical, clinical (subjective global assessment), and densitometric (dual energy x-ray absorptiometry) markers of nutritional status and mineral and bone metabolism were measured in a cohort of 365 Swedish clinically stable CKD stage 5 patients (median age of 53 years) initiating dialysis between 1994 and 2009; in 207 patients, measurements were also taken after 1 year of dialysis. Deaths were registered during a median follow-up of 5 years. Associations of mortality with baseline IGF-1 and changes of IGF-1 after 1 year of dialysis were evaluated by Cox models. Results At baseline, IGF-1 concentrations associated negatively with age, diabetes mellitus, cardiovascular disease, poor nutritional status, IL-6, and osteoprotegerin and positively with body fat mass, bone mineral density, serum phosphate, calcium, and fibroblast growth factor-23. At 1 year, IGF-1 had increased by 33%. In multivariate regression, low age, diabetes mellitus, and high serum phosphate and calcium associated with IGF-1 at baseline, and in a mixed model, these factors, together with high fat body mass, associated with changes of IGF-1 during the first 1 year of dialysis. Adjusting for calendar year of inclusion, age, sex, diabetes mellitus, cardiovascular disease, IL-6, and poor nutritional status, a 1 SD higher level of IGF-1 at baseline associated with lower mortality risk (hazard ratio, 0.57; 95% confidence interval, 0.32 to 0.98). Persistently low or decreasing IGF-1 levels during the first 1 year on dialysis predicted worse survival (adjusted hazard ratio, 2.19; 95% confidence interval, 1.06 to 4.50). Conclusion In incident dialysis patients, low serum IGF-1 associates with body composition and markers of mineral and bone metabolism, and it

  5. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors.

    PubMed

    Ster, Jeanne; Colomer, Claude; Monzo, Cécile; Duvoid-Guillou, Anne; Moos, Françoise; Alonso, Gérard; Hussy, Nicolas

    2005-03-02

    In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability.

  6. Nuclear translocation of IGF1R by intracellular amphiregulin contributes to the resistance of lung tumour cells to EGFR-TKI.

    PubMed

    Guerard, Marie; Robin, Thomas; Perron, Pascal; Hatat, Anne-Sophie; David-Boudet, Laurence; Vanwonterghem, Laetitia; Busser, Benoit; Coll, Jean-Luc; Lantuejoul, Sylvie; Eymin, Beatrice; Hurbin, Amandine; Gazzeri, Sylvie

    2018-04-28

    Many Receptor Tyrosine Kinases translocate from the cell surface to the nucleus in normal and pathological conditions, including cancer. Here we report the nuclear expression of insulin-like growth factor-1 receptor (IGF1R) in primary human lung tumours. Using lung cancer cell lines and lung tumour xenografts, we demonstrate that the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) gefitinib induces the nuclear accumulation of IGF1R in mucinous lung adenocarcinoma by a mechanism involving the intracellular re-localization of the growth factor amphiregulin. Amphiregulin allows the binding of IGF1R to importin-β1 and promotes its nuclear transport. The nuclear accumulation of IGF1R by amphiregulin induces cell cycle arrest through p21 WAF1/CIP1 upregulation, and prevents the induction of apoptosis in response to gefitinib. These results identify amphiregulin as the first nuclear localization signal-containing protein that interacts with IGF1R and allows its nuclear translocation. Furthermore they indicate that nuclear expression of IGF1R contributes to EGFR-TKI resistance in lung cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    PubMed

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  8. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma.

    PubMed

    Kuhn, Deborah J; Berkova, Zuzana; Jones, Richard J; Woessner, Richard; Bjorklund, Chad C; Ma, Wencai; Davis, R Eric; Lin, Pei; Wang, Hua; Madden, Timothy L; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Wang, Michael; Thomas, Sheeba K; Shah, Jatin J; Weber, Donna M; Orlowski, Robert Z

    2012-10-18

    Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)-1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA-mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bortezomib. Importantly, OSI-906 in combination with bortezomib also overcame bortezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic.

  9. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity

    PubMed Central

    Lou, Meizhen; Garrett, Thomas P. J.; McKern, Neil M.; Hoyne, Peter A.; Epa, V. Chandana; Bentley, John D.; Lovrecz, George O.; Cosgrove, Leah J.; Frenkel, Maurice J.; Ward, Colin W.

    2006-01-01

    The insulin receptor (IR) and the type-1 insulin-like growth factor receptor (IGF1R) are homologous multidomain proteins that bind insulin and IGF with differing specificity. Here we report the crystal structure of the first three domains (L1–CR–L2) of human IR at 2.3 Å resolution and compare it with the previously determined structure of the corresponding fragment of IGF1R. The most important differences seen between the two receptors are in the two regions governing ligand specificity. The first is at the corner of the ligand-binding surface of the L1 domain, where the side chain of F39 in IR forms part of the ligand binding surface involving the second (central) β-sheet. This is very different to the location of its counterpart in IGF1R, S35, which is not involved in ligand binding. The second major difference is in the sixth module of the CR domain, where IR contains a larger loop that protrudes further into the ligand-binding pocket. This module, which governs IGF1-binding specificity, shows negligible sequence identity, significantly more α-helix, an additional disulfide bond, and opposite electrostatic potential compared to that of the IGF1R. PMID:16894147

  10. Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot-Specific Manner in Male Mice With Modified GH Action.

    PubMed

    Hjortebjerg, Rikke; Berryman, Darlene E; Comisford, Ross; Frank, Stuart J; List, Edward O; Bjerre, Mette; Frystyk, Jan; Kopchick, John J

    2017-05-01

    Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner. Copyright © 2017 Endocrine Society.

  11. The Beneficial Impact of Antidepressant Drugs on Prenatal Stress-Evoked Malfunction of the Insulin-Like Growth Factor-1 (IGF-1) Protein Family in the Olfactory Bulbs of Adult Rats.

    PubMed

    Trojan, Ewa; Głombik, Katarzyna; Ślusarczyk, Joanna; Budziszewska, Bogusława; Kubera, Marta; Roman, Adam; Lasoń, Władysław; Basta-Kaim, Agnieszka

    2016-02-01

    Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation, and survival of both neurons and glial cells, and it is believed to exert antidepressant-like activity. Thus, disturbances in the IGF-1 system could be responsible for the course of depression. To date, there have been no papers showing the impact of chronic antidepressant treatment on the IGF-1 network in the olfactory bulb (OB) in an animal model of depression. Prenatal stress was used as model of depression. Twenty-four 3-month-old male offspring of control and stressed mothers were subjected to behavioral testing (forced swim test). The mRNA expression of IGF-1 and IGF-1 receptor (IGF-1R) and the protein level of IGF-1 and its phosphorylation, as well as the concentrations of IGF-binding proteins (IGFBP-2, -4, -3, and -6), were measured in OBs before and after chronic imipramine, fluoxetine, or tianeptine administration. Adult rats exposed prenatally to stressful stimuli displayed not only depression-like behavior but also decreased IGF-1 expression, dysregulation in the IGFBP network, and diminished mRNA expression, as well as IGF-1R phosphorylation, in the OB. The administration of antidepressants normalized most of the changes in the IGF-1 system of the OB evoked by prenatal stress. These results suggested a beneficial effect of chronic antidepressant drug treatment in the alleviation of IGF-1 family malfunction in OBs in an animal model of depression.

  12. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction

    NASA Astrophysics Data System (ADS)

    Davis, Michael E.; Hsieh, Patrick C. H.; Takahashi, Tomosaburo; Song, Qing; Zhang, Shuguang; Kamm, Roger D.; Grodzinsky, Alan J.; Anversa, Piero; Lee, Richard T.

    2006-05-01

    Strategies for cardiac repair include injection of cells, but these approaches have been hampered by poor cell engraftment, survival, and differentiation. To address these shortcomings for the purpose of improving cardiac function after injury, we designed self-assembling peptide nanofibers for prolonged delivery of insulin-like growth factor 1 (IGF-1), a cardiomyocyte growth and differentiation factor, to the myocardium, using a "biotin sandwich" approach. Biotinylated IGF-1 was complexed with tetravalent streptavidin and then bound to biotinylated self-assembling peptides. This biotin sandwich strategy allowed binding of IGF-1 but did not prevent self-assembly of the peptides into nanofibers within the myocardium. IGF-1 that was bound to peptide nanofibers activated Akt, decreased activation of caspase-3, and increased expression of cardiac troponin I in cardiomyocytes. After injection into rat myocardium, biotinylated nanofibers provided sustained IGF-1 delivery for 28 days, and targeted delivery of IGF-1 in vivo increased activation of Akt in the myocardium. When combined with transplanted cardiomyocytes, IGF-1 delivery by biotinylated nanofibers decreased caspase-3 cleavage by 28% and increased the myocyte cross-sectional area by 25% compared with cells embedded within nanofibers alone or with untethered IGF-1. Finally, cell therapy with IGF-1 delivery by biotinylated nanofibers improved systolic function after experimental myocardial infarction, demonstrating how engineering the local cellular microenvironment can improve cell therapy. engineering | maturation | scaffold

  13. Crosstalk between the IGF-1R/AKT/mTORC1 pathway and the tumor suppressors p53 and p27 determines cisplatin sensitivity and limits the effectiveness of an IGF-1R pathway inhibitor

    PubMed Central

    Davaadelger, Batzaya; Duan, Lei; Perez, Ricardo E.; Gitelis, Steven; Maki, Carl G.

    2016-01-01

    The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is aberrantly activated in multiple cancers and can promote proliferation and chemotherapy resistance. Multiple IGF-1R inhibitors have been developed as potential therapeutics. However, these inhibitors have failed to increase patient survival when given alone or in combination with chemotherapy agents. The reason(s) for the disappointing clinical effect of these inhibitors is not fully understood. Cisplatin (CP) activated the IGF-1R/AKT/mTORC1 pathway and stabilized p53 in osteosarcoma (OS) cells. p53 knockdown reduced IGF-1R/AKT/mTORC1 activation by CP, and IGF-1R inhibition reduced the accumulation of p53. These data demonstrate positive crosstalk between p53 and the IGF-1R/AKT/mTORC1 pathway in response to CP. Further studies showed the effect of IGF-1R inhibition on CP response is dependent on p53 status. In p53 wild-type cells treated with CP, IGF-1R inhibition increased p53s apoptotic function but reduced p53-dependent senescence, and had no effect on long term survival. In contrast, in p53-null/knockdown cells, IGF-1R inhibition reduced apoptosis in response to CP and increased long term survival. These effects were due to p27 since IGF-1R inhibition stabilized p27 in CP-treated cells, and p27 depletion restored apoptosis and reduced long term survival. Together, the results demonstrate 1) p53 expression determines the effect of IGF-1R inhibition on cancer cell CP response, and 2) crosstalk between the IGF-1R/AKT/mTORC1 pathway and p53 and p27 can reduce cancer cell responsiveness to chemotherapy and may ultimately limit the effectiveness of IGF-1R pathway inhibitors in the clinic. PMID:27050276

  14. Regulation of IGF-1 but not TGF-β1 by NGF in the smooth muscle of the inflamed urinary bladder

    PubMed Central

    Zhang, Qing L.; Qiao, Li-Ya

    2012-01-01

    Intraperitoneal injection of cyclophosphamide (CYP) causes haemorrhagic cystitis with excess growth of muscular layer leading to bladder hypertrophy; this could be attributable to changes in the expression profiles of growth factors in the inflamed urinary bladder. The growth factors characterized in the current study include nerve growth factor (NGF), insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-β1. We found that following CYP injection for 8h and 48h, the mRNA levels of all three factors were increased in the inflamed bladder when compared to control. The level of NGF mRNA was mainly increased in the urothelium layer while the levels of IGF-1 mRNA and TGF-β1 mRNA were increased in the smooth muscle layer. The level of NGF high affinity receptor TrkA mRNA was also increased in both the urothelium and the smooth muscle layers during bladder inflammation. When we blocked NGF action with NGF neutralizing antibody in vivo, we found that the up-regulation of IGF-1 in the inflamed bladder was reversed while the up-regulation of TGF-β1 was not affected by NGF neutralization. The effect of NGF on regulating IGF-1 expression was further confirmed in bladder smooth muscle culture showing that exogenous NGF increased the mRNA level of IGF-1 after 30 min to 1h stimulation. These results suggest that bladder inflammation induced region-specific changes in the expression profiles of NGF, IGF-1 and TGF-β1. The up-regulation of NGF in the urothelium may have a role in affecting bladder smooth muscle cell physiology by regulating IGF-1 expression. PMID:22579999

  15. Circulating levels of IGF-1, IGFBP-3, and IGF-1/IGFBP-3 molar ratio and colorectal adenomas: A meta-analysis.

    PubMed

    Yoon, Yeong Sook; Keum, NaNa; Zhang, Xuehong; Cho, Eunyoung; Giovannucci, Edward L

    2015-12-01

    Insulin-like growth factor-1(IGF-1) promotes cell proliferation and inhibits apoptosis, and is thereby implicated in carcinogenesis. Insulin-like growth factor binding protein-3 (IGFBP-3) may antagonize IGF-1 action, leading to inhibition of the potential tumorigenicity of IGF-1. We conducted this meta-analysis to estimate the association between IGF-1, IGFBP-3 and IGF-1/IGFBP-3 ratio and the risk of colorectal adenomas (CRAs). Further, we investigated whether this association was different between occurrent and recurrent CRA, by adjustment for obesity, and by advanced CRA. Pubmed and Embase were searched up to April, 2015 to identify relevant observational studies and summary odds ratio (OR) and the corresponding 95% confidence interval (95% CI) was estimated using a random-effects model. A total of 12 studies (11 studies including 3038 cases for IGF-1, 12 studies including 3208 cases for IGFBP-3, and 7 studies including 1867 cases for IGF-1/IGFBP-3 ratio) were included in this meta-analysis. The summary ORs of occurrent CRA for the highest versus lowest category of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 ratio were 1.13 (95% CI: 0.95-1.34), 0.99 (0.84-1.16), and 1.05 (0.86-1.29), respectively. Higher IGF-1 and IGF-1/IGFBP-3 ratio were significantly associated with decreased risk of recurrent CRA (OR for IGF-1=0.60 [95% CI: 0.42-0.85]; IGF-1/IGFBP-3 ratio=0.65 [0.44-0.96]). A stratified analysis by advancement of occurrent CRA produced a significant summary OR of IGF-1 for advanced CRA (OR=2.21 [1.08-4.52]) but not for non-advanced CRA (OR=0.89 [0.55-1.45]). We did not find significant publication bias or heterogeneity. Circulating levels of IGF-1, IGFBP-3 and their molar ratio were not associated with the risk of occurrence of CRA, but IGF-1 was associated with the increased risk for occurrence of advanced CRA. Copyright © 2015. Published by Elsevier Ltd.

  16. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p-CREB.

    PubMed

    Chen, Bai Hui; Ahn, Ji Hyeon; Park, Joon Ha; Song, Minah; Kim, Hyunjung; Lee, Tae-Kyeong; Lee, Jae Chul; Kim, Young-Myeong; Hwang, In Koo; Kim, Dae Won; Lee, Choong-Hyun; Yan, Bing Chun; Kang, Il Jun; Won, Moo-Ho

    2018-04-25

    Rufinamide is a novel antiepileptic drug and commonly used in the treatment of Lennox-Gastaut syndrome. In the present study, we investigated effects of rufinamide on cognitive function using passive avoidance test and neurogenesis in the hippocampal dentate gyrus using Ki-67 (a marker for cell proliferation), doublecortin (DCX, a marker for neuroblast) and BrdU/NeuN (markers for newly generated mature neurons) immunohistochemistry in aged gerbils. Aged gerbils (24-month old) were treated with 1 mg/kg and 3 mg/kg rufinamide for 4 weeks. Treatment with 3 mg/kg rufinamide, not 1 mg/kg rufinamide, significantly improved cognitive function and increased neurogenesis, showing that proliferating cells (Ki-67-immunoreactive cells), differentiating neuroblasts (DCX-immunoreactive neuroblasts) and mature neurons (BrdU/NeuN-immunoreactive cells) in the aged dentate gyrus compared with those in the control group. When we examined its mechanisms, rufinamide significantly increased immunoreactivities of insulin-like growth factor-1 (IGF-1), its receptor (IGF-1R), and phosphorylated cAMP response element binding protein (p-CREB). However, rufinamide did not show any increase in immunoreactivities of brain-derived neurotrophic factor and its receptor. Therefore, our results indicate that rufinamide can improve cognitive function and increase neurogenesis in the hippocampus of the aged gerbil via increasing expressions of IGF-1, IGF-1R and p-CREB. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Insulin and IGF1 Receptors Are Essential for XX and XY Gonadal Differentiation and Adrenal Development in Mice

    PubMed Central

    Romero, Yannick; Conne, Béatrice; Truong, Vy; Papaioannou, Marilena D.; Schaad, Olivier; Docquier, Mylène; Herrera, Pedro Luis; Wilhelm, Dagmar; Nef, Serge

    2013-01-01

    Mouse sex determination provides an attractive model to study how regulatory genetic networks and signaling pathways control cell specification and cell fate decisions. This study characterizes in detail the essential role played by the insulin receptor (INSR) and the IGF type I receptor (IGF1R) in adrenogenital development and primary sex determination. Constitutive ablation of insulin/IGF signaling pathway led to reduced proliferation rate of somatic progenitor cells in both XX and XY gonads prior to sex determination together with the downregulation of hundreds of genes associated with the adrenal, testicular, and ovarian genetic programs. These findings indicate that prior to sex determination somatic progenitors in Insr;Igf1r mutant gonads are not lineage primed and thus incapable of upregulating/repressing the male and female genetic programs required for cell fate restriction. In consequence, embryos lacking functional insulin/IGF signaling exhibit (i) complete agenesis of the adrenal cortex, (ii) embryonic XY gonadal sex reversal, with a delay of Sry upregulation and the subsequent failure of the testicular genetic program, and (iii) a delay in ovarian differentiation so that Insr;Igf1r mutant gonads, irrespective of genetic sex, remained in an extended undifferentiated state, before the ovarian differentiation program ultimately is initiated at around E16.5. PMID:23300479

  18. Cardiac-Specific IGF-1 Receptor Transgenic Expression Protects Against Cardiac Fibrosis and Diastolic Dysfunction in a Mouse Model of Diabetic Cardiomyopathy

    PubMed Central

    Huynh, Karina; McMullen, Julie R.; Julius, Tracey L.; Tan, Joon Win; Love, Jane E.; Cemerlang, Nelly; Kiriazis, Helen; Du, Xiao-Jun; Ritchie, Rebecca H.

    2010-01-01

    OBJECTIVE Compelling epidemiological and clinical evidence has identified a specific cardiomyopathy in diabetes, characterized by early diastolic dysfunction and adverse structural remodeling. Activation of the insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) promotes physiological cardiac growth and enhances contractile function. The aim of the present study was to examine whether cardiac-specific overexpression of IGF-1R prevents diabetes-induced myocardial remodeling and dysfunction associated with a murine model of diabetes. RESEARCH DESIGN AND METHODS Type 1 diabetes was induced in 7-week-old male IGF-1R transgenic mice using streptozotocin and followed for 8 weeks. Diastolic and systolic function was assessed using Doppler and M-mode echocardiography, respectively, in addition to cardiac catheterization. Cardiac fibrosis and cardiomyocyte width, heart weight index, gene expression, Akt activity, and IGF-1R protein content were also assessed. RESULTS Nontransgenic (Ntg) diabetic mice had reduced initial (E)-to-second (A) blood flow velocity ratio (E:A ratio) and prolonged deceleration times on Doppler echocardiography compared with nondiabetic counterparts, indicative markers of diastolic dysfunction. Diabetes also increased cardiomyocyte width, collagen deposition, and prohypertrophic and profibrotic gene expression compared with Ntg nondiabetic littermates. Overexpression of the IGF-1R transgene markedly reduced collagen deposition, accompanied by a reduction in the incidence of diastolic dysfunction. Akt phosphorylation was elevated ∼15-fold in IGF-1R nondiabetic mice compared with Ntg, and this was maintained in a setting of diabetes. CONCLUSIONS The current study suggests that cardiac overexpression of IGF-1R prevented diabetes-induced cardiac fibrosis and diastolic dysfunction. Targeting IGF-1R–Akt signaling may represent a therapeutic target for the treatment of diabetic cardiac disease. PMID:20215428

  19. Insulin, insulin-like growth factor-1, insulin receptor, and insulin-like growth factor-1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus.

    PubMed

    Penha, Alexandra Marcha; Schaeffel, Frank; Feldkaemper, Marita

    2011-01-01

    Insulin stimulates eye growth in chicks and this effect is greatly enhanced if the retinal image is degraded by the defocus of either sign. However, it is unclear whether the insulin receptor (IR) is expressed at all in the chicken retina in animals 1-2 weeks post-hatching. We have investigated IR expression and whether IR transcript abundance varies in the fundal layers. To elucidate the possible role of insulin and insulin-like growth factor (IGF)-1 signaling in eye growth regulation, mRNA (mRNA) levels were measured for insulin, IGF-1, IR, and IGF-1 receptor (IGF-1R) during imposed negative or positive defocus. Chicks were treated binocularly with positive or negative spectacle lenses for 4 or 24 h, or they remained untreated (n=6, for each treatment group). Northern blot analyses were performed to screen for transcription variants in the different fundal layers of untreated animals. Real-time PCR was used to quantify IR, IGF-1R, IGF-1, and insulin mRNA levels in the different fundal layers of the chick eye in the three treatment groups. IR mRNA was found in all the studied tissues, although there is evidence of tissue-specific transcript variations. Three major transcripts were detected for IR. The brain, retina, and choroid showed the longest transcript (4.3 kb), which was not present in the liver. Nevertheless, the liver and brain showed a second transcript (2.6 kb) not present in the retina and choroid. A short transcript (1.3 kb) was the predominant form in the liver and choroid, and it seems to be present in the retinal pigment epithelium (RPE) and sclera as well. In the retina, no significant gene expression changes were found when defocus was imposed. Interestingly, in the RPE, both IR and IGF-1R were already downregulated after short periods (4 h) of positive lens wear. In contrast, IR and IGF-1R were upregulated in the choroid and fibrous sclera during treatment with negative, but not positive, lenses. Differences observed in the IR transcript length

  20. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis.

    PubMed

    Huang, Mian-Bo; Xu, Hui; Xie, Shu-Juan; Zhou, Hui; Qu, Liang-Hu

    2011-01-01

    The insulin-like growth factor (IGF) signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs), has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133). A conserved and functional binding site for miR-133 was identified in the 3'untranslated region (3'UTR) of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA) expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases.

  1. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    USDA-ARS?s Scientific Manuscript database

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  2. IGF-1 REGULATES VERTEBRAL BONE AGING THROUGH SEX-SPECIFIC AND TIME-DEPENDENT MECHANISMS

    PubMed Central

    Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L.; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E

    2016-01-01

    Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, while others report that loss of IGF-1 is beneficial as it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igff/f mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan- early in postnatal development (crossing albumin-Cre mice with Igff/f mice), or early adulthood, and late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using microCT and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NFkB-ligand levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2 fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data suggest the age-related loss of vertebral bone density in females can be

  3. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor.

    PubMed

    Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J

    1999-09-15

    We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.

  4. Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model.

    PubMed

    Menu, Eline; Jernberg-Wiklund, Helena; Stromberg, Thomas; De Raeve, Hendrik; Girnita, Leonard; Larsson, Olle; Axelson, Magnus; Asosingh, Kewal; Nilsson, Kenneth; Van Camp, Ben; Vanderkerken, Karin

    2006-01-15

    Insulin-like growth factor 1 (IGF-1) plays a pleiotropic role in multiple myeloma (MM), that is, in survival, proliferation, chemotaxis, and angiogenesis. Strategies targeting the IGF-1 receptor (IGF-1R) may therefore be important to develop efficient anti-MM agents. In this work we investigated the effect of an IGF-1R tyrosine kinase (IGF-1RTK) inhibitor (picropodophyllin or PPP) in the 5T33MM mouse model. In vitro data showed that PPP reduced IGF-1R autophosphorylation and downstream ERK activation, leading to inhibition of IGF-1-stimulated proliferation and vascular endothelial growth factor (VEGF) secretion of MM cells. In an in vivo study, PPP reduced the bone marrow tumor burden and serum paraprotein in 5T33MM mice by 77% and 90%, respectively, compared to vehicle-treated animals. Angiogenesis was assessed by quantifying the microvessel density on CD31-stained paraffin sections and this was reduced by 60% in the PPP-treated group. In a separate survival experiment, Kaplan-Meier analysis demonstrated a significant increase in survival in PPP-treated 5T33MM animals compared to the vehicle controls (28 versus 18 days). These data suggest that the IGF-1RTK inhibitor PPP possesses a marked antitumor activity and strongly points to the possibility of using IGF-1R inhibitors in the treatment of MM.

  5. Anabolic effects of IGF-1 signaling on the skeleton

    PubMed Central

    Tahimic, Candice G. T.; Wang, Yongmei; Bikle, Daniel D.

    2013-01-01

    This review focuses on the anabolic effects of IGF-1 signaling on the skeleton, emphasizing the requirement for IGF-1 signaling in normal bone formation and remodeling. We first discuss the genomic context, splicing variants, and species conservation of the IGF-1 locus. The modulation of IGF-1 action by growth hormone (GH) is then reviewed while also discussing the current model which takes into account the GH-independent actions of IGF-1. Next, the skeletal phenotypes of IGF-1-deficient animals are described in both embryonic and postnatal stages of development, which include severe dwarfism and an undermineralized skeleton. We then highlight two mechanisms by which IGF-1 exerts its anabolic action on the skeleton. Firstly, the role of IGF-1 signaling in the modulation of anabolic effects of parathyroid hormone (PTH) on bone will be discussed, presenting in vitro and in vivo studies that establish this concept and the proposed underlying molecular mechanisms involving Indian hedgehog (Ihh) and the ephrins. Secondly, the crosstalk of IGF-1 signaling with mechanosensing pathways will be discussed, beginning with the observation that animals subjected to skeletal unloading by hindlimb elevation are unable to mitigate cessation of bone growth despite infusion with IGF-1 and the failure of IGF-1 to activate its receptor in bone marrow stromal cell cultures from unloaded bone. Disrupted crosstalk between IGF-1 signaling and the integrin mechanotransduction pathways is discussed as one of the potential mechanisms for this IGF-1 resistance. Next, emerging paradigms on bone-muscle crosstalk are examined, focusing on the potential role of IGF-1 signaling in modulating such interactions. Finally, we present a future outlook on IGF research. PMID:23382729

  6. Elevated levels of Insulin-like Growth Factor-1 (IGF-1) in drug-naïve patients with psychosis.

    PubMed

    Petrikis, Petros; Boumba, Vassiliki A; Tzallas, Alexandros T; Voulgari, Paraskevi V; Archimandriti, Dimitra T; Skapinakis, Petros; Mavreas, Venetsanos

    2016-12-30

    Insulin-like growth factor 1 (IGF-1) plays an important role in neurogenesis and synaptogenesis and may be implicated in schizophrenia, although data so far have been inconclusive. The aim of our study was to compare levels of IGF-1 in drug-naïve patients with a first episode of schizophrenia and related disorders with matched healthy controls. Forty drug naïve first-episode patients with schizophrenia and related disorders and forty healthy subjects matched for age, gender, body mass index (BMI) and smoking status were enrolled in the study. Serum levels of IGF-1 for each sample were measured in duplicate by the enzyme-linked immunosorbent assay (ELISA) method using human IGF-1. The median IGF-1 levels were significantly higher in drug-naive patients with psychosis compared to healthy controls (109.66ng/ml vs. 86.96ng/ml, respectively p=0.039). Multiple regression analysis revealed that differences in serum IGF-1 values were independent of glucose metabolism (fasting glucose, fasting insulin, insulin resistance) and cortisol. These results show that IGF-1 may be implicated in the pathophysiology of psychosis but confirmation is needed from other studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Amadori products promote cellular senescence activating insulin-like growth factor-1 receptor and down-regulating the antioxidant enzyme catalase.

    PubMed

    Del Nogal-Ávila, María; Troyano-Suárez, Nuria; Román-García, Pablo; Cannata-Andía, Jorge B; Rodriguez-Puyol, Manuel; Rodriguez-Puyol, Diego; Kuro-O, Makoto; Ruiz-Torres, María P

    2013-07-01

    Activation of the insulin growth factor receptor-1 signaling pathways has been largely related to the aging process. Amadori products are produced in pathological conditions such as diabetes and aging, and are potentially involved in diabetic nephropathy or age-associated decline of renal function. We hypothesize that Amadori products induce senescence in primary human mesangial cells through the activation of IGF-1 receptor and investigate, in the present work, the intracellular mechanism involved after this activation. We treated cultured human mesangial cells with glycated albumin, one of the most abundant Amadori product, and senescence was assessed by determining the senescence associated β-galactosidase activity and the expression of the cell cycle regulators p53 and p21. We demonstrated that prolonged exposition (more than 24h) to glycated albumin induced senescence and, in parallel, incremented the release of IGF-1 and the activation of the IGF-1 receptor. Inhibition of the IGF-1 activation prevented the GA induced senescence. Activation of IGF-1R, after GA addition, promoted a reduction in the catalase content through the constitutive activation of Ras and erk1/2 proteins which were, in turn, responsible of the observed GA-induced senescence. In conclusion, we propose that the Amadori product, glycated albumin, promotes premature cell senescence in mesangial cells through the activation of the IGF-1 receptor and the subsequent reduction in the antioxidant enzyme catalase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. IGF-1 Regulates Vertebral Bone Aging Through Sex-Specific and Time-Dependent Mechanisms.

    PubMed

    Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E

    2016-02-01

    Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, whereas others report that loss of IGF-1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igf(f/f) mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin-cyclic recombinase [Cre] mice with Igf(f/f) mice); and in early adulthood and in late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using micro-computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NF-κB-ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2-fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data

  9. Unbound (bioavailable) IGF1 enhances somatic growth.

    PubMed

    Elis, Sebastien; Wu, Yingjie; Courtland, Hayden-William; Cannata, Dara; Sun, Hui; Beth-On, Mordechay; Liu, Chengyu; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Basta-Pljakic, Jelena; Cardoso, Luis; Rosen, Clifford J; Frystyk, Jan; Yakar, Shoshana

    2011-09-01

    Understanding insulin-like growth factor-1 (IGF1) biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs) and the acid labile subunit (ALS), which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice) or R3-Igf1 (KIR mice). The KID and KIR mutant proteins have reduced affinity for the IGFBPs, and therefore present as unbound IGF1, or 'free IGF1'. We found that both KID and KIR mice have reduced serum IGF1 levels and a concomitant increase in serum growth hormone levels. Ternary complex formation of IGF1 with the IGFBPs and the ALS was markedly reduced in sera from KID and KIR mice compared with wild type. Both mutant mice showed increased body weight, body and bone lengths, and relative lean mass. We found selective organomegaly of the spleen, kidneys and uterus, enhanced mammary gland complexity, and increased skeletal acquisition. The KID and KIR models show unequivocally that IGF1-complex formation with the IGFBPs is fundamental for establishing normal body and organ size, and that uncontrolled IGF bioactivity could lead to pathological conditions.

  10. Modulation of Insulin-Like Growth Factor-1 Receptor and its Signaling Network for the Treatment of Cancer: Current Status and Future Perspectives

    PubMed Central

    Jin, Meizhong; Buck, Elizabeth; Mulvihill, Mark J.

    2013-01-01

    Based on over three decades of pre-clinical data, insulin-like growth factor-1 receptor (IGF-1R) signaling has gained recognition as a promoter of tumorogenesis, driving cell survival and proliferation in multiple human cancers. As a result, IGF-1R has been pursued as a target for cancer treatment. Early pioneering efforts targeting IGF-1R focused on highly selective monoclonal antibodies, with multiple agents advancing to clinical trials. However, despite some initial promising results, recent clinical disclosures have been less encouraging. Moreover, recent studies have revealed that IGF-1R participates in a dynamic and complex signaling network, interacting with additional targets and pathways thereof through various crosstalk and compensatory signaling mechanisms. Such mechanisms of bypass signaling help to shed some light on the decreased effectiveness of selective IGF-1R targeted therapies (e.g. monoclonal antibodies) and suggest that targeting multiple nodes within this signaling network might be necessary to produce a more effective therapeutic response. Additionally, such findings have led to the development of small molecule IGF-1R inhibitors which also co-inhibit additional targets such as insulin receptor and epidermal growth factor receptor. Such findings have helped to guide the design rationale of numerous drug combinations that are currently being evaluated in clinical trials. PMID:25992224

  11. [Variational structure and function of products from IGF-1 gene].

    PubMed

    Zhang, Bing-Bing; Wang, Yuan-Liang; Fan, Kai

    2008-07-01

    The IGF-1 gene, containing six exons, is characterized by the generation of multiple heterogeneous mRNA transcripts and translations. The IGF-1 isoforms being produced arise from the combination of multiple transcription initiation sites, alternate splicing, and different polyadenylation signals. These different mRNAs are translated to distinct circulating and local isoforms. The circulating mature IGF-1 is encoded by exons 3 and 4, and its biological function in growth and development has been intensively studied. The local isoforms of IGF-1 contains the part encoded by exons 3 and 4, and moreover the alternate extension peptide at carboxy-terminal, encoded by exons 5 and 6, is also included in the isoforms. And the functions of local IGF-1 isoforms and E-peptides have been overlooked until recently. Recently investigation shows that cell discrepant response to the overexpression of different IGF-1 isoforms and the E-peptides, and more interestingly, IGF-1Ea, IGF-1Eb (MGF) and MGF E-peptide have potential to promote skeletal muscle regeneration, to prevent cardiac muscle loss and neural damage. The acting mechanism of IGF-1 isoforms differ from the IGF-1, and the isoforms functioned probably by binding to specific E-peptide receptor, instead of binding to the IGF-1R.

  12. Dwarfism in mice lacking collagen-binding integrins α2β1 and α11β1 is caused by severely diminished IGF-1 levels.

    PubMed

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F; Ehlen, Harald W A; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-02-24

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.

  13. Dwarfism in Mice Lacking Collagen-binding Integrins α2β1 and α11β1 Is Caused by Severely Diminished IGF-1 Levels*

    PubMed Central

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W. A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-01-01

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis. PMID:22210772

  14. Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations

    PubMed Central

    Olmos, David; Martins, Ana Sofia; Jones, Robin L.; Alam, Salma; Scurr, Michelle; Judson, Ian R.

    2011-01-01

    Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R) has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response. PMID:21647361

  15. Hsa-let-7c controls the committed differentiation of IGF-1-treated mesenchymal stem cells derived from dental pulps by targeting IGF-1R via the MAPK pathways.

    PubMed

    Liu, Gen-Xia; Ma, Shu; Li, Yao; Yu, Yan; Zhou, Yi-Xiang; Lu, Ya-Die; Jin, Lin; Wang, Zi-Lu; Yu, Jin-Hua

    2018-04-13

    The putative tumor suppressor microRNA let-7c is extensively associated with the biological properties of cancer cells. However, the potential involvement of let-7c in the differentiation of mesenchymal stem cells has not been fully explored. In this study, we investigated the influence of hsa-let-7c (let-7c) on the proliferation and differentiation of human dental pulp-derived mesenchymal stem cells (DPMSCs) treated with insulin-like growth factor 1 (IGF-1) via flow cytometry, CCK-8 assays, alizarin red staining, real-time RT-PCR, and western blotting. In general, the proliferative capabilities and cell viability of DPMSCs were not significantly affected by the overexpression or deletion of let-7c. However, overexpression of let-7c significantly inhibited the expression of IGF-1 receptor (IGF-1R) and downregulated the osteo/odontogenic differentiation of DPMSCs, as indicated by decreased levels of several osteo/odontogenic markers (osteocalcin, osterix, runt-related transcription factor 2, dentin sialophosphoprotein, dentin sialoprotein, alkaline phosphatase, type 1 collagen, and dentin matrix protein 1) in IGF-1-treated DPMSCs. Inversely, deletion of let-7c resulted in increased IGF-1R levels and enhanced osteo/odontogenic differentiation. Furthermore, the ERK, JNK, and P38 MAPK pathways were significantly inhibited following the overexpression of let-7c in DPMSCs. Deletion of let-7c promoted the activation of the JNK and P38 MAPK pathways. Our cumulative findings indicate that Let-7c can inhibit the osteo/odontogenic differentiation of IGF-1-treated DPMSCs by targeting IGF-1R via the JNK/P38 MAPK signaling pathways.

  16. Unbound (bioavailable) IGF1 enhances somatic growth

    PubMed Central

    Elis, Sebastien; Wu, Yingjie; Courtland, Hayden-William; Cannata, Dara; Sun, Hui; Beth-On, Mordechay; Liu, Chengyu; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Basta-Pljakic, Jelena; Cardoso, Luis; Rosen, Clifford J.; Frystyk, Jan; Yakar, Shoshana

    2011-01-01

    SUMMARY Understanding insulin-like growth factor-1 (IGF1) biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs) and the acid labile subunit (ALS), which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice) or R3-Igf1 (KIR mice). The KID and KIR mutant proteins have reduced affinity for the IGFBPs, and therefore present as unbound IGF1, or ‘free IGF1’. We found that both KID and KIR mice have reduced serum IGF1 levels and a concomitant increase in serum growth hormone levels. Ternary complex formation of IGF1 with the IGFBPs and the ALS was markedly reduced in sera from KID and KIR mice compared with wild type. Both mutant mice showed increased body weight, body and bone lengths, and relative lean mass. We found selective organomegaly of the spleen, kidneys and uterus, enhanced mammary gland complexity, and increased skeletal acquisition. The KID and KIR models show unequivocally that IGF1-complex formation with the IGFBPs is fundamental for establishing normal body and organ size, and that uncontrolled IGF bioactivity could lead to pathological conditions. PMID:21628395

  17. The trajectory of IGF-1 across age and duration of type 1 diabetes

    PubMed Central

    Palta, Mari; LeCaire, Tamara; Sadek-Badawi, Mona; Herrera, Victor; Danielson, Kirstie K.

    2014-01-01

    Background Individuals with type 1 diabetes may have low IGF-1, related to insulinopenia and insulin resistance. There are few longitudinal studies of IGF-1 levels to establish its pattern in type 1 diabetes with duration and age, and to examine whether IGF-1 tracks within individuals over time. We examine age and duration trends, and the relationship of IGF-1 to gender, glycemic control, insulin level and other factors. Methods Participants in the Wisconsin Diabetes Registry Study, an incident cohort study of type 1 diabetes diagnosed May 1987-April 1992, were followed for up to 18 years with IGF-1 samples up to age 45 for women and age 37 for men.. Results IGF-1 is lower with type 1 diabetes than in normative samples. Although, the pattern across age resembles that in normative samples with a peak in adolescence and slow decline after age 20, the adolescent peak is delayed for women with type 1 diabetes. There was low to moderate tracking of IGF-1 within individual. Higher insulin dose was associated with higher IGF-1 as was puberty, and female gender. Adjusted for these factors, IGF-1 declined rapidly across early diabetes duration. Lower HbA1c was most strongly related to higher IGF-1 at Tanner stages 1 and 2. Conclusions IGF-1 is low in type 1 diabetes, with a delayed adolescent peak in women and is especially influenced by glycemic control in early and pre- adolescence. High variability within individual is likely a challenge in investigating associations between IGF-1 and long term outcomes, and may explain contradictory findings. PMID:24845759

  18. The trajectory of IGF-1 across age and duration of type 1 diabetes.

    PubMed

    Palta, Mari; LeCaire, Tamara J; Sadek-Badawi, Mona; Herrera, Victor M; Danielson, Kirstie K

    2014-11-01

    Individuals with type 1 diabetes may have low IGF-1, related to insulinopenia and insulin resistance. There are few longitudinal studies of IGF-1 levels to establish its pattern in type 1 diabetes with duration and age, and to examine whether IGF-1 tracks within individuals over time. We examine age and duration trends, and the relationship of IGF-1 to gender, glycaemic control, insulin level and other factors. Participants in the Wisconsin Diabetes Registry Study, an incident cohort study of type 1 diabetes diagnosed May 1987-April 1992, were followed for up to 18 years with IGF-1 samples up to age 45 for women and age 37 for men. IGF-1 is lower with type 1 diabetes than in normative samples. Although, the pattern across age resembles that in normative samples with a peak in adolescence and slow decline after age 20, the adolescent peak is delayed for women with type 1 diabetes. There was low to moderate tracking of IGF-1 within an individual. Higher insulin dose was associated with higher IGF-1 as was puberty, and female gender. Adjusted for these factors, IGF-1 declined rapidly across early diabetes duration. Lower HbA1c was most strongly related to higher IGF-1 at Tanner stages 1 and 2. IGF-1 is low in type 1 diabetes, with a delayed adolescent peak in women and is especially influenced by glycaemic control in early and pre-adolescence. High variability within an individual is likely a challenge in investigating associations between IGF-1 and long-term outcomes, and may explain contradictory findings. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Clinical significance of serum circulating insulin-like growth factor-1 (IGF-1) mRNA in hepatocellular carcinoma.

    PubMed

    Karabulut, S; Duranyıldız, D; Tas, F; Gezer, U; Akyüz, F; Serilmez, M; Ozgür, E; Yasasever, C T; Vatansever, S; Aykan, N F

    2014-03-01

    The principal aim of our study was to investigate the usefulness of serum protein and circulating mRNA of insulin-like growth factor-1 (IGF-1) as a diagnostic and prognostic tool in hepatocellular carcinoma (HCC). Fifty-four HCC patients and age- and sex-matched 20 healthy controls were enrolled into this study. Pretreatment serum IGF-1 and IGF-1 mRNA were determined by the solid-phase sandwich ELISA and quantitative RT-PCR method, respectively. The median age at diagnosis was 60 years, range 36-77 years; where majority of group were male (n = 48, 88.8%). All patients had cirrhotic history. Forty-six percent (n = 25) of patients had Child-Pugh score A, 30% (n = 16) had score B or C. All of the patients were treated with local therapies and none of them received sorafenib. The baseline serum IGF-1 mRNA levels were significantly higher in HCC patients than in the control group (p = 0.04), whereas no significant difference was observed for IGF-1 protein levels between the two group (p = 0.18). Patients with history of HBV infection, who were not treated, and who received multiple palliative treatment for HCC had higher serum IGF-1 mRNA levels (p = 0.03, 0.03, and 0.05, respectively). Poor performance status (p < 0.001), viral etiology of cirrhosis (p = 0.03), larger tumor size (p = 0.01), lower serum hemoglobin levels (p = 0.03), and not be treated for HCC (p = 0.001) related to worse survival. However, neither serum IGF-1 nor serum IGF-1 mRNA had significantly adverse effect on survival (p = 0.53 and 0.42, respectively).

  20. Insulin-Like Growth Factor-1 Receptor Is Regulated by microRNA-133 during Skeletal Myogenesis

    PubMed Central

    Huang, Mian-Bo; Xu, Hui; Xie, Shu-Juan; Zhou, Hui; Qu, Liang-Hu

    2011-01-01

    Background The insulin-like growth factor (IGF) signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs), has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. Methodology/Principal Findings In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133). A conserved and functional binding site for miR-133 was identified in the 3′untranslated region (3′UTR) of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA) expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. Conclusion/Significance Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases. PMID:22195016

  1. Selected SNARE proteins are essential for the polarized membrane insertion of igf-1 receptor and the regulation of initial axonal outgrowth in neurons.

    PubMed

    Grassi, Diego; Plonka, Florentyna Bustos; Oksdath, Mariana; Guil, Alvaro Nieto; Sosa, Lucas J; Quiroga, Santiago

    2015-01-01

    The establishment of polarity necessitates initial axonal outgrowth and, therefore, the addition of new membrane to the axon's plasmalemma. Axolemmal expansion occurs by exocytosis of plasmalemmal precursor vesicles (PPVs) primarily at the neuronal growth cone. Little is known about the SNAREs family proteins involved in the regulation of PPV fusion with the neuronal plasmalemma at early stages of differentiation. We show here that five SNARE proteins (VAMP2, VAMP4, VAMP7, Syntaxin6 and SNAP23) were expressed by hippocampal pyramidal neurons before polarization. Expression silencing of three of these proteins (VAMP4, Syntaxin6 and SNAP23) repressed axonal outgrowth and the establishment of neuronal polarity, by inhibiting IGF-1 receptor exocytotic polarized insertion, necessary for neuronal polarization. In addition, stimulation with IGF-1 triggered the association of VAMP4, Syntaxin6 and SNAP23 to vesicular structures carrying the IGF-1 receptor and overexpression of a negative dominant form of Syntaxin6 significantly inhibited exocytosis of IGF-1 receptor containing vesicles at the neuronal growth cone. Taken together, our results indicated that VAMP4, Syntaxin6 and SNAP23 functions are essential for regulation of PPV exocytosis and the polarized insertion of IGF-1 receptor and, therefore, required for initial axonal elongation and the establishment of neuronal polarity.

  2. Response to Growth Hormone Treatment in a Patient with Insulin-Like Growth Factor 1 Receptor Deletion

    PubMed Central

    Mahmoud, Ranim; Naidu, Ajanta; Risheg, Hiba; Kimonis, Virginia

    2017-01-01

    We report a six-year-old boy who presented with short stature, microcephaly, dysmorphic features, and developmental delay and who was identified with a terminal deletion of 15q26.2q26.3 containing the insulin-like growth factor receptor (IGF1R) gene in addition to a terminal duplication of the 4q35.1q35.2 region. We compare our case with other reports of deletions and mutations affecting the IGF1R gene associated with pre-and postnatal growth restriction. We report the dramatic response to growth hormone therapy in this patient which highlights the importance of identifying patients with IGF1R deletion and treating them early. PMID:28720553

  3. Response to Growth Hormone Treatment in a Patient with Insulin-Like Growth Factor 1 Receptor Deletion.

    PubMed

    Mahmoud, Ranim; Naidu, Ajanta; Risheg, Hiba; Kimonis, Virginia

    2017-12-15

    We report a six-year-old boy who presented with short stature, microcephaly, dysmorphic features, and developmental delay and who was identified with a terminal deletion of 15q26.2q26.3 containing the insulin-like growth factor receptor (IGF1R) gene in addition to a terminal duplication of the 4q35.1q35.2 region. We compare our case with other reports of deletions and mutations affecting the IGF1R gene associated with pre-and postnatal growth restriction. We report the dramatic response to growth hormone therapy in this patient which highlights the importance of identifying patients with IGF1R deletion and treating them early.

  4. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture.

    PubMed

    Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U

    2017-05-01

    Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.

  5. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.

    PubMed

    Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P

    2018-01-01

    The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.

  6. IGF-1R mRNA expression is increased in obese children.

    PubMed

    Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo

    2018-04-01

    Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. TSH Compensates Thyroid-Specific IGF-I Receptor Knockout and Causes Papillary Thyroid Hyperplasia

    PubMed Central

    Müller, Kathrin; Führer, Dagmar; Mittag, Jens; Klöting, Nora; Blüher, Matthias; Weiss, Roy E.; Many, Marie-Christine; Schmid, Kurt Werner

    2011-01-01

    Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r+/−, and Igf1r−/− genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r+/− and Igf1r−/− mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis. PMID:21980075

  8. Morphology of ovaries in laron dwarf mice, with low circulating plasma levels of insulin-like growth factor-1 (IGF-1), and in bovine GH-transgenic mice, with high circulating plasma levels of IGF-1

    PubMed Central

    2012-01-01

    Background It is well known that somatotrophic/insulin signaling affects lifespan in experimental animals, and one of the signs of aging is progressive gonadal dysfunction. Methods To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on ovaries, we analyzed ovaries isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice, with low circulating plasma levels of IGF-1, and 6-month-old bovine growth hormone transgenic (bGHTg) mice, with high circulating plasma levels of IGF-1. The ages of the Laron dwarf mutants employed in our studies were selected based on their overall survival (up to ~ 4 years for Laron dwarf mice and ~ 1 year for bGHTg mice). Results Morphological analysis of the ovaries of mice that reached ~50% of their maximal life span revealed a lower biological age for the ovaries isolated from 2-year-old Laron dwarf mice than their normal-lifespan wild type littermates. By contrast, the ovarian morphology of increased in size 6 month old bGHTg mice was generally normal. Conclusion Ovaries isolated from 2-year-old Laron dwarf mice exhibit a lower biological age compared with ovaries from normal WT littermates at the same age. At the same time, no morphological features of accelerated aging were found in 0.5-year-old bGHTg mice compared with ovaries from normal the same age-matched WT littermates. PMID:22747742

  9. IGF-1, oxidative stress and atheroprotection.

    PubMed

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2010-04-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a crucial role not only in initial lesion formation but also in lesion progression and destabilization. Although most growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that insulin-like growth factor (IGF)-1 exerts both pleiotropic anti-oxidant effects and anti-inflammatory effects, which together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in models of vascular injury and atherosclerosis, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yang; Han, Chen-chen; Li, Yifan

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth responsemore » protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. - Highlights: • IGFBP-3 plays an inhibition role in IGF1-induced HCC cell growth. • IGFBP-3 inhibits bFGF and PDGF production in the IGF-dependent manner. • EGR1 is involved in IGFBP-3 regulation of bFGF and PDGF in HCC cells. • IGFBP-3 suppresses EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.« less

  11. Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways.

    PubMed

    Jamwal, Gayatri; Singh, Gurjinder; Dar, Mohd Saleem; Singh, Paramjeet; Bano, Nasima; Syed, Sajad Hussain; Sandhu, Padmani; Akhter, Yusuf; Monga, Satdarshan P; Dar, Mohd Jamal

    2018-06-01

    IGF1R is a ubiquitous receptor tyrosine kinase that plays critical roles in cell proliferation, growth and survival. Clinical studies have demonstrated upregulation of IGF1R mediated signaling in a number of malignancies including colon, breast, and lung cancers. Overexpression of the IGF1R in these malignancies is associated with a poor prognosis and overall survival. IGF1R specific kinase inhibitors have failed in multiple clinical trials partly because of the complex nature of IGF1R signaling. Thus identifying new binding partners and allosteric sites on IGF1R are emerging areas of research. More recently, IGF1R has been shown to translocate into the nucleus and perform many functions. In this study, we generated a library of IGF1R deletion and point mutants to examine IGF1R subcellular localization and activation of downstream signaling pathways. We show that the nuclear localization of IGF1R is primarily defined by its cytoplasmic domain. We identified a cross-talk between IGF1R and Wnt/β-catenin signaling pathways and showed, for the first time, that IGF1R is associated with upregulation of TCF-mediated β-catenin transcriptional activity. Using loss-of-function mutants, deletion analysis and IGF1R specific inhibitor(s), we show that cytoplasmic and nuclear activities are two independent functions of IGF1R. Furthermore, we identified a unique loss-of-function mutation in IGF1R. This unique loss-of-function mutant retains only nuclear functions and sits in a pocket, outside ATP and substrate binding region, that is suited for designing allosteric inhibitors of IGF1R. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Insulin-like growth factor-1 prevents dorsal root ganglion neuronal tyrosine kinase receptor expression alterations induced by dideoxycytidine in vitro.

    PubMed

    Liu, Huaxiang; Lu, Jing; He, Yong; Yuan, Bin; Li, Yizhao; Li, Xingfu

    2014-03-01

    Dideoxycytidine (zalcitabine, ddC) produces neurotoxic effects. It is particularly important to understand the toxic effects of ddC on different subpopulations of dorsal root ganglion (DRG) neurons which express distinct tyrosine kinase receptor (Trk) and to find therapeutic factors for prevention and therapy for ddC-induced peripheral sensory neuropathy. Insulin-like growth factor-1 (IGF-1) has been shown to have neurotrophic effects on DRG sensory neurons. However, little is known about the effects of ddC on distinct Trk (TrkA, TrkB, and TrkC) expression in DRG neurons and the neuroprotective effects of IGF-1 on ddC-induced neurotoxicity. Here, we have tested the extent to which the expression of TrkA, TrkB, and TrkC receptors in primary cultured DRG neurons is affected by ddC in the presence or absence of IGF-1. In this experiment, we found that exposure of 5, 25, and 50 μmol/L ddC caused a dose-dependent decrease of the mRNA, protein, and the proportion of TrkA-, TrkB-, and TrkC-expressing neurons. IGF-1 (20 nmol/L) could partially reverse the decrease of TrkA and TrkB, but not TrkC, expression with ddC exposure. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/L) blocked the effects of IGF-1. These results suggested that the subpopulations of DRG neurons which express distinct TrkA, TrkB, and TrkC receptors were affected by ddC exposure. IGF-1 might relieve the ddC-induced toxicity of TrkA- and TrkB-, but not TrkC-expressing DRG neurons. These data offer new clues for a better understanding of the association of ddC with distinct Trk receptor expression and provide new evidence of the potential therapeutic role of IGF-1 on ddC-induced neurotoxicity.

  13. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy.

    PubMed

    Dong, Lijie; Nian, Hong; Shao, Yan; Zhang, Yan; Li, Qiutang; Yi, Yue; Tian, Fang; Li, Wenbo; Zhang, Hong; Zhang, Xiaomin; Wang, Fei; Li, Xiaorong

    2015-05-01

    Pathological retinal neovascularization, including retinopathy of prematurity and age-related macular degeneration, is the most common cause of blindness worldwide. Insulin-like growth factor-1 (IGF-1) has a direct mitogenic effect on endothelial cells, which is the basis of angiogenesis. Vascular endothelial growth factor (VEGF) activation in response to IGF-1 is well documented; however, the molecular mechanisms responsible for the termination of IGF-1 signaling are still not completely elucidated. Here, we show that the polypyrimidine tract-binding protein-associated splicing factor (PSF) is a potential negative regulator of VEGF expression induced by IGF stimulation. Functional analysis demonstrated that ectopic expression of PSF inhibits IGF-1-stimulated transcriptional activation and mRNA expression of the VEGF gene, whereas knockdown of PSF increased IGF-1-stimulated responses. PSF recruited Hakai to the VEGF transcription complex, resulting in inhibition of IGF-1-mediated transcription. Transfection with Hakai siRNA reversed the PSF-mediated transcriptional repression of VEGF gene transcription. In summary, these results show that PSF can repress the transcriptional activation of VEGF stimulated by IGF-1 via recruitment of the Hakai complex and delineate a novel regulatory mechanism of IGF-1/VEGF signaling that may have implications in the pathogenesis of neovascularization in ocular diseases.

  14. GSK3 Protein Positively Regulates Type I Insulin-like Growth Factor Receptor through Forkhead Transcription Factors FOXO1/3/4

    PubMed Central

    Huo, Xiaodong; Liu, Shu; Shao, Ting; Hua, Hui; Kong, Qingbin; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation. PMID:25053419

  15. Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    NASA Astrophysics Data System (ADS)

    Kubota, Takuo; Elalieh, Hashem Z.; Saless, Neema; Fong, Chak; Wang, Yongmei; Babey, Muriel; Cheng, Zhiqiang; Bikle, Daniel D.

    2013-11-01

    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor-1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/-) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

  16. IGF-1 Restores Visual Cortex Plasticity in Adult Life by Reducing Local GABA Levels

    PubMed Central

    Maya-Vetencourt, José Fernando; Baroncelli, Laura; Viegi, Alessandro; Tiraboschi, Ettore; Castren, Eero; Cattaneo, Antonino; Maffei, Lamberto

    2012-01-01

    The central nervous system architecture is markedly modified by sensory experience during early life, but a decline of plasticity occurs with age. Recent studies have challenged this dogma providing evidence that both pharmacological treatments and paradigms based on the manipulation of environmental stimulation levels can be successfully employed as strategies for enhancing plasticity in the adult nervous system. Insulin-like growth factor 1 (IGF-1) is a peptide implicated in prenatal and postnatal phases of brain development such as neurogenesis, neuronal differentiation, synaptogenesis, and experience-dependent plasticity. Here, using the visual system as a paradigmatic model, we report that IGF-1 reactivates neural plasticity in the adult brain. Exogenous administration of IGF-1 in the adult visual cortex, indeed, restores the susceptibility of cortical neurons to monocular deprivation and promotes the recovery of normal visual functions in adult amblyopic animals. These effects were accompanied by a marked reduction of intracortical GABA levels. Moreover, we show that a transitory increase of IGF-1 expression is associated to the plasticity reinstatement induced by environmental enrichment (EE) and that blocking IGF-1 action by means of the IGF-1 receptor antagonist JB1 prevents EE effects on plasticity processes. PMID:22720172

  17. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    PubMed

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-11-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors like vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1) and its receptor, IGF-1R, have been implicated in CNV. We have previously shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in-vivo model. In this study we investigated the effect of PPP on VEGF expression both in vitro and in vivo and whether this effect has anti-angiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in choroids and retinal pigment epithelial cells (APRE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed 22-32% (p = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroids were significantly reduced. In cultured APRE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. We could confirm that PPP reduced the level of transcriptional activity of VEGF promoter. PPP reduces IGF-1 dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the therapy of conditions associated with CNV including neovascular AMD.

  18. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    PubMed

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-06-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-1 and its receptor, IGF-1R, have been implicated in CNV. A prior study has shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in vivo model. In this study we investigated the effect of PPP on VEGF expression, both in vitro and in vivo, and whether this effect has antiangiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in the choroid and retinal pigment epithelial cells (ARPE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed a 22% to 32% (P = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroid were significantly reduced. In cultured ARPE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. PPP reduced the level of transcriptional activity of the VEGF promoter. PPP reduces IGF-1-dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the treatment of conditions associated with CNV, including neovascular AMD.

  19. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    PubMed

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells.

    PubMed

    Zovko, Ana; Novak, Metka; Hååg, Petra; Kovalerchick, Dimitry; Holmlund, Teresa; Färnegårdh, Katarina; Ilan, Micha; Carmeli, Shmuel; Lewensohn, Rolf; Viktorsson, Kristina

    2016-08-02

    In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment.

  1. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells

    PubMed Central

    Zovko, Ana; Novak, Metka; Hååg, Petra; Kovalerchick, Dimitry; Holmlund, Teresa; Färnegårdh, Katarina; Ilan, Micha; Carmeli, Shmuel; Lewensohn, Rolf; Viktorsson, Kristina

    2016-01-01

    In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment. PMID:27384680

  2. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    PubMed

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  3. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Guodong; Peng, Tao; Zhou, Xuhong

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messengermore » RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of

  4. IGF-I stimulates ERβ and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis.

    PubMed

    Zhou, Yan; Zeng, Cheng; Li, Xin; Wu, Pei-Li; Yin, Ling; Yu, Xiao-Lan; Zhou, Ying-Fang; Xue, Qing

    2016-08-01

    Estrogen receptor beta (ERβ, encoded by ESR2 gene) and cytochrome P450 aromatase (encoded by CYP19A1 gene) play critical roles in endometriosis, and the levels of insulin-like growth factor-I (IGF-I) in the peritoneal fluid are significantly higher in patients with endometriosis compared with those in normal women. However, the effects and mechanisms of IGF-I on ERβ and aromatase expression remain to be fully elucidated. In this study, human endometriotic stromal cells (ESCs) and endometrial cells (EMs) derived from ovarian endometriomas and eutopic endometrial tissues. ESCs were cultured with IGF-I, signal pathway inhibitors, and siRNAs. ERβ and aromatase expression were measured by real-time PCR and Western, respectively. The binding of c-Jun and CREB to the ESR2 and CYP19A1 promoters was assessed by chromatin immunoprecipitation assay. Animal experiments were performed in a xenograft mouse model. Levels of IGF-I mRNA in ESCs were markedly higher than those in EMs. IGF-I upregulated ERβ and aromatase expression in ESCs after stimulation of the IGF1R/PI3K/AKT pathway. Following IGF-I treatment, a marked increase in c-Jun and CREB phosphorylation occurred, enhancing binding to the ESR2 and CYP19A1 promoters. An IGF1R inhibitor in vivo reduced IGF-I-induced endometriosis graft growth and ERβ and aromatase expression. In conclusion, this is the first report to describe a mechanistic analysis of ERβ and aromatase expression regulated by IGF-I in ESCs. Moreover, an IGF1R inhibitor impeded ectopic lesion growth in nude mice. These findings suggest that an inhibitor of IGF1R might have therapeutic potential as an antiendometriotic drug. Level of IGF-I mRNA in ESCs is markedly higher than that in EMs. IGF-I up-regulates ERβ and aromatase expression via IGF1R/PI3K/AKT pathway. C-Jun and CREB are recruited to ESR2 or CYP19A1 promoter by IGF-I stimulation. IGF-1R inhibitors in vivo impede the growth of ectopic lesions in nude mice.

  5. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides).

    PubMed

    Hack, Nicole L; Strobel, Jackson S; Journey, Meredith L; Beckman, Brian R; Lema, Sean C

    2018-06-05

    Growth performance in vertebrates is regulated by environmental factors including the quality and quantity of food, which influence growth via endocrine pathways such as the growth hormone (GH)/insulin-like growth factor somatotropic axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 (Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 levels may serve as an indicator of growth variation for fisheries and aquaculture applications. This study tested whether plasma Igf1 concentrations might serve as an indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among dozens of rockfishes important to commercial and recreational fisheries in the Northern Pacific Ocean. Juvenile olive rockfish were reared under food ration treatments of 1% or 4% wet mass per d for 98 d to experimentally generate variation in growth. Juvenile rockfish in the 4% ration grew 60% more quickly in mass and 22% faster in length than fish in the 1% ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, and individual Igf1 levels correlated positively with growth rate, as well as with individual variation in hepatic igf1 mRNA levels. Transcripts encoding the Igf binding proteins (Igfbps) igfbp1a and igfbp1b were also at higher abundance in the liver of rockfish in the 1% ration treatment, while mRNAs for igfbp5a and igfbp5b were elevated in the skeletal muscle of 4% ration fish. These findings support the use of plasma Igf1 as a physiological index of growth rate variation in rockfish. Copyright © 2018. Published by Elsevier Inc.

  6. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency.

    PubMed

    Morales-Garza, Luis A; Puche, Juan E; Aguirre, Gabriel A; Muñoz, Úrsula; García-Magariño, Mariano; De la Garza, Rocío G; Castilla-Cortazar, Inma

    2017-05-04

    Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl 4 )-induced liver damage compared to healthy controls (Wt Igf +/+ ). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1 +/- ). Three groups of 25 ± 5-week-old healthy male mice (Wt Igf +/+ ) were included in the protocol: untreated controls (Wt). Controls that received CCl 4 (Wt + CCl 4 ) and Wt + CCl 4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl 4  + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1 +/- ) groups were studied: untreated Hz, Hz + CCl 4 , and Hz + CCl 4  + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl 4  + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl 4 . Moreover, there was a correlation between MDA levels and the histological damage score (Pearson's r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series

  7. Insulinlike growth factor receptor type 1 and type 2 are downregulated in the nitrofen-induced hypoplastic lung.

    PubMed

    Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2010-06-01

    In congenital diaphragmatic hernia (CDH), high mortality rates are attributed to severe pulmonary hypoplasia. The insulinlike growth factor receptor type 1 (IGF-1R) and type 2 (IGF-2R) play a critical role in the alveologenesis during lung development. The IGF-1R null mutation mice die after birth because of respiratory failure. The IGF-2R knockout mice showed retarded lungs with poorly formed alveoli. We hypothesized that IGF-1R and IGF-2R gene expression levels are downregulated in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or 100 mg of nitrofen on day 9.5 (D9.5) of gestation. Fetuses were harvested on D18 and D21 and divided into control and nitrofen groups. Relative messenger RNA (mRNA) levels of IGF-1R and IGF-2R were determined using real time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to determine protein expression. Relative levels of IGF-1R mRNA were significantly decreased in the nitrofen group (2.91 +/- 0.81) on D21 compared to controls (5.29 +/- 2.59) (P < .05). Expression levels of IGF-2R mRNA on D21 were also significantly decreased in nitrofen group (1.76 +/- 0.49) compared to controls (3.59 +/- 2.45) (P < .05). Immunohistochemistry performed on D21 showed decreased IGF-1R and also IGF-2R expression in nitrofen group. Downregulation of IGF-1R and IGF-2R gene expression may interfere with normal alveologenesis causing pulmonary hypoplasia in the nitrofen-induced CDH model. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    PubMed

    Müller, Eva; Dunstheimer, Desiree; Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  9. Clinical and Functional Characterization of a Patient Carrying a Compound Heterozygous Pericentrin Mutation and a Heterozygous IGF1 Receptor Mutation

    PubMed Central

    Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H.

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration. PMID:22693602

  10. Insulin growth factor (IGF) 1, IGF-binding proteins and ovarian cancer risk: A systematic review and meta-analysis.

    PubMed

    Gianuzzi, Ximena; Palma-Ardiles, Gabriela; Hernandez-Fernandez, Wendy; Pasupuleti, Vinay; Hernandez, Adrian V; Perez-Lopez, Faustino R

    2016-12-01

    Insulin resistance (IR) has been implicated in carcinogenesis, but there is no consensus regarding its involvement in ovarian cancer. We performed a systematic review and meta-analysis to evaluate the association between IR and ovarian cancer. Searches were conducted in five databases for studies evaluating IR markers (levels of serum insulin, C peptide, insulin growth factor [IGF] 1 and IGF-binding proteins [IGFBPs], homeostatic model assessment insulin resistance, and quantitative insulin-sensitivity check index) and ovarian cancer risk. Study selection, data extraction and an assessment of risk of bias were performed independently by three researchers. The associations between IR markers and ovarian cancer were quantified as mean differences (MDs) or standardized MDs (SMDs) and their 95% CIs using random-effects models. Fourteen case-control studies satisfied our inclusion criteria (n=8130). There was little information on IR markers with the exception of the IGF system. Ovarian cancer was associated with lower IGF-1 levels (SMD -0.43ng/mL, 95% CI -0.67 to -0.18; p=0.0006), and lower IGFBP-3 levels (SMD -0.11ng/mL, 95% CI -0.21 to -0.00; p=0.04). However, ovarian cancer was associated with higher levels of IGFBP-2 and IGFBP-1 (MD 527.3ng/mL, 95%CI 473.6, 581.0; p<0.00001, and MD 3.47ng/mL, 95%CI 1.42, 5.52; p=0.0009 respectively). Subgroup analyses by menopausal status and age (≤55 vs >55y) for IGF-1 and IGFBP-3 showed the subgroups were similar, although heterogeneity remained high. The evidence suggests that levels of IGF-1 and IGFBP-3 are lower in patients with ovarian cancer. In contrast, higher levels of IGBP-2 and IGBP-1 are found in patients with ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals.

    PubMed

    Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta

    2017-02-01

    Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Predicting refeeding hypophosphataemia: insulin growth factor 1 (IGF-1) as a diagnostic biochemical marker for clinical practice.

    PubMed

    Goyale, Atul; Ashley, Sarah L; Taylor, David R; Elnenaei, Manal O; Alaghband-Zadeh, Jamshid; Sherwood, Roy A; le Roux, Carel W; Vincent, Royce P

    2015-01-01

    Refeeding syndrome (RS) is a potentially fatal condition that can occur following the re-introduction of nutrition after a period of starvation. Hypophosphataemia following the reintroduction of nutrition is often the only reliable biochemical marker of RS. Refeeding index (RI) generated from baseline insulin-like growth factor-1 (IGF-1) and leptin has been proposed as a useful biochemical marker for the identification of patients at risk of developing refeeding hypophosphataemia (RH). A prospective study included 52 patients referred for parenteral nutrition (PN). The sensitivity and specificity of IGF-1 measured using a sensitive assay was compared to the RI in predicting the development of RH (a ≥ 30% drop in PO4 during the first 36-h of PN administration). Leptin and IGF-1 were analysed on baseline samples using a quantitative enzyme-linked immunoassay. Daily blood samples were collected from all patients for routine biochemistry for the full duration of PN administration. High sensitivity IGF-1 measurement alone was comparable with the RI, using receiver-operating characteristic (ROC) curve analysis, with areas under the curve being 0.79 and 0.80, respectively, and superior to leptin alone (0.72) for predicting ≥ 30% drop in PO4. The cut-off value for IGF-1 that gave best sensitivity (91% [95% CI 75-98%]) and specificity (65% [95% CI 41-85%]) was 63.7 µg/L, with a likelihood ratio of 2.59. Baseline IGF-1 is an objective, sensitive and specific biochemical marker in identifying patients who are at high risk of developing RH prior to PN administration and therefore may have a role in clinical practice. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. FES-related tyrosine kinase activates the insulin-like growth factor-1 receptor at sites of cell adhesion.

    PubMed

    Stanicka, Joanna; Rieger, Leonie; O'Shea, Sandra; Cox, Orla; Coleman, Michael; O'Flanagan, Ciara; Addario, Barbara; McCabe, Nuala; Kennedy, Richard; O'Connor, Rosemary

    2018-06-01

    IGF-1 receptor (IGF-1R) and integrin cooperative signaling promotes cancer cell survival, proliferation, and motility, but whether this influences cancer progression and therapy responses is largely unknown. Here we investigated the non-receptor tyrosine adhesion kinase FES-related (FER), following its identification as a potential mediator of sensitivity to IGF-1R kinase inhibition in a functional siRNA screen. We found that FER and the IGF-1R co-locate in cells and can be co-immunoprecipitated. Ectopic FER expression strongly enhanced IGF-1R expression and phosphorylation on tyrosines 950 and 1131. FER phosphorylated these sites in an IGF-1R kinase-independent manner and also enhanced IGF-1-mediated phosphorylation of SHC, and activation of either AKT or MAPK-signaling pathways in different cells. The IGF-1R, β1 Integrin, FER, and its substrate cortactin were all observed to co-locate in cell adhesion complexes, the disruption of which reduced IGF-1R expression and activity. High FER expression correlates with phosphorylation of SHC in breast cancer cell lines and with a poor prognosis in patient cohorts. FER and SHC phosphorylation and IGF-1R expression could be suppressed with a known anaplastic lymphoma kinase inhibitor (AP26113) that shows high specificity for FER kinase. Overall, we conclude that FER enhances IGF-1R expression, phosphorylation, and signaling to promote cooperative growth and adhesion signaling that may facilitate cancer progression.

  14. Magnolol affects expression of IGF-1 and associated binding proteins in human prostate cancer cells in vitro.

    PubMed

    McKeown, Brendan T; Hurta, Robert A R

    2014-11-01

    This study investigated the effects of magnolol, a compound from Magnolia officinalis, on the behavior of LNCaP and PC3 human prostate cancer cells in vitro. In vitro cell culture approach with biochemical tests and Western blot analyses was used. Magnolol, (80 μM, 6 hour exposure) was found to affect the expression of insulin-like growth factor-1 (IGF-1) and associated proteins. In both cell lines, protein expression of IGF-1 and insulin-like growth factor binding protein-5 (IGFBP-5) were significantly decreased, while protein expression of IGFBP-3 was significantly increased. Additionally, protein expression of insulin-like growth factor-1 receptor (IGF-1R) was significantly increased and the phosphorylated form of IGF-1 (p-IGF-1R) was significantly decreased in PC3 cells, while IGFBP-4 protein expression was significantly increased in LNCaP cells. This study has demonstrated for the first time that magnolol can alter the expression of IGF-1 and associated proteins in human prostate cancer cells in vitro and suggests that magnolol may have a potential role as a novel anti-prostate cancer agent. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. The role of insulin-like growth factor-1 (IGF-1) in growth and reproduction in female brown house snakes (Lamprophis fuliginosus).

    PubMed

    Sparkman, A M; Byars, D; Ford, N B; Bronikowski, A M

    2010-09-15

    Insulin-like growth factor-1 (IGF-1) is a peptide hormone critically involved in the regulation of key life-history traits such as growth and reproduction. Its structure and function are well-characterized among diverse mammal, fish, and bird species; however, little is known regarding the activities of IGF-1 in non-avian reptiles, particularly snakes and lizards. Nevertheless, several unique characteristics of reptiles, such as high metabolic flexibility and remarkable diversity in life-history strategy, suggest that they are of great interest in the study of endocrinological mechanisms underlying the regulation and evolution of life-history traits. Here we test for a relationship between IGF-1 and individual feeding rate, growth rate and reproductive stage in lab-reared female offspring of wild-caught oviparous house snakes, Lamprophis fuliginosus. We confirm a positive correlation between IGF-1 and both feeding and growth rates in sexually immature snakes, similar to that reported in other taxa. We also show a family effect on IGF-1, suggesting that IGF-1 levels may be heritable in these snakes, and serve as an important target of selection to produce divergent life-history strategies. Furthermore, we provide evidence that suggests that IGF-1 may peak rapidly after first mating, and subsequently decline prior to egg-laying, a phenomenon not previously reported in other taxa. These findings suggest that further comparative study of IGF-1 in snakes may reveal both the extent to which IGF-1 function is conserved across major taxonomic groups, as well as novel and intriguing roles for IGF-1 in the regulation of reproductive activities. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. IGF-1, oxidative stress, and atheroprotection

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  17. IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma

    PubMed Central

    2013-01-01

    Background High-grade osteosarcoma is an aggressive tumor most often developing in the long bones of adolescents, with a second peak in the 5th decade of life. Better knowledge on cellular signaling in this tumor may identify new possibilities for targeted treatment. Methods We performed gene set analysis on previously published genome-wide gene expression data of osteosarcoma cell lines (n=19) and pretreatment biopsies (n=84). We characterized overexpression of the insulin-like growth factor receptor (IGF1R) signaling pathways in human osteosarcoma as compared with osteoblasts and with the hypothesized progenitor cells of osteosarcoma – mesenchymal stem cells. This pathway plays a key role in the growth and development of bone. Since most profound differences in mRNA expression were found at and upstream of the receptor of this pathway, we set out to inhibit IR/IGF1R using OSI-906, a dual inhibitor for IR/IGF1R, on four osteosarcoma cell lines. Inhibitory effects of this drug were measured by Western blotting and cell proliferation assays. Results OSI-906 had a strong inhibitory effect on proliferation of 3 of 4 osteosarcoma cell lines, with IC50s below 100 nM at 72 hrs of treatment. Phosphorylation of IRS-1, a direct downstream target of IGF1R signaling, was inhibited in the responsive osteosarcoma cell lines. Conclusions This study provides an in vitro rationale for using IR/IGF1R inhibitors in preclinical studies of osteosarcoma. PMID:23688189

  18. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangxin; Yu, XiYong; Lin, ShuGuang

    2007-05-11

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response tomore » SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.« less

  19. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    PubMed

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions. Copyright © 2011 American Society for

  20. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer.

    PubMed

    Zinn, Rebekah L; Gardner, Eric E; Marchionni, Luigi; Murphy, Sara C; Dobromilskaya, Irina; Hann, Christine L; Rudin, Charles M

    2013-06-01

    New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). Insulin-like growth factor 1 receptor (IGF-1R) inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways, including phosphatidylinositol-3-kinase-Akt and mitogen-activated protein kinase. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R, and the closely related insulin receptor. Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 < 1 μmol/L. Cell line expression of IGF-1R, IR, IGF-1, IGF-2, IGFBP3, and IGFBP6 did not correlate with sensitivity to OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (P = 0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell-cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared with mock-treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. ©2013 AACR

  1. IGF-1 mediated phosphorylation of specific IRS-1 serines in Ames dwarf fibroblasts is associated with longevity.

    PubMed

    Papaconstantinou, John; Hsieh, Ching-Chyuan

    2015-11-03

    Insulin/IGF-1 signaling involves phosphorylation/dephosphorylation of serine/threonine or tyrosine residues of the insulin receptor substrate (IRS) proteins and is associated with hormonal control of longevity determination of certain long-lived mice. The stimulation of serine phosphorylations by IGF-1 suggests there is insulin/IGF-1 crosstalk that involves the phosphorylation of the same serine residues. By this mechanism, insulin and IGF-1 mediated phosphorylation of specific IRS-1 serines could play a role in longevity determination.We used fibroblasts from WT and Ames dwarf mice to examine whether: (a) IGF-1 stimulates phosphorylation of IRS-1 serines targeted by insulin; (b) the levels of serine phosphorylation differ in WT vs. Ames fibroblasts; and (c) aging affects the levels of these serine phosphorylations which are altered in the Ames dwarf mutant. We have shown that IRS-1 is a substrate for IGF-1 induced phosphorylation of Ser307, Ser612, Ser636/639, and Ser1101; that the levels of phosphorylation of these serines are significantly lower in Ames vs. WT cells; that IGF-1 mediated phosphorylation of these serines increases with age in WT cells. We propose that insulin/IGF-1 cross talk and level of phosphorylation of specific IRS-1 serines may promote the Ames dwarf longevity phenotype.

  2. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma.

    PubMed

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Marike Boezen, H; de Bock, Geertruida H; van der Graaf, Winette T A; Wesseling, Jelle

    2011-10-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast carcinoma (IDC), the most common type of breast cancer. Immunohistochemistry was performed on tumor tissue of a consecutive cohort of 429 female patients treated for operable primary IDC. Associations between IGF1R expression with clinicopathological parameters, disease free survival (DFS) and breast cancer specific survival (BCSS) were evaluated by multivariate analyses focusing on ER-positive and triple negative IDC (TN-IDC). To enlarge the TN-IDCs cohort, we analyzed a combined dataset of 51 TN-IDC tumors from our series with 64 TN-IDCs with similar clinicopathological parameters. Patients with tumors expressing cytoplasmic IGF1R have a longer DFS and BCSS (DFS: HR 0.46, 95% CI 0.27-0.49, P = 0.005, BCSS: HR 0.38, 95% CI 0.19-0.74, P = 0.005). This effect was most prominent in ER-positive tumors. However, in a combined series of 105 TN-IDCs cytoplasmic IGF1R expression was associated with a shorter DFS (HR = 2.29, 95% CI 1.08-4.84, P = 0.03), also when combined in a multivariate model, including well-known prognostic factors (HR 2.06; 95% CI 0.95-4.47; P = 0.07). IGF1R expression in ER-positive IDC is strongly related to a favorable DFS and BCSS, but to a shorter DFS in TN-IDC tumors. This divergent effect of IGF1R expression in subgroups of IDC may affect selection of patients for IGF1R targeted therapy.

  3. The impact of IGF-1R expression on the outcomes of patients with breast cancer: a meta-analysis

    PubMed Central

    Yan, Shunchao; Jiao, Xin; Li, Kai; Li, Wusheng; Zou, Huawei

    2015-01-01

    Purpose The value of insulin-like growth factor 1 receptor (IGF-1R) for predicting survival of patients with breast cancer remains controversial. The purpose of this study was to perform a meta-analysis of the published data to attempt to clarify the impact of IGF-1R. Methods Studies published between January 1, 1990 and October 1, 2014 were identified using an electronic search to aggregate the available survival results. Studies were included if they reported detecting IGF-1R expression in the primary breast cancer and analyzed patient survival data according to IGF-1R status. The principal outcome measures were hazard ratios (HRs) for survival of IGF-1R-positive patients. Combined HRs and 95% confidence intervals (CIs) were estimated using fixed- or random-effects models according to between-study heterogeneity. Results Ten studies, involving 5,406 patients, satisfied our inclusion criteria. Data from five studies provided the impact of IGF-1R on overall survival (OS), three studies the impact on breast cancer-specific survival (BCSS), and seven studies the impact on disease-free survival (DFS). The results of meta-analysis showed that for DFS, membranous IGF-1R positivity was not a significant predictor. The combined HR for OS/BCSS was 0.63 (95% CI: 0.42–0.95, P=0.03), indicating that membranous IGF-1R positivity was a significant predictor of better survival. IGF-1R cytoplasmic positivity was significantly associated with longer DFS and OS/BCSS (combined HR: 0.56, 95% CI: 0.35–0.89, P=0.01; combined HR: 0.55, 95% CI: 0.35–0.85, P=0.008, respectively). The results of subgroup analysis suggested that membranous IGF-1R positivity in hormone-receptor-positive breast cancer was correlated with favorable DFS (combined HR: 0.61, 95% CI: 0.41–0.92, P=0.02) and OS/BCSS (combined HR: 0.73, 95% CI: 0.57–0.93, P=0.01). Membranous IGF-1R positivity in triple-negative breast cancer predicted worse DFS (combined HR: 1.86, 95% CI: 1.03–3.34, P=0.04). Membranous

  4. Simvastatin inhibits the proliferation of human prostate cancer PC-3 cells via down-regulation of the insulin-like growth factor 1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekine, Yoshitaka; Furuya, Yosuke; Nishii, Masahiro

    2008-07-25

    Recently, statins have been being studied for their proapoptic and antimetastatic effects. However, the exact mechanisms of their anticancer action are still unclear. Dolichyl phosphate is a nonsterol isoprenoid derivative in the mevalonate pathway that affects the expression of the Insulin-like growth factor 1 receptor (IGF-1R). IGF-1R activation is required for prostate cell proliferation; therefore, IGF-1R inhibitory agents may be of preventive and/or therapeutic value. In this study, the effects of simvastatin on IGF-1R signaling in prostate cancer PC-3 cells were examined. Simvastatin suppressed proliferation and induced apoptosis of PC-3, and the expression of IGF-1R was suppressed by simvastatin. Knockdownmore » of IGF-1R by siRNA led to inhibition of proliferation of PC-3. Simvastatin also inhibited IGF-1-induced activation of both ERK and Akt signaling and IGF-1-induced PC-3 cell proliferation. Our results suggest statins are potent inhibitors of the IGF-1/IGF-1R system in prostate cancer cells and may be beneficial in prostate cancer treatment.« less

  5. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway.

    PubMed

    Su, Chao; Wang, Wenchang; Wang, Cunchuan

    2018-05-01

    The present study aimed to investigate the association between insulin-like growth factor-1 (IGF-1) and matrix metalloproteinase-11 (MMP-11) expression in gastric cancer (GC) and the underlying mechanisms in SGC-7901 cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression of IGF-1 and MMP-11 was significantly upregulated in GC tissues compared with normal gastric tissue. Furthermore, IGF-1 significantly and dose-dependently promoted MMP-11. Western blotting revealed that the addition of IGF-1 to SGC-7901 cells led to an evident enhancement in signal transducer and activator of transcription 3 (STAT3), IGF-1R and Janus kinase 1 (JAK1) phosphorylation at 20 and 40 min. A decrease in the extent of the elevated expression of MMP-11 and the enhanced phosphorylation of STAT3, JAK1 and IGF-1 receptor (IGF-1R) induced by IGF-1 in SGC-7901 cells were observed following treatment with NT157 (an IGF-1R inhibitor). Furthermore, piceatannol (a JAK1 inhibitor) or small interfering RNA against STAT3 reduced the extent of the increased expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Piceatannol treatment induced the dose-dependent decline in the enhancement of STAT3 phosphorylation induced by IGF-1, indicating that the JAK1/STAT3 pathway may be implicated in the elevated expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Finally, IGF-1 treatment significantly promoted the proliferation and invasion of SGC-7901 cells, which was inhibited following NT157, piceatannol or si-STAT3 treatment. The present study therefore demonstrated that IGF-1-induced MMP-11 may have facilitated the proliferation and invasion of SGC-7901 cells via the JAK1/STAT3 pathway.

  6. Common genetic variation in the IGF1 associates with maximal force output.

    PubMed

    Huuskonen, Antti; Lappalainen, Jani; Oksala, Niku; Santtila, Matti; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa

    2011-12-01

    We clarified the effect of insulin-like growth factor-1 (IGF1), IGF-binding protein-3 (IGFBP3), interleukin-6 (IL6), and its receptor (IL6R) gene variants on muscular and aerobic performance, body composition, and on circulating levels of IGF-1 and IL-6. Single nucleotide polymorphisms (SNPs) may, in general, influence gene regulation or its expression, or the structure and function of the corresponding protein, and modify its biological effects. IGF-1 is involved in the anabolic pathways of skeletal muscle. IL-6 plays an important role in muscle energy homeostasis during strenuous physical exercise. Eight hundred forty-one healthy Finnish male subjects of Caucasian origin were genotyped for IGF1 (rs6220 and rs7136446), IGFBP3 (rs2854744), IL6 (rs1800795), and IL6R (rs4537545) SNPs, and studied for associations with maximal force of leg extensor muscles, maximal oxygen consumption, body fat percent, and IGF-1 and IL-6 levels. Analytic methods included dynamometer, bicycle ergometer, bioimpedance, ELISA, and polymerase chain reaction assays. All investigated SNPs conformed to Hardy-Weinberg equilibrium with allele frequencies validated against CEU population. Genotype CC of rs7136446 associated with higher body fat and increased maximal force production. Genotype CC of the IGFBP3 SNP rs2854744 and TT genotype of the IL6R SNP rs4537545 associated with higher IL-6 levels. In logistic regression analysis, allele C of the rs2854744 decreased odds for lower body fat. None of the studied SNPs associated with aerobic performance. Our data suggest that common variation in the IGF1 gene may affect maximal force production, which can be explained by the role of IGF-1 in the anabolic pathways of muscle and neurotrophy. Variations in the IGF1 and IGFBP3 gene may result in higher body fat and be related to alterations of IGF-1-mediated tissue growth.

  7. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    PubMed

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-11-03

    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.

    PubMed

    Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin

    2015-11-01

    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  9. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Kyung-A; Park, Min-Ah; Kang, Nam-Hee

    The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylationmore » of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2.« less

  10. The association between insulin-like growth factor 1 (IGF-1), IGF-binding proteins (IGFBPs), and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis.

    PubMed

    Szeremeta, A; Jura-Półtorak, A; Komosińska-Vassev, K; Zoń-Giebel, A; Kapołka, D; Olczyk, K

    2017-05-01

    To assess the association between plasma levels of the insulin-like growth factor (IGF) system including IGF-1, IGF-binding proteins (IGFBPs) including IGFBP-1, total (t-)IGFBP-3 and functional (f-)IGFBP-3, and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis (RA). Plasma concentrations of IGF-1, IGFBP-1, t-IGFBP-3, f-IGFBP-3, and PICP were measured by immunoassay. No significant difference was observed in plasma IGF-1 levels between pre- and postmenopausal subjects. Plasma levels of IGFBP-1 were elevated in RA. PICP and f-IGFBP-3 were greatly affected by menopausal status. Of the three IGFBPs tested, only f-IGFBP-3 plasma levels in RA women correlated negatively with age and disease duration. A positive correlation was demonstrated between PICP and erythrocyte sedimentation rate (ESR) in RA. Moreover, there was no correlation between PICP and IGF-1 and any of the IGFBPs in RA women. Considerable disruption of the IGF system in RA was found to be related to disease activity and duration. Changes in the IGF-IGFBP axis and PICP levels were different in pre- and postmenopausal women with RA. Elevated plasma PICP concentrations may indicate an increased rate of bone formation in postmenopausal RA women. Additionally, the observed changes in the IGF/IGFBP system did not affect bone formation during RA.

  11. pkc-1 regulates daf-2 insulin/IGF signalling-dependent control of dauer formation in Caenorhabditis elegans.

    PubMed

    Monje, José M; Brokate-Llanos, Ana M; Pérez-Jiménez, Mercedes M; Fidalgo, Manuel A; Muñoz, Manuel J

    2011-12-01

    In Caenorhabditis elegans, the insulin/IGF pathway participates in the decision to initiate dauer development. Dauer is a diapause stage that is triggered by environmental stresses, such as a lack of nutrients. Insulin/IGF receptor mutants arrest constitutively in dauer, an effect that can be suppressed by mutations in other elements of the insulin/IGF pathway or by a reduction in the activity of the nuclear hormone receptor daf-12. We have isolated a pkc-1 mutant that acts as a novel suppressor of the dauer phenotypes caused by insulin/IGF receptor mutations. Interactions between insulin/IGF mutants and the pkc-1 suppressor mutant are similar to those described for daf-12 or the DAF-12 coregulator din-1. Moreover, we show that the expression of the DAF-12 target daf-9, which is normally elevated upon a reduction in insulin/IGF receptor activity, is suppressed in a pkc-1 mutant background, suggesting that pkc-1 could link the daf-12 and insulin/IGF pathways. pkc-1 has been implicated in the regulation of peptide neurosecretion in C. elegans. Although we demonstrate that pkc-1 expression in the nervous system regulates dauer formation, our results suggest that the requirement for pkc-1 in neurosecretion is independent of its role in modulating insulin/IGF signalling. pkc-1 belongs to the novel protein kinase C (nPKC) family, members of which have been implicated in insulin resistance and diabetes in mammals, suggesting a conserved role for pkc-1 in the regulation of the insulin/IGF pathway. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  12. Serum IGF-1, IGFBP-3 levels and circulating tumor cells (CTCs) in early breast cancer patients.

    PubMed

    Papadakis, Georgios Z; Mavroudis, Dimitrios; Georgoulias, Vasilios; Souglakos, John; Alegakis, Athanasios K; Samonis, George; Bagci, Ulas; Makrigiannakis, Antonis; Zoras, Odysseas

    2017-04-01

    Insulin-like growth factor (IGF)-axis is involved in human oncogenesis and metastasis development for various solid tumors including breast cancer. Aim of this study was to assess the association between IGF-1, IGF-binding protein-3 (IGFBP-3) serum levels and the presence of circulating tumor cells (CTCs) in the peripheral blood of women diagnosed with early breast cancer (EBC), before and after adjuvant chemotherapy. 171 patients with early-stage breast adenocarcinomas were retrospectively evaluated. Immunoradiometric (IRMA) assays were employed for the in-vitro determination of IGF-1 and IGFBP-3 serum levels in blood samples collected after surgical treatment and before initiation of adjuvant chemotherapy. CTCs' presence was assessed through detection of cytokeratin-19 (CK-19) mRNA transcripts using quantitative real time reverse transcription polymerase chain reaction (RT-PCR). IGF-1, IGFBP-3 serum levels were correlated with CTCs' presence before and after adjuvant chemotherapy as well as with tumor characteristics including tumor size, axillary lymph node status, oestrogen (ER)/progestorene (PR) and human epidermural growth factor receptor 2 (HER2) receptor status. Log-rank test was applied to investigate possible association between IGF-1, IGFBP-3 serum levels and disease-free interval (DFI) and overall survival (OS). Before initiation of adjuvant therapy IGF-1, IGFBP-3 serum levels were moderately associated (Spearman's rho=0.361, p<0.001) with each other, while presenting significant differences across age groups (all p values<0.05). IGF-1 serum levels did not correlate with the presence of CTCs before initiation (p=0.558) or after completion (p=0.474) of adjuvant chemotherapy. Similarly, IGFBP-3 serum levels did not show significant association with detectable CTCs either before (p=0.487) or after (p=0.134) completion of adjuvant chemotherapy. There was no statistically significant association between the clinical outcome of patients in terms of DFI, OS

  13. Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice

    PubMed Central

    Bolasco, Giulia; Calogero, Raffaele; Carrara, Matteo; Al Banchaabouchi, Mumna; Bilbao, Daniel; Mazzoccoli, Gianluigi; Vinciguerra, Manlio

    2012-01-01

    Locally acting insulin growth factor isoform (mIGF-1) and the NAD+-dependent protein deacetylase SIRT1 are implicated in life and health span. Heart failure is associated with aging and is a major cause of death. mIGF-1 protects the heart from oxidative stresses via SIRT1. SIRT1 subcellular localization and its genomic regulation by mIGF-1 are unknown. We show here that SIRT1 is located in the nuclei of a significant fraction of cardiomyocytes. Using high throughput sequencing approaches in mIGF-1 transgenic mice, we identified new targets of the mIGF-1/SIRT1 signaling. In addition to its potent cardioprotective properties, cardiac-restricted mIGF-1 transgene induced systemic changes such as high blood pressure, leukocytosis and an enhanced fear response, in a SIRT1-dependent manner. Cardiac mIGF-1/SIRT1 signaling may thus modulate disparate systemic functions. PMID:22691943

  14. Synergistic apoptosis in head and neck squamous cell carcinoma cells by co-inhibition of insulin-like growth factor-1 receptor signaling and compensatory signaling pathways.

    PubMed

    Axelrod, Mark J; Mendez, Rolando E; Khalil, Ashraf; Leimgruber, Stephanie S; Sharlow, Elizabeth R; Capaldo, Brian; Conaway, Mark; Gioeli, Daniel G; Weber, Michael J; Jameson, Mark J

    2015-12-01

    In head and neck squamous cell carcinoma (HNSCC), resistance to single-agent targeted therapy may be overcome by co-targeting of compensatory signaling pathways. A targeted drug screen with 120 combinations was used on 9 HNSCC cell lines. Multiple novel drug combinations demonstrated synergistic growth inhibition. Combining the insulin-like growth factor-1 receptor (IGF-1R) inhibitor, BMS754807, with either the human epidermal growth factor receptor (HER)-family inhibitor, BMS599626, or the Src-family kinase inhibitor, dasatinib, resulted in substantial synergy and growth inhibition. Depending on the cell line, these combinations induced synergistic or additive apoptosis; when synergistic apoptosis was observed, AKT phosphorylation was inhibited to a greater extent than either drug alone. Conversely, when additive apoptosis occurred, AKT phosphorylation was not reduced by the drug combination. Combined IGF-1R/HER family and IGF-1R/Src family inhibition may have therapeutic potential in HNSCC. AKT may be a node of convergence between IGF-1R signaling and pathways that compensate for IGF-1R inhibition. © 2015 Wiley Periodicals, Inc.

  15. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletalmore » myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.« less

  16. Inhibition of IGF-1 receptor kinase blocks the differentiation into cardiomyocyte-like cells of BMSCs induced by IGF-1.

    PubMed

    Gong, Haibin; Wang, Xiuli; Wang, Lei; Liu, Ying; Wang, Jie; Lv, Qian; Pang, Hui; Zhang, Qinglin; Wang, Zhenquan

    2017-07-01

    Bone marrow mesenchymal stem cells (BMSCs) have the potential to transdifferentiate into cardiomyocyte‑like cells (CLCs) if an appropriate cardiac environment is provided. Insulin‑like growth factor‑1 (IGF‑1) plays an important role in the cell migration, survival and differentiation of BMSCs. However, the effect of IGF‑1 on the cellular differentiation remains unclear. In the present study, BMSCs were isolated from rat femurs and tibias and the cells were purified at passage 6 (P6). IGF‑1 and IGF‑1 receptor (IGF‑1R) kinase inhibitor I‑OMe AG538 were added to detect if IGF‑1 could induce BMSCs to transdifferentiate into CLCs and if I‑OMe AG538 could inhibit IGF‑1‑mediated receptor activation and downstream signaling. Immunostaining demonstrated that all P6 BMSCs express CD29 and CD44 but not CD45. BMSCs induced by 15 ng/ml IGF‑1 revealed positivity for cardiac troponin‑T and cardiac troponin‑I. The optimal induction time was 14 days but the expression of these proteins were incompletely inhibited by 300 nmol/l I‑OMe AG538 and completely inhibited by 10 µmol/l I‑OMe AG538. Western blotting showed that the level of IGF‑1R autophosphorylation and the expression of cTnT and cTnI were higher when BMSCs were induced for 14 days. I‑OMe AG538 selectively inhibited IGF‑1‑mediated growth and signal transduction and the inhibitory effect of I‑OMe AG538 were not reverted in the presence of exogenous IGF‑1. In addition, when a time course analysis of the effects of I‑OMe AG538 on mitogen‑activated protein kinase kinase and phosphatidylinositol 3‑kinase signaling were done, we observed a transient inhibitory effect on Erk1/2 and Akt phosphorylation, in keeping with the inhibitory effects on cell growth. Taken together, these data indicate that I‑OMe AG538 could inhibit IGF-1-induced CLCs in BMSCs and this effect is time- and concentration-dependent.

  17. Insulin/IGF and sex hormone axes in human endometrium and associations with endometrial cancer risk factors.

    PubMed

    Merritt, Melissa A; Strickler, Howard D; Einstein, Mark H; Yang, Hannah P; Sherman, Mark E; Wentzensen, Nicolas; Brouwer-Visser, Jurriaan; Cossio, Maria Jose; Whitney, Kathleen D; Yu, Herbert; Gunter, Marc J; Huang, Gloria S

    2016-06-01

    Experimental and observational data link insulin, insulin-like growth factor (IGF), and estrogens to endometrial tumorigenesis. However, there are limited data regarding insulin/IGF and sex hormone axes protein and gene expression in normal endometrial tissues, and very few studies have examined the impact of endometrial cancer risk factors on endometrial tissue biology. We evaluated endometrial tissues from 77 premenopausal and 30 postmenopausal women who underwent hysterectomy for benign indications and had provided epidemiological data. Endometrial tissue mRNA and protein levels were measured using quantitative real-time PCR and immunohistochemistry, respectively. In postmenopausal women, we observed higher levels of phosphorylated IGF-I/insulin receptor (pIGF1R/pIR) in diabetic versus non-diabetic women (p value =0.02), while women who reported regular nonsteroidal anti-inflammatory drug use versus no use had higher levels of insulin and progesterone receptors (both p values ≤0.03). We also noted differences in pIGF1R/pIR staining with OC use (postmenopausal women only), and the proportion of estrogen receptor-positive tissues varied by the number of live births and PTEN status (premenopausal only) (p values ≤0.04). Compared to premenopausal proliferative phase women, postmenopausal women exhibited lower mRNA levels of IGF1, but higher IGFBP1 and IGFBP3 expression (all p values ≤0.004), and higher protein levels of the receptors for estrogen, insulin, and IGF-I (all p values ≤0.02). Conversely, pIGF1R/pIR levels were higher in premenopausal proliferative phase versus postmenopausal endometrium (p value =0.01). These results highlight links between endometrial cancer risk factors and mechanistic factors that may contribute to early events in the multistage process of endometrial carcinogenesis.

  18. Low Levels of IGF-1 Contribute to Alveolar Macrophage Dysfunction in Cystic Fibrosis1

    PubMed Central

    Bessich, Jamie L.; Nymon, Amanda B.; Moulton, Lisa A; Dorman, Dana; Ashare, Alix

    2013-01-01

    Alveolar macrophages are major contributors to lung innate immunity. Although alveolar macrophages from CFTR−/− mice have impaired function, no study has investigated primary alveolar macrophages in adults with cystic fibrosis (CF). CF patients have low levels of insulin-like growth factor 1 (IGF-1), and our prior studies demonstrate a relationship between IGF-1 and macrophage function. We hypothesize that reduced IGF-1 in CF leads to impaired alveolar macrophage function and chronic infections. Serum and bronchoalveolar lavage (BAL) samples were obtained from 8 CF subjects and 8 healthy subjects. Macrophages were isolated from BAL fluid. We measured the ability of alveolar macrophages to kill Pseudomonas aeruginosa. Subsequently, macrophages were incubated with IGF-1 prior to inoculation with bacteria to determine the effect of IGF-1 on bacterial killing. We found a significant decrease in bacterial killing by CF alveolar macrophages compared to controls. CF subjects had lower serum and BAL IGF-1 levels compared to healthy controls. Exposure to IGF-1 enhanced alveolar macrophage macrophages in both groups. Finally, exposing healthy alveolar macrophages to CF BAL fluid decreased bacterial killing, and this was reversed by the addition of IGF-1, while IGF-1 blockade worsened bacterial killing. Our studies demonstrate that alveolar macrophage function is impaired in patients with CF. Reductions in IGF-1 levels in CF contribute to the impaired alveolar macrophage function. Exposure to IGF-1 ex vivo, results in improved function of CF alveolar macrophages. Further studies are needed to determine whether alveolar macrophage function can be enhanced in vivo with IGF-1 treatment. PMID:23698746

  19. A Putative Mechanism of Age-Related Synaptic Dysfunction Based on the Impact of IGF-1 Receptor Signaling on Synaptic CaMKIIα Phosphorylation.

    PubMed

    Ogundele, Olalekan M; Pardo, Joaquin; Francis, Joseph; Goya, Rodolfo G; Lee, Charles C

    2018-01-01

    Insulin-like growth factor 1 receptor (IGF-1R) signaling regulates the activity and phosphorylation of downstream kinases linked to inflammation, neurodevelopment, aging and synaptic function. In addition to the control of Ca 2+ currents, IGF-1R signaling modulates the activity of calcium-calmodulin-dependent kinase 2 alpha (CaMKIIα) and mitogen activated protein kinase (MAPK/ErK) through multiple signaling pathways. These proteins (CaMKIIα and MAPK) regulate Ca 2+ movement and long-term potentiation (LTP). Since IGF-1R controls the synaptic activity of Ca 2+ , CaMKIIα and MAPK signaling, the possible mechanism through which an age-dependent change in IGF-1R can alter the synaptic expression and phosphorylation of these proteins in aging needs to be investigated. In this study, we evaluated the relationship between an age-dependent change in brain IGF-1R and phosphorylation of CaMKIIα/MAPK. Furthermore, we elucidated possible mechanisms through which dysregulated CaMKIIα/MAPK interaction may be linked to a change in neurotransmitter processing and synaptic function. Male C57BL/6 VGAT-Venus mice at postnatal days 80 (P80), 365 and 730 were used to study age-related neural changes in two brain regions associated with cognitive function: hippocampus and prefrontal cortex (PFC). By means of high throughput confocal imaging and quantitative immunoblotting, we evaluated the distribution and expression of IGF-1, IGF-1R, CaMKIIα, p-CaMKIIα, MAPK and p-MAPK in whole brain lysate, hippocampus and cortex. Furthermore, we compared protein expression patterns and regional changes at P80, P365 and P730. Ultimately, we determined the relative phosphorylation pattern of CaMKIIα and MAPK through quantification of neural p-CaMKIIα and p-MAPK/ErK, and IGF-1R expression for P80, P365 and P730 brain samples. In addition to a change in synaptic function, our results show a decrease in neural IGF-1/IGF-1R expression in whole brain, hippocampus and cortex of aged mice. This was

  20. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance.

    PubMed

    Selfe, Joanna; Goddard, Neil C; McIntyre, Alan; Taylor, Kathryn R; Renshaw, Jane; Popov, Sergey D; Thway, Khin; Summersgill, Brenda; Huddart, Robert A; Gilbert, Duncan C; Shipley, Janet M

    2018-02-01

    Testicular germ cell tumours (TGCTs) are the most frequent malignancy and cause of death from solid tumours in the 20- to 40-year age group. Although most cases show sensitivity to cis-platinum-based chemotherapy, this is associated with long-term toxicities and chemo-resistance. Roles for receptor tyrosine kinases other than KIT are largely unknown in TGCT. We therefore conducted a phosphoproteomic screen and identified the insulin growth factor receptor-1 (IGF1R) as both highly expressed and activated in TGCT cell lines representing the nonseminomatous subtype. IGF1R was also frequently expressed in tumour samples from patients with nonseminomas. Functional analysis of cell line models showed that long-term shRNA-mediated IGF1R silencing leads to apoptosis and complete ablation of nonseminoma cells with active IGF1R signalling. Cell lines with high levels of IGF1R activity also showed reduced AKT signalling in response to decreased IGF1R expression as well as sensitivity to the small-molecule IGF1R inhibitor NVP-AEW541. These results were in contrast to those in the seminoma cell line TCAM2 that lacked IGF1R signalling via AKT and was one of the two cell lines least sensitive to the IGF1R inhibitor. The dependence on IGF1R activity in the majority of nonseminomas parallels the known role of IGF signalling in the proliferation, migration, and survival of primordial germ cells, the putative cell of origin for TGCT. Upregulation of IGF1R expression and signalling was also found to contribute to acquired cisplatin resistance in an in vitro nonseminoma model, providing a rationale for targeting IGF1R in cisplatin-resistant disease. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  2. Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.

    NASA Astrophysics Data System (ADS)

    Garmroudi, Farideh

    1995-01-01

    In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation

  3. MicroRNA-133a Regulates Insulin-like Growth Factor-1 Receptor Expression and Vascular Smooth Muscle Cell Proliferation in Murine Atherosclerosis

    PubMed Central

    Gao, Song; Wassler, Michael; Zhang, Lulu; Li, Yangxin; Wang, Jun; Zhang, Yi; Shelat, Harnath; Williams, Jason; Geng, Yong-Jian

    2014-01-01

    Objective MicroRNA-133a (miR-133a) and insulin-like growth factor-1 (IGF-1) are two different molecules known to regulate cardiovascular cell proliferation. This study tested whether miR-133a affects expression of IGF-1 receptor (IGF-1R) and proliferation of IGF-1-stimulated vascular smooth muscle cells (VSMC) in a murine model of atherosclerosis. Methods and Results Expression of IGF-1R was analyzed by immuno-fluorescence and immuno-blotting, and miR-133a by qRT-PCR in the aortas of wild-type C57BL/6J (WT) and apolipoprotein-E deficient (ApoE−/−) mice. Compared to those in WT aortas, the IGF-1R and miR-133a levels were lower in ApoE−/− aortas. ApoE−/− VSMC grew slower than WT cells in the cultures with IGF-1-containing medium. MiR-133a-specific inhibitor decreased miR-133a, IGF-1R expression, IGF-1-stimulated VSMC growth in lipoprotein-deficient media. By contrast, miR-133a precursor increased IGF-1R levels and promoted IGF-1-induced VSMC proliferation. In the luciferase-IGF-1R 3’UTR reporter system, the reporter luciferase activity was not inhibited in VSMC with miR-133a overexpression. IGF-1R mRNA half-life in ApoE−/− VSMC was shorter than that in WT VSMC. MiR-133a inhibitor reduced but precursor increased the mRNA half-life, although the effects appeared less striking in ApoE−/− VSMC than in WT cells. Conclusion MiR-133a serves as a stimulatory factor for IGF-1R expression through prolonging IGF-1R mRNA half-life. In atherosclerosis induced by ApoE deficiency, reduced miR-133a expression is associated with lower IGF-1R levels and suppressive VSMC growth. Administration of miR-133a precursor may potentiate IGF-1 stimulated VSMC survival and growth. PMID:24401233

  4. Salivary and serum insulin-like growth factor (IGF-1) assays in anorexic patients.

    PubMed

    Paszynska, Elzbieta; Dmitrzak-Weglarz, Monika; Slopien, Agnieszka; Tyszkiewicz-Nwafor, Marta; Rajewski, Andrzej

    2016-12-01

    The purpose of this study was to measure the salivary and serum free IGF-1 concentration of patients with anorexia nervosa (AN) in comparison to an average population. A controlled clinical trial was designed for an age- and gender-matched group of 121 AN patients and 77 healthy individuals. A clinical examination was made and blood and salivary samples were taken during the acute stage of AN (BMI < 15 kg/m 2 ) in the first week of hospitalization. An enzyme immunoassay (ELISA) suitable for measuring free IGF-1 was used. Anorexic patients had significant reductions in salivary unstimulated flow rate (UFR), pH and free IGF-1 levels in their saliva and serum. Significant correlations between serum IGF-1 and BMI; salivary IGF-1 and UFR and pH were detected. Salivary and serum IGF-1 analyses appear to be a reliable biochemical indicator of malnutrition in AN patients. Measurement of salivary IGF-1 levels would allow new perspectives in monitoring AN in its early stages.

  5. Correlation between GH and IGF-1 during treatment for acromegaly.

    PubMed

    Oldfield, Edward H; Jane, John A; Thorner, Michael O; Pledger, Carrie L; Sheehan, Jason P; Vance, Mary Lee

    2017-06-01

    OBJECTIVE The relationship between growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in patients with acromegaly as serial levels drop over time after treatment has not been examined previously. Knowledge of this relationship is important to correlate pretreatment levels that best predict response to treatment. To examine the correlation between GH and IGF-1 and IGF-1 z-scores over a wide range of GH levels, the authors examined serial GH and IGF-1 levels at intervals before and after surgery and radiosurgery for acromegaly. METHODS This retrospective analysis correlates 414 pairs of GH and IGF-1 values in 93 patients with acromegaly. RESULTS Absolute IGF-1 levels increase linearly with GH levels only up to a GH of 4 ng/ml, and with IGF-1 z-scores only to a GH level of 1 ng/ml. Between GH levels of 1 and 10 ng/ml, increases in IGF-1 z-scores relative to changes in GH diminish and then plateau at GH concentrations of about 10 ng/ml. From patient to patient there is a wide range of threshold GH levels beyond which IGF-1 increases are no longer linear, GH levels at which the IGF-1 response plateaus, IGF-1 levels at similar GH values after the IGF-1 response plateaus, and of IGF-1 levels at similar GH levels. CONCLUSIONS In acromegaly, although IGF-1 levels represent a combination of the integrated effects of GH secretion and GH action, the tumor produces GH, not IGF-1. Nonlinearity between GH and IGF-1 occurs at GH levels far below those previously recognized. To monitor tumor activity and tumor viability requires measurement of GH levels.

  6. Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor.

    PubMed

    Fu, Shaoting; Yin, Lijun; Lin, Xiaojing; Lu, Jianqiang; Wang, Xiaohui

    2018-06-02

    Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.

  7. Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets.

    PubMed

    Miller, Martin L; Molinelli, Evan J; Nair, Jayasree S; Sheikh, Tahir; Samy, Rita; Jing, Xiaohong; He, Qin; Korkut, Anil; Crago, Aimee M; Singer, Samuel; Schwartz, Gary K; Sander, Chris

    2013-09-24

    Dedifferentiated liposarcoma (DDLS) is a rare but aggressive cancer with high recurrence and low response rates to targeted therapies. Increasing treatment efficacy may require combinations of targeted agents that counteract the effects of multiple abnormalities. To identify a possible multicomponent therapy, we performed a combinatorial drug screen in a DDLS-derived cell line and identified cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor (IGF1R) as synergistic drug targets. We measured the phosphorylation of multiple proteins and cell viability in response to systematic drug combinations and derived computational models of the signaling network. These models predict that the observed synergy in reducing cell viability with CDK4 and IGF1R inhibitors depends on the activity of the AKT pathway. Experiments confirmed that combined inhibition of CDK4 and IGF1R cooperatively suppresses the activation of proteins within the AKT pathway. Consistent with these findings, synergistic reductions in cell viability were also found when combining CDK4 inhibition with inhibition of either AKT or epidermal growth factor receptor (EGFR), another receptor similar to IGF1R that activates AKT. Thus, network models derived from context-specific proteomic measurements of systematically perturbed cancer cells may reveal cancer-specific signaling mechanisms and aid in the design of effective combination therapies.

  8. Sustained IGF-1 Secretion by Adipose-Derived Stem Cells Improves Infarcted Heart Function.

    PubMed

    Bagno, Luiza L; Carvalho, Deivid; Mesquita, Fernanda; Louzada, Ruy A; Andrade, Bruno; Kasai-Brunswick, Taís H; Lago, Vivian M; Suhet, Grazielle; Cipitelli, Debora; Werneck-de-Castro, João Pedro; Campos-de-Carvalho, Antonio C

    2016-01-01

    The mechanism by which stem cell-based therapy improves heart function is still unknown, but paracrine mechanisms seem to be involved. Adipose-derived stem cells (ADSCs) secrete several factors, including insulin-like growth factor-1 (IGF-1), which may contribute to myocardial regeneration. Our aim was to investigate whether the overexpression of IGF-1 in ADSCs (IGF-1-ADSCs) improves treatment of chronically infarcted rat hearts. ADSCs were transduced with a lentiviral vector to induce IGF-1 overexpression. IGF-1-ADSCs transcribe100- to 200-fold more IGF-1 mRNA levels compared to nontransduced ADSCs. IGF-1 transduction did not alter ADSC immunophenotypic characteristics even under hypoxic conditions. However, IGF-1-ADSCs proliferate at higher rates and release greater amounts of growth factors such as IGF-1, vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) under normoxic and hypoxic conditions. Importantly, IGF-1 secreted by IGF-1-ADSCs is functional given that Akt-1 phosphorylation was remarkably induced in neonatal cardiomyocytes cocultured with IGF-1-ADSCs, and this increase was prevented with phosphatidylinositol 3-kinase (PI3K) inhibitor treatment. Next, we tested IGF-1-ADSCs in a rat myocardial infarction (MI) model. MI was performed by coronary ligation, and 4 weeks after MI, animals received intramyocardial injections of either ADSCs (n = 7), IGF-1-ADSCs (n = 7), or vehicle (n = 7) into the infarcted border zone. Left ventricular function was evaluated by echocardiography before and after 6 weeks of treatment, and left ventricular hemodynamics were assessed 7 weeks after cell injection. Notably, IGF-1-ADSCs improved left ventricular ejection fraction and cardiac contractility index, but did not reduce scar size when compared to the ADSC-treated group. In summary, transplantation of ADSCs transduced with IGF-1 is a superior therapeutic approach to treat MI compared to nontransduced ADSCs, suggesting that gene and cell

  9. Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474

    PubMed Central

    Isoyama, Sho; Kajiwara, Gensei; Tamaki, Naomi; Okamura, Mutsumi; Yoshimi, Hisashi; Nakamura, Naoki; Kawamura, Kento; Nishimura, Yumiko; Namatame, Nachi; Yamori, Takao; Dan, Shingo

    2015-01-01

    Drug resistance often critically limits the efficacy of molecular targeted drugs. Although pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) is an attractive therapeutic strategy for cancer therapy, molecular determinants for efficacy of PI3K inhibitors (PI3Kis) remain unclear. We previously identified that overexpression of insulin-like growth factor 1 receptor (IGF1R) contributed to the development of drug resistance after long-term exposure to PI3Kis. In this study, we examined the involvement of basal IGF1R expression in intrinsic resistance of drug-naïve cancer cells to PI3Kis and whether inhibition of IGF1R overcomes the resistance. We found that cancer cells highly expressing IGF1R showed resistance to dephosphorylation of Akt and subsequent antitumor effect by ZSTK474 treatment. Knockdown of IGF1R by siRNAs facilitated the dephosphorylation and enhanced the drug efficacy. These cells expressed tyrosine-phosphorylated insulin receptor substrate 1 at high levels, which was dependent on basal IGF1R expression. In these cells, the efficacy of ZSTK474 in vitro and in vivo was improved by its combination with the IGF1R inhibitor OSI-906. Finally, we found a significant correlation between the basal expression level of IGF1R and the inefficacy of ZSTK474 in an in vivo human cancer panel, as well as in vitro. These results suggest that basal IGF1R expression affects intrinsic resistance of cancer cells to ZSTK474, and IGF1R is a promising target to improve the therapeutic efficacy. The current results provide evidence of combination therapy of PI3Kis with IGF1R inhibitors for treating IGF1R-positive human cancers. PMID:25483727

  10. Long-pulse gastric electrical stimulation protects interstitial cells of Cajal in diabetic rats via IGF-1 signaling pathway.

    PubMed

    Li, Hai; Chen, Yan; Liu, Shi; Hou, Xiao-Hua

    2016-06-21

    To investigate the effects of different parameters of gastric electrical stimulation (GES) on interstitial cells of Cajal (ICCs) and changes in the insulin-like growth factor 1 (IGF-1) signal pathway in streptozotocin-induced diabetic rats. Male rats were randomized into control, diabetic (DM), diabetic with sham GES (DM + SGES), diabetic with GES1 (5.5 cpm, 100 ms, 4 mA) (DM + GES1), diabetic with GES2 (5.5 cpm, 300 ms, 4 mA) (DM + GES2) and diabetic with GES3 (5.5 cpm, 550 ms, 2 mA) (DM + GES3) groups. The expression levels of c-kit, M-SCF and IGF-1 receptors were evaluated in the gastric antrum using Western blot analysis. The distribution of ICCs was observed using immunolabeling for c-kit, while smooth muscle cells and IGF-1 receptors were identified using α-SMA and IGF-1R antibodies. Serum level of IGF-1 was tested using enzyme-linked immunosorbent assay. Gastric emptying was delayed in the DM group but improved in all GES groups, especially in the GES2 group. The expression levels of c-kit, M-SCF and IGF-1R were decreased in the DM group but increased in all GES groups. More ICCs (c-kit(+)) and smooth muscle cells (α-SMA(+)/IGF-1R(+)) were observed in all GES groups than in the DM group. The average level of IGF-1 in the DM group was markedly decreased, but it was up-regulated in all GES groups, especially in the GES2 group. The results suggest that long-pulse GES promotes the regeneration of ICCs. The IGF-1 signaling pathway might be involved in the mechanism underlying this process, which results in improved gastric emptying.

  11. IGF-1 Receptor Expression on Circulating Osteoblast Progenitor Cells Predicts Tissue-Based Bone Formation Rate and Response to Teriparatide in Premenopausal Women With Idiopathic Osteoporosis.

    PubMed

    Cohen, Adi; Kousteni, Stavroula; Bisikirska, Brygida; Shah, Jayesh G; Manavalan, J Sanil; Recker, Robert R; Lappe, Joan; Dempster, David W; Zhou, Hua; McMahon, Donald J; Bucovsky, Mariana; Kamanda-Kosseh, Mafo; Stubby, Julie; Shane, Elizabeth

    2017-06-01

    We have previously reported that premenopausal women with idiopathic osteoporosis (IOP) have profound microarchitectural deficiencies and heterogeneous bone remodeling. Those with the lowest bone formation rate have higher baseline serum insulin-like growth factor-1 (IGF-1) levels and less robust response to teriparatide. Because IGF-1 stimulates bone formation and is critical for teriparatide action on osteoblasts, these findings suggest a state of IGF-1 resistance in some IOP women. To further investigate the hypothesis that osteoblast and IGF-1-related mechanisms mediate differential responsiveness to teriparatide in IOP, we studied circulating osteoblast progenitor (COP) cells and their IGF-1 receptor (IGF-1R) expression. In premenopausal women with IOP, peripheral blood mononuclear cells (PBMCs) were obtained at baseline (n = 25) and over 24 months of teriparatide treatment (n = 11). Flow cytometry was used to identify and quantify COPs (non-hematopoetic lineage cells expressing osteocalcin and RUNX2) and to quantify IGF-1R expression levels. At baseline, both the percent of PBMCs that were COPs (%COP) and COP cell-surface IGF-1R expression correlated directly with several histomorphometric indices of bone formation in tetracycline-labeled transiliac biopsies. In treated subjects, both %COP and IGF-1R expression increased promptly after teriparatide, returning toward baseline by 18 months. Although neither baseline %COP nor increase in %COP after 3 months predicted the bone mineral density (BMD) response to teriparatide, the percent increase in IGF-1R expression on COPs at 3 months correlated directly with the BMD response to teriparatide. Additionally, lower IGF-1R expression after teriparatide was associated with higher body fat, suggesting links between teriparatide resistance, body composition, and the GH/IGF-1 axis. In conclusion, these assays may be useful to characterize bone remodeling noninvasively and may serve to predict early response to

  12. Insulin/IGF1 Signaling Inhibits Age-Dependent Axon Regeneration

    PubMed Central

    Byrne, Alexandra B.; Walradt, Trent; Gardner, Kathryn E.; Hubbert, Austin; Reinke, Valerie; Hammarlund, Marc

    2014-01-01

    Summary The ability of injured axons to regenerate declines with age yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2’s function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron specific, and genetically regulated process. In addition, we found that daf-18/PTEN inhibits regeneration independently of age and FOXO signaling, via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and is required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons, and that this mechanism is independent of PTEN and TOR. PMID:24440228

  13. Impairment of GH/IGF-1 Axis in the Liver of Patients with HCV-Related Chronic Hepatitis.

    PubMed

    Carotti, Simone; Guarino, Michele Pier Luca; Valentini, Francesco; Porzio, Silvio; Vespasiani-Gentilucci, Umberto; Perrone, Giuseppe; Zingariello, Maria; Gallo, Paolo; Cicala, Michele; Picardi, Antonio; Morini, Sergio

    2018-02-01

    Resistance to the action of growth hormone (GH) frequently complicates liver cirrhosis, while, physiologically, the activation of GH receptor (GHR) determines phosphorylation of signal transducer and activator of transcription (STAT)-5 and the consequent induction of insulin-like growth factor-1 (IGF-1) expression. The suppressor of cytokine signaling (SOCS)-3 negatively regulates this intracellular cascade. We aimed to evaluate the hepatic expression of the GH/IGF-1 axis components in the liver of patients with HCV-related chronic hepatitis at different fibrosis stages. The expression of GH/IGF-1 axis components, such as GHR, IGF-1, STAT5-p, and SOCS-3, was assessed by immunohistochemistry at the lobular level in 61 patients with HCV-related hepatitis. At the hepatocyte level, IGF-1 and nuclear STAT5-p positivity scores showed negative correlations with fibrosis stage, while SOCS-3 score a positive one (p<0.05 for all). Furthermore, the reduction of hepatocyte score of IGF-1 expression was associated with the serological parameters of liver damage (p<0.05) and with the increase of the score of IGF-1 expression by hepatic stellate cells (p<0.05). IGF-1 expression by hepatocytes was reduced with fibrosis progression, probably due to the impairment of GHR intracellular cascade by the SOCS-3 activation already in pre-cirrhotic stages. The inverse correlation between IGF-1 expressed by hepatocytes and by hepatic stellate cells suggests that IGF-1 may exert specific functions in different hepatic cells. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Enhancement of doxorubicin cytotoxicity of human cancer cells by tyrosine kinase inhibition of insulin receptor and type I IGF receptor

    PubMed Central

    Zeng, Xianke; Zhang, Hua; Oh, Annabell; Zhang, Yan; Yee, Douglas

    2015-01-01

    The type I insulin-like growth factor receptor (IGF1R) contributes to cancer cell biology. Disruption of IGF1R signaling alone or in combination with cytotoxic agents has emerged as a new therapeutic strategy. Our laboratory has shown that sequential treatment with doxorubicin (DOX) and anti-IGF1R antibodies significantly enhanced the response to chemotherapy. In this study, we examined whether inhibition of the tyrosine kinase activity of this receptor family would also enhance chemotherapy response. Cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1,5-a]pyrazin-8-ylamine (PQIP) inhibited IGF1R and insulin receptor (InsR) kinase activity and downstream activation of ERK1/2 and Akt in MCF-7 and LCC6 cancer cells. PQIP inhibited both monolayer growth and anchorage-independent growth in a dose-dependent manner. PQIP did not induce apoptosis, but rather, PQIP treatment was associated with an increase in autophagy. We examined whether sequential or combination therapy of PQIP with DOX could enhance growth inhibition. PQIP treatment together with DOX or DOX followed by PQIP significantly inhibited anchorage-independent growth in MCF-7 and LCC6 cells compared to single agent alone. In contrast, pre-treatment with PQIP followed by DOX did not enhance the cytotoxicity of DOX in vitro. Furthermore, OSI-906, a PQIP derivative, inhibited IGF-I signaling in LCC6 xenograft tumors in vivo. When given once a week, simultaneous administration of OSI-906 and DOX significantly enhanced the anti-tumor effect of DOX. In summary, these results suggest that timing and duration of the IGF1R/InsR tyrosine kinase inhibitors with chemotherapeutic agents should be evaluated in clinical trials. Long-term disruption of IGF1R/InsR may not be necessary when combined with cytotoxic chemotherapy. PMID:21850397

  15. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1

    NASA Technical Reports Server (NTRS)

    Musaro, A.; McCullagh, K. J.; Naya, F. J.; Olson, E. N.; Rosenthal, N.

    1999-01-01

    Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.

  16. Does IGF-1 play a role in the biology of ovarian cancer?

    PubMed

    Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej; Głowacka, Ewa; Wilczyński, Miłosz

    2018-01-01

    The aim of the study was to investigate serum concentrations of the insulin-like growth factor-1 in women with ovarian cancer and healthy controls, and to compare free IGF-1 levels with selected clinical and pathological param-eters. Correlation analysis was used to measure the following: IGF-1 concentration and Ca125; IGF-1 level and the height of the OC patients. The study included 70 patients with OC and 50 healthy controls. Serum concentrations of free IGF-1 were measured in all subjects. Routine diagnostic tests (CBC and USG and Ca125) were performed. Significantly higher serum concentrations of free IGF-1 were found in the study group as compared to controls. No statistically significant relationships between IGF-1 serum concentrations and tumor differentiation, histological type, and disease stage were detected. No statistically significant correlations between IGF-1 and Ca125 level or between IGF-1 and growth of OC patients were found. Serum IGF-1 participates in the etiopathogenesis of ovarian cancer in menstruating women, while local synthesis of this factor and other components of the autocrine loop of the IGF-1 system play a greater role in their post-menopausal peers.

  17. IGF-1 deficiency causes atrophic changes associated with upregulation of VGluT1 and downregulation of MEF2 transcription factors in the mouse cochlear nuclei.

    PubMed

    Fuentes-Santamaría, V; Alvarado, J C; Rodríguez-de la Rosa, L; Murillo-Cuesta, S; Contreras, J; Juiz, J M; Varela-Nieto, I

    2016-03-01

    Insulin-like growth factor 1 (IGF-1) is a neurotrophic protein that plays a crucial role in modulating neuronal function and synaptic plasticity in the adult brain. Mice lacking the Igf1 gene exhibit profound deafness and multiple anomalies in the inner ear and spiral ganglion. An issue that remains unknown is whether, in addition to these peripheral abnormalities, IGF-1 deficiency also results in structural changes along the central auditory pathway that may contribute to an imbalance between excitation and inhibition, which might be reflected in abnormal auditory brainstem responses (ABR). To assess such a possibility, we evaluated the morphological and physiological alterations in the cochlear nucleus complex of the adult mouse. The expression and distribution of the vesicular glutamate transporter 1 (VGluT1) and the vesicular inhibitory transporter (VGAT), which were used as specific markers for labeling excitatory and inhibitory terminals, and the involvement of the activity-dependent myocyte enhancer factor 2 (MEF2) transcription factors in regulating excitatory synapses were assessed in a 4-month-old mouse model of IGF-1 deficiency and neurosensorial deafness (Igf1 (-/-) homozygous null mice). The results demonstrate decreases in the cochlear nucleus area and cell size along with cell loss in the cochlear nuclei of the deficient mouse. Additionally, our results demonstrate that there is upregulation of VGluT1, but not VGAT, immunostaining and downregulation of MEF2 transcription factors together with increased wave II amplitude in the ABR recording. Our observations provide evidence of an abnormal neuronal cytoarchitecture in the cochlear nuclei of Igf1 (-/-) null mice and suggest that the increased efficacy of glutamatergic synapses might be mediated by MEF2 transcription factors.

  18. IGF-1 Promotes Brn-4 Expression and Neuronal Differentiation of Neural Stem Cells via the PI3K/Akt Pathway

    PubMed Central

    Zhang, Xinhua; Zhang, Lei; Cheng, Xiang; Guo, Yuxiu; Sun, Xiaohui; Chen, Geng; Li, Haoming; Li, Pengcheng; Lu, Xiaohui; Tian, Meiling; Qin, Jianbing; Zhou, Hui; Jin, Guohua

    2014-01-01

    Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways. PMID:25474202

  19. NREM sleep architecture and relation to GH/IGF-1 axis in Laron syndrome.

    PubMed

    Verrillo, Elisabetta; Bizzarri, Carla; Cappa, Marco; Bruni, Oliviero; Pavone, Martino; Cutrera, Renato

    2010-01-01

    Laron syndrome (LS), known as growth hormone (GH) receptor deficiency, is a rare form of inherited GH resistance. Sleep disorders were described as a common feature of adult LS patients, while no data are available in children. Bi-directional interactions between human sleep and the somatotropic system were previously described, mainly between slow wave sleep and the nocturnal GH surge. To analyze the sleep macro- and microstructure in LS and to evaluate the influence of substitutive insulin-like growth factor 1 (IGF-1) therapy on it. Two young LS females underwent polysomnography; the first study was performed during IGF-1 therapy, the second one after a 3-month wash-out period. In both patients, the sleep macrostructure showed that time in bed, sleep period time, total sleep time, sleep efficiency and rapid eye movement (REM) percentage were all increased during wash-out. The sleep microstructure (cyclic alternating pattern: CAP) showed significantly higher EEG slow oscillations (A1%) in NREM sleep, both during IGF-1 therapy and wash-out. Sleep macrostructure in LS children is slightly affected by substitutive IGF-1 therapy. Sleep microstructure shows an increase of A1%, probably related to abnormally high hypothalamic GHRH secretion, due to GH insensitivity. Copyright 2010 S. Karger AG, Basel.

  20. Conditional VHL Gene Deletion Causes Hypoglycemic Death Associated with Disproportionately Increased Glucose Uptake by Hepatocytes through an Upregulated IGF-I Receptor

    PubMed Central

    Kurabayashi, Atsushi; Kakinuma, Yoshihiko; Morita, Taku; Inoue, Keiji; Sato, Takayuki; Furihata, Mutsuo

    2013-01-01

    Our conditional VHL knockout (VHL-KO) mice, having VHL gene deletion induced by tamoxifen, developed severe hypoglycemia associated with disproportionately increased storage of PAS-positive substances in the liver and resulted in the death of these mice. This hypoglycemic state was neither due to impaired insulin secretion nor insulin receptor hypersensitivity. By focusing on insulin-like growth factor I (IGF-I), which has a similar effect on glucose metabolism as the insulin receptor, we demonstrated that IGF-I receptor (IGF-IR) protein expression in the liver was upregulated in VHL-KO mice compared to that in the mice without VHL deletion, as was the expression of glucose transporter (GLUT) 1. The interaction of the receptor for activated C kinase (RACK) 1, which predominantly binds to VHL, was enhanced in VHL-KO livers with IGF-IR, because VHL deletion increased free RACK1 and facilitated the IGF-IR-RACKI interaction. An IGF-IR antagonist retarded hypoglycemic progression and sustained an euglycemic state. These IGF-IR antagonist effects on restoring blood glucose levels also attenuated PAS-positive substance storage in the liver. Because the effect of IGF-I on HIF-1α protein synthesis is mediated by IGF-IR, our results indicated that VHL inactivation accelerated hepatic glucose storage through the upregulation of IGF-IR and GLUT1 and that IGF-IR was a key regulator in VHL-deficient hepatocytes. PMID:23874892

  1. IGF-1, IGFBP-1, and IGFBP-3 polymorphisms predict circulating IGF levels but not breast cancer risk: findings from the Breast and Prostate Cancer Cohort Consortium (BPC3).

    PubMed

    Patel, Alpa V; Cheng, Iona; Canzian, Federico; Le Marchand, Loïc; Thun, Michael J; Berg, Christine D; Buring, Julie; Calle, Eugenia E; Chanock, Stephen; Clavel-Chapelon, Francoise; Cox, David G; Dorronsoro, Miren; Dossus, Laure; Haiman, Christopher A; Hankinson, Susan E; Henderson, Brian E; Hoover, Robert; Hunter, David J; Kaaks, Rudolf; Kolonel, Laurence N; Kraft, Peter; Linseisen, Jakob; Lund, Eiliv; Manjer, Jonas; McCarty, Catherine; Peeters, Petra H M; Pike, Malcolm C; Pollak, Michael; Riboli, Elio; Stram, Daniel O; Tjonneland, Anne; Travis, Ruth C; Trichopoulos, Dimitrios; Tumino, Rosario; Yeager, Meredith; Ziegler, Regina G; Feigelson, Heather Spencer

    2008-07-02

    IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-tagging single nucleotide polymorphisms (htSNP) were selected to provide high coverage of common haplotypes; the haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12% change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women.

  2. Reference values for serum levels of insulin-like growth factor 1 (IGF-1) and IGF-binding protein 3 (IGFBP-3) in the West Black Sea region of Turkey.

    PubMed

    Guven, Berrak; Can, Murat; Mungan, Gorkem; Acіkgoz, Serefden

    2013-03-01

    The aim of this study was to determine the normal values of serum IGF-1 and IGFBP-3 in Turkish children and adults (1-79 years). The study included 571 healthy children and 625 healthy adults from the West Black Sea region of Turkey. Serum IGF-1 and IGFBP-3 concentrations were determined using a chemiluminescent immunometric assay on an Immulite 1000 analyzer. IGF-1 and IGFBP-3 levels tended to be higher in girls compared to boys among the children. The differences were statistically significant in puberty from age 12-14 years for IGF-1 and prepubertally from age 9-10 years for IGFBP-3. Peaks of serum IGF-1 levels were observed 2 years earlier in girls (14 years) than boys (16 years). The general pattern of IGFBP-3 was similar to IGF-1 during puberty. In adults, IGF-1 and IGFBP-3 levels decreased by age. There was no significant difference in IGF-1 and IGFBP3 values between men and women in any age group. This study established age- and sex-specific reference values for serum IGF-1 and IGFBP-3 in healthy Turkish children and adults.

  3. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    PubMed

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  4. Expanding the clinical spectrum of chromosome 15q26 terminal deletions associated with IGF-1 resistance.

    PubMed

    O'Riordan, Aisling M; McGrath, Niamh; Sharif, Farhana; Murphy, Nuala P; Franklin, Orla; Lynch, Sally Ann; O'Grady, Michael J

    2017-01-01

    Haploinsufficiency of the insulin-like growth factor-1 receptor (IGF1R) gene on chromosome 15q26.3 is associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. Terminal deletions of chromosome 15q26 arising more proximally may also be associated with congenital heart disease, epilepsy, diaphragmatic hernia and renal anomalies. We report three additional cases of 15q26 terminal deletions with novel features which may further expand the spectrum of this rarely reported contiguous gene syndrome. Phenotypic features including neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been reported previously. Similarly, laboratory features of insulin-like growth factor 1 (IGF-1) resistance are described, including markedly elevated IGF-1 of up to +4.7 SDS. In one patient, the elevated IGF-1 declined over time and this coincided with a period of spontaneous growth acceleration. Deletions of 15q26 are a potential risk factor for aortic root dilatation, neonatal lymphedema and aplasia cutis in addition to causing growth restriction. What is Known: • Terminal deletions of chromosome 15q26 are associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. What is New: • Neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been previously described in 15q26 terminal deletions and may represent novel features. • IGF-1 levels may be increased up to 4.7 SDS.

  5. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity.

    PubMed

    Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C; Ladurner, Andreas G; Rosenthal, Nadia

    2009-12-10

    Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD(+)-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic.

  6. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity

    PubMed Central

    Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C.; Ladurner, Andreas G.; Rosenthal, Nadia

    2010-01-01

    Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD+-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic. PMID:20228935

  7. Drug Synergy Screen and Network Modeling in Dedifferentiated Liposarcoma Identifies CDK4 and IGF1R as Synergistic Drug Targets

    PubMed Central

    Miller, Martin L.; Molinelli, Evan J.; Nair, Jayasree S.; Sheikh, Tahir; Samy, Rita; Jing, Xiaohong; He, Qin; Korkut, Anil; Crago, Aimee M.; Singer, Samuel; Schwartz, Gary K.; Sander, Chris

    2014-01-01

    Dedifferentiated liposarcoma (DDLS) is a rare but aggressive cancer with high recurrence and low response rates to targeted therapies. Increasing treatment efficacy may require combinations of targeted agents that counteract the effects of multiple abnormalities. To identify a possible multicomponent therapy, we performed a combinatorial drug screen in a DDLS-derived cell line and identified cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor (IGF1R) as synergistic drug targets. We measured the phosphorylation of multiple proteins and cell viability in response to systematic drug combinations and derived computational models of the signaling network. These models predict that the observed synergy in reducing cell viability with CDK4 and IGF1R inhibitors depend on activity of the AKT pathway. Experiments confirmed that combined inhibition of CDK4 and IGF1R cooperatively suppresses the activation of proteins within the AKT pathway. Consistent with these findings, synergistic reductions in cell viability were also found when combining CDK4 inhibition with inhibition of either AKT or epidermal growth factor receptor (EGFR), another receptor similar to IGF1R that activates AKT. Thus, network models derived from context-specific proteomic measurements of systematically perturbed cancer cells may reveal cancer-specific signaling mechanisms and aid in the design of effective combination therapies. PMID:24065146

  8. Does the GH/IGF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies.

    PubMed

    Liu, Zhongbo; Mohan, Subburaman; Yakar, Shoshana

    2016-04-01

    The contribution of the gonadotropic axis to skeletal sexual dimorphism (SSD) was clarified in recent years. Studies with animal models of estrogen receptor (ER) or androgen receptor (AR) null mice, as well as mice with bone cell-specific ablation of ER or AR, revealed that both hormones play major roles in skeletal acquisition, and that estrogen regulates skeletal accrual in both sexes. The growth hormone (GH) and its downstream effector, the insulin-like growth factor-1 (IGF-1) are also major determinants of peak bone mass during puberty and young adulthood, and play important roles in maintaining bone integrity during aging. A few studies in both humans and animal models suggest that in addition to the differences in sex steroid actions on bone, sex-specific effects of GH and IGF-1 play essential roles in SSD. However, the contributions of the somatotropic (GH/IGF-1) axis to SSD are controversial and data is difficult to interpret. GH/IGF-1 are pleotropic hormones that act in an endocrine and autocrine/paracrine fashion on multiple tissues, affecting body composition as well as metabolism. Thus, understanding the contribution of the somatotropic axis to SSD requires the use of mouse models that will differentiate between these two modes of action. Elucidation of the relative contribution of GH/IGF-1 axis to SSD is significant because GH is approved for the treatment of normal children with short stature and children with congenital growth disorders. Thus, if the GH/IGF-1 axis determines SSD, treatment with GH may be tailored according to sex. In the following review, we give an overview of the roles of sex steroids in determining SSD and how they may interact with the GH/IGF-1 axis in bone. We summarize several mouse models with impaired somatotropic axis and speculate on the possible contribution of that axis to SSD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Insulin-like growth factor (IGF) binding protein from human decidua inhibits the binding and biological action of IGF-I in cultured choriocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritvos, O.; Ranta, T.; Jalkanen, J.

    1988-05-01

    The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purifiedmore » 34 K IGF-BP specifically bound (125I)iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of (125I) iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of (125I) iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with (125I)iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-(3H)aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells.« less

  10. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models.

    PubMed

    Yakar, Shoshana; Isaksson, Olle

    2016-06-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models

    PubMed Central

    Yakar, Shoshana; Isaksson, Olle

    2015-01-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. PMID:26432542

  12. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung

  13. High-dose atorvastatin is associated with lower IGF-1 levels in patients with type 1 diabetes.

    PubMed

    Bergen, Karin; Brismar, Kerstin; Tehrani, Sara

    2016-08-01

    Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 (IGFBP-1) play an important role in vascular health. Many patients with type 1 diabetes are medicated with HMG-CoA reductase inhibitors, statins, in order to prevent vascular complications. Yet little is known about the effect of statins on the IGF-1/IGFBP-1 axis in these patients. The aim of this study was to evaluate the effect of atorvastatin treatment on IGF-1 and IGFBP-1 with regards to microvascular function. Twenty patients with type 1 diabetes received either placebo or 80mg atorvastatin for two months in a double-blinded cross-over study. IGF-1 and IGFBP-1 levels were assessed before and after each treatment period. Skin microcirculation was studied using Doppler perfusion imaging during iontophoresis of acetylcholine and sodium nitroprusside to assess endothelium-dependent and endothelium-independent microvascular reactivity, respectively. Treatment with high-dose atorvastatin was associated with a significant decrease in IGF-1 levels compared to placebo (p<0.05, ANOVA repeated measures), whereas no effect was seen on IGFBP-1 or the IGF-1/IGFBP-1 ratio. These variables did not correlate with measurements of skin microvascular reactivity. The study found that treatment with high-dose atorvastatin was associated with reduced IGF-1 levels, which may indicate a potential negative effect on microvascular function and long-term risk of microangiopathy development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Does soy protein affect circulating levels of unbound IGF-1?

    PubMed

    Messina, Mark; Magee, Pamela

    2018-03-01

    Despite the enormous amount of research that has been conducted on the role of soyfoods in the prevention and treatment of chronic disease, the mechanisms by which soy exerts its physiological effects are not fully understood. The clinical data show that neither soyfoods nor soy protein nor isoflavones affect circulating levels of reproductive hormones in men or women. However, some research suggests that soy protein, but not isoflavones, affects insulin-like growth factor I (IGF-1). Since IGF-1 may have wide-ranging physiological effects, we sought to determine the effect of soy protein on IGF-1 and its major binding protein insulin-like growth factor-binding protein (IGFBP-3). Six clinical studies were identified that compared soy protein with a control protein, albeit only two studies measured IGFBP-3 in addition to IGF-1. Although the data are difficult to interpret because of the different experimental designs employed, there is some evidence that large amounts of soy protein (>25 g/day) modestly increase IGF-1 levels above levels observed with the control protein. The clinical data suggest that a decision to incorporate soy into the diet should not be based on its possible effects on IGF-1.

  15. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway.

    PubMed

    Yu, Minli; Wang, Huan; Xu, Yali; Yu, Debing; Li, Dongfeng; Liu, Xiuhong; Du, Wenxing

    2015-08-01

    During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos. The results show that IGF-1 significantly induces the proliferation of cultured myoblasts in a dose-dependent manner. Additionally, the IGF-1 treatment significantly promoted myoblasts entering a new cell cycle and increasing the mRNA expression levels of cell cycle-dependent genes. However, these effects were inhibited by the PI3K inhibitor LY294002 and the Akt inhibitor KP372-1. These data indicated that the pro-proliferative effect of IGF-1 was mediated in response to the PI3K/Akt signalling pathway. Moreover, we also showed that exogenous IGF-1 stimulated myoblast proliferation in vivo. IGF-1 administration obviously promoted the incorporation of BrdU and remarkably increased the number of PAX7-positive cells in the skeletal muscle of chicken embryos. Administration of IGF-1 also significantly induced the upregulation of myogenic factors gene, the enhancement of c-Myc and the inhibition of myostatin (Mstn) expression. These findings demonstrate that IGF-1 has strong activity as a promoter of myoblast expansion and muscle fiber formation during early myogenesis. Therefore, this study offers insight into the mechanisms responsible for IGF-1-mediated stimulation of embryonic skeletal muscle development, which could have important implications for the improvement of chicken meat production. © 2015 International Federation for Cell Biology.

  16. Sensitizing Triple-Negative Breast Cancer to PI3K Inhibition by Cotargeting IGF1R.

    PubMed

    de Lint, Klaas; Poell, Jos B; Soueidan, Hayssam; Jastrzebski, Katarzyna; Vidal Rodriguez, Jordi; Lieftink, Cor; Wessels, Lodewyk F A; Beijersbergen, Roderick L

    2016-07-01

    Targeted therapies have proven invaluable in the treatment of breast cancer, as exemplified by tamoxifen treatment for hormone receptor-positive tumors and trastuzumab treatment for HER2-positive tumors. In contrast, a subset of breast cancer negative for these markers, triple-negative breast cancer (TNBC), has met limited success with pathway-targeted therapies. A large fraction of TNBCs depend on the PI3K pathway for proliferation and survival, but inhibition of PI3K alone generally has limited clinical benefit. We performed an RNAi-based genetic screen in a human TNBC cell line to identify kinases whose knockdown synergizes with the PI3K inhibitor GDC-0941 (pictilisib). We discovered that knockdown of insulin-like growth factor-1 receptor (IGF1R) expression potently increased sensitivity of these cells to GDC-0941. Pharmacologic inhibition of IGF1R using OSI-906 (linsitinib) showed a strong synergy with PI3K inhibition. Furthermore, we found that the combination of GDC-0941 and OSI-906 is synergistic in 8 lines from a panel of 18 TNBC cell lines. In these cell lines, inhibition of IGF1R further decreases the activity of downstream PI3K pathway components when PI3K is inhibited. Expression analysis of the panel of TNBC cell lines indicates that the expression levels of IGF2BP3 can be used as a potential predictor for sensitivity to the PI3K/IGF1R inhibitor combination. Our data show that combination therapy consisting of PI3K and IGF1R inhibitors could be beneficial in a subset of TNBCs. Mol Cancer Ther; 15(7); 1545-56. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Differential Regulation of Hippocampal IGF-1-Associated Signaling Proteins by Dietary Restriction in Aging Mouse.

    PubMed

    Hadem, Ibanylla Kynjai Hynniewta; Sharma, Ramesh

    2017-08-01

    Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective

  18. Serum levels of bioactive IGF1 and physiological markers of ageing in healthy adults.

    PubMed

    Vestergaard, Poul Frølund; Hansen, Mette; Frystyk, Jan; Espelund, Ulrick; Christiansen, Jens S; Jørgensen, Jens Otto Lunde; Fisker, Sanne

    2014-02-01

    Senescent changes in body composition and muscle strength are accompanied by reduced production of GH and IGF1, but the causal relationship remains elusive. We speculate that serum bioactive IGF1, measured by the IGF1 kinase receptor activation assay, is closer related to human physiological ageing than total IGF1 measured by immunoassay. We conducted a cross-sectional study in 150 adult males and females, between 20 and 70 years. After an overnight fasting, serum levels of bioactive IGF1, total IGF1 and IGF-binding protein 1 (IGFBP1) and IGFBP3 were assessed. Furthermore, body composition and muscle strength was measured. Total IGF1 levels were higher in females (P=0.048). Bioactive IGF1 were identical in males and females (P=0.31), decreasing with age. Total IGF1 tended to decrease more with age compared with bioactive IGF1 (-1.48 vs -0.89 percent/year, P=0.052). Total body fat (TBF) was lower and BMI was higher in males (P<0.001 and P=0.005), and both increased with age. Knee extension and elbow flexion force were higher in males (P=0.001 and P=0.001), but decreased with age in both genders.  Total but not bioactive IGF1 was positively correlated to TBF, knee extension and muscle function in males. In multiple linear regression, only age predicted total IGF1, whereas age and IGFBP1 predicted bioactive IGF1. Bioactive IGF1 tends to decrease to a lesser extent than total IGF1 with age and was not correlated with measures of body composition or muscle strength. Therefore, levels of circulating bioactive IGF1 does not appear to be a better biomarker of physiological ageing than total IGF1.

  19. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    PubMed Central

    Locatelli, Vittorio; Bianchi, Vittorio E.

    2014-01-01

    Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered. PMID:25147565

  20. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R.

    PubMed

    Patel, Bhaumik B; Gupta, Deepshika; Elliott, Althea A; Sengupta, Vivek; Yu, Yingjie; Majumdar, Adhip P N

    2010-02-01

    Curcumin (diferuloylmethane), which has no discernible toxicity, inhibits initiation, promotion and progression of carcinogenesis. 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but produces an incomplete response resulting in survival of cells (chemo-surviving cells) that may lead to cancer recurrence. The present investigation was, therefore, undertaken to examine whether addition of curcumin to FOLFOX is a superior therapeutic strategy for chemo-surviving cells. Forty-eight-hour treatment of colon cancer HCT-116 and HT-29 cells with FOLFOX resulted in 60-70% survival, accompanied by a marked activation of insulin like growth factor-1 receptor (IGF-1R) and minor to moderate increase in epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2) as well as v-akt murine thymoma viral oncogene homolog 1 (AKT), cyclooxygenase-2 (COX-2) and cyclin-D1. However, inclusion of curcumin to continued FOLFOX treatment for another 48 h greatly reduced the survival of these cells, accompanied by a concomitant reduction in activation of EGFR, HER-2, IGF-1R and AKT, as well as expression of COX-2 and cyclin-D1. More importantly, EGFR tyrosine kinase inhibitor gefitinib or attenuation of IGF-1R expression by the corresponding si-RNA caused a 30-60% growth inhibition of chemo-surviving HCT-116 cells. However, curcumin alone was found to be more effective than both gefitinib and IGF-1R si-RNA mediated growth inhibition of chemo-surviving HCT-116 cells and addition of FOLFOX to curcumin did not increase the growth inhibitory effect of curcumin. Our data suggest that inclusion of curcumin in conventional chemotherapeutic regimens could be an effective strategy to prevent the emergence of chemoresistant colon cancer cells.

  1. IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge.

    PubMed

    Spadaro, Olga; Camell, Christina D; Bosurgi, Lidia; Nguyen, Kim Y; Youm, Yun-Hee; Rothlin, Carla V; Dixit, Vishwa Deep

    2017-04-11

    In concert with their phagocytic activity, macrophages are thought to regulate the host immunometabolic responses primarily via their ability to produce specific cytokines and metabolites. Here, we show that IL-4-differentiated, M2-like macrophages secrete IGF1, a hormone previously thought to be exclusively produced from liver. Ablation of IGF1 receptors from myeloid cells reduced phagocytosis, increased macrophages in adipose tissue, elevated adiposity, lowered energy expenditure, and led to insulin resistance in mice fed a high-fat diet. The investigation of adipose macrophage phenotype in obese myeloid IGF1R knockout (MIKO) mice revealed a reduction in transcripts associated with M2-like macrophage activation. Furthermore, the MIKO mice infected with helminth Nippostrongylus brasiliensis displayed delayed resolution from infection with normal insulin sensitivity. Surprisingly, cold challenge did not trigger an overt M2-like state and failed to induce tyrosine hydroxylase expression in adipose tissue macrophages of control or MIKO mice. These results show that IGF1 signaling shapes the macrophage-activation phenotype. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Elucidating the role of the FoxO3a transcription factor in the IGF-1-induced migration and invasion of uveal melanoma cancer cells.

    PubMed

    Yan, Fengxia; Liao, Rifang; Farhan, Mohd; Wang, Tinghuai; Chen, Jiashu; Wang, Zhong; Little, Peter J; Zheng, Wenhua

    2016-12-01

    Uveal melanoma (UM) is the most common primary intraocular malignant tumor of adults. It has high mortality rate due to liver metastasis. However, the epidemiology and pathogenesis of liver metastasis in UM are not elucidated and there is no effective therapy available for preventing the development of this disease. IGF-1 is a growth factor involved in cell proliferation, malignant transformation and inhibition of apoptosis. In previous report, IGF-1 receptor was found to be highly expressed in UM and this was related to tumor prognosis. FoxO3a is a Forkhead box O (FOXO) transcription factor and a downstream target of the IGF-1R/PI3K/Akt pathway involved in a number of physiological and pathological processes including cancer. However, the role of FoxO3a in UM is unknown. In the present study, we investigated fundamental mechanisms in the growth, migration and invasion of UM and the involvement of FoxO3a. IGF-1 increased the cell viability, invasion, migration and S-G2/M cell cycle phase accumulation of UM cells. Western blot analysis showed that IGF-1 led to activation of Akt and concomitant phosphorylation of FoxO3a. FoxO3a phosphorylation was associated with its translocation into the cytoplasm from the nucleus and its functional inhibition led to the inhibition of expression of Bim and p27, but an increase in the expression of Cyclin D1. The effects of IGF-1 on UM cells were reversed by LY294002 (a PI3K inhibitor) or Akt siRNA, and the overexpression of FoxO3a also attenuated basal invasion and migration of UM. Taken all together, these results suggest that inhibition of FoxO3a by IGF-1 via the PI3K/Akt pathway has an important role in IGF-1 induced proliferation and invasion of UM cells. These findings also support FoxO3a and IGF signaling may represent a valid target for investigating the development of new strategies for the treatment and prevention of the pathology of UM. Copyright © 2016. Published by Elsevier Masson SAS.

  3. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF-IIR expression for hypertension-induced cardiomyocyte hypertrophy.

    PubMed

    Huang, Chih-Yang; Lee, Fa-Lun; Peng, Shu-Fen; Lin, Kuan-Ho; Chen, Ray-Jade; Ho, Tsung-Jung; Tsai, Fu-Jen; Padma, Vijaya V; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT 1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. © 2017 Wiley Periodicals, Inc.

  4. Discovery of Benzofuran Derivatives that Collaborate with Insulin-Like Growth Factor 1 (IGF-1) to Promote Neuroprotection.

    PubMed

    Wakabayashi, Takeshi; Tokunaga, Norihito; Tokumaru, Kazuyuki; Ohra, Taiichi; Koyama, Nobuyuki; Hayashi, Satoru; Yamada, Ryuji; Shirasaki, Mikio; Inui, Yoshitaka; Tsukamoto, Tetsuya

    2016-05-26

    A series of benzofuran derivatives with neuroprotective activity in collaboration with IGF-1 was discovered using a newly developed cell-based assay involving primary neural cells prepared from rat hippocampal and cerebral cortical tissues. A structure-activity relationship study identified compound 8 as exhibiting potent activity and brain penetrability. An in vitro pharmacological study demonstrated that although IGF-1 and 8 individually exhibited the neuroprotective effect, the latter acted in collaboration with IGF-1 to enhance neuroprotective activity.

  5. Effects of space flight and IGF-1 on immune function

    NASA Astrophysics Data System (ADS)

    1999-01-01

    We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2- secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.

  6. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide

    PubMed Central

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X.; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J.; Margison, Geoffrey P.; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R.; Macaulay, Valentine M.

    2015-01-01

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  7. IGF-1 and BDNF promote chick bulbospinal neurite outgrowth in vitro.

    PubMed

    Salie, Rishard; Steeves, John D

    2005-11-01

    Injured neurons in the CNS do not experience significant functional regeneration and so spinal cord insult often results in permanently compromised locomotor ability. The capability of a severed axon to re-grow is thought to depend on numerous factors, one of which is the decreased availability of neurotrophic factors. Application of trophic factors to axotomized neurons has been shown to enhance survival and neurite outgrowth. Although brainstem-spinal connections play a pivotal role in motor dysfunction after spinal cord injury, relatively little is known about the trophic sensitivity of these populations. This study explores the response of bulbospinal populations to various trophic factors. Several growth factors were initially examined for potential trophic effects on the projection neurons of the brainstem. Brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) significantly enhance mean process length in both the vestibulospinal neurons and spinal projection neurons from the raphe nuclei. Nerve growth factor (NGF), neurotrophin-4 (NT-4) and glial derived neurotrophic factor (GDNF) did not effect process outgrowth in vestibulospinal neurons. At the developmental stages used in this study, it was determined that receptors for BDNF and IGF-1 were present both on bulbospinal neurons and on surrounding cells with a non-neuronal morphology.

  8. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  9. The insulin-like growth factor-1 receptor inhibitor PPP produces only very limited resistance in tumor cells exposed to long-term selection.

    PubMed

    Vasilcanu, D; Weng, W-H; Girnita, A; Lui, W-O; Vasilcanu, R; Axelson, M; Larsson, O; Larsson, C; Girnita, L

    2006-05-25

    The cyclolignan PPP was recently demonstrated to inhibit the activity of insulin-like growth factor-1 receptor (IGF-1R), without affecting the highly homologous insulin receptor. In addition, PPP caused complete regression of xenografts derived from various types of cancer. These data highlight the use of this compound in cancer treatment. However, a general concern with antitumor agents is development of resistance. In light of this problem, we aimed to investigate whether malignant cells may develop serious resistance to PPP. After trying to select 10 malignant cell lines, with documented IGF-1R expression and apoptotic responsiveness to PPP treatment (IC50s less than 0.1 microM), only two survived an 80-week selection but could only tolerate maximal PPP doses of 0.2 and 0.5 microM, respectively. Any further increase in the PPP dose resulted in massive cell death. These two cell lines were demonstrated not to acquire any essential alteration in responsiveness to PPP regarding IGF-1-induced IGF-1R phosphorylation. Neither did they exhibit any increase in expression of the multidrug resistance proteins MDR1 or MRP1. Consistently, they did not exhibit decreased sensitivity to conventional cytostatic drugs. Rather, the sensitivity was increased. During the first half of the selection period, both cell lines responded with a temporary and moderate increase in IGF-1R expression, which appeared to be because of an increased transcription of the IGF-1R gene. This increase in IGF-1R might be necessary to make cells competent for further selection but only up to a PPP concentration of 0.2 and 0.5 microM. In conclusion, malignant cells develop no or remarkably weak resistance to the IGF-1R inhibitor PPP.

  10. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    PubMed

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser 318 , Ser 346 , Ser 612 , and Ser 789 , and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. CD24 cell surface expression in Mvt1 mammary cancer cells serves as a biomarker for sensitivity to anti-IGF1R therapy.

    PubMed

    Rostoker, Ran; Ben-Shmuel, Sarit; Rashed, Rola; Shen Orr, Zila; LeRoith, Derek

    2016-05-14

    The pro-tumorigenic effects of the insulin-like growth factor receptor (IGF1R) are well described. IGF1R promotes cancer cell survival and proliferation and prevents apoptosis, and, additionally it was shown that IGF1R levels are significantly elevated in most common human malignancies including breast cancer. However, results from phase 3 clinical trials in unselected patients demonstrated lack of efficacy for anti-IGF1R therapy. These findings suggest that predictive biomarkers are greatly warranted in order to identify patients that will benefit from anti-IGF1R therapeutic strategies. Using the delivery of shRNA vectors into the Mvt1 cell line, we tested the role of the IGF1R in the development of mammary tumors. Based on CD24 cell surface expression, control and IGF1R-knockdown (IGF1R-KD) cells were FACS sorted into CD24(-) and CD24(+) subsets and further characterized in vitro. The tumorigenic capacity of each was determined following orthotopic inoculation into the mammary fat pad of female mice. Tumor cells were FACS characterized upon sacrifice to determine IGF1R effect on the plasticity of this cell's phenotype. Metastatic capacity of the cells was assessed using the tail vein assay. In this study we demonstrate that downregulation of the IGF1R specifically in cancer cells expressing CD24 on the cell surface membrane affect both their morphology (from mesenchymal-like into epithelial-like morphology) and phenotype in vitro. Moreover, we demonstrate that IGF1R-KD abolished both CD24(+) cells capacity to form mammary tumors and lung metastatic lesions. We found in both cells and tumors a marked upregulation in CTFG and a significant reduction of SLP1 expression in the CD24(+)/IGF1R-KD; tumor-suppressor and tumor-promoting genes respectively. Moreover, we demonstrate here that the IGF1R is essential for the maintenance of stem/progenitor-like cancer cells and we further demonstrate that IGF1R-KD induces in vivo differentiation of the CD24(+) cells toward the

  12. Skeletal muscle plasticity induced by seasonal acclimatization involves IGF1 signaling: implications in ribosomal biogenesis and protein synthesis.

    PubMed

    Fuentes, Eduardo N; Zuloaga, Rodrigo; Valdes, Juan Antonio; Molina, Alfredo; Alvarez, Marco

    2014-10-01

    One of the most fundamental biological processes in living organisms that are affected by environmental fluctuations is growth. In fish, skeletal muscle accounts for the largest proportion of body mass, and the growth of this tissue is mainly controlled by the insulin-like growth factor (IGF) system. By using the carp (Cyprinus carpio), a fish that inhabits extreme conditions during winter and summer, we assessed the skeletal muscle plasticity induced by seasonal acclimatization and the relation of IGF signaling with protein synthesis and ribosomal biogenesis. The expression of igf1 in muscle decreased during winter in comparison with summer, whereas the expression for both paralogues of igf2 did not change significantly between seasons. The expression of igf1 receptor a (igf1ra), but not of igf1rb, was down-regulated in muscle during the winter as compared to the summer. A decrease in protein contents and protein phosphorylation for IGF signaling molecules in muscle was observed in winter-acclimatized carp. This was related with a decreased expression in muscle for markers of myogenesis (myoblast determination factor (myod), myogenic factor 5 (myf5), and myogenin (myog)); protein synthesis (myosin heavy chain (mhc) and myosin light chain (mlc3 and mlc1b)); and ribosomal biogenesis (pre-rRNA and ribosomal proteins). IGF signaling, and key markers of ribosomal biogenesis, protein synthesis, and myogenesis were affected by seasonal acclimatization, with differential regulation in gene expression and signaling pathway activation observed in muscle between both seasons. This suggests that these molecules are responsible for the muscle plasticity induced by seasonal acclimatization in carp. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Regulation of Kisspeptin Synthesis and Release in the Preoptic/Anterior Hypothalamic Region of Prepubertal Female Rats: Actions of IGF-1 and Alcohol.

    PubMed

    Hiney, Jill K; Srivastava, Vinod K; Vaden Anderson, Danielle N; Hartzoge, Nicole L; Dees, William L

    2018-01-01

    Alcohol (ALC) causes suppressed secretion of prepubertal luteinizing hormone-releasing hormone (LHRH). Insulin-like growth factor-1 (IGF-1) and kisspeptin (Kp) are major regulators of LHRH and are critical for puberty. IGF-1 may be an upstream mediator of Kp in the preoptic area and rostral hypothalamic area (POA/RHA) of the rat brain, a region containing both Kp and LHRH neurons. We investigated the ability of IGF-1 to stimulate prepubertal Kp synthesis and release in POA/RHA, and the potential inhibitory effects of ALC. Immature female rats were administered either ALC (3 g/kg) or water via gastric gavage at 0730 hours. At 0900 hours, both groups were subdivided where half received either saline or IGF-1 into the brain third ventricle. A second dose of ALC (2 g/kg) or water was administered at 1130 hours. Rats were killed 6 hours after injection and POA/RHA region collected. IGF-1 stimulated Kp, an action blocked by ALC. Upstream to Kp, IGF-1 receptor (IGF-1R) activation, as demonstrated by the increase in insulin receptor substrate 1, resulted in activation of Akt, tuberous sclerosis 2, ras homologue enriched in brain, and mammalian target of rapamycin (mTOR). ALC blocked the central action of IGF-1 to induce their respective phosphorylation. IGF-1 specificity and ALC specificity for the Akt-activated mTOR pathway were demonstrated by the absence of effects on PRAS40. Furthermore, IGF-1 stimulated Kp release from POA/RHA incubated in vitro. IGF-1 stimulates prepubertal Kp synthesis and release following activation of a mTOR signaling pathway, and ALC blocks this pathway at the level of IGF-1R. Copyright © 2017 by the Research Society on Alcoholism.

  14. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    PubMed

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  15. Dystroglycan modulates the ability of insulin-like growth factor-1 to promote oligodendrocyte differentiation.

    PubMed

    Galvin, Jason; Eyermann, Christopher; Colognato, Holly

    2010-11-15

    The adhesion receptor dystroglycan positively regulates terminal differentiation of oligodendrocytes, but the mechanism by which this occurs remains unclear. Using primary oligodendrocyte cultures, we identified and examined a connection between dystroglycan and the ability of insulin-like growth factor-1 (IGF-1) to promote oligodendrocyte differentiation. Consistent with previous reports, treatment with exogenous IGF-1 caused an increase in MBP protein that was preceded by activation of PI3K (AKT) and MAPK (ERK) signaling pathways. The extracellular matrix protein laminin was further shown to potentiate the effect of IGF-1 on oligodendrocyte differentiation. Depletion of the laminin receptor dystroglycan using siRNA, however, blocked the ability of IGF-1 to promote oligodendrocyte differentiation of cells grown on laminin, suggesting a role for dystroglycan in IGF-1-mediated differentiation. Indeed, loss of dystroglycan led to a reduction in the ability of IGF-1 to activate MAPK, but not PI3K, signaling pathways. Pharmacological inhibition of MAPK signaling also prevented IGF-1-induced increases in myelin basic protein (MBP), indicating that MAPK signaling was necessary to drive IGF-1-mediated enhancement of oligodendrocyte differentiation. Using immunoprecipitation, we found that dystroglycan, the adaptor protein Grb2, and insulin receptor substrate-1 (IRS-1), were associated in a protein complex. Taken together, our results suggest that the positive regulatory effect of laminin on oligodendrocyte differentiation may be attributed, at least in part, to dystroglycan's ability to promote IGF-1-induced differentiation.

  16. Lifelong exercise and locally produced insulin-like growth factor-1 (IGF-1) have a modest influence on reducing age-related muscle wasting in mice.

    PubMed

    McMahon, C D; Chai, R; Radley-Crabb, H G; Watson, T; Matthews, K G; Sheard, P W; Soffe, Z; Grounds, M D; Shavlakadze, T

    2014-12-01

    The age-related loss of skeletal muscle mass and function is termed sarcopenia and has been attributed to a decline in concentrations of insulin-like growth factor-1 (IGF-1). We hypothesized that constitutively expressed IGF-1 within skeletal muscles with or without exercise would prevent sarcopenia. Male transgenic mice that overexpress IGF-1 Ea in skeletal muscles were compared with wild-type littermates. Four-month-old mice were assigned to be sedentary, or had access to free-running wheels, until 18 or 28 months of age. In wild-type mice, the mass of the quadriceps muscles was reduced at 28 months and exercise prevented such loss, without affecting the diameter of myofibers. Conversely, increased IGF-1 alone was ineffective, whereas the combination of exercise and IGF-1 was additive in maintaining the diameter of myofibers in the quadriceps muscles. For other muscles, the combination of IGF-1 and exercise was variable and either increased or decreased the mass at 18 months of age, but was ineffective thereafter. Despite an increase in the diameter of myofibers, grip strength was not improved. In conclusion, our data show that exercise and IGF-1 have a modest effect on reducing aged-related wasting of skeletal muscle, but that there is no improvement in muscle function when assessed by grip strength. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor

    PubMed Central

    Hanif, Rumeza; Jabeen, Ishrat; Mansoor, Qaisar; Ismail, Muhammad

    2018-01-01

    Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R. PMID:29787591

  18. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor.

    PubMed

    Khalid, Samra; Hanif, Rumeza; Jabeen, Ishrat; Mansoor, Qaisar; Ismail, Muhammad

    2018-01-01

    Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R.

  19. The impact of the IGF-1 system of cancer cells on radiation response - An in vitro study.

    PubMed

    Venkatachalam, Senthiladipan; Mettler, Esther; Fottner, Christian; Miederer, Matthias; Kaina, Bernd; Weber, Matthias M

    2017-12-01

    Overexpression of the insulin-like growth factor-1 receptor (IGF-1R) is associated with increased cell proliferation, differentiation, transformation, and tumorigenicity. Additionally, signaling involved in the resistance of cancer cells to radiotherapy originates from IGF-1R. The purpose of this study was to investigate the role of the IGF-1 system in the radiation response and further evaluate its effect on the expression of DNA repair pathway genes. To inhibit the IGF-1 system, we stably transfected the Caco-2 cell line to express a kinase-deficient IGF-1R mutant. We then studied the effects of this mutation on cell growth, the response to radiation, and clonogenic survival, as well as using a cell viability assay to examine DNA damage and repair. Finally, we performed immunofluorescence for γ-H2AX to examine double-strand DNA breaks and evaluated the expression of 84 key genes involved in DNA repair with a real-time PCR array. Mutant IGF-1R cells exhibited significantly blunted cell growth and viability, compared to wild-type cells, as well as reduced clonogenic survival after γ-irradiation. However, mutant IGF-1R cells did not show any significant delays in the repair of radiation-induced DNA double-strand breaks. Furthermore, expression of mutant IGF-1R significantly down-regulated the mRNA levels of BRCA2, a major protein involved in homologous recombination DNA repair. These results indicate that blocking the IGF-1R-mediated signaling cascade, through the expression of a kinase-deficient IGF-1R mutant, reduces cell growth and sensitizes cancer cells to ionizing radiation. Therefore, the IGF-1R system could be a potential target to enhance radio-sensitivity and the efficacy of cancer treatments.

  20. Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    PubMed Central

    Thordarson, Gudmundur; Slusher, Nicole; Leong, Harriet; Ochoa, Dafne; Rajkumar, Lakshmanaswamy; Guzman, Raphael; Nandi, Satyabrata; Talamantes, Frank

    2004-01-01

    Introduction Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. Methods Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. Results IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D1 and transforming growth factor-β3 in the mammary gland were lower in the age-matched virgin rats than in the untreated

  1. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms

    PubMed Central

    Zamykal, Martin; Martens, Tobias; Matschke, Jakob; Günther, Hauke S.; Kathagen, Annegret; Schulte, Alexander; Peters, Regina; Westphal, Manfred; Lamszus, Katrin

    2015-01-01

    Background Signaling by insulin-like growth factor 1 receptor (IGF-1R) can contribute to the formation and progression of many diverse tumor types, including glioblastoma. We investigated the effect of the IGF-1R blocking antibody IMC-A12 on glioblastoma growth in different in vivo models. Methods U87 cells were chosen to establish rapidly growing, angiogenesis-dependent tumors in the brains of nude mice, and the GS-12 cell line was used to generate highly invasive tumors. IMC-A12 was administered using convection-enhanced local delivery. Tumor parameters were quantified histologically, and the functional relevance of IGF-1R activation was analyzed in vitro. Results IMC-A12 treatment inhibited the growth of U87 and GS-12 tumors by 75% and 50%, respectively. In GS-12 tumors, the invasive tumor extension and proliferation rate were significantly reduced by IMC-A12 treatment, while apoptosis was increased. In IMC-A12–treated U87 tumors, intratumoral vascularization was markedly decreased, and tumor cell proliferation was moderately reduced. Flow cytometry showed that <2% of U87 cells but >85% of GS-12 cells expressed IGF-1R. Activation of IGF-1R by IGF-1 and IGF-2 in GS-12 cells was blocked by IMC-A12. Both ligands stimulated GS-12 cell proliferation, and IGF-2 also stimulated migration. IMC-A12 inhibited these stimulatory effects and increased apoptosis. In U87 cells, stimulation with either ligand had no functional effect. Conclusions IGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery. PMID:25543125

  2. Increase in insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 after supplementation with selenium and coenzyme Q10. A prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens.

    PubMed

    Alehagen, Urban; Johansson, Peter; Aaseth, Jan; Alexander, Jan; Brismar, Kerstin

    2017-01-01

    Insulin-like growth factor-1(IGF-1) has a multitude of effects besides cell growth and metabolism. Reports also indicate anti-inflammatory and antioxidative effects. The concentrations of IGF-1 decrease with age and during inflammation. As selenium and coenzyme Q10 are involved in both the antioxidative defense and the inflammatory response, the present study aimed to examine the effects of supplementation with selenium and coenzyme Q10 on concentrations of IGF-1 and its binding protein IGFBP-1 in a population showing reduced cardiovascular mortality following such supplementation. 215 elderly individuals were included and given the intervention for four years. A clinical examination was performed and blood samples were taken at the start and after 48 months. Evaluations of IGF-1, the age adjusted IGF-1 SD score and IGFBP-1 were performed using group mean values, and repeated measures of variance. After supplementation with selenium and coenzyme Q10, applying group mean evaluations, significantly higher IGF-1 and IGF-1 SD scores could be seen in the active treatment group, whereas a decrease in concentration could be seen of the same biomarkers in the placebo group. Applying the repeated measures of variance evaluations, the same significant increase in concentrations of IGF-1 (F = 68; P>0.0001), IGF-1 SD score (F = 29; P<0.0001) and of IGFBP-1 (F = 6.88; P = 0.009) could be seen, indicating the effect of selenium and coenzyme Q10 also on the expression of IGF-1 as one of the mechanistic effects of the intervention. Supplementation with selenium and coenzyme Q10 over four years resulted in increased levels of IGF-1 and the postprandial IGFBP-1, and an increase in the age-corrected IGF-1 SD score, compared with placebo. The effects could be part of the mechanistic explanation behind the surprisingly positive clinical effects on cardiovascular morbidity and mortality reported earlier. However, as the effects of IGF-1 are complex, more research on the result of

  3. Smoking-associated lung cancer prevention by blockade of the beta-adrenergic receptor-mediated insulin-like growth factor receptor activation.

    PubMed

    Min, Hye-Young; Boo, Hye-Jin; Lee, Ho Jin; Jang, Hyun-Ji; Yun, Hye Jeong; Hwang, Su Jung; Smith, John Kendal; Lee, Hyo-Jong; Lee, Ho-Young

    2016-10-25

    Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC). Consistently, β-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via β-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with β-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking β-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.

  4. Cord blood level of insulin-like growth factor-1 and IGF binding protein-3 in monochorionic twins.

    PubMed

    Teng, Ru-Jeng; Wu, Tzong-Jin; Hsieh, Fon-Jou

    2015-04-01

    Insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are known to modulate fetal growth but their role in intrauterine growth of monochorionic twins (MCT) has not been studied. Cord venous blood was collected directly after birth. IGF-1 and IGFBP-3 in the cord venous blood were quantified by radioimmunoassay. Birth weights (BWs) were obtained electronically. Placentas were examined for chorionicity. Cord blood was collected in 37 pairs of MCT (15 pairs were males). BWs ranged from 564 to 3240 g, and gestational ages (GAs) were between 24 weeks and 39 weeks. There was a correlation between BW and cord venous blood IGFBP-3 concentration (r = 0.28, p = 0.015), but not between BW and cord venous blood IGF-1 level. There was no difference in IGF-1 between the heavier twins (30.8 ± 61.8 ng/mL) and lighter twins (33.2 ± 63.7 ng/mL), but a trend (p = 0.096) of higher IGFBP-3 level was demonstrated in heavier twins (3.14 ± 1.23 μg/mL) than in lighter twins (2.71 ± 1.19 μg/mL). The IGFBP-3 levels were higher (p = 0.042) in female twins (3.20 ± 1.33 μg/mL) than in male twins (2.64 ± 1.04 μg/mL). The IGF-1 level of the heavier twins correlated significantly to their lighter co-twin (r = 0.73, p < 0.001). Our data showed that cord venous blood IGF-1 level might be controlled mainly by genetic factors. IGFBP-3 might play an important role in fetal growth. Copyright © 2013. Published by Elsevier B.V.

  5. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms.

    PubMed

    Patel, Sonal A; Chaudhari, Amol; Gupta, Richa; Velingkaar, Nikkhil; Kondratov, Roman V

    2016-04-01

    Calorie restriction (CR) increases longevity in many species by unknown mechanisms. The circadian clock was proposed as a potential mediator of CR. Deficiency of the core component of the circadian clock-transcriptional factor BMAL1 (brain and muscle ARNT [aryl hydrocarbon receptor nuclear translocator]-like protein 1)-results in accelerated aging. Here we investigated the role of BMAL1 in mechanisms of CR. The 30% CR diet increased the life span of wild-type (WT) mice by 20% compared to mice on anad libitum(AL) diet but failed to increase life span ofBmal1(-/-)mice. BMAL1 deficiency impaired CR-mediated changes in the plasma levels of IGF-1 and insulin. We detected a statistically significantly reduction of IGF-1 in CRvs.AL by 50 to 70% in WT mice at several daily time points tested, while inBmal1(-/-)the reduction was not significant. Insulin levels in WT were reduced by 5 to 9%, whileBmal1(-/-)induced it by 10 to 35% at all time points tested. CR up-regulated the daily average expression ofBmal1(by 150%) and its downstream target genesPeriods(by 470% forPer1and by 130% forPer2). We propose that BMAL1 is an important mediator of CR, and activation of BMAL1 might link CR mechanisms with biologic clocks.-Patel, S. A., Chaudhari, A., Gupta, R., Velingkaar, N., Kondratov, R. V. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. © FASEB.

  6. Molecular Basis of Signaling Specificity of Insulin and IGF Receptors: Neglected Corners and Recent Advances

    PubMed Central

    Siddle, Kenneth

    2011-01-01

    Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of “metabolic” and “mitogenic” responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to “metabolic” and “mitogenic” responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in “metabolic” or “mitogenic” signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears

  7. Can we unlock the potential of IGF-1R inhibition in cancer therapy?

    PubMed Central

    King, Helen; Aleksic, Tamara; Haluska, Paul; Macaulay, Valentine M.

    2014-01-01

    IGF-1R inhibitors arrived in the clinic accompanied by optimism based on preclinical activity of IGF-1R targeting, and recognition that low IGF bioactivity protects from cancer. This was tempered by concerns about toxicity to normal tissue IGF-1R and cross-reactivity with insulin receptor (InsR). In fact, toxicity is not a show-stopper; the key issue is efficacy. While IGF-1R inhibition induces responses as monotherapy in sarcomas and with chemotherapy or targeted agents in common cancers, negative Phase 2/3 trials in unselected patients prompted the cessation of several Pharma programs. Here, we review completed and on-going trials of IGF-1R antibodies, kinase inhibitors and ligand antibodies. We assess candidate bio-markers for patient selection, highlighting the potential predictive value of circulating IGFs/IGFBPs, the need for standardized assays for IGF-1R, and preclinical evidence that variant InsRs mediate resistance to IGF-1R antibodies. We review hypothesis-led and unbiased approaches to evaluate IGF-1R inhibitors with other agents, and stress the need to consider sequencing with chemotherapy. The last few years were a tough time for IGF-1R therapeutics, but also brought progress in understanding IGF biology. Even failed studies include patients who derived benefit; they should be investigated to identify features distinguishing the tumors and host environment of responders from non-responders. We emphasize the importance of incorporating biospecimen collection into trial design, and wording patient consents to allow post hoc analysis of trial material as new data become available. Such information represents the key to unlocking the potential of this approach, to inform the next generation of trials of IGF signalling inhibitors. PMID:25123819

  8. IGF-1 colocalizes with muscle satellite cells following acute exercise in humans.

    PubMed

    Grubb, Amanda; Joanisse, Sophie; Moore, Daniel R; Bellamy, Leeann M; Mitchell, Cameron J; Phillips, Stuart M; Parise, Gianni

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) regulates stem cell proliferation and differentiation in vitro. The aim of this study was to quantify the change in satellite cell (SC) specific IGF-1 colocalization following exercise. We observed a significant increase (p < 0.05) in the percentage of SC with IGF-1 colocalization from baseline to 72 h after a bout of resistance exercise. This strongly supports a role for IGF-1 in human SC function following exercise.

  9. INSULIN-LIKE GROWTH FACTOR-1 RECEPTOR INHIBITOR, AMG-479, IN CETUXIMAB-REFRACTORY HEAD AND NECK SQUAMOUS CELL CARCINOMA

    PubMed Central

    Pohlmann, Paula R.; Rothenberg, Mace L.; Burkey, Brian B.; Parker, Joel; Palka, Kevin; Aulino, Joseph; Puzanov, Igor; Murphy, Barbara

    2011-01-01

    Background Recurrent head and neck squamous cell carcinoma (HNSCC) remains a difficult cancer to treat. Here, we describe a patient with HNSCC who had complete response to methotrexate (MTX) after progressing on multiple cytotoxic agents, cetuximab, and AMG-479 (monoclonal antibody against insulin-like growth factor-1 receptor [IGF-1R]). Methods The clinical information was collected by a retrospective medical record review under an Institutional Review Board–approved protocol. From 4 tumors and 2 normal mucosal epithelia, global gene expression, and IGF-1R and dihydrofolate reductase (DHFR) protein levels were determined. Results Effective target inhibition in the tumor was confirmed by the decreased protein levels of total and phospho-IGF-1R after treatment with AMG-479. Decreased level of DHFR and conversion of a gene expression profile associated with cetuximab-resistance to cetuximab-sensitivity were also observed. Conclusion This suggests that the combination of AMG- 479 and MTX or cetuximab may be a promising therapeutic approach in refractory HNSCC. PMID:20652976

  10. Insulin-like growth factor-1 signaling in renal cell carcinoma.

    PubMed

    Tracz, Adam F; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2016-07-12

    Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells.

  11. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Light at night activates IGF-1R/PDK1 signaling and accelerates tumor growth in human breast cancer xenografts.

    PubMed

    Wu, Jinghai; Dauchy, Robert T; Tirrell, Paul C; Wu, Steven S; Lynch, Darin T; Jitawatanarat, Potjana; Burrington, Christine M; Dauchy, Erin M; Blask, David E; Greene, Michael W

    2011-04-01

    Regulation of diurnal and circadian rhythms and cell proliferation are coupled in all mammals, including humans. However, the molecular mechanisms by which diurnal and circadian rhythms regulate cell proliferation are relatively poorly understood. In this study, we report that tumor growth in nude rats bearing human steroid receptor-negative MCF-7 breast tumors can be significantly accelerated by exposing the rats to light at night (LAN). Under normal conditions of an alternating light/dark cycle, proliferating cell nuclear antigen (PCNA) levels in tumors were maximal in the early light phase but remained at very low levels throughout the daily 24-hour cycle period monitored. Surprisingly, PCNA was expressed in tumors continually at a high level throughout the entire 24-hour period in LAN-exposed nude rats. Daily fluctuations of Akt and mitogen activated protein kinase activation in tumors were also disrupted by LAN. These fluctuations did not track with PCNA changes, but we found that activation of the Akt stimulatory kinase phosphoinositide-dependent protein kinase 1 (PDK1) directly correlated with PCNA levels. Expression of insulin-like growth factor 1 receptor (IGF-1R), an upstream signaling molecule for PDK1, also correlated with fluctuations of PDK1/PCNA in the LAN group. In addition, circulating IGF-1 concentrations were elevated in LAN-exposed tumor-bearing nude rats. Finally, RNAi-mediated knockdown of PDK1 led to a reduction in PCNA expression and cell proliferation in vitro and tumor growth in vivo, indicating that PDK1 regulates breast cancer growth in a manner correlated with PCNA expression. Taken together, our findings demonstrate that LAN exposure can accelerate tumor growth in vivo, in part through continuous activation of IGF-1R/PDK1 signaling.

  13. The single IGF-1 partial deficiency is responsible for mitochondrial dysfunction and is restored by IGF-1 replacement therapy.

    PubMed

    Olleros Santos-Ruiz, M; Sádaba, M C; Martín-Estal, I; Muñoz, U; Sebal Neira, C; Castilla-Cortázar, I

    2017-08-01

    We previously described in cirrhosis and aging, both conditions of IGF-1 deficiency, a clear hepatic mitochondrial dysfunction with increased oxidative damage. In both conditions, the hepatic mitochondrial function was improved with low doses of IGF-1. The aim of this work was to explore if the only mere IGF-1 partial deficiency, without any exogenous insult, is responsible for hepatic mitochondrial dysfunction. Heterozygous (igf1 +/- ) mice were divided into two groups: untreated and treated mice with low doses of IGF-1. WT group was used as controls. Parameters of hepatic mitochondrial function were determined by flow cytometry, antioxidant enzyme activities were determined by spectrophotometry, and electron chain transport enzyme levels were determined by immunohistochemistry and immunofluorescence analyses. Liver expression of genes coding for proteins involved in mitochondrial protection and apoptosis was studied by microarray analysis and RT-qPCR. Hz mice showed a significant reduction in hepatic mitochondrial membrane potential (MMP) and ATPase activity, and an increase in intramitochondrial free radical production and proton leak rates, compared to controls. These parameters were normalized by IGF-1 replacement therapy. No significant differences were found between groups in oxygen consumption and antioxidant enzyme activities, except for catalase, whose activity was increased in both Hz groups. Relevant genes coding for proteins involved in mitochondrial protection and survival were altered in Hz group and were reverted to normal in Hz+IGF-1 group. The mere IGF-1 partial deficiency is per se associated with hepatic mitochondrial dysfunction sensitive to IGF-1 replacement therapy. Results in this work prove that IGF-1 is involved in hepatic mitochondrial protection, because it is able to reduce free radical production, oxidative damage and apoptosis. All these IGF-1 actions are mediated by the modulation of the expression of genes encoding citoprotective

  14. IGF-1: an endogenous link between traumatic brain injury and Alzheimer disease?

    PubMed

    Zheng, Ping; Tong, Wusong

    2017-08-01

    There is a growing body of evidence that the insulin-like growth factor-1 (IGF-1) is dynamically involved in the regulation of body homeostasis and glucose regulation. Traumatic brain injury (TBI) is considered to be a risk factor for Alzheimer's disease (AD). As alterations of IGF-1 have been implicated in both TBI and AD and the IGF-1 signaling also mediates the neuronal excitability and synaptic plasticity in both diseases, we propose that IGF-1 may act as the endogenous connection between TBI and AD. Growing evidence suggests that dysfunction of this pathway contributes to the progressive loss of neurons in Alzheimer's disease (AD), one of the most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting IGF-1 signaling with currently available antidiabetics. These studies have shown that exogenous administration of IGF-1 reverses signaling abnormalities and has neuroprotective effects. In the first part of this review, we discuss physiological functions of IGF-1 signaling pathway including its distribution within the brain and its relationship with TBI and AD. In the second part, we undertake a comprehensive overview of IGF-1 signaling in TBI and AD, respectively. We then detail targeted IGF-1 in preclinical models of neurodegeneration and the design of clinical trials that have used anti-diabetics for treating AD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into clinical sessions.

  15. IGF-1 promotes the development and cytotoxic activity of human NK cells

    PubMed Central

    Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming

    2013-01-01

    Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression leads to disparate cytotoxicity in human primary natural killer cells. Moreover, miR-483-3p is identified as a critical regulator of IGF-1 expression in natural killer cells. Overexpression of miR-483-3p has an effect similar to IGF-1 blockade and decreased natural killer cell cytotoxicity, whereas inhibition of miR-483-3p has the opposite effect, which is reversible with IGF-1 neutralizing antibody. These findings indicate that IGF-1 and miR-483-3p belong to a new class of natural killer cell functional modulators and strengthen the prominent role of IGF-1 in innate immunity. PMID:23403580

  16. IGF-1 intranasal administration rescues Huntington's disease phenotypes in YAC128 mice.

    PubMed

    Lopes, Carla; Ribeiro, Márcio; Duarte, Ana I; Humbert, Sandrine; Saudou, Frederic; Pereira de Almeida, Luís; Hayden, Michael; Rego, A Cristina

    2014-06-01

    Huntington's disease (HD) is an autosomal dominant disease caused by an expansion of CAG repeats in the gene encoding for huntingtin. Brain metabolic dysfunction and altered Akt signaling pathways have been associated with disease progression. Nevertheless, conflicting results persist regarding the role of insulin-like growth factor-1 (IGF-1)/Akt pathway in HD. While high plasma levels of IGF-1 correlated with cognitive decline in HD patients, other data showed protective effects of IGF-1 in HD striatal neurons and R6/2 mice. Thus, in the present study, we investigated motor phenotype, peripheral and central metabolic profile, and striatal and cortical signaling pathways in YAC128 mice subjected to intranasal administration of recombinant human IGF-1 (rhIGF-1) for 2 weeks, in order to promote IGF-1 delivery to the brain. We show that IGF-1 supplementation enhances IGF-1 cortical levels and improves motor activity and both peripheral and central metabolic abnormalities in YAC128 mice. Moreover, decreased Akt activation in HD mice brain was ameliorated following IGF-1 administration. Upregulation of Akt following rhIGF-1 treatment occurred concomitantly with increased phosphorylation of mutant huntingtin on Ser421. These data suggest that intranasal administration of rhIGF-1 ameliorates HD-associated glucose metabolic brain abnormalities and mice phenotype.

  17. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect

    PubMed Central

    Han, Juqiang; Wang, Yadong; Shen, Chuan; Yan, Zhifeng; Tai, Yanhong; Zhao, Caiyan

    2018-01-01

    Background Insulin-like growth factor-1 receptor (IGF-1R) is a well-studied oncogenic factor that promotes cell proliferation and energy metabolism and is overexpressed in numerous cancers including hepatocellular carcinoma (HCC). Aerobic glycolysis is a hallmark of cancer, and drugs targeting its regulators, including IGF-1R, are being developed. However, the mechanisms of IGF-1R inhibition and the physiological significance of the IGF-1R inhibitors in cancer cells are unclear. Materials and methods Cell proliferation was evaluated by cell counting Kit-8 and colony formation assay. Western blot and real-time PCR were accordingly used to detect the relevant proteins, miRNA and gene expression. Luciferase reporter assays were used to illustrate the interaction between miR-342-3p and IGF-1R. The effect of miR-342-3p on glycolysis was determined by glucose uptake, ATP concentration, lactate generation, extracellular acidification rate and oxygen consumption rate assays. In vivo, subcutaneous tumor formation assay and PET were performed in nude mice. Results In this study, we demonstrate that by directly targeting the 3′-UTR (3′-untranslated regions) of IGF-1R, microRNA-342-3p (miR-342-3p) suppresses IGF-1R-mediated PI3K/AKT/GLUT1 signaling pathway both in vitro and in vivo. Through suppression of IGF-1R, miR-342-3p dampens glycolysis by decreasing glucose uptake, lactate generation, ATP production, and extracellular acidification rate (ECAR), and increasing oxygen consumption rate (OCR) in hepatoma cells. Importantly, glycolysis regulated by miR-342-3p is critical for its regulating HCC growth both in vitro and in vivo. Conclusion Our findings provide clues regarding the role of miR-342-3p as a tumor suppressor in liver cancer mainly through the inhibition of IGF-1R. Targeting IGF-1R by miR-342-3p could be a potential therapeutic strategy in liver cancer. PMID:29615839

  18. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect.

    PubMed

    Liu, Wenpeng; Kang, Lei; Han, Juqiang; Wang, Yadong; Shen, Chuan; Yan, Zhifeng; Tai, Yanhong; Zhao, Caiyan

    2018-01-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a well-studied oncogenic factor that promotes cell proliferation and energy metabolism and is overexpressed in numerous cancers including hepatocellular carcinoma (HCC). Aerobic glycolysis is a hallmark of cancer, and drugs targeting its regulators, including IGF-1R, are being developed. However, the mechanisms of IGF-1R inhibition and the physiological significance of the IGF-1R inhibitors in cancer cells are unclear. Cell proliferation was evaluated by cell counting Kit-8 and colony formation assay. Western blot and real-time PCR were accordingly used to detect the relevant proteins, miRNA and gene expression. Luciferase reporter assays were used to illustrate the interaction between miR-342-3p and IGF-1R. The effect of miR-342-3p on glycolysis was determined by glucose uptake, ATP concentration, lactate generation, extracellular acidification rate and oxygen consumption rate assays. In vivo, subcutaneous tumor formation assay and PET were performed in nude mice. In this study, we demonstrate that by directly targeting the 3'-UTR (3'-untranslated regions) of IGF-1R, microRNA-342-3p (miR-342-3p) suppresses IGF-1R-mediated PI3K/AKT/GLUT1 signaling pathway both in vitro and in vivo. Through suppression of IGF-1R, miR-342-3p dampens glycolysis by decreasing glucose uptake, lactate generation, ATP production, and extracellular acidification rate (ECAR), and increasing oxygen consumption rate (OCR) in hepatoma cells. Importantly, glycolysis regulated by miR-342-3p is critical for its regulating HCC growth both in vitro and in vivo. Our findings provide clues regarding the role of miR-342-3p as a tumor suppressor in liver cancer mainly through the inhibition of IGF-1R. Targeting IGF-1R by miR-342-3p could be a potential therapeutic strategy in liver cancer.

  19. Insulin-like growth factor-1 (IGF-1) enhances the osteogenic activity of bone morphogenetic protein-6 (BMP-6) in vitro and in vivo, and together have a stronger osteogenic effect than when IGF-1 is combined with BMP-2.

    PubMed

    Rico-Llanos, Gustavo A; Becerra, Jose; Visser, Rick

    2017-07-01

    Bone morphogenetic protein-2 (BMP-2) is widely used in orthopedic surgery and bone tissue engineering because of its strong osteogenic activity. However, BMP-2 treatments have several drawbacks and many groups are actively exploring alternatives. Since BMP-6 has been demonstrated to be more osteoinductive, its use, either alone or together with other growth factors, might be an interesting option. In this work, we have compared the effect of BMP-2, BMP-6, or insulin-like growth factor-1 (IGF-1), either alone or in combination. Murine preosteoblasts were treated with 15 nM IGF-1 and/or 6 nM BMP-2 or -6 and the expression of osteogenic marker genes, proliferation, and alkaline phosphatase (ALP) activity in vitro were analyzed. The results showed that IGF-1 greatly enhanced the BMP-induced osteogenic differentiation of these cells in general and that the ALP activity in the cultures was higher when the combination was made with BMP-6 than with BMP-2. Furthermore, we tested the osteogenic potential of these treatments in vivo by loading 25 pmoles of IGF-1 and/or 10 pmoles of BMP-2 or -6 onto absorbable collagen sponges and implanting them into an ectopic bone formation model in rats. This study revealed that only BMP-6 was able to induce bone formation at the used dose and that the addition of IGF-1 contributed to an increase of the mineralization in the implants. Hence, the combination of BMP-6 with IGF-1 might be a better alternative than BMP-2 for orthopedic surgery or bone tissue engineering approaches. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1867-1875, 2017. © 2017 Wiley Periodicals, Inc.

  20. HFpEF and HFrEF Display Different Phenotypes as Assessed by IGF-1 and IGFBP-1.

    PubMed

    Faxén, Ulrika Ljung; Hage, Camilla; Benson, Lina; Zabarovskaja, Stanislava; Andreasson, Anna; Donal, Erwan; Daubert, Jean-Claude; Linde, Cecilia; Brismar, Kerstin; Lund, Lars H

    2017-04-01

    Anabolic drive is impaired in heart failure with reduced ejection fraction (HFrEF) but insufficiently studied in heart failure with preserved ejection fraction (HFpEF). Insulin-like growth factor 1 (IGF-1) mediates growth hormone effects and IGF binding protein 1 (IGFBP-1) regulates IGF-1 activity. We tested the hypothesis that HFpEF and HFrEF are similar with regard to IGF-1 and IGFBP-1. In patients with HFpEF (n = 79), HFrEF (n = 85), and controls (n = 136), we analyzed serum IGF-1 and IGFBP-1 concentrations, correlations, and associations with outcome. Age-standardized scores of IGF-1 were higher in HFpEF, median arbitrary units (interquartile range); 1.21 (0.57-1.96) vs HFrEF, 0.09 (-1.40-1.62), and controls, 0.22 (-0.47-0.96), P overall <.001. IGFBP-1 was increased in HFpEF, 48 (28-79), and HFrEF, 65 (29-101), vs controls, 27(14-35) µg/L, P overall <.001. These patterns persisted after adjusting for metabolic and HF severity confounders. IGF-1 was associated with outcomes in HFrEF, hazard ratio per natural logarithmic increase in IGF-1 SD score 0.51 (95% confidence interval 0.32-0.82, P = .005), but not significantly in HFpEF. IGFBP-1 was not associated with outcomes in either HFpEF nor HFrEF. HFpEF and HFrEF phenotypes were similar with regard to increased IGFBP-1 concentrations but differed regarding IGF-1 levels and prognostic role. HFrEF and HFpEF may display different impairment in anabolic drive. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Secretion pathway of liver IGF-1 via JAK2/STAT3 in chick embryo under the monochromatic light.

    PubMed

    Wang, Tuanjie; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2016-02-01

    This study reveals mechanism of monochromatic light on the IGF-1 secretion of chick embryo liver. The chick embryos were incubated and exposed to continuous red, green, blue light or a dark environment. Compared to other light-treated groups, green light increased IGF-1 and melatonin concentrations both in plasma and liver, and Mel1a, Mel1b and Mel1c receptors expressions in liver but decreased p-JAK2, p-STAT3 and ROS in liver. IGF-1 had a positive correlation with melatonin, but a negative relevance with p-JAK2 and p-STAT3. In vitro, the IGF-1 level in the hepatocyte supernatant was enhanced by melatonin with lower p-JAK2/p-STAT3 and ROS levels, which was suppressed by Mel1c antagonist but not Mel1a/Mel1b or Mel1b antagonists. AG490 (JAK/STAT inhibitor) promoted role of melatonin-Mel1c modulated IGF-1 secretion. These results suggest the antioxidant effect of melatonin mediated the green light-enhanced IGF-1 secretion of chick embryo liver through Mel1c receptor to inhibit the JAK2/STAT3 pathway.

  2. Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization

    PubMed Central

    Tonkin, Joanne; Temmerman, Lieve; Sampson, Robert D; Gallego-Colon, Enrique; Barberi, Laura; Bilbao, Daniel; Schneider, Michael D; Musarò, Antonio; Rosenthal, Nadia

    2015-01-01

    Insulin-like growth factor 1 (IGF-1) is a potent enhancer of tissue regeneration, and its overexpression in muscle injury leads to hastened resolution of the inflammatory phase. Here, we show that monocytes/macrophages constitute an important initial source of IGF-1 in muscle injury, as conditional deletion of the IGF-1 gene specifically in mouse myeloid cells (ϕIGF-1 CKO) blocked the normal surge of local IGF-1 in damaged muscle and significantly compromised regeneration. In injured muscle, Ly6C+ monocytes/macrophages and CD206+ macrophages expressed equivalent IGF-1 levels, which were transiently upregulated during transition from the inflammation to repair. In injured ϕIGF-1 CKO mouse muscle, accumulation of CD206+ macrophages was impaired, while an increase in Ly6C+ monocytes/macrophages was favored. Transcriptional profiling uncovered inflammatory skewing in ϕIGF-1 CKO macrophages, which failed to fully induce a reparative gene program in vitro or in vivo, revealing a novel autocrine role for IGF-1 in modulating murine macrophage phenotypes. These data establish local macrophage-derived IGF-1 as a key factor in inflammation resolution and macrophage polarization during muscle regeneration. PMID:25896247

  3. Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells.

    PubMed

    Lyons, Amy; Coleman, Michael; Riis, Sarah; Favre, Cedric; O'Flanagan, Ciara H; Zhdanov, Alexander V; Papkovsky, Dmitri B; Hursting, Stephen D; O'Connor, Rosemary

    2017-10-13

    Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) and PGC-1α-related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Serum IGFBP-3 is a more effective predictor than IGF-1 and IGF-2 for the development of hepatocellular carcinoma in patients with chronic HCV infection

    PubMed Central

    ALEEM, EIMAN; ELSHAYEB, AYMAN; ELHABACHI, NIHAL; MANSOUR, AMAL REFAAT; GOWILY, AHMED; HELA, ASMAA

    2011-01-01

    Hepatocellular carcinoma (HCC) contributes to 14.8% of all cancer mortality in Egypt, which has a high prevalence of hepatitis C virus (HCV). We have previously shown alterations in the insulin-like growth factor-1 (IGF-1) receptor signalling pathway during experimental hepatocarcinogenesis. The aim of this study was to determine whether serum levels of IGF-1, IGF-2 and IGFBP-3 can be used to discriminate between HCC and the stages of hepatic dysfunction in patients with liver cirrhosis assessed by the Child-Pugh (CP) score, and to correlate these levels with HCC stages. We recruited 241 subjects to the present study; 79 with liver cirrhosis, 62 with HCV-induced HCC and 100 age-matched controls. Results showed that serum levels of IGF-1, IGF-2 and IGFBP-3 were reduced significantly in cirrhosis and HCC patients in comparison to the controls, and that this reduction negatively correlated with the CP scores. However, only IGFBP-3 levels showed significant negative correlation with α-fetoprotein levels. The reduction in IGF-1 and IGFBP-3 but not IGF-2 levels was significant in HCC in comparison to patients with cirrhosis. None of the parameters significantly correlated with the HCC stage. IGFBP-3 levels discriminated between cirrhosis and HCC at a sensitivity of 87%, a specificity of 80% and a cut-off value of <682.6 ng/ml. In conclusion, although our results showed that serum IGF-1, IGF-2 and IGFBP-3 are reduced with the progression of hepatic dysfunction, only IGFBP-3 may be considered as the most promising serological marker for the prediction of the development of HCC in the chronic HCV patients with liver cirrhosis. PMID:22740980

  5. Increase in insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 after supplementation with selenium and coenzyme Q10. A prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens

    PubMed Central

    Johansson, Peter; Aaseth, Jan; Alexander, Jan; Brismar, Kerstin

    2017-01-01

    Background Insulin-like growth factor-1(IGF-1) has a multitude of effects besides cell growth and metabolism. Reports also indicate anti-inflammatory and antioxidative effects. The concentrations of IGF-1 decrease with age and during inflammation. As selenium and coenzyme Q10 are involved in both the antioxidative defense and the inflammatory response, the present study aimed to examine the effects of supplementation with selenium and coenzyme Q10 on concentrations of IGF-1 and its binding protein IGFBP-1 in a population showing reduced cardiovascular mortality following such supplementation. Methods 215 elderly individuals were included and given the intervention for four years. A clinical examination was performed and blood samples were taken at the start and after 48 months. Evaluations of IGF-1, the age adjusted IGF-1 SD score and IGFBP-1 were performed using group mean values, and repeated measures of variance. Findings After supplementation with selenium and coenzyme Q10, applying group mean evaluations, significantly higher IGF-1 and IGF-1 SD scores could be seen in the active treatment group, whereas a decrease in concentration could be seen of the same biomarkers in the placebo group. Applying the repeated measures of variance evaluations, the same significant increase in concentrations of IGF-1 (F = 68; P>0.0001), IGF-1 SD score (F = 29; P<0.0001) and of IGFBP-1 (F = 6.88; P = 0.009) could be seen, indicating the effect of selenium and coenzyme Q10 also on the expression of IGF-1 as one of the mechanistic effects of the intervention. Conclusion Supplementation with selenium and coenzyme Q10 over four years resulted in increased levels of IGF-1 and the postprandial IGFBP-1, and an increase in the age-corrected IGF-1 SD score, compared with placebo. The effects could be part of the mechanistic explanation behind the surprisingly positive clinical effects on cardiovascular morbidity and mortality reported earlier. However, as the effects of IGF-1 are complex

  6. Daucosterol protects neurons against oxygen-glucose deprivation/reperfusion-mediated injury by activating IGF1 signaling pathway.

    PubMed

    Jiang, Li-hua; Yuan, Xiao-lin; Yang, Nian-yun; Ren, Li; Zhao, Feng-ming; Luo, Ban-xin; Bian, Yao-yao; Xu, Jian-ya; Lu, Da-xiang; Zheng, Yuan-yuan; Zhang, Chuan-juan; Diao, Yuan-ming; Xia, Bao-mei; Chen, Gang

    2015-08-01

    We previously reported that daucosterol (a sterolin) up-regulates the expression of insulin-like growth factor I (IGF1)(1) protein in neural stem cells. In this study, we investigated the effects of daucosterol on the survival of cultured cortical neurons after neurons were subjected to oxygen and glucose deprivation and simulated reperfusion (OGD/R)(2), and determined the corresponding molecular mechanism. The results showed that post-treatment of daucosterol significantly reduced neuronal loss, as well as apoptotic rate and caspase-3 activity, displaying the neuroprotective activity. We also found that daucosterol increased the expression level of IGF1 protein, diminished the down-regulation of p-AKT(3) and p-GSK-3β(4), thus activating the AKT(5) signal pathway. Additionally, it diminished the down-regulation of the anti-apoptotic proteins Mcl-1(6) and Bcl-2(7), and decreased the expression level of the pro-apoptotic protein Bax(8), thus raising the ratio of Bcl-2/Bax. The neuroprotective effect of daucosterol was inhibited in the presence of picropodophyllin (PPP)(9), the inhibitor of insulin-like growth factor I receptors (IGF1R)(10). Our study provided information about daucosterol as an efficient and inexpensive neuroprotectants, to which the IGF1-like activity of daucosterol contributes. Daucosterol could be potentially developed as a medicine for ischemic stroke treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. MC1R, KIT, IGF2, and NR6A1 as markers for genetic differentiation in Thai native, wild boars, and Duroc and Chinese Meishan pigs.

    PubMed

    Klomtong, P; Chaweewan, K; Phasuk, Y; Duangjinda, M

    2015-10-19

    Mutations in melanocortin 1 receptor (MC1R) gene and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) gene have been shown to affect coat color patterns in pigs. Additional functional marker genes, such as insulin like growth factor-2 (IGF2) and orphan nuclear receptor, germ cell nuclear factor (NR6A1), have been described for variations in factors such as fat deposition, litter size, and vertebra number in pigs. In this study, we investigated 129 pigs representing 4 breeds: Thai indigenous, classified into black (similar to Raad or Ka done pig) and black and white (similar to the Hailum and Kwai pig) coat color types; wild boar; Duroc; and Chinese Meishan. Mutations of MC1R, KIT, IGF2, and NR6A1 were detected using polymerase chain reaction-restriction fragment length polymorphism. The genotypes variation in MC1R and KIT genes could be used to differentiate four groups of coat color: solid black, black and white, red, and wild type. For IGF2, the GG genotype was present in wild boar only; for NR6A1 the TT genotype was found only in Duroc pigs. We identified novel 14-bp deletions in KIT that were associated with black and white coat color in Thai indigenous pigs. Insights into variations in genes presented in this study will be useful in future developmental breeding programs for the Thai native pig.

  8. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease.

    PubMed

    Chakraborty, Ashok; Hatzis, Christos; DiGiovanna, Michael P

    2017-05-01

    Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.

  9. Insulinlike Growth Factor-1 and Its Binding Protein-3 Polymorphisms Predict Circulating IGF-1 Level and Appendicular Skeletal Muscle Mass in Chinese Elderly.

    PubMed

    Yang, Chuan-Wei; Li, Tsai-Chung; Li, Chia-Ing; Liu, Chiu-Shong; Lin, Chih-Hsueh; Lin, Wen-Yuan; Lin, Cheng-Chieh

    2015-05-01

    Previous studies have demonstrated the polymorphisms of insulinlike growth factor-1 (IGF-1) and its binding protein-3 (IGFBP3) genes could affect the circulating IGF-1 level. Moreover, the serum IGF-1 level was correlated with muscle size. This study aimed to explore the effect of polymorphisms of IGF1, IGFBP3, and IGFBP5 genes on appendicular skeletal muscle mass in Taiwanese older adults in a metropolitan area. A community-based cross-sectional study. A random sample of 472 elders with complete information of dual energy X-ray absorptiometry examination, genotyping analysis, and serum IGF-1 level from Taichung Community Health Study for Elders (TCHS-E) was included. Low appendicular skeletal muscle mass index (ASMI) was defined as 2 SDs below the mean of young adults from our TCHS study (n = 471). Seven polymorphisms of IGF1, IGFBP3, and IGFBP5 were analyzed by using Illumina GoldenGate Genotyping Assay. The χ(2) test, Student t test, and multiple logistic regression were applied for statistical analysis. The prevalence of low ASMI was 7.1%, 8.8%, and 23.0% in those aged 70 or younger, 71 to 75, and older than 75 years, respectively. We found that serum IGF-1 level (natural logarithmic transformation) was significantly lower in the low ASMI group compared with the normal ASMI group and the SNP rs2854744 near IGFBP3 gene was significantly associated with low ASMI. Moreover, we discovered the SNP rs6214 on the IGF1 gene would significantly affect the serum IGF-1 level. Therefore, the joint effect of rs6214 and rs2854744 was analyzed. Elders with GG genotype of rs6214 and AC or CC genotypes of rs2854744 had a 3.18-fold (95% CI 1.02-9.89) risk of having low ASMI compared with those with the AA and AA genotype, after adjusting for age, gender, smoking, exercise, hyperlipidemia, and albumin level. Our results suggest that rs6214 on the IGF1 gene and rs2854744 near the IGFBP3 gene potentially play an important role with ASMI in Taiwanese older adults in a metropolitan

  10. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome.

    PubMed

    Melnik, Bodo C; John, Swen Malte; Schmitz, Gerd

    2011-06-24

    The insulin/insulin-like growth factor-1 (IGF-1) pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR) gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS) exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulates IIS. The reduction of IIS in Laron subjects unmasks the potential role of persistent hyperactive IIS mediated by Western diet in the development of diseases of civilization and offers a rational perspective for dietary adjustments with less insulinotropic diets like the Paleolithic diet.

  12. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome

    PubMed Central

    2011-01-01

    The insulin/insulin-like growth factor-1 (IGF-1) pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR) gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS) exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulates IIS. The reduction of IIS in Laron subjects unmasks the potential role of persistent hyperactive IIS mediated by Western diet in the development of diseases of civilization and offers a rational perspective for dietary adjustments with less insulinotropic diets like the Paleolithic diet. PMID:21699736

  13. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    PubMed

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  14. Manganese induces IGF-1 and cyclooxygenase-2 gene expressions in the basal hypothalamus during prepubertal female development.

    PubMed

    Hiney, Jill K; Srivastava, Vinod K; Dees, William Les

    2011-06-01

    Precocious puberty is a significant child health problem, especially in girls, because 95% of cases are idiopathic. Our earlier studies demonstrated that low-dose levels of manganese (Mn) caused precocious puberty via stimulating the secretion of luteinizing hormone-releasing hormone (LHRH). Because glial-neuronal communications are important for the activation of LHRH secretion at puberty, we investigated the effects of prepubertal Mn exposure on specific glial-derived puberty-related genes known to affect neuronal LHRH release. Animals were supplemented with MnCl(2) (10 mg/kg) or saline by gastric gavage from day 12 until day 22 or day 29, then decapitated, and brains removed. The site of LHRH release is the medial basal hypothalamus (MBH), and tissues from this area were analyzed by real-time PCR for transforming growth factor α (TGFα), insulin-like growth factor-1 (IGF-1), and cyclooxygenase-2 (COX-2) messenger RNA levels. Protein levels for IGF-1 receptor (IGF-1R) were measured by Western blot analysis. LHRH gene expression was measured in the preoptic area/anteroventral periventricular (POA/AVPV) region. In the MBH, at 22 days, IGF-1 gene expression was increased (p < 0.05) with a concomitant increase (p < 0.05) in IGF-1R protein expression. Mn also increased (p < 0.01) COX-2 gene expression. At 29 days, the upregulation of IGF-1 (p < 0.05) and COX-2 (p < 0.05) continued in the MBH. At this time, we observed increased (p < 0.05) LHRH gene expression in the POA/AVPV. Additionally, Mn stimulated prostaglandin E(2) and LHRH release from 29-day-old median eminences incubated in vitro. These results demonstrate that Mn, through the upregulation of IGF-1 and COX-2, may promote maturational events and glial-neuronal communications facilitating the increased neurosecretory activity, including that of LHRH, resulting in precocious pubertal development.

  15. The association between peripheral total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 and functional and cognitive outcomes in the Mayo Clinic Study of Aging.

    PubMed

    Wennberg, Alexandra M V; Hagen, Clinton E; Machulda, Mary M; Hollman, John H; Roberts, Rosebud O; Knopman, David S; Petersen, Ronald C; Mielke, Michelle M

    2018-06-01

    Levels of insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3, and their ratio in the blood may be useful for monitoring those at risk of cognitive and functional decline. However, the association between IGF measures and functional and cognitive outcomes has been mixed, and the associations may vary by sex. The present study investigated the cross-sectional, sex-specific associations between serum measures total IGF-1, IGFBP-3, and the IGF-1/IGFBP-3 ratio, gait speed, and cognition in 1320 cognitively unimpaired participants aged 50-95 years enrolled in the Mayo Clinic Study of Aging. We used multivariable linear regression models to determine the association between IGF measures and gait speed or cognitive test performance by sex. IGF measures were not associated with cognitive or functional performance among men. Among women, higher levels of log total IGF-1 and IGFBP-3 were associated with better performance in attention, visuospatial, and global cognitive domains, independent of the gait speed. These findings suggest that among women, IGF measures are associated with cognition, and these associations are independent of function. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. IGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway.

    PubMed

    Kim, Chanyang; Park, Seungjoon

    2018-03-01

    Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP + ) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP + -induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP + -induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP + exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP + insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP + exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP + -associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway. © 2018 The authors.

  17. IGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway

    PubMed Central

    Kim, Chanyang; Park, Seungjoon

    2018-01-01

    Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP+-induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP+-induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP+ exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP+ insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP+ exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP+-associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway. PMID:29459421

  18. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), suchmore » as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis.« less

  19. Prostate Cancer Risk in Relation to IGF-1 and its Genetic Determinants: A Case Control Study Within the Cancer Prostate Sweden Project (CAPS)

    DTIC Science & Technology

    2007-05-01

    releasing hormone (GHRH), and the GHRH receptor (GHRHR). Ghrelin (GHRL), a recently identified new peptide hormone produced by endocrine cells in...synthesis IGF1R IGF-I receptor GHRL Ghrelin GHSR Growth hormone secretagogue receptor IGFALS IGF binding protein, acid labile subunit IGFBP1 - 6...Hasinoff MJ, Fischer M, et al. Genetic linkage and association of the growth hormone secretagogue receptor ( ghrelin receptor) gene in human obesity. Diabetes

  20. IGF-1 prevents simvastatin-induced myotoxicity in C2C12 myotubes.

    PubMed

    Bonifacio, Annalisa; Sanvee, Gerda M; Brecht, Karin; Kratschmar, Denise V; Odermatt, Alex; Bouitbir, Jamal; Krähenbühl, Stephan

    2017-05-01

    Statins are generally well tolerated, but treatment with these drugs may be associated with myopathy. The mechanisms of statin-associated myopathy are not completely understood. Statins inhibit AKT phosphorylation by an unclear mechanism, whereas insulin-like growth factor (IGF-1) activates the IGF-1/AKT signaling pathway and promotes muscle growth. The aims of the study were to investigate mechanisms of impaired AKT phosphorylation by simvastatin and to assess effects of IGF-1 on simvastatin-induced myotoxicity in C2C12 myotubes. C2C12 mouse myotubes were exposed to 10 μM simvastatin and/or 10 ng/mL IGF-1 for 18 h. Simvastatin inhibited the IGF-1/AKT signaling pathway, resulting in increased breakdown of myofibrillar proteins, impaired protein synthesis and increased apoptosis. Simvastatin inhibited AKT S473 phosphorylation, indicating reduced activity of mTORC2. In addition, simvastatin impaired stimulation of AKT T308 phosphorylation by IGF-1, indicating reduced activation of the IGF-1R/PI3K pathway by IGF-1. Nevertheless, simvastatin-induced myotoxicity could be at least partially prevented by IGF-1. The protective effects of IGF-1 were mediated by activation of the IGF-1R/AKT signaling cascade. Treatment with IGF-1 also suppressed muscle atrophy markers, restored protein synthesis and inhibited apoptosis. These results were confirmed by normalization of myotube morphology and protein content of C2C12 cells exposed to simvastatin and treated with IGF-1. In conclusion, impaired activity of AKT can be explained by reduced function of mTORC2 and of the IGF-1R/PI3K pathway. IGF-1 can prevent simvastatin-associated cytotoxicity and metabolic effects on C2C12 cells. The study gives insight into mechanisms of simvastatin-associated myotoxicity and provides potential targets for therapeutic intervention.

  1. The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway.

    PubMed

    Vasilcanu, Daiana; Girnita, Ada; Girnita, Leonard; Vasilcanu, Radu; Axelson, Magnus; Larsson, Olle

    2004-10-14

    The insulin-like growth factor-1 receptor (IGF-1R) is crucial for many functions in neoplastic cells, for example, antiapoptosis. Recently, we demonstrated that the cyclolignan PPP efficiently inhibited phosphorylation of IGF-1R without interfering with insulin receptor activity. PPP preferentially reduced phosphorylated Akt, as compared to phosphorylated Erk1/2, and caused apoptosis. Now, we aimed to investigate how PPP inhibits the IGF-1R tyrosine kinase (IGF-1RTK) and the PI3K/Akt apoptotic pathway. Using a baculovirus driven IGF-1RTK we found that PPP interfered with tyrosine phosphorylation in the activation loop of the kinase domain. Specifically, it blocked phosphorylation of tyrosine (Y) 1136, while sparing the two others (Y1131 and Y1135). To explore the impact of inhibition of Y1136 on Akt phosphorylation we transfected P6 cells (overexpressing IGF-1R) and malignant melanoma cells with different IGF-1R mutants, including Y1136F (tyrosine replaced by phenylalanine). Y1136F was found to strongly decrease IGF-1 stimulated phosphorylation of Akt. Conversely, Akt phosphorylation was weakly affected in the Y1131F transfectant. Taken together, our data suggest that the preferential inhibition of phosphorylated Akt, after PPP treatment, may be due to specific inhibition of Y1136. PPP was proven not to interfere directly with Akt or any of its downstream molecules in the apoptotic pathway.

  2. Blood Brain Barrier and Neuroinflammation Are Critical Targets of IGF-1-Mediated Neuroprotection in Stroke for Middle-Aged Female Rats

    PubMed Central

    Bake, Shameena; Selvamani, Amutha; Cherry, Jessica; Sohrabji, Farida

    2014-01-01

    Ischemia-induced cerebral infarction is more severe in older animals as compared to younger animals, and is associated with reduced availability of insulin-like growth factor (IGF)-1. This study determined the effect of post-stroke IGF-1 treatment, and used microRNA profiling to identify mechanisms underlying IGF-1’s neuroprotective actions. Post-stroke ICV administration of IGF-1 to middle-aged female rats reduced infarct volume by 39% when measured 24h later. MicroRNA analyses of ischemic tissue collected at the early post-stroke phase (4h) indicated that 8 out of 168 disease-related miRNA were significantly downregulated by IGF-1. KEGG pathway analysis implicated these miRNA in PI3K-Akt signaling, cell adhesion/ECM receptor pathways and T-and B-cell signaling. Specific components of these pathways were subsequently analyzed in vehicle and IGF-1 treated middle-aged females. Phospho-Akt was reduced by ischemia at 4h, but elevated by IGF-1 treatment at 24h. IGF-1 induced Akt activation was preceded by a reduction of blood brain barrier permeability at 4h post-stroke and global suppression of cytokines including IL-6, IL-10 and TNF-α. A subset of these cytokines including IL-6 was also suppressed by IGF-1 at 24h post-stroke. These data are the first to show that the temporal and mechanistic components of post-stroke IGF-1 treatment in older animals, and that cellular components of the blood brain barrier may serve as critical targets of IGF-1 in the aging brain. PMID:24618563

  3. An allometric pharmacokinetic/pharmacodynamics model for BI 893923, a novel IGF-1 receptor inhibitor.

    PubMed

    Titze, Melanie I; Schaaf, Otmar; Hofmann, Marco H; Sanderson, Michael P; Zahn, Stephan K; Quant, Jens; Lehr, Thorsten

    2017-03-01

    BI 893923 is a novel IGF1R/INSR inhibitor with promising anti-tumor efficacy. Dose-limiting hyperglycemia has been observed for other IGF1R/INSR inhibitors in clinical trials. To counterbalance anti-tumor efficacy with the risk of hyperglycemia and to determine the therapeutic window, we aimed to develop a translational pharmacokinetic/pharmacodynamics model for BI 893923. This aimed to translate pharmacokinetics and pharmacodynamics from animals to humans by an allometrically scaled semi-mechanistic model. Model development was based on a previously published PK/PD model for BI 893923 in mice (Titze et al., Cancer Chemother Pharmacol 77:1303-1314, 13). PK and blood glucose parameters were scaled by allometric principles using body weight as a scaling factor along with an estimation of the parameter exponents. Biomarker and tumor growth parameters were extrapolated from mouse to human using the body weight ratio as scaling factor. The allometric PK/PD model successfully described BI 893923 pharmacokinetics and blood glucose across mouse, rat, dog, minipig, and monkey. BI 893923 human exposure as well as blood glucose and tumor growth were predicted and compared for different dosing scenarios. A comprehensive risk-benefit analysis was conducted by determining the net clinical benefit for each schedule. An oral dose of 2750 mg BI 893923 divided in three evenly distributed doses was identified as the optimal human dosing regimen, predicting a tumor growth inhibition of 90.4% without associated hyperglycemia. Our model supported human therapeutic dose estimation by rationalizing the optimal efficacious dosing regimen with minimal undesired effects. This modeling approach may be useful for PK/PD scaling of other IGF1R/INSR inhibitors.

  4. Controlled delivery of SDF-1α and IGF-1: CXCR4(+) cell recruitment and functional skeletal muscle recovery.

    PubMed

    Rybalko, Viktoriya Y; Pham, Chantal B; Hsieh, Pei-Ling; Hammers, David W; Merscham-Banda, Melissa; Suggs, Laura J; Farrar, Roger P

    2015-11-01

    Therapeutic delivery of regeneration-promoting biological factors directly to the site of injury has demonstrated its efficacy in various injury models. Several reports describe improved tissue regeneration following local injection of tissue specific growth factors, cytokines and chemokines. Evidence exists that combined cytokine/growth factor treatment is superior for optimizing tissue repair by targeting different aspects of the regeneration response. The purpose of this study was to evaluate the therapeutic potential of the controlled delivery of stromal cell-derived factor-1alpha (SDF-1α) alone or in combination with insulin-like growth factor-I (SDF-1α/IGF-I) for the treatment of tourniquet-induced ischemia/reperfusion injury (TK-I/R) of skeletal muscle. We hypothesized that SDF-1α will promote sustained stem cell recruitment to the site of muscle injury, while IGF-I will induce progenitor cell differentiation to effectively restore muscle contractile function after TK-I/R injury while concurrently reducing apoptosis. Utilizing a novel poly-ethylene glycol PEGylated fibrin gel matrix (PEG-Fib), we incorporated SDF-1α alone (PEG-Fib/SDF-1α) or in combination with IGF-I (PEG-Fib/SDF-1α/IGF-I) for controlled release at the site of acute muscle injury. Despite enhanced cell recruitment and revascularization of the regenerating muscle after SDF-1α treatment, functional analysis showed no benefit from PEG-Fib/SDF-1α therapy, while dual delivery of PEG-Fib/SDF-1α/IGF-I resulted in IGF-I-mediated improvement of maximal force recovery and SDF-1α-driven in vivo neovasculogenesis. Histological data supported functional data, as well as highlighted the important differences in the regeneration process among treatment groups. This study provides evidence that while revascularization may be necessary for maximizing muscle force recovery, without modulation of other effects of inflammation it is insufficient.

  5. Controlled delivery of SDF-1α and IGF-1: CXCR4+ cell recruitment and functional skeletal muscle recovery

    PubMed Central

    Rybalko, Viktoriya Y.; Pham, Chantal B.; Hsieh, Pei-Ling; Hammers, David W.; Merscham-Banda, Melissa; Suggs, Laura J.; Farrar, Roger P.

    2017-01-01

    Therapeutic delivery of regeneration-promoting biological factors directly to the site of injury has demonstrated its efficacy in various injury models. Several reports describe improved tissue regeneration following local injection of tissue specific growth factors, cytokines and chemokines. Evidence exists that combined cytokine/growth factor treatment is superior for optimizing tissue repair by targeting different aspects of the regeneration response. The purpose of this study was to evaluate the therapeutic potential of the controlled delivery of stromal cell-derived factor-1alpha (SDF-1α) alone or in combination with insulin-like growth factor-I (SDF-1α/IGF-I) for the treatment of tourniquet-induced ischemia/reperfusion injury (TK-I/R) of skeletal muscle. We hypothesized that SDF-1α will promote sustained stem cell recruitment to the site of muscle injury, while IGF-I will induce progenitor cell differentiation to effectively restore muscle contractile function after TK-I/R injury while concurrently reducing apoptosis. Utilizing a novel poly-ethylene glycol PEGylated fibrin gel matrix (PEG-Fib), we incorporated SDF-1α alone (PEG-Fib/SDF-1α) or in combination with IGF-I (PEG-Fib/SDF-1α/IGF-I) for controlled release at the site of acute muscle injury. Despite enhanced cell recruitment and revascularization of the regenerating muscle after SDF-1α treatment, functional analysis showed no benefit from PEG-Fib/SDF-1α therapy, while dual delivery of PEG-Fib/SDF-1α/IGF-I resulted in IGF-I-mediated improvement of maximal force recovery and SDF-1α-driven in vivo neovasculogenesis. Histological data supported functional data, as well as highlighted the important differences in the regeneration process among treatment groups. This study provides evidence that while revascularization may be necessary for maximizing muscle force recovery, without modulation of other effects of inflammation it is insufficient. PMID:26247892

  6. AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth

    PubMed Central

    Park, Young Soo; Kim, Dong Joon; Koo, Han; Jang, Se Hwan; You, Yeon-Mi; Cho, Jung Hee; Yang, Suk-Jin; Yu, Eun Sil; Jung, Yuri; Lee, Dong Chul; Kim, Jung-Ae; Park, Zee-Yong; Park, Kyung Chan; Yeom, Young Il

    2016-01-01

    Pyruvate kinase muscle type 2 (PKM2) exhibits post-translational modifications in response to various signals from the tumor microenvironment. Insulin-like growth factor 1 (IGF-1) is a crucial signal in the tumor microenvironment that promotes cell growth and survival in many human cancers. Herein, we report that AKT directly interacts with PKM2 and phosphorylates it at Ser-202, which is essential for the nuclear translocation of PKM2 protein under stimulation of IGF-1. In the nucleus, PKM2 binds to STAT5A and induces IGF-1-stimulated cyclin D1 expression, suggesting that PKM2 acts as an important factor inducing STAT5A activation under IGF-1 signaling. Concordantly, overexpression of STAT5A in cells deficient in PKM2 expression failed to restore IGF-induced growth, whereas reconstitution of PKM2 in PKM2 knockdown cells restored the IGF-induced growth capacity. Our findings suggest a novel role of PKM2 in promoting the growth of cancers with dysregulated IGF/phosphoinositide 3-kinase/AKT signaling. PMID:27340866

  7. Expression of a transmembrane phosphotyrosine phosphatase inhibits cellular response to platelet-derived growth factor and insulin-like growth factor-1.

    PubMed

    Mooney, R A; Freund, G G; Way, B A; Bordwell, K L

    1992-11-25

    Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.

  8. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yunguang; Zheng Siyuan; Torossian, Artour

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133more » and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.« less

  9. The correlation of leptin/leptin receptor gene polymorphism and insulin-like growth factor-1 and their impact on childhood growth hormone deficiency.

    PubMed

    He, J-S; Lian, C-W; Zhou, H-W; Lin, X-F; Yang, H-C; Ye, X-L; Zhu, S-B

    2016-09-01

    Growth hormone deficiency (GHD) is the most common cause for childhood dwarfism. Currently, the significance of insulin-like growth factor-1 (IGF-1) in diagnosis of GHD is still debatable. Due to the possible correlation between leptin (LEP) and GHD pathogenesis, this study investigated the gene polymorphism of LEP and its receptor (LEPR) genes, along with serum IGF-1 and LEP levels in GHD patients. This study attempted to illustrate the correlation between gene polymorphism and GHD pathogenesis. A case-control study was performed using 180 GHD children in addition to 160 healthy controls. PCR-DNA sequencing method was employed for genotyping various polymorphism loci of LEP and LEPR genes in both GHD and healthy individuals. Serum IGF-1 and LEP levels were also determined. Results revealed a statistically significant difference between the levels of IGF-1 and LEP in the serum samples collected from patients in the GHD and the control groups. Both IGF-1 and LEP levels were found to be correlated with polymorphism at rs7799039 loci of LEP gene, in which GG and GA genotypes carriers had higher serum IGF-1 levels when compared to AA genotype carriers. GHD pathogenesis is well correlated with the LEP and IGF-1 levels in the both of which were mediated by the gene polymorphism at rs7799039 loci of LEP gene.

  10. Sex differences and left-right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus.

    PubMed

    Hami, Javad; Sadr-Nabavi, Ariane; Sankian, Mojtaba; Haghir, Hossein

    2012-04-01

    Sex differences and laterality of rat hippocampus with respect to insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression as two important contributors to/regulators of developmental and cognitive functions were examined using real-time PCR and western blot analysis at P0, P7 and P14. Expression of the IGF-1R gene was lowest at P0 in all studied hippocampi. In males, we found the highest expression at P7 in the right hippocampus, and at P14 in the left one. In contrast, the peaked IGF-1R expression occurred at P7 in female hippocampi independent of laterality. Hippocampal InsR expression in males decreased significantly between P0 and P7, followed by a marked upregulation at P14. Conversely, the expression of InsR in females peaked at P7 and then decreased again significantly at P14. We found significant interhemispheric differences in IGF-1R mRNA levels in both male and female hippocampi at different time points. In contrast, we only found significant interhemispheric differences in InsR mRNA expression in P14 male rats, with higher values in the left hippocampus. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that IGF-1R and InsR transcription is not subject to modulatory effects during the first two weeks of development. These findings indicate that there are prominent interhemispheric and sex differences in IGF-1R and InsR expression in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development and function of the hippocampus.

  11. Predicting IGF-1R therapy response in bone sarcomas: immuno-SPECT imaging with radiolabeled R1507

    PubMed Central

    Fleuren, Emmy D.G.; Versleijen-Jonkers, Yvonne M.H.; van de Luijtgaarden, Addy C.M.; Molkenboer-Kuenen, Janneke D.M.; Heskamp, Sandra; Roeffen, Melissa H.S.; van Laarhoven, Hanneke W.M.; Houghton, Peter J.; Oyen, Wim J.G.; Boerman, Otto C.; van der Graaf, Winette T.A.

    2011-01-01

    Purpose To investigate whether 111In-R1507 immuno-SPECT, a novel non-invasive, in vivo screening method to visualize membranous Insulin-like Growth Factor 1 Receptor (IGF-1R) expression and accessibility, can be used to predict IGF-1R treatment (R1507) responsein bone sarcomas. Experimental design BALB/c nude mice were subcutaneously implanted with IGF-1R-expressing human bone sarcoma xenografts (OS-1, EW-5 and EW-8) which demonstrated high, modest or no response, respectively, to R1507, a monoclonal antibody targeting the extracellular domain of IGF-1R. An IGF-1R-negative tumor (OS-33), unresponsive to IGF-1R inhibitors, was examined as well. Mice were injected with indium-111 labeled R1507 (111In-R1507). Biodistribution and immuno-SPECT/CT imaging studies were performed 1, 3 and 7 days p.i. in mice with OS-1 and EW-5 xenografts and 3 days p.i. in mice with EW-8 and OS-33 xenografts. Results Biodistribution studies showed specific accumulation of 111In-R1507 in OS-1 and EW-5 xenografts (27.5±6.5%ID/g and 14.0±2.8%ID/g, 3 days p.i., respectively). Most importantly, 111In-R1507 uptake in IGF-1R-positive, but unresponsive, EW-8 xenografts (6.5±1.5%ID/g, 3 days p.i.) was similar to that of the IGF-1R-negative OS-33 tumor (5.5±0.6%ID/g, 3 days p.i.). Uptake in normal tissues was low and non-specific. Corresponding immuno-SPECT images clearly discriminated between high, modest and non-responding tumors by demonstrating a homogeneous (OS-1), heterogeneous (EW-5) or non-specific (EW-8 and OS-33)tumor uptake of 111In-R1507. Conclusions 111In-R1507 immuno-SPECT is an excellent method to visualize membranous IGF-1R expression and target accessibility in vivo in human bone sarcoma xenografts and may serve as an independent marker to predict IGF-1R therapy (R1507) responsein bone sarcoma patients. PMID:22038993

  12. The Emerging Role of IGF-1 Deficiency in Cardiovascular Aging: Recent Advances

    PubMed Central

    Csiszar, Anna

    2012-01-01

    This review focuses on cardiovascular protective effects of insulin-like growth factor (IGF)-1, provides a landscape of molecular mechanisms involved in cardiovascular alterations in patients and animal models with congenital and adult-onset IGF-1 deficiency, and explores the link between age-related IGF-1 deficiency and the molecular, cellular, and functional changes that occur in the cardiovascular system during aging. Microvascular protection conferred by endocrine and paracrine IGF-1 signaling, its implications for the pathophysiology of cardiac failure and vascular cognitive impairment, and the role of impaired cellular stress resistance in cardiovascular aging considered here are based on emerging knowledge of the effects of IGF-1 on Nrf2-driven antioxidant response. PMID:22451468

  13. ESR1 Mutations Affect Anti-proliferative Responses to Tamoxifen through Enhanced Cross-Talk with IGF Signaling

    PubMed Central

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Ando’, Sebastiano; Fuqua, Suzanne AW

    2017-01-01

    It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers, however we do not yet know how to best treat these patients. We have modeled the three most frequent hormone binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR we identified mutations at high frequencies ranging from 12% for Y537N, 5% for Y537S, and 2% for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort, and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam. PMID:27178332

  14. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  15. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer.

    PubMed

    Elbaz, Mohamad; Ahirwar, Dinesh; Ravi, Janani; Nasser, Mohd W; Ganju, Ramesh K

    2017-05-02

    Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.

  16. Bidirectional signaling between TM4SF5 and IGF1R promotes resistance to EGFR kinase inhibitors.

    PubMed

    Choi, Jungeun; Kang, Minkyung; Nam, Seo Hee; Lee, Gyu-Ho; Kim, Hye-Jin; Ryu, Jihye; Cheong, Jin Gyu; Jung, Jae Woo; Kim, Tai Young; Lee, Ho-Young; Lee, Jung Weon

    2015-10-01

    The membrane glycoprotein TM4SF5 (transmembrane 4 L6 family member 5), which is similar to the tetraspanins, is highly expressed in different cancers and causes epithelial-mesenchymal transition (EMT). TM4SF5 interacts with other membrane proteins during its pro-tumorigenic roles, presumably at tetraspanin-enriched microdomains (TEMs/TERMs). Here, we explored TM4SF5-mediated resistance against the clinically important EGFR kinase inhibitors, with regards to cooperation with other membrane proteins, particularly the insulin-like growth factor 1 receptor (IGF1R). Using cancer cells including NSCLC with TM4SF5 overexpression or IGF1R suppression in either normal 2 dimensional (2D), 3D aqueous spheroids, or 3D collagen I gels systems, the sensitivity to tyrosine kinase inhibitors (TKIs) were evaluated. We found that TM4SF5 and IGF1R transcriptionally modulated one another, with each protein promoting the expressions of the other. Expression of TM4SF5 in gefitinib-sensitive HCC827 cells caused resistance to erlotinib and gefitinib, but not to sorafenib [a platelet derived growth factor receptor (PDGFR) inhibitor]; whereas suppression of IGF1R from gefitinib-resistant NCI-H1299 cells caused enhanced sensitization to the inhibitors. Expression of TM4SF5 and IGF1R in the drug-sensitive cells promoted signaling activities of extracellular signal-regulated kinases (ERKs), protein kinase B (Akt), and S6 kinase (S6K), and resulted in a higher residual EGFR activity, even after EGFR kinase inhibitor treatment. Complex formation between TM4SF5 and IGF1R was observed, and also included EGFR, dependent on TM4SF5 expression. The TM4SF5-mediated drug resistance was further confirmed in an aqueous 3D spheroid system or upon being embedded in 3D extracellular matrix (ECM)-surrounded gel systems. Collectively, these data suggest that anti-TM4SF5 reagents may be combined with the EGFR kinase inhibitors to enhance the efficacy of chemotherapies against NSCLC. Copyright © 2015 Elsevier

  17. Maternal insulin-like growth factor-II promotes placental functional development via the type 2 IGF receptor in the guinea pig.

    PubMed

    Sferruzzi-Perri, A N; Owens, J A; Standen, P; Roberts, C T

    2008-04-01

    In guinea pigs, maternal insulin-like growth factor (IGF) infusion in early-pregnancy enhances placental transport near-term, increasing fetal growth and survival. The effects of IGF-II, but not IGF-I, appear due to enhanced placental labyrinthine (exchange) development. To determine if the type-2 IGF receptor (IGF2R) mediates these distinct actions of exogenous IGF-II in the mother, we compared the impact of IGF-II with an IGF-II analogue, Leu(27)-IGF-II, which only binds the IGF2R. IGF-II, Leu(27)-IGF-II (1mg/kg per day.sc) or vehicle were infused from days 20-38 of pregnancy (term = 67 days) and placental structure and uptake and transfer of [(3)H]-methyl-D-glucose (MG) and [(14)C]-amino-isobutyric acid (AIB) and fetal growth and plasma metabolites, were measured on day 62. Both IGF-II and Leu(27)-IGF-II increased the volume of placental labyrinth, trophoblast and maternal blood space within the labyrinth and total surface area of trophoblast for exchange, compared to vehicle. Leu(27)-IGF-II also reduced the barrier to diffusion (trophoblast thickness) compared to vehicle and IGF-II. Both IGF-II and Leu(27)-IGF-II increased fetal plasma amino acid concentrations and placental transfer of MG to the fetus compared to vehicle, with Leu(27)-IGF-II also increasing AIB transport compared with vehicle and IGF-II. In addition, Leu(27)-IGF-II increased fetal weight compared to vehicle. In conclusion, maternal treatment with IGF-II or Leu(27)-IGF-II in early gestation, induce similar placental and fetal outcomes near term. This suggests that maternal IGF-II in early gestation acts in part via the IGF2R to persistently enhance placental functional development and nutrient delivery and promote fetal growth.

  18. Preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1.

    PubMed

    Ma, Min; Zhou, Qiong-Jie; Xiong, Yu; Li, Bin; Li, Xiao-Tian

    2018-01-01

    Previous studies have demonstrated a dynamic epigenetic regulation of genes expression in placenta trophoblasts and a dynamic imbalance of DNA methylation and hydroxymethylation. Reduced IGF-1 has been observed in preeclampsia. This study was to investigate the interactive roles between IGF-1 and the global DNA methylation/hydroxymethylation, and the status of DNA methylation/hydroxymethylation and associated enzymes such as DNMTs and TETs in peeeclamptic placentas and hypoxic trophoblasts. It was found that IGF-1 was decreased in preeclamptic placentas and hypoxic trophoblasts when compared to the control group using immunohistochemisty, western blot, qRT-PCR and ELISA. Pyrophosphate sequencing showed IGF-1 promoter was significantly hypermethylated in preeclamptic placentas, which was responsible for reduced IGF-1 expression. Preeclamptic placentas and hypoxic trophoblasts were hypermethylated and hypohydroxymethylated accompanied by remarkably higher 5mC, DNMT1 and DNMT3b, and lower DNMT3a, 5hmC, TET1, TET2 and TET3 detected by immunohistochemisty, western blot, qRT-PCR and ELISA. Pearson's correlation confirmed a statistically significant negative correlation between IGF-1 and DNMT1. Furthermore, both treatment with 5-Aza-dc and DNMT1-siRNA significantly increased the expression of IGF-1 in HTR8 cells, indicating the potential mechanism of DNMT1-mediated DNA methylation in IGF-1 regulation. However, IGF-1 didn't change DNA methylation or hydroxymethylation. These findings suggest that preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1 and provide new insights into the diagnosis and treatment of preeclampsia.

  19. Preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1

    PubMed Central

    Ma, Min; Zhou, Qiong-Jie; Xiong, Yu; Li, Bin; Li, Xiao-Tian

    2018-01-01

    Previous studies have demonstrated a dynamic epigenetic regulation of genes expression in placenta trophoblasts and a dynamic imbalance of DNA methylation and hydroxymethylation. Reduced IGF-1 has been observed in preeclampsia. This study was to investigate the interactive roles between IGF-1 and the global DNA methylation/hydroxymethylation, and the status of DNA methylation/hydroxymethylation and associated enzymes such as DNMTs and TETs in peeeclamptic placentas and hypoxic trophoblasts. It was found that IGF-1 was decreased in preeclamptic placentas and hypoxic trophoblasts when compared to the control group using immunohistochemisty, western blot, qRT-PCR and ELISA. Pyrophosphate sequencing showed IGF-1 promoter was significantly hypermethylated in preeclamptic placentas, which was responsible for reduced IGF-1 expression. Preeclamptic placentas and hypoxic trophoblasts were hypermethylated and hypohydroxymethylated accompanied by remarkably higher 5mC, DNMT1 and DNMT3b, and lower DNMT3a, 5hmC, TET1, TET2 and TET3 detected by immunohistochemisty, western blot, qRT-PCR and ELISA. Pearson’s correlation confirmed a statistically significant negative correlation between IGF-1 and DNMT1. Furthermore, both treatment with 5-Aza-dc and DNMT1-siRNA significantly increased the expression of IGF-1 in HTR8 cells, indicating the potential mechanism of DNMT1-mediated DNA methylation in IGF-1 regulation. However, IGF-1 didn’t change DNA methylation or hydroxymethylation. These findings suggest that preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1 and provide new insights into the diagnosis and treatment of preeclampsia. PMID:29422991

  20. Alternations of central insulin-like growth factor-1 sensitivity in APP/PS1 transgenic mice and neuronal models.

    PubMed

    Zhang, Bing; Tang, Xi Can; Zhang, Hai Yan

    2013-05-01

    Although many post-mortem studies have found evidence of central insulin resistance in Alzheimer's disease (AD) patients, results on changes of central insulin-like growth factor-1 (IGF-1) signaling in the pathological process of AD remain controversial. In the present study, we observed the activation states of IGF-1 downstream signaling in brain slices of transgenic mice carrying APPswe/PS1dE9 mutations (APP/PS1 mice) at both early and late stages (ex vivo) and further investigated the involvement of oligomeric β-amyloid (Aβ) and Aβ-enriched culture medium (CM) on IGF-1 sensitivity employing neuronal models (in vitro). In 6- and 18-month-old APP/PS1 mice, the phosphorylations of IGF-1 receptor (IGF-1R) and Akt in response to IGF-1 stimulation were significantly reduced in the hippocampal and cortical slices, whereas IGF-1R protein expression and mRNA levels of IGF-1 and IGF-1R in the hippocampal slices were significantly higher than that in wild-type mice. In agreement with these results, reduced IGF-1 sensitivity was verified in APP and PS1 double stably transfected CHO cells; moreover, IGF-1 stimulated phosphorylations of IGF-1R and Akt were also markedly weakened by oligomeric Aβ or Aβ-enriched CM posttreatment in CHO cells without APP/PS1-transfected (K1 cells) and primary hippocampal neurons. These observations indicate that the impaired central IGF-1 sensitivity at early and late stages of APP/PS1 transgenic mice might be attributable, at least partially, to the overproduced Aβ, especially the oligomeric Aβ. These findings may shed new light on the mechanisms underlying the defective IGF-1 signaling in AD pathogenesis and provide important clues for AD drug discovery. Copyright © 2013 Wiley Periodicals, Inc.

  1. Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways.

    PubMed

    Perrin, A J; Gunda, M; Yu, B; Yen, K; Ito, S; Forster, S; Tissenbaum, H A; Derry, W B

    2013-01-01

    The insulin/IGF-1 pathway controls a number of physiological processes in the nematode worm Caenorhabditis elegans, including development, aging and stress response. We previously found that the Akt/PKB ortholog AKT-1 dampens the apoptotic response to genotoxic stress in the germline by negatively regulating the p53-like transcription factor CEP-1. Here, we report unexpected rearrangements to the insulin/IGF-1 pathway, whereby the insulin-like receptor DAF-2 and 3-phosphoinositide-dependent protein kinase PDK-1 oppose AKT-1 to promote DNA damage-induced apoptosis. While DNA damage does not affect phosphorylation at the PDK-1 site Thr350/Thr308 of AKT-1, it increased phosphorylation at Ser517/Ser473. Although ablation of daf-2 or pdk-1 completely suppressed akt-1-dependent apoptosis, the transcriptional activation of CEP-1 was unaffected, suggesting that daf-2 and pdk-1 act independently or downstream of cep-1 and akt-1. Ablation of the akt-1 paralog akt-2 or the downstream target of the insulin/IGF-1 pathway daf-16 (a FOXO transcription factor) restored sensitivity to damage-induced apoptosis in daf-2 and pdk-1 mutants. In addition, daf-2 and pdk-1 mutants have reduced levels of phospho-MPK-1/ERK in their germ cells, indicating that the insulin/IGF-1 pathway promotes Ras signaling in the germline. Ablation of the Ras effector gla-3, a negative regulator of mpk-1, restored sensitivity to apoptosis in daf-2 mutants, suggesting that gla-3 acts downstream of daf-2. In addition, the hypersensitivity of let-60/Ras gain-of-function mutants to damage-induced apoptosis was suppressed to wild-type levels by ablation of daf-2. Thus, insulin/IGF-1 signaling selectively engages AKT-2/DAF-16 to promote DNA damage-induced germ cell apoptosis downstream of CEP-1 through the Ras pathway.

  2. Inhibition of IGF1-R overcomes IGFBP7-induced chemotherapy resistance in T-ALL.

    PubMed

    Bartram, Isabelle; Erben, Ulrike; Ortiz-Tanchez, Jutta; Blunert, Katja; Schlee, Cornelia; Neumann, Martin; Heesch, Sandra; Baldus, Claudia D

    2015-10-08

    T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with the need for treatment optimization. Previously, high expression of Insulin-like growth factor binding protein 7 (IGFBP7), a member of the IGF system, was identified as negative prognostic factor in adult T-ALL patients. Since aberrant IGFBP7 expression was observed in a variety of neoplasia and was relevant for prognosis in T-ALL, we investigated the functional role of IGFBP7 in Jurkat and Molt-4 cells as in vitro models for T-ALL. Jurkat and Molt-4 cells were stably transfected with an IGFBP7 over-expression vector or the empty vector as control. Proliferation of the cells was assessed by WST-1 assays and cell cycle status was measured by flow-cytometry after BrDU/7-AAD staining. The effect of IGFBP7 over-expression on sensitivity to cytostatic drugs was determined in AnnexinV/7-AAD assays. IGF1-R protein expression was measured by Western Blot and flow-cytometric analysis. IGF1-R associated gene expression profiles were generated from microarray gene expression data of 86 T-ALL patients from the Microarrays Innovations in Leukemia (MILE) multicenter study. IGFBP7-transfected Jurkat cells proliferated less, leading to a longer survival in a nutrient-limited environment. Both IGFBP7-transfected Jurkat and Molt-4 cells showed an arrest in the G0/G1 cell cycle phase. Furthermore, Jurkat IGFBP7-transfected cells were resistant to vincristine and asparaginase treatment. Surface expression and whole protein measurement of IGF1-R protein expression showed a reduced abundance of the receptor after IGFBP7 transfection in Jurkat cells. Interestingly, combination of the IGF1-R inhibitor NPV-AEW541 restored sensitivity to vincristine in IGFBP7-transfected cells. Additionally, IGF1-R associated GEP revealed an up-regulation of important drivers of T-ALL pathogenesis and regulators of chemo-resistance and apoptosis such as NOTCH1, BCL-2, PRKCI, and TP53. This study revealed a proliferation

  3. Glypican-3 induces oncogenicity by preventing IGF-1R degradation, a process that can be blocked by Grb10

    PubMed Central

    Cheng, Wei; Huang, Po-Chun; Chao, Hsiao-Mei; Jeng, Yung-Ming; Hsu, Hey-Chi; Pan, Hung-Wei; Hwu, Wuh-Liang; Lee, Yu-May

    2017-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a major cause of cancer-related death worldwide. Previously, we demonstrated that glypican-3 (GPC3) is highly expressed in HCC, and that GPC3 induces oncogenicity and promotes the growth of cancer cells through IGF-1 receptor (IGF-1R). In the present study, we investigated the mechanisms of GPC3-mediated enhancement of IGF-1R signaling. We demonstrated that GPC3 decreased IGF-1-induced IGF-1R ubiquitination and degradation and increased c-Myc protein levels. GPC3 bound to Grb10, a mediator of ligand-induced receptor ubiquitination, and the overexpression of Grb10 blocked GPC3-enhanced IGF-1-induced ERK phosphorylation. GPC3 promoted the growth of NIH3T3 and PLC-PRF-5 cells in serum-free medium but did not promote the growth of IGF-1R negative R- cells. Grb10 overexpression decreased GPC3-promoted cell growth. Therefore, the present study elucidates the mechanisms of GPC3-induced oncogenicity, which may highlight new strategies for the treatment of HCC. PMID:29113314

  4. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  5. Biochemical Characterization of Individual Human Glycosylated pro-Insulin-like Growth Factor (IGF)-II and big-IGF-II Isoforms Associated with Cancer

    PubMed Central

    Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.

    2013-01-01

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326

  6. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer.

    PubMed

    Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E

    2013-01-04

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.

  7. IGF-1 induces the epithelial-mesenchymal transition via Stat5 in hepatocellular carcinoma.

    PubMed

    Zhao, Chuanzong; Wang, Qian; Wang, Ben; Sun, Qi; He, Zhaobin; Hong, Jianguo; Kuehn, Florian; Liu, Enyu; Zhang, Zongli

    2017-12-19

    It has been reported that the epithelial-mesenchymal transition (EMT) plays an important role in hepatocellular carcinoma (HCC). However, the relationship between the insulin-like growth factor-1 (IGF-1) and EMT of HCC was not fully elucidated. In the present work, we found that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively associated with IGF-1R expression, while E-cadherin expression was negatively associated with IGF-1 expression in human HCC samples. Furthermore, we observed that IGF-1 up-regulated the expression of N-cadherin, Vimentin, Snail1, Snail2 and Twist1, and down-regulated the expression of E-cadherin. In addition, Stat5 was induced in IGF-1-treated HepG2 and Hep3B cells, and Stat5 inhibition or siRNA significantly affected IGF-1-induced EMT in HepG2 and Hep3B cells. In conclusion, IGF-1 induces EMT of HCC via Stat5 signaling pathway. Thus, IGF-1/Stat5 can be recommended as a potential and novel therapeutic strategy for HCC patients.

  8. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways *

    PubMed Central

    Erdem, Cemal; Nagle, Alison M.; Casa, Angelo J.; Litzenburger, Beate C.; Wang, Yu-fen; Taylor, D. Lansing; Lee, Adrian V.; Lezon, Timothy R.

    2016-01-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358

  9. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing.

    PubMed

    Wang, Tao; Wang, Yongmei; Menendez, Alicia; Fong, Chak; Babey, Muriel; Tahimic, Candice G T; Cheng, Zhiqiang; Li, Alfred; Chang, Wenhan; Bikle, Daniel D

    2015-09-01

    Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1R(flox/flox) /2.3-kb α1(1)-collagen-Cre (KO) and IGF1R(flox/flox) (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by μCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation

  10. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing

    PubMed Central

    Wang, Tao; Wang, Yongmei; Menendez, Alicia; Fong, Chak; Babey, Muriel; Tahimic, Candice GT; Cheng, Zhiqiang; Li, Alfred; Chang, Wenhan; Bikle, Daniel D.

    2017-01-01

    Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1Rflox/flox/2.3-kb α1(1)-collagen-Cre (KO) and IGF1Rflox/flox (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by μCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation

  11. IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis.

    PubMed

    Baregamian, Naira; Song, Jun; Jeschke, Marc G; Evers, B Mark; Chung, Dai H

    2006-11-01

    Reactive oxygen species (ROS) are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. We have recently found that activation of multiple cellular signaling transduction pathways occurs during ROS-induced intestinal cell apoptosis; the phosphatidylinositol 3-kinase (PI3-K) pathway plays an anti-apoptotic role during this process. Insulin-like growth factor (IGF)-1 activates PI3-K pathway to promote cell survival; however, the effects of IGF-1 treatment during gut injury are not clearly defined. The purpose of this study was to determine whether IGF-1 protects intestinal cells from ROS-induced apoptosis. Rat intestinal epithelial (RIE)-1 cells were treated with either IGF-1 (100 nm), hydrogen peroxide (H2O2; 500 microm), or combination. Western blotting was performed to assess phosphorylation of Akt, a downstream effector of PI3-K. Cell Death Detection ELISA, DCHF, and JC-1 assays were performed to demonstrate protective effects of IGF-1. Wortmannin, an inhibitor of PI3-K, was used to show PI3-K-dependent mechanism of action for IGF-1. H2O2 treatment resulted in increased intestinal epithelial cell apoptosis with intracellular ROS generation and mitochondrial membrane depolarization; IGF-1 pre-treatment attenuated this response without affecting ROS production. H2O2-induced phosphorylation of Akt was further increased with IGF-1 treatment; wortmannin abolished these effects in RIE-1 cells. PI3-K pathway is activated during ROS-induced intestinal epithelial cell injury; IGF-1 exerted an anti-apoptotic effect during this response by PI3-K activation. A better understanding of the exact role of IGF-1-mediated activation of PI3-K may allow us to facilitate the development of novel therapy against NEC.

  12. IGF-II Promotes Stemness of Neural Restricted Precursors

    PubMed Central

    Ziegler, Amber N.; Schneider, Joel S.; Qin, Mei; Tyler, William A.; Pintar, John E.; Fraidenraich, Diego; Wood, Teresa L.; Levison, Steven W.

    2016-01-01

    Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance. PMID:22593020

  13. Cardiac-targeting magnetic lipoplex delivery of SH-IGF1R plasmid attenuate norepinephrine-induced cardiac hypertrophy in murine heart.

    PubMed

    Xu, Yiping; Li, Xuebiao; Kong, Minjian; Jiang, Daming; Dong, Aiqiang; Shen, Zhonghua; Duan, Qunjun

    2014-10-02

    Recent studies have demonstrated a number of molecular mechanisms contributing to the initiation of cardiac hypertrophy response to pressure overload. IGF1R (insulin-like growth factor-1 receptor), an important oncogene, is overexpressed in hypertrophic heart and mediates the hypertrophic pathology process. In this study, we applied with liposomal magnetofection that potentiated gene transfection by applying an external magnetic field to enhance its transfection efficiency. Liposomal magnetofection provided high efficiency in transgene expression in vivo. In vivo, IGF1R-specific-shRNA (small-hairpin RNA) by magnetofection inhibited IGF1R protein expression by 72.2 ± 6.8, 80.7 ± 9.6 and 84.5 ± 5.6%, at 24, 48 and 72 h, respectively, after pGFPshIGF1R injection, indicating that liposomal magnetofection is a promising method that allows the targeting of gene therapy for heart failure. Furthermore, we found that the treated animals (liposomal magnetofection with shIGF1R) showed reduced septal and posterior wall thickness, reduced HW:BWs (heart weight-to-body weights) compared with controls. Moreover, we also found that liposomal magnetofection-based shIGF1R transfection decreased the expression level of p-ERK (phosphorylated extracellular-signal-regulated kinase)1/2, p-AKT1 (phosphorylated protein kinase B1) compared with untreated hearts. These results suggested that liposomal magnetofection-mediated IGF1R-specific-shRNA may be a promising method, and suppression the IGF1R expression inhibited norepinephrine-induced cardiac hypertrophic process via inhibiting PI3K (phosphoinositide 3-kinase)/AKT pathway.

  14. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS

    PubMed Central

    Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva

    2016-01-01

    The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807

  15. Adipose tissue-derived stem cell secreted IGF-1 protects myoblasts from the negative effect of myostatin.

    PubMed

    Gehmert, Sebastian; Wenzel, Carina; Loibl, Markus; Brockhoff, Gero; Huber, Michaela; Krutsch, Werner; Nerlich, Michael; Gosau, Martin; Klein, Silvan; Schreml, Stephan; Prantl, Lukas; Gehmert, Sanga

    2014-01-01

    Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs), these cells (ASCs) provide a therapeutic option for Duchenne Muscular Dystrophy (DMD). But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  16. Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging.

    PubMed

    Barna, János; Princz, Andrea; Kosztelnik, Mónika; Hargitai, Balázs; Takács-Vellai, Krisztina; Vellai, Tibor

    2012-11-01

    Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.

  17. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway.

    PubMed

    Garfinkel, Benjamin P; Arad, Shiri; Le, Phuong T; Bustin, Michael; Rosen, Clifford J; Gabet, Yankel; Orly, Joseph

    2015-12-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.

  18. IGF-1 levels are significantly correlated with patient-reported measures of sexual function.

    PubMed

    Pastuszak, A W; Liu, J S; Vij, A; Mohamed, O; Sathyamoorthy, K; Lipshultz, L I; Khera, M

    2011-01-01

    Growth hormone (GH) supplementation may help to preserve erectile function. We assessed whether serum insulin-like growth factor 1 (IGF-1) levels, a surrogate for GH levels, correlate with sexual function scores in 65 men who completed the Sexual Health Inventory for Men (SHIM) and Expanded Prostate Cancer Index Composite (EPIC) questionnaires, and had serum IGF-1 and testosterone levels determined. Median±s.d. IGF-1 level, SHIM and EPIC scores were 235.0±86.4, 19.5±8.7 and 56.4±28.3 mg ml(-1), respectively. IGF-1 levels and total SHIM score correlate significantly (r=0.31, P=0.02), as do IGF-1 levels and all individual SHIM question scores, and IGF-1 levels and the sexual domain of the EPIC questionnaire (r=0.30, P=0.02). No correlation was observed between IGF-1 levels and Gleason score, IGF-1 and testosterone level or SHIM score and testosterone level. These data support a potential role for the GH axis in erectile function.

  19. Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway.

    PubMed

    Tang, Wenqing; Feng, Xuemei; Zhang, Si; Ren, Zhenggang; Liu, Yinkun; Yang, Biwei; lv, Bei; Cai, Yu; Xia, Jinglin; Ge, Ningling

    2015-01-01

    Anoikis resistance is a prerequisite for hepatocellular carcinoma (HCC) metastasis. The role of Caveolin-1 (CAV1) in anoikis resistance of HCC remains unclear. The oncogenic effect of CAV1 on anchor-independent growth and anoikis resistance was investigated by overexpression and knockdown of CAV1 in hepatoma cells. IGF-1 pathway and its downstream signals were detected by immunoblot analysis. Caveolae invagination and IGF-1R internalization was studied by electron microscopy and (125)I-IGF1 internalization assay, respectively. The role of IGF-1R and tyrosine-14 residue (Y-14) of CAV1 was explored by deletion experiment and mutation experiment, respectively. The correlation of CAV1 and IGF-1R was further examined by immunochemical analysis in 120 HCC specimens. CAV1 could promote anchor-independent growth and anoikis resistance in hepatoma cells. CAV1-overexpression increased the expression of IGF-1R and subsequently activated PI3K/Akt and RAF/MEK/ERK pathway, while CAV1 knockdown showed the opposite effect. The mechanism study revealed that CAV1 facilitated caveolae invagination and (125)I-IGF1 internalization. IGF-1R deletion or Y-14 mutation reversed CAV1 mediated anchor-independent growth and anoikis resistance. In addition, CAV1 expression was positively related to IGF-1R expression in human HCC tissues. CAV1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway, providing a potential therapeutic target for HCC metastasis. © 2015 S. Karger AG, Basel.

  20. Altered prostate epithelial development and IGF-1 signal in mice lacking the androgen receptor in stromal smooth muscle cells.

    PubMed

    Yu, Shengqiang; Zhang, Caixia; Lin, Chiu-Chun; Niu, Yuanjie; Lai, Kuo-Pao; Chang, Hong-chiang; Yeh, Shauh-Der; Chang, Chawnshang; Yeh, Shuyuan

    2011-04-01

    Androgens and the androgen receptor (AR) play critical roles in the prostate development via mesenchymal-epithelial interactions. Smooth muscle cells (SMC), differentiated from mesenchyme, are one of the basic components of the prostate stroma. However, the roles of smooth muscle AR in prostate development are still obscure. We established the smooth muscle selective AR knockout (SM-ARKO) mouse model using the Cre-loxP system, and confirmed the ARKO efficiency at RNA, DNA and protein levels. Then, we observed the prostate morphology changes, and determined the epithelial proliferation, apoptosis, and differentiation. We also knocked down the AR in a prostate smooth muscle cell line (PS-1) to confirm the in vivo findings and to probe the mechanism. The AR was selectively and efficiently knocked out in the anterior prostates of SM-ARKO mouse. The SM-ARKO prostates have defects with loss of infolding structures, and decrease of epithelial proliferation, but with little change of apoptosis and differentiation. The mechanism studies showed that IGF-1 expression level decreased in the SM-ARKO prostates and AR-knockdown PS-1 cells. The decreased IGF-1 expression might contribute to the defective development of SM-ARKO prostates. The AR in SMCs plays important roles in the prostate development via the regulation of IGF-1 signal. Copyright © 2010 Wiley-Liss, Inc.

  1. Phenformin inhibits growth and epithelial-mesenchymal transition of ErbB2-overexpressing breast cancer cells through targeting the IGF1R pathway.

    PubMed

    Guo, Zhiying; Zhao, Ming; Howard, Erin W; Zhao, Qingxia; Parris, Amanda B; Ma, Zhikun; Yang, Xiaohe

    2017-09-01

    Reports suggest that metformin, a popular anti-diabetes drug, prevents breast cancer through various systemic effects, including insulin-like growth factor receptor (IGFR) regulation. Although the anti-cancer properties of metformin have been well-studied, reports on a more bioavailable/potent biguanide, phenformin, remain sparse. Phenformin exerts similar functional activity to metformin and has been reported to impede mammary carcinogenesis in rats. Since the effects of phenformin on specific breast cancer subtypes have not been fully explored, we used ErbB2-overexpressing breast cancer cell and animal models to test the anti-cancer potential of phenformin. We report that phenformin (25-75 μM) decreased cell proliferation and impaired cell cycle progression in SKBR3 and 78617 breast cancer cells. Reduced tumor size after phenformin treatment (30 mg/kg/day) was demonstrated in an MMTV-ErbB2 transgenic mouse syngeneic tumor model. Phenformin also blocked epithelial-mesenchymal transition, decreased the invasive phenotype, and suppressed receptor tyrosine kinase signaling, including insulin receptor substrate 1 and IGF1R, in ErbB2-overexpressing breast cancer cells and mouse mammary tumor-derived tissues. Moreover, phenformin suppressed IGF1-stimulated proliferation, receptor tyrosine kinase signaling, and epithelial-mesenchymal transition markers in vitro . Together, our study implicates phenformin-mediated IGF1/IGF1R regulation as a potential anti-cancer mechanism and supports the development of phenformin and other biguanides as breast cancer therapeutics.

  2. Phenformin inhibits growth and epithelial-mesenchymal transition of ErbB2-overexpressing breast cancer cells through targeting the IGF1R pathway

    PubMed Central

    Guo, Zhiying; Zhao, Ming; Howard, Erin W.; Zhao, Qingxia; Parris, Amanda B.; Ma, Zhikun; Yang, Xiaohe

    2017-01-01

    Reports suggest that metformin, a popular anti-diabetes drug, prevents breast cancer through various systemic effects, including insulin-like growth factor receptor (IGFR) regulation. Although the anti-cancer properties of metformin have been well-studied, reports on a more bioavailable/potent biguanide, phenformin, remain sparse. Phenformin exerts similar functional activity to metformin and has been reported to impede mammary carcinogenesis in rats. Since the effects of phenformin on specific breast cancer subtypes have not been fully explored, we used ErbB2-overexpressing breast cancer cell and animal models to test the anti-cancer potential of phenformin. We report that phenformin (25–75 μM) decreased cell proliferation and impaired cell cycle progression in SKBR3 and 78617 breast cancer cells. Reduced tumor size after phenformin treatment (30 mg/kg/day) was demonstrated in an MMTV-ErbB2 transgenic mouse syngeneic tumor model. Phenformin also blocked epithelial-mesenchymal transition, decreased the invasive phenotype, and suppressed receptor tyrosine kinase signaling, including insulin receptor substrate 1 and IGF1R, in ErbB2-overexpressing breast cancer cells and mouse mammary tumor-derived tissues. Moreover, phenformin suppressed IGF1-stimulated proliferation, receptor tyrosine kinase signaling, and epithelial-mesenchymal transition markers in vitro. Together, our study implicates phenformin-mediated IGF1/IGF1R regulation as a potential anti-cancer mechanism and supports the development of phenformin and other biguanides as breast cancer therapeutics. PMID:28947975

  3. Increased IGF-1 in muscle modulates the phenotype of severe SMA mice

    PubMed Central

    Bosch-Marcé, Marta; Wee, Claribel D.; Martinez, Tara L.; Lipkes, Celeste E.; Choe, Dong W.; Kong, Lingling; Van Meerbeke, James P.; Musarò, Antonio; Sumner, Charlotte J.

    2011-01-01

    Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by the mutation of the survival motor neuron 1 (SMN1) gene and deficiency of the SMN protein. Severe SMA mice have abnormal motor function and small, immature myofibers early in development suggesting that SMN protein deficiency results in retarded muscle growth. Insulin-like growth factor 1 (IGF-1) stimulates myoblast proliferation, induces myogenic differentiation and generates myocyte hypertrophy in vitro and in vivo. We hypothesized that increased expression of IGF-1 specifically in skeletal muscle would attenuate disease features of SMAΔ7 mice. SMAΔ7 mice overexpressing a local isoform of IGF-1 (mIGF-1) in muscle showed enlarged myofibers and a 40% increase in median survival compared with mIGF-1-negative SMA littermates (median survival = 14 versus 10 days, respectively, log-rank P = 0.025). Surprisingly, this was not associated with a significant improvement in motor behavior. Treatment of both mIGF-1NEG and mIGF-1POS SMA mice with the histone deacetylase inhibitor, trichostatin A (TSA), resulted in a further extension of survival and improved motor behavior, but the combination of mIGF-1 and TSA treatment was not synergistic. These results show that increased mIGF-1 expression restricted to muscle can modulate the phenotype of SMA mice indicating that therapeutics targeted to muscle alone should not be discounted as potential disease-modifying therapies in SMA. IGF-1 may warrant further investigation in mild SMA animal models and perhaps SMA patients. PMID:21325354

  4. IGF1 regulates PKM2 function through Akt phosphorylation

    PubMed Central

    Salani, Barbara; Ravera, Silvia; Amaro, Adriana; Salis, Annalisa; Passalacqua, Mario; Millo, Enrico; Damonte, Gianluca; Marini, Cecilia; Pfeffer, Ulrich; Sambuceti, Gianmario; Cordera, Renzo; Maggi, Davide

    2015-01-01

    Pyruvate kinase M2 (PKM2) acts at the crossroad of growth and metabolism pathways in cells. PKM2 regulation by growth factors can redirect glycolytic intermediates into key biosynthetic pathway. Here we show that IGF1 can regulate glycolysis rate, stimulate PKM2 Ser/Thr phosphorylation and decrease cellular pyruvate kinase activity. Upon IGF1 treatment we found an increase of the dimeric form of PKM2 and the enrichment of PKM2 in the nucleus. This effect was associated to a reduction of pyruvate kinase enzymatic activity and was reversed using metformin, which decreases Akt phosphorylation. IGF1 induced an increased nuclear localization of PKM2 and STAT3, which correlated with an increased HIF1α, HK2, and GLUT1 expression and glucose entrapment. Metformin inhibited HK2, GLUT1, HIF-1α expression and glucose consumption. These findings suggest a role of IGFIR/Akt axis in regulating glycolysis by Ser/Thr PKM2 phosphorylation in cancer cells. PMID:25790097

  5. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes.

    PubMed

    Nazli, S A; Loeser, R F; Chubinskaya, S; Willey, J S; Yammani, R R

    2017-09-01

    Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Prognostic value of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 blood levels in breast cancer.

    PubMed

    Hartog, H; Boezen, H M; de Jong, M M; Schaapveld, M; Wesseling, J; van der Graaf, W T A

    2013-12-01

    High circulating insulin-like growth factor 1 (IGF-1) levels are firmly established as a risk factor for developing breast cancer, especially estrogen positive tumors. The effect of circulating IGF-1 on prognosis once a tumor is established is unknown. The authors explored the effect of IGF-1 blood levels and of it's main binding protein, IGFBP-3, on overall survival and occurrence of second primary breast tumors in breast cancer patients, as well as reproductive and lifestyle factors that could modify this risk. Patients were accrued from six hospitals in the Netherlands between 1998 and 2003. Total IGF-1 and IGFBP-3 were measured in 582 plasma samples. No significant association between IGF-1 and IGFBP-3 plasma levels and overall survival was found. However, in a multivariate Cox regression model including standard prognostic variables high IGF-1 levels were related to worse overall survival in patients receiving endocrine therapy (HR = 1.37, 95% CI: 1.11, 1.69, P 0.004). These data at least indicate that higher IGF-1 levels, and as a consequence most likely IGF-1-induced signaling, are related to a less favorable overall survival in breast cancer patients treated with endocrine therapy. Interventions aimed at reducing circulating levels of IGF-1 in hormone receptor positive breast cancer may improve survival. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Clustering of Genetically Defined Allele Classes in the Caenorhabditis elegans DAF-2 Insulin/IGF-1 Receptor

    PubMed Central

    Patel, Dhaval S.; Garza-Garcia, Acely; Nanji, Manoj; McElwee, Joshua J.; Ackerman, Daniel; Driscoll, Paul C.; Gems, David

    2008-01-01

    The DAF-2 insulin/IGF-1 receptor regulates development, metabolism, and aging in the nematode Caenorhabditis elegans. However, complex differences among daf-2 alleles complicate analysis of this gene. We have employed epistasis analysis, transcript profile analysis, mutant sequence analysis, and homology modeling of mutant receptors to understand this complexity. We define an allelic series of nonconditional daf-2 mutants, including nonsense and deletion alleles, and a putative null allele, m65. The most severe daf-2 alleles show incomplete suppression by daf-18(0) and daf-16(0) and have a range of effects on early development. Among weaker daf-2 alleles there exist distinct mutant classes that differ in epistatic interactions with mutations in other genes. Mutant sequence analysis (including 11 newly sequenced alleles) reveals that class 1 mutant lesions lie only in certain extracellular regions of the receptor, while class 2 (pleiotropic) and nonconditional missense mutants have lesions only in the ligand-binding pocket of the receptor ectodomain or the tyrosine kinase domain. Effects of equivalent mutations on the human insulin receptor suggest an altered balance of intracellular signaling in class 2 alleles. These studies consolidate and extend our understanding of the complex genetics of daf-2 and its underlying molecular biology. PMID:18245374

  8. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Transgenic Wuzhishan minipigs designed to express a dominant-negative porcine growth hormone receptor display small stature and a perturbed insulin/IGF-1 pathway.

    PubMed

    Li, Feida; Li, Yong; Liu, Huan; Zhang, Xingju; Liu, Chuxin; Tian, Kai; Bolund, Lars; Dou, Hongwei; Yang, Wenxian; Yang, Huanming; Staunstrup, Nicklas Heine; Du, Yutao

    2015-12-01

    Growth hormone (GH) is an anabolic mitogen with widespread influence on cellular growth and differentiation as well as on glucose and lipid metabolism. GH binding to the growth hormone receptor (GHR) on hepatocytes prompts expression of insulin growth factor I (IGF-1) involved in nutritionally induced compensatory hyperplasia of pancreatic β-cell islets and insulin release. A prolonged hyperactivity of the IGF-1/insulin axis in the face of insulinotropic nutrition, on the other hand, can lead to collapse of the pancreatic islets and glucose intolerance. Individuals with Laron syndrome carry mutations in the GHR gene resulting in severe congenital IGF-1 deficiency and elevated GH serum levels leading to short stature as well as perturbed lipid and glucose metabolism. However, these individuals enjoy a reduced prevalence of acne, cancer and possibly diabetes. Minipigs have become important biomedical models for human conditions due to similarities in organ anatomy, physiology, and metabolism relative to humans. The purpose of this study was to generate transgenic Wuzhishan minipigs by handmade cloning with impaired systemic GHR activity and assess their growth profile and glucose metabolism. Transgenic minipigs featuring overexpression of a dominant-negative porcine GHR (GHR(dm)) presented postnatal growth retardation and proportionate dwarfism. Molecular changes included elevated GH serum levels and mild hyperglycemia. We believe that this model may prove valuable in the study of GH functions in relation to cancer, diabetes and longevity.

  10. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer.

    PubMed

    McKinley, Eliot T; Bugaj, Joseph E; Zhao, Ping; Guleryuz, Saffet; Mantis, Christine; Gokhale, Prafulla C; Wild, Robert; Manning, H Charles

    2011-05-15

    To evaluate 2-deoxy-2-[(18)F]fluoro-d-glucose positron emission tomography imaging ((18)FDG-PET) as a predictive, noninvasive, pharmacodynamic (PD) biomarker of response following administration of a small-molecule insulin-like growth factor-1 receptor and insulin receptor (IGF-1R/IR) inhibitor, OSI-906. In vitro uptake studies of (3)H-2-deoxy glucose following OSI-906 exposure were conducted evaluating correlation of dose with inhibition of IGF-1R/IR as well as markers of downstream pathways and glucose metabolism. Similarly, in vivo PD effects were evaluated in human tumor cell line xenografts propagated in athymic nude mice by (18)FDG-PET at 2, 4, and 24 hours following a single treatment of OSI-906 for the correlation of inhibition of receptor targets and downstream markers. Uptake of (3)H-2-deoxy glucose and (18)FDG was significantly diminished following OSI-906 exposure in sensitive tumor cells and subcutaneous xenografts (NCI-H292) but not in an insensitive model lacking IGF-1R expression (NCI-H441). Diminished PD (18)FDG-PET, collected immediately following the initial treatment agreed with inhibition of pIGF-1R/pIR, reduced PI3K (phosphoinositide 3-kinase) and MAPK (mitogen activated protein kinase) pathway activity, and predicted tumor growth arrest as measured by high-resolution ultrasound imaging. (18)FDG-PET seems to serve as a rapid, noninvasive PD marker of IGF-1R/IR inhibition following a single dose of OSI-906 and should be explored clinically as a predictive clinical biomarker in patients undergoing IGF-1R/IR-directed cancer therapy. ©2011 AACR.

  11. Microsatellite polymorphism in the P1 promoter region of the IGF-1 gene is associated with endometrial cancer

    PubMed Central

    KWASNIEWSKI, WOJCIECH; GOZDZICKA-JOZEFIAK, ANNA; WOLUN-CHOLEWA, MARIA; POLAK, GRZEGORZ; SIEROCINSKA-SAWA, JADWIGA; KWASNIEWSKA, ANNA; KOTARSKI, JAN

    2016-01-01

    Endometrial carcinoma (EC) is the most common type of gynecological malignancy. Studies have demonstrated that the insulin growth factor (IGF) pathway is implicated in the development of endometrial tumors and that the serum levels of IGF-1 are affected by estrogen. Most EC cells with high microsatellite instability (MSI-H) accumulate mutations at a microsatellite sequence in the IGF-1 gene. The present study investigated the CA repeat polymorphism in the P1 promoter region of the IGF-1 gene among Caucasian females with endometrial hyperplasia, EC and healthy control subjects, whose blood serum and surgical tissue specimens were analyzed. Differences or correlations between the analyzed parameters [serum levels of IGF-1 and IGF binding protein (IGFBP)-1 and IGFBP-3 as well as estrogens among the polymorphisms] were verified using the χ2, Mann-Whitney U, Kruskal-Wallis or Spearman's rank correlation tests. A PCR amplification and DNA sequencing analysis was used for identification of (CA)n repeats in the P1 region of IGF-1. ELISA was used to determine the blood serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrogens. Furthermore, IGF-1 was assessed in endometrial tissues by immunohistochemical analysis. The present study indicated no statistically significant differences between serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrone, estriol and estradiol in the control and study groups. A significant correlation was identified between the IGF-1 levels and estrone levels in the MSI-H polymorphism (r=−0.41, P=0.012) as well as a highly negative correlation between IGF-1 levels and the estradiol levels in the MSI-H polymorphism (r=−0.6, P=0.002). Genotypes without the 19 CA allele were predominantly found in EC. Furthermore, statistical analysis indicated that the number of IGF-1-expressing cells was significantly elevated in MSI-H type 18-20 (P= 0.0072), MSI-L type 19-20 (P=0.025) and microsatellite-stable MSS type 19-19 (P=0.024) compared with those in the MSI-H 20

  12. Hemizygosity at the IGF1R locus correlates with growth delay in the ring chromosome 15 syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peoples, R.; Francke, U.

    1994-09-01

    The ring 15 syndrome is characterized by intrauterine growth retardation, mental retardation, postnatal growth failure, triangular facies, 5th finger clinodactyly, leg-length discrepancy, cafe-au-lait spots and cryptorchidism. The degree of short stature varies from mild to severe and is associated with normal growth hormone and IGF-1 levels, but a wide range of bone age delay. These children retain de novo rings with breakpoints in the short arm at 15p12-11 and in the long arm at 15q26, the region to which the insulin-like growth factor type 1 receptor (IGFIR) has been mapped. We investigated if the degree of growth failure correlates withmore » disruption loss of the IGF1R gene. Ring breakpoints for all patients were determined by typing of RFLP and microsatellite markers from distal 15q for patients and their parents. The order of the loci studied is cen-IVD-FES-D15S130-E15S107-D15S87-D15S86-D15S3. All breakpoints mapped distal to D15S100. Presence or absence of the IGF1R gene on the ring chromsomes of five patients was ascertained by in situ hybridization and gene dosage blots using probes for the more proximally located genes IVD and c-Fes as controls. Heterozygosity for one patient was also confirmed by typing of a polymorphism in the 3{prime} UTR of IGF1R. Two patients who retained the IGF1R were hemizygous at D15S87 while two lacking the IGF1R retained D15S107 indicating that the IGF1R maps between these two markers. Three of the patients with severe growth failure (more than 4 SDs below the mean) were hemizygous at the IGF1R locus while the patient with borderline short stature had two copies of the IGF1R; she was subsequently found to be growth hormone deficient and has demonstrated a response to therapy. Our finding of severe short stature correlating with loss of one copy of the IGF1R suggests a potential role for heterozygous IGF1R mutations in other cases of unexplained growth failure.« less

  13. The DAF-16 FOXO Transcription Factor Regulates natc-1 to Modulate Stress Resistance in Caenorhabditis elegans, Linking Insulin/IGF-1 Signaling to Protein N-Terminal Acetylation

    PubMed Central

    Warnhoff, Kurt; Murphy, John T.; Kumar, Sandeep; Schneider, Daniel L.; Peterson, Michelle; Hsu, Simon; Guthrie, James; Robertson, J. David; Kornfeld, Kerry

    2014-01-01

    The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance. PMID:25330323

  14. IGF-1R Regulates the Extracellular Level of Active MMP-2, Pathological Neovascularization, and Functionality in Retinas of OIR Mouse Model.

    PubMed

    Lorenc, Valeria E; Subirada Caldarone, Paula V; Paz, María C; Ferrer, Darío G; Luna, José D; Chiabrando, Gustavo A; Sánchez, María C

    2018-02-01

    In ischemic proliferative diseases such as retinopathies, persistent hypoxia leads to the release of numerous neovascular factors that participate in the formation of abnormal vessels and eventually cause blindness. The upregulation and activation of metalloproteinases (MMP-2 and MMP-9) represent a final common pathway in this process. Although many regulators of the neovascular process have been identified, the complete role of the insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) appears to be significantly more complex. In this study, we used an oxygen-induced retinopathy (OIR) mouse model as well as an in vitro model of hypoxia to study the role of MMP-2 derived from Müller glial cells (MGCs) and its relation with the IGF-1/IGF-1R system. We demonstrated that MMP-2 protein expression increased in P17 OIR mice, which coincided with the active phase of the neovascular process. Also, glutamine synthetase (GS)-positive cells were also positive for MMP-2, whereas IGF-1R was expressed by GFAP-positive cells, indicating that both proteins were expressed in MGCs. In addition, in the OIR model a single intravitreal injection of the IGF-1R blocking antibody (αIR3) administered at P12 effectively prevented pathologic neovascularization, accelerated physiological revascularization, and improved retinal functionality at P17. Finally, in MGC supernatants, the blocking antibody abolished the IGF-1 effect on active MMP-2 under normoxic and hypoxic conditions without affecting the extracellular levels of pro-MMP-2. These results demonstrate, for the first time, that the IGF-1/IGF-1R system regulates active MMP-2 levels in MGCs, thus contributing to MEC remodeling during the retinal neovascular process.

  15. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway

    PubMed Central

    Arad, Shiri; Le, Phuong T.; Bustin, Michael; Rosen, Clifford J.; Gabet, Yankel

    2015-01-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3−/− mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3−/− mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3−/− bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3−/− mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components. PMID:26402843

  16. Does Insulin Like Growth Factor-1 (IGF-1) Deficiency Have a "Protective" Role in the Development of Diabetic Retinopathy in Thalassamia Major Patients?

    PubMed

    De Sanctis, Vincenzo; Incorvaia, Carlo; Soliman, Ashraf T; Candini, Giancarlo; Pepe, Alessia; Kattamis, Christos; Soliman, Nada A; Elsedfy, Heba; Kholy, Mohamed El

    2015-01-01

    Both insulin and IGF-1 have been implicated in the control of retinal endothelial cell growth, neovascularization and diabetic retinopathy. Recent findings have established an essential role for IGF-1 in angiogenesis and demonstrated a new target for control of retinopathy that explains why diabetic retinopathy initially increases with the onset of insulin treatment. This cross-sectional study was designed to give insights into relationship between Insulin-Growth-Factor 1 (IGF-1) levels and diabetic retinopathy (DR) in a sample of thalassemia major (TM) patients with insulin dependent diabetes mellitus (IDDM). This relation was not previously evaluated, despite the fact that both diseases co-exist in the same patient. The study also describes the clinical and biochemical profile of the associated complications in TM patients with and without IDDM. A population-based cross-sectional study. The study includes 19 consecutive TM patients with IDDM and 31 age- and sex-matched TM patients without IDDM who visited our out-patient clinics for an endocrine assessment. An extensive medical history, with data on associated complications and current medications, was obtained. Blood samples were drawn in the morning after an overnight fast to measure the serum concentrations of IGF-1, glucose, fructosamine, free thyroxine (FT4), thyrotropin (TSH) and biochemical analysis. Serologic screening assays for hepatitis C virus seropositivity (HCVab and HCV-RNA) were also evaluated; applying routine laboratory methods. Plasma total IGF-1 was measured by a chemiluminescent immunometric assay (CLIA) method. Ophthalmology evaluation was done by the same researcher using stereoscopic fundus biomicroscopy through dilated pupils. DR was graded using the scale developed by the Global Diabetic Retinopathy Group. Iron stores were assessed by direct and indirect methods. Eighteen TM patients with IDDM (94.7 %) and ten non-diabetic patients (32.2 %) had IGF-1 levels below the 2.5(th) percentile

  17. An Insulin-Like Growth Factor 1 Receptor Inhibitor Induces CYP3A4 Expression through a Pregnane X Receptor-Independent, Noncanonical Constitutive Androstane Receptor-Related Mechanism

    PubMed Central

    Li, Linhao; Sinz, Michael W.; Zimmermann, Kurt

    2012-01-01

    Inhibition of insulin-like growth factor-1 receptor (IGF-1R) signaling represents an attractive therapeutic strategy for cancer treatment. A first-generation IGF-1R inhibitor (R)-4-(3-(3-chlorophenyl)-3-hydroxypropyl)-3-(4-methyl-6-morpholino-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-536924), however, was associated with potent CYP3A4 induction mediated by pregnane X receptor (PXR; NR1I2) transactivation. Structural activity-based modification led to the synthesis of 4-(1-(2-(4-((2-(4-chloro-1H-pyrazol-1-yl)ethyl)amino)-2-oxo-1,2-dihydropyridin-3-yl)-4-methyl-1H-benzo[d]imidazol-6-yl)piperidin-4-yl) piperazine-1-carboxylate (BMS-665351) with no PXR activity while maintaining its ability to inhibit IGF-1R. However, BMS-665351 significantly induces CYP3A4 expression in human primary hepatocytes (HPHs). Here, we report a novel nonclassical constitutive androstane receptor (CAR; NR1I3)-related pathway of BMS-665351-mediated CYP3A4 induction. BMS-665351 treatment resulted in the significant induction of CYP3A4 in HPHs and HepG2 cells, but failed to activate either PXR or CAR in cell-based reporter assays. Moreover, BMS-665351 at concentrations that induce CYP3A4 expression was unable to translocate human CAR from the cytoplasm to the nucleus of HPHs, which represents the initial step of CAR activation. Nevertheless, quantitative polymerase chain reaction analysis demonstrated that BMS-665351 significantly enhanced the expression of CYP3A4 in CAR- but not PXR-transfected HepG2 and Huh7 cells. It is noteworthy that BMS-665351 selectively induced the expression of CAR but not PXR in all tested hepatic cell systems. Synergistic induction of CYP3A4 was observed in HPHs cotreated with BMS-665351 and prototypical activators of CAR but not PXR. In summary, our results indicate that BMS-665351-mediated induction of CYP3A4 is CAR-dependent, but BMS-665351 itself is not a typical activator of either CAR or PXR, rather it functions as a selective inducer of CAR expression and

  18. Association of insulin-like growth factor-1 and IGF binding protein-3 with 25-hydroxy vitamin D in pre-pubertal and adolescent Indian girls.

    PubMed

    Marwaha, Ramank K; Garg, M K; Gupta, Sushil; Ganie, Mohd Ashraf; Gupta, Nandita; Narang, Archna; Shukla, Manoj; Arora, Preeti; Singh, Annie; Chadha, Aditi; Mithal, Ambrish

    2018-03-28

    There is a high prevalence of vitamin D deficiency (VDD) in India. Molecular mechanisms suggest a strong relationship between vitamin D and growth factors. However, there is a paucity of literature with regard to a relationship between insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) and vitamin D particularly in subjects with VDD. The objective of the study was to assess the relationship between growth factors and serum vitamin D-parathormone (PTH) status in school girls and study the impact of vitamin D supplementation on growth factors in pre-pubertal girls with VDD. Our study subjects were apparently healthy school girls aged 6-18 years. The baseline height, weight, body mass index (BMI), pubertal status, serum 25-hydroxy vitamin D (25OHD), PTH, IGF-1 and IGFBP-3 were assessed in 847 girls aged 6-18 years and in 190 pre-pubertal girls with VDD following supplementation. The mean age, BMI and serum 25OHD of girls were 11.5±3.2 years, 18.7±4.8 kg/m2 and 9.9±5.6 ng/mL, respectively. VDD was observed in 94.6% of girls. Unadjusted serum IGF-1 levels and IGF-1/IGFBP-3 molar ratio were significantly higher in girls with severe VDD as compared to girls with mild-to-moderate VDD. However, these differences disappeared when adjusted for age, height or sexual maturation. The serum IGF-1 and IGFBP-3 levels increased significantly post supplementation with vitamin D. There were no differences in serum IGF-1 levels and the IGF-1/IGFBP-3 molar ratio among VDD categories when adjusted for age, height and sexual maturation in girls. Vitamin D supplementation resulted in a significant increase in serum IGF-1 levels in VDD pre-pubertal girls.

  19. IGF-1: The Jekyll & Hyde of the aging brain.

    PubMed

    Gubbi, Sriram; Quipildor, Gabriela Farias; Barzilai, Nir; Huffman, Derek M; Milman, Sofiya

    2018-05-08

    The IGF-1 signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF-1, its role in the aging brain remains complex and controversial. While IGF-1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF-1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF-1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF-1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF-1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF-1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF-1 in that context. Appreciating the dual, at times opposing "Dr. Jekyll" and "Mr. Hyde" characteristics of IGF-1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF-1-related interventions.

  20. Sex, Sport, IGF-1 and the Community Effect in Height Hypothesis

    PubMed Central

    Bogin, Barry; Hermanussen, Michael; Blum, Werner F.; Aßmann, Christian

    2015-01-01

    We test the hypothesis that differences in social status between groups of people within a population may induce variation in insulin-like growth factor-1(IGF-1) levels and, by extension, growth in height. This is called the community effect in height hypothesis. The relationship between IGF-1, assessed via finger-prick dried blood spot, and elite level sport competition outcomes were analysed for a sample of 116 undergraduate men and women. There was a statistically significant difference between winners and losers of a competition. Winners, as a group, had higher average pre-game and post-game IGF-1 levels than losers. We proposed this type of difference as a proxy for social dominance. We found no evidence that winners increased in IGF-1 levels over losers or that members of the same team were more similar in IGF-1 levels than they were to players from other teams. These findings provide limited support toward the community effect in height hypothesis. The findings are discussed in relation to the action of the growth hormone/IGF-1 axis as a transducer of multiple bio-social influences into a coherent signal which allows the growing human to adjust and adapt to local ecological conditions. PMID:25946190

  1. Sex, Sport, IGF-1 and the Community Effect in Height Hypothesis.

    PubMed

    Bogin, Barry; Hermanussen, Michael; Blum, Werner F; Aßmann, Christian

    2015-05-04

    We test the hypothesis that differences in social status between groups of people within a population may induce variation in insulin-like growth factor-1(IGF-1) levels and, by extension, growth in height. This is called the community effect in height hypothesis. The relationship between IGF-1, assessed via finger-prick dried blood spot, and elite level sport competition outcomes were analysed for a sample of 116 undergraduate men and women. There was a statistically significant difference between winners and losers of a competition. Winners, as a group, had higher average pre-game and post-game IGF-1 levels than losers. We proposed this type of difference as a proxy for social dominance. We found no evidence that winners increased in IGF-1 levels over losers or that members of the same team were more similar in IGF-1 levels than they were to players from other teams. These findings provide limited support toward the community effect in height hypothesis. The findings are discussed in relation to the action of the growth hormone/IGF-1 axis as a transducer of multiple bio-social influences into a coherent signal which allows the growing human to adjust and adapt to local ecological conditions.

  2. Molecular Analysis of Non-Small Cell Lung Cancer (NSCLC) Identifies Subsets with Different Sensitivity to Insulin like Growth Factor I Receptor (IGF-IR) Inhibition

    PubMed Central

    Gualberto, Antonio; Dolled-Filhart, Marisa; Gustavson, Mark; Christiansen, Jason; Wang, Yu-Fen; Hixon, Mary L.; Reynolds, Jennifer; McDonald, Sandra; Ang, Agnes; Rimm, David L.; Langer, Corey J.; Blakely, Johnetta; Garland, Linda; Paz-Ares, Luis G.; Karp, Daniel D.; Lee, Adrian V.

    2010-01-01

    Purpose Identify molecular determinants of sensitivity of NSCLC to anti-insulin like growth factor receptor (IGF-IR) therapy. Experimental Design 216 tumor samples were investigated. 165 consisted of retrospective analyses of banked tissue and an additional 51 were from patients enrolled in a phase 2 study of figitumumab (F), a monoclonal antibody against the IGF-IR, in stage IIIb/IV NSCLC. Biomarkers assessed included IGF-IR, EGFR, IGF-2, IGF-2R, IRS-1, IRS-2, vimentin and E-cadherin. Sub-cellular localization of IRS-1 and phosphorylation levels of MAPK and Akt1 were also analyzed. Results IGF-IR was differentially expressed across histological subtypes (P=0.04), with highest levels observed in squamous cell tumors. Elevated IGF-IR expression was also observed in a small number of squamous cell tumors responding to chemotherapy combined with F (p=0.008). Since no other biomarker/response interaction was observed using classical histological sub-typing, a molecular approach was undertaken to segment NSCLC into mechanism-based subpopulations. Principal component analysis and unsupervised Bayesian clustering identified 3 NSCLC subsets that resembled the steps of the epithelial-to-mesenchymal transition: E-cadherin high/IRS-1 low (Epithelial-like), E-cadherin intermediate/IRS-1 high (Transitional) and E-cadherin low/IRS-1 low (Mesenchymal-like). Several markers of the IGF-IR pathway were over-expressed in the Transitional subset. Furthermore, a higher response rate to the combination of chemotherapy and F was observed in Transitional tumors (71%) compared to those in the Mesenchymal-like subset (32%, p=0.03). Only one Epithelial-like tumor was identified in the phase 2 study, suggesting that advanced NSCLC has undergone significant de-differentiation at diagnosis. Conclusion NSCLC comprises molecular subsets with differential sensitivity to IGF-IR inhibition. PMID:20670944

  3. Discovery of 3,5-disubstituted-1H-pyrrolo[2,3-b]pyridines as potent inhibitors of the insulin-like growth factor-1 receptor (IGF-1R) tyrosine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patnaik, Samarjit; Stevens, Kirk L.; Gerding, Roseanne

    2009-07-23

    Exploration of the SAR around a series of 3,5-disubstituted-1H-pyrrolo[2,3-b]pyridines led to the discovery of novel pyrrolopyridine inhibitors of the IGF-1R tyrosine kinase. Several compounds demonstrated nanomolar potency in enzyme and cellular mechanistic assays.

  4. Differential roles of MAPK-Erk1/2 and MAPK-p38 in insulin or insulin-like growth factor-I (IGF-I) signaling pathways for progesterone production in human ovarian cells.

    PubMed

    Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L

    2011-06-01

    Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (p<0.001). Similarly, LY294002 alone stimulated progesterone production by 13-18% (p<0.005). However, when used together, PD98059 and LY294002 inhibited progesterone production by 17-20% (p<0.001). SB203580 alone inhibited progesterone production by 20-30% (p<0.001). Insulin or IGF-I alone stimulated progesterone production by 40-60% (p<0.001). In insulin studies, PD98059 had no significant effect on progesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Further Clinical Evidence for the Effect of IGF-1 on Hair Growth and Alopecia.

    PubMed

    Trüeb, Ralph M

    2018-04-01

    Observations on the Laron syndrome originally offered the opportunity to explore the effect of insulin-like growth factor 1 (IGF-1) deficiency on human hair growth and differentiation. According to its expression in the dermal hair papilla, IGF-1 is likely involved in reciprocal signaling. It has been shown to affect follicular proliferation, tissue remodeling, and the hair growth cycle, as well as follicular differentiation, identifying IGF-1 signaling as an important mitogenic and morphogenetic regulator in hair follicle biology. Of all the cytokines or growth factors that have been postulated to play a role in hair follicles, ultimately IGF-1 is known to be regulated by androgens. Accordingly, dermal papillary cells from balding scalp follicles were found to secrete significantly less IGF-1 than their counterparts from nonbalding scalp follicles. Herein, hypotrichosis in primary growth hormone deficiency, and a lack of response of female and male androgenetic-type alopecia to treatment with topical minoxidil and oral finasteride in patients who had undergone surgical resection of the pituitary gland, provide further evidence for an effect of IGF-1 on hair growth and alopecia.

  6. IGF-1 levels may increase paradoxically with dopamine agonist treatment for prolactinomas.

    PubMed

    Akirov, Amit; Greenman, Yona; Glaser, Benjamin; S'chigol, Irena; Mansiterski, Yossi; Eizenberg, Yoav; Shraga-Slutzky, Ilana; Shimon, Ilan

    2018-05-04

    Hyperprolactinemia is common in acromegaly and in these patients, insulin-like growth factor (IGF)-1 level may decrease with dopamine agonist. We report a series of patients with prolactinoma and a paradoxical increase of IGF-1 levels during cabergoline treatment. Clinical characteristics and response to treatment of patients with prolactinomas, in whom normal or slightly elevated baseline IGF-1 levels increased with cabergoline. The cohort consisted of ten prolactinoma patients (nine males, mean age 48 ± 14 years). Mean adenoma size was 23.8 ± 16.2 mm, with cavernous sinus invasion in eight. In five patients baseline IGF-1 levels were normal and in four levels were 1.2-1.5-fold the upper limit of the normal (ULN). One patient had IGF-1 measured shortly after initiating cabergoline and it was 1.4 × ULN. During cabergoline treatment (dose range 0.5-2 mg/week) PRL normalization was achieved in all and tumor shrinkage occurred in seven patients. The mean IGF-1 increase on cabergoline was 1.7 ± 0.4 × ULN. Cabergoline dose reduction or interruption was attempted in five patients and resulted in decreased IGF-1 levels in all, including normalization in two patients. Three patients were eventually diagnosed with acromegaly, one was referred for pituitary surgery followed by complete remission, another patient was switched to somatostatin analogue, and the third was treated by combination of somatostatin analogues with pegvisomant, with reduction of IGF-1 in all these patients. IGF-1 levels may increase to clinically significant levels during cabergoline treatment for PRL-adenoma. We suggest IGF-1 monitoring in all patients treated with dopamine agonists and not only in those presenting symptoms of acromegaly.

  7. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice.

    PubMed

    Hennebry, Alexander; Oldham, Jenny; Shavlakadze, Tea; Grounds, Miranda D; Sheard, Philip; Fiorotto, Marta L; Falconer, Shelley; Smith, Heather K; Berry, Carole; Jeanplong, Ferenc; Bracegirdle, Jeremy; Matthews, Kenneth; Nicholas, Gina; Senna-Salerno, Mônica; Watson, Trevor; McMahon, Christopher D

    2017-08-01

    Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null ( Mstn -/- ) mice with mice overexpressing Igf1 in skeletal muscle ( Igf1 + ) to generate six genotypes of male mice; wild type ( Mstn +/+ ), Mstn +/- , Mstn -/- , Mstn +/+ :Igf1 + , Mstn +/- :Igf1 + and Mstn -/- :Igf1 + Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris ) by 19% over Mstn +/+ , 33% over Mstn +/- and 49% over Mstn -/- ( P  < 0.001). By contrast, the mass of the gonadal fat pad was correspondingly reduced with the removal of Mstn and addition of Igf1 Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1 + independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P  < 0.001). The abundance of AKT and rpS6 was increased in muscles of Mstn -/- mice , while phosphorylation of AKT S473 was increased in Igf1 + mice ( Mstn +/+ :Igf1 + , Mstn +/- :Igf1 + and Mstn -/- :Igf1 + ). Our results demonstrate that a greater than additive effect is observed on the growth of skeletal muscle and in the reduction of body fat when myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6. © 2017 Society for Endocrinology.

  8. Simultaneous targeting of insulin-like growth factor-1 receptor and anaplastic lymphoma kinase in embryonal and alveolar rhabdomyosarcoma: a rational choice.

    PubMed

    van Gaal, J Carlijn; Roeffen, Melissa H S; Flucke, Uta E; van der Laak, Jeroen A W M; van der Heijden, Gwen; de Bont, Eveline S J M; Suurmeijer, Albert J H; Versleijen-Jonkers, Yvonne M H; van der Graaf, Winette T A

    2013-11-01

    Rhabdomyosarcoma (RMS) is an aggressive soft tissue tumour mainly affecting children and adolescents. Since survival of high-risk patients remains poor, new treatment options are awaited. The aim of this study is to investigate anaplastic lymphoma kinase (ALK) and insulin-like growth factor-1 receptor (IGF-1R) as potential therapeutic targets in RMS. One-hundred-and-twelve primary tumours (embryonal RMS (eRMS)86; alveolar RMS (aRMS)26) were collected. Expression of IGF-1R, ALK and downstream pathway proteins was evaluated by immunohistochemistry. The effect of ALK inhibitor NVP-TAE684 (Novartis), IGF-1R antibody R1507 (Roche) and combined treatment was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in cell lines (aRMS Rh30, Rh41; eRMS Rh18, RD). IGF-1R and ALK expression was observed in 72% and 92% of aRMS and 61% and 39% of eRMS, respectively. Co-expression was observed in 68% of aRMS and 32% of eRMS. Nuclear IGF-1R expression was an adverse prognostic factor in eRMS (5-year survival 46.9 ± 18.7% versus 84.4 ± 5.9%, p=0.006). In vitro, R1507 showed diminished viability predominantly in Rh41. NVP-TAE684 showed diminished viability in Rh41 and Rh30, and to a lesser extent in Rh18 and RD. Simultaneous treatment revealed synergistic activity against Rh41 and Rh30. Co-expression of IGF-1R and ALK is detected in eRMS and particularly in aRMS. As combined inhibition reveals synergistic cytotoxic effects, this combination seems promising and needs further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Reduced utility of serum IGF-1 levels in predicting retinopathy of prematurity reflects maternal ethnicity.

    PubMed

    Reddy, M Ashwin; Patel, Himanshu I; Karim, Shah M; Lock, Helen; Perry, Leslie; Bunce, Catey; Kempley, Steve; Sinha, Ajay K

    2016-04-01

    To validate known risk factors and identify a threshold level for serum insulin-like growth factor 1 (IGF-1) in the development of severe retinopathy of prematurity (ROP) in an ethnically diverse population at a tertiary neonatal unit, 2011-2013. A prospective cohort masked study was conducted. Serum IGF-1 levels at 31, 32 and 33 weeks were measured and risk factor data collected including gestational age (GA), birth weight (BW), absolute weight gain (AWG) and maternal ethnicity. The eventual ROP outcome was divided into two groups: minimal ROP (Stages 0 and 1) and severe ROP (Stage 2 or worse including Type 1 ROP). 36 patients were recruited: 14 had minimal ROP and 22 severe ROP. Significant differences between the groups were found in GA, BW, AWG and IGF-1 at 32 and 33 weeks. There was minimal rise in IGF-1 in Stage 2 patients and/or black patients (p=0.0013) between 32 and 33 weeks but no pragmatic threshold level of IGF-1 that could distinguish between minimal or severe ROP. There were significant differences in GA, BW, AWG and IGF-1 at 32 and 33 weeks between those babies with severe ROP and those with minimal ROP. However, there was no threshold level of IGF-1 at a time point between 31 and 33 weeks that can be used to exclude a large proportion of babies from screening. We also found ethnic differences in IGF-1 levels with infants born to black mothers having significantly lower IGF-1 levels at 32 and 33 weeks gestation. The determination of ROP risk using IGF-1 is a race-specific phenomenon. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway

    PubMed Central

    Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi

    2011-01-01

    Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID

  11. Estrogen and insulin-like growth factor 1 synergistically promote the development of lung adenocarcinoma in mice.

    PubMed

    Tang, Hexiao; Liao, Yongde; Xu, Liqiang; Zhang, Chao; Liu, Zhaoguo; Deng, Yu; Jiang, Zhixiao; Fu, Shengling; Chen, Zhenguang; Zhou, Sheng

    2013-11-15

    Estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling are implicated in lung cancer progression. Based on their previous findings, the authors sought to investigate whether estrogen and IGF-1 act synergistically to promote lung adenocarcinoma (LADE) development in mice. LADE was induced with urethane in ovariectomized Kunming mice. Tumor-bearing mice were divided into seven groups: 17β-estradiol (E2), E2+fulvestrant (Ful; estrogen inhibitor), IGF-1, IGF-1+AG1024 (IGF-1 inhibitor), E2+IGF-1, E2+IGF-1+Ful+AG1024 and control groups. After 14 weeks, the mice were sacrificed, and then the tumor growth was determined. The expression of ERα/ERβ, IGF-1, IGF-1R and Ki67 was examined using tissue-microarray-immunohistochemistry, and IGF-1, p-ERβ, p-IGF-1R, p-MAPK and p-AKT levels were determined based on Western blot analysis. Fluorescence-quantitative polymerase chain reaction was used to detect the mRNA expression of ERβ, ERβ2 and IGF-1R. Tumors were found in 93.88% (46/49) of urethane-treated mice, and pathologically proven LADE was noted in 75.51% (37/49). In the E2+IGF-1 group, tumor growth was significantly higher than in the E2 group (p < 0.05), the IGF-1 group (p < 0.05) and control group (p < 0.05). Similarly, the expression of ERβ, p-ERβ, ERβ2, IGF-1, IGF-1R, p-IGF-1R, p-MAPK, p-AKT and Ki67 at the protein and/or mRNA levels was markedly higher in the ligand group than in the ligand + inhibitor groups (all p < 0.05). This study demonstrated for the first time that estrogen and IGF-1 act to synergistically promote the development of LADE in mice, and this may be related to the activation of the MAPK and AKT signaling pathways in which ERβ1, ERβ2 and IGF-1R play important roles. Copyright © 2013 UICC.

  12. Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways

    PubMed Central

    Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170

  13. Up-regulation of the tight-junction protein ZO-1 by substance P and IGF-1 in A431 cells.

    PubMed

    Ko, Ji-Ae; Murata, Shizuka; Nishida, Teruo

    2009-08-01

    The formation of a barrier by tight junctions is important in epithelia of various tissues. Substance P (SP) and insulin-like growth factor (IGF)-1 synergistically promote barrier function in the corneal epithelium. We have now examined the effects of SP and IGF-1 on expression of the tight-junction protein zonula occludens (ZO)-1 in A431 human epidermoid carcinoma cells. Reverse transcription-polymerase chain reaction (RT-PCR) and immunoblot analyses revealed that SP and IGF-1 increased the amounts of ZO-1 mRNA and protein in these cells in a concentration-dependent manner, with neither SP nor IGF-1 alone having such an effect. The SP- and IGF-1-induced up-regulation of ZO-1 was accompanied by phosphorylation of extracellular signal-regulated kinase (ERK), and both of these effects were blocked by PD98059, an inhibitor of ERK activation. SP and IGF-1 also increased the transepithelial electrical resistance (TER) (an indicator of barrier function) of an A431 cell monolayer in a manner sensitive to PD98059. Our results thus suggest that the synergistic induction of ZO-1 expression by SP and IGF-1 may promote barrier function in skin epithelial cells. (c) 2009 John Wiley & Sons, Ltd.

  14. IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.

    PubMed

    Liu, Zhihui; Chen, Zijun; Shang, Congping; Yan, Fei; Shi, Yingchao; Zhang, Jiajing; Qu, Baole; Han, Hailin; Wang, Yanying; Li, Dapeng; Südhof, Thomas C; Cao, Peng

    2017-07-05

    During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca 2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis

    PubMed Central

    Mahran, Yasmen F.; El-Demerdash, Ebtehal; Nada, Ahmed S.; El-Naga, Reem N.; Ali, Azza A.; Abdel-Naim, Ashraf B.

    2015-01-01

    Radiotherapy is one of the standard cytotoxic therapies for cancer. However, it has a profound impact on ovarian function leading to premature ovarian failure and infertility. Since none of the currently available methods for fertility preservation guarantees future fertility, the need for an effective radioprotective agent is highly intensified. The present study investigated the mechanisms of the potential radioprotective effect of growth hormone (GH) on γ irradiation-induced ovarian failure and the impact of the insulin like growth factor 1 (IGF-1) in the underlying protection. Immature female Sprague-Dawley rats were either exposed to single whole body irradiation (3.2 Gy) and/or treated with GH (1 mg/kg s.c). Experimental γ-irradiation produced an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (PCNA), oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1R axis expression was assessed using real-time PCR and immunolocalization techniques. Furthermore, after full maturity, fertility assessment was performed. GH significantly enhanced follicular development and restored anti-Mullerian hormone serum level as compared with the irradiated group. In addition, GH significantly ameliorated the deleterious effects of irradiation on oxidative status, PCNA and apoptosis. Interestingly, GH was shown to enhance the ovarian IGF-1 at transcription and translation levels, a property that contributes significantly to its radioprotective effect. Finally, GH regained the fertility that was lost following irradiation. In conclusion, GH showed a radioprotective effect and rescued the ovarian reserve through increasing local IGF-1 level and counteracting the oxidative stress-mediated apoptosis. PMID:26465611

  16. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis.

    PubMed

    Mahran, Yasmen F; El-Demerdash, Ebtehal; Nada, Ahmed S; El-Naga, Reem N; Ali, Azza A; Abdel-Naim, Ashraf B

    2015-01-01

    Radiotherapy is one of the standard cytotoxic therapies for cancer. However, it has a profound impact on ovarian function leading to premature ovarian failure and infertility. Since none of the currently available methods for fertility preservation guarantees future fertility, the need for an effective radioprotective agent is highly intensified. The present study investigated the mechanisms of the potential radioprotective effect of growth hormone (GH) on γ irradiation-induced ovarian failure and the impact of the insulin like growth factor 1 (IGF-1) in the underlying protection. Immature female Sprague-Dawley rats were either exposed to single whole body irradiation (3.2 Gy) and/or treated with GH (1 mg/kg s.c). Experimental γ-irradiation produced an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (PCNA), oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1R axis expression was assessed using real-time PCR and immunolocalization techniques. Furthermore, after full maturity, fertility assessment was performed. GH significantly enhanced follicular development and restored anti-Mullerian hormone serum level as compared with the irradiated group. In addition, GH significantly ameliorated the deleterious effects of irradiation on oxidative status, PCNA and apoptosis. Interestingly, GH was shown to enhance the ovarian IGF-1 at transcription and translation levels, a property that contributes significantly to its radioprotective effect. Finally, GH regained the fertility that was lost following irradiation. In conclusion, GH showed a radioprotective effect and rescued the ovarian reserve through increasing local IGF-1 level and counteracting the oxidative stress-mediated apoptosis.

  17. Is there a role for IGF-1 in the development of second primary cancers?

    PubMed

    Shanmugalingam, Thurkaa; Bosco, Cecilia; Ridley, Anne J; Van Hemelrijck, Mieke

    2016-11-01

    Cancer survival rates are increasing, and as a result, more cancer survivors are exposed to the risk of developing a second primary cancer (SPC). It has been hypothesized that one of the underlying mechanisms for this risk could be mediated by variations in insulin-like growth factor-1 (IGF-1). This review summarizes the current epidemiological evidence to identify whether IGF-1 plays a role in the development of SPCs. IGF-1 is known to promote cancer development by inhibiting apoptosis and stimulating cell proliferation. Epidemiological studies have reported a positive association between circulating IGF-1 levels and various primary cancers, such as breast, colorectal, and prostate cancer. The role of IGF-1 in increasing SPC risk has been explored less. Nonetheless, several experimental studies have observed a deregulation of the IGF-1 pathway, which may explain the association between IGF-1 and SPCs. Thus, measuring serum IGF-1 may serve as a useful marker in assessing the risk of SPCs, and therefore, more translational experimental and epidemiological studies are needed to further disentangle the role of IGF-1 in the development of specific SPCs. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Is insulin-like growth factor 1 (IGF-1) system an attractive target inflammatory bowel diseases? Benefits and limitation of potential therapy.

    PubMed

    Zatorski, Hubert; Marynowski, Mateusz; Fichna, Jakub

    2016-08-01

    Inflammatory bowel diseases (IBD) are chronic gastrointestinal disorders with unknown etiology, whose incidence dramatically increased over the past 50 years. Currently available strategies for IBD treatment, such as biological therapies, corticosteroids, and immunosuppressive agents are effective, but their side effects and economic costs cannot be ignored. Better understanding of IBD etiology and new therapeutics are thus needed. The aim of this paper is to briefly discuss IGF-1 dependent functions, with particular focus on IGF-1 use in IBD therapy. Data collection was based on records found in medical literature. Data analysis included records published between 1984 and 2014. The IGF-1 system is involved in major physiological functions, such as cell proliferation and metabolism, and growth promotion. Most importantly IGF-1 has anti-inflammatory properties and its use in IBD treatment can be recommended. However, potential IGF-1 therapy has some limitations, which include aggravation of fibrosis in Crohn's patients and facilitated transformation to malignancy. Taken into consideration their possible side effects, IGF-1 analogs and recombinants are nonetheless a promising target for IBD therapy for a specific group of patients. Further studies, at the clinical level are thus recommended. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair.

    PubMed

    Jackson, Robyn; Tilokee, Everad L; Latham, Nicholas; Mount, Seth; Rafatian, Ghazaleh; Strydhorst, Jared; Ye, Bin; Boodhwani, Munir; Chan, Vincent; Ruel, Marc; Ruddy, Terrence D; Suuronen, Erik J; Stewart, Duncan J; Davis, Darryl R

    2015-09-11

    Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. Receptor profiling demonstrated that IGF-1 receptor expression was increased in the infarct border zones of experimentally infarcted mice by 1 week after myocardial infarction. Human explant-derived cells underwent somatic gene transfer to overexpress human IGF-1 or the green fluorescent protein reporter alone. After culture in hypoxic reduced-serum media, overexpression of IGF-1 enhanced proliferation and expression of prosurvival transcripts and prosurvival proteins and decreased expression of apoptotic markers in both explant-derived cells and cocultured neonatal rat ventricular cardiomyocytes. Transplant of explant-derived cells genetically engineered to overexpress IGF-1 into immunodeficient mice 1 week after infarction boosted IGF-1 content within infarcted tissue and long-term engraftment of transplanted cells while reducing apoptosis and long-term myocardial scarring. Paracrine engineering of explant-derived cells to overexpress IGF-1 provided a targeted means of improving cardiac stem cell-mediated repair by enhancing the long-term survival of transplanted cells and surrounding myocardium. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study.

    PubMed

    Hami, Javad; Kheradmand, Hamed; Haghir, Hossein

    2014-03-01

    Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus.

  1. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation.

    PubMed

    Kostereva, Nataliya V; Wang, Yong; Fletcher, Derek R; Unadkat, Jignesh V; Schnider, Jonas T; Komatsu, Chiaki; Yang, Yang; Stolz, Donna B; Davis, Michael R; Plock, Jan A; Gorantla, Vijay S

    2016-01-01

    Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA). Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1) and chondroitinase ABC (CH) have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH) on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus) therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections). Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius) histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC) immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.

  2. Function of Matrix IGF-1 in Coupling Bone Resorption and Formation

    PubMed Central

    Crane, Janet L.; Cao, Xu

    2013-01-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space and time dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of MSCs and HSCs and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis. PMID:24068256

  3. Function of matrix IGF-1 in coupling bone resorption and formation.

    PubMed

    Crane, Janet L; Cao, Xu

    2014-02-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.

  4. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    PubMed Central

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  5. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging.

    PubMed

    Rodriguez-Perez, Ana I; Borrajo, Ana; Diaz-Ruiz, Carmen; Garrido-Gil, Pablo; Labandeira-Garcia, Jose L

    2016-05-24

    The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals.

  6. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging

    PubMed Central

    Rodriguez-Perez, Ana I.; Borrajo, Ana; Diaz-Ruiz, Carmen; Garrido-Gil, Pablo; Labandeira-Garcia, Jose L.

    2016-01-01

    The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals. PMID:27167199

  7. Predictors of variation in serum IGF1 and IGFBP3 levels in healthy African American and white men.

    PubMed

    Hoyo, Cathrine; Grubber, Janet; Demark-Wahnefried, Wendy; Lobaugh, Bruce; Jeffreys, Amy S; Grambow, Steven C; Marks, Jeffrey R; Keku, Temitope O; Walther, Phillip J; Schildkraut, Joellen M

    2009-07-01

    Individual variation in circulating insulinlike growth factor-1 (IGF1) and its major binding protein, insulinlike growth factor binding protein-3 (IGFBP3), have been etiologically linked to several chronic diseases, including some cancers. Factors associated with variation in circulating levels of these peptide hormones remain unclear. Multiple linear regression models were used to determine the extent to which sociodemographic characteristics, lifestyle factors, personal and family history of chronic disease, and common genetic variants, the (CA)n repeat polymorphism in the IGF1 promoter and the IGFBP3-202 A/C polymorphism (rs2854744) predict variation in IGF1 or IGFBP3 serum levels in 33 otherwise healthy African American and 37 white males recruited from Durham Veterans Administration Medical Center. Predictors of serum IGF1, IGFBP3, and the IGF1:IGFBP3 molar ratio varied by race. In African Americans, 17% and 28% of the variation in serum IGF1 and the IGF1:IGFBP3 molar ratio, were explained by cigarette smoking and carrying the IGF1 (CA)19 repeat allele, respectively. Not carrying at least 1 IGF1 (CA)19 repeat allele and a high body mass index explained 8% and 14%, respectively, of the variation IGFBP3 levels. These factors did not predict variation of these peptides in whites. If successfully replicated in larger studies, these findings would add to recent evidence, suggesting known genetic and lifestyle chronic disease risk factors influence IGF1 and IGFBP3 circulating levels differently in African Americans and whites.

  8. Expression of estrogen receptors in non-malignant mammary tissue modifies the association between insulin-like growth factor 1 and breast cancer risk.

    PubMed

    Samoli, E; Lagiou, A; Zourna, P; Barbouni, A; Georgila, C; Tsikkinis, A; Vassilarou, D; Minaki, P; Sfikas, C; Spanos, E; Trichopoulos, D; Lagiou, P

    2015-04-01

    Several studies have reported that the insulin-like growth factor 1 (IGF-1) is positively associated with estrogen receptor-positive [ER(+)] breast cancer risk, whereas there is little or no association with respect to ER(-) breast cancer. All comparisons of ER(+) breast cancer cases, however, have been made versus healthy controls, for whom there is no information about the ER expression in their mammary gland. In the context of a case-control investigation conducted in Athens, Greece, we studied 102 women with incident ERα(+) breast cancer and compared their IGF-1 blood levels with those of 178 ERα(+) and 83 ERα(-) women with benign breast disease (BBD) who underwent biopsies in the context of their standard medical care. Data were analysed using multiple logistic regression and controlling for potential confounding variables. ERα(+) breast cancer patients had higher IGF-1 levels compared with women with BBD [odds ratio (OR) 1.36, 95% confidence interval (CI): 0.95-1.94, per 1 standard deviation (SD) increase in IGF-1 levels]. When ERα status of women with BBD was taken into account, the difference in IGF-1 levels between ERα(+) breast cancer patients and women with BBD was clearly driven by the comparison with BBD women who were ERα(+) (OR = 1.95, 95% CI: 1.31-2.89 per 1 SD increase in IGF-1 levels), whereas there was essentially no association with IGF-1 levels when ERα(+) breast cancer patients were compared with ERα(-) BBD women. These contrasts were particularly evident among post/peri-menopausal women. We found evidence in support of an interaction of IGF-1 with the expression of ERα in the non-malignant mammary tissue in the context of breast cancer pathogenesis. This is in line with previous evidence suggesting that IGF-1 increases the risk of ER(+) breast cancer. Published by Oxford University Press on behalf of the European Society for Medical Oncology 2014.

  9. Cyclic-glycine-proline accelerates mammary involution by promoting apoptosis and inhibiting IGF-1 function.

    PubMed

    Singh-Mallah, Gagandeep; McMahon, Christopher D; Guan, Jian; Singh, Kuljeet

    2017-12-01

    In rodents, post-lactational involution of mammary glands is characterized by the loss of mammary epithelial cells via apoptosis, which is associated with a decline in the expression of insulin-like growth factor-1 (IGF-1). Overexpression of IGF-1 delays involution by inhibiting apoptosis of epithelial cells and preserving the remaining secretory alveoli. Cyclic-glycine-proline (cGP), a metabolite of IGF-1, normalizes IGF-1 function under pathological conditions by regulating the bioavailability of IGF-1. The present study investigated the effect of cGP on the physiological decline in IGF-1 function during post-lactational mammary involution. Rat dams were gavaged with either cGP (3 mg/kg) or saline once per day from post-natal d8-22. Before collecting tissue on post-natal d23, a pair of mammary glands were sealed on d20 (72 hr-engorgement, thus representative of late-involution) and d22 (24 hr-engorgement, thus representative of mid-involution), while the remaining glands were allowed to involute naturally (early-involution). During early-involution, cGP accelerated the loss of mammary cells through apoptosis, resulting in an earlier clearance of intact secretory alveoli compared with the control group. This coincided with an earlier up-regulation of the cell survival factors, Bcl-xl and IGF-1R, in the early-involution cGP glands compared with the control glands. During late-involution, cGP reduced the bioactivity of IGF-1, which was evident through decreased phosphorylation of IGF-1R in the regressed alveoli. Maternal administration of cGP did not alter milk production and composition during early-, peak-, or late-stage of lactation. These data show that cGP accelerates post-lactational involution by promoting apoptosis and the physiological decline in IGF-1 function. © 2017 Wiley Periodicals, Inc.

  10. The effect of low and high plasma levels of insulin-like growth factor-1 (IGF-1) on the morphology of major organs: studies of Laron dwarf and bovine growth hormone transgenic (bGHTg) mice

    PubMed Central

    Piotrowska, Katarzyna; Borkowska, Sylwia J.; Wiszniewska, Barbara; Laszczyńska, Maria; Słuczanowska-Głąbowska, Sylwia; Havens, Aaron M.; Kopchick, John J.; Bartke, Andrzej; Taichman, Russel S.; Kucia, Magda; Ratajczak, Mariusz Z.

    2014-01-01

    Summary It is well known that somatotrophic/insulin signaling affects lifespan in experimental animals. To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on the morphology of major organs, we analyzed lung, heart, liver, kidney, bone marrow, and spleen isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice (with low circulating plasma levels of IGF-1) and 6-month-old bovine growth hormone transgenic (bGHTg) mice (with high circulating plasma levels of IGF-1). The ages of the two mutant strains employed in our studies were selected based on their overall ~50% survival (Laron dwarf mice live up to ~4 years and bGHTg mice up to ~1 year). Morphological analysis of the organs of long-living 2-year-old Laron dwarf mice revealed a lower biological age for their organs compared with normal littermates, with more brown adipose tissue (BAT) surrounding the main body organs, lower levels of steatosis in liver, and a lower incidence of leukocyte infiltration in different organs. By contrast, the organs of 6-month-old, short-living bGHTg mice displayed several abnormalities in liver and kidney and a reduced content of BAT around vital organs. PMID:23613169

  11. IGF-1 Protects Dopamine Neurons Against Oxidative Stress: Association with Changes in Phosphokinases

    PubMed Central

    El Ayadi, Amina; Zigmond, Michael J.; Smith, Amanda D.

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is an endogenous peptide transported across the blood brain barrier that is protective in several brain injury models, including an acute animal model of Parkinson’s disease (PD). Motor deficits in PD are due largely to the progressive loss of nigrostriatal dopaminergic neurons. Thus, we examined the neuroprotective potential of IGF-1 in a progressive model of dopamine deficiency in which 6-hydroxydopamine (6-OHDA) is infused into the striatum. Rats received intrastriatal IGF-1 (5 or 50 μg) 6 hrs prior to infusion of 4 μg 6-OHDA into the same site and were sacrificed 1 or 4 wks later. Both concentrations of IGF-1 protected tyrosine hydroxylase (TH) immunoreactive terminals in striatum at 4 wks but not at 1 wk, indicating that IGF-induced restoration of the dopaminergic phenotype occurred over several weeks. TH-immunoreactive cell loss was only attenuated with 50 μg IGF-1. We then examined the effect of striatal IGF-1 on the Ras/ERK1/2 and PI3K/Akt pathways to ascertain if their activation correlated with IGF-1-induced protection. Striatal and nigral levels of phospho-ERK1/2 (pERK1/2) were maximal 6 hrs after IGF-1 infusion and, with the exception of an increase in nigral pERK2 at 48 hrs, returned to basal levels by 7 days. Phospho-Akt (Ser473) was elevated 6–24 hrs post-IGF-1 infusion in both striatum and substantia nigra concomitant with inhibition of pro-death GSK-3β, a downstream target of Akt. These results suggest that IGF-1 can protect the nigrostriatal pathway in a progressive PD model and that this protection is preceded by activation of key pro-survival signaling cascades PMID:26894890

  12. Estrogen-IGF-1 interactions in neuroprotection: Ischemic Stroke as a case study

    PubMed Central

    Sohrabji, Farida

    2014-01-01

    The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants. PMID:24882635

  13. Cardioprotective role of IGF-1 in the hypertrophied myocardium of the spontaneously hypertensive rats: A key effect on NHE-1 activity.

    PubMed

    Yeves, A M; Burgos, J I; Medina, A J; Villa-Abrille, M C; Ennis, I L

    2018-05-13

    Myocardial Na + /H + exchanger-1 (NHE-1) hyperactivity and oxidative stress are interrelated phenomena playing pivotal roles in the development of pathological cardiac hypertrophy and heart failure. Exercise training is effective to convert pathological into physiological hypertrophy in the spontaneously hypertensive rats (SHR), and IGF-1-key humoral mediator of exercise training-inhibits myocardial NHE-1, at least in normotensive rats. Therefore, we hypothesize that IGF-1 by hampering NHE-1 hyperactivity and oxidative stress should exert a cardioprotective effect in the SHR. NHE-1 activity [proton efflux (JH+) mmol L -1  min -1 ], expression and phosphorylation; H 2 O 2 production; superoxide dismutase (SOD) activity; contractility and calcium transients were measured in SHR hearts in the presence/absence of IGF-1. IGF-1 significantly decreased NHE-1 activity (JH+ at pH i 6.95: 1.39 ± 0.32, n = 9 vs C 3.27 ± 0.3, n = 20, P < .05); effect prevented by AG1024, an antagonist of IGF-1 receptor (2.7 ± 0.4, n = 7); by the PI3K inhibitor wortmannin (3.14 ± 0.41, n = 7); and the AKT inhibitor MK2206 (3.37 ± 0.43, n = 14). Moreover, IGF-1 exerted an antioxidant effect revealed by a significant reduction in H 2 O 2 production accompanied by an increase in SOD activity. In addition, IGF-1 improved cardiomyocyte contractility as evidenced by an increase in sarcomere shortening and a decrease in the relaxation constant, underlined by an increase in the amplitude and rate of decay of the calcium transients. IGF-1 exerts a cardioprotective role on the hypertrophied hearts of the SHR, in which the inhibition of NHE-1 hyperactivity, as well as the positive inotropic and antioxidant effects, emerges as key players. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Targeting Extracellular DNA to Deliver IGF-1 to the Injured Heart

    NASA Astrophysics Data System (ADS)

    Khan, Raffay S.; Martinez, Mario D.; Sy, Jay C.; Pendergrass, Karl D.; Che, Pao-Lin; Brown, Milton E.; Cabigas, E. Bernadette; Dasari, Madhuri; Murthy, Niren; Davis, Michael E.

    2014-03-01

    There is a great need for the development of therapeutic strategies that can target biomolecules to damaged myocardium. Necrosis of myocardium during a myocardial infarction (MI) is characterized by extracellular release of DNA, which can serve as a potential target for ischemic tissue. Hoechst, a histological stain that binds to double-stranded DNA can be conjugated to a variety of molecules. Insulin-like growth factor-1 (IGF-1), a small protein/polypeptide with a short circulating-half life is cardioprotective following MI but its clinical use is limited by poor delivery, as intra-myocardial injections have poor retention and chronic systemic presence has adverse side effects. Here, we present a novel delivery vehicle for IGF-1, via its conjugation to Hoechst for targeting infarcted tissue. Using a mouse model of ischemia-reperfusion, we demonstrate that intravenous delivery of Hoechst-IGF-1 results in activation of Akt, a downstream target of IGF-1 and protects from cardiac fibrosis and dysfunction following MI.

  15. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    PubMed

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  16. Protective effect of IGF-1 on experimental liver cirrhosis-induced common bile duct ligation.

    PubMed

    Cantürk, Nuh Zafer; Cantürk, Zeynep; Ozden, Meltem; Dalçik, Hakki; Yardimoglu, Melda; Tülübas, Feti

    2003-01-01

    The causes of malnutrition in liver cirrhosis are multifactorial. Levels of IGF-1 (insulin like growth factor-1) that is a crucial regulator of intermediary metabolism decreases. The aim of this study was to analyze the effect of IGF-1 supplementation during liver cirrhosis induced by common bile duct ligation. Rats were divided into five different groups: One sham and four experimental groups. Rats in three of four groups were treated with 2 micrograms/day IGF-1 with a different time of experiment in each group. Blood biochemical parameters, tissue malondialdehyde, glutathione levels and the activity of tissue antioxidant enzymes and conventional and immunohistochemical analysis of liver samples were studied for each group. Serum albumin, total protein, fibrinogen levels decreased and prothrombin time was prolonged in the bile duct ligated and transected experimental group but not in the IGF-I treated rats compared with the rats in sham group. Liver malondialdehyde levels significantly increased in control group but not in IGF-1 treated groups. The activities of antioxidant enzymes were decreased compared with the other groups. Histopathology findings of liver biopsy demonstrated intense degree fibrosis and overexpression of fibroblast growth factor and desmin in the control group but a lesser degree of those in the IGF-1 treated groups. IGF-1 treatment improves liver function and decreases oxidative liver damage and histopathological findings. Further studies are required to delineate the mechanisms of protective effects of IGF-1.

  17. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway.

    PubMed

    Bezerra, Maria É S; Barberino, Ricássio S; Menezes, Vanúzia G; Gouveia, Bruna B; Macedo, Taís J S; Santos, Jamile M S; Monte, Alane P O; Barros, Vanessa R P; Matos, Maria H T

    2018-05-30

    We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (P<0.05) follicular activation compared with α-MEM+ and decreased TUNEL-positive cells (P<0.05) compared with other treatments. PCNA-positive cells also increased (P<0.05) in 100ngmL-1 IGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.

  18. Enforced epithelial expression of IGF-1 causes hyperplastic prostate growth while negative selection is requisite for spontaneous metastogenesis

    USDA-ARS?s Scientific Manuscript database

    The insulin-like growth factor-1 (IGF-1) signaling axis is important for cell growth, differentiation, and survival, and increased serum IGF is a risk factor for prostate and other cancers. To study IGF-1 action on the prostate, we created transgenic (PB-Des) mice that specifically express human IGF...

  19. GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.

    PubMed

    Nornberg, Bruna Félix; Almeida, Daniela Volcan; Figueiredo, Márcio Azevedo; Marins, Luis Fernando

    2016-10-01

    The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.

  20. IGF-1, IGFBP-3 and ALS in adult patients with chronic kidney disease.

    PubMed

    Lepenies, Julia; Wu, Zida; Stewart, Paul M; Strasburger, Christian J; Quinkler, Marcus

    2010-04-01

    Insulin-like growth factor I (IGF-1) is for the most part bound in a ternary complex with IGF-binding protein-3 (IGFBP-3) and acid-labile subunit (ALS). This ternary complex is a storage form of IGF-1 in blood and passes not through the renal glomerulus. Little information is available in regard to the components of the ternary complex in adult renal disease. To investigate levels of serum IGF-1, IGFBP-3 and ALS in relation to renal function and extent of proteinuria. We measured IGF-1, IGFBP-3 and ALS concentrations in 137 patients who were investigated due to proteinuria and/or haematuria and/or renal impairment. The patients received renal biopsies and the histological diagnosis was documented. Urinary albumin excretion and relevant clinical parameter were evaluated. IGF-1 showed a highly positive correlation to IGFBP-3 and ALS, and the latter to IGFBP-3. IGF-1, IGFBP-3 and ALS decreased with increasing age. IGF-1 and IGFBP-3 showed no significant change depending on the creatinine clearance. However, ALS decreased with decreasing renal function. In patients with heavy proteinuria ALS levels, but not IGF-1 and IGFBP-3 levels, decreased significantly. Patients with chronic ischaemic renal damage and diabetic glomerulopathy showed higher IGF-1 and IGFBP-3 levels compared to patients with thin glomerular basement membrane disease despite their older age. IGF-1 and IGFBP-3 levels seem to be independent of renal function and severity of proteinuria. However, ALS levels are altered in renal failure and nephrotic syndrome, which may be due to increased renal loss or diminished hepatic production or both. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. Prostate Cancer Risk in Relation to IGF-1 and its Genetic Determinants: A Case Control Study Within the Cancer Prostate Sweden Project (CAPS)

    DTIC Science & Technology

    2006-05-01

    and the GHRH receptor (GHRHR). Ghrelin (GHRL), a recently identified new peptide hormone produced by endocrine cells in the stomach, also stimulates...GHRL Ghrelin GHSR Growth hormone secretagogue receptor IGFALS IGF binding protein, acid labile subunit IGFBP1 - 6 IGF-binding proteins 1 to 6

  2. Nuclear IGF-1R interacts with regulatory regions of chromatin to promote RNA polymerase II recruitment and gene expression associated with advanced tumor stage.

    PubMed

    Aleksic, Tamara; Gray, Nicki E; Wu, Xiaoning; Rieunier, Guillaume; Osher, Eliot; Mills, Jack; Verrill, Clare; Bryant, Richard J; Han, Cheng; Hutchinson, Kathryn; Lambert, Adam; Kumar, Rajeev; Hamdy, Freddie C; Weyer-Czernilofsky, Ulrike; Sanderson, Michael; Bogenrieder, Thomas; Taylor, Stephen; Macaulay, Valentine M

    2018-05-07

    Internalization of ligand-activated type 1 IGF receptor (IGF-1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF-1R reportedly associates with clinical response to IGF-1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here we investigated the significance of nuclear IGF-1R in clinical cancers and cell line models. In prostate cancers, IGF-1R was predominantly membrane-localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF-1R, and nuclear IGF-1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF-1R binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF-1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF-1 also enriched RNAPol2 on promoters containing IGF-1R binding sites. These functions were inhibited by IGF-1/2 neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected nuclear IGF-1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF-1R, with evidence of correlation between nuclear IGF-1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs. Copyright ©2018, American Association for Cancer Research.

  3. Prepubertal exposure to arsenic(III) suppresses circulating insulin-like growth factor-1 (IGF-1) delaying sexual maturation in female rats.

    PubMed

    Reilly, Michael P; Saca, James C; Hamilton, Alina; Solano, Rene F; Rivera, Jesse R; Whitehouse-Innis, Wendy; Parsons, Jason G; Dearth, Robert K

    2014-04-01

    Arsenic (As) is a prevalent environmental toxin readily accessible for human consumption and has been identified as an endocrine disruptor. However, it is not known what impact As has on female sexual maturation. Therefore, in the present study, we investigated the effects of prepubertal exposure on mammary gland development and pubertal onset in female rats. Results showed that prepubertal exposure to 10 mg/kg of arsenite (As(III)) delayed vaginal opening (VO) and prepubertal mammary gland maturation. We determined that As accumulates in the liver, disrupts hepatocyte function and suppresses serum levels of the puberty related hormone insulin-like growth factor 1 (IGF-1) in prepubertal animals. Overall, this is the first study to show that prepubertal exposure to As(III) acts peripherally to suppress circulating levels of IGF-1 resulting in delayed sexual maturation. Furthermore, this study identifies a critical window of increased susceptibility to As(III) that may have a lasting impact on female reproductive function. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Glucagon Decreases IGF-1 Bioactivity in Humans, Independently of Insulin, by Modulating Its Binding Proteins.

    PubMed

    Sarem, Zeinab; Bumke-Vogt, Christiane; Mahmoud, Ayman M; Assefa, Biruhalem; Weickert, Martin O; Adamidou, Aikatarini; Bähr, Volker; Frystyk, Jan; Möhlig, Matthias; Spranger, Joachim; Lieske, Stefanie; Birkenfeld, Andreas L; Pfeiffer, Andreas F H; Arafat, Ayman M

    2017-09-01

    Depending on its lipolytic activity, glucagon plays a promising role in obesity treatment. Glucagon-induced growth hormone (GH) release can promote its effect on lipid metabolism, although the underlying mechanisms have not been well-defined. The present study highlights the glucagon effect on the GH/insulinlike growth factor 1 (IGF-1)/IGF-binding protein (IGFBP) axis in vivo and in vitro, taking into consideration insulin as a confounding factor. In a double-blind, placebo-controlled study, we investigated changes in GH, IGFBP, and IGF-1 bioactivity after intramuscular glucagon administration in 13 lean controls, 11 obese participants, and 13 patients with type 1 diabetes mellitus (T1DM). The effect of glucagon on the transcription factor forkhead box protein O1 (FOXO1) translocation, the transcription of GH/IGF-1 system members, and phosphorylation of protein kinase B (Akt) was further investigated in vitro. Despite unchanged total IGF-1 and IGFBP-3 levels, glucagon decreased IGF-1 bioactivity in all study groups by increasing IGFBP-1 and IGFBP-2. The reduction in IGF-1 bioactivity occurred before the glucagon-induced surge in GH. In contrast to the transient increase in circulating insulin in obese and lean participants, no change was observed in those with T1DM. In vitro, glucagon dose dependently induced a substantial nuclear translocation of FOXO1 in human osteosarcoma cells and tended to increase IGFBP-1 and IGFBP-2 gene expression in mouse primary hepatocytes, despite absent Akt phosphorylation. Our data point to the glucagon-induced decrease in bioactive IGF-1 levels as a mechanism through which glucagon induces GH secretion. This insulin-independent reduction is related to increased IGFBP-1 and IGFBP-2 levels, which are most likely mediated via activation of the FOXO/mTOR (mechanistic target of rapamycin) pathway. Copyright © 2017 Endocrine Society

  5. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

    PubMed

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Andò, Sebastiano; Fuqua, Suzanne A W

    2016-06-01

    The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.

  6. The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology.

    PubMed

    Armakolas, Nikolaos; Armakolas, Athanasios; Antonopoulos, Athanasios; Dimakakos, Andreas; Stathaki, Martha; Koutsilieris, Michael

    2016-12-01

    Growth hormone (GH) regulated mainly liver-produced insulin-like growth factor 1 (IGF-1) is a key molecule in embryonic & post embryonic development that is also involved in cancer biology. Herein we review new insights of the role of igf-1 gene products and of the IGF-1Ec isoform in muscle and bone development/repair and its role in osteosarcoma pathophysiology, underlying the possible role of the Ec peptide as a future therapeutic target. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth.

    PubMed

    Akram, Shahzad K; Carlsson-Skwirut, Christine; Bhutta, Zulfiqar A; Söder, Olle

    2011-11-01

    To correlate placental protein levels of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1, with previously determined levels of IGF-I and IGF-II mRNA expression, and the micronutrients zinc and iron, and maternal and newborn anthropometry. Placental samples were collected from rural field sites in Pakistan. Samples were divided into small and large for gestational age groups (SGA and LGA, respectively). IGFBP-1 levels were assessed using Western immunoblotting. IGF-I protein levels were assessed using ELISA techniques. IGF mRNA expression, zinc, and iron, were quantified as previously described and were used for comparative purposes only. Thirty-three subjects were included (SGA, n = 12; LGA n = 21). Higher levels of IGFBP-1 were seen in the SGA group (p < 0.01). IGFBP-1 correlated positively with maternal and infant triceps skin-fold thickness in the LGA and SGA groups, respectively (p < 0.05). Significantly lower IGF-I protein levels were seen in the SGA group. IGF-I levels correlated significantly with maternal and newborn anthropometry. IGFBP-1 correlated significantly with IGF-II mRNA expression (p < 0.05). Placental protein levels of IGF-I and IGFBP-1 appear to be associated with maternal anthropometry. Maternal anthropometry may thus influence IGFBP-1 and IGF-I levels and may possibly be used for screening of pregnancies, with the potential for timely identification of these high-risk pregnancies. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  8. Insulin-like Growth Factor 1 Regulates the Expression of ATP-Binding Cassette Transporter A1 in Pancreatic Beta Cells.

    PubMed

    Lyu, J; Imachi, H; Iwama, H; Zhang, H; Murao, K

    2016-05-01

    ATP-binding cassette transporter A1 (ABCA1) in pancreatic beta cells influences insulin secretion and cholesterol homeostasis. The present study investigates whether insulin-like growth factor 1 (IGF-1), which mediates stimulation of ABCA1 gene expression, could also interfere with the phosphatidylinositol 3-kinase (PI3-K) cascade.ABCA1 expression was examined by real-time polymerase chain reaction (PCR), Western blot analysis, and a reporter gene assay in rat insulin-secreting INS-1 cells incubated with IGF-1. The binding of forkhead box O1 (FoxO1) protein to the ABCA1 promoter was assessed by a chromatin immunoprecipitation (ChIP) assay. ABCA1 protein levels increased in response to rising concentrations of IGF-1. Real-time PCR analysis showed a significant increase in ABCA1 mRNA expression. However, both effects were suppressed after silencing the IGF-1 receptor. In parallel with its effect on endogenous ABCA1 mRNA levels, IGF-1 induced the activity of a reporter construct containing the ABCA1 promoter, while it was abrogated by LY294002, a specific inhibitor of PI3-K. Constitutively active Akt stimulated activity of the ABCA1 promoter, and a dominant-negative mutant of Akt or mutagenesis of the FoxO1 response element in the ABCA1 promoter abolished the ability of IGF-1 to stimulate promoter activity. A ChIP assay showed that FoxO1 mediated its transcriptional activity by directly binding to the ABCA1 promoter region. The knockdown of FoxO1 disrupted the effect of IGF-1 on ABCA1 expression. Furthermore, IGF-1 promoted cholesterol efflux and reduced the pancreatic lipotoxicity. These results demonstrate that the PI3-K/Akt/FoxO1 pathway contributes to the regulation of ABCA1 expression in response to IGF-1 stimulation. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Insulin-like growth factor-1 receptor overexpression is associated with outcome in invasive urothelial carcinoma of urinary bladder: a retrospective study of patients treated using radical cystectomy.

    PubMed

    Gonzalez-Roibon, Nilda; Kim, Jenny J; Faraj, Sheila F; Chaux, Alcides; Bezerra, Stephania M; Munari, Enrico; Ellis, Carla; Sharma, Rajni; Keizman, Daniel; Bivalacqua, Trinity J; Schoenberg, Mark; Eisenberger, Mario; Carducci, Michael; Netto, George J

    2014-06-01

    To assess the insulin-like growth factor-1 receptor (IGF1R) expression in urothelial carcinoma (UC) and its prognostic role in relation to clinicopathologic parameters. A total of 100 cases of invasive UC were evaluated using tissue microarrays. Membranous IGF1R staining was evaluated using immunohistochemistry. A scoring method analogous to that of HER2 expression in breast carcinoma was used, and the highest score was assigned in each tumor. IGF1R was considered overexpressed in cases with score≥1. We found IGF1R overexpression in 62% of invasive UC. IGF1R overexpression was associated with race (P=.04) and pT category (P=.03). Median follow-up was 29 months (range, 0.5-212). Progression rate was 60%, and overall mortality and cancer-specific mortality rates were 69% and 51%, respectively. In invasive UC, IGF1R overexpression was significantly associated with overall mortality and cancer-specific mortality (Mantel Cox P=.0002 and P=.006, respectively). IGF1R overexpression was associated with increased hazard ratios (HRs) for overall mortality (HR=2.63, P=.001) and cancer-specific mortality (HR=2.45, P=.01), independently and after adjusting for clinicopathologic features and treatment modalities. We found IGF1R overexpression in 62% of bladder UC. More importantly, IGF1R overexpression was a significant predictor of overall mortality and cancer-specific mortality, suggesting its potential role as a prognosticator in UC of bladder. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Serum IGF-1 linking visceral obesity with esophageal adenocarcinoma: unconvincing evidence.

    PubMed

    McColl, K E L

    2012-02-01

    There is a strong positive association between body mass index (BMI) and risk of esophageal adenocarcinoma. This is likely to be largely or entirely explained by the established association between central obesity and gastroesophageal reflux and between the latter and risk of esophageal adenocarcinoma. Visceral fat is also metabolically active and there is interest in the possibility that humoral factors released by this fat might promote esophageal carcinogenesis. Insulin growth factor I (IGF-1) has been studied but current data do not support circulating total IGF-1 as a humoral factor linking BMI and esophageal carcinogenesis.

  11. IGF-1 as a Drug for Preterm Infants: A Step-Wise Clinical Development.

    PubMed

    Hellstrom, Ann; Ley, David; Hallberg, Boubou; Lofqvist, Chatarina; Hansen-Pupp, Ingrid; Ramenghi, Luca A; Borg, Jan; Smith, Lois E H; Hard, Anna-Lena

    2017-01-01

    Insulin-like growth factor 1 (IGF-1) is a mitogenic hormone involved in many processes such as growth, metabolism, angiogenesis and differentiation. After very preterm birth, energy demands increase while maternal supplies of nutrients and other factors are lost and the infant may become dependent on parenteral nutrition for weeks. Low postnatal IGF-1 concentrations in preterm infants are associated with poor weight gain, retinopathy of prematurity (ROP) and other morbidities. We will describe the process by which we aim to develop supplementation with recombinant human (rh) IGF-1 and its binding protein rhIGFBP-3 as a possible therapy to promote growth and maturation and reduce morbidities in extremely preterm infants. In order to calculate a dose of IGF-1 tolerated by neonates, a pharmacokinetic study of transfusion with fresh frozen plasma was performed, which provided a relatively low dose of IGF-1, (on average 1.4 µg/kg), that increased serum IGF-1 to levels close to those observed in fetuses and preterm infants of similar GAs. Thereafter, a Phase I 3 hours IV infusion of rhIGF-1/rhIGFBP-3 was conducted in 5 infants, followed by a Phase II study with four sections (A-D). In the Phase II, sections A-D studies, time on infusion increased and younger gestational ages were included. IV infusion increased IGF-1 but with short half-life (0.5h) implying a need for continuous infusion. In order to obtain in utero levels of IGF-I, the dose was increased from 100 to 250 µg/kg/24 h and the infusion was prolonged from 3 weeks postnatal age until a postmenstrual age of 29 weeks and 6 days. The purpose has been to ensure high-quality research into the development of a new drug for preterm infants. We hope that our work will help to establish a new standard for the testing of medications for preterm infants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Insulin, insulin-like growth factor–1, insulin receptor, and insulin-like growth factor–1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus

    PubMed Central

    Penha, Alexandra Marcha; Schaeffel, Frank

    2011-01-01

    Purpose Insulin stimulates eye growth in chicks and this effect is greatly enhanced if the retinal image is degraded by the defocus of either sign. However, it is unclear whether the insulin receptor (IR) is expressed at all in the chicken retina in animals 1–2 weeks post-hatching. We have investigated IR expression and whether IR transcript abundance varies in the fundal layers. To elucidate the possible role of insulin and insulin-like growth factor (IGF)-1 signaling in eye growth regulation, mRNA (mRNA) levels were measured for insulin, IGF-1, IR, and IGF-1 receptor (IGF-1R) during imposed negative or positive defocus. Methods Chicks were treated binocularly with positive or negative spectacle lenses for 4 or 24 h, or they remained untreated (n=6, for each treatment group). Northern blot analyses were performed to screen for transcription variants in the different fundal layers of untreated animals. Real-time PCR was used to quantify IR, IGF-1R, IGF-1, and insulin mRNA levels in the different fundal layers of the chick eye in the three treatment groups. Results IR mRNA was found in all the studied tissues, although there is evidence of tissue-specific transcript variations. Three major transcripts were detected for IR. The brain, retina, and choroid showed the longest transcript (4.3 kb), which was not present in the liver. Nevertheless, the liver and brain showed a second transcript (2.6 kb) not present in the retina and choroid. A short transcript (1.3 kb) was the predominant form in the liver and choroid, and it seems to be present in the retinal pigment epithelium (RPE) and sclera as well. In the retina, no significant gene expression changes were found when defocus was imposed. Interestingly, in the RPE, both IR and IGF-1R were already downregulated after short periods (4 h) of positive lens wear. In contrast, IR and IGF-1R were upregulated in the choroid and fibrous sclera during treatment with negative, but not positive, lenses. Conclusions Differences

  13. Genetic characterisation of a cohort of children clinically labelled as GH or IGF1 insensitive: diagnostic value of serum IGF1 and height at presentation.

    PubMed

    Storr, Helen L; Dunkel, Leo; Kowalczyk, Julia; Savage, Martin O; Metherell, Louise A

    2015-02-01

    GH insensitivity (GHI) encompasses growth failure, low serum IGF1 and normal/elevated serum GH. By contrast, IGF1 insensitivity results in pre- and postnatal growth failure associated with relatively high IGF1 levels. From 2008 to 2013, 72 patients from 68 families (45M), mean age 7.1 years (0.4-17.0) with short stature (mean height SDS -3.9; range -9.4 to -1.5), were referred for sequencing. As a genetics referral centre, we have sequenced appropriate candidate genes (GHR, including its pseudoexon (6Ψ), STAT5B, IGFALS, IGF1, IGF1R, OBSL1, CUL7 and CCDC8) in subjects referred with suspected GHI (n=69) or IGF1 insensitivity (n=3). Mean serum IGF1 SDS was -2.7 (range -0.9 to -8.2) in GHI patients and 2.0, 3.7 and 4.4 in patients with suspected IGF1 insensitivity. Out of 69 GHI patients, 16 (23%) (19% families) had mutations in GH-IGF1 axis genes: homozygous GHR (n=13; 6 6Ψ, two novel IVS5ds+1 G to A) and homozygous IGFALS (n=3; one novel c.1291delT). In the GHI groups, two homozygous OBSL1 mutations were also identified (height SDS -4.9 and -5.7) and two patients had hypomethylation in imprinting control region 1 in 11p15 or mUPD7 consistent with Silver-Russell syndrome (SRS) (height SDS -3.7 and -4.3). A novel heterozygous IGF1R (c.112G>A) mutation was identified in one out of three (33%) IGF1-insensitive subjects. Genotyping contributed to the diagnosis of children with suspected GHI and IGF1 insensitivity, particularly in the GHI subjects with low serum IGF1 SDS (<-2.0) and height SDS (<-2.5). Diagnoses with similar phenotypes included SRS and 3-M syndrome. In 71% patients, no diagnosis was defined justifying further genetic investigation. © 2015 European Society of Endocrinology.

  14. Gut microbiota induce IGF-1 and promote bone formation and growth.

    PubMed

    Yan, Jing; Herzog, Jeremy W; Tsang, Kelly; Brennan, Caitlin A; Bower, Maureen A; Garrett, Wendy S; Sartor, Balfour R; Aliprantis, Antonios O; Charles, Julia F

    2016-11-22

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.

  15. Gut microbiota induce IGF-1 and promote bone formation and growth

    PubMed Central

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  16. Purification optimization for a recombinant single-chain variable fragment against type 1 insulin-like growth factor receptor (IGF-1R) by using design of experiment (DoE).

    PubMed

    Song, Yong-Hong; Sun, Xue-Wen; Jiang, Bo; Liu, Ji-En; Su, Xian-Hui

    2015-12-01

    Design of experiment (DoE) is a statistics-based technique for experimental design that could overcome the shortcomings of traditional one-factor-at-a-time (OFAT) approach for protein purification optimization. In this study, a DoE approach was applied for optimizing purification of a recombinant single-chain variable fragment (scFv) against type 1 insulin-like growth factor receptor (IGF-1R) expressed in Escherichia coli. In first capture step using Capto L, a 2-level fractional factorial analysis and successively a central composite circumscribed (CCC) design were used to identify the optimal elution conditions. Two main effects, pH and trehalose, were identified, and high recovery (above 95%) and low aggregates ratio (below 10%) were achieved at the pH range from 2.9 to 3.0 with 32-35% (w/v) trehalose added. In the second step using cation exchange chromatography, an initial screening of media and elution pH and a following CCC design were performed, whereby the optimal selectivity of the scFv was obtained on Capto S at pH near 6.0, and the optimal conditions for fulfilling high DBC and purity were identified as pH range of 5.9-6.1 and loading conductivity range of 5-12.5 mS/cm. Upon a further gel filtration, the final purified scFv with a purity of 98% was obtained. Finally, the optimized conditions were verified by a 20-fold scale-up experiment. The purities and yields of intermediate and final products all fell within the regions predicted by DoE approach, suggesting the robustness of the optimized conditions. We proposed that the DoE approach described here is also applicable in production of other recombinant antibody constructs. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Inhibitory effect of transforming growth factor-. beta. (TGF-. beta. ) on insulin-like growth factor 1 (IGF-1)-induced proliferation and differentiation in primary cultures of pig preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R.L.; Hausman, G.J.; Gaskins, H.R.

    1990-02-26

    The influence of serum, IGF-1 and TGF-{beta} on the differentiation of preadipocytes was examined in primary cultures of porcine adipose tissue cells. In serum-supplemented or serum-free, IGF-1 (1 and 10 nM) had no effect on total cell number. However, IGF-1 (10nM) increased adipocyte number only in serum-supplemented (1% pig serum) cultures, whereas TGF-{beta} (15 pm) reduced the adipocyte number in the presence and absence of IGF-1. Replication of preadipocytes was analyzed with a ({sup 3}H) thymidine assay. Preadipocyte proliferation (cpm in adipocyte fraction) was increased by IGF-1 (10nM) only in cultures containing pig serum. TGF-{beta} had no effect on preadipocytemore » proliferation specifically, but slightly increased total ({sup 3}H) thymidine incorporation in cultures with serum. Glycerol phosphate dehydrogenase (GPDH) specific activity was decreased by adding TGF-{beta} to serum-free cultures but TGF-{beta} had little effect in serum-supplemented cultures. Cellular secretion of IGF-1 was decreased when TGF-{beta} was added to serum-free or serum-supplemented cultures. These studies indicate that TGF-{beta} does not inhibit adipocyte development in the initial growth phase, but may inhibit differentiation and/or hypertrophy at a later stage of development.« less

  18. Possible effects of insulin-like growth factor-I, IGF-binding protein-3 and IGF-1/IGFBP-3 molar ratio on mammographic density: a cross-sectional study.

    PubMed

    Meggiorini, M L; Cipolla, V; Borgoni, G; Nofroni, I; Pala, A; de Felice, C

    2012-01-01

    The purpose of this study was to examine the possible effects of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density and assess whether this relationship was similar in subgroups of pre- and postmenopausal women. A group of 341 Italian women of childbearing age or naturally postmenopausal who had performed mammographic examination at the section of radiology of our department a maximum three months prior to recruitment were enrolled. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio was calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). To assess the association between mammographic density and IGF-1, IGFBP-3 and Molar ratio Student's t-test was employed before and after stratified by menopausal status. The analysis of the relationship between mammographic density and plasma levels of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group whereas IGFBP-3 showed similar values in both groups (DB and NDB). After stratification of the study population by menopausal status, no association was found. Our study provides strong evidence of a crude association between breast density, and plasma levels of IGF-1 and molar ratio. IGF-1 and molar ratio might increase mammographic density and thus the risk of developing breast cancer.

  19. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; Haddad, F.

    1996-01-01

    Insulin-like growth factor-1 (IGF-1) is known to have anabolic effects on skeletal muscle cells. This study examined the time course of muscle hypertrophy and associated IGF-1 peptide and mRNA expression. Data were collected at 3, 7, 14, and 28 days after surgical removal of synergistic muscles of both normal and hypophysectomized (HX) animals. Overloading increased the plantaris (Plant) mass, myofiber size, and protein-to-body weight ratio in both groups (normal and HX; P < 0.05). Muscle IGF-1 peptide levels peaked at 3 (normal) and 7 (HX) days of overloading with maximum 4.1-fold (normal) and 6.2-fold (HX) increases. Increases in muscle IGF-1 preceded the hypertrophic response. Total DNA content of the overloaded Plant increased in both groups. There was a strong positive relationship between IGF-1 peptide and DNA content in the overloaded Plant from both groups. These results indicate that 1) the muscles from rats with both normal and severely depressed systemic levels of IGF-1 respond to functional overload with an increase in local IGF-1 expression and 2) this elevated IGF-1 may be contributing to the hypertrophy response, possibly via the mobilization of satellite cells to provide increases in muscle DNA.

  20. Adenoviral Mediated Gene Transfer of IGF-1 Enhances Wound Healing and Induces Angiogenesis

    PubMed Central

    Balaji, S.; LeSaint, M.; Bhattacharya, S. S.; Moles, C.; Dhamija, Y.; Kidd, M.; Le, L.D.; King, A.; Shaaban, A.; Crombleholme, T. M.; Bollyky, P.; Keswani, S. G.

    2014-01-01

    Background Chronic wounds are characterized by a wound healing and neovascularization deficit. Strategies to increase neovascularization can significantly improve chronic wound healing. Insulin like growth factor (IGF-1) is reported to be a keratinocyte mitogen and is believed to induce angiogenesis via a vascular endothelial growth factor (VEGF) dependent pathway. Using a novel ex vivo human dermal wound model and a diabetic impaired wound healing murine model, we hypothesized that adenoviral over expression of IGF-1 (Ad-IGF-1) will enhance wound healing and induce angiogenesis through a VEGF dependent pathway. Methods Ex vivo: 6 mm full thickness punch biopsies were obtained from normal human skin, and 3 mm full thickness wounds were created at the center. Skin explants were maintained at air liquid interface. Db/db murine model: 8 mm full thickness dorsal wounds in diabetic (db/db) mice were created. Treatment groups in both human ex vivo and in vivo db/db wound models include 1×108 PFU of Ad-IGF-1 or Ad-LacZ, and PBS (n=4–5/group). Cytotoxicity (LDH) was quantified at days 3, 5 and 7 for the human ex vivo wound model. Epithelial gap closure (H&E; Trichrome), VEGF expression (ELISA) and capillary density (CD 31+ CAPS/HPF) were analyzed at day 7. Results In the human ex vivo organ culture, the adenoviral vectors did not demonstrate any significant difference in cytotoxicity compared to PBS. Ad-IGF-1 over expression significantly increases basal keratinocyte migration, with no significant effect on epithelial gap closure. There was a significant increase in capillary density in the Ad-IGF-1 wounds. However, there was no effect on VEGF levels in Ad-IGF-1 samples compared to controls. In db/db wounds, Ad-IGF-1 over expression significantly improves epithelial gap closure and granulation tissue with a dense cellular infiltrate compared to controls. Ad-IGF-1 also increases capillary density, again with no significant difference in VEGF levels in the wounds compared

  1. Plasma IGF-1 and IGFBP-3 may be imprecise surrogates for breast concentrations: an analysis of healthy women.

    PubMed

    Llanos, Adana A; Brasky, Theodore M; Dumitrescu, Ramona G; Marian, Catalin; Makambi, Kepher H; Kallakury, Bhaskar V S; Spear, Scott L; Perry, David J; Convit, Rafael J; Platek, Mary E; Adams-Campbell, Lucile L; Freudenheim, Jo L; Shields, Peter G

    2013-04-01

    We investigated insulin-like growth factor (IGF)-1 and IGF binding protein (IGFBP)-3 concentrations in histologically normal breast tissues and assessed their association with plasma concentrations, and breast cancer risk factors. IGF-1 and IGFBP-3 were assessed in plasma and breast tissues of 90 women with no history of any cancer and undergoing reduction mammoplasty. Pearson correlations and ANOVAs were used to describe plasma-breast associations and biomarker differences by breast cancer risk factors, respectively. Multivariable regression models were used to determine associations between risk factors, and breast IGF-1 and IGFBP-3. The mean age of the study sample was 37.3 years, 58 % were white, and generally these women were obese (mean BMI = 30.8 kg/m(2)). We observed no plasma-breast correlation for IGF-1, IGFBP-3, or IGF-1/IGFBP-3 (r = -0.08, r = 0.14, and r = 0.03, respectively; p-values >0.05). Through age- and BMI-adjusted analysis, BMI and years of oral contraceptive (OC) use were inversely associated with breast IGF-1 (p-values = 0.02 and 0.003, respectively) and age was associated with breast IGFBP-3 (p = 0.01), while breast IGF-1/IGFBP-3 was higher in blacks than whites (1.08 vs. 0.68, p = 0.04) and associated with age and BMI (p-values = 0.03 and 0.002, respectively). In multivariable-adjusted models, some breast cancer risk factors studied herein explained 24, 10, and 15 % of the variation in breast IGF-1, IGFBP-3, and IGF-1/IGFBP-3, respectively. While reasons for the lack of plasma-breast hormone correlations in these cancer-free women are unknown, several factors were shown to be associated with breast concentrations. The lack of correlation between blood and tissue IGF-1 and IGFBP-3 suggests that studies of breast cancer risk assessing blood IGF-1 and IGFBP-3 may have important limitations in understanding their role in breast carcinogenesis.

  2. Plasma IGF-1 and IGFBP-3 may be imprecise surrogates for breast concentrations: an analysis of healthy women

    PubMed Central

    Llanos, Adana A.; Brasky, Theodore M.; Dumitrescu, Ramona G.; Marian, Catalin; Makambi, Kepher H.; Kallakury, Bhaskar V. S.; Spear, Scott L.; Perry, David J.; Convit, Rafael J.; Platek, Mary E.; Adams-Campbell, Lucile L.; Freudenheim, Jo L.; Shields, Peter G.

    2013-01-01

    We investigated insulin-like growth factor (IGF)-1 and IGF binding protein (IGFBP)-3 concentrations in histologically normal breast tissues and assessed their association with plasma concentrations, and breast cancer risk factors. IGF-1 and IGFBP-3 were assessed in plasma and breast tissues of 90 women with no history of any cancer and undergoing reduction mammoplasty. Pearson correlations and ANOVAs were used to describe plasma-breast associations and biomarker differences by breast cancer risk factors, respectively. Multivariable regression models were used to determine associations between risk factors, and breast IGF-1 and IGFBP-3. The mean age of the study sample was 37.3 years, 58 % were white, and generally these women were obese (mean BMI = 30.8 kg/m2). We observed no plasma-breast correlation for IGF-1, IGFBP-3, or IGF-1/IGFBP-3 (r = −0.08, r = 0.14, and r = 0.03, respectively; p-values >0.05). Through age- and BMI-adjusted analysis, BMI and years of oral contraceptive (OC) use were inversely associated with breast IGF-1 (p-values = 0.02 and 0.003, respectively) and age was associated with breast IGFBP-3 (p = 0.01), while breast IGF-1/IGFBP-3 was higher in blacks than whites (1.08 vs. 0.68, p = 0.04) and associated with age and BMI (p-values = 0.03 and 0.002, respectively). In multivariable-adjusted models, some breast cancer risk factors studied herein explained 24, 10, and 15 % of the variation in breast IGF-1, IGFBP-3, and IGF-1/IGFBP-3, respectively. While reasons for the lack of plasma-breast hormone correlations in these cancer-free women are unknown, several factors were shown to be associated with breast concentrations. The lack of correlation between blood and tissue IGF-1 and IGFBP-3 suggests that studies of breast cancer risk assessing blood IGF-1 and IGFBP-3 may have important limitations in understanding their role in breast carcinogenesis. PMID:23456194

  3. [Experimental study on dog's bone marrow stem cells transfected by pIRES2-EGFP-IGF-1 gene].

    PubMed

    Zhu, Guo-qiang; Wu, Zhi-fen; Li, Yuan-fei; Hu, De-hua; Wang, Qin-tao

    2006-12-01

    To establish the bone marrow stem cells (MSC) model which could highly express the insulin-like growth factor 1 (IGF-1) transfected by dog's IGF-1 gene. pIRES2-EGFP-IGF-1 was transfected into MSC by lipofectamine. Positive clones were selected with G418. The expression of IGF-1 protein in the MSC was determined by immunohistochemistry and Western blot analysis. The IGF-1 in the supernatant of the transfected MSC was detected by sandwich-in ELISA. The periodontal ligament cells (PDLC) were cultured in the supernatant of the transfected MSC. The changes of PDLC' proliferation were observed by MTT. IGF-1-transfected MSC could apparently express IGF-1. The IGF-1 protein in the supernatant of the transfected MSC was confirmed by sandwich-in ELISA. IGF-1 could promote the PDLC' proliferation. The MSC transfected by dog's IGF-1 gene can highly express IGF-1, which may lay the foundation for further study on periodontal regeneration.

  4. Recombinant human IGF-1 produced by transgenic plant cell suspension culture enhances new bone formation in calvarial defects.

    PubMed

    Poudel, Sher Bahadur; Bhattarai, Govinda; Kook, Sung-Ho; Shin, Yun-Ji; Kwon, Tae-Ho; Lee, Seung-Youp; Lee, Jeong-Chae

    2017-10-01

    Transgenic plant cell suspension culture systems have been utilized extensively as convenient and efficient expression systems for the production of recombinant human growth factors. We produced insulin-like growth factor-1 using a plant suspension culture system (p-IGF-1) and explored its effect on new bone formation in calvarial defects. We also compared the bone regenerating potential of p-IGF-1 with commercial IGF-1 derived from Escherichia coli (e-IGF-1). Male C57BL/6 mice underwent calvarial defect surgery, and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 13μg of p-IGF-1 (p-IGF-1 group) or e-IGF-1 (e-IGF-1 group). The sham group did not receive any treatment with ACS or IGFs after surgery. Live μCT and histological analyses showed critical-sized bone defects in the sham group, whereas greater bone formation was observed in the p-IGF-1 and e-IGF-1 groups than the ACS group both 5 and 10weeks after surgery. Bone mineral density, bone volume, and bone surface values were also higher in the IGF groups than in the ACS group. Local delivery of p-IGF-1 or e-IGF-1 more greatly enhanced the expression of osteoblast-specific markers, but inhibited osteoclast formation, in newly formed bone compared with ACS control group. Specifically, p-IGF-1 treatment induced higher expression of alkaline phosphatase, osteocalcin, and osteopontin in the defect site than did e-IGF-1. Furthermore, treatment with p-IGF-1, but not e-IGF-1, increased mineralization of MC3T3-E1 cells, with the attendant upregulation of osteogenic marker genes. Collectively, our findings suggest the potential of p-IGF-1 in promoting the processes required for bone regeneration. Copyright © 2017. Published by Elsevier Ltd.

  5. Serum levels of IGF-1 and IGF-BP3 are associated with event-free survival in adult Ewing sarcoma patients treated with chemotherapy.

    PubMed

    de Groot, Stefanie; Gelderblom, Hans; Fiocco, Marta; Bovée, Judith Vmg; van der Hoeven, Jacobus Jm; Pijl, Hanno; Kroep, Judith R

    2017-01-01

    Activation of the insulin-like growth factor 1 (IGF-1) pathway is involved in cell growth and proliferation and is associated with tumorigenesis, tumor progression, and therapy resistance in solid tumors. We examined whether variability in serum levels of IGF-1, IGF-2, and IGF-binding protein 3 (IGF-BP3) can predict event-free survival (EFS) and overall survival (OS) in Ewing sarcoma patients treated with chemotherapy. Serum levels of IGF-1, IGF-2, and IGF-BP3 of 22 patients with localized or metastasized Ewing sarcoma treated with six cycles of vincristine/ifosfamide/doxorubicin/etoposide (VIDE) chemotherapy were recorded. Baseline levels were compared with presixth cycle levels using paired t -tests and were tested for associations with EFS and OS. Continuous variables were dichotomized according to the Contal and O'Quigley procedure. Survival analyses were performed using Cox regression analysis. High baseline IGF-1 and IGF-BP3 serum levels were associated with EFS (hazard ratio [HR] 0.075, 95% confidence interval [CI] 0.009-0.602 and HR 0.090, 95% CI 0.011-0.712, respectively) in univariate and multivariate analyses (HR 0.063, 95% CI 0.007-0.590 and HR 0.057, 95% CI 0.005-0.585, respectively). OS was improved, but this was not statistically significant. IGF-BP3 and IGF-2 serum levels increased during treatment with VIDE chemotherapy ( P =0.055 and P =0.023, respectively). High circulating serum levels of IGF-1 and IGF-BP3 and the molar ratio of IGF-1:IGF-BP3 serum levels were associated with improved EFS and a trend for improved OS in Ewing sarcoma patients treated with VIDE chemotherapy. These findings suggest the need for further investigation of the IGF-1 pathway as a biomarker of disease progression in patients with Ewing sarcoma.

  6. A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs

    PubMed Central

    McKinsey, EL; Parrish, JK; Irwin, AE; Niemeyer, BF; Kern, HB; Birks, DK; Jedlicka, P

    2015-01-01

    MicroRNAs (miRs) are a novel class of cellular bioactive molecules with critical functions in the regulation of gene expression in normal biology and disease. MiRs are frequently misexpressed in cancer, with potent biological consequences. However, relatively little is known about miRs in pediatric cancers, including sarcomas. Moreover, the mechanisms behind aberrant miR expression in cancer are poorly understood. Ewing sarcoma is an aggressive pediatric malignancy driven by EWS/Ets fusion oncoproteins, which are gain-of-function transcriptional regulators. We employed stable silencing of EWS/Fli1, the most common of the oncogenic fusions, and global miR profiling to identify EWS/Fli1-regulated miRs with oncogenesis-modifying roles in Ewing sarcoma. In this report, we characterize a group of miRs (100, 125b, 22, 221/222, 27a and 29a) strongly repressed by EWS/Fli1. Strikingly, all of these miRs have predicted targets in the insulin-like growth factor (IGF) signaling pathway, a pivotal driver of Ewing sarcoma oncogenesis. We demonstrate that miRs in this group negatively regulate the expression of multiple pro-oncogenic components of the IGF pathway, namely IGF-1, IGF-1 receptor, mammalian/mechanistic target of rapamycin and ribosomal protein S6 kinase A1. Consistent with tumor-suppressive functions, these miRs manifest growth inhibitory properties in Ewing sarcoma cells. Our studies thus uncover a novel oncogenic mechanism in Ewing sarcoma, involving post-transcriptional derepression of IGF signaling by the EWS/Fli1 fusion oncoprotein via miRs. This novel pathway may be amenable to innovative therapeutic targeting in Ewing sarcoma and other malignancies with activated IGF signaling. PMID:21643012

  7. A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs.

    PubMed

    McKinsey, E L; Parrish, J K; Irwin, A E; Niemeyer, B F; Kern, H B; Birks, D K; Jedlicka, P

    2011-12-08

    MicroRNAs (miRs) are a novel class of cellular bioactive molecules with critical functions in the regulation of gene expression in normal biology and disease. MiRs are frequently misexpressed in cancer, with potent biological consequences. However, relatively little is known about miRs in pediatric cancers, including sarcomas. Moreover, the mechanisms behind aberrant miR expression in cancer are poorly understood. Ewing sarcoma is an aggressive pediatric malignancy driven by EWS/Ets fusion oncoproteins, which are gain-of-function transcriptional regulators. We employed stable silencing of EWS/Fli1, the most common of the oncogenic fusions, and global miR profiling to identify EWS/Fli1-regulated miRs with oncogenesis-modifying roles in Ewing sarcoma. In this report, we characterize a group of miRs (100, 125b, 22, 221/222, 27a and 29a) strongly repressed by EWS/Fli1. Strikingly, all of these miRs have predicted targets in the insulin-like growth factor (IGF) signaling pathway, a pivotal driver of Ewing sarcoma oncogenesis. We demonstrate that miRs in this group negatively regulate the expression of multiple pro-oncogenic components of the IGF pathway, namely IGF-1, IGF-1 receptor, mammalian/mechanistic target of rapamycin and ribosomal protein S6 kinase A1. Consistent with tumor-suppressive functions, these miRs manifest growth inhibitory properties in Ewing sarcoma cells. Our studies thus uncover a novel oncogenic mechanism in Ewing sarcoma, involving post-transcriptional derepression of IGF signaling by the EWS/Fli1 fusion oncoprotein via miRs. This novel pathway may be amenable to innovative therapeutic targeting in Ewing sarcoma and other malignancies with activated IGF signaling.

  8. IGF-1 Prevents Diastolic and Systolic Dysfunction Associated with Cardiomyopathy and Preserves Adrenergic Sensitivity

    PubMed Central

    Roof, Steve R.; Boslett, James; Russell, Duncan; del Rio, Carlos; Alecusan, Joe; Zweier, Jay L.; Ziolo, Mark T.; Hamlin, Robert; Mohler, Peter J.; Curran, Jerry

    2015-01-01

    Aims Insulin-like growth factor 1 (IGF-1)-dependent signaling promotes exercise-induced physiological cardiac hypertrophy. However, the in vivo therapeutic potential of IGF-1 for heart disease is not well established. Here we test the potential therapeutic benefits of IGF-1 on cardiac function using an in vivo model of chronic catecholamine-induced cardiomyopathy. Methods Rats were perfused with isoproterenol via osmotic pump (1 mg/kg/day) and treated with 2 mg/kg IGF-1 (2 mg/kg/day, 6 days a week) for 2 or 4 weeks. Echocardiography, ECG, and blood pressure were assessed. In vivo pressure-volume loop studies were conducted at 4 weeks. Heart sections were analyzed for fibrosis and apoptosis, and relevant biochemical signaling cascades were assessed. Results After 4 weeks, diastolic function (EDPVR, EDP, tau, E/A ratio), systolic function (PRSW, ESPVR, dP/dtmax), and structural remodeling (LV chamber diameter, wall thickness) were all adversely affected in isoproterenol-treated rats. All these detrimental effects were attenuated in rats treated with Iso+IGF-1. Isoproterenol-dependent effects on BP were attenuated by IGF-1 treatment. Adrenergic sensitivity was blunted in isoproterenol-treated rats but was preserved by IGF-1 treatment. Immunoblots indicate that cardioprotective p110α signaling and activated Akt are selectively upregulated in Iso+IGF-1 treated hearts. Expression of iNOS was significantly increased in both the Iso and Iso+IGF-1 groups, however tetrahydrobiopterin (BH4) levels were decreased in the Iso group and maintained by IGF-1 treatment. Conclusion IGF-1 treatment attenuates diastolic and systolic dysfunction associated with chronic catecholamine-induced cardiomyopathy while preserving adrenergic sensitivity and promoting BH4 production. These data support the potential use of IGF-1 therapy for clinical applications for cardiomyopathies. PMID:26399932

  9. Inhibition of p70S6K1 activation by Pdcd4 overcomes the resistance to an IGF-1R/IR inhibitor in colon carcinoma cells

    PubMed Central

    Zhang, Yan; Wang, Qing; Chen, Li; Yang, Hsin-Sheng

    2015-01-01

    Agents targeting insulin-like growth factor 1 receptor (IGF-1R) are being actively examined in clinical trials. Although there has been some initial success of single agent targeting IGF-1R, attempts in later studies failed due to resistance. This study aimed to understand the effects of programmed cell death 4 (Pdcd4) on the chemosensitivity of the IGF-1R inhibitor, OSI-906, in colorectal cancer (CRC) cells and the mechanism underlying this impact. Using OSI-906 resistant and sensitive CRC cells, we found that the Pdcd4 level directly correlates with cell chemosensitivity to OSI-906. In addition, tumors derived from Pdcd4 knockdown cells resist the growth inhibitory effect of OSI-906 in a CRC xenograft mouse model. Moreover, Pdcd4 enhances the antiproliferative effect of OSI-906 in resistant cells through suppression of p70S6K1 activation. Knockdown of p70S6K1, but not p70S6K2, significantly increases the chemosensitivity of OSI-906 in cultured CRC cells. Furthermore, the combination of OSI-906 and PF4708671, a p70S6K1 inhibitor, efficiently suppresses the growth of OSI-906 resistant colon tumor cells in vitro and in vivo. Taken together, activation of p70S6K1 that is inhibited by Pdcd4 is essential for resistance to IGF-1R inhibitor in colon tumor cells, and the combinational treatment of OSI-906 and PF-4708671 results in enhanced antiproliferation effects in CRC cells in vitro and in vivo, providing a novel venue to overcome the resistance to IGF-1R inhibitor in treating colorectal cancer. PMID:25573956

  10. Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, C.K.; Leaman, D.W.; White, M.E.

    1990-02-26

    Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probedmore » with {sup 32}P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus.« less

  11. IGF-1 and TGF-β stimulate cystine/glutamate exchange activity in dental pulp cells

    PubMed Central

    Pauly, Katherine; Fritz, Kimberly; Furey, Alyssa; Lobner, Doug

    2011-01-01

    Introduction The growth factors IGF-1 and TGF-β are protective to dental pulp cells in culture against the toxicity of the composite materials Durafill VS and Flow Line. Since the toxicity of these materials is mediated by oxidative stress, it seemed possible that the protective effects of IGF-1 and TGF-β were through enhancement of an endogenous antioxidant mechanism. Methods We used cultured dental pulp cells to determine the mechanism of the protective effects of IGF-1 and TGF-β, focusing on the glutathione system and the role of cystine/glutamate exchange (system xc-). Results We found that the toxicity of Durafill VS and Flow Line was attenuated by addition of glutathione monoethylester, suggesting a specific role for the cellular antioxidant glutathione. Supporting this hypothesis we found that IGF-1 and TGF-β were protective against the toxicity of the glutathione synthesis inhibitor buthionine sulfoximine. Since levels of cellular cystine are the limiting factor in the production of glutathione we tested the effects of IGF-1 and TGF-β on cystine uptake. Both growth factors stimulated system xc- mediated cystine uptake. Furthermore, they attenuated the glutathione depletion induced by Durafill VS and Flow Line. Conclusions The results suggest that IGF-1 and TGF-β are protective through the stimulation of system xc- mediated cystine uptake leading to maintenance of cellular glutathione. This novel action of growth factors on dental pulp cells has implications not only for preventing toxicity of dental materials but also for the general function of these cells. PMID:21689549

  12. HIV/HCV Co-infection, Liver Disease Progression, and Age-Related IGF-1 Decline.

    PubMed

    Quinn, Jeffrey; Astemborski, Jacquie; Mehta, Shruti H; Kirk, Gregory D; Thomas, David L; Balagopal, Ashwin

    2017-01-01

    We have previously reported that persons co-infected with HIV and hepatitis C virus (HCV) had liver disease stages similar to HIV-uninfected individuals who were approximately 10 years older. Insulin-like growth factor 1(IGF-1) levels have long been known to decline with advancing age in humans and non-humans alike. We examined whether HIV infection affects the expected decline in IGF-1 in persons with chronic hepatitis C virus (HCV) infection and if that alteration in IGF-1 decline contributes to the link between HIV, aging, and liver disease progression. A total of 553 individuals with HCV infection were studied from the AIDS Linked to the Intravenous Experience (ALIVE) cohort for whom more than 10 years of follow-up was available. Serum IGF-1 levels were determined by ELISA and evaluated according to baseline characteristics and over time by HIV status and liver disease progression. Linear regression with generalized estimating equations was used to determine whether IGF-1 decline over time was independently associated with liver disease progression. Baseline IGF-1 levels were strongly associated with age ( P < 0.0001) but not with gender or HIV infection. Levels of IGF-1 declined at a rate of -1.75 ng/mL each year in HCV mono-infected individuals and at a rate of -1.23 ng/mL each year in HIV/HCV co-infected individuals ( P < 0.05). In a multivariable linear regression model, progression of liver fibrosis was associated with HIV infection and age, as well as with a slower rate of IGF-1 decline ( P = 0.001); however, the rate of IGF-1 decline did not alter the strength of the associations between HIV, liver disease, and age. The normal decline in IGF-1 levels with age was attenuated in HIV/HCV co-infected individuals compared to those with HCV mono-infection, and slower IGF-1 decline was independently associated with liver disease progression.

  13. Associations between depressive symptoms and memory deficits vary as a function of insulin-like growth factor (IGF-1) levels in healthy older adults.

    PubMed

    Lin, Feng; Suhr, Julie; Diebold, Stephanie; Heffner, Kathi L

    2014-04-01

    Accumulating evidence suggests an adverse association between depressive symptoms and cognition, but a positive association between insulin-like growth factor (IGF)-1 and cognition. The present study examined the influence of IGF-1 in the relationship between depressive symptoms and learning and memory. A cross-sectional study of 94 healthy fit older adults. Blood was collected and plasma IGF-1 was measured. Depressive symptoms were assessed with the Geriatric Depression Scale (GDS), and learning and memory were assessed using the Rey Auditory Verbal Learning Test (AVLT). Among older adults with lower IGF-1 levels, higher depressive symptoms scores were associated with lower AVLT delayed recall and recognition. Older adults with higher IF-1 levels showed no associations between depressive symptoms and memory. The association between depressive symptoms and cognition is stronger among older adults with lower levels of circulating IGF-1. Further validation studies on groups with depression or different stages of cognitive impairment are needed. IGF-1 may be a novel intervention target for slowing cognitive decline in older adults with depressive symptoms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Systemic analysis of different colorectal cancer cell lines and TCGA datasets identified IGF-1R/EGFR-PPAR-CASPASE axis as important indicator for radiotherapy sensitivity.

    PubMed

    Chen, Lin; Zhu, Zhe; Gao, Wei; Jiang, Qixin; Yu, Jiangming; Fu, Chuangang

    2017-09-05

    Insulin-like growth factor 1 receptor (IGF-1R) is proved to contribute the development of many types of cancers. But, little is known about its roles in radio-resistance of colorectal cancer (CRC). Here, we demonstrated that low IGF-1R expression value was associated with the better radiotherapy sensitivity of CRC. Besides, through Quantitative Real-time PCR (qRT-PCR), the elevated expression value of epidermal growth factor receptor (EGFR) was observed in CRC cell lines (HT29, RKO) with high radio-sensitivity compared with those with low sensitivity (SW480, LOVO). The irradiation induced apoptosis rates of wild type and EGFR agonist (EGF) or IGF-1R inhibitor (NVP-ADW742) treated HT29 and SW480 cells were quantified by flow cytometry. As a result, the apoptosis rate of EGF and NVP-ADW742 treated HT29 cells was significantly higher than that of those wild type ones, which indicated that high EGFR and low IGF-1R expression level in CRC was associated with the high sensitivity to radiotherapy. We next conducted systemic bioinformatics analysis of genome-wide expression profiles of CRC samples from the Cancer Genome Atlas (TCGA). Differential expression analysis between IGF-1R and EGFR abnormal CRC samples, i.e. CRC samples with higher IGF-1R and lower EGFR expression levels based on their median expression values, and the rest of CRC samples identified potential genes contribute to radiotherapy sensitivity. Functional enrichment of analysis of those differential expression genes (DEGs) in the Database for Annotation, Visualization and Integrated Discovery (DAVID) indicated PPAR signaling pathway as an important pathway for the radio-resistance of CRC. Our study identified the potential biomarkers for the rational selection of radiotherapy for CRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. IGF-1 Regulates Cyr61 Induced Breast Cancer Cell Proliferation and Invasion

    PubMed Central

    Sarkissyan, Suren; Sarkissyan, Marianna; Wu, Yanyuan; Cardenas, Jessica; Koeffler, H. Phillip; Vadgama, Jaydutt V.

    2014-01-01

    Background Studies from our laboratory and others have shown that cysteine-rich 61 (Cyr61) may be involved in tumor proliferation and invasion. In earlier studies, we demonstrated increased insulin-like growth factor-I (IGF-1) is associated with breast tumor formation and poor clinical outcomes. In our current study we have investigated IGF-1 regulation of Cyr61 and whether targeting IGF-1 could inhibit Cyr61 induced tumor growth and proliferation. Methods Several ATCC derived normal and breast cancer cell lines were used in this study: MDA-MB231, BT474, MCF-7, and SKBR3. We also tested cells stably transfected in our laboratory with active Akt1 (pAkt; SKBR3/AA and MCF-7/AA) and dominant negative Akt1 (SKBR3/DN and MCF-7/DN). In addition, we used MCF-7 cells transfected with full length Cyr61 (CYA). Monolayer cultures treated with IGF-1 were analyzed for Cyr61 expression by RT-PCR and immunohistochemical staining. Migration assays and MTT based proliferation assays were used to determine invasive characteristics in response to IGF-1/Cyr61 activation. Results Cells with activated Akt have increased levels of Cyr61. Conversely, cells with inactive Akt have decreased levels of Cyr61. IGF-1 treatment increased Cyr61 expression significantly and cells with high level of Cyr61 demonstrate increased invasiveness and proliferation. Cyr61 overexpression and activation led to decrease in E-cadherin and decrease in FOXO1. Inhibition of the PI3K and MAPK pathways resulted in significant decrease in invasiveness and proliferation, most notably in the PI3K pathway inhibited cells. Conclusion The findings of this study show that IGF-1 upregulates Cyr61 primarily through activation of the Akt-PI3K pathway. IGF-1 induced MAPK plays a partial role. Increase in Cyr61 leads to increase in breast cancer cell growth and invasion. Hence, targeting Cyr61 and associated pathways may offer an opportunity to inhibit IGF-1 mediated Cyr61 induced breast cancer growth and invasion. PMID

  16. Hepatic IGF-1R overexpression combined with the activation of GSK-3β and FOXO3a in the development of liver cirrhosis.

    PubMed

    Liu, Wentao; Li, Jing; Cai, Yan; Wu, Qiong; Pan, Yue; Chen, Yang; Chen, Yujing; Zheng, Xiao; Li, Wei; Zhang, Xuewen; E, Changyong

    2016-02-15

    Liver cirrhosis is the common pathological histology manifest among a number of chronic liver diseases and liver cancer. Circulating levels of insulin growth factor-1 (IGF-1) have been recently linked to liver cirrhosis and the development of liver cancer. Herein, we hypothesized that IGF-1R overexpression combining the activation of GSK-3β and FOXO3a were involved in the development of human and murine chronic liver cirrhosis. Liver samples of patients were screened from the Tissue Bank of the China-Japan Union Hospital of Jilin University. Mice liver fibrosis model was performed using intraperitoneal injection of carbon tetrachloride (CCl4) for 12weeks. Serum IGF-1 levels were detected by enzyme-linked immunosorbent assays (ELISA). Microscopical examination of liver parenchyma was performed using conventional H&E and Masson's staining. Moreover, we investigated the IGF-1 receptor (IGF-1R) signaling pathway at different period after CCl4 administration. Serum IGF-1 levels were significantly decreased in patients with liver cirrhosis, which is concomitant with the declined circulating levels of IGF-1 in 8 to 12weeks CCl4-treated mice. Furthermore, the expression of IGF-1R was significantly higher at 12w compared with control group. In addition, activation of the GSK-3β and FOXO3a were activated during the process of murine chronic liver injury. The present study demonstrates that decreased circulating IGF-1 levels are involved in human and murine chronic liver disease. Interestingly, overexpression of the IGF-1R, and activation of GSK3β and FOXO3a might be the molecular mechanisms underlying the development of liver cirrhosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A phase I trial of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer

    PubMed Central

    Suman, Vera J.; Goetz, Matthew; Haluska, Paul; Moynihan, Timothy; Nanda, Rita; Olopade, Olufunmilayo; Pluard, Timothy; Guo, Zhanfang; Chen, Helen X.; Erlichman, Charles; Ellis, Matthew J.; Fleming, Gini F.

    2015-01-01

    The mammalian target of rapamycin (mTOR) plays a critical role in promoting tumor cell growth and is frequently activated in breast cancer. In preclinical studies, the antitumor activity of mTOR inhibitors is attenuated by feedback up-regulation of AKT mediated in part by Insulin-like growth factor type 1 receptor (IGF-1R). We designed a phase I trial to determine the maximum-tolerated dose (MTD) and pharmacodynamic effects of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer refractory to standard therapies. A 3 + 3 Phase I design was chosen. Temsirolimus and Cixutumumab were administered intravenously on days 1, 8, 15, and 22 of a 4-week cycle. Of the 26 patients enrolled, four did not complete cycle 1 because of disease progression (n = 3) or comorbid condition (n = 1) and were replaced. The MTD was determined from the remaining 22 patients, aged 34–72 (median 48) years. Most patients (86 %) had estrogen receptor positive cancer. The median number of prior chemotherapy regimens for metastatic disease was 3. The MTD was determined to be Cixutumumab 4 mg/kg and temsirolimus 15 mg weekly. Dose-limiting toxicities (DLTs) included mucositis, neutropenia, and thrombocytopenia. Other adverse events included grade 1/2 fatigue, anemia, and hyperglycemia. No objective responses were observed, but four patients experienced stable disease that lasted for at least 4 months. Compared with baseline, there was a significant increase in the serum levels of IGF-1 (p < 0.001) and IGFBP-3 (p = 0.019) on day 2. Compared with day 2, there were significant increases in the serum levels of IGF-1 (p < 0.001), IGF-2 (p = 0.001), and IGFBP-3 (p = 0.019) on day 8. A phase II study in women with metastatic breast cancer is ongoing. PMID:23605083

  18. [Effects of Gukang on bone-source alkaline phosphatase (BALP) and insulin-like growth factor-1 (IGF-1) in serum of spaying rats].

    PubMed

    Chen, Yi-fan; Huang, Hong-xing; Li, Ying

    2009-02-01

    To investigate the effects of Gukang on bone-source alkaline phosphatase (BALP) and insulin-like growth factor 1 (IGF-1) in serum of spaying rats and the mechanism of curative effect of Gukang on osteoporosis. Sixty-eight 6-month-old SD rats were chosen and randomly divided into blank control group (22 rats with sham operation) and operation group (46 rats with spaying operation). Three months after operation, 10 rats were randomly chosen from each group and tested with bone mineral density in order to determine models of osteoporosis made. After modeling, operation group was divided into 3 sub-groups: operation model group, estrogen group and Gukang group, 12 rars in each group. Twelve rats remained in blank control group. Every group were treated through intragastric administration therapy (volume 10 ml/kg). Blank control group and operation model group were irrigated with distilled water,estrogen group with estrogen and Gukang group with Gukang. Three months after treatment, serum of all groups were collected and tested for E2, BALP and IGF-1 with ELISA. The concentration of serum E2, BALP in estrogen group and Gukang group were higher than operation model group, there were significant difference (P < 0.05), but no significant difference in serum E2 between estrogen group and Gukang group (P > 0.05). The concentration of serum IGF-1 in Gukang group was higher than operation model group and blank control group, there were significant difference (P < 0.05). Gukang can increase the level of E2, BALP and IGF-1 in serum of spaying rats. Thus, it can indirectly promote reproduction of osteoblasts, inhibit activity of osteoclasts and promote bone formation.

  19. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    PubMed Central

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  20. Human blood-brain barrier insulin-like growth factor receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-02-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefoldmore » greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of /sup 125/I-IGF-1, /sup 125/I-IGF-2, and /sup 125/I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin.« less