Sample records for factor-containing fibulin-like extracellular

  1. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 expression and regulation in uterine leiomyoma.

    PubMed

    Marsh, Erica E; Chibber, Shani; Wu, Ju; Siegersma, Kendra; Kim, Julie; Bulun, Serdar

    2016-04-01

    To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. Academic medical center. Leiomyoma and myometrial tissue samples and cultured cells. 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. PKCε Increases Extracellular Elastin and Fibulin-5/DANCE in Dermal Fibroblasts.

    PubMed

    Nishizaki, Tomoyuki

    2018-01-01

    In the earlier study, the selective PKCε activator DCP-LA increased elastic fibres in the dermis of HR-1 hairless mice. As a process of elastic fibre formation, tropoelastin, an elastin monomer, is secreted into the extracellular space. Secreted tropoelastin is delivered to the microfibrils by fibulin-5/developmental arteries and neural crest epidermal growth factor-like (DANCE) and undergoes self-association. Then, tropoelastin assembles around the microfibrils, growing into elastin and elastic fibres by lysyl oxidase (LOX)- or LOX-like (LOXL)-mediated cross-linking. The present study was conducted to understand the mechanism underlying DCP-LA-induced increase in elastin/elastic fibre. Western blotting, immunocytochemistory, and real-time reverse transcription-polymerase chain reaction (RT-PCR) were carried out in cultured human dermal fibroblasts. PKCε, mammalian target of rapamycin complex (mTOR), and p70 S6 kinase (S6K) were knocked-down by transfecting each siRNA. DCP-LA increased elastin and fibulin-5/DANCE in a treatment time (6-24 h)- and a bell-shaped concentration (1 nM-1 µM)-dependent manner in the culture medium of human dermal fibroblasts. DCP-LA markedly increased elastic fibres in the extracellular space of cultured fibroblasts. DCP-LA-induced increase in extracellular elastin and fibulin-5/DANCE was abolished by a PKC inhibitor or knocking-down PKCε. DCP-LA did not affect expression of mRNAs for tropoelastin and fiblin-5/DANCE in cultured fibroblasts. DCP-LA-induced increase in extracellular elastin and fibulin-5/DANCE was not inhibited by the protein synthesis inhibitor cycloheximide or by knocking-down mTOR and S6K. DCP-LA never increased extracellular elastin in the presence of elastase, that breaks down elastin. An inhibitor of matrix metalloproteinase 9, that degrades multiple extracellular matrix components including elastin, had no effect on the basal levels and the DCP-LA-induced increase levels of extracellular elastin. The results of

  3. Fibulin-1 functions as a prognostic factor in lung adenocarcinoma.

    PubMed

    Cui, Yuan; Liu, Jian; Yin, Hai-Bing; Liu, Yi-Fei; Liu, Jun-Hua

    2015-09-01

    Fibulin-1 is a member of the fibulin gene family, characterized by tandem arrays of epidermal growth factor-like domains and a C-terminal fibulin-type module. Fibulin-1 plays important roles in a range of cellular functions including morphology, growth, adhesion and mobility. It acts as a tumor suppressor gene in cutaneous melanoma, prostate cancer and gastric cancer. However, whether fibulin-1 also acts as a tumor suppressor gene in lung adenocarcinoma remains unknown. We also determined the association of fibulin-1 expression with various clinical and pathological parameters, which would show its potential role in clinical prognosis. We investigated and followed up 140 lung adenocarcinoma patients who underwent lung resection without pre- and post-operative systemic chemotherapy at the Affiliated Hospital of Nantong University from 2009 to 2013. Western blot assay and immunohistochemistry were used to evaluate the expression of fibulin-1 in lung adenocarcinoma tissues. We then analyzed the correlations between fibulin-1 expression and clinicopathological variables as well as the patients' overall survival rate. Both western blot assay and immunohistochemistry demonstrated that the level of fibulin-1 was downregulated in human lung adenocarcinoma tissues compared with that of normal lung tissues. Fibulin-1 expression significantly correlated with histological differentiation (P = 0.046), clinical stage (P< 0.01), lymph node status (P = 0.038) and expression of Ki-67 (P = 0.013). More importantly, multivariate analysis revealed that fibulin-1 was an independent prognostic marker for lung adenocarcinoma, and high expression of fibulin-1 was significantly associated with better prognosis of lung adenocarcinoma patients. The results supported our hypothesis that fibulin-1 can act as a prognostic factor in lung adenocarcinoma progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Fibulin 5 Forms a Compact Dimer in Physiological Solutions*

    PubMed Central

    Jones, Richard P. O.; Wang, Ming-Chuan; Jowitt, Thomas A.; Ridley, Caroline; Mellody, Kieran T.; Howard, Marjorie; Wang, Tao; Bishop, Paul N.; Lotery, Andrew J.; Kielty, Cay M.; Baldock, Clair; Trump, Dorothy

    2009-01-01

    Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Missense mutations in fibulin 5 cause the elastin disorder cutis laxa and have been associated with age-related macular degeneration, a leading cause of blindness. We investigated the structure, hydrodynamics, and oligomerization of fibulin 5 using small angle x-ray scattering, EM, light scattering, circular dichroism, and sedimentation. Compact structures for the monomer were determined by small angle x-ray scattering and EM, and are supported by close agreement between the theoretical sedimentation of the structures and the experimental sedimentation of the monomer in solution. EM showed that monomers associate around a central cavity to form a dimer. Light scattering and equilibrium sedimentation demonstrated that the equilibrium between the monomer and the dimer is dependent upon NaCl and Ca2+ concentrations and that the dimer is dominant under physiological conditions. The dimerization of fragments containing just the cbEGF domains suggests that intermolecular interactions between cbEGFs cause dimerization of fibulin 5. It is possible that fibulin 5 functions as a dimer during elastinogenesis or that dimerization may provide a method for limiting interactions with binding partners such as tropoelastin. PMID:19617354

  5. Human fibulin-3 protein variant expresses anti-cancer effects in the malignant glioma extracellular compartment in intracranial xenograft models

    PubMed Central

    Li, Yanyan; Hu, Yuan; Liu, Chuanjin; Wang, Qingyue; Han, Xiaoxiao; Han, Yong; Xie, Xue-Shun; Chen, Xiong-Hui; Li, Xiang; Siegel, Eric R.; Afrasiabi, Kambiz; Linskey, Mark E.; Zhou, You-Xin; Zhou, Yi-Hong

    2017-01-01

    Background Decades of cytotoxic and more recently immunotherapy treatments for malignant glioma have had limited success due to dynamic intra-tumoral heterogeneity. The dynamic interplay of cancer cell subpopulations has been found to be under the control of proteins in the cancer microenvironment. EGF-containing fibulin-like extracellular matrix protein (EFEMP1) (also fibulin-3) has the multiple functions of suppressing cancer growth and angiogenesis, while promoting cancer cell invasion. EFEMP1-derived tumor suppressor protein (ETSP) retains EFEMP1’s anti-growth and anti-angiogenic functions while actually inhibiting cancer cell invasion. Methods In this study, we examined the therapeutic effect on glioblastoma multiforme (GBM) of an in vitro synthesized protein, ZR30, which is based on the sequence of ETSP, excluding the signaling peptide. Results ZR30 showed the same effects as ETSP in blocking EGFR/NOTCH/AKT signaling pathways, when applied to cultures of multiple GBM cell lines and primary cultures. ZR30’s inhibition of MMP2 activation was shown not only for GBM cells, but also for other types of cancer cells having overexpression of MMP2. A significant improvement in survival of mice with orthotopic human GBM xenografts was observed after a single, intra-tumoral injection of ZR30. Using a model mimicking the intra-tumoral heterogeneity of GBM with cell subpopulations carrying different invasive and proliferative phenotypes, we demonstrated an equal and simultaneous tumor suppressive effect of ZR30 on both tumor cell subpopulations, with suppression of FOXM1 and activation of SEMA3B expressions in the xenografts. Conclusion Overall, the data support a complementary pleiotrophic therapeutic effect of ZR30 acting in the extracellular compartment of GBM. PMID:29290950

  6. Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5*

    PubMed Central

    Choudhury, Rawshan; McGovern, Amanda; Ridley, Caroline; Cain, Stuart A.; Baldwin, Andrew; Wang, Ming-Chuan; Guo, Chun; Mironov, Aleksandr; Drymoussi, Zoe; Trump, Dorothy; Shuttleworth, Adrian; Baldock, Clair; Kielty, Cay M.

    2009-01-01

    Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils. PMID:19570982

  7. Failure of Pelvic Organ Support in Mice Deficient In Fibulin-3

    PubMed Central

    Rahn, David D.; Acevedo, Jesús F.; Roshanravan, Shayzreen; Keller, Patrick W.; Davis, Elaine C.; Marmorstein, Lihua Y.; Word, R. Ann

    2009-01-01

    Fibulin-5 is crucial for normal elastic fiber synthesis in the vaginal wall; more than 90% of fibulin-5-knockout mice develop pelvic organ prolapse by 20 weeks of age. In contrast, fibulin-1 and -2 deficiencies do not result in similar pathologies, and fibulin-4-knockout mice die shortly after birth. EFEMP1 encodes fibulin-3, an extracellular matrix protein important in the maintenance of abdominal fascia. Herein, we evaluated the role of fibulin-3 in pelvic organ support. Pelvic organ support was impaired significantly in female Efemp1 knockout mice (Fbln3−[supi]/−), and overt vaginal, perineal, and rectal prolapse occurred in 26.9% of animals. Prolapse severity increased with age but not parity. Fibulin-5 was up-regulated in vaginal tissues from Fbln3−[supi]/− mice regardless of prolapse. Despite increased expression of fibulin-5 in the vaginal wall, pelvic organ support failure occurred in Fbln3−[supi]/− animals, suggesting that factors related to aging led to prolapse. Elastic fiber abnormalities in vaginal tissues from young Fbln3−[supi]/− mice progressed to severe elastic fiber disruption with age, and vaginal matrix metalloprotease activity was increased significantly in Fbln3−[supi]/− animals with prolapse compared with Fbln3−[supi]/− mice without prolapse. Overall, these results indicate that both fibulin-3 and -5 are important in maintaining pelvic organ support in mice. We suggest that increased vaginal protease activity and abnormal elastic fibers in the vaginal wall are important components in the pathogenesis of pelvic organ prolapse. PMID:19095964

  8. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose

    PubMed Central

    DiScipio, Richard G.; Liddington, Robert C.; Schraufstatter, Ingrid U.

    2016-01-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  9. Structural Effects of Fibulin 5 Missense Mutations Associated with Age-Related Macular Degeneration and Cutis Laxa

    PubMed Central

    Jones, Richard P. O.; Ridley, Caroline; Jowitt, Thomas A.; Wang, Ming-Chuan; Howard, Marjorie; Bobola, Nicoletta; Wang, Tao; Bishop, Paul N.; Kielty, Cay M.; Baldock, Clair; Lotery, Andrew J.; Trump, Dorothy

    2010-01-01

    Purpose. AMD has a complex etiology with environmental and genetic risk factors. Ten fibulin 5 sequence variants have been associated with AMD and two other fibulin 5 mutations cause autosomal-recessive cutis laxa. Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)–rich extracellular matrix protein that is essential for the formation of elastic tissues. Biophysical techniques were used to detect structural changes in the fibulin 5 mutants and to determine whether changes are predictive of pathogenicity. Methods. Native PAGE, nonreduced SDS-PAGE, size-exclusion column multiangle laser light scattering, sedimentation velocity, and circular dichroism (CD) were used to investigate the mobility, hydrodynamic radii, folding, and oligomeric states of the fibulin 5 mutants in the absence and presence of Ca2+. Results. CD showed that all mutants are folded, although perturbations to secondary structure contents were detected. Both cutis laxa mutants increased dimerization. Most other mutants slightly increased self-association in the absence of Ca2+ but this was also demonstrated by G202R, a polymorphism detected in a control individual. The AMD-associated mutant G412E showed lower-than-expected mobility during native-PAGE, the largest hydrodynamic radius for the monomer form and the highest levels of aggregation in both the absence and presence of Ca2+. Conclusions. The results identified structural differences for the disease-causing cutis laxa mutants and for one AMD variant (G412E), suggesting that this may also be pathogenic. Although the other AMD-associated mutants showed no gross structural differences, they cannot be excluded as pathogenic by differences outside the scope of this study—for example, disruption of heterointeractions. PMID:20007835

  10. Development of a Function-Blocking Antibody Against Fibulin-3 as a Targeted Reagent for Glioblastoma.

    PubMed

    Nandhu, Mohan S; Behera, Prajna; Bhaskaran, Vivek; Longo, Sharon L; Barrera-Arenas, Lina M; Sengupta, Sadhak; Rodriguez-Gil, Diego J; Chiocca, E Antonio; Viapiano, Mariano S

    2018-02-15

    Purpose: We sought a novel approach against glioblastomas (GBM) focused on targeting signaling molecules localized in the tumor extracellular matrix (ECM). We investigated fibulin-3, a glycoprotein that forms the ECM scaffold of GBMs and promotes tumor progression by driving Notch and NFκB signaling. Experimental Design: We used deletion constructs to identify a key signaling motif of fibulin-3. An mAb (mAb428.2) was generated against this epitope and extensively validated for specific detection of human fibulin-3. mAb428.2 was tested in cultures to measure its inhibitory effect on fibulin-3 signaling. Nude mice carrying subcutaneous and intracranial GBM xenografts were treated with the maximum achievable dose of mAb428.2 to measure target engagement and antitumor efficacy. Results: We identified a critical 23-amino acid sequence of fibulin-3 that activates its signaling mechanisms. mAb428.2 binds to that epitope with nanomolar affinity and blocks the ability of fibulin-3 to activate ADAM17, Notch, and NFκB signaling in GBM cells. mAb428.2 treatment of subcutaneous GBM xenografts inhibited fibulin-3, increased tumor cell apoptosis, and enhanced the infiltration of inflammatory macrophages. The antibody reduced tumor growth and extended survival of mice carrying GBMs as well as other fibulin-3-expressing tumors. Locally infused mAb428.2 showed efficacy against intracranial GBMs, increasing tumor apoptosis and reducing tumor invasion and vascularization, which are enhanced by fibulin-3. Conclusions: To our knowledge, this is the first rationally developed, function-blocking antibody against an ECM target in GBM. Our results offer a proof of principle for using "anti-ECM" strategies toward more efficient targeted therapies for malignant glioma. Clin Cancer Res; 24(4); 821-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Fibulin-3 in joint aging and osteoarthritis pathogenesis

    PubMed Central

    Hasegawa, Akihiko; Yonezawa, Tomo; Taniguchi, Noboru; Otabe, Koji; Akasaki, Yukio; Matsukawa, Tetsuya; Saito, Masahiko; Neo, Masashi; Marmorstein, Lihua Y.; Lotz, Martin K.

    2016-01-01

    Objectives The EFEMP1 gene encoding fibulin-3 is specifically expressed in the superficial zone of articular cartilage. This study examined fibulin-3 expression patterns in joint aging and osteoarthritis (OA) and the role of fibulin-3 in OA pathogenesis. Methods Immunohistochemical analysis was performed on normal and OA human and mouse knee cartilage. Experimental OA was induced in wild type and fibulin-3−/− mice and OA severity was evaluated by histological scoring. To examine fibulin-3 function, chondrocyte monolayer cultures were transfected with siRNA for quantitative PCR and Western blot analyses. Bone marrow mesenchymal stem cells (MSC) were transduced with EFEMP1 lentivirus and analyzed for chondrogenesis markers. Results Fibulin-3 was specifically expressed in the SZ of normal cartilage in human and mouse knee joints and declined with aging. Both aging-related OA and experimental OA were significantly more severe in fibulin-3−/− mice compared with wild type mice. Fibulin-3 expression was high in undifferentiated MSC and decreased during chondrogenesis. Suppression of fibulin-3 by siRNA significantly increased SOX9, collagen II and aggrecan in articular chondrocytes, while overexpression of fibulin-3 inhibited chondrogenesis in MSC. Conclusion Fibulin-3 is specifically expressed in the SZ of articular cartilage and its expression is reduced in aging and OA. Fibulin-3 regulates differentiation of adult progenitor cells and its aging-related decline is an early event in OA pathogenesis. Preventing or restoring aging-associated loss of fibulin-3 in SZ chondrocytes has potential to delay or prevent onset of OA. PMID:27780308

  12. Cleavage of Fibulin-2 by the aggrecanases ADAMTS-4 and ADAMTS-5 contributes to the tumorigenic potential of breast cancer cells

    PubMed Central

    Fontanil, Tania; Álvarez-Teijeiro, Saúl; Ángeles Villaronga, M.; Mohamedi, Yamina; Solares, Laura; Moncada-Pazos, Angela; Vega, José A.; García-Suárez, Olivia; Pérez-Basterrechea, Marcos; García-Pedrero, Juana M.; Obaya, Alvaro J; Cal, Santiago

    2017-01-01

    Fibulin-2 participates in the assembly of extracellular matrix components through interactions with multiple ligands and promotes contacts between cells and their surrounding environment. Consequently, identification of processes that could lead to an altered Fibulin-2 could have a major impact not only in the maintenance of tissue architecture and morphogenesis but also in pathological situations including cancer. Herein, we have investigated the ability of the secreted metalloproteases ADAMTS-4 and ADAMTS-5 to digest Fibulin-2. Using in vitro approaches and cultured breast cancer cell lines we demonstrate that Fibulin-2 is a better substrate for ADAMTS-5 than it is for ADAMTS-4. Moreover, Fibulin-2 degradation is associated to an enhancement of the invasive potential of T47D, MCF-7 and SK-BR-3 cells. We have also found that conditioned medium from MCF-7 cells that simultaneously overexpress Fibulin-2 and ADAMTS-5 significantly induced the migratory and invasive ability of normal breast fibroblasts using 3D collagen matrices. Immunohistochemical analysis highlights the close proximity or partial overlap of both Fibulin-2 and ADAMTS-5 in breast tumor samples. Additionally, proteolytic products derived from a potential degradation of Fibulin-2 by ADAMTS-5 were also identified in these samples. Finally, we also show that the cleavage of Fibulin-2 by ADAMTS-5 is counteracted by ADAMTS-12, a metalloprotease that interacts with Fibulin-2. Overall, our results provide direct evidence indicating that Fibulin-2 is a novel substrate of ADAMTS-5 and that this proteolysis could alter the cellular microenvironment affecting the balance between protumor and antitumor effects associated to both Fibulin-2 and the ADAMTSs metalloproteases. PMID:28099917

  13. Loss of fibulin-4 disrupts collagen synthesis and maturation: implications for pathology resulting from EFEMP2 mutations

    PubMed Central

    Papke, Christina L.; Tsunezumi, Jun; Ringuette, Léa-Jeanne; Nagaoka, Hideaki; Terajima, Masahiko; Yamashiro, Yoshito; Urquhart, Greg; Yamauchi, Mitsuo; Davis, Elaine C.; Yanagisawa, Hiromi

    2015-01-01

    Homozygous recessive mutations in either EFEMP2 (encoding fibulin-4) or FBLN5 (encoding fibulin-5), critical genes for elastogenesis, lead to autosomal recessive cutis laxa types 1B and 1A, respectively. Previously, fibulin-4 was shown to bind lysyl oxidase (LOX), an elastin/collagen cross-linking enzyme, in vitro. Consistently, reported defects in humans with EFEMP2 mutations are more severe and broad in range than those due to FBLN5 mutations and encompass both elastin-rich and collagen-rich tissues. However, the underlying disease mechanism in EFEMP2 mutations has not been fully addressed. Here, we show that fibulin-4 is important for the integrity of aortic collagen in addition to elastin. Smooth muscle-specific Efemp2 loss in mouse (termed SMKO) resulted in altered fibrillar collagen localization with larger, poorly organized fibrils. LOX activity was decreased in Efemp2-null cells, and collagen cross-linking was diminished in SMKO aortas; however, elastin cross-linking was unaffected and the level of mature LOX was maintained to that of wild-type aortas. Proteomic screening identified multiple proteins involved in procollagen processing and maturation as potential fibulin-4-binding partners. We showed that fibulin-4 binds procollagen C-endopeptidase enhancer 1 (Pcolce), which enhances proteolytic cleavage of the procollagen C-terminal propeptide during procollagen processing. Interestingly, however, procollagen cleavage was not affected by the presence or absence of fibulin-4 in vitro. Thus, our data indicate that fibulin-4 serves as a potential scaffolding protein during collagen maturation in the extracellular space. Analysis of collagen in other tissues affected by fibulin-4 loss should further increase our understanding of underlying pathologic mechanisms in patients with EFEMP2 mutations. PMID:26220971

  14. Fibulin-3 as a diagnostic biomarker in patients with malignant mesothelioma.

    PubMed

    Kaya, Halide; Demir, Melike; Taylan, Mahsuk; Sezgi, Cengizhan; Tanrikulu, Abdullah Cetin; Yilmaz, Sureyya; Bayram, Mehmet; Kaplan, Ibrahim; Senyigit, Abdurrahman

    2015-01-01

    New tumour biomarkers are being intensely investigated for malignant mesothelioma (MM). Fibulin-3 is produced in MM but its role remains uncertain. The aim of this study was to evaluate the validity of measuring serum fibulin-3 in the diagnosis and prognosis of MM. This prospective study was performed on 43 patients and 40 healthy controls who were admitted to our hospital between January 2012 and January 2014. Data from MM patients, including demographic and clinical features, routine laboratory data, levels of serum fibulin-3, and treatment outcomes were defined as potential prognostic factors. The receiver operating characteristic (ROC) curve for fibulin-3 was used to detect the cut-off value with highest sensitivity and specificity. Univariate survival analysis was performed using the Kaplan-Meier method in patients with MM. Afterwards, the possible factors identified with univariate analyses were entered into the cox regression analysis. Our results revealed that patients with MM had significantly higher serum levels of fibulin-3 than controls. The results showed that the best cut-off point was 36.6 ng/ml with an AUC (area under the curve)=0.976, sensitivity=93.0% and specificity=90.0. In our study, the initial significant poor prognostic factors were advanced stage, high white blood cell count, high platelet count, high C-reactive protein (p<0.05 for each variable). Later, according to multivariate analysis the results showed only advanced stage as significant parameter (p=0.040). We determined that real use for serum fibulin-3 was not for prognosis but for diagnosis in MM. Also advanced stage was associated with poor MM prognosis.

  15. Fibulin-4 is associated with prognosis of endometrial cancer patients and inhibits cancer cell invasion and metastasis via Wnt/β-catenin signaling pathway

    PubMed Central

    Wang, Tiantian; Wang, Mei; Fang, Shuang; Wang, Qiang; Fang, Rui; Chen, Jie

    2017-01-01

    Fibulin-4, an extracellular glycoprotein, which plays significant roles in elastic fiber assembly, is correlated to the progression of some cancers. However, the role of fibulin-4 in endometrial cancer cell invasion and metastasis remains unexplored. In our study, fibulin-4 expression was assessed by immunohistochemistry (IHC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in normal endometrial tissues and endometrial carcinoma tissues. Using single cell cloning, strongly, and weakly, invasive subclones were derived from KLE and Ishikawa endometrial carcinoma cell lines. RT-qPCR, western blotting, and immunocytochemistry (ICC) were used to assess mRNA and protein expressions of fibulin-4 in primary cultured endometrial cells, 4 types of endometrial cancer cell lines, and the different invasive subclones. Using lentivirus transfection, fibulin-4 shRNA and pLVX-fibulin-4 were constructed and used to infect the strongly and weakly invasive subclones. The effects of fibulin-4 on the biological characteristics of endometrial carcinoma cells were detected by cell functional assays in vitro and in vivo. Using Wnt signaling pathway inhibitor XAV-939 and activator LiCl, we detected the role of fibulin-4 in the Wnt/β-catenin pathway and the relationship with epithelial to mesenchymal transition (EMT). Fibulin-4 was decreased in endometrial carcinoma tissues, and loss of fibulin-4 expression was significantly related with poor differentiation, lymph node metastasis, and poor prognosis of endometrial carcinoma. Fibulin-4 significantly inhibited endometrial carcinoma cell proliferation, invasion, metastasis, and EMT through the Wnt/β-catenin pathway. Fibulin-4 has the ability to suppress endometrial cancer progression. These results can contribute to the development of a new potential therapeutic target for patients with endometrial carcinoma. PMID:28177909

  16. Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation.

    PubMed

    van der Pluijm, I; Burger, J; van Heijningen, P M; IJpma, A; van Vliet, N; Milanese, C; Schoonderwoerd, K; Sluiter, W; Ringuette, L J; Dekkers, D H W; Que, I; Kaijzel, E L; Te Riet, L; MacFarlane, E; Das, D; van der Linden, R; Vermeij, M; Demmers, J A; Mastroberardino, P G; Davis, E C; Yanagisawa, H; Dietz, H; Kanaar, R; Essers, J

    2018-06-21

    Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation. In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age. We performed proteomics and genomics studies on Fibulin-4R/R mouse aortas. Intriguingly, we observed alterations in mitochondrial protein composition in Fibulin-4R/R aortas. Consistently, functional studies in Fibulin-4R/R vascular smooth muscle cells (VSMCs) revealed lower oxygen consumption rates, but increased acidification rates. Yet, mitochondria in Fibulin-4R/R VSMCs showed no aberrant cytoplasmic localization. We found similar reduced mitochondrial respiration in Tgfbr-1M318R/+ VSMCs, a mouse model for Loeys-Dietz syndrome. Interestingly, also human fibroblasts from Marfan (FBN1) and Loeys-Dietz syndrome (TGFBR2 and SMAD3) patients showed lower oxygen consumption. While individual mitochondrial complex I-V activities were unaltered in Fibulin-4R/R heart and muscle, these tissues showed similar decreased oxygen consumption. Furthermore, aortas of aneurysmal Fibulin-4R/R mice displayed increased ROS levels. Consistent with these findings, gene expression analyses revealed dysregulation of metabolic pathways. Accordingly, blood ketone levels of Fibulin-4R/R mice were reduced and liver fatty acids were decreased, while liver glycogen was increased, indicating dysregulated metabolism at the organismal level. As predicted by gene expression analysis, the activity of PGC1α, a key regulator between mitochondrial function and organismal metabolism, was downregulated in Fibulin-4R/R VSMCs. Increased TGFβ reduced PGC1α levels, indicating involvement of TGFβ signalling in PGC1α regulation. Activation of PGC1α restored the decreased oxygen consumption in Fibulin-4R/R VSMCs and improved

  17. Decreased expression of fibulin-4 in aortic wall of aortic dissection.

    PubMed

    Huawei, P; Qian, C; Chuan, T; Lei, L; Laing, W; Wenlong, X; Wenzhi, L

    2014-02-01

    In this research, we will examine the expression of Fibulin-4 in aortic wall to find out its role in aortic dissection development. The samples of aortic wall were obtained from 10 patients operated for acute ascending aortic dissection and five patients for chronic ascending aortic dissection. Another 15 pieces of samples from patients who had coronary artery bypass were as controls. The aortic samples were stained with aldehyde magenta dyeing to evaluate the arrangement of elastic fibers. The Fibulin-4 protein and mRNA expression were both determined by Western blot and realtime quantitative polymerase chain reaction. Compared with the control group, both in acute and chronic ascending aortic dissection, elastic fiber fragments increased and the expression of fibulin-4 protein significantly decreased (P= 0.045 < 0.05). The level of fibulin-4 mRNA decreased in acute ascending aortic dissection (P= 0.034 < 0.05), while it increased in chronic ascending aortic dissection (P=0.004 < 0.05). The increased amounts of elastic fiber fragments were negatively correlated with the expression of fibulin-4 mRNA in acute ascending aortic dissection. In conclusion, in aortic wall of ascending aortic dissection, the expression of fibulin-4 protein decreased and the expression of fibulin-4 mRNA was abnormal. Fibulin-4 may play an important role in the pathogenesis of aortic dissection.

  18. Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    PubMed Central

    Moltzer, Els; te Riet, Luuk; Swagemakers, Sigrid M. A.; van Heijningen, Paula M.; Vermeij, Marcel; van Veghel, Richard; Bouhuizen, Angelique M.; van Esch, Joep H. M.; Lankhorst, Stephanie; Ramnath, Natasja W. M.; de Waard, Monique C.; Duncker, Dirk J.; van der Spek, Peter J.; Rouwet, Ellen V.; Danser, A. H. Jan; Essers, Jeroen

    2011-01-01

    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of

  19. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    PubMed

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non

  20. Expression of fibulin-5 in the skin of patients with rectal prolapse.

    PubMed

    Joshi, H M; Gosselink, M P; Smyth, E A; Hompes, R; Cunningham, C; Lindsey, I; Urban, J; Jones, O M

    2015-11-01

    Components of connective tissue other than collagen have been found to be involved in patients with rectal prolapse. The organization of elastic fibres differs between controls and subsets of patients with rectal prolapse, and their importance for maintaining the structural and functional integrity of the pelvic floor has been demonstrated in transgenic mice, with animals which have a null mutation in fibulin-5 (Fbln5(i/i)) developing prolapse. This study aimed to compare fibulin-5 expression in the skin of patients with and without rectal prolapse. Between January 2013 and February 2014, skin specimens were obtained during surgery from 20 patients with rectal prolapse and from 21 without prolapse undergoing surgery for other indications. Fibroblasts from the skin were cultured and the level of fibulin-5 expression was determined on cultured fibroblasts, isolated from these specimens by quantitative real-time polymerase chain reaction. Immunohistochemistry was performed on fixed tissue specimens to assess fibulin-5 expression. Fibulin-5 mRNA expression and fibulin-5 staining intensity were significantly lower in young male patients with rectal prolapse compared with age-matched controls [fibulin-5 mean ± SD mRNA relative units, 1.1 ± 0.41 vs 0.53 ± 0.22, P = 0.001; intensity score, median (range), 2 (0-3) vs 1 (0-3), P = 0.05]. There were no significant differences in the expression of fibulin-5 in women with rectal prolapse compared with controls. Fibulin-5 may be implicated in the aetiology of rectal prolapse in a subgroup of young male patients. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  1. Chemotherapeutic Targeting of Fibulin-5 to Suppress Breast Cancer Invasion and Metastasis Stimulated by Transforming Growth Factor-beta

    DTIC Science & Technology

    2011-01-01

    Fibulin-5 as a potential marker for breast cancer metastasis and reinforces the need to target Fibulin-5 chemotherapeutically in patients with... potentiates TGF-β stimulation of invasion and epithelial-mesenchymal transition (EMT) in normal and malignant MECs in vitro, and more importantly...mechanisms that enable FBLN5 to enhance oncogenic TGF-β signaling has tremendous potential to neutralize the metastasis promoting activities of this

  2. Fibulin-1 Predicts Disease Progression in Patients With Idiopathic Pulmonary Fibrosis

    PubMed Central

    Unger, Sofia; Corte, Tamera J.; Keller, Michael; Wolters, Paul J.; Richeldi, Luca; Cerri, Stefania; Prêle, Cecilia M.; Hansbro, Philip M.; Argraves, William Scott; Oliver, Rema A.; Oliver, Brian G.; Black, Judith L.; Burgess, Janette K.

    2014-01-01

    BACKGROUND: The underlying mechanisms of idiopathic pulmonary fibrosis (IPF) are unknown. This progressive disease has high mortality rates, and current models for prediction of mortality have limited value in identifying which patients will progress. We previously showed that the glycoprotein fibulin-1 is involved in enhanced proliferation and wound repair by mesenchymal cells and, thus, may contribute to lung fibrosis in IPF. METHODS: Serum, lung tissue, and lung function values were obtained from four independent locations (Sydney, NSW, and Perth, WA, Australia; San Francisco, CA; and Modena, Italy). Patients with IPF were followed for a minimum of 1 year and progression was defined as a significant decline in lung function or death. Primary parenchymal lung fibroblasts of 15 patients with and without IPF were cultured under nonstimulatory conditions. Fibulin-1 levels in serum, and secreted or deposited by fibroblasts, were measured by western blot and in lung tissue by immunohistochemistry. RESULTS: Serum fibulin-1 levels were increased in patients with IPF compared with subjects without lung disease (P = .006). Furthermore, tissue fibulin-1 levels were increased in patients with IPF (P = .02) and correlated negatively with lung function (r = −0.9, P < .05). Primary parenchymal fibroblasts from patients with IPF produced more fibulin-1 than those from subjects without IPF (P < .05). Finally, serum fibulin-1 levels at first blood draw predicted disease progression in IPF within 1 year (area under the curve , 0.71; 95% CI, 0.57-0.86; P = .012). CONCLUSIONS: Fibulin-1 is a novel potential biomarker for disease progression in IPF and raises the possibility that it could be used as a target for the development of new treatments. PMID:24832167

  3. Fibulin-1 predicts disease progression in patients with idiopathic pulmonary fibrosis.

    PubMed

    Jaffar, Jade; Unger, Sofia; Corte, Tamera J; Keller, Michael; Wolters, Paul J; Richeldi, Luca; Cerri, Stefania; Prêle, Cecilia M; Hansbro, Philip M; Argraves, William Scott; Oliver, Rema A; Oliver, Brian G; Black, Judith L; Burgess, Janette K

    2014-10-01

    The underlying mechanisms of idiopathic pulmonary fibrosis (IPF) are unknown. This progressive disease has high mortality rates, and current models for prediction of mortality have limited value in identifying which patients will progress. We previously showed that the glycoprotein fibulin-1 is involved in enhanced proliferation and wound repair by mesenchymal cells and, thus, may contribute to lung fibrosis in IPF. Serum, lung tissue, and lung function values were obtained from four independent locations (Sydney, NSW, and Perth, WA, Australia; San Francisco, CA; and Modena, Italy). Patients with IPF were followed for a minimum of 1 year and progression was defined as a significant decline in lung function or death. Primary parenchymal lung fibroblasts of 15 patients with and without IPF were cultured under nonstimulatory conditions. Fibulin-1 levels in serum, and secreted or deposited by fibroblasts, were measured by western blot and in lung tissue by immunohistochemistry. Serum fibulin-1 levels were increased in patients with IPF compared with subjects without lung disease (P = .006). Furthermore, tissue fibulin-1 levels were increased in patients with IPF (P = .02) and correlated negatively with lung function (r = -0.9, P < .05). Primary parenchymal fibroblasts from patients with IPF produced more fibulin-1 than those from subjects without IPF (P < .05). Finally, serum fibulin-1 levels at first blood draw predicted disease progression in IPF within 1 year (area under the curve , 0.71; 95% CI, 0.57-0.86; P = .012). Fibulin-1 is a novel potential biomarker for disease progression in IPF and raises the possibility that it could be used as a target for the development of new treatments.

  4. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases.

    PubMed

    Liu, Gang; Cooley, Marion A; Jarnicki, Andrew G; Hsu, Alan C-Y; Nair, Prema M; Haw, Tatt Jhong; Fricker, Michael; Gellatly, Shaan L; Kim, Richard Y; Inman, Mark D; Tjin, Gavin; Wark, Peter A B; Walker, Marjorie M; Horvat, Jay C; Oliver, Brian G; Argraves, W Scott; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M

    2016-06-16

    Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein involved in matrix organization, may be involved in the pathogenesis of these diseases. We found that Fbln1 was increased in COPD patients and in cigarette smoke-induced (CS-induced) experimental COPD in mice. Genetic or therapeutic inhibition of Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-α, IL-33, and CXCL1) in experimental COPD. Fbln1c -/- mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases.

  5. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities.

    PubMed

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M; Adams, Sheila M; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P; Birk, David E; Chu, Mon-Li

    2015-08-28

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL.

    PubMed

    Fresco, Victor M; Kern, Christine B; Mohammadi, Moosa; Twal, Waleed O

    2016-09-02

    Fibulin-1 (FBLN1) is a member of a growing family of extracellular matrix glycoproteins that includes eight members and is involved in cellular functions such as adhesion, migration, and differentiation. FBLN1 has also been implicated in embryonic heart and valve development and in the formation of neural crest-derived structures, including aortic arch, thymus, and cranial nerves. Fibroblast growth factor 8 (FGF8) is a member of a large family of growth factors, and its functions include neural crest cell (NCC) maintenance, specifically NCC migration as well as patterning of structures formed from NCC such as outflow tract and cranial nerves. In this report, we sought to investigate whether FBLN1 and FGF8 have cooperative roles in vivo given their influence on the development of the same NCC-derived structures. Surface plasmon resonance binding data showed that FBLN1 binds tightly to FGF8 and prevents its enzymatic degradation by ADAM17. Moreover, overexpression of FBLN1 up-regulates FGF8 gene expression, and down-regulation of FBLN1 by siRNA inhibits FGF8 expression. The generation of a double mutant Fbln1 and Fgf8 mice (Fbln1(-/-) and Fgf8(-/-)) showed that haplo-insufficiency (Fbln1(+/-) and Fgf8(+/-)) resulted in increased embryonic mortality compared with single heterozygote crosses. The mortality of the FGF8/Fbln1 double heterozygote embryos occurred between 14.5 and 16.5 days post-coitus. In conclusion, FBLN1/FGF8 interaction plays a role in survival of vertebrate embryos, and reduced levels of both proteins resulted in added mortality in utero The FBLN1/FGF8 interaction may also be involved in the survival of neural crest cell population during development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions.

    PubMed

    Sivrikoz, Emre; Timirci-Kahraman, Özlem; Ergen, Arzu; Zeybek, Ümit; Aksoy, Murat; Yanar, Fatih; İsbir, Turgay; Kurtoğlu, Mehmet

    2015-01-01

    The purpose of this study was to investigate the gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions and to correlate it with clinical features of plaque destabilization. The study included 44 endarterectomy specimens available from operated symptomatic carotid artery stenoses. The specimens were separated according to anatomic location: internal carotid artery (ICA), external carotid artery (ECA) and common carotid artery (CCA), and then stored in liquid nitrogen. The amounts of cDNA for elastin and fibulin-5 were determined by Quantitative real-time PCR (Q-RT-PCR). Target gene copy numbers were normalized using hypoxanthine-guanine phosphoribosyltransferase (HPRT1) gene. The delta-delta CT method was applied for relative quantification. Q-RT-PCR data showed that relative fibulin-5 gene expression was increased in ICA plaque regions when compared to CCA regions but not reaching significance (p=0.061). At the same time, no differences were observed in elastin mRNA level between different anatomic plaque regions (p>0.05). Moreover, elastin and fibulin-5 mRNA expression and clinical parameters were compared in ICA plaques versus CCA and ECA regions, respectively. Up-regulation of elastin and fibulin-5 mRNA levels in ICA were strongly correlated with family history of cardiovascular disease when compared to CCA (p<0.05). Up-regulation of fibulin-5 in ICA was significantly associated with diabetes, and elevated triglycerides and very low density lipoprotein (VLDL) when compared to ECA (p<0.05). The clinical significance is the differences between the proximal and distal regions of the lesion, associated with the ICA, CCA and ECA respectively, with increased fibulin-5 in the ICA region. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c.

    PubMed

    Liu, Gang; Cooley, Marion A; Nair, Prema M; Donovan, Chantal; Hsu, Alan C; Jarnicki, Andrew G; Haw, Tatt Jhong; Hansbro, Nicole G; Ge, Qi; Brown, Alexandra C; Tay, Hock; Foster, Paul S; Wark, Peter A; Horvat, Jay C; Bourke, Jane E; Grainge, Chris L; Argraves, W Scott; Oliver, Brian G; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M

    2017-12-01

    Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c -/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c -/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show

  9. Increased fibulin-1 plasma levels in polycystic ovary syndrome (PCOS) patients: possible contribution to the link between PCOS and cardiovascular risk.

    PubMed

    Scarinci, E; Tropea, A; Russo, G; Notaristefano, G; Messana, C; Alesiani, O; Fabozzi, S M; Lanzone, A; Apa, R

    2018-04-21

    To investigate a possible relation between fibulin-1 plasma levels and PCOS. ELISA quantitative determination of human fibulin-1. 50 women with PCOS and 40 control patients who attended the Unit of Human Reproductive Pathophysiology, Università Cattolica del Sacro Cuore, Rome, were enrolled. Ultrasonographic pelvic examinations, hormonal profile assays, oral tolerance test OGTT, lipid profile and ELISA quantitative determination of human fibulin-1 were performed. Fibulin-1 levels were found to be statistically significantly higher in PCOS patients than in matched control women. No statistically significant positive correlation was found between fibulin-1 and AUCi, HOMA-IR, total cholesterol, LDL, AMH, androstenedione and FAI, whereas a statistically significant positive correlation was found between fibulin-1 and 17OHP (p = 0.016) in the PCOS group. However, multivariable linear regression analysis showed that 17 OH P did not independently predict fibulin-1 levels (p = 0.089). Our data could contribute to explain the hypothesized increased cardiovascular risk and vascular damage in patients with PCOS. A better understanding of the cellular and molecular mechanisms involved in cardiometabolic disorders associated with PCOS is mandatory to identify new therapeutic strategies to eventually prevent the progression of cardiovascular diseases in these patients.

  10. Quantification of Pelvic Organ Prolapse in Mice: Vaginal Protease Activity Precedes Increased MOPQ Scores in Fibulin 5 Knockout Mice1

    PubMed Central

    Wieslander, Cecilia K.; Rahn, David D.; McIntire, Donald D.; Acevedo, Jesús F.; Drewes, Peter G.; Yanagisawa, Hiromi; Word, R. Ann

    2008-01-01

    Two mouse models of pelvic organ prolapse have been generated recently, both of which have null mutations in genes involved in elastic fiber synthesis and assembly (fibulin 5 and lysyl oxidase-like 1). Interestingly, although these mice exhibit elastinopathies early in life, pelvic organ prolapse does not develop until later in life. In this investigation we developed and validated a tool to quantify the severity of pelvic organ prolapse in mice, and we used this tool prospectively to study the role of fibulin 5, aging, and vaginal proteases in the development of pelvic organ prolapse. The results indicate that >90% of Fbln5−/− mice develop prolapse by 6 mo of age, even in the absence of vaginal delivery, and that increased vaginal protease activity precedes the development of prolapse. PMID:18987327

  11. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  12. AT1-receptor blockade, but not renin inhibition, reduces aneurysm growth and cardiac failure in fibulin-4 mice.

    PubMed

    Te Riet, Luuk; van Deel, Elza D; van Thiel, Bibi S; Moltzer, Els; van Vliet, Nicole; Ridwan, Yanto; van Veghel, Richard; van Heijningen, Paula M; Robertus, Jan Lukas; Garrelds, Ingrid M; Vermeij, Marcel; van der Pluijm, Ingrid; Danser, A H Jan; Essers, Jeroen

    2016-04-01

    Increasing evidence supports a role for the angiotensin II-AT1-receptor axis in aneurysm development. Here, we studied whether counteracting this axis via stimulation of AT2 receptors is beneficial. Such stimulation occurs naturally during AT1-receptor blockade with losartan, but not during renin inhibition with aliskiren. Aneurysmal homozygous fibulin-4 mice, displaying a four-fold reduced fibulin-4 expression, were treated with placebo, losartan, aliskiren, or the β-blocker propranolol from day 35 to 100. Their phenotype includes cystic media degeneration, aortic regurgitation, left ventricular dilation, reduced ejection fraction, and fractional shortening. Although losartan and aliskiren reduced hemodynamic stress and increased renin similarly, only losartan increased survival. Propranolol had no effect. No drug rescued elastic fiber fragmentation in established aneurysms, although losartan did reduce aneurysm size. Losartan also increased ejection fraction, decreased LV diameter, and reduced cardiac pSmad2 signaling. None of these effects were seen with aliskiren or propranolol. Longitudinal micro-CT measurements, a novel method in which each mouse serves as its own control, revealed that losartan reduced LV growth more than aneurysm growth, presumably because the heart profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling. Losartan, but not aliskiren or propranolol, improved survival in fibulin-4 mice. This most likely relates to its capacity to improve structure and function of both aorta and heart. The absence of this effect during aliskiren treatment, despite a similar degree of blood pressure reduction and renin-angiotensin system blockade, suggests that it might be because of AT2-receptor stimulation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Kazuo, E-mail: knoda@kuhp.kyoto-u.ac.jp; Nakamura, Tomoyuki; Komatsu, Yoshihiro

    Craniofacial sutures govern the shape of the craniofacial skeleton during postnatal development. The differentiation of suture mesenchymal cells to osteoblasts is precisely regulated in part by signaling through cell surface receptors that interact with extracellular proteins. Here we report that fibulin-5, a key extracellular matrix protein, is important for craniofacial skeletal development in mice. Fibulin-5 is deposited as a fibrous matrix in cranial neural crest-derived mesenchymal tissues, including craniofacial sutures. Fibulin-5-null mice show decreased premaxillary bone outgrowth during postnatal stages. While premaxillo-maxillary suture mesenchymal cells in fibulin-5-null mice were capable of differentiating into osteoblasts, suture cells in mutant mice weremore » less proliferative. Our study provides the first evidence that fibulin-5 is indispensable for the regulation of facial suture mesenchymal cell proliferation required for craniofacial skeletal morphogenesis. - Highlights: • Fibulin-5 is deposited in cranial neural crest-derived mesenchymal tissues. • Fibulin-5-null mice show decreased premaxillary bone growth during postnatal stage. • Fibulin-5 is indispensable for facial suture mesenchymal cell proliferation.« less

  14. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    PubMed

    Pieters, Bartijn C H; Arntz, Onno J; Bennink, Miranda B; Broeren, Mathijs G A; van Caam, Arjan P M; Koenders, Marije I; van Lent, Peter L E M; van den Berg, Wim B; de Vries, Marieke; van der Kraan, Peter M; van de Loo, Fons A J

    2015-01-01

    Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation. Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.

  15. TWEAK promotes migration and invasion in MEFs through a mechanism dependent on ERKs activation and Fibulin 3 down-regulation.

    PubMed

    Sequera, Celia; Vázquez-Carballo, Ana; Arechederra, María; Fernández-Veledo, Sonia; Porras, Almudena

    2018-02-01

    TWEAK regulates multiple physio-pathological processes in fibroblasts such as fibrosis. It also induces migration and invasion in tumors and it can activate p38 MAPK in various cell types. Moreover, p38α MAPK promotes migration and invasion in several cancer cells types and in mouse embryonic fibroblasts (MEFs). However, it remains unknown if TWEAK could promote migration in fibroblasts and whether p38α MAPK might play a role. Our results reveal that TWEAK activates ERKs, Akt, and p38α/β MAPKs and reduces secreted Fibulin 3 in MEFs. TWEAK also increases migration and invasion in wt and p38α deficient MEFs, which indicates that p38α MAPK is not required to mediate these effects. In contrast, ERKs inhibition significantly decreases TWEAK-induced migration and Fibulin 3 knock-down mimics TWEAK effect. These results indicate that both ERKs activation and Fibulin 3 down-regulation would contribute to mediate TWEAK pro-migratory effect. In fact, the additional regulation of ERKs and/or p38β as a consequence of Fibulin 3 decrease might be also involved in the pro-migratory effect of TWEAK in MEFs. In conclusion, our studies uncover novel mechanisms by which TWEAK would favor tissue repair by promoting fibroblasts migration. © 2017 Wiley Periodicals, Inc.

  16. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    PubMed Central

    Brown, Helen L.; Hanman, Kate; Reuter, Mark; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments. PMID:26217328

  17. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment.

    PubMed

    Brown, Helen L; Hanman, Kate; Reuter, Mark; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments.

  18. Thermosensitive hydrogels deliver bioactive protein to the vaginal wall

    PubMed Central

    Good, Meadow M.; Montoya, T. Ignacio; Shi, Haolin; Zhou, Jun; Huang, YiHui; Tang, Liping; Acevedo, Jesus F.

    2017-01-01

    The pathophysiology and natural history of pelvic organ prolapse (POP) are poorly understood. Consequently, our approaches to treatment of POP are limited. Alterations in the extracellular matrix components of pelvic support ligaments and vaginal tissue, including collagen and elastin, have been associated with the development of POP in animals and women. Prior studies have shown the protease MMP-9, a key player of ECM degradation, is upregulated in vaginal tissues from both mice and women with POP. On the other hand, fibulin-5, an elastogenic organizer, has been found to inhibit MMP-9 in the vaginal wall. Hence, we hypothesized that prolonged release of fibulin-5 may delay progression of POP. To test the hypothesis, oligo (ethylene glycol)-based thermosensitive hydrogels were fabricated, characterized and then used to deliver fibulin-5 to the vaginal wall and inhibit MMP-9 activity. The results indicate that hydrogels are cell and tissue compatible. The hydrogels also prolong the ½ life of fibulin-5 in cultured vaginal fibroblasts and in the vaginal wall in vivo. Finally, fibulin-5-containing hydrogels resulted in incorporation of fibulin-5 into the vaginal matrix and inhibition of MMP-9 for several weeks after injection. These results support the idea of fibulin-5 releasing hydrogel being developed as a new treatment for POP. PMID:29073153

  19. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature

    PubMed Central

    Aldag, Caroline; Nogueira Teixeira, Diana; Leventhal, Phillip S

    2016-01-01

    Skin aging is primarily due to alterations in the dermal extracellular matrix, especially a decrease in collagen I content, fragmentation of collagen fibrils, and accumulation of amorphous elastin material, also known as elastosis. Growth factors and cytokines are included in several cosmetic products intended for skin rejuvenation because of their ability to promote collagen synthesis. Matrikines and matrikine-like peptides offer the advantage of growth factor-like activities but better skin penetration due to their much smaller molecular size. In this review, we summarize the commercially available products containing growth factors, cytokines, and matrikines for which there is evidence that they promote skin rejuvenation. PMID:27877059

  20. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  1. Extracellular matrix remodeling and matrix metalloproteinases (ajMMP-2 like and ajMMP-16 like) characterization during intestine regeneration of sea cucumber Apostichopus japonicus.

    PubMed

    Miao, Ting; Wan, Zixuan; Sun, Lina; Li, Xiaoni; Xing, Lili; Bai, Yucen; Wang, Fang; Yang, Hongsheng

    2017-10-01

    Remodeling of extracellular matrix (ECM) regulated by matrix metalloproteinases (MMPs) is essential for tissue regeneration. In the present study, we used immunohistochemistry (IHC) techniques against ECM components to reveal changes of ECM during intestine regeneration of Apostichopus japonicus. The expression of collagen I and laminin reduced apparently from the eviscerated intestine, while fibronectin exhibited continuous expression in all regeneration stages observed. Meanwhile, we cloned two MMP genes from A. japonicus by RACE PCR. The full-length cDNA of ajMMP-2 like is 2733bp and contains a predicted open reading frame (ORF) of 1716bp encoding 572 amino acids. The full-length cDNA of ajMMP-16 like is 2705bp and contains an ORF of 1452bp encoding 484 amino acids. The predicted protein sequences of each MMP contain two conserved domains, ZnMc_MMP and HX. Homology and phylogenetic analysis revealed that ajMMP-2 like and ajMMP-16 like share high sequence similarity with MMP-2 and MMP-16 from Strongylocentrotus purpuratus, respectively. Then we investigated spatio-temporal expression of ajMMP-2 like and ajMMP-16 like during different regeneration stages by qRT-PCR and IHC. The expression pattern of them showed a roughly opposite trend from that of ECM components. According to our results, a fibronectin-dominate temporary matrix is created in intestine regeneration, and it might provide structural integrity for matrix and promote cell movement. We also hypothesize that ajMMP-2 like and ajMMP-16 like could accelerate cell migration and regulate interaction between ECM components and growth factors. This work provides new evidence of ECM and MMPs involvement in sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A Missense Mutation in the Aggrecan C-type Lectin Domain Disrupts Extracellular Matrix Interactions and Causes Dominant Familial Osteochondritis Dissecans

    PubMed Central

    Stattin, Eva-Lena; Wiklund, Fredrik; Lindblom, Karin; Önnerfjord, Patrik; Jonsson, Björn-Anders; Tegner, Yelverton; Sasaki, Takako; Struglics, André; Lohmander, Stefan; Dahl, Niklas; Heinegård, Dick; Aspberg, Anders

    2010-01-01

    Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo. PMID:20137779

  3. E74-like factor 2 regulates valosin-containing protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Binglin; Tomita, Yasuhiko; Qiu, Ying

    2007-05-11

    Enhanced expression of valosin-containing protein (VCP) correlates with invasion and metastasis of cancers. To clarify the transcription mechanism of VCP, human and mouse genomic sequence was compared, revealing a 260 bp DNA sequence in the 5'-flanking region of VCP gene to be highly conserved between the two, in which binding motif of E74-like factor 2/new Ets-related factor (ELF2/NERF) was identified. Chromatin immunoprecipitation assay showed binding of ELF2/NERF to the 5'-flanking region of VCP gene. Knock-down of ELF2/NERF by siRNA decreased expression level of VCP. Viability of cells under tumor necrosis factor-alpha treatment significantly reduced in ELF2/NERF-knock-down breast cancer cell line.more » Immunohistochemical analysis on clinical breast cancer specimens showed a correlation of nuclear ELF2/NERF expression with VCP expression and proliferative activity of cells shown by Ki-67 immunohistochemistry. These findings indicate that ELF2/NERF promotes VCP transcription and that ELF2/NERF-VCP pathway might be important for cell survival and proliferation under cytokine stress.« less

  4. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain

    PubMed Central

    Yin, Yanting; Zhou, X Edward; Hou, Li; Zhao, Li-Hua; Liu, Bo; Wang, Gaihong; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2016-01-01

    The glucagon-like peptide-1 receptor is a class B G protein coupled receptor (GPCR) that plays key roles in glucose metabolism and is a major therapeutic target for diabetes. The classic two-domain model for class B GPCR activation proposes that the apo-state receptor is auto-inhibited by its extracellular domain, which physically interacts with the transmembrane domain. The binding of the C-terminus of the peptide hormone to the extracellular domain allows the N-terminus of the hormone to insert into the transmembrane domain to induce receptor activation. In contrast to this model, here we demonstrate that glucagon-like peptide-1 receptor can be activated by N-terminally truncated glucagon-like peptide-1 or exendin-4 when fused to the receptor, raising the question regarding the role of N-terminal residues of peptide hormone in glucagon-like peptide-1 receptor activation. Mutations of cysteine 347 to lysine or arginine in intracellular loop 3 transform the receptor into a G protein-biased receptor and allow it to be activated by a nonspecific five-residue linker that is completely devoid of exendin-4 or glucagon-like peptide-1 sequence but still requires the presence of an intact extracellular domain. Moreover, the extracellular domain can activate the receptor in trans in the presence of an intact peptide hormone, and specific mutations in three extracellular loops abolished this extracellular domain trans-activation. Together, our data reveal a dominant role of the extracellular domain in glucagon-like peptide-1 receptor activation and support an intrinsic agonist model of the extracellular domain, in which peptide binding switches the receptor from the auto-inhibited state to the auto-activated state by releasing the intrinsic agonist activity of the extracellular domain. PMID:27917297

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renzeng; Department of Orthopaedics, The No.3 People’s Hospital of Anyang City, Anyang 455000; Wang, Limin, E-mail: gu2keo@163.com

    Fibulin-4, an extracellular glycoprotein implicated in connective tissue development and elastic fiber formation, draws increasing focuses in cancer research. However, little is known about the underlying oncogenic roles of Fibulin-4 in human osteosarcoma (OS). In this study, by immunohistochemical analysis, upregulated expression of Fibulin-4 was found in the OS clinical specimens and cell lines compared to their normal counterparts. Fibulin-4 was positively correlated with the T stage of OS patients, and the proliferation index Ki67. Based on informatics analysis and functional verification, microRNA-137 was identified as a potential upstream regulator of Fibulin-4. Knockdown of Fibulin-4 or introduction of microRNA-137 inhibitedmore » cell proliferation and promoted cell apoptosis, and adverse effects were observed by overexpression of Fibulin-4. Furthermore, the tumor-suppressive functions of microRNA-137 were markedly abolished by restoration of Fibulin-4 expression in OS cells. Mechanistically, Fibulin-4 activated Wnt/β-Catenin pathway and promoted the expression of its downstream targets, including CCND2, c-Myc and VEGF. Taken together, Fibulin-4 plays critical neoplastic roles in tumor growth of human OS by activating Wnt/β-Catenin signaling and may represent a potential therapeutic target. -- Highlights: •Upregulated Fibulin-4 correlates tumor growth in human OS. •MicroRNA-137 is a critical regulator of Fibulin-4 expression. •Deregulated miR-137/Fibulin-4 axis promotes tumor growth of human OS. •Wnt/β-Catenin pathway is activated by Fibulin-4 stimulation.« less

  6. HIF2α/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy.

    PubMed

    Kwak, Ji-Hye; Lee, Na-Hee; Lee, Hwa-Yong; Hong, In-Sun; Nam, Jeong-Seok

    2016-07-12

    Breast cancer stem cells (BCSCs) have been shown to contribute to tumor growth, metastasis, and recurrence. They are also markedly resistant to conventional cancer treatments, such as chemotherapy and radiation. Recent studies have suggested that hypoxia is one of the prominent micro-environmental factors that increase the self-renewal ability of BCSCs, partially by enhancing CSC phenotypes. Thus, the identification and development of new therapeutic approaches based on targeting the hypoxia-dependent responses in BCSCs is urgent. Through various in vitro studies, we found that hypoxia specifically up-regulates BCSC sphere formation and a subset of CD44+/CD24-/low CSCs. Hypoxia inducible factors 2α (HIF2α) depletion suppressed CSC-like phenotypes and CSC-mediated drug resistance in breast cancer. Furthermore, the stimulatory effects of hypoxia-induced HIF2α on BCSC sphere formation were successfully attenuated by epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) knockdown. Taken together, these data suggest that HIF2α mediates hypoxia-induced cancer growth/metastasis and that EFEMP1 is a downstream effector of hypoxia-induced HIF2α during breast tumorigenesis.

  7. Pelvic Organ Support in Animals with Partial Loss of Fibulin-5 in the Vaginal Wall

    PubMed Central

    Shi, Haolin; Balgobin, Sunil; Montoya, T. Ignacio; Yanagisawa, Hiromi; Word, R. Ann

    2016-01-01

    Compromise of elastic fiber integrity in connective tissues of the pelvic floor is most likely acquired through aging, childbirth-associated injury, and genetic susceptibility. Mouse models of pelvic organ prolapse demonstrate systemic deficiencies in proteins that affect elastogenesis. Prolapse, however, does not occur until several months after birth and is thereby acquired with age or after parturition. To determine the impact of compromised levels of fibulin-5 (Fbln5) during adulthood on pelvic organ support after parturition and elastase-induced injury, tissue-specific conditional knockout (cKO) mice were generated in which doxycycline (dox) treatment results in deletion of Fbln5 in cells that utilize the smooth muscle α actin promoter-driven reverse tetracycline transactivator and tetracycline responsive element-Cre recombinase (i.e., Fbln5f/f/SMA++-rtTA/Cre+, cKO). Fbln5 was decreased significantly in the vagina of cKO mice compared with dox-treated wild type or controls (Fbln5f/f/SMA++-rtTA/Cre-/-). In controls, perineal body length (PBL) and bulge increased significantly after delivery but declined to baseline values within 6–8 weeks. Although overt prolapse did not occur in cKO animals, these transient increases in PBL postpartum were amplified and, unlike controls, parturition-induced increases in PBL (and bulge) did not recover to baseline but remained significantly increased for 12 wks. This lack of recovery from parturition was associated with increased MMP-9 and nondetectable levels of Fbln5 in the postpartum vagina. This predisposition to prolapse was accentuated by injection of elastase into the vaginal wall in which overt prolapse occurred in cKO animals, but rarely in controls. Taken together, our model system in which Fbln5 is conditionally knock-downed in stromal cells of the pelvic floor results in animals that undergo normal elastogenesis during development but lose Fbln5 as adults. The results indicate that vaginal fibulin-5 during

  8. Pelvic Organ Support in Animals with Partial Loss of Fibulin-5 in the Vaginal Wall.

    PubMed

    Chin, Kathleen; Wieslander, Cecilia; Shi, Haolin; Balgobin, Sunil; Montoya, T Ignacio; Yanagisawa, Hiromi; Word, R Ann

    2016-01-01

    Compromise of elastic fiber integrity in connective tissues of the pelvic floor is most likely acquired through aging, childbirth-associated injury, and genetic susceptibility. Mouse models of pelvic organ prolapse demonstrate systemic deficiencies in proteins that affect elastogenesis. Prolapse, however, does not occur until several months after birth and is thereby acquired with age or after parturition. To determine the impact of compromised levels of fibulin-5 (Fbln5) during adulthood on pelvic organ support after parturition and elastase-induced injury, tissue-specific conditional knockout (cKO) mice were generated in which doxycycline (dox) treatment results in deletion of Fbln5 in cells that utilize the smooth muscle α actin promoter-driven reverse tetracycline transactivator and tetracycline responsive element-Cre recombinase (i.e., Fbln5f/f/SMA++-rtTA/Cre+, cKO). Fbln5 was decreased significantly in the vagina of cKO mice compared with dox-treated wild type or controls (Fbln5f/f/SMA++-rtTA/Cre-/-). In controls, perineal body length (PBL) and bulge increased significantly after delivery but declined to baseline values within 6-8 weeks. Although overt prolapse did not occur in cKO animals, these transient increases in PBL postpartum were amplified and, unlike controls, parturition-induced increases in PBL (and bulge) did not recover to baseline but remained significantly increased for 12 wks. This lack of recovery from parturition was associated with increased MMP-9 and nondetectable levels of Fbln5 in the postpartum vagina. This predisposition to prolapse was accentuated by injection of elastase into the vaginal wall in which overt prolapse occurred in cKO animals, but rarely in controls. Taken together, our model system in which Fbln5 is conditionally knock-downed in stromal cells of the pelvic floor results in animals that undergo normal elastogenesis during development but lose Fbln5 as adults. The results indicate that vaginal fibulin-5 during

  9. TAIL1: an isthmin-like gene, containing type 1 thrombospondin-repeat and AMOP domain, mapped to ARVD1 critical region.

    PubMed

    Rossi, Valeria; Beffagna, Giorgia; Rampazzo, Alessandra; Bauce, Barbara; Danieli, Gian Antonio

    2004-06-23

    Isthmins represent a novel family of vertebrate secreted proteins containing one copy of the thrombospondin type 1 repeat (TSR), which in mammals is shared by several proteins with diverse biological functions, including cell adhesion, angiogenesis, and patterning of developing nervous system. We have determined the genomic organization of human TAIL1 (thrombospondin and AMOP containing isthmin-like 1), a novel isthmin-like gene encoding a protein that contains a TSR and a C-terminal AMOP domain (adhesion-associated domain in MUC4 and other proteins), characteristic of extracellular proteins involved in adhesion processes. TAIL1 gene encompasses more than 24.4 kb. Analysis of the DNA sequence surrounding the putative transcriptional start region revealed a TATA-less promoter located in a CpG island. Several consensus binding sites for the transcription factors Sp1 and MZF-1 were identified in this promoter region. In humans, TAIL1 gene is located on chromosome 14q24.3 within ARVD1 (arrhythmogenic right ventricular dysplasia/cardiomyopathy, type 1) critical region; preliminary evidence suggests that it is expressed in several tissues, showing multiple alternative splicing.

  10. Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells

    PubMed Central

    Marcilla, Antonio; Trelis, María; Cortés, Alba; Sotillo, Javier; Cantalapiedra, Fernando; Minguez, María Teresa; Valero, María Luz; Sánchez del Pino, Manuel Mateo; Muñoz-Antoli, Carla; Toledo, Rafael; Bernal, Dolores

    2012-01-01

    The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents. PMID:23029346

  11. Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles.

    PubMed

    Leo, Giuseppina; Guescini, Michele; Genedani, Susanna; Stocchi, Vilberto; Carone, Chiara; Filaferro, Monica; Sisti, Davide; Marcoli, Manuela; Maura, Guido; Cortelli, Pietro; Guidolin, Diego; Fuxe, Kjell; Agnati, Luigi Francesco

    2015-04-01

    Several clinical observations have demonstrated a link between heart rate and anxiety or panic disorders. In these patients, β-adrenergic receptor function was altered. This prompted us to investigate whether the β-adrenergic receptor agonist isoproterenol, at a dose that stimulates peripheral β-adrenergic system but has no effects at the central nervous system, can induce anxiety-like behavior in rats. Moreover, some possible messengers involved in the peripheral to brain communication were investigated. Our results showed that isoproterenol (5 mg kg(-1) i.p.) increased heart rate, evoked anxiety-like behavior, did not result in motor impairments and increased extracellular vesicle content in the blood. Plasma corticosterone level was unmodified as well as vesicular Hsp70 content. Vesicular miR-208 was also unmodified indicating a source of increased extracellular vesicles different from cardiomyocytes. We can hypothesize that peripheral extracellular vesicles might contribute to the β-adrenergic receptor-evoked anxiety-like behavior, acting as peripheral signals in modulating the mental state. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis

    PubMed Central

    Echave, Pedro; Machado-da-Silva, Gisela; Arkell, Rebecca S.; Duchen, Michael R.; Jacobson, Jake; Mitter, Richard; Lloyd, Alison C.

    2009-01-01

    Summary Cells generate new organelles when stimulated by extracellular factors to grow and divide; however, little is known about how growth and mitogenic signalling pathways regulate organelle biogenesis. Using mitochondria as a model organelle, we have investigated this problem in primary Schwann cells, for which distinct factors act solely as mitogens (neuregulin) or as promoters of cell growth (insulin-like growth factor 1; IGF1). We find that neuregulin and IGF1 act synergistically to increase mitochondrial biogenesis and mitochondrial DNA replication, resulting in increased mitochondrial density in these cells. Moreover, constitutive oncogenic Ras signalling results in a further increase in mitochondrial density. This synergistic effect is seen at the global transcriptional level, requires both the ERK and phosphoinositide 3-kinase (PI3K) signalling pathways and is mediated by the transcription factor ERRα. Interestingly, the effect is independent of Akt-TOR signalling, a major regulator of cell growth in these cells. This separation of the pathways that drive mitochondrial biogenesis and cell growth provides a mechanism for the modulation of mitochondrial density according to the metabolic requirements of the cell. PMID:19920079

  13. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors.

    PubMed

    Medrano, Micaela; Pérez, Pablo Fernando; Abraham, Analía Graciela

    2008-02-29

    Kefiran, the polysaccharide produced by microorganisms present in kefir grains, is a water-soluble branched glucogalactan containing equal amounts of D-glucose and D-galactose. In this study, the effect of kefiran on the biological activity of Bacillus cereus strain B10502 extracellular factors was assessed by using cultured human enterocytes (Caco-2 cells) and human erythrocytes. In the presence of kefiran concentrations ranging from 300 to 1000 mg/L, the ability of B. cereus B10502 spent culture supernatants to detach and damage cultured human enterocytes was significantly abrogated. In addition, mitochondrial dehydrogenase activity was higher when kefiran was present during the cell toxicity assays. Protection was also demonstrated in hemolysis and apoptosis/necrosis assays. Scanning electron microscopy showed the protective effect of kefiran against structural cell damages produced by factors synthesized by B. cereus strain B10502. Protective effect of kefiran depended on strain of B. cereus. Our findings demonstrate the ability of kefiran to antagonize key events of B. cereus B10502 virulence. This property, although strain-specific, gives new perspectives for the role of bacterial exopolysaccharides in functional foods.

  14. Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content.

    PubMed

    Montermini, Laura; Meehan, Brian; Garnier, Delphine; Lee, Wan Jin; Lee, Tae Hoon; Guha, Abhijit; Al-Nedawi, Khalid; Rak, Janusz

    2015-10-02

    Cancer cells emit extracellular vesicles (EVs) containing unique molecular signatures. Here, we report that the oncogenic EGF receptor (EGFR) and its inhibitors reprogram phosphoproteomes and cargo of tumor cell-derived EVs. Thus, phosphorylated EGFR (P-EGFR) and several other receptor tyrosine kinases can be detected in EVs purified from plasma of tumor-bearing mice and from conditioned media of cultured cancer cells. Treatment of EGFR-driven tumor cells with second generation EGFR kinase inhibitors (EKIs), including CI-1033 and PF-00299804 but not with anti-EGFR antibody (Cetuximab) or etoposide, triggers a burst in emission of exosome-like EVs containing EGFR, P-EGFR, and genomic DNA (exo-gDNA). The EV release can be attenuated by treatment with inhibitors of exosome biogenesis (GW4869) and caspase pathways (ZVAD). The content of P-EGFR isoforms (Tyr-845, Tyr-1068, and Tyr-1173), ERK, and AKT varies between cells and their corresponding EVs and as a function of EKI treatment. Immunocapture experiments reveal the presence of EGFR and exo-gDNA within the same EV population following EKI treatment. These findings suggest that targeted agents may induce cancer cells to change the EV emission profiles reflective of drug-related therapeutic stress. We suggest that EV-based assays may serve as companion diagnostics for targeted anticancer agents. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor.

    PubMed

    Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H; Rudolph, Rainer; Reedtz-Runge, Steffen

    2010-01-01

    GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.

  16. Role of Matricellular Proteins in Disorders of the Central Nervous System.

    PubMed

    Jayakumar, A R; Apeksha, A; Norenberg, M D

    2017-03-01

    Matricellular proteins (MCPs) are actively expressed non-structural proteins present in the extracellular matrix, which rapidly turnover and possess regulatory roles, as well as mediate cell-cell interactions. MCPs characteristically contain binding sites for other extracellular proteins, cell surface receptors, growth factors, cytokines and proteases, that provide structural support for surrounding cells. MCPs are present in most organs, including brain, and play a major role in cell-cell interactions and tissue repair. Among the MCPs found in brain include thrombospondin-1/2, secreted protein acidic and rich in cysteine family (SPARC), including Hevin/SC1, Tenascin C and CYR61/Connective Tissue Growth Factor/Nov family of proteins, glypicans, galectins, plasminogen activator inhibitor (PAI-1), autotaxin, fibulin and perisostin. This review summarizes the potential role of MCPs in the pathogenesis of major neurological disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, ischemia, trauma, hepatic encephalopathy, Down's syndrome, autism, multiple sclerosis, brain neoplasms, Parkinson's disease and epilepsy. Potential therapeutic opportunities of MCP's for these disorders are also considered in this review.

  17. Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2

    PubMed Central

    Koehnke, Jesko; Jin, Xiangshu; Budreck, Elaine C.; Posy, Shoshana; Scheiffele, Peter; Honig, Barry; Shapiro, Lawrence

    2008-01-01

    Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3-Å crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site region differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions. PMID:18250328

  18. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata.

    PubMed

    Sozen, Ibrahim; Arici, Aydin

    2002-07-01

    To review the available information regarding the role of cytokines, growth factors, and the extracellular matrix in the pathophysiology of uterine leiomyomata and to integrate this information in a suggested model of disease at the cellular level. A thorough literature and MEDLINE search was conducted to identify the relevant studies in the English literature published between January, 1966 and October, 2001. A model of disease at the cellular level was developed using the most likely cytokines to be involved in the pathogenesis of leiomyomata as determined by our assessment of the available literature. A number of cytokines and growth factors, including transforming growth factor-beta (TGF-beta), epidermal growth factor, monocyte chemotactic protein-1, insulin-like growth factors 1 and 2, prolactin, parathyroid-hormone-related peptide, basic fibroblast growth factor, platelet-derived growth factor, interleukin-8, and endothelin, have been investigated in myometrium and leiomyoma. Among these cytokines, TGF-beta appears to be the only growth factor that has been shown to be overexpressed in leiomyoma vs. myometrium, be hormonally-regulated both in vivo and in vitro, and be both mitogenic and fibrogenic in these tissues. In addition to the cytokines, extracellular matrix components such as collagen, fibronectin, proteoglycans, matrix metalloproteinases, and tissue inhibitors of metalloproteinases seem to play pivotal roles in the pathogenesis of leiomyomata. We believe that, given the extent and depth of the current research on the cellular biology of leiomyomata, the cellular mechanisms responsible in the pathogenesis of leiomyomata will be identified clearly within the foreseeable future. This will enable researchers to develop therapy directed against the molecules and mechanisms at the cellular level.

  19. Crystal Structure of Glucagon-like Peptide-1 in Complex with the Extracellular Domain of the Glucagon-like Peptide-1 Receptor*

    PubMed Central

    Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H.; Rudolph, Rainer; Reedtz-Runge, Steffen

    2010-01-01

    GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic β-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9–39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Åresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous α-helix from Thr13 to Val33 when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor. PMID:19861722

  20. Secretion of RNA-Containing Extracellular Vesicles by the Porcine Whipworm, Trichuris suis.

    PubMed

    Hansen, Eline Palm; Kringel, Helene; Williams, Andrew R; Nejsum, Peter

    2015-06-01

    Trichuris suis is a common parasitic helminth of pigs. As with many other parasites, T. suis ensures its own survival by evading host immune responses, but little is known about how this is achieved. MicroRNAs (miRNA) have been shown to be involved in various immunological processes by post-transcriptional regulation of specific genes, and the potential of using these molecules as biomarkers of disease is currently being examined. It has recently been shown that parasites may secrete extracellular structures such as exosomes and microvesicles, containing proteins and miRNA. The fusion of these structures with host cells has been demonstrated, and a role of exosome-derived miRNA in host gene regulation has been suggested. In the present study, we show that exosome- and microvesicular-like structures are secreted by T. suis L1 larvae and also demonstrate the presence of miRNA-sized RNA inside these structures. A potential role of these molecules in host-parasite interactions is suggested. In addition, an electron-dense layer covering the surface of the larvae was observed, which may play a function in host immune evasion.

  1. Insulin-like growth factor binding proteins initiate cell death and extracellular matrix remodeling in the mammary gland.

    PubMed

    Flint, D J; Boutinaud, M; Tonner, E; Wilde, C J; Hurley, W; Accorsi, P A; Kolb, A F; Whitelaw, C B A; Beattie, J; Allan, G J

    2005-08-01

    We have demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) production by mammary epithelial cells increases dramatically during forced involution of the mammary gland in rats, mice and pigs. We proposed that growth hormone (GH) increases the survival factor IGF-I, whilst prolactin (PRL) enhances the effects of GH by decreasing the concentration of IGFBP-5, which would otherwise inhibit the actions of IGFs. To demonstrate a causal relationship between IGFBP-5 and cell death, we created transgenic mice expressing IGFBP-5, specifically, in the mammary gland. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. The concentrations of the pro-apoptotic molecule caspase-3 was increased in transgenic animals whilst the concentrations of two pro-survival molecules Bcl-2 and Bcl-x were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I, we examined IGF receptor- and Akt-phoshorylation and showed that both were inhibited. These studies also indicated that the effects of IGFBP-5 could be mediated in part by IGF-independent effects involving potential interactions with components of the extracellular matrix involved in tissue remodeling, such as components of the plasminogen system, and the matrix metallo-proteinases (MMPs). Mammary development was normalised in transgenic mice by R3-IGF-I, an analogue of IGF-I which binds weakly to IGFBPs, although milk production was only partially restored. In contrast, treatment with prolactin was able to inhibit early involutionary processes in normal mice but was unable to prevent this in mice over-expressing IGFBP-5, although it was able to inhibit activation of MMPs. Thus, IGFBP-5 can simultaneously inhibit IGF action and activate the plasminogen system thereby coordinating cell death and tissue

  2. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystal Structure of the Extracellular Cholinesterase-Like Domain from Neuroligin-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehnke,J.; Jin, X.; Budreck, E.

    Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3- Angstroms crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site regionmore » differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions.« less

  4. Proton receptor GPR68 expression in dendritic-cell-like S100β-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification.

    PubMed

    Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio

    2014-11-01

    S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.

  5. A new dermocosmetic containing retinaldehyde, delta-tocopherol glucoside and glycylglycine oleamide for managing naturally aged skin: results from in vitro to clinical studies

    PubMed Central

    Rouvrais, Céline; Bacqueville, Daniel; Bogdanowicz, Patrick; Haure, Marie-José; Duprat, Laure; Coutanceau, Christine; Castex-Rizzi, Nathalie; Duplan, Hélène; Mengeaud, Valérie; Bessou-Touya, Sandrine

    2017-01-01

    Introduction Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM). The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL), delta-tocopherol glucoside (delta-TC) and glycylglycine ole-amide (GGO) and of a dermocosmetic containing the combination. Materials and methods The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV)-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow’s feet photoscale assessed the antiaging effect of the dermocosmetic. Results When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production (fibrillin 2, fibulin 1 and 5 and lysyl oxidase-like 2) as well as that of proteins involved in the cellular ECM interactions (integrin b1, paxillin and actin a2). An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement (p<0.05) of visible signs of aging comprising crow’s feet, wrinkles and periocular fine lines. Finally, the formulation was well tolerated. Conclusion The dermocosmetic containing RAL, delta-TC and GGO provides a substantial benefit in the daily care of naturally aged skin in women aged 35–55 years. PMID:28203099

  6. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras.

    PubMed

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz

    2016-08-09

    Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients.

  7. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras

    PubMed Central

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz

    2016-01-01

    Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients. PMID:27437771

  8. MAGP1, the extracellular matrix, and metabolism

    PubMed Central

    Craft, Clarissa S

    2014-01-01

    Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases. PMID:26167404

  9. MAGP1, the extracellular matrix, and metabolism.

    PubMed

    Craft, Clarissa S

    2015-01-01

    Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases.

  10. Vps15p regulates the distribution of cup-shaped organelles containing the major eisosome protein Pil1p to the extracellular fraction required for endocytosis of extracellular vesicles carrying metabolic enzymes.

    PubMed

    Stein, Kathryn; Winters, Chelsea; Chiang, Hui-Ling

    2017-05-01

    Exosomes are small vesicles secreted from virtually every cell from bacteria to humans. Saccharomyces cerevisiae is a model system to study trafficking of small vesicles in response to changes in the environment. When yeast cells are grown in low glucose, vesicles carrying gluconeogenic enzymes are present as free vesicles and aggregated clusters in the cytoplasm. These vesicles are also secreted into the periplasm and account for more than 90% of total extracellular organelles, while less than 10% are larger 100-300 nm structures with unknown functions. When glucose is added to glucose-starved cells, secreted vesicles are endocytosed and then targeted to the vacuole. Recent secretomic studies indicated that more than 300 proteins involved in diverse biological functions are secreted during glucose starvation and endocytosed during glucose re-feeding. We hypothesised that extracellular vesicles are internalised using novel mechanisms independent of clathrin-mediated endocytosis. Our results showed that vesicles carrying metabolic enzymes were endocytosed at a fast rate, whereas vesicles carrying the heat shock protein Ssa1p were endocytosed at a slow rate. The PI3K regulator Vps15p is critical for the fast internalisation of extracellular vesicles. VPS15 regulates the distribution of the 100-300 nm organelles that contain the major eisosome protein Pil1p to the extracellular fraction. These Pil1p-containing structures were purified and showed unique cup-shape with their centres deeper than the peripheries. In the absence of VPS15, PIL1 or when PIL1 was mutated, the 100-300 nm structures were not observed in the extracellular fraction and the rapid internalisation of vesicles was impaired. We conclude that VPS15 regulates the distribution of the 100-300 nm Pil1p-containing organelles to the extracellular fraction required for fast endocytosis of vesicles carrying metabolic enzymes. This work provides the first evidence showing that Pil1p displayed unique

  11. Virus-like Particles Containing Multiple M2 Extracellular Domains Confer Improved Cross-protection Against Various Subtypes of Influenza Virus

    PubMed Central

    Kim, Min-Chul; Song, Jae-Min; O, Eunju; Kwon, Young-Man; Lee, Youn-Jeong; Compans, Richard W; Kang, Sang-Moo

    2013-01-01

    The extracellular domain of M2 (M2e), a small ion channel membrane protein, is well conserved among different human influenza A virus strains. To improve the protective efficacy of M2e vaccines, we genetically engineered a tandem repeat of M2e epitope sequences (M2e5x) of human, swine, and avian origin influenza A viruses, which was expressed in a membrane-anchored form and incorporated in virus-like particles (VLPs). The M2e5x protein with the transmembrane domain of hemagglutinin (HA) was effectively incorporated into VLPs at a several 100-fold higher level than that on influenza virions. Intramuscular immunization with M2e5x VLP vaccines was highly effective in inducing M2e-specific antibodies reactive to different influenza viruses, mucosal and systemic immune responses, and cross-protection regardless of influenza virus subtypes in the absence of adjuvant. Importantly, immune sera were found to be sufficient for conferring protection in naive mice, which was long-lived and cross-protective. Thus, molecular designing and presenting M2e immunogens on VLPs provide a promising platform for developing universal influenza vaccines without using adjuvants. PMID:23247101

  12. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    PubMed Central

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  13. Insulin-like growth factor-II regulates bone sialoprotein gene transcription.

    PubMed

    Choe, Jin; Sasaki, Yoko; Zhou, Liming; Takai, Hideki; Nakayama, Yohei; Ogata, Yorimasa

    2016-09-01

    Insulin-like growth factor-I and -II (IGF-I and IGF-II) have been found in bone extracts of several different species, and IGF-II is the most abundant growth factor stored in bone. Bone sialoprotein (BSP) is a noncollagenous extracellular matrix glycoprotein associated with mineralized connective tissues. In this study, we have investigated the regulation of BSP transcription by IGF-II in rat osteoblast-like ROS17/2.8 cells. IGF-II (50 ng/ml) increased BSP mRNA and protein levels after 6-h stimulation, and enhanced luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Effects of IGF-II were inhibited by tyrosine kinase, extracellular signal-regulated kinase1/2 and phosphatidylinositol 3-kinase inhibitors, and abrogated by 2-bp mutations in cAMP response element (CRE), FGF2 response element (FRE) and homeodomain protein-binding site (HOX). The results of gel shift assays showed that nuclear proteins binding to CRE, FRE and HOX sites were increased by IGF-II (50 ng/ml) at 3 and 6 h. CREB1, phospho-CREB1, c-Fos and c-Jun antibodies disrupted the formation of the CRE-protein complexes. Dlx5 and Runx2 antibodies disrupted the FRE- and HOX-protein complex formations. These studies therefore demonstrated that IGF-II increased BSP transcription by targeting CRE, FRE and HOX elements in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, Dlx5 and Runx2 transcription factors appear to be key regulators of IGF-II effects on BSP transcription.

  14. Novel receptor-like kinases in cacao contain PR-1 extracellular domains.

    PubMed

    Teixeira, Paulo José Pereira Lima; Costa, Gustavo Gilson Lacerda; Fiorin, Gabriel Lorencini; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2013-08-01

    Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  15. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    PubMed Central

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  16. Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium

    PubMed Central

    Quesenberry, Peter J.; Aliotta, Jason; Camussi, Giovanni; Abdel-Mageed, Asim B.; Wen, Sicheng; Goldberg, Laura; Zhang, Huang-Ge; Tetta, Ciro; Franklin, Jeffrey; Coffey, Robert J.; Danielson, Kirsty; Subramanya, Vinita; Ghiran, Ionita; Das, Saumya; Chen, Clark C.; Pusic, Kae M.; Pusic, Aya D.; Chatterjee, Devasis; Kraig, Richard P.; Balaj, Leonora; Dooner, Mark

    2015-01-01

    The NIH Extracellular RNA Communication Program's initiative on clinical utility of extracellular RNAs and therapeutic agents and developing scalable technologies is reviewed here. Background information and details of the projects are presented. The work has focused on modulation of target cell fate by extracellular vesicles (EVs) and RNA. Work on plant-derived vesicles is of intense interest, and non-mammalian sources of vesicles may represent a very promising source for different therapeutic approaches. Retro-viral-like particles are intriguing. Clearly, EVs share pathways with the assembly machinery of several other viruses, including human endogenous retrovirals (HERVs), and this convergence may explain the observation of viral-like particles containing viral proteins and nucleic acid in EVs. Dramatic effect on regeneration of damaged bone marrow, renal, pulmonary and cardiovascular tissue is demonstrated and discussed. These studies show restoration of injured cell function and the importance of heterogeneity of different vesicle populations. The potential for neural regeneration is explored, and the capacity to promote and reverse neoplasia by EV exposure is described. The tremendous clinical potential of EVs underlies many of these projects, and the importance of regulatory issues and the necessity of general manufacturing production (GMP) studies for eventual clinical trials are emphasized. Clinical trials are already being pursued and should expand dramatically in the near future. PMID:26320942

  17. AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production

    PubMed Central

    Schäper, Simon; Steinchen, Wieland; Krol, Elizaveta; Altegoer, Florian; Skotnicka, Dorota; Bange, Gert; Becker, Anke

    2017-01-01

    Cyclic dimeric GMP (c-di-GMP) has emerged as a key regulatory player in the transition between planktonic and sedentary biofilm-associated bacterial lifestyles. It controls a multitude of processes including production of extracellular polysaccharides (EPSs). The PilZ domain, consisting of an N-terminal “RxxxR” motif and a β-barrel domain, represents a prototype c-di-GMP receptor. We identified a class of c-di-GMP–responsive proteins, represented by the AraC-like transcription factor CuxR in plant symbiotic α-proteobacteria. In Sinorhizobium meliloti, CuxR stimulates transcription of an EPS biosynthesis gene cluster at elevated c-di-GMP levels. CuxR consists of a Cupin domain, a helical hairpin, and bipartite helix-turn-helix motif. Although unrelated in sequence, the mode of c-di-GMP binding to CuxR is highly reminiscent to that of PilZ domains. c-di-GMP interacts with a conserved N-terminal RxxxR motif and the Cupin domain, thereby promoting CuxR dimerization and DNA binding. We unravel structure and mechanism of a previously unrecognized c-di-GMP–responsive transcription factor and provide insights into the molecular evolution of c-di-GMP binding to proteins. PMID:28559336

  18. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Tavallaie, Roya; Ibugo, Amaye I; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W S; Thomas, Shane R; Kumar, Naresh; Gooding, J Justin; Manefield, Mike

    2015-02-11

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation.

  19. Methods to isolate extracellular vesicles for diagnosis

    NASA Astrophysics Data System (ADS)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  20. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  1. Full-Thickness Skin Wound Healing Using Human Placenta-Derived Extracellular Matrix Containing Bioactive Molecules

    PubMed Central

    Choi, Ji Suk; Kim, Jae Dong; Yoon, Hyun Soo

    2013-01-01

    The human placenta, a complex organ, which facilitates exchange between the fetus and the mother, contains abundant extracellular matrix (ECM) components and well-preserved endogenous growth factors. In this study, we designed a new dermal substitute from human placentas for full-thickness wound healing. Highly porous, decellularized ECM sheets were fabricated from human placentas via homogenization, centrifugation, chemical and enzymatic treatments, molding, and freeze-drying. The physical structure and biological composition of human placenta-derived ECM sheets dramatically supported the regeneration of full-thickness wound in vivo. At the early stage, the ECM sheet efficiently absorbed wound exudates and tightly attached to the wound surface. Four weeks after implantation, the wound was completely closed, epidermic cells were well arranged and the bilayer structure of the epidermis and dermis was restored. Moreover, hair follicles and microvessels were newly formed in the ECM sheet-implanted wounds. Overall, the ECM sheet produced a dermal substitute with similar cellular organization to that of normal skin. These results suggest that human placenta-derived ECM sheets provide a microenvironment favorable to the growth and differentiation of cells, and positive modulate the healing of full-thickness wounds. PMID:22891853

  2. Fibulin-1 is required for morphogenesis of neural crest-derived structures

    PubMed Central

    Cooley, Marion A.; Kern, Christine B.; Fresco, Victor M.; Wessels, Andy; Thompson, Robert P.; McQuinn, Tim C.; Twal, Waleed O.; Mjaatvedt, Corey H.; Drake, Christopher J.; Argraves, W. Scott

    2008-01-01

    Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2–7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels. PMID:18538758

  3. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmieri, D.; Valli, M.; Viglio, S.

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase ofmore » maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.« less

  4. Extracellular vesicles released by mesenchymal-like prostate carcinoma cells modulate EMT state of recipient epithelial-like carcinoma cells through regulation of AR signaling.

    PubMed

    El-Sayed, Ihsan Y; Daher, Ahmad; Destouches, Damien; Firlej, Virginie; Kostallari, Enis; Maillé, Pascale; Huet, Eric; Haidar-Ahmad, Nathaline; Jenster, Guido; de la Taille, Alexandre; Abou Merhi, Raghida; Terry, Stéphane; Vacherot, Francis

    2017-12-01

    Extracellular vesicles released from cancer cells may play an important role in cancer progression by shuttling oncogenic information into recipient cells. However, our knowledge is still fragmentary and there remain numerous questions regarding the mechanisms at play and the functional consequences of these interactions. We have recently established a mesenchymal-like prostate cancer cell line (22Rv1/CR-1; Mes-PCa). In this study, we assessed the effects of the extracellular vesicles released by these cells on recipient androgen-dependent epithelial VCaP prostate cancer cells. Mes-PCa derived vesicles were found to promote mesenchymal features in the recipient epithelial-like prostate cancer cells. This transformation was accompanied by a modulation of androgen receptor signaling and activation of TGFβ signaling pathway. Moreover, recipient cells acquiring mesenchymal traits displayed enhanced migratory and invasive features as well as increased resistance to the androgen receptor antagonist, enzalutamide. Our results suggest a previously unappreciated role for Mes-PCa secreted vesicles in cancer promotion by transferring cell-mediated signals and promoting phenotypic changes in recipient prostate cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    PubMed

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  6. Neuropeptide Trefoil Factor 3 Reverses Depressive-Like Behaviors by Activation of BDNF-ERK-CREB Signaling in Olfactory Bulbectomized Rats.

    PubMed

    Li, Jiali; Luo, Yixiao; Zhang, Ruoxi; Shi, Haishui; Zhu, Weili; Shi, Jie

    2015-11-30

    The trefoil factors (TFFs) are a family of three polypeptides, among which TFF1 and TFF3 are widely distributed in the central nervous system. Our previous study indicated that TFF3 was a potential rapid-onset antidepressant as it reversed the depressive-like behaviors induced by acute or chronic mild stress. In order to further identify the antidepressant-like effect of TFF3, we applied an olfactory bulbectomy (OB), a classic animal model of depression, in the present study. To elucidate the mechanism underlying the antidepressant-like activity of TFF3, we tested the role of brain-derived neurotrophic factor (BDNF)-extracellular signal-related kinase (ERK)-cyclic adenosine monophosphate response element binding protein (CREB) signaling in the hippocampus in the process. Chronic systemic administration of TFF3 (0.1 mg/kg, i.p.) for seven days not only produced a significant antidepressant-like efficacy in the OB paradigm, but also restored the expression of BDNF, pERK, and pCREB in the hippocampal CA3. Inhibition of BDNF or extracellular signal-related kinase (ERK) signaling in CA3 blocked the antidepressant-like activity of TFF3 in OB rats. Our findings further confirmed the therapeutic effect of TFF3 against depression and suggested that the normalization of the BDNF-ERK-CREB pathway was involved in the behavioral response of TFF3 for the treatment of depression.

  7. SHIP, a novel factor to ameliorate extracellular matrix accumulation via suppressing PI3K/Akt/CTGF signaling in diabetic kidney disease.

    PubMed

    Li, Fan; Li, Lisha; Cheng, Meijuan; Wang, Xiumin; Hao, Jun; Liu, Shuxia; Duan, Huijun

    2017-01-22

    Tubular interstitial extracellular matrix accumulation, which plays a key role in the pathogenesis and progression of diabetic kidney disease (DKD), is believed to be mediated by activation of PI3K/Akt signal pathway. However, it is still not clear whether SH2 domain-containing inositol 5'-phosphatase (SHIP), known as a negative regulator of PI3K/Akt pathway is also involved in extracellular matrix metabolism of diabetic kidney. In the present study, decreased SHIP and increased phospho-Akt (Ser 473, Thr 308) were found in renal tubular cells of diabetic mice accompanied by overexpression of connective tissue growth factor (CTGF) and extracellular matrix deposition versus normal mice. Again, high glucose attenuated SHIP expression in a time-dependent manner, concomitant with activation of PI3K/Akt signaling and extracellular matrix production in human renal proximal tubular epithelial cells (HK2) cultured in vitro, which was significantly prevented by transfection of M90-SHIP vector. Furthermore, in vivo delivery of rAd-INPP5D vector (SHIP expression vector) via intraperitoneal injection in diabetic mice increased SHIP expression by 3.36 times followed by 65.26%, 70.38% and 46.71% decreases of phospho-Akt (Ser 473), phospho-Akt (Thr 308) and CTGF expression versus diabetic mice receiving rAd-EGFP vector. Meanwhile, increased renal extracellular matrix accumulation of diabetic mice was also inhibited with intraperitoneal injection of rAd-INPP5D vector. These above data suggested that overexpression of SHIP might be a potent method to lessen renal extracellular matrix accumulation via inactivation of PI3K/Akt pathway and suppression of CTGF expression in DKD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  9. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation

    PubMed Central

    Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.

    2017-01-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207

  10. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp; Yamada, Hidenori

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connectivemore » tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.« less

  11. Medullary thyroid carcinoma: ectopic production of peptides with ACTH-like, corticotrophin releasing factor-like and prolactin production-stimulating activities.

    PubMed

    Birkenhäger, J C; Upton, G V; Seldenrath, H J; Krieger, D T; Tashjian, A H

    1976-10-01

    A 45-year-old women had medullary tyroid carcinoma associated with Cushing's syndrome and galactorrhoea. Elevated plasma immunoreactive ACTH and cortisol were partially suppressed by intravenous dexamethasone, appreciably raised by lysine vasopressin, and urinary excretion of 17-oxogenic steroids slightly elevated by metyrapone. A large arterio-venous increase in plasma corticotrophin releasing factor-like activity across the thyroid gland was observed and tumour tissue contained corticotrophin releasing factor-like activity. Biologically active ACTH was not detected in tumour extracts before incubation with trypsin, but after trypsinization a value of 3.2 mU per gram was obtained. Arterial plasma contained biologically active ACTH (1.5 mU/100 ml) prior to trypsinization. Venous effluent from the thyroid gland contained biologically active (9.6 mU/100 ml) and immunoreactive ACTH (970 pg/ml) before trypsinization. Tumour extracts also contained prolactin production-stimulating activity. These findings can explain the Cushing's syndrome and the galactorrhoea both of which disappeared completely after thyroidectomy.

  12. Culture of prostate epithelial cells of the rhesus monkey on extracellular matrix substrate: influence of steroids and insulin-like growth factors.

    PubMed

    Udayakumar, T S; Jeyaraj, D A; Rajalakshmi, M; Sharma, R S

    1999-09-01

    Rhesus monkey prostate epithelial cells from the cranial lobe were isolated and cultured in flasks coated either with collagen IV or laminin. The effects of stromal cell medium, androgens and growth factors on cell number, thymidine incorporation and secretory activity were assessed. The results indicate that dihydrotestosterone (DHT) and androstenedione have stimulatory influences on cell proliferation and secretion in coated flasks. DHT was more effective in increasing cell number but the induction of secretory activity was similar with both steroids. The combination of IGF-I and -II resulted in inducing better cell proliferation and secretory activity than the individual IGFs but, of the two IGFs, IGF-I was more effective than IGF-II. DHT with IGFs was more potent in inducing proliferation, differentiation and secretion than androstenedione. Even in the absence of steroids or growth factors, colony formation and confluence occurred in coated flasks but cell differentiation and secretion only to a limited extent. In conclusion, we were able to establish an in vitro primary culture of prostate epithelial cells from rhesus monkey using extracellular matrix proteins, steroids and growth factors as additional supplements. This culture system may be useful to study prostate cell physiology and to identify drugs that can inhibit cell proliferation.

  13. The Extracellular Metalloprotease of Vibrio tubiashii Is a Major Virulence Factor for Pacific Oyster (Crassostrea gigas) Larvae▿

    PubMed Central

    Hasegawa, Hiroaki; Lind, Erin J.; Boin, Markus A.; Häse, Claudia C.

    2008-01-01

    Vibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors. Culture supernatants of V. tubiashii have been shown to be toxic to oyster larvae and were reported to contain a metalloprotease and a cytolysin/hemolysin. However, the structural genes responsible for these proteins have yet to be identified, and it is uncertain which extracellular products play a role in pathogenicity. We investigated the effects of the metalloprotease and hemolysin secreted by V. tubiashii on its ability to kill Pacific oyster (Crassostrea gigas) larvae. While V. tubiashii supernatants treated with metalloprotease inhibitors severely reduced the toxicity to oyster larvae, inhibition of the hemolytic activity did not affect larval toxicity. We identified structural genes of V. tubiashii encoding a metalloprotease (vtpA) and a hemolysin (vthA). Sequence analyses revealed that VtpA shared high homology with metalloproteases from a variety of Vibrio species, while VthA showed high homology only to the cytolysin/hemolysin of Vibrio vulnificus. Compared to the wild-type strain, a VtpA mutant of V. tubiashii not only produced reduced amounts of protease but also showed decreased toxicity to C. gigas larvae. Vibrio cholerae strains carrying the vtpA or vthA gene successfully secreted the heterologous protein. Culture supernatants of V. cholerae carrying vtpA but not vthA were highly toxic to Pacific oyster larvae. Together, these results suggest that the V. tubiashii extracellular metalloprotease is important in its pathogenicity to C. gigas larvae. PMID:18456850

  14. Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration

    PubMed Central

    Richter, Katrin; Schicklberger, Marcus

    2012-01-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions. PMID:22179232

  15. Proteolytic processing of lysyl oxidase-like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV.

    PubMed

    López-Jiménez, Alberto J; Basak, Trayambak; Vanacore, Roberto M

    2017-10-13

    Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Effects of extracellular matrices and growth factors on the development of isolated porcine blastomeres.

    PubMed

    Saito, S; Niemann, H

    1991-05-01

    The effects of extracellular matrices and growth factors on the development of isolated blastomeres derived from intact 4-, 8-, and 16-cell porcine embryos (termed, respectively, 1/4, 1/8, and 1/16 blastomeres) were investigated in vitro and in vivo. Blastomeres were incubated in extracellular matrix components fibronectin (FIN) or swine skin gelatin (SSG)-precoated culture dishes containing either modified Krebs' Ringer Bicarbonate solution (mKRB) supplemented with 10% heat-inactivated lamb serum, or Hanks' solution supplemented with 10% heat-inactivated newborn calf serum (NBCS) or Waymouth medium supplemented with 10% NBCS or in noncoated dishes in mKRB supplemented with either insulin (10, 100, or 1,000 micrograms/ml), transferrin (10, 100, or 1,000 micrograms/ml), or cAMP (0.2 or 2.0 micrograms/ml). Cultures observed at 24-h intervals and morphological development was recorded. Blastomeres were classified into three categories according to their morphology: (1) regular blastocysts, (2) trophectodermal vesicles, or (3) no development. After 96 h, culture was determined; the overall diameter of the blastocysts was determined and the nuclei were counted. Blastomeres/blastocysts did not adhere to the bottom of the culture dishes coated with extracellular matrices. Blastocyst formation rate was highest when FIN/mKRB was used and reached 44.3%, 41.8%, and 36.5% for 1/4, 1/8, and 1/16 blastomeres, respectively. The respective blastocysts contained an average of 31.2 +/- 5.8, 58.2 +/- 8.4, and 18.5 +/- 3.5 nuclei and had an overall diameter of 250.0 +/- 10.1, 235.0 +/- 12.8, and 172.5 +/- 13.7 microns, 1/8 blastomeres displayed a better (p less than 0.05) growth rate than 1/4 and 1/16 blastomeres, and 1/8 blastomeres in FIN/mKRB grew better (p less than 0.01) when cultured in an open system than in a microdrop under oil (35.5% vs. 5.0% blastocysts). Neither cAMP nor transferrin had a significant stimulating effect on blastocyst development of 1/8 blastomeres when m

  17. NIPA-like domain containing 1 is a novel tumor-promoting factor in oral squamous cell carcinoma.

    PubMed

    Sasahira, Tomonori; Nishiguchi, Yukiko; Kurihara-Shimomura, Miyako; Nakashima, Chie; Kuniyasu, Hiroki; Kirita, Tadaaki

    2018-05-01

    In our previous global gene expression analysis, we identified NIPA-like domain containing 1 (NIPAL1), which encodes a magnesium transporter, as one of the most overexpressed genes in recurrent oral squamous cell carcinoma (OSCC). Although has been NIPAL1 linked with gout pathogenesis, little is known about its expression and function in human malignancies. In this study, we examined NIPAL1 expression in 192 cases of OSCC by immunohistochemistry and performed a functional analysis of human OSCC cells. NIPAL1 immunostaining was observed in 39 of 192 OSCC patients (20.3%). NIPAL1 expression correlated significantly with cancer cell intravsation (P = 0.0062), as well as with poorer disease-free survival in a Kaplan-Meier analysis (P < 0.0001). Moreover, a multivariate Cox proportional hazards model analysis revealed that NIPAL1 expression was an independent predictor of disease-free survival in OSCC (P < 0.0001). In a functional analysis, NIPAL1 regulated the growth and adhesion of OSCC tumor cells and endothelial cells. Our findings suggest that NIPAL1 might be a novel factor promoting OSCC tumorigenesis, as well as a useful molecular marker of OSCC.

  18. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE PAGES

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; ...

    2016-04-06

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  19. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  20. Hepatocyte growth factor: a regulator of extracellular matrix genes in mouse mesangial cells.

    PubMed

    Laping, N J; Olson, B A; Ho, T; Ziyadeh, F N; Albrightson, C R

    2000-04-01

    The potential role of hepatocyte growth factor (HGF) in regulating extracellular matrix in mouse mesangial cells (MMC) was evaluated. Functional HGF receptors were deed in MMC by HGF-induced extracellular acidification, a response that was inhibited by the HGF inhibitor HGF/NK2, a splice variant expressing the N-terminal domain through the second kringle domain HGF also increased fibronectin and collagen alpha1 (IV) mRNA levels in these cells; the increases were associated with a concentration-dependent increase in transcriptional activity of the collagen alpha1 (IV) gene. HGF also stimulated fibronectin and collagen alpha1 (IV) mRNA levels in primary rabbit proximal tubule epithelial cells To evaluate the potential consequences of chronic elevation of HGF on renal fuction, HGF was administered continuously for 18 days to normal and diabetic C57BLKS/J lepr(db) mice. In the diabetic mice, HGF reduced creatinine clearance and increased microalbuminuria, indicating that chronic exposure to HGF impairs renal function. Thus, chronically elevated HGF may contribute to the progression of chronic renal disease in diabetes by decreasing the glomerular filtration rate and possibly promoting the accumulation of extracellular matrix.

  1. Chemokine-like factor-like MARVEL transmembrane domain-containing 3 expression is associated with a favorable prognosis in esophageal squamous cell carcinoma.

    PubMed

    Han, Tianci; Shu, Tianci; Dong, Siyuan; Li, Peiwen; Li, Weinan; Liu, Dali; Qi, Ruiqun; Zhang, Shuguang; Zhang, Lin

    2017-05-01

    Decreased expression of human chemokine-like factor-like MARVEL transmembrane domain-containing 3 (CMTM3) has been identified in a number of human tumors and tumor cell lines, including gastric and testicular cancer, and PC3, CAL27 and Tca-83 cell lines. However, the association between CMTM3 expression and the clinicopathological features and prognosis of esophageal squamous cell carcinoma (ESCC) patients remains unclear. The aim of the present study was to investigate the correlation between CMTM3 expression and clinicopathological parameters and prognosis in ESCC. CMTM3 mRNA and protein expression was analyzed in ESCC and paired non-tumor tissues by quantitative real-time polymerase chain reaction, western blotting and immunohistochemical analysis. The Kaplan-Meier method was used to plot survival curves and the Cox proportional hazards regression model was also used for univariate and multivariate survival analysis. The results revealed that CMTM3 mRNA and protein expression levels were lower in 82.5% (30/40) and 75% (30/40) of ESCC tissues, respectively, when compared with matched non-tumor tissues. Statistical analysis demonstrated that CMTM3 expression was significantly correlated with lymph node metastasis (P=0.002) and clinical stage (P<0.001) in ESCC tissues. Furthermore, the survival time of ESCC patients exhibiting low CMTM3 expression was significantly shorter than that of ESCC patients exhibiting high CMTM3 expression (P=0.01). In addition, Kaplan-Meier survival analysis revealed that the overall survival time of patients exhibiting low CMTM3 expression was significantly decreased compared with patients exhibiting high CMTM3 expression (P=0.010). Cox multivariate analysis indicated that CMTM3 protein expression was an independent prognostic predictor for ESCC after resection. This study indicated that CMTM3 expression is significantly decreased in ESCC tissues and CMTM3 protein expression in resected tumors may present an effective prognostic

  2. The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment.

    PubMed

    Williamson, Matthew R; Shuttleworth, Adrian; Canfield, Ann E; Black, Richard A; Kielty, Cay M

    2007-12-01

    The endothelium is an essential modulator of vascular tone and thrombogenicity and a critical barrier between the vessel wall and blood components. In tissue-engineered small-diameter vascular constructs, endothelial cell detachment in flow can lead to thrombosis and graft failure. The subendothelial extracellular matrix provides stable endothelial cell anchorage through interactions with cell surface receptors, and influences the proliferation, migration, and survival of both endothelial cells and smooth muscle cells. We have tested the hypothesis that these desired physiological characteristics can be conferred by surface coatings of natural vascular matrix components, focusing on the elastic fiber molecules, fibrillin-1, fibulin-5 and tropoelastin. On fibrillin-1 or fibulin-5-coated surfaces, endothelial cells exhibited strong integrin-mediated attachment in static conditions (82% and 76% attachment, respectively) and flow conditions (67% and 78% cell retention on fibrillin-1 or fibulin-5, respectively, at 25 dynes/cm2), confluent monolayer formation, and stable functional characteristics. Adhesion to these two molecules also strongly inhibited smooth muscle cell migration to the endothelial monolayer. In contrast, on elastin, endothelial cells attached poorly, did not spread, and had markedly impaired functional properties. Thus, fibrillin-1 and fibulin-5, but not elastin, can be exploited to enhance endothelial stability, and to inhibit SMC migration within vascular graft scaffolds. These findings have important implications for the design of vascular graft scaffolds, the clinical performance of which may be enhanced by exploiting natural cell-matrix biology to regulate cell attachment and function.

  3. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Qian, Guoliang; Zhou, Yijing; Zhao, Yancun; Song, Zhiwei; Wang, Suyan; Fan, Jiaqin; Hu, Baishi; Venturi, Vittorio; Liu, Fengquan

    2013-07-05

    Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.

  4. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes

    PubMed Central

    Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru

    2015-01-01

    Aims Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. Methods and results Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. Conclusion Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts. PMID:25987545

  5. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress

    PubMed Central

    2012-01-01

    Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS)-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2), and insulin-like growth factor binding protein 2 (Igfbp2) were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice. PMID:22672618

  6. Extracellular secretion of recombinant proteins

    DOEpatents

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  7. Personality factors predict spicy food liking and intake

    PubMed Central

    Byrnes, Nadia K.; Hayes, John E.

    2012-01-01

    A number of factors likely affect the liking of capsaicin-containing foods such as social influences, repeated exposure to capsaicin, physiological differences in chemosensation, and personality. For example, it is well known that repeated exposure to capsaicin and chilies can result in chronic desensitization. Here, we explore the relationship between multiple personality variables – body awareness/consciousness, sensation seeking, and sensitivity to punishment, and sensitivity to reward – and the liking and consumption of capsaicin-containing foods. As expected, a strong relationship was found between liking of spicy foods and frequency of chili consumption. However, no association was observed between frequency of chili consumption and the perceived burn/sting of sampled capsaicin. Nor was there any association between perceived burn/sting of capsaicin and any of the personality measures. Private Body Consciousness did not relate to any of the measures used in the current study. Sensation Seeking showed positive correlations with the liking of spicy foods, but not non-spicy control foods. Sensitivity to Punishment showed no relation with frequency of chili consumption, and nonsignificant negative trends with liking of spicy foods. Conversely, Sensitivity to Reward was weakly though significantly correlated with the liking of a spicy meal, and similar nonsignificant trends were seen for other spicy foods. Frequency of chili consumption was positively associated with Sensation Seeking and Sensitivity to Reward. Present data indicate individuals who enjoy spicy foods exhibit higher Sensation Seeking and Sensitivity to Reward traits. Rather than merely showing reduced response to the irritating qualities of capsaicin as might be expected under the chronic desensitization hypothesis, these findings support the hypothesis that personality differences may drive differences in spicy food liking and intake. PMID:23538555

  8. Human Myocardium Releases Heat Shock Protein 27 (HSP27) after Global Ischemia: The Proinflammatory Effect of Extracellular HSP27 through Toll-like Receptor (TLR)-2 and TLR4

    PubMed Central

    Jin, Chunhua; Cleveland, Joseph C; Ao, Lihua; Li, Jilin; Zeng, Qingchun; Fullerton, David A; Meng, Xianzhong

    2014-01-01

    The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of

  9. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4.

    PubMed

    Jin, Chunhua; Cleveland, Joseph C; Ao, Lihua; Li, Jilin; Zeng, Qingchun; Fullerton, David A; Meng, Xianzhong

    2014-06-09

    The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of

  10. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    PubMed

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  11. Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation

    PubMed Central

    Yost, Christian C.; Schwertz, Hansjörg; Cody, Mark J.; Wallace, Jared A.; Campbell, Robert A.; Vieira-de-Abreu, Adriana; Araujo, Claudia V.; Schubert, Sebastian; Harris, Estelle S.; Rowley, Jesse W.; Rondina, Matthew T.; Koening, Curry L.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2016-01-01

    Neutrophil granulocytes, also called polymorphonuclear leukocytes (PMNs), extrude molecular lattices of decondensed chromatin studded with histones, granule enzymes, and antimicrobial peptides that are referred to as neutrophil extracellular traps (NETs). NETs capture and contain bacteria, viruses, and other pathogens. Nevertheless, experimental evidence indicates that NETs also cause inflammatory vascular and tissue damage, suggesting that identifying pathways that inhibit NET formation may have therapeutic implications. Here, we determined that neonatal NET-inhibitory factor (nNIF) is an inhibitor of NET formation in umbilical cord blood. In human neonatal and adult neutrophils, nNIF inhibits key terminal events in NET formation, including peptidyl arginine deiminase 4 (PAD4) activity, neutrophil nuclear histone citrullination, and nuclear decondensation. We also identified additional nNIF-related peptides (NRPs) that inhibit NET formation. nNIFs and NRPs blocked NET formation induced by pathogens, microbial toxins, and pharmacologic agonists in vitro and in mouse models of infection and systemic inflammation, and they improved mortality in murine models of systemic inflammation, which are associated with NET-induced collateral tissue injury. The identification of NRPs as neutrophil modulators that selectively interrupt NET generation at critical steps suggests their potential as therapeutic agents. Furthermore, our results indicate that nNIF may be an important regulator of NET formation in fetal and neonatal inflammation. PMID:27599294

  12. Effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro.

    PubMed

    Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H

    2009-02-01

    A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the

  13. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens.

    PubMed

    Mora, Marirosa; Bensi, Giuliano; Capo, Sabrina; Falugi, Fabiana; Zingaretti, Chiara; Manetti, Andrea G O; Maggi, Tiziana; Taddei, Anna Rita; Grandi, Guido; Telford, John L

    2005-10-25

    Although pili have long been recognized in Gram-negative pathogens as important virulence factors involved in adhesion and invasion, very little is known about extended surface organelles in Gram-positive pathogens. Here we report that Group A Streptococcus (GAS), a Gram-positive human-specific pathogen that causes pharyngitis, impetigo, invasive disease, necrotizing fasciitis, and autoimmune sequelae has long, surface-exposed, pilus-like structures composed of members of a family of extracellular matrix-binding proteins. We describe four variant pili and show that each is recognized by a specific serum of the Lancefield T-typing system, which has been used for over five decades to characterize GAS isolates. Furthermore, we show that immunization of mice with a combination of recombinant pilus proteins confers protection against mucosal challenge with virulent GAS bacteria. The data indicate that induction of a protective immune response against these structures may be a useful strategy for development of a vaccine against disease caused by GAS infection.

  14. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder☆

    PubMed Central

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. PMID:25206732

  15. Hippocampal extracellular matrix alterations contribute to cognitive impairment associated with a chronic depressive-like state in rats.

    PubMed

    Riga, Danai; Kramvis, Ioannis; Koskinen, Maija K; van Bokhoven, Pieter; van der Harst, Johanneke E; Heistek, Tim S; Jaap Timmerman, A; van Nierop, Pim; van der Schors, Roel C; Pieneman, Anton W; de Weger, Anouk; van Mourik, Yvar; Schoffelmeer, Anton N M; Mansvelder, Huib D; Meredith, Rhiannon M; Hoogendijk, Witte J G; Smit, August B; Spijker, Sabine

    2017-12-20

    Patients with depression often suffer from cognitive impairments that contribute to disease burden. We used social defeat-induced persistent stress (SDPS) to induce a depressive-like state in rats and then studied long-lasting memory deficits in the absence of acute stressors in these animals. The SDPS rat model showed reduced short-term object location memory and maintenance of long-term potentiation (LTP) in CA1 pyramidal neurons of the dorsal hippocampus. SDPS animals displayed increased expression of synaptic chondroitin sulfate proteoglycans in the dorsal hippocampus. These effects were abrogated by a 3-week treatment with the antidepressant imipramine starting 8 weeks after the last defeat encounter. Next, we observed an increase in the number of perineuronal nets (PNNs) surrounding parvalbumin-expressing interneurons and a decrease in the frequency of inhibitory postsynaptic currents (IPSCs) in the hippocampal CA1 region in SDPS animals. In vivo breakdown of the hippocampus CA1 extracellular matrix by the enzyme chondroitinase ABC administered intracranially restored the number of PNNs, LTP maintenance, hippocampal inhibitory tone, and memory performance on the object place recognition test. Our data reveal a causal link between increased hippocampal extracellular matrix and the cognitive deficits associated with a chronic depressive-like state in rats exposed to SDPS. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.

    PubMed

    Liu, Shu; Hossinger, André; Hofmann, Julia P; Denner, Philip; Vorberg, Ina M

    2016-07-12

    Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. Prions are proteinaceous infectious particles that propagate by templating their quaternary structure onto nascent proteins of the same kind. Prions in yeast act as heritable epigenetic elements that can alter the phenotype when transmitted to daughter cells or during mating. Prion activity is conferred by so-called prion domains often enriched in glutamine and asparagine residues. Interestingly, many mammalian proteins also contain domains with compositional similarity to yeast prion domains. We have recently provided a proof-of-principle demonstration that a yeast prion domain also retains its prion activity in mammalian cells. We demonstrate here that cytosolic prions composed of a yeast prion domain are

  17. Factor H Binds to Extracellular DNA Traps Released from Human Blood Monocytes in Response to Candida albicans

    PubMed Central

    Halder, Luke D.; Abdelfatah, Mahmoud A.; Jo, Emeraldo A. H.; Jacobsen, Ilse D.; Westermann, Martin; Beyersdorf, Niklas; Lorkowski, Stefan; Zipfel, Peter F.; Skerka, Christine

    2017-01-01

    Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14++CD16−/CD14+CD16+) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation. PMID:28133459

  18. Medications Containing Aspirin (Acetylsalicylate) and Aspirin-Like Products

    MedlinePlus

    updated 3/10/08 Medications Containing Aspirin (Acetylsalicylate) and Aspirin-Like Products © National Reye's Syndrome Foundation Inc. 2008 Epidemiologic research has shown an association between the development of Reye's ...

  19. Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway.

    PubMed

    Barreca, Maria M; Spinello, Walter; Cavalieri, Vincenzo; Turturici, Giuseppina; Sconzo, Gabriella; Kaur, Punit; Tinnirello, Rosaria; Asea, Alexzander A A; Geraci, Fabiana

    2017-07-01

    Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  1. Controllable preparation of fluorine-containing fullerene-like carbon film

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Liang, Aimin; Wang, Fuguo; Xu, Longhua; Zhang, Junyan

    2016-05-01

    Fluorine-containing fullerene-like carbon (F-FLC) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition. The microstructures, mechanical properties as well as the tribological properties of the films were investigated. The results indicate that fullerene-like microstructures appear in amorphous carbon matrix and increase greatly with the increase of bias voltage from -600 to -1600 V. And the fluorine contents in F-FLC films also show a minor rise. In addition, the hardness enhances with the bias voltage and the outstanding elastic recovery maintains because of the formation of fullerene-like microstructures in the F-FLC films. Undoubtedly, the F-FLC film deposited under high bias voltage owns a superiorly low friction, which combines the merits of fluorinated carbon film and fullerene-like carbon film. Moreover, the film also shows a remarkable wear resistance, which is mainly attributed to the excellent mechanical properties. This study provides new insights for us to prepare fluorine-containing FLC films with good mechanical and tribological properties.

  2. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briquez, Priscilla S.; Hubbell, Jeffrey A.; Martino, Mikaël M.

    2015-08-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  3. Research Advances in CKLFSF-like MARVEL Transmembrane Domain Containing Member 3.

    PubMed

    Hu, Feng-zhan; Sheng, Zheng-zuo; Qin, Cai-peng; Xu, Tao

    2016-06-10

    CKLF-like MARVEL transmembrane domain containing member/chemokine-like factor super family member (CKLFSF/CMTM) is a novel tumor suppressor gene. CMTM3 is broadly expressed in normal human tissues and evolutionary conserved,especially in testis,spleen,and some cells of peripheral blood mononuclear cells. However,its expression is undetectable or down-regulated in most carcinoma cell lines and tissues. Restoration of CMTM3 may inhibit the proliferation,migration,and invasion of carcinoma cells. Although the exact mechanism of its anti-tumor activity remains unclear,CKLFSF3/CMTM3 is closely connected with immune system and associated with sex during tumorigenesis. The study advances of CKLFSF3/CMTM3 are elaborated in this review as CMTM3 may be a new target in the gene therapies for tumors,especially genitourinary tumors,while further studies on CMTM3 and its anti-tumor mechanisms are warranted.

  4. Variability of acute extracellular action potential measurements with multisite silicon probes

    PubMed Central

    Scott, Kimberly M.; Du, Jiangang; Lester, Henry A.; Masmanidis, Sotiris C.

    2012-01-01

    Device miniaturization technologies have led to significant advances in sensors for extracellular measurements of electrical activity in the brain. Multisite, silicon-based probes containing implantable electrode arrays afford greater coverage of neuronal activity than single electrodes and therefore potentially offer a more complete view of how neuronal ensembles encode information. However, scaling up the number of sites is not sufficient to ensure capture of multiple neurons, as action potential signals from extracellular electrodes may vary due to numerous factors. In order to understand the large-scale recording capabilities and potential limitations of multisite probes, it is important to quantify this variability, and to determine whether certain key device parameters influence the recordings. Here we investigate the effect of four parameters, namely, electrode surface, width of the structural support shafts, shaft number, and position of the recording site relative to the shaft tip. This study employs acutely implanted silicon probes containing up to 64 recording sites, whose performance is evaluated by the metrics of noise, spike amplitude, and spike detection probability. On average, we find no significant effect of device geometry on spike amplitude and detection probability but we find significant differences among individual experiments, with the likelihood of detecting spikes varying by a factor of approximately three across trials. PMID:22971352

  5. Comparative Proteomic Analysis of Supportive and Unsupportive Extracellular Matrix Substrates for Human Embryonic Stem Cell Maintenance*

    PubMed Central

    Soteriou, Despina; Iskender, Banu; Byron, Adam; Humphries, Jonathan D.; Borg-Bartolo, Simon; Haddock, Marie-Claire; Baxter, Melissa A.; Knight, David; Humphries, Martin J.; Kimber, Susan J.

    2013-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal. PMID:23658023

  6. Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence.

    PubMed

    Minh Tran, Tuan; MacIntyre, April; Khokhani, Devanshi; Hawes, Martha; Allen, Caitilyn

    2016-11-01

    Ralstonia solanacearum is a soil-borne vascular pathogen that colonizes plant xylem vessels, a flowing, low-nutrient habitat where biofilms could be adaptive. Ralstonia solanacearum forms biofilm in vitro, but it was not known if the pathogen benefits from biofilms during infection. Scanning electron microscopy revealed that during tomato infection, R. solanacearum forms biofilm-like masses in xylem vessels. These aggregates contain bacteria embedded in a matrix including chromatin-like fibres commonly observed in other bacterial biofilms. Chemical and enzymatic assays demonstrated that the bacterium releases extracellular DNA in culture and that DNA is an integral component of the biofilm matrix. An R. solanacearum mutant lacking the pathogen's two extracellular nucleases (exDNases) formed non-spreading colonies and abnormally thick biofilms in vitro. The biofilms formed by the exDNase mutant in planta contained more and thicker fibres. This mutant was also reduced in virulence on tomato plants and did not spread in tomato stems as well as the wild-type strain, suggesting that these exDNases facilitate biofilm maturation and bacterial dispersal. To our knowledge, this is the first demonstration that R. solanacearum forms biofilms in plant xylem vessels, and the first documentation that plant pathogens use DNases to modulate their biofilm structure for systemic spread and virulence. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Neutrophil extracellular traps promote deep vein thrombosis in mice

    PubMed Central

    Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D.

    2011-01-01

    Summary Background Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be pro-thrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). Objective To explore the source and role of extracellular chromatin in DVT. Methods We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). Results We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared to sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs’ structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. Conclusions Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development. PMID:22044575

  8. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    PubMed Central

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  9. Toxicity of Eosinophil MBP Is Repressed by Intracellular Crystallization and Promoted by Extracellular Aggregation

    PubMed Central

    Soragni, Alice; Yousefi, Shida; Stoeckle, Christina; Soriaga, Angela B.; Sawaya, Michael R.; Kozlowski, Evelyne; Schmid, Inès; Radonjic-Hoesli, Susanne; Boutet, Sebastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Cascio, Duilio; Zatsepin, Nadia A.; Burghammer, Manfred; Riekel, Christian; Colletier, Jacques-Philippe; Riek, Roland; Eisenberg, David; Simon, Hans-Uwe

    2016-01-01

    SUMMARY Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly. PMID:25728769

  10. Role of MUC4-NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells.

    PubMed

    Senapati, S; Gnanapragassam, V S; Moniaux, N; Momi, N; Batra, S K

    2012-07-12

    MUC4 is a large transmembrane type I glycoprotein that is overexpressed in pancreatic cancer (PC) and has been shown to be associated with its progression and metastasis. However, the exact cellular and molecular mechanism(s) through which MUC4 promotes metastasis of PC cells has been sparsely studied. Here we showed that the nidogen-like (NIDO) domain of MUC4, which is similar to the G1-domain present in the nidogen or entactin (an extracellular matrix protein), contributes to the protein-protein interaction property of MUC4. By this interaction, MUC4 promotes breaching of basement membrane (BM) integrity, and spreading of cancer cells. These observations are corroborated with the data from our study using an engineered MUC4 protein without the NIDO domain, which was ectopically expressed in the MiaPaCa PC cells, lacking endogenous MUC4 and nidogen protein. The in vitro studies demonstrated an enhanced invasiveness of MiaPaCa cells expressing MUC4 (MiaPaCa-MUC4) compared with vector-transfected cells (MiaPaCa-Vec; P=0.003) or cells expressing MUC4 without the NIDO domain (MiaPaCa-MUC4-NIDO(Δ); P=0.03). However, the absence of NIDO-domain has no significant role on cell growth and motility (P=0.93). In the in vivo studies, all the mice orthotopically implanted with MiPaCa-MUC4 cells developed metastasis to the liver as compared with MiaPaCa-Vec or the MiaPaCa-MUC4-NIDO(Δ) group, hence, supporting our in vitro observations. Additionally, a reduced binding (P=0.0004) of MiaPaCa-MUC4-NIDO(Δ) cells to the fibulin-2 coated plates compared with MiaPaCa-MUC4 cells indicated a possible interaction between the MUC4-NIDO domain and fibulin-2, a nidogen-interacting protein. Furthermore, in PC tissue samples, MUC4 colocalized with the fibulin-2 present in the BM. Altogether, our findings demonstrate that the MUC4-NIDO domain significantly contributes to the MUC4-mediated metastasis of PC cells. This may be partly due to the interaction between the MUC4-NIDO domain and

  11. Staurosporine and Extracellular Matrix Proteins Mediate the Conversion of Small Cell Lung Carcinoma Cells into a Neuron-Like Phenotype

    PubMed Central

    Veit, Nadine; Courts, Cornelius; Glassmann, Alexander; Janzen, Viktor; Madea, Burkhard; Reinartz, Markus; Harzen, Anne; Nowak, Michael; Perner, Sven; Winter, Jochen; Probstmeier, Rainer

    2014-01-01

    Small cell lung carcinomas (SCLCs) represent highly aggressive tumors with an overall five-year survival rate in the range of 5 to 10%. Here, we show that four out of five SCLC cell lines reversibly develop a neuron-like phenotype on extracellular matrix constituents such as fibronectin, laminin or thrombospondin upon staurosporine treatment in an RGD/integrin-mediated manner. Neurite-like processes extend rapidly with an average speed of 10 µm per hour. Depending on the cell line, staurosporine treatment affects either cell cycle arrest in G2/M phase or induction of polyploidy. Neuron-like conversion, although not accompanied by alterations in the expression pattern of a panel of neuroendocrine genes, leads to changes in protein expression as determined by two-dimensional gel electrophoresis. It is likely that SCLC cells already harbour the complete molecular repertoire to convert into a neuron-like phenotype. More extensive studies are needed to evaluate whether the conversion potential of SCLC cells is suitable for therapeutic interventions. PMID:24586258

  12. Swarm chondrosarcoma: a continued resource for chondroblastic-like extracellular matrix and chondrosarcoma biology research.

    PubMed

    Stevens, Jeff W

    2013-01-01

    Since its first description over four decades ago, the Swarm chondrosarcoma (Swarm rat chondrosarcoma, SRC) remains a valuable tool for studies of chondroblastic-like extracellular matrix (ECM) biology and as an animal model of human chondrosarcoma of histological grades I-III. Moreover, articular joints and skeletal anomalies such as arthritis as well as cartilage regeneration, skeletal development, tissue engineering, hard tissue tumorigenesis and space flight physiology are advanced through studies in hyaline cartilage-like models. With more than 500 articles published since the first report on the characteristics of mucopolysaccharides (glycosaminoglycans) of the tumor in 1971, several transplantable tumor and cell lines have been developed by multiple laboratories worldwide. This review describes the characterization of SRC tumors and cell lines, including the use of SRC lines as a resource for isolation and characterization of several ECM elements that have become vital for the advancement of our understanding of cartilage biology. Also presented is the importance of pertubation of ECM components and the influence of the tumor microenvironment on disease progression. Therapeutic failure and currently pursued avenues of intervention utilizing the SRC lines in treatment of chondrosarcoma are also discussed.

  13. Effects of heat stress and starvation on clonal odontoblast-like cells.

    PubMed

    Morotomi, Takahiko; Kitamura, Chiaki; Toyono, Takashi; Okinaga, Toshinori; Washio, Ayako; Saito, Noriko; Nishihara, Tatsuji; Terashita, Masamichi; Anan, Hisashi

    2011-07-01

    Heat stress during restorative procedures, particularly under severe starvation conditions, can trigger damage to dental pulp. In the present study, we examined effects of heat stress on odontoblastic activity and inflammatory responses in an odontoblast-like cell line (KN-3) under serum-starved conditions. Viability, nuclear structures, and inflammatory responses of KN-3 cells were examined in culture medium containing 10% or 1% serum after exposure to heat stress at 43°C for 45 minutes. Gene expression of extracellular matrices, alkaline phosphatase activity, and detection of extracellular calcium deposition in cells exposed to heat stress were also examined. Reduced viability and apoptosis were transiently induced in KN-3 cells during the initial phases after heat stress; thereafter, cells recovered their viability. The cytotoxic effects of heat stress were enhanced under serum-starved conditions. Heat stress also strongly up-regulated expression of heat shock protein 25 as well as transient expression of tumor necrosis factor-alpha, interleukin-6, and cyclooxygenase-2 in KN-3 cells. In contrast, expression of type-1 collagen, runt-related transcription factor 2, and dentin sialophosphoprotein were not inhibited by heat stress although starvation suppressed ALP activity and delayed progression of calcification. Odontoblast-like cells showed thermoresistance with transient inflammatory responses and without loss of calcification activity, and their thermoresistance and calcification activity were influenced by nutritional status. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?

    PubMed

    Agarwal, Renu; Agarwal, Puneet

    2017-02-01

    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.

  15. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?

    PubMed Central

    Agarwal, Puneet

    2016-01-01

    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses. PMID:27798117

  16. Identification of Extracellular Matrix Components and Biological Factors in Micronized Dehydrated Human Amnion/Chorion Membrane

    PubMed Central

    Lei, Jennifer; Priddy, Lauren B.; Lim, Jeremy J.; Massee, Michelle; Koob, Thomas J.

    2017-01-01

    Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair. PMID:28224047

  17. Identification of Extracellular Matrix Components and Biological Factors in Micronized Dehydrated Human Amnion/Chorion Membrane.

    PubMed

    Lei, Jennifer; Priddy, Lauren B; Lim, Jeremy J; Massee, Michelle; Koob, Thomas J

    2017-02-01

    Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION ® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek ® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair.

  18. Endogenous digitalis-like factors.

    PubMed

    Schoner, W

    1992-01-01

    The postulate of a natriuretic factor inhibiting the sodium pump in the kidney led to the detection of increased concentrations of endogenous digitalis-like factors in blood after salt loading, in essential hypertension, in pregnancy-induced hypertension and in chronic hypervolaemia. The recent isolation of ouabain or a close isomer thereof from human plasma and the demonstration of a compound similar if not identical to digoxin in adrenals and human urine shows that mammals like non-vertebrates and toads may synthesize cardiac glycosides in their adrenals and possibly in hypothalamus. The hypothalamus also forms other compounds of unknown structure which bind to the cardiac glycoside receptor site. The differential functions of endogenously formed ouabain and of a digoxin-like substance are unclear. The detailed knowledge of the physiological role of both endogenously formed cardiac glycosides in the regulation of blood pressure has still to be worked out.

  19. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  20. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  1. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  2. Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations.

    PubMed

    Aivar, Paloma; Valero, Manuel; Bellistri, Elisa; Menendez de la Prida, Liset

    2014-02-19

    Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.

  3. Dermal extracellular lipid in birds.

    PubMed

    Stromberg, M W; Hinsman, E J; Hullinger, R L

    1990-01-01

    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  4. Intestinal flora of FAP patients containing APC-like sequences.

    PubMed

    Hainova, K; Adamcikova, Z; Ciernikova, S; Stevurkova, V; Tyciakova, S; Zajac, V

    2014-01-01

    Colorectal cancer mortality is one of the most common cause of cancer-related mortality. A multiple risk factors are associated with colorectal cancer, including hereditary, enviromental and inflammatory syndromes affecting the gastrointestinal tract. Familial adenomatous polyposis (FAP) is characterized by the emergence of hundreds to thousands of colorectal adenomatous polyps and FAP syndrome is caused by mutations within the adenomatous polyposis coli (APC) tumor suppressor gene. We analyzed 21 rectal bacterial subclones isolated from FAP patient 41-1 with confirmed 5bp ACAAA deletion within codons 1060-1063 for the presence of APC-like sequences in longest exon 15. The studied section was defined by primers 15Efor-15Erev, what correlates with mutation cluster region (MCR) in which the 75% of all APC germline mutations were detected. More than 90% homology was showed by sequencing and subsequent software comparison. The expression of APC-like sequences was demostrated by Western blot analysis using monoclonal and polyclonal antibodies against APC protein. To study missing link between the DNA analysis (PCR, DNA sequencing) and protein expresion experiments (Western blotting) we analyzed bacterial transcripts containing the 15Efor-15Erev sequence of APC gene by reverse transcription-PCR, what indicated that an APC gene derived fragment may be produced. We observed 97-100 % homology after computer comparison of cDNA PCR products. Our results suggest that presence of APC-like sequences in intestinal/rectal bacteria is enrichment of bacterial genetic information in which horizontal gene transfer between humans and microflora play an important role.

  5. Factors Influencing Biofilm Formation in Streams: Bacterial Colonization, Detachment and Transport

    NASA Astrophysics Data System (ADS)

    Leff, L.

    2005-05-01

    Surfaces in aquatic systems develop biofilms containing microorganisms embedded in complex extracellular matrices. Properties of the surface, water, and colonizing organisms impact biofilm formation. Biofilm features, physical disturbance, and interactions between macro- and microscopic organisms, in turn, influence detachment. In spite of the importance of biofilms, much remains unknown about factors controlling biofilms in streams and other natural environments. Experiments were conducted in the laboratory and field to examine factors influencing surface colonization, and subsequent biofilm formation, and detachment. Microscopy methods, fluorescent in situ hybridization and confocal laser microscopy, were used to examine responses, including abundance of different taxa and biofilm depth. From these experiments, we determined that different taxa differ in their colonization ability based on properties like extracellular polysaccharide production and surface features, like hydrophobicity and that water chemistry, such as magnesium concentration, plays an important role. Moreover, detachment varies among taxa and with environmental conditions and may be enhanced by activities of macrofauna. Variation in detachment, in turn, influences bacterial transport and subsequent re-attachment. Overall, examination of attachment, detachment, and interactions in biofilms allows us to begin to understand how environmental conditions may impact the function of these communities in aquatic systems.

  6. Sleep Apnea and Circadian Extracellular Fluid Change as Independent Factors for Nocturnal Polyuria.

    PubMed

    Niimi, Aya; Suzuki, Motofumi; Yamaguchi, Yasuhiro; Ishii, Masaki; Fujimura, Tetsuya; Nakagawa, Tohru; Fukuhara, Hiroshi; Kume, Haruki; Igawa, Yasuhiko; Akishita, Masahiro; Homma, Yukio

    2016-10-01

    We investigated the relationships among nocturnal polyuria, sleep apnea and body fluid volume to elucidate the pathophysiology of nocturia in sleep apnea syndrome. We enrolled 104 consecutive patients who underwent polysomnography for suspected sleep apnea syndrome. Self-assessed symptom questionnaires were administered to evaluate sleep disorder and lower urinary tract symptoms, including nocturia. Voiding frequency and voided volume were recorded using a 24-hour frequency-volume chart. Body fluid composition was estimated in the morning and at night using bioelectric impedance analysis. Frequency-volume chart data were analyzed in 22 patients after continuous positive airway pressure therapy. Patients with nocturnal polyuria showed a higher apnea-hypopnea index (33.9 vs 24.2, p = 0.03) and a larger circadian change in extracellular fluid adjusted to lean body mass (0.22 vs -0.19, p = 0.019) than those without nocturnal polyuria. These relations were more evident in patients 65 years old or older than in those 64 years or younger. A multivariate linear regression model showed an independent relationship of nocturnal polyuria with the apnea-hypopnea index and the circadian change in extracellular fluid adjusted to lean body mass (p = 0.0012 and 0.022, respectively). Continuous positive airway pressure therapy significantly improved nocturnal polyuria and nocturia only in patients with nocturnal polyuria. This study identified sleep apnea and the circadian change in extracellular fluid as independent factors for nocturnal polyuria. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Vascular lysyl oxidase over-expression alters extracellular matrix structure and induces oxidative stress.

    PubMed

    Varona, Saray; García-Redondo, Ana B; Martínez-González, Jose; Salaices, Mercedes; Briones, Ana M; Rodríguez, Cristina

    Lysyl oxidase (LOX) participates in the assembly of collagen and elastin fibres. The impact of vascular LOX over-expression on extracellular matrix (ECM) structure and its contribution to oxidative stress has been analysed. Studies were conducted on mice over-expressing LOX (Tg), specifically in smooth muscle cells (VSMC). Gene expression was assessed by real-time PCR analysis. Sirius Red staining, H 2 O 2 production and NADPH oxidase activity were analysed in different vascular beds. The size and number of fenestra of the internal elastic lamina were determined by confocal microscopy. LOX activity was up-regulated in VSMC of transgenic mice compared with cells from control animals. At the same time, transgenic cells deposited more organised elastin fibres and their supernatants induced a stronger collagen assembly in in vitro assays. Vascular collagen cross-linking was also higher in Tg mice, which showed a decrease in the size of fenestrae and an enhanced expression of Fibulin-5. Interestingly, higher H 2 O 2 production and NADPH oxidase activity was detected in the vascular wall from transgenic mice. The H 2 O 2 scavenger catalase attenuated the stronger deposition of mature elastin fibres induced by LOX transgenesis. LOX over-expression in VSMC was associated with a change in the structure of collagen and elastin fibres. LOX could constitute a novel source of oxidative stress that might participate in elastin changes and contribute to vascular remodelling. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1

    PubMed Central

    Schwertassek, Ulla; Balmer, Yves; Gutscher, Marcus; Weingarten, Lars; Preuss, Marc; Engelhard, Johanna; Winkler, Monique; Dick, Tobias P

    2007-01-01

    The thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) is known to be secreted by leukocytes and to exhibit cytokine-like properties. Extracellular effects of Trx1 require a functional active site, suggesting a redox-based mechanism of action. However, specific cell surface proteins and pathways coupling extracellular Trx1 redox activity to cellular responses have not been identified so far. Using a mechanism-based kinetic trapping technique to identify disulfide exchange interactions on the intact surface of living lymphocytes, we found that Trx1 catalytically interacts with a single principal target protein. This target protein was identified as the tumor necrosis factor receptor superfamily member 8 (TNFRSF8/CD30). We demonstrate that the redox interaction is highly specific for both Trx1 and CD30 and that the redox state of CD30 determines its ability to engage the cognate ligand and transduce signals. Furthermore, we confirm that Trx1 affects CD30-dependent changes in lymphocyte effector function. Thus, we conclude that receptor–ligand signaling interactions can be selectively regulated by an extracellular redox catalyst. PMID:17557078

  9. Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs.

    PubMed

    Hess, Ricarda; Jaeschke, Anna; Neubert, Holger; Hintze, Vera; Moeller, Stephanie; Schnabelrauch, Matthias; Wiesmann, Hans-Peter; Hart, David A; Scharnweber, Dieter

    2012-12-01

    In vivo, bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo-like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone-co-lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Anomalous Extracellular Diffusion in Rat Cerebellum

    PubMed Central

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-01-01

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  11. Anomalous extracellular diffusion in rat cerebellum.

    PubMed

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-05-05

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  12. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation.

    PubMed

    Schaffer, Jessica N; Norsworthy, Allison N; Sun, Tung-Tien; Pearson, Melanie M

    2016-04-19

    The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder.

  13. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization.

    PubMed

    Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K

    2015-05-28

    Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.

  14. Enzyme activity and expression pattern of intra- and extracellular chitinase and β-1,3-glucanase of Wickerhamomyces anomalus EG2 using glycol chitin and glucan-containing high polymer complex.

    PubMed

    Hong, Sin-Hyoung; Song, Yong-Su; Seo, Dong-Jun; Kim, Kil-Yong; Jung, Woo-Jin

    2017-12-01

    We investigated cell growth and activity of intra- and extracellular chitinase, β-1,3-glucanase, and chitin deacetylase with SDS-PAGE by incubating W. anomalus EG2 in PDB and YPD media for 24h in presence of different concentrations (0%, 0.1%, 0.3%, and 0.5%) of colloidal chitin. Maximum cell growth was observed in both PDB and YPD media without colloidal chitin. In the absence of colloidal chitin, maximum extracellular β-1,3-glucanase activity of 32.96 and 47.28 units/mL was reported at 18h in PDB medium and 6h in YPD medium, respectively. In addition, extracellular chitinase was unaffected by various concentrations of carboxymethyl chitin in both PDB and YPD media. In the absence of colloidal chitin, maximum intracellular chitinase activity was indicated to be 9.82 and 9.86 units/mg protein in PDB and YPD media, respectively. Maximum intracellular β-1,3-glucanase activity reported was 17.34 units/mg protein in PDB medium containing 0.5% colloidal chitin and 15.0 units/mg protein in YPD medium containing 0.3% colloidal chitin. Five major isozymes, GN1, GN2, GN3, GN4, and GN5, of intracellular β-1,3-glucanase were detected with glucan-containing high polymer complex as a substrate with or without colloidal chitin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture.

    PubMed

    de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko

    2014-03-01

    We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.

  16. Endosteal-like extracellular matrix expression on melt electrospun written scaffolds.

    PubMed

    Muerza-Cascante, Maria Lourdes; Shokoohmand, Ali; Khosrotehrani, Kiarash; Haylock, David; Dalton, Paul D; Hutmacher, Dietmar W; Loessner, Daniela

    2017-04-01

    Tissue engineering technology platforms constitute a unique opportunity to integrate cells and extracellular matrix (ECM) proteins into scaffolds and matrices that mimic the natural microenvironment in vitro. The development of tissue-engineered 3D models that mimic the endosteal microenvironment enables researchers to discover the causes and improve treatments for blood and immune-related diseases. The aim of this study was to establish a physiologically relevant in vitro model using 3D printed scaffolds to assess the contribution of human cells to the formation of a construct that mimics human endosteum. Melt electrospun written scaffolds were used to compare the suitability of primary human osteoblasts (hOBs) and placenta-derived mesenchymal stem cells (plMSCs) in (non-)osteogenic conditions and with different surface treatments. Using osteogenic conditions, hOBs secreted a dense ECM with enhanced deposition of endosteal proteins, such as fibronectin and vitronectin, and osteogenic markers, such as osteopontin and alkaline phosphatase, compared to plMSCs. The expression patterns of these proteins were reproducibly identified in hOBs derived from three individual donors. Calcium phosphate-coated scaffolds induced the expression of osteocalcin by hOBs when maintained in osteogenic conditions. The tissue-engineered endosteal microenvironment supported the growth and migration of primary human haematopoietic stem cells (HSCs) when compared to HSCs maintained using tissue culture plastic. This 3D testing platform represents an endosteal bone-like tissue and warrants future investigation for the maintenance and expansion of human HSCs. This work is motivated by the recent interest in melt electrospinning writing, a 3D printing technique used to produce porous scaffolds for biomedical applications in regenerative medicine. Our team has been among the pioneers in building a new class of melt electrospinning devices for scaffold-based tissue engineering. These scaffolds

  17. A novel fibroblast growth factor receptor family member promotes neuronal outgrowth and synaptic plasticity in aplysia.

    PubMed

    Pollak, Daniela D; Minh, Bui Quang; Cicvaric, Ana; Monje, Francisco J

    2014-11-01

    Fibroblast Growth Factor (FGF) Receptors (FGFRs) regulate essential biological processes, including embryogenesis, angiogenesis, cellular growth and memory-related long-term synaptic plasticity. Whereas canonical FGFRs depend exclusively on extracellular Immunoglobulin (Ig)-like domains for ligand binding, other receptor types, including members of the tropomyosin-receptor-kinase (Trk) family, use either Ig-like or Leucine-Rich Repeat (LRR) motifs, or both. Little is known, however, about the evolutionary events leading to the differential incorporation of LRR domains into Ig-containing tyrosine kinase receptors. Moreover, although FGFRs have been identified in many vertebrate species, few reports describe their existence in invertebrates. Information about the biological relevance of invertebrate FGFRs and evolutionary divergences between them and their vertebrate counterparts is therefore limited. Here, we characterized ApLRRTK, a neuronal cell-surface protein recently identified in Aplysia. We unveiled ApLRRTK as the first member of the FGFRs family deprived of Ig-like domains that instead contains extracellular LRR domains. We describe that ApLRRTK exhibits properties typical of canonical vertebrate FGFRs, including promotion of FGF activity, enhancement of neuritic outgrowth and signaling via MAPK and the transcription factor CREB. ApLRRTK also enhanced the synaptic efficiency of neurons known to mediate in vivo memory-related defensive behaviors. These data reveal a novel molecular regulator of neuronal function in invertebrates, provide the first evolutionary linkage between LRR proteins and FGFRs and unveil an unprecedented mechanism of FGFR gene diversification in primeval central nervous systems.

  18. Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge.

    PubMed

    Wu, Boran; Ni, Bing-Jie; Horvat, Kristine; Song, Liyan; Chai, Xiaoli; Dai, Xiaohu; Mahajan, Devinder

    2017-08-15

    The occurrence state and molecular structure of extracellular proteins were analyzed to reveal the influencing factors on the water-holding capacities of protein-like substances in waste-activated sludge (WAS). The gelation process of extracellular proteins verified that advanced oxidation processes (AOPs) for WAS dewaterability improvement eliminated the water affinity of extracellular proteins and prevented these macromolecules from forming stable colloidal aggregates. Isobaric tags for relative and absolute quantitation proteomics identified that most of the extracellular proteins were originally derived from the intracellular part and the proteins originally located in the extracellular part were mainly membrane-associated. The main mechanism of extracellular protein transformation during AOPs could be represented by the damage of the membrane or related external encapsulating structure and the release of intracellular substances. For the selected representative extracellular proteins, the strong correlation (R 2 > 0.97, p < 0.03) between the surface hydrophilicity index and α-helix percentages in the secondary structure indicated that the water affinity relied more on the spatial distribution of hydrophilic functional groups rather than the content. Destructing the secondary structure represented by the α-helix and stretching the polypeptide aggregation in the water phase through disulfide bond removal might be the key to eliminating the inhibitory effects of extracellular proteins on the interstitial water removal from WAS.

  19. The Functions of Grainy Head-Like Proteins in Animals and Fungi and the Evolution of Apical Extracellular Barriers

    PubMed Central

    Paré, Adam; Kim, Myungjin; Juarez, Michelle T.; Brody, Stuart; McGinnis, William

    2012-01-01

    The Grainy head (GRH) family of transcription factors are crucial for the development and repair of epidermal barriers in all animals in which they have been studied. This is a high-level functional conservation, as the known structural and enzymatic genes regulated by GRH proteins differ between species depending on the type of epidermal barrier being formed. Interestingly, members of the CP2 superfamily of transcription factors, which encompasses the GRH and LSF families in animals, are also found in fungi – organisms that lack epidermal tissues. To shed light on CP2 protein function in fungi, we characterized a Neurospora crassa mutant lacking the CP2 member we refer to as grainy head-like (grhl). We show that Neurospora GRHL has a DNA-binding specificity similar to that of animal GRH proteins and dissimilar to that of animal LSF proteins. Neurospora grhl mutants are defective in conidial-spore dispersal due to an inability to remodel the cell wall, and we show that grhl mutants and the long-known conidial separation-2 (csp-2) mutants are allelic. We then characterized the transcriptomes of both Neurospora grhl mutants and Drosophila grh mutant embryos to look for similarities in the affected genes. Neurospora grhl appears to play a role in the development and remodeling of the cell wall, as well as in the activation of genes involved in defense and virulence. Drosophila GRH is required to activate the expression of many genes involved in cuticular/epidermal-barrier formation. We also present evidence that GRH plays a role in adult antimicrobial defense. These results, along with previous studies of animal GRH proteins, suggest the fascinating possibility that the apical extracellular barriers of some animals and fungi might share an evolutionary connection, and that the formation of physical barriers in the last common ancestor was under the control of a transcriptional code that included GRH-like proteins. PMID:22590528

  20. Measuring, Reversing, and Modeling the Mechanical Changes Due to the Absence of Fibulin-4 in Mouse Arteries

    PubMed Central

    Le, Victoria P.; Yamashiro, Yoshito; Yanagisawa, Hiromi; Wagenseil, Jessica E.

    2014-01-01

    Mice with a smooth muscle cell (SMC) specific deletion of fibulin-4 (SMKO) show decreased expression of SMC contractile genes, decreased circumferential compliance, and develop aneurysms in the ascending aorta. Neonatal administration of drugs that inhibit the angiotensin II pathway encourage expression of contractile genes and prevent aneurysm development, but do not increase compliance in SMKO aorta. We hypothesized that multidimensional mechanical changes in the aorta and/or other elastic arteries may contribute to aneurysm pathophysiology. We found that the SMKO ascending aorta and carotid artery showed mechanical changes in the axial direction. These changes were not reversed by angiotensin II inhibitors, hence reversing the axial changes is not required for aneurysm prevention. Mechanical changes in the circumferential direction were specific to the ascending aorta, therefore mechanical changes in the carotid do not contribute to aortic aneurysm development. We also hypothesized that a published model of postnatal aortic growth and remodeling could be used to investigate mechanisms behind the changes in SMKO aorta and aneurysm development over time. Dimensions and mechanical behavior of adult SMKO aorta were reproduced by the model after modifying the initial component material constants and the aortic dilation with each postnatal time step. The model links biological observations to specific mechanical responses in aneurysm development and treatment. PMID:24526456

  1. Measuring, reversing, and modeling the mechanical changes due to the absence of Fibulin-4 in mouse arteries.

    PubMed

    Le, Victoria P; Yamashiro, Yoshito; Yanagisawa, Hiromi; Wagenseil, Jessica E

    2014-10-01

    Mice with a smooth muscle cell (SMC)-specific deletion of Fibulin-4 (SMKO) show decreased expression of SMC contractile genes, decreased circumferential compliance, and develop aneurysms in the ascending aorta. Neonatal administration of drugs that inhibit the angiotensin II pathway encourages the expression of contractile genes and prevents aneurysm development, but does not increase compliance in SMKO aorta. We hypothesized that multidimensional mechanical changes in the aorta and/or other elastic arteries may contribute to aneurysm pathophysiology. We found that the SMKO ascending aorta and carotid artery showed mechanical changes in the axial direction. These changes were not reversed by angiotensin II inhibitors, hence reversing the axial changes is not required for aneurysm prevention. Mechanical changes in the circumferential direction were specific to the ascending aorta; therefore, mechanical changes in the carotid do not contribute to aortic aneurysm development. We also hypothesized that a published model of postnatal aortic growth and remodeling could be used to investigate mechanisms behind the changes in SMKO aorta and aneurysm development over time. Dimensions and mechanical behavior of adult SMKO aorta were reproduced by the model after modifying the initial component material constants and the aortic dilation with each postnatal time step. The model links biological observations to specific mechanical responses in aneurysm development and treatment.

  2. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation

    PubMed Central

    Schaffer, Jessica N.; Norsworthy, Allison N.; Sun, Tung-Tien

    2016-01-01

    The catheter-associated uropathogen Proteus mirabilis frequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found that P. mirabilis rapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistant Proteus-like fimbriae. The extracellular cluster formation by P. mirabilis stands in direct contrast to uropathogenic Escherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism of P. mirabilis survival and virulence in the bladder. PMID:27044107

  3. Versatile roles of extracellular vesicles in cancer

    PubMed Central

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu

    2016-01-01

    Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161

  4. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  5. Nectin-like molecule 1 inhibits the migration and invasion of U251 glioma cells by regulating the expression of an extracellular matrix protein osteopontin.

    PubMed

    Yin, Bin; Li, Ke-han; An, Tai; Chen, Tao; Peng, Xiao-zhong

    2010-06-01

    To investigate the molecular mechanism of nectin-like molecule 1 (NECL1) inhibiting the migration and invasion of U251 glioma cells. We infected U251 glioma cells with adeno-nectin-like molecule 1 (Ad-NECL1) or empty adenovirus (Ad). Transwell and wound healing assays were performed to observe the migration of U251 cells incubated with the cell supernatant from Ad-NECL1 or Ad infected U251 cells. DNA microarray was applied to screen the gene expression profile after the restoration of NECL1 in U251 glioma cell lines. The differential expression of osteopontin (OPN), a gene related to migration and invasion, was further analyzed with semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. The restoration of NECL1 inhibited migration of U251 cells significantly (P<0.05). Altogether 195 genes were found differentially expressed by microarray, in which 175 were up-regulated and 20 down-regulated, including 9 extracellular matrix proteins involved in the migration of cells. Both mRNA and protein expressions of OPN, the most markedly reduced extracellular matrix protein, were found decreased in U251 cells after restoration of NECL1. Immunohistochemical assay also detected an increase of OPN in glioma tissues, related with the progressing of malignant grade. A link might exist between NECL1 and the extracellular matrix protein OPN in inhibiting the migration and invasion of U251 glioma cells.

  6. Extracellular cyclophilin-A stimulates ERK1/2 phosphorylation in a cell-dependent manner but broadly stimulates nuclear factor kappa B

    PubMed Central

    2012-01-01

    Background Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure. Methods We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells. Results Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFκB) signaling induced in all cell lines tested. Conclusions We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific. PMID:22631225

  7. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix.

    PubMed

    Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K

    2016-10-01

    Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Student Award for Outstanding Research Winner in the Ph.D. Category for the 9th World Biomaterials Congress, Chengdu, China, June 1-5, 2012: The interplay of bone-like extracellular matrix and TNF-α signaling on in vitro osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Mountziaris, Paschalia M; Tzouanas, Stephanie N; Mikos, Antonios G

    2012-05-01

    As an initial step in the development of a bone tissue engineering strategy to rationally control inflammation, we investigated the interplay of bone-like extracellular matrix (ECM) and varying doses of the inflammatory cytokine tumor necrosis factor alpha (TNF-α) on osteogenically differentiating mesenchymal stem cells (MSCs) cultured in vitro on 3D poly(ε-caprolactone) (PCL) microfiber scaffolds containing pregenerated bone-like ECM. To generate the ECM, PCL scaffolds were seeded with MSCs and cultured in medium containing the typically required osteogenic supplement dexamethasone. However, since dexamethasone antagonizes TNF-α, the interplay of ECM and TNF-α was investigated by culturing naïve MSCs on the decellularized scaffolds in the absence of dexamethasone. MSCs cultured on ECM-coated scaffolds continued to deposit mineralized matrix, a late stage marker of osteogenic differentiation. Mineralized matrix deposition was not adversely affected by exposure to TNF-α for 4-8 days, but was significantly reduced after continuous exposure to TNF-α over 16 days, which simulates the in vivo response, where brief TNF-α signaling stimulates bone regeneration, while prolonged exposure has damaging effects. This underscores the exciting potential of PCL/ECM constructs as a more clinically realistic in vitro culture model to facilitate the design of new bone tissue engineering strategies that rationally control inflammation to promote regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  9. Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments

    PubMed Central

    Corinaldesi, Cinzia; Danovaro, Roberto; Dell'Anno, Antonio

    2005-01-01

    The occurrence of high extracellular DNA concentrations in aquatic sediments (concentrations that are 3 to 4 orders of magnitude greater than those in the water column) might play an important role in biogeochemical cycling, as well as in horizontal gene transfer through natural transformation. Since isolation of extracellular DNA from sediments is a difficult and unsolved task, in this study we developed an efficient procedure to recover simultaneously DNA associated with microbial cells and extracellular DNA from the same sediment sample. This procedure is specifically suitable for studying extracellular DNA because it avoids any contamination with DNA released by cell lysis during handling and extraction. Applying this procedure to different sediment types, we obtained extracellular DNA concentrations that were about 10 to 70 times higher than the intracellular DNA concentrations. Using specific targeted prokaryotic primers, we obtained evidence that extracellular DNA recovered from different sediments did not contain amplifiable 16S rRNA genes. By contrast, using DNA extracted from microbial cells as the template, we always amplified 16S rRNA genes. Although 16S rRNA genes were not detected in extracellular DNA, analyses of the sizes of extracellular DNA indicated the presence of high-molecular-weight fragments that might have contained other gene sequences. This protocol allows investigation of extracellular DNA and its possible participation in natural transformation processes. PMID:15640168

  10. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages

    PubMed Central

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-01-01

    HIV type 1 (HIV-1) infects CD4+ T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as “Trojan horses” carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages. PMID:26056317

  11. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages.

    PubMed

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-06-23

    HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.

  12. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    PubMed

    Tsuchiya, Haruyuki; Sakata, Naoaki; Yoshimatsu, Gumpei; Fukase, Masahiko; Aoki, Takeshi; Ishida, Masaharu; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2015-01-01

    The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  13. Propagation of thrombosis by neutrophils and extracellular nucleosome networks

    PubMed Central

    Pfeiler, Susanne; Stark, Konstantin; Massberg, Steffen; Engelmann, Bernd

    2017-01-01

    Neutrophils, early mediators of the innate immune defense, are recruited to developing thrombi in different types of thrombosis. They amplify intravascular coagulation by stimulating the tissue factor-dependent extrinsic pathway via inactivation of endogenous anticoagulants, enhancing factor XII activation or decreasing plasmin generation. Neutrophil-dependent prothrombotic mechanisms are supported by the externalization of decondensed nucleosomes and granule proteins that together form neutrophil extracellular traps. These traps, either in intact or fragmented form, are causally involved in various forms of experimental thrombosis as first indicated by their role in the enhancement of both microvascular thrombosis during bacterial infection and carotid artery thrombosis. Neutrophil extracellular traps can be induced by interactions of neutrophils with activated platelets; vice versa, these traps enhance adhesion of platelets via von Willebrand factor. Neutrophil-induced microvascular thrombus formation can restrict the dissemination and survival of blood-borne bacteria and thereby sustain intravascular immunity. Dysregulation of this innate immune pathway may support sepsis-associated coagulopathies. Notably, neutrophils and extracellular nucleosomes, together with platelets, critically promote fibrin formation during flow restriction-induced deep vein thrombosis. Neutrophil extracellular traps/extracellular nucleosomes are increased in thrombi and in the blood of patients with different vaso-occlusive pathologies and could be therapeutically targeted for the prevention of thrombosis. Thus, during infections and in response to blood vessel damage, neutrophils and externalized nucleosomes are major promoters of intravascular blood coagulation and thrombosis. PMID:27927771

  14. Increased Obesity-Associated Circulating Levels of the Extracellular Matrix Proteins Osteopontin, Chitinase-3 Like-1 and Tenascin C Are Associated with Colon Cancer

    PubMed Central

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Izaguirre, Maitane; Hernández-Lizoain, José Luis; Baixauli, Jorge; Martí, Pablo; Valentí, Víctor; Moncada, Rafael; Silva, Camilo; Salvador, Javier; Frühbeck, Gema

    2016-01-01

    Background Excess adipose tissue represents a major risk factor for the development of colon cancer with inflammation and extracellular matrix (ECM) remodeling being proposed as plausible mechanisms. The aim of this study was to investigate whether obesity can influence circulating levels of inflammation-related extracellular matrix proteins in patients with colon cancer (CC), promoting a microenvironment favorable for tumor growth. Methods Serum samples obtained from 79 subjects [26 lean (LN) and 53 obese (OB)] were used in the study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (44 without CC and 35 with CC). Anthropometric measurements as well as circulating metabolites and hormones were determined. Circulating concentrations of the ECM proteins osteopontin (OPN), chitinase-3-like protein 1 (YKL-40), tenascin C (TNC) and lipocalin-2 (LCN-2) were determined by ELISA. Results Significant differences in circulating OPN, YKL-40 and TNC concentrations between the experimental groups were observed, being significantly increased due to obesity (P<0.01) and colon cancer (P<0.05). LCN-2 levels were affected by obesity (P<0.05), but no differences were detected regarding the presence or not of CC. A positive association (P<0.05) with different inflammatory markers was also detected. Conclusions To our knowledge, we herein show for the first time that obese patients with CC exhibit increased circulating levels of OPN, YKL-40 and TNC providing further evidence for the influence of obesity on CC development via ECM proteins, representing promising diagnostic biomarkers or target molecules for therapeutics. PMID:27612200

  15. A novel extracellular metallopeptidase domain shared by animal host-associated mutualistic and pathogenic microbes.

    PubMed

    Nakjang, Sirintra; Ndeh, Didier A; Wipat, Anil; Bolam, David N; Hirt, Robert P

    2012-01-01

    The mucosal microbiota is recognised as an important factor for our health, with many disease states linked to imbalances in the normal community structure. Hence, there is considerable interest in identifying the molecular basis of human-microbe interactions. In this work we investigated the capacity of microbes to thrive on mucosal surfaces, either as mutualists, commensals or pathogens, using comparative genomics to identify co-occurring molecular traits. We identified a novel domain we named M60-like/PF13402 (new Pfam entry PF13402), which was detected mainly among proteins from animal host mucosa-associated prokaryotic and eukaryotic microbes ranging from mutualists to pathogens. Lateral gene transfers between distantly related microbes explained their shared M60-like/PF13402 domain. The novel domain is characterised by a zinc-metallopeptidase-like motif and is distantly related to known viral enhancin zinc-metallopeptidases. Signal peptides and/or cell surface anchoring features were detected in most microbial M60-like/PF13402 domain-containing proteins, indicating that these proteins target an extracellular substrate. A significant subset of these putative peptidases was further characterised by the presence of associated domains belonging to carbohydrate-binding module family 5/12, 32 and 51 and other glycan-binding domains, suggesting that these novel proteases are targeted to complex glycoproteins such as mucins. An in vitro mucinase assay demonstrated degradation of mammalian mucins by a recombinant form of an M60-like/PF13402-containing protein from the gut mutualist Bacteroides thetaiotaomicron. This study reveals that M60-like domains are peptidases targeting host glycoproteins. These peptidases likely play an important role in successful colonisation of both vertebrate mucosal surfaces and the invertebrate digestive tract by both mutualistic and pathogenic microbes. Moreover, 141 entries across various peptidase families described in the MEROPS

  16. Extracellular neurofibrillary tangles associated with degenerating neurites and neuropil threads in Alzheimer-type dementia.

    PubMed

    Yamaguchi, H; Nakazato, Y; Kawarabayashi, T; Ishiguro, K; Ihara, Y; Morimatsu, M; Hirai, S

    1991-01-01

    We examined the cellular components of extracellular neurofibrillary tangles (E-NFT) in the hippocampal areas in cases with Alzheimer-type dementia. Immunohistochemically, the E-NFT were labeled for the C terminus of tau and glial fibrillary acidic protein. Moreover, the majority of the E-NFT was associated with intensely argyrophilic rods and with tau- and ubiquitin-immunoreactive dots. Ultrastructurally, the E-NFT consisted mainly of extracellular paired helical filaments (PHF) and astroglial processes. The extracellular PHF tended to be straighter and thinner. One third of the E-NFT was associated with small degenerating neurites containing many dense bodies and with neuropil threads containing PHF. These findings suggested that extracellular PHF promote both intense astroglial reaction and neuritic alteration, and that the E-NFT are continuously changing their morphology.

  17. Modulation of keratinocyte motility. Correlation with production of extracellular matrix molecules in response to growth promoting and antiproliferative factors.

    PubMed Central

    Nickoloff, B. J.; Mitra, R. S.; Riser, B. L.; Dixit, V. M.; Varani, J.

    1988-01-01

    Normal human epidermal keratinocytes (KC) grown under conditions that maintain the undifferentiated state are highly motile. Migration of these cells as measured in two different assays (migration out of an agarose drop explant, and into micropore filters in a modified Boyden chamber), is stimulated by fibronectin (FN) and to a lesser extent by thrombospondin (TSP). In contrast, laminin (LN) inhibits KC migration. Cultivation of the cells for 1 day under conditions that induce differentiation (ie, in the presence of 1.4 mM Ca2+) suppresses KC motility. A number of soluble growth modulating polypeptide factors also influence KC migration. Transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) stimulate KC motility. These factors simultaneously induce KC production of FN and a significant portion of the stimulated motility can be inhibited with antibodies to FN. EGF and somatomedin-C (SM-C), but not TGF-beta, also stimulate TSP production while EGF and SM-C (but not TGF-beta) induce KC proliferation. In contrast to these factors, interferon-gamma (INF-gamma) inhibits KC production of both FN and TSP and concomitantly inhibits both motility and proliferation. These data suggest that KC properties essential for normal wound healing (ie, motility and proliferation) are regulated by both extracellular matrix molecules and soluble peptide factors. Finally, these effects of various growth promoting and antiproliferative factors on KCs may, in part, be mediated through alteration in the endogenous production of extracellular matrix molecules by KCs. Images Figure 2 PMID:2458044

  18. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Analysis of disease-associated protein expression using quantitative proteomics—fibulin-5 is expressed in association with hepatic fibrosis.

    PubMed

    Bracht, Thilo; Schweinsberg, Vincent; Trippler, Martin; Kohl, Michael; Ahrens, Maike; Padden, Juliet; Naboulsi, Wael; Barkovits, Katalin; Megger, Dominik A; Eisenacher, Martin; Borchers, Christoph H; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2015-05-01

    Hepatic fibrosis and cirrhosis are major health problems worldwide. Until now, highly invasive biopsy remains the diagnostic gold standard despite many disadvantages. To develop noninvasive diagnostic assays for the assessment of liver fibrosis, it is urgently necessary to identify molecules that are robustly expressed in association with the disease. We analyzed biopsied tissue samples from 95 patients with HBV/HCV-associated hepatic fibrosis using three different quantification methods. We performed a label-free proteomics discovery study to identify novel disease-associated proteins using a subset of the cohort (n = 27). Subsequently, gene expression data from all available clinical samples were analyzed (n = 77). Finally, we performed a targeted proteomics approach, multiple reaction monitoring (MRM), to verify the disease-associated expression in samples independent from the discovery approach (n = 68). We identified fibulin-5 (FBLN5) as a novel protein expressed in relation to hepatic fibrosis. Furthermore, we confirmed the altered expression of microfibril-associated glycoprotein 4 (MFAP4), lumican (LUM), and collagen alpha-1(XIV) chain (COL14A1) in association to hepatic fibrosis. To our knowledge, no tissue-based quantitative proteomics study for hepatic fibrosis has been performed using a cohort of comparable size. By this means, we add substantial evidence for the disease-related expression of the proteins examined in this study.

  20. Extracellular Potassium Homeostasis: Insights from Hypokalemic Periodic Paralysis

    PubMed Central

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2014-01-01

    The extracellular potassium makes up only about 2% of the total body potassium store. The majority of the body potassium is distributed in the intracellular space, and of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na+, K+-ATPase and release by inward rectifier K+ channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward rectifier K+ channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings will be reviewed. PMID:23953801

  1. In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix.

    PubMed

    Randrianjatovo-Gbalou, I; Rouquette, P; Lefebvre, D; Girbal-Neuhauser, E; Marcato-Romain, C-E

    2017-05-01

    This study attempts to determine which of the exopolymeric substances are involved in the adherence and aggregation of a Bacillus licheniformis biofilm. The involvement of extracellular proteins and eDNA were particularly investigated using DNase and proteinase K treatment. The permeability of the biofilms increased fivefold after DNase I treatment. The quantification of the matrix components showed that, irrespective to the enzyme tested, eDNA and amyloid-like polymers were removed simultaneously. Size-exclusion chromatography analyses supported these observations and revealed the presence of associated nucleic acid and protein complexes in the biofilm lysates. These data suggest that some extracellular DNA and amyloid-like proteins were closely interlaced within the matrix. Finally, confocal laser scanning microscopy imaging gave supplementary clues about the 3D organization of the biofilms, confirming that eDNA and exoproteins were essentially layered under and around the bacterial cells, whereas the amyloid-like fractions were homogeneously distributed within the matrix. These results confirm that some DNA-amyloid complexes play a key role in the modulation of the mechanical resistance of B. licheniformis biofilms. The study highlights the need to consider the whole structure of biofilms and to target the interactions between matrix components. A better understanding of B. licheniformis biofilm physiology and the structural organization of the matrix will strengthen strategies of biofilm control. © 2017 The Society for Applied Microbiology.

  2. ABCG1-mediated generation of extracellular cholesterol microdomains[S

    PubMed Central

    Freeman, Sebastian R.; Jin, Xueting; Anzinger, Joshua J.; Xu, Qing; Purushothaman, Sonya; Fessler, Michael B.; Addadi, Lia; Kruth, Howard S.

    2014-01-01

    Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space. PMID:24212237

  3. Syndecan-2 Is a Novel Target of Insulin-Like Growth Factor Binding Protein-3 and Is Over-Expressed in Fibrosis

    PubMed Central

    Ruiz, Ximena D.; Mlakar, Logan R.; Yamaguchi, Yukie; Su, Yunyun; Larregina, Adriana T.; Pilewski, Joseph M.; Feghali-Bostwick, Carol A.

    2012-01-01

    Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3. PMID:22900087

  4. Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis.

    PubMed

    Ruiz, Ximena D; Mlakar, Logan R; Yamaguchi, Yukie; Su, Yunyun; Larregina, Adriana T; Pilewski, Joseph M; Feghali-Bostwick, Carol A

    2012-01-01

    Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.

  5. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels

    PubMed Central

    Stephens, Robert F.; Guan, W.; Zhorov, Boris S.; Spafford, J. David

    2015-01-01

    How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel. PMID

  6. An extracellular factor regulating expression of the chromosomal aminoglycoside 2'-N-acetyltransferase of Providencia stuartii.

    PubMed Central

    Rather, P N; Parojcic, M M; Paradise, M R

    1997-01-01

    The chromosomal aac(2')-Ia gene in Providencia stuartii encodes a housekeeping 2'-N-acetyltransferase [AAC(2')-Ia] involved in the acetylation of peptidoglycan. In addition, the AAC(2')-Ia enzyme also acetylates and confers resistance to the clinically important aminoglycoside antibiotics gentamicin, tobramycin, and netilmicin. Expression of the aac(2')-Ia gene was found to be strongly influenced by cell density, with a sharp decrease in aac(2')-Ia mRNA accumulation as cells approached stationary phase. This decrease was mediated by the accumulation of an extracellular factor, designated AR (for acetyltransferase repressing)-factor. AR-factor was produced in both minimal and rich media and acted in a manner that was strongly dose dependent. The activity of AR-factor was also pH dependent, with optimal activity at pH 8.0 and above. Biochemical characterization of conditioned media from P. stuartii has shown that AR-factor is between 500 and 1,000 Da in molecular size and is heat stable. In addition, AR-factor was inactivated by a variety of proteases, suggesting that it may be a small peptide. PMID:9257754

  7. Pulmonary immunity and extracellular matrix interactions.

    PubMed

    O'Dwyer, David N; Gurczynski, Stephen J; Moore, Bethany B

    2018-04-09

    The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  8. EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling.

    PubMed

    Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae

    2011-07-01

    Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.

  9. Endothelial pro-atherosclerotic response to extracellular diabetic-like environment: possible role of thioredoxin-interacting protein.

    PubMed

    Zitman-Gal, Tali; Green, Janice; Pasmanik-Chor, Metsada; Oron-Karni, Varda; Bernheim, Jacques

    2010-07-01

    BACKGROUND. High blood and tissue concentrations of glucose and advanced glycation end-products (AGEs) are thought to play an important role in the development of vascular diabetic complications. Therefore, the impact of extracellular AGEs and different glucose concentrations was evaluated by studying the gene expressions and the underlying cellular pathways involved in the development of inflammatory pro-atherosclerotic processes observed in cultured endothelial cells. METHODS. Fresh human umbilical vein cord endothelial cells (HUVEC) were treated in the presence of elevated extracellular glucose concentrations (5.5-28 mmol/l) with and without AGE-human serum albumin (HSA). Affymetrix GeneChip(R) Human Gene 1.0 ST arrays were used for gene expression analysis (total 20 chips). Genes of interest were further validated using real-time PCR and western blot techniques. RESULTS. Microarray analysis revealed significant changes in some gene expressions in the presence of the different stimuli, suggesting that different pathways are involved. Six genes were selected for validation as follows: thioredoxin-interacting protein (TXNIP), thioredoxin (TXN), nuclear factor of kappa B (NF-kappaB), interleukin 6 (IL6), interleukin 8 (IL8) and receptor of advanced glycation end-products (RAGE). Interestingly, it was found that the association of AGEs together with the highest pathophysiological concentration of glucose (28 mmol/l) diminished the expression of these specific genes, excluding TXN. CONCLUSIONS. In the present model that mimics a diabetic environment, the relatively short-term experimental conditions used showed an unexpected blunting action of AGEs in the presence of the highest glucose concentration (28 mmol/l). The interactive cellular pathways involved in these processes should be further investigated.

  10. Role of Gab1 in Heart, Placenta, and Skin Development and Growth Factor- and Cytokine-Induced Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation

    PubMed Central

    Itoh, Motoyuki; Yoshida, Yuichi; Nishida, Keigo; Narimatsu, Masahiro; Hibi, Masahiko; Hirano, Toshio

    2000-01-01

    Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation. PMID:10779359

  11. Hypoxic Regulation of Functional Extracellular Matrix Elaboration by Nucleus Pulposus Cells in Long-Term Agarose Culture

    PubMed Central

    Gorth, Deborah J; Lothstein, Katherine E; Chiaro, Joseph A; Farrell, Megan J; Dodge, George R; Elliott, Dawn M; Malhotra, Neil R; Mauck, Robert L; Smith, Lachlan J

    2015-01-01

    Degeneration of the intervertebral discs is strongly implicated as a cause of low back pain. Since current treatments for discogenic low back pain show poor long-term efficacy, a number of new, biological strategies are being pursued. For such therapies to succeed, it is critical that they be validated in conditions that mimic the unique biochemical microenvironment of the nucleus pulposus (NP), which include low oxygen tension. Therefore, the objective of this study was to investigate the effects of oxygen tension on NP cell functional extracellular matrix elaboration in 3D culture. Bovine NP cells were encapsulated in agarose constructs and cultured for 14 or 42 days in either 20% or 2% oxygen in defined media containing transforming growth factor beta-3. At each time point, extracellular matrix composition, biomechanics and mRNA expression of key phenotypic markers were evaluated. Results showed that while bulk mechanics and composition were largely independent of oxygen level, low oxygen promoted improved restoration of the NP phenotype, higher mRNA expression of extracellular matrix and NP specific markers, and more uniform matrix elaboration. These findings indicate that culture under physiological oxygen levels is an important consideration for successful development of cell and growth factor-based regenerative strategies for the disc. PMID:25640328

  12. Human Dermal Mast Cells Contain and Release Tumor Necrosis Factor α, which Induces Endothelial Leukocyte Adhesion Molecule 1

    NASA Astrophysics Data System (ADS)

    Walsh, Laurence J.; Trinchieri, Giorgio; Waldorf, Heidi A.; Whitaker, Diana; Murphy, George F.

    1991-05-01

    Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-α within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-α protein and TNF-α mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-α. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion.

  13. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  14. Stanniocalcin-2 Inhibits Mammalian Growth by Proteolytic Inhibition of the Insulin-like Growth Factor Axis*

    PubMed Central

    Jepsen, Malene R.; Kløverpris, Søren; Mikkelsen, Jakob H.; Pedersen, Josefine H.; Füchtbauer, Ernst-Martin; Laursen, Lisbeth S.; Oxvig, Claus

    2015-01-01

    Mammalian stanniocalcin-2 (STC2) is a secreted polypeptide widely expressed in developing and adult tissues. However, although transgenic expression in mice is known to cause severe dwarfism, and targeted deletion of STC2 causes increased postnatal growth, its precise biological role is still unknown. We found that STC2 potently inhibits the proteolytic activity of the growth-promoting metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A). Proteolytic inhibition requires covalent binding of STC2 to PAPP-A and is mediated by a disulfide bond, which involves Cys-120 of STC2. Binding of STC2 prevents PAPP-A cleavage of insulin-like growth factor-binding protein (IGFBP)-4 and hence release within tissues of bioactive IGF, required for normal growth. Concordantly, we show that STC2 efficiently inhibits PAPP-A-mediated IGF receptor signaling in vitro and that transgenic mice expressing a mutated variant of STC2, STC2(C120A), which is unable to inhibit PAPP-A, grow like wild-type mice. Our work identifies STC2 as a novel proteinase inhibitor and a previously unrecognized extracellular component of the IGF system. PMID:25533459

  15. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information

    PubMed Central

    2017-01-01

    Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5′- and 3′-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell’s epigenome. PMID:28937658

  16. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    PubMed Central

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  17. Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain.

    PubMed

    Runge, Steffen; Thøgersen, Henning; Madsen, Kjeld; Lau, Jesper; Rudolph, Rainer

    2008-04-25

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.

  18. Occurrence and structural characterization of versican-like proteoglycan in human vitreous.

    PubMed

    Theocharis, Achilleas D; Papageorgakopoulou, Nickoletta; Feretis, Elias; Theocharis, Dimitrios A

    2002-12-01

    Human vitreous gel is a special type of extracellular matrix, in which interpenetrating networks of collagen fibrils and hyaluronan are found. In this study, we report that apart from significant amounts of collagen, hyaluronan and sialylated glycoproteins, it was found that the human vitreous gel also contained low amounts of versican-like proteoglycan. The concentration of versican-like proteoglycan in the whole vitreous is 0.06 mg protein/ml of vitreous gel and represents a small percentage (about 5%) of the total protein content. The versican-like proteoglycan has a molecular mass of 380 kDa, as estimated by gel chromatography. Its core protein is substituted by chondroitin sulphate side chains (average molecular weight 37 kDa), in which 6-sulphated disaccharides predominated. According to the physicochemical data, the number of chondroitin sulphate chains is likely to be 5-7 per molecule. These proteoglycan monomers form large aggregates with endogenous hyaluronan. Versican, which is able to bind lectins via its C-terminal region, may bridge or interconnect various constituents of the extracellular matrix via its terminal domains in order to stabilize large supramolecular complexes at the vitreous, contributing towards the integrity and specific properties of the tissue.

  19. Activation of the prelimbic medial prefrontal cortex induces anxiety-like behaviors via N-Methyl-D-aspartate receptor-mediated glutamatergic neurotransmission in mice.

    PubMed

    Saitoh, Akiyoshi; Ohashi, Masanori; Suzuki, Satoshi; Tsukagoshi, Mai; Sugiyama, Azusa; Yamada, Misa; Oka, Jun-Ichiro; Inagaki, Masatoshi; Yamada, Mitsuhiko

    2014-08-01

    We investigated the possible roles of the prelimbic medial prefrontal cortex (PL) in the regulation of anxiety-like behaviors by pharmacologically activating the terminals of neuronal inputs or postsynaptic efferent neurons with a sodium channel activator veratrine. The extracellular glutamate levels were measured by in vivo microdialysis, and the behaviors were assessed with the open field (OF) test in mice simultaneously. The samples were collected every 10 min for 60 min, as basal levels of glutamate. The medium containing drugs were perfused for 30 min. The OF test was performed in the last 10 min of drug perfusion. After the drug treatments, the perfusion medium containing drugs was switched back to perfusion medium without drugs, and then samples were collected for another 90 min. The extracellular glutamate levels were significantly elevated after local perfusion of veratrine in the PL. At the same time, perfusion of veratrine in the PL produced anxiety-like behaviors in mice. Local coperfusion of a sodium channel blocker, lamotrigine, completely diminished the veratrine-induced elevated extracellular glutamate levels and the behavioral changes. Local coperfusion of an NMDA receptor antagonist, MK-801, but not a non-NMDA (AMPA/kainate) receptor antagonist, CNQX, completely diminished the behavioral changes without any effects on the veratrine-induced elevated extracellular glutamate levels. This study demonstrates that the activation of the PL with veratrine induces anxiety-like behaviors via NMDA receptor-mediated glutamatergic neurotransmission in mice. © 2014 Wiley Periodicals, Inc.

  20. The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes.

    PubMed

    Eisenbeis, Janina; Peisker, Henrik; Backes, Christian S; Bur, Stephanie; Hölters, Sebastian; Thewes, Nicolas; Greiner, Markus; Junker, Christian; Schwarz, Eva C; Hoth, Markus; Junker, Kerstin; Preissner, Klaus T; Jacobs, Karin; Herrmann, Mathias; Bischoff, Markus

    2017-02-01

    Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the

  1. Cyanobacterial reuse of extracellular organic carbon in microbial mats

    PubMed Central

    Stuart, Rhona K; Mayali, Xavier; Lee, Jackson Z; Craig Everroad, R; Hwang, Mona; Bebout, Brad M; Weber, Peter K; Pett-Ridge, Jennifer; Thelen, Michael P

    2016-01-01

    Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. PMID:26495994

  2. Granulocytes of reptilian sauropsids contain beta-defensin-like peptides: a comparative ultrastructural survey.

    PubMed

    Alibardi, Lorenzo

    2013-08-01

    The ability of lizards to withstand infections after wounding or amputation of the tail or limbs has suggested the presence of antimicrobial peptides in their tissues. Previous studies on the lizard Anolis carolinensis have identified several beta-defensin-like peptides that may potentially be involved in protection from infections. The present ultrastructural immunocytochemical study has analyzed tissues in different reptilian species in order to localize the cellular source of one of the more expressed beta-defensins previously sequenced in lizard indicated as AcBD15. Beta-defensin-like immunoreactivity is present in some of the larger, nonspecific granules of granulocytes in two lizard species, a snake, the tuatara, and a turtle. The ultrastructural study indicates that only heterophilic and basophilic granulocytes contain this defensin while other cell types from the epidermis, mesenchyme, and dermis, muscles, nerves, cartilage or bone are immunonegative. The study further indicates that not all granules in reptilian granulocytes contain the beta-defensin peptide, suggesting the presence of granules with different content as previously indicated for mammalian neutrophilic leucocytes. No immunolabeling was instead observed in granulocytes of the alligator and chick using this antibody. The present immunocytochemical observations suggest a broad cross-reactivity and conservation of beta-defensin-like sequence or steric motif across lepidosaurians and likely in turtles while archosaurian granulocytes may contain different beta-defensin-like or other peptides. Copyright © 2013 Wiley Periodicals, Inc.

  3. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    PubMed

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  4. Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins.

    PubMed

    Schiera, Gabriella; Di Liegro, Carlo Maria; Puleo, Veronica; Colletta, Oriana; Fricano, Anna; Cancemi, Patrizia; Di Cara, Gianluca; Di Liegro, Italia

    2016-11-01

    Extracellular vesicles (EVs) are now recognized as a fundamental way for cell-to-cell horizontal transfer of properties, in both physiological and pathological conditions. Most of EV-mediated cross-talk among cells depend on the exchange of proteins, and nucleic acids, among which mRNAs, and non-coding RNAs such as different species of miRNAs. Cancer cells, in particular, use EVs to discard molecules which could be dangerous to them (for example differentiation-inducing proteins such as histone H1.0, or antitumor drugs), to transfer molecules which, after entering the surrounding cells, are able to transform their phenotype, and even to secrete factors, which allow escaping from immune surveillance. Herein we report that melanoma cells not only secrete EVs which contain a modified form of H1.0 histone, but also transport the corresponding mRNA. Given the already known role in tumorigenesis of some RNA binding proteins (RBPs), we also searched for proteins of this class in EVs. This study revealed the presence in A375 melanoma cells of at least three RBPs, with apparent MW of about 65, 45 and 38 kDa, which are able to bind H1.0 mRNA. Moreover, we purified one of these proteins, which by MALDI-TOF mass spectrometry was identified as the already known transcription factor MYEF2.

  5. Riluzole in the prelimbic medial prefrontal cortex attenuates veratrine-induced anxiety-like behaviors in mice.

    PubMed

    Ohashi, Masanori; Saitoh, Akiyoshi; Yamada, Misa; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2015-01-01

    We previously demonstrated in mice that the activation of prelimbic medial prefrontal cortex (PL) with the sodium channel activator veratrine induces anxiety-like behaviors via NMDA receptor-mediated glutamatergic neurotransmission. Riluzole directly affects the glutamatergic system and has recently been suggested to have an anxiolytic-like effect in both experimental animals and patients with anxiety disorders. We investigated the effects of co-perfusion of riluzole on veratrine-induced anxiety-like behaviors in mice. Extracellular glutamate levels were measured in 7-week-old male C57BL6 mice by using an in vivo microdialysis-HPLC/ECD system, and behaviors were assessed simultaneously in an open field (OF) test. Basal levels of glutamate were measured by collecting samples every 10 min for 60 min. The medium containing drugs was perfused for 30 min, and the OF test was performed during the last 10 min of drug perfusion. After the drug treatments, the drug-containing medium was switched to perfusion of control medium lacking drugs, and then samples were collected for another 90 min. Riluzole co-perfusion attenuated veratrine-induced increase in extracellular glutamate levels in the PL and completely diminished veratrine-induced anxiety-like behaviors. Interestingly, riluzole perfusion alone in the PL did not affect the basal levels of glutamate and anxiety-like behaviors. Our results suggest that compounds like riluzole that inhibit glutamatergic function in the PL are possible candidates for novel anxiolytics.

  6. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury

    PubMed Central

    Forbes, Lindsey H.

    2018-01-01

    The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554

  7. Heparin-induced conformational changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation.

    PubMed

    Li, Bojun; Lin, Zhe; Mitsi, Maria; Zhang, Yang; Vogel, Viola

    2015-01-01

    An increasing body of evidence suggests important roles of extracellular matrix (ECM) in regulating stem cell fate. This knowledge can be exploited in tissue engineering applications for the design of ECM scaffolds appropriate to direct stem cell differentiation. By probing the conformation of fibronectin (Fn) using fluorescence resonance energy transfer (FRET), we show here that heparin treatment of the fibroblast-derived ECM scaffolds resulted in more extended conformations of fibrillar Fn in ECM. Since heparin is a highly negatively charged molecule while fibronectin contains segments of positively charged modules, including FnIII13, electrostatic interactions between Fn and heparin might interfere with residual quaternary structure in relaxed fibronectin fibers thereby opening up buried sites. The conformation of modules FnIII12-14 in particular, which contain one of the heparin binding sites as well as binding sites for many growth factors, may be activated by heparin, resulting in alterations in growth factor binding to Fn. Indeed, upregulated osteogenic differentiation was observed when hMSCs were seeded on ECM scaffolds that had been treated with heparin and were subsequently chemically fixed. In contrast, either rigidifying relaxed fibers by fixation alone, or heparin treatment without fixation had no effect. We hypothesize that fibronectin's conformations within the ECM are activated by heparin such as to coordinate with other factors to upregulate hMSC osteogenic differentiation. Thus, the conformational changes of fibronectin within the ECM could serve as a 'converter' to tune hMSC differentiation in extracellular matrices. This knowledge could also be exploited to promote osteogenic stem cell differentiation on biomedical surfaces.

  8. Functional transferred DNA within extracellular vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jin; Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province; Wu, Gengze

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmicmore » macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.« less

  9. Insulin and insulin-like growth factor-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Karlisch, Patricia; Shansky, Janet

    1990-01-01

    Skeletal myofibers differentiated from primary avian myoblasts in tissue culture can be maintained in positive nitrogen balance in a serum-free medium for at least 6 to 7 days when embedded in a three dimensional collagen gel matrix. The myofibers are metabolically sensitive to physiological concentrations of insulin but these concentrations do not stimulate cell growth. Higher insulin concentrations stimulate both cell hyperplasia and myofiber hypertrophy. Cell growth results from a long term 42 percent increase in total protein synthesis and a 38 percent increase in protein degradation. Myofiber diameters increase by 71 to 98 percent after 6 to 7 days in insulin-containing medium. Insulin-like growth factor-1 but not insulin-like growth factor-2, at 250 ng/ml, is as effective as insulin in stimulating cell hyperplasia and myofiber hypertrophy. This model system provides a new method for studying the long-term anabolic effects of insulin and insulin-like growth factors on myofiber hypertrophy under defined tissue culture conditions.

  10. Evidence of an Unidentified Extracellular Heat-Stable Factor Produced by Lysobacter enzymogenes (OH11) that Degrade Fusarium graminearum PH1 Hyphae.

    PubMed

    Odhiambo, Benard Omondi; Xu, Gaoge; Qian, Guoliang; Liu, Fengquan

    2017-04-01

    Lysobacter enzymogenes OH11 produces heat-stable antifungal factor (HSAF) and lytic enzymes possessing antifungal activity. This study bio-prospected for other potential antifungal factors besides those above. The cells and extracellular metabolites of L. enzymogenes OH11 and the mutants ΔchiA, ΔchiB, ΔchiC, Δclp, Δpks, and ΔpilA were examined for antifungal activity against Fusarium graminearum PH1, the causal agent of Fusarium head blight (FHB). Results evidenced that OH11 produces an unidentified extracellular heat-stable degrading metabolite (HSDM) that exhibit degrading activity on F. graminearum PH1 chitinous hyphae. Interestingly, both heat-treated and non-heat-treated extracellular metabolites of OH11 mutants exhibited hyphae-degrading activity against F. graminearum PH1. Enzyme activity detection of heat-treated metabolites ruled out the possibility of enzyme degradation activity. Remarkably, the PKS-NRPS-deficient mutant Δpks cannot produce HSAF or analogues, yet its metabolites exhibited hyphae-degrading activity. HPLC analysis confirmed no HSAF production by Δpks. Δclp lacks hyphae-degrading ability. Therefore, clp regulates HSDM and extracellular lytic enzymes production in L. enzymogenes OH11. ΔpilA had impaired surface cell motility and significantly reduced antagonistic properties. ΔchiA, ΔchiB, and ΔchiC retained hyphae-degrading ability, despite having reduced abilities to produce chitinase enzymes. Ultimately, L. enzymogenes OH11 can produce other unidentified HSDM independent of the PKS-NRPS genes. This suggests HSAF and lytic enzymes production are a fraction of the antifungal mechanisms in OH11. Characterization of HSDM, determination of its biosynthetic gene cluster and understanding its mode of action will provide new leads in the search for effective drugs for FHB management.

  11. FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1

    PubMed Central

    Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  12. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules.

    PubMed

    Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter

    2006-05-01

    Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.

  13. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    PubMed Central

    Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawaguchi, Tomohiro; O'Neill, Keith; Khan, Haumith; Liau, Linda M; Nelson, Stanley F; Rao, P. Nagesh; Mischel, Paul; Pieper, Russell O; Cloughesy, Tim; Leahy, Daniel J; Sellers, William R; Sawyers, Charles L; Meyerson, Matthew; Mellinghoff, Ingo K

    2006-01-01

    Background Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma. PMID:17177598

  14. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons.

    PubMed

    Lindén, Henrik; Hagen, Espen; Lęski, Szymon; Norheim, Eivind S; Pettersen, Klas H; Einevoll, Gaute T

    2013-01-01

    Electrical extracellular recordings, i.e., recordings of the electrical potentials in the extracellular medium between cells, have been a main work-horse in electrophysiology for almost a century. The high-frequency part of the signal (≳500 Hz), i.e., the multi-unit activity (MUA), contains information about the firing of action potentials in surrounding neurons, while the low-frequency part, the local field potential (LFP), contains information about how these neurons integrate synaptic inputs. As the recorded extracellular signals arise from multiple neural processes, their interpretation is typically ambiguous and difficult. Fortunately, a precise biophysical modeling scheme linking activity at the cellular level and the recorded signal has been established: the extracellular potential can be calculated as a weighted sum of all transmembrane currents in all cells located in the vicinity of the electrode. This computational scheme can considerably aid the modeling and analysis of MUA and LFP signals. Here, we describe LFPy, an open source Python package for numerical simulations of extracellular potentials. LFPy consists of a set of easy-to-use classes for defining cells, synapses and recording electrodes as Python objects, implementing this biophysical modeling scheme. It runs on top of the widely used NEURON simulation environment, which allows for flexible usage of both new and existing cell models. Further, calculation of extracellular potentials using the line-source-method is efficiently implemented. We describe the theoretical framework underlying the extracellular potential calculations and illustrate by examples how LFPy can be used both for simulating LFPs, i.e., synaptic contributions from single cells as well a populations of cells, and MUAs, i.e., extracellular signatures of action potentials.

  15. Krüppel-like factors: three fingers in control.

    PubMed

    Swamynathan, Shivalingappa K

    2010-04-01

    Krüppel-like factors (KLFs), members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.

  16. Lipid-load in peripheral blood mononuclear cells: Impact of food-consumption, dietary-macronutrients, extracellular lipid availability and demographic factors.

    PubMed

    Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen

    2017-04-01

    Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    PubMed Central

    Roll, Lars; Faissner, Andreas

    2014-01-01

    The limited regeneration capacity of the adult central nervous system (CNS) requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation. In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP) and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo. As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM), a complex network that contains numerous signaling molecules. It appears that signals in the damaged CNS lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C (TN-C). Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section. PMID:25191223

  18. Fibrocyte-like cells recruited to the spleen support innate and adaptive immune responses to acute injury or infection

    PubMed Central

    von Köckritz-Blickwede, Maren; Reichart, Donna; McGillvray, Shauna M.; Wingender, Gerhard; Kronenberg, Mitchell; Glass, Christopher K.; Nizet, Victor; Brenner, David A.

    2011-01-01

    Bone marrow (BM)-derived fibrocytes are a population of CD45+ and collagen Type I-expressing cells that migrate to the spleen and to target injured organs, such as skin, lungs, kidneys, and liver. While CD45+Col+ fibrocytes contribute to collagen deposition at the site of injury, the role of CD45+Col+ cells in spleen has not been elucidated. Here, we demonstrate that hepatotoxic injury (CCl4), TGF-β1, lipopolysaccharide, or infection with Listeria monocytogenes induce rapid recruitment of CD45+Col+ fibrocyte-like cells to the spleen. These cells have a gene expression pattern that includes antimicrobial factors (myleoperoxidase, cathelicidin, and defensins) and MHC II at higher levels than found on quiescent or activated macrophages. The immune functions of these splenic CD45+Col+ fibrocyte-like cells include entrapment of bacteria into extracellular DNA-based structures containing cathelicidin and presentation of antigens to naïve CD8+ T cells to induce their proliferation. Stimulation of these splenic fibrocyte-like cells with granulocyte macrophage-colony stimulating factor or macrophage-colony stimulating factor induces downregulation of collagen expression and terminal differentiation into the dendritic cells or macrophage. Thus, splenic CD45+Col+ cells are a population of rapidly mobilized BM-derived fibrocyte-like cells that respond to inflammation or infection to participate in innate and adaptive immune responses. PMID:21499735

  19. Extracellular enzyme kinetics scale with resource availability

    USGS Publications Warehouse

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  20. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity.

    PubMed

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min

    2015-08-01

    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  1. Pirfenidone inhibits transforming growth factor β1-induced extracellular matrix production in nasal polyp-derived fibroblasts.

    PubMed

    Shin, Jae-Min; Park, Joo-Hoo; Park, Il-Ho; Lee, Heung-Man

    2015-01-01

    Pirfenidone has been shown to have antifibrotic and anti-inflammatory effects in the lungs. The purpose of this study was to evaluate the inhibitory effects of pirfenidone on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and extracellular matrix accumulation. We also determined the molecular mechanisms of pirfenidone in nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from nasal polyps from eight patients who had chronic rhinosinusitis with nasal polyp. Pirfenidone was used to treat TGF-β1-induced NPDFs. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Fibroblast migration was evaluated with scratch assays. Expression levels of α-smooth muscle actin (SMA), fibronectin, and phosphorylated Smad2/3 were determined by Western blot and/or reverse transcription-polymerase chain reaction and immunofluorescent staining. Total collagen production was analyzed with the Sircol collagen assay and contractile activity was measured by a collagen gel contraction assay. Pirfenidone (0-2 mg/mL) has no significant cytotoxic effects in TGF-β1-induced NPDFs. Migration of NPDFs was significantly inhibited by pirfenidone treatment. The expression levels of α-SMA and fibronectin were significantly reduced in pirfenidone-treated NPDFs. Collagen contraction and production were also significantly decreased by pirfenidone treatment. Finally, pirfenidone significantly inhibited phosphorylation of the Smad2/3 pathway in TGF-β1-induced NPDFs. Pirfenidone has an inhibitory effect on TGF-β1-induced migration, myofibroblast differentiation (α-SMA), extracellular matrix accumulation, and collagen contraction by blocking the phosphorylation of Smad2/3 pathways in NPDFs. Thus, pirfenidone may inhibit TGF-β1-induced extracellular matrix by regulating Smad2/3.

  2. The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs

    PubMed Central

    Hoopes, Barbara C.; Rimbault, Maud; Liebers, David; Ostrander, Elaine A.

    2012-01-01

    Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs. PMID:22903739

  3. Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p

    PubMed Central

    Wu, Boqian; Ottow, Kim; Poulsen, Peter; Gaber, Richard F.; Albers, Eva; Kielland-Brandt, Morten C.

    2006-01-01

    Recent studies of Saccharomyces cerevisiae revealed sensors that detect extracellular amino acids (Ssy1p) or glucose (Snf3p and Rgt2p) and are evolutionarily related to the transporters of these nutrients. An intriguing question is whether the evolutionary transformation of transporters into nontransporting sensors reflects a homeostatic capability of transporter-like sensors that could not be easily attained by other types of sensors. We previously found SSY1 mutants with an increased basal level of signaling and increased apparent affinity to sensed extracellular amino acids. On this basis, we propose and test a general model for transporter- like sensors in which occupation of a single, central ligand binding site increases the activation energy needed for the conformational shift between an outward-facing, signaling conformation and an inward-facing, nonsignaling conformation. As predicted, intracellular leucine accumulation competitively inhibits sensing of extracellular amino acids. Thus, a single sensor allows the cell to respond to changes in nutrient availability through detection of the relative concentrations of intra- and extracellular ligand. PMID:16651382

  4. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps.

    PubMed

    Jansen, Marcel P B; Emal, Diba; Teske, Gwendoline J D; Dessing, Mark C; Florquin, Sandrine; Roelofs, Joris J T H

    2017-02-01

    Acute kidney injury is often the result of ischemia reperfusion injury, which leads to activation of coagulation and inflammation, resulting in necrosis of renal tubular epithelial cells. Platelets play a central role in coagulation and inflammatory processes, and it has been shown that platelet activation exacerbates acute kidney injury. However, the mechanism of platelet activation during ischemia reperfusion injury and how platelet activation leads to tissue injury are largely unknown. Here we found that renal ischemia reperfusion injury in mice leads to increased platelet activation in immediate proximity of necrotic cell casts. Furthermore, platelet inhibition by clopidogrel decreased cell necrosis and inflammation, indicating a link between platelet activation and renal tissue damage. Necrotic tubular epithelial cells were found to release extracellular DNA, which, in turn, activated platelets, leading to platelet-granulocyte interaction and formation of neutrophil extracellular traps ex vivo. Renal ischemia reperfusion injury resulted in increased DNA-platelet and DNA-platelet-granulocyte colocalization in tissue and elevated levels of circulating extracellular DNA and platelet factor 4 in mice. After renal ischemia reperfusion injury, neutrophil extracellular traps were formed within renal tissue, which decreased when mice were treated with the platelet inhibitor clopidogrel. Thus, during renal ischemia reperfusion injury, necrotic cell-derived DNA leads to platelet activation, platelet-granulocyte interaction, and subsequent neutrophil extracellular trap formation, leading to renal inflammation and further increase in tissue injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. Extracellular proteases of Trichoderma species. A review.

    PubMed

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.

  6. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains.

    PubMed

    Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J; Steen, Andrew D

    2018-01-01

    Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N -terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases.

  7. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains

    PubMed Central

    Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J.; Steen, Andrew D.

    2018-01-01

    Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N-terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases. PMID:29559961

  8. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    PubMed Central

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-01-01

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology. PMID:27775594

  9. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential.

    PubMed

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-10-20

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  10. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, In-Gyu, E-mail: igkim@kaeri.re.kr; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology; Lee, Jae-Ha

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancermore » cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.« less

  11. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  12. The Penicillium Chrysogenum Extracellular Proteome. Conversion from a Food-rotting Strain to a Versatile Cell Factory for White Biotechnology*

    PubMed Central

    Jami, Mohammad-Saeid; García-Estrada, Carlos; Barreiro, Carlos; Cuadrado, Abel-Alberto; Salehi-Najafabadi, Zahra; Martín, Juan-Francisco

    2010-01-01

    The filamentous fungus Penicillium chrysogenum is well-known by its ability to synthesize β-lactam antibiotics as well as other secondary metabolites. Like other filamentous fungi, this microorganism is an excellent host for secretion of extracellular proteins because of the high capacity of its protein secretion machinery. In this work, we have characterized the extracellular proteome reference map of P. chrysogenum Wisconsin 54–1255 by two-dimensional gel electrophoresis. This method allowed the correct identification of 279 spots by peptide mass fingerprinting and tandem MS. These 279 spots included 328 correctly identified proteins, which corresponded to 131 different proteins and their isoforms. One hundred and two proteins out of 131 were predicted to contain either classical or nonclassical secretion signal peptide sequences, providing evidence of the authentic extracellular location of these proteins. Proteins with higher representation in the extracellular proteome were those involved in plant cell wall degradation (polygalacturonase, pectate lyase, and glucan 1,3-β-glucosidase), utilization of nutrients (extracellular acid phosphatases and 6-hydroxy-d-nicotine oxidase), and stress response (catalase R). This filamentous fungus also secretes enzymes specially relevant for food industry, such as sulfydryl oxidase, dihydroxy-acid dehydratase, or glucoamylase. The identification of several antigens in the extracellular proteome also highlights the importance of this microorganism as one of the main indoor allergens. Comparison of the extracellular proteome among three strains of P. chrysogenum, the wild-type NRRL 1951, the Wis 54–1255 (an improved, moderate penicillin producer), and the AS-P-78 (a penicillin high-producer), provided important insights to consider improved strains of this filamentous fungus as versatile cell-factories of interest, beyond antibiotic production, for other aspects of white biotechnology. PMID:20823121

  13. Surface presentation of biochemical cues for stem cell expansion - Spatial distribution of growth factors and self-assembly of extracellular matrix

    NASA Astrophysics Data System (ADS)

    Liu, Xingyu

    Despite its great potential applications to stem cell technology and tissue engineering, matrix presentation of biochemical cues such as growth factors and extracellular matrix (ECM) components remains undefined. This is largely due to the difficulty in preserving the bioactivities of signaling molecules and in controlling the spatial distribution, cellular accessibility, molecular orientation and intermolecular assembly of the biochemical cues. This dissertation comprises of two parts that focuses on understanding surface presentation of a growth factor and ECM components, respectively. This dissertation addresses two fundamental questions in stem cell biology using two biomaterials platforms. How does nanoscale distribution of growth factor impact signaling activation and cellular behaviors of adult neural stem cells? How does ECM self-assembly impact human embryonic stem cell survival and proliferation? The first question was addressed by the design of a novel quantitative platform that allows the control of FGF-2 molecular presentation locally as either monomers or clusters when tethered to a polymeric substrate. This substrate-tethered FGF-2 enables a switch-like signaling activation in response to dose titration of FGF-2. This is in contrast to a continuous MAPK activation pattern elicited by soluble FGF-2. Consequently, cell proliferation, and spreading were also consistent with this FGF-2 does-response pattern. We demonstrated that the combination of FGF-2 concentration and its cluster size, rather than concentration alone, serves as the determinants to govern its biological effect on neural stem cells. The second part of this dissertation was inspired by the challenge that hESCs have extremely low clonal efficiency and hESC survival is critically dependent on cell substrate adhesion. We postulated that ECM integrity is a critical factor in preventing hESC anchorage-dependent apoptosis, and that the matrix for feeder-free culture need to be properly

  14. IMMUNE DIFFUSION ANALYSIS OF THE EXTRACELLULAR SOLUBLE ANTIGENS OF TWO STRAINS OF RHIZOBIUM MELILOTI

    PubMed Central

    Dudman, W. F.

    1964-01-01

    Dudman, W. F. (Commonwealth Scientific and Industrial Research Organization, Canberra, Australia). Immune diffusion analysis of the extracellular soluble antigens of two strains of Rhizobium meliloti. J. Bacteriol. 88:782–794. 1964.—Immune diffusion techniques applied to cultures of two strains of Rhizobium meliloti grown in liquid defined medium showed the presence of multiple antigens. Improved resolution of precipitin patterns was obtained with concentrated antigens separated from the cultures as the extracellular soluble fraction or as suspensions of washed cells. The extracellular fraction contained the same diffusible antigens as the washed cells, but additional antigens were found in the cells after ultrasonic disruption. The extracellular soluble antigens were shown by analysis to contain polysaccharide and protein components. In immune diffusion systems, they gave rise to three groups of precipitin bands, two of which were characterized as polysaccharides by their susceptibility to periodate oxidation, and the third as protein by its lability to heat. All the extracellular antigens of both strains were shared except a fast-diffusing polysaccharide, which was specific for each strain. Despite the sharing of all but one of their antigens, cells of these strains showed only a low degree of cross-agglutination, suggesting that their surfaces are dominated by the specific polysaccharide. No differences could be found in the composition of the polysaccharides in the unfractionated extracellular antigens of the two strains, the main components of which were glucose (66%) and galactose (12%) in the presence of several other unidentified sugars in smaller amounts. The pattern of precipitin bands produced in immune diffusion systems by the extracellular soluble fraction could be changed by altering the cultural conditions. Images PMID:14208519

  15. Liarozole inhibits transforming growth factor-β3–mediated extracellular matrix formation in human three-dimensional leiomyoma cultures

    PubMed Central

    Levy, Gary; Malik, Minnie; Britten, Joy; Gilden, Melissa; Segars, James; Catherino, William H.

    2014-01-01

    Objective To investigate the impact of liarozole on transforming growth factor-β3 (TGF-β3) expression, TGF-β3 controlled profibrotic cytokines, and extracellular matrix formation in a three-dimensional (3D) leiomyoma model system. Design Molecular and immunohistochemical analysis in a cell line evaluated in a three-dimensional culture. Setting Laboratory study. Patient(s) None. Intervention(s) Treatment of leiomyoma and myometrial cells with liarozole and TGF-β3 in a three-dimensional culture system. Main Outcome Measure(s) Quantitative real-time reverse-transcriptase polymerase chain reaction and Western blotting to assess fold gene and protein expression of TGF-β3 and TGF-β3 regulated fibrotic cytokines: collagen 1A1 (COL1A1), fibronectin, and versican before and after treatment with liarozole, and confirmatory immunohistochemical stains of treated three-dimensional cultures. Result(s) Both TGF-β3 gene and protein expression were elevated in leiomyoma cells compared with myometrium in two-dimensional and 3D cultures. Treatment with liarozole decreased TGF-β3 gene and protein expression. Extracellular matrix components versican, COL1A1, and fibronectin were also decreased by liarozole treatment in 3D cultures. Treatment of 3D cultures with TGF-β3 increased gene expression and protein production of COL1A1, fibronectin, and versican. Conclusion(s) Liarozole decreased TGF-β3 and TGF-β3–mediated extracellular matrix expression in a 3D uterine leiomyoma culture system. PMID:24825427

  16. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  17. Content and persistence of extracellular DNA in native soils

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-05-01

    The long-term persistence of soil extracellular DNA is questionable because of high potential activity of nucleases produced by soil microorganisms. By the other hand, the relative persistence of DNA-like biopolymers could be due to their adsorption on clay minerals and humus substances in soil. High-specific and ultra sensitive reagent PicoGreenTM (Molecular Probes) permits the quantitative assessment of microbial dsDNA in diluted soil extracts giving a good tool for tracing the DNA fate in soil. Our goal was to determine intracellular and extracellular DNA content in cambisol (loamy sand) and in chernozem (silty loam) soils and to investigate the possible adsorption and degradation of extracellular DNA in soil. Optimized procedure of mechanical and enzymatic destruction of cell walls was used for direct extraction of microbial DNA with Tris-EDTA buffer (Blagodatskaya et al., 2003). Extracellular dsDNA was determined in distilled water and in Tris-EDTA extracts without enzymatic or mechanical treatments. DNA content was determined after addition of PicoGreen to diluted soil extracts. Degradation of extracellular DNA was traced during 24 h incubation of 2 µg lambda-phage DNA in soil. Possible DNA adsorption to soil matrix was determined by recovery of lambda -phage DNA added to autoclaved soil. Extracellular dsDNA was absent in water extracts of both soils. The content of extracellular dsDNA extracted by Tris-EDTA buffer was 0.46 µg/g in chernozem and 1.59 µg/g in cambisol amounting 0.43 and 2.8% of total dsDNA content in these soils, respectively. 100% and 64.8% of added extracellular lambda -phage dsDNA was found in cambisol and chernozem soils, respectively, in 5 h after application. 39% and 73.5% of added DNA disappeared in cambisol and in chernozem, respectively, during 24 h incubation. Degradation rate of extracellular DNA depended on microbial biomass content, which was 2.5 times higher in chernozem as compared to cambisol. Maximum adsorption of DNA by

  18. Impact of extracellularity on the evolutionary rate of mammalian proteins.

    PubMed

    Liao, Ben-Yang; Weng, Meng-Pin; Zhang, Jianzhi

    2010-01-06

    It is of fundamental importance to understand the determinants of the rate of protein evolution. Eukaryotic extracellular proteins are known to evolve faster than intracellular proteins. Although this rate difference appears to be due to the lower essentiality of extracellular proteins than intracellular proteins in yeast, we here show that, in mammals, the impact of extracellularity is independent from the impact of gene essentiality. Our partial correlation analysis indicated that the impact of extracellularity on mammalian protein evolutionary rate is also independent from those of tissue-specificity, expression level, gene compactness, and the number of protein-protein interactions and, surprisingly, is the strongest among all the factors we examined. Similar results were also found from principal component regression analysis. Our findings suggest that different rules govern the pace of protein sequence evolution in mammals and yeasts.

  19. Factors controlling induction of reproduction in algae--review: the text.

    PubMed

    Agrawal, S C

    2012-09-01

    This review surveys on the influence of different environmental factors like light (intensity, quality, photoperiod), temperature, season, nutrients (inorganic, organic), biotic factors (algal extracellular products, bacterial association, animals grazing), osmotic stress, pH of the medium, wave motion and mechanical shock, pollution, and radiations (UV, X-rays, gamma radiation) on the induction (or inhibition) of algal reproduction like cell division in unicellular algae, and formation of zoospores, aplanospores, akinetes, cysts, antheridia, oogonia, zygospores, etc.

  20. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  1. Brain Extracellular Space: The Final Frontier of Neuroscience.

    PubMed

    Nicholson, Charles; Hrabětová, Sabina

    2017-11-21

    Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Proton Form Factors Measurements in the Time-Like Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anulli, F.; /Frascati

    2007-10-22

    I present an overview of the measurement of the proton form factors in the time-like region. BABAR has recently measured with great accuracy the e{sup +}e{sup -} {yields} p{bar p} reaction from production threshold up to an energy of {approx} 4.5 GeV, finding evidence for a ratio of the electric to magnetic form factor greater than unity, contrary to expectation. In agreement with previous measurements, BABAR confirmed the steep rise of the magnetic form factor close to the p{bar p} mass threshold, suggesting the possible presence of an under-threshold N{bar N} vector state. These and other open questions related tomore » the nucleon form factors both in the time-like and space-like region, wait for more data with different experimental techniques to be possibly solved.« less

  3. pSK41-Like Plasmid Is Necessary for Inc18-Like vanA Plasmid Transfer from Enterococcus faecalis to Staphylococcus aureus In Vitro

    PubMed Central

    Clark, Nancye; Patel, Jean B.

    2013-01-01

    Vancomycin-resistant Staphylococcus aureus (VRSA) is thought to result from the in vivo conjugative transfer of a vanA plasmid from an Enterococcus sp. to S. aureus. We studied bacterial isolates from VRSA cases that occurred in the United States to identify microbiological factors which may contribute to this plasmid transfer. First, vancomycin-susceptible, methicillin-resistant S. aureus (MRSA) isolates from five VRSA cases were tested for their ability to accept foreign DNA by conjugation in mating experiments with Enterococcus faecalis JH2-2 containing pAM378, a pheromone-response conjugative plasmid. All of the MRSA isolates accepted the plasmid DNA with similar transfer efficiencies (∼10−7/donor CFU) except for one isolate, MRSA8, for which conjugation was not successful. The MRSA isolates were also tested as recipients in mating experiments between an E. faecalis isolate with an Inc18-like vanA plasmid that was isolated from a VRSA case patient. Conjugative transfer was successful for 3/5 MRSA isolates. Successful MRSA recipients carried a pSK41-like plasmid, a staphylococcal conjugative plasmid, whereas the two unsuccessful MRSA recipients did not carry pSK41. The transfer of a pSK41-like plasmid from a successful MRSA recipient to the two unsuccessful recipients resulted in conjugal transfer of the Inc18-like vanA plasmid from E. faecalis at a frequency of 10−7/recipient CFU. In addition, conjugal transfer could be achieved for pSK41-negative MRSA in the presence of a cell-free culture filtrate from S. aureus carrying a pSK41-like plasmid at a frequency of 10−8/recipient CFU. These results indicated that a pSK41-like plasmid can facilitate the transfer of an Inc18-like vanA plasmid from E. faecalis to S. aureus, possibly via an extracellular factor produced by pSK41-carrying isolates. PMID:23089754

  4. Bio-inspired benchmark generator for extracellular multi-unit recordings

    PubMed Central

    Mondragón-González, Sirenia Lizbeth; Burguière, Eric

    2017-01-01

    The analysis of multi-unit extracellular recordings of brain activity has led to the development of numerous tools, ranging from signal processing algorithms to electronic devices and applications. Currently, the evaluation and optimisation of these tools are hampered by the lack of ground-truth databases of neural signals. These databases must be parameterisable, easy to generate and bio-inspired, i.e. containing features encountered in real electrophysiological recording sessions. Towards that end, this article introduces an original computational approach to create fully annotated and parameterised benchmark datasets, generated from the summation of three components: neural signals from compartmental models and recorded extracellular spikes, non-stationary slow oscillations, and a variety of different types of artefacts. We present three application examples. (1) We reproduced in-vivo extracellular hippocampal multi-unit recordings from either tetrode or polytrode designs. (2) We simulated recordings in two different experimental conditions: anaesthetised and awake subjects. (3) Last, we also conducted a series of simulations to study the impact of different level of artefacts on extracellular recordings and their influence in the frequency domain. Beyond the results presented here, such a benchmark dataset generator has many applications such as calibration, evaluation and development of both hardware and software architectures. PMID:28233819

  5. A tissue-like culture system using microstructures: influence of extracellular matrix material on cell adhesion and aggregation.

    PubMed

    Knedlitschek, G; Schneider, F; Gottwald, E; Schaller, T; Eschbach, E; Weibezahn, K F

    1999-02-01

    Special microenvironmental conditions are required to induce and/or maintain specific qualities of differentiated cells. An important parameter is the three-dimensional tissue architecture that cannot be reproduced in conventional monolayer systems. Advanced tissue culture systems will meet many of these demands, but may reach their limits, especially when gradients of specific substances over distinct tissue layers must be established for long-term culture. These limitations may be overcome by incorporating microstructures into tissue-like culture systems. The microstructured cell support presented consists of a flat array of 625 cubic microcontainers with porous bottoms, in which cells can be supplied with specific media from both sides of the tissue layer. Permanent cell lines and primary rat hepatocytes have been used to test the culture system. In order to define reproducible conditions for tissue formation and for cell adherence to the structure, several ECM (extracellular matrix) components were tested for coating of microstructured substrata. The described tissue culture system offers great flexibility in adapting the cell support to specific needs.

  6. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes.

    PubMed

    Beckett, Karen; Monier, Solange; Palmer, Lucy; Alexandre, Cyrille; Green, Hannah; Bonneil, Eric; Raposo, Graca; Thibault, Pierre; Le Borgne, Roland; Vincent, Jean-Paul

    2013-01-01

    Wingless acts as a morphogen in Drosophila wing discs, where it specifies cell fates and controls growth several cell diameters away from its site of expression. Thus, despite being acylated and membrane associated, Wingless spreads in the extracellular space. Recent studies have focussed on identifying the route that Wingless follows in the secretory pathway and determining how it is packaged for release. We have found that, in medium conditioned by Wingless-expressing Drosophila S2 cells, Wingless is present on exosome-like vesicles and that this fraction activates signal transduction. Proteomic analysis shows that Wingless-containing exosome-like structures contain many Drosophila proteins that are homologous to mammalian exosome proteins. In addition, Evi, a multipass transmembrane protein, is also present on exosome-like vesicles. Using these exosome markers and a cell-based RNAi assay, we found that the small GTPase Rab11 contributes significantly to exosome production. This finding allows us to conclude from in vivo Rab11 knockdown experiments, that exosomes are unlikely to contribute to Wingless secretion and gradient formation in wing discs. Consistent with this conclusion, extracellularly tagged Evi expressed from a Bacterial Artificial Chromosome is not released from imaginal disc Wingless-expressing cells. © 2012 John Wiley & Sons A/S.

  7. Assessment of extracellular dehydration using saliva osmolality.

    PubMed

    Ely, Brett R; Cheuvront, Samuel N; Kenefick, Robert W; Spitz, Marissa G; Heavens, Kristen R; Walsh, Neil P; Sawka, Michael N

    2014-01-01

    When substantial solute losses accompany body water an isotonic hypovolemia (extracellular dehydration) results. The potential for using blood or urine to assess extracellular dehydration is generally poor, but saliva is not a simple ultra-filtrate of plasma and the autonomic regulation of salivary gland function suggests the possibility that saliva osmolality (Sosm) may afford detection of extracellular dehydration via the influence of volume-mediated factors. This study aimed to evaluate the assessment of extracellular dehydration using Sosm. In addition, two common saliva collection methods and their effects on Sosm were compared. Blood, urine, and saliva samples were collected in 24 healthy volunteers during paired euhydration and dehydration trials. Furosemide administration and 12 h fluid restriction were used to produce extracellular dehydration. Expectoration and salivette collection methods were compared in a separate group of eight euhydrated volunteers. All comparisons were made using paired t-tests. The diagnostic potential of body fluids was additionally evaluated. Dehydration (3.1 ± 0.5% loss of body mass) decreased PV (-0.49 ± 0.12 L; -15.12 ± 3.94% change), but Sosm changes were marginal (<10 mmol/kg) and weakly correlated with changes in absolute or relative PV losses. Overall diagnostic accuracy was poor (AUC = 0.77-0.78) for all body fluids evaluated. Strong agreement was observed between Sosm methods (Expectoration: 61 ± 10 mmol/kg, Salivette: 61 ± 8 mmol/kg, p > 0.05). Extracelluar dehydration was not detectable using plasma, urine, or saliva measures. Salivette and expectoration sampling methods produced similar, consistent results for Sosm, suggesting no methodological influence on Sosm.

  8. Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability

    PubMed Central

    Redmile-Gordon, M.A.; Evershed, R.P.; Hirsch, P.R.; White, R.P.; Goulding, K.W.T.

    2015-01-01

    An emerging paradigm in soil science suggests microbes can perform ‘N mining’ from recalcitrant soil organic matter (SOM) in conditions of low N availability. However, this requires the production of extracellular structures rich in N (including enzymes and structural components) and thus defies stoichiometric expectation. We set out to extract newly synthesised peptides from the extracellular matrix in soil and compare the amino acid (AA) profiles, N incorporation and AA dynamics in response to labile inputs of contrasting C/N ratio. Glycerol was added both with and without an inorganic source of N (10% 15N labelled NH4NO3) to a soil already containing a large pool of refractory SOM and incubated for 10 days. The resulting total soil peptide (TSP) and extracellular pools were compared using colorimetric methods, gas chromatography, and isotope ratio mass spectrometry. N isotope compositions showed that the extracellular polymeric substance (EPS) contained a greater proportion of products formed de novo than did TSP, with hydrophobic EPS-AAs (leucine, isoleucine, phenylalanine, hydroxyproline and tyrosine) deriving substantially more N from the inorganic source provided. Quantitative comparison between extracts showed that the EPS contained greater relative proportions of alanine, glycine, proline, phenylalanine and tyrosine. The greatest increases in EPS-peptide and EPS-polysaccharide concentrations occurred at the highest C/N ratios. All EPS-AAs responded similarly to treatment whereas the responses of TSP were more complex. The results suggest that extracellular investment of N (as EPS peptides) is a microbial survival mechanism in conditions of low N/high C which, from an evolutionary perspective, must ultimately lead to the tendency for increased N returns to the microbial biomass. A conceptual model is proposed that describes the dynamics of the extracellular matrix in response to the C/N ratio of labile inputs. PMID:26339106

  9. Involvement of extracellular factors in maintaining self-renewal of neural stem cell by nestin.

    PubMed

    Di, Chun Guang; Xiang, Andy Peng; Jia, Lei; Liu, Jun Feng; Lahn, Bruce T; Ma, Bao Feng

    2014-07-09

    Nestin knockout leads to embryonic lethality and self-renewal deficiency in neural stem cells (NSCs). However, how nestin maintains self-renewal remains uncertain. Here, we used the dosage effect of nestin in heterozygous mice (Nes+/-) to study self-renewal of NSCs. With existing extracellular signaling in vivo or in vitro, nestin levels do not affect proliferation ability or apoptosis when compared between Nes+/- and Nes+/+ NSCs. However, self-renewal ability of Nes+/- NSCs is impaired when plated at a low cell density and completely lost at a clonal density. This deficiency in self-renewal at a clonal density is rescued using a medium conditioned by Nes+/+ NSCs. In addition, the Akt signaling pathway is altered at low density and reversed by conditioned medium. Our data show that secreted factors contribute toward maintaining self-renewal of NSCs by nestin, potentially through Akt signaling.

  10. Diversification of the insulin-like growth factor 1 gene in mammals.

    PubMed

    Rotwein, Peter

    2017-01-01

    Insulin-like growth factor 1 (IGF1), a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.

  11. Acidic Extracellular pH Promotes Activation of Integrin αvβ3

    PubMed Central

    Paradise, Ranjani K.; Lauffenburger, Douglas A.; Van Vliet, Krystyn J.

    2011-01-01

    Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin αvβ3. Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the αvβ3 headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin αvβ3 on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer. PMID:21283814

  12. Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2-related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning.

    PubMed

    Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong

    2017-03-01

    The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like

  13. Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages.

    PubMed

    Hellenbrand, Katrina M; Forsythe, Katelyn M; Rivera-Rivas, Jose J; Czuprynski, Charles J; Aulik, Nicole A

    2013-01-01

    Histophilus somni (formerly Haemophilus somnus) is a Gram-negative pleomorphic coccobacillus that causes respiratory, reproductive, cardiac and neuronal diseases in cattle. H. somni is a member of the bovine respiratory disease complex that causes severe bronchopneumonia in cattle. Previously, it has been reported that bovine neutrophils and macrophages have limited ability to phagocytose and kill H. somni. Recently, it was discovered that bovine neutrophils and macrophages produce extracellular traps in response to Mannheimia haemolytica, another member of the bovine respiratory disease complex. In this study, we demonstrate that H. somni also causes extracellular trap production by bovine neutrophils in a dose- and time-dependent manner, which did not coincide with the release of lactate dehydrogenase, a marker for necrosis. Neutrophil extracellular traps were produced in response to outer membrane vesicles, but not lipooligosacchride alone. Using scanning electron microscopy and confocal microscopy, we observed H. somni cells trapped within a web-like structure. Further analyses demonstrated that bovine neutrophils trapped and killed H. somni in a DNA-dependent manner. Treatment of DNA extracellular traps with DNase I freed H. somni cells and diminished bacterial death. Treatment of bovine monocyte-derived macrophages with H. somni cells also caused macrophage extracellular trap formation. These findings suggest that extracellular traps may play a role in the host response to H. somni infection in cattle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins.

    PubMed Central

    Lopez, I; Anthony, R G; Maciver, S K; Jiang, C J; Khan, S; Weeds, A G; Hussey, P J

    1996-01-01

    In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8693008

  15. Expression of extracellular calcium (Ca2 + o)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Kifor, O.; Chattopadhyay, N.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2 + o) homeostasis in parathyroid gland and kidney. More recent data have suggested the presence of this receptor in additional tissues, such as brain, intestine and skin. In this study, we examined the expression of the CaR in the rat and human osteosarcoma cell lines, UMR-106 and SAOS-2, respectively, which possess osteoblast-like characteristics. Both immunocytochemistry and Western blot analysis, using a polyclonal antiserum specific for the CaR, detected CaR protein in UMR-106 and SAOS-2 cells. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in each cell line. Therefore, taken together, our data strongly suggest that the osteoblast-like cell lines, UMR-106 and SAOS-2, possess both CaR protein and mRNA very similar if not identical to those in parathyroid and kidney.

  16. Extracellular matrix directions estimation of the heart on micro-focus x-ray CT volumes

    NASA Astrophysics Data System (ADS)

    Oda, Hirohisa; Oda, Masahiro; Kitasaka, Takayuki; Akita, Toshiaki; Mori, Kensaku

    2017-03-01

    In this paper we propose an estimation method of extracellular matrix directions of the heart. Myofiber are surrounded by the myocardial cell sheets whose directions have strong correspondence between heart failure. Estimation of the myocardial cell sheet directions is difficult since they are very thin. Therefore, we estimate the extracellular matrices which are touching to the sheets as if piled up. First, we perform a segmentation of the extracellular matrices by using the Hessian analysis. Each extracellular matrix region has sheet-like shape. We estimate the direction of each extracellular matrix region by the principal component analysis (PCA). In our experiments, mean inclination angles of two normal canine hearts were 50.6 and 46.2 degrees, while the angle of a failing canine heart was 57.4 degrees. This results well fit the anatomical knowledge that failing hearts tend to have vertical myocardical cell sheets.

  17. LOXL4 Is Induced by Transforming Growth Factor β1 through Smad and JunB/Fra2 and Contributes to Vascular Matrix Remodeling

    PubMed Central

    Busnadiego, Oscar; González-Santamaría, José; Lagares, David; Guinea-Viniegra, Juan; Pichol-Thievend, Cathy; Muller, Laurent

    2013-01-01

    Transforming growth factor β1 (TGF-β1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-β1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-β1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-β1 to induce LOXL4 expression. Functional cooperation between Smad proteins and the AP-1 complex composed of JunB/Fra2 accounted for the action of TGF-β1, which involved the extracellular signal-regulated kinase (ERK)-dependent phosphorylation of Fra2. We furthermore provide evidence that LOXL4 was extracellularly secreted and significantly contributed to ECM deposition and assembly. These results suggest that TGF-β1-dependent expression of LOXL4 plays a role in vascular ECM homeostasis, contributing to vascular processes associated with ECM remodeling and fibrosis. PMID:23572561

  18. Role of MUC4-NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells

    PubMed Central

    Senapati, Shantibhusan; Gnanapragassam, Vinayaga Srinivasan; Moniaux, Nicolas; Momi, Navneet; Batra, Surinder K.

    2011-01-01

    MUC4 is a large transmembrane type I glycoprotein that is overexpressed in pancreatic cancer (PC) and has been shown to be associated with its progression and metastasis. However, the exact cellular and molecular mechanism(s) through which MUC4 promotes metastasis of PC cells has been sparsely studied. Here we showed that the NIDO domain of MUC4, which is similar to the G1-domain present in the nidogen or entactin (an extracellular matrix protein), contributes to the protein-protein interaction property of MUC4. By this interaction, MUC4 promotes breaching of basement membrane integrity, and spreading of cancer cells. These observations are corroborated with the data from our study using an engineered MUC4 protein without the NIDO domain, which was ectopically expressed in the MiaPaCa PC cells, lacking endogenous MUC4 and nidogen protein. The in vitro studies demonstrated an enhanced invasiveness of MiaPaCa cells expressing MUC4 (MiaPaCa-MUC4) compared to vector-transfected cells (MiaPaCa-Vec; p=0.003) or cells expressing MUC4 without the NIDO domain (MiaPaCa-MUC4-NIDOΔ; p=0.03). However, the absence of NIDO-domain has no significant role on cell growth and motility (p=0.93). In the in-vivo studies, all the mice orthotopically implanted with MiPaCa-MUC4 cells developed metastasis to the liver as compared to MiaPaCa-Vec or the MiaPaCa-MUC4-NIDOΔ group, hence, supporting our in vitro observations. Additionally, a reduced binding (p=0.0004) of MiaPaCa-MUC4-NIDOΔ cells to the fibulin-2 coated plates compared to MiaPaCa-MUC4 cells indicated a possible interaction between the MUC4-NIDO domain and fibulin-2, a nidogen-interacting protein. Furthermore, in PC tissue samples, MUC4 colocalized with the fibulin-2 present in the basement membrane. Altogether, our findings demonstrate that the MUC4-NIDO domain significantly contributes to the MUC4-mediated metastasis of PC cells. This may be partly due to the interaction between the MUC4-NIDO domain and fibulin-2. PMID

  19. Promyelocytic extracellular chromatin exacerbates coagulation and fibrinolysis in acute promyelocytic leukemia

    PubMed Central

    Cao, Muhua; Li, Tao; He, Zhangxiu; Wang, Lixiu; Yang, Xiaoyan; Kou, Yan; Zou, Lili; Dong, Xue; Novakovic, Valerie A.; Bi, Yayan; Kou, Junjie; Yu, Bo; Fang, Shaohong; Wang, Jinghua; Zhou, Jin

    2017-01-01

    Despite routine treatment of unselected acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA), early death because of hemorrhage remains unacceptably common, and the mechanism underlying this complication remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, which involves release of extracellular chromatin. However, the role of promyelocytic extracellular chromatin in APL-associated coagulation remains unclear. Our objectives were to identify the novel role of ATRA-promoted extracellular chromatin in inducing a hypercoagulable and hyperfibrinolytic state in APL and to evaluate its interaction with fibrin and endothelial cells (ECs). Results from a series of coagulation assays have shown that promyelocytic extracellular chromatin increases thrombin and plasmin generation, causes a shortening of plasma clotting time of APL cells, and increases fibrin formation. DNase I but not anti-tissue factor antibody could inhibit these effects. Immunofluorescence staining showed that promyelocytic extracellular chromatin and phosphatidylserine on APL cells provide platforms for fibrin deposition and render clots more resistant to fibrinolysis. Additionally, coincubation assays revealed that promyelocytic extracellular chromatin is cytotoxic to ECs, converting them to a procoagulant phenotype. This cytotoxity was blocked by DNase I by 20% or activated protein C by 31%. Our current results thus delineate the pathogenic role of promyelocytic extracellular chromatin in APL coagulopathy. Furthermore, the remaining coagulation disturbance in high-risk APL patients after ATRA administration may be treatable by intrinsic pathway inhibition via accelerating extracellular chromatin degradation. PMID:28053193

  20. Functional advantages conferred by extracellular prokaryotic membrane vesicles.

    PubMed

    Manning, Andrew J; Kuehn, Meta J

    2013-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane-derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials and ridding the cell of toxic envelope proteins. Here, we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane-bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world. Copyright © 2013 S. Karger AG, Basel.

  1. Crystallization and preliminary X-ray crystallographic analysis of the extracellular domain of LePRK2 from Lycopersicon esculentum.

    PubMed

    Xu, Anbi; Huang, Laiqiang

    2014-02-01

    The tomato (Lycopersicon esculentum) pollen-specific receptor kinase 2 (LePRK2) is a member of the large receptor-like kinase (RLK) family and is expressed specifically in mature pollen and pollen tubes in L. esculentum. Like other RLKs, LePRK2 contains a characteristic N-terminal leucine-rich repeat (LRR) extracellular domain, the primary function of which is in protein-protein interactions. The LePRK2 LRR is likely to bind candidate ligands from the external environment, leading to a signal transduction cascade required for successful pollination. LePRK2-LRR was purified using an insect-cell secretion expression system and was crystallized using the vapour-diffusion method. The crystals diffracted to a resolution of 2.50 Å and belonged to space group I4(1)22, with unit-cell parameters a = b = 93.94, c = 134.44 Å and one molecule per asymmetric unit.

  2. Fibroblasts and the extracellular matrix in right ventricular disease.

    PubMed

    Frangogiannis, Nikolaos G

    2017-10-01

    Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of

  3. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    PubMed

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate

  4. The role of extracellular calcium in corticotropin-stimulated steroidogenesis.

    PubMed

    Cheitlin, R; Buckley, D I; Ramachandran, J

    1985-05-10

    The role of extracellular Ca2+ in the binding of corticotropin (ACTH) to adrenocortical cell receptors as well as in the post-binding events involved in steroidogenesis were investigated. Binding studies using [125I-Tyr23,Phe2,Nle4]ACTH (1-38) peptide showed that extracellular Ca2+ is essential not only for the interaction of ACTH with its receptor, but also for continued occupancy of the receptor. In view of the requirement of Ca2+ for binding the hormone to the receptor, the role of Ca2+ in post-receptor events was investigated by covalently attaching the hormone to its receptor by photoaffinity labeling in the presence of Ca2+. Persistent activation of steroidogenesis induced by photoaffinity labeling in the presence of Ca2+ was depressed when cells were incubated in medium containing EGTA but was unaffected when the cells were merely washed and incubated in Ca2+-free medium. In the presence of EGTA, 8-Br-cAMP partially restored persistent activation of steroidogenesis. The concentration of extracellular Ca2+ required for restoring steroidogenesis was 10-fold lower than the concentration of Ca2+ needed for optimal binding of ACTH to its receptor. These results suggest that the primary role of extracellular Ca2+ in the action of ACTH is to facilitate the association of the hormone with its receptor.

  5. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    PubMed

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.

  6. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.

    PubMed

    Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim

    2015-10-01

    Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.

  7. Bioinspired design of a polymer gel sensor for the realization of extracellular Ca2+ imaging

    NASA Astrophysics Data System (ADS)

    Ishiwari, Fumitaka; Hasebe, Hanako; Matsumura, Satoko; Hajjaj, Fatin; Horii-Hayashi, Noriko; Nishi, Mayumi; Someya, Takao; Fukushima, Takanori

    2016-04-01

    Although the role of extracellular Ca2+ draws increasing attention as a messenger in intercellular communications, there is currently no tool available for imaging Ca2+ dynamics in extracellular regions. Here we report the first solid-state fluorescent Ca2+ sensor that fulfills the essential requirements for realizing extracellular Ca2+ imaging. Inspired by natural extracellular Ca2+-sensing receptors, we designed a particular type of chemically-crosslinked polyacrylic acid gel, which can undergo single-chain aggregation in the presence of Ca2+. By attaching aggregation-induced emission luminogen to the polyacrylic acid as a pendant, the conformational state of the main chain at a given Ca2+ concentration is successfully translated into fluorescence property. The Ca2+ sensor has a millimolar-order apparent dissociation constant compatible with extracellular Ca2+ concentrations, and exhibits sufficient dynamic range and excellent selectivity in the presence of physiological concentrations of biologically relevant ions, thus enabling monitoring of submillimolar fluctuations of Ca2+ in flowing analytes containing millimolar Ca2+ concentrations.

  8. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease

    PubMed Central

    Lood, Christian; Blanco, Luz P.; Purmalek, Monica M.; Carmona-Rivera, Carmelo; De Ravin, Suk S.; Smith, Carolyne K.; Malech, Harry L.; Ledbetter, Jeffrey A.; Elkon, Keith B.; Kaplan, Mariana J.

    2015-01-01

    Neutrophil extracellular traps (NETs) are implicated in autoimmunity but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes, inducers of NETosis, require mitochondrial ROS for maximal NET stimulation. During this process, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro and, when injected into mice, stimulates type-I interferon (IFN) signaling through a pathway dependent on the DNA sensor, STING. Mitochondrial ROS is also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus (SLE). This was also observed in individuals with chronic granulomatous disease (CGD), which lack NADPH-oxidase activity, but still develop autoimmunity and type I-IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type-I IFN responses in a mouse model of lupus. These findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases. PMID:26779811

  9. Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes.

    PubMed

    Middleton, Ryan C; Rogers, Russell G; De Couto, Geoffrey; Tseliou, Eleni; Luther, Kristin; Holewinski, Ronald; Soetkamp, Daniel; Van Eyk, Jennifer E; Antes, Travis J; Marbán, Eduardo

    2018-01-01

    Newts can regenerate amputated limbs and cardiac tissue, unlike mammals which lack broad regenerative capacity. Several signaling pathways involved in cell proliferation, differentiation and survival during newt tissue regeneration have been elucidated, however the factors that coordinate signaling between cells, as well as the conservation of these factors in other animals, are not well defined. Here we report that media conditioned by newt limb explant cells (A1 cells) protect mammalian cardiomyocytes from oxidative stress-induced apoptosis. The cytoprotective effect of A1-conditioned media was negated by exposing A1 cells to GW4869, which suppresses the generation of extracellular vesicles (EVs). A1-EVs are similar in diameter (~100-150 nm), structure, and share several membrane surface and cargo proteins with mammalian exosomes. However, isolated A1-EVs contain significantly higher levels of both RNA and protein per particle than mammalian EVs. Additionally, numerous cargo RNAs and proteins are unique to A1-EVs. Of particular note, A1-EVs contain numerous mRNAs encoding nuclear receptors, membrane ligands, as well as transcription factors. Mammalian cardiomyocytes treated with A1-EVs showed increased expression of genes in the PI3K/AKT pathway, a pivotal player in survival signaling. We conclude that newt cells secrete EVs with diverse, distinctive RNA and protein contents. Despite ~300 million years of evolutionary divergence between newts and mammals, newt EVs confer cytoprotective effects on mammalian cardiomyocytes.

  10. Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing.

    PubMed

    Demirci, Selami; Doğan, Ayşegül; Karakuş, Emre; Halıcı, Zekai; Topçu, Atila; Demirci, Elif; Sahin, Fikrettin

    2015-11-01

    Burn injuries, the most common and destructive forms of wounds, are generally accompanied with life-threatening infections, inflammation, reduced angiogenesis, inadequate extracellular matrix production, and lack of growth factor stimulation. In the current study, a new antimicrobial carbopol-based hydrogel formulated with boron and pluronic block copolymers was evaluated for its healing activity using in vitro cell culture techniques and an experimental burn model. Cell viability, gene expression, and wound healing assays showed that gel formulation increased wound healing potential. In vitro tube-like structure formation and histopathological examinations revealed that gel not only increased wound closure by fibroblastic cell activity, but also induced vascularization process. Moreover, gel formulation exerted remarkable antimicrobial effects against bacteria, yeast, and fungi. Migration, angiogenesis, and contraction-related protein expressions including collagen, α-smooth muscle actin, transforming growth factor-β1, vimentin, and vascular endothelial growth factor were considerably enhanced in gel-treated groups. Macrophage-specific antigen showed an oscillating expression at the burn wounds, indicating the role of initial macrophage migration to the wound site and reduced inflammation phase. This is the first study indicating that boron containing hydrogel is able to heal burn wounds effectively. The formulation promoted burn wound healing via complex mechanisms including stimulation of cell migration, growth factor expression, inflammatory response, and vascularization.

  11. Mammary Tumors Initiated by Constitutive Cdk2 Activation Contain an Invasive Basal-like Component1

    PubMed Central

    Corsino, Patrick E; Davis, Bradley J; Nörgaard, Peter H; Teoh Parker, Nicole N; Law, Mary; Dunn, William; Law, Brian K

    2008-01-01

    The basal-like subtype of breast cancer is associated with invasiveness, high rates of postsurgical recurrence, and poor prognosis. Aside from inactivation of the BRCA1 tumor-suppressor gene, little is known concerning the mechanisms that cause basal breast cancer or the mechanisms responsible for its invasiveness. Here, we show that the heterogeneous mouse mammary tumor virus-cyclin D1-Cdk2 (MMTV-D1K2) transgenic mouse mammary tumors contain regions of spindle-shaped cells expressing both luminal and myoepithelial markers. Cell lines cultured from these tumors exhibit the same luminal/myoepithelial mixed-lineage phenotype that is associated with human basal-like breast cancer and express a number of myoepithelial markers including cytokeratin 14, P-cadherin, α smooth muscle actin, and nestin. The MMTV-D1K2 tumor-derived cell lines form highly invasive tumors when injected into mouse mammary glands. Invasion is associated with E-cadherin localization to the cytoplasm or loss of E-cadherin expression. Cytoplasmic E-cadherin correlates with lack of colony formation in vitro and β-catenin and p120ctn localization to the cytoplasm. The data suggest that the invasiveness of these cell lines results from a combination of factors including mislocalization of E-cadherin, β-catenin, and p120ctn to the cytoplasm. Nestin expression and E-cadherin mislocalization were also observed in human basal-like breast cancer cell lines, suggesting that these results are relevant to human tumors. Together, these results suggest that abnormal Cdk2 activation may contribute to the formation of basal-like breast cancers. PMID:18953433

  12. A local complement response by RPE causes early-stage macular degeneration

    PubMed Central

    Fernandez-Godino, Rosario; Garland, Donita L.; Pierce, Eric A.

    2015-01-01

    Inherited and age-related macular degenerations (AMDs) are important causes of vision loss. An early hallmark of these disorders is the formation of sub-retinal pigment epithelium (RPE) basal deposits. A role for the complement system in MDs was suggested by genetic association studies, but direct functional connections between alterations in the complement system and the pathogenesis of MD remain to be defined. We used primary RPE cells from a mouse model of inherited MD due to a p.R345W mutation in EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to investigate the role of the RPE in early MD pathogenesis. Efemp1R345W RPE cells recapitulate the basal deposit formation observed in vivo by producing sub-RPE deposits in vitro. The deposits share features with basal deposits, and their formation was mediated by EFEMP1R345W or complement component 3a (C3a), but not by complement component 5a (C5a). Increased activation of complement appears to occur in response to an abnormal extracellular matrix (ECM), generated by the mutant EFEMP1R345W protein and reduced ECM turnover due to inhibition of matrix metalloproteinase 2 by EFEMP1R345W and C3a. Increased production of C3a also stimulated the release of cytokines such as interleukin (IL)-6 and IL-1B, which appear to have a role in deposit formation, albeit downstream of C3a. These studies provide the first direct indication that complement components produced locally by the RPE are involved in the formation of basal deposits. Furthermore, these results suggest that C3a generated by RPE is a potential therapeutic target for the treatment of EFEMP1-associated MD as well as AMD. PMID:26199322

  13. Adsorption of cesium ion by marine actinobacterium Nocardiopsis sp. 13H and their extracellular polymeric substances (EPS) role in bioremediation.

    PubMed

    Sivaperumal, Pitchiah; Kamala, Kannan; Rajaram, Rajendran

    2018-02-01

    This paper evaluates the cesium adsorption of marine actinobacterium Nocardiposis sp. 13H strain isolated from nuclear power plant sites in India. It could remove 88.6 ± 0.72% of Cs + from test solution containing 10 mM CsCl 2 . The biosorption of Cs + with different environmental factors such as pH, temperature, and time interval is also determined. Scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) confirmed the Cs + adsorption by Nocardiopsis sp. 13H. Most of the bound cesium was found to be associated extracellular polymeric substances (EPS) suggesting its interaction with the surface active groups. The main component of the EPS was carbohydrate followed by protein and nucleic acid. Further, Fourier transform infrared (FTIR) spectroscopy suggested the carboxyl, hydroxyl, and amide groups on the strain cell surface were likely to be involved in Cs + adsorption. Results from this study show Nocardiopsis sp. 13H microorganism could be useful in exploring the biosorption of radioisotope pollution and developing efficient and eco-friendly biosorbent for environmental cleanup.

  14. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.

    PubMed

    Martinez-Huenchullan, S; McLennan, S V; Verhoeven, A; Twigg, S M; Tam, C S

    2017-07-01

    Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. © 2017 World Obesity Federation.

  15. Characterization of extracellular polymeric substances in biofilms under long-term exposure to ciprofloxacin antibiotic using fluorescence excitation-emission matrix and parallel factor analysis.

    PubMed

    Gu, Chaochao; Gao, Pin; Yang, Fan; An, Dongxuan; Munir, Mariya; Jia, Hanzhong; Xue, Gang; Ma, Chunyan

    2017-05-01

    The presence of antibiotic residues in the environment has been regarded as an emerging concern due to their potential adverse environmental consequences such as antibiotic resistance. However, the interaction between antibiotics and extracellular polymeric substances (EPSs) of biofilms in wastewater treatment systems is not entirely clear. In this study, the effect of ciprofloxacin (CIP) antibiotic on biofilm EPS matrix was investigated and characterized using fluorescence excitation-emission matrix (EEM) and parallel factor (PARAFAC) analysis. Physicochemical analysis showed that the proteins were the major EPS fraction, and their contents increased gradually with an increase in CIP concentration (0-300 μg/L). Based on the characterization of biofilm tightly bound EPS (TB-EPS) by EEM, three fluorescent components were identified by PARAFAC analysis. Component C1 was associated with protein-like substances, and components C2 and C3 belonged to humic-like substances. Component C1 exhibited an increasing trend as the CIP addition increased. Pearson's correlation results showed that CIP correlated significantly with the protein contents and component C1, while strong correlations were also found among UV 254 , dissolved organic carbon, humic acids, and component C3. A combined use of EEM-PARAFAC analysis and chemical measurements was demonstrated as a favorable approach for the characterization of variations in biofilm EPS in the presence of CIP antibiotic.

  16. Distributed and dynamic intracellular organization of extracellular information.

    PubMed

    Granados, Alejandro A; Pietsch, Julian M J; Cepeda-Humerez, Sarah A; Farquhar, Iseabail L; Tkačik, Gašper; Swain, Peter S

    2018-06-05

    Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.

  17. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    PubMed Central

    Hansen, R K; Bissell, M J

    2010-01-01

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function. PMID:10903527

  18. Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense.

    PubMed

    Tripathi, Diwaker; Zhang, Tong; Koo, Abraham J; Stacey, Gary; Tanaka, Kiwamu

    2018-01-01

    Damaged cells send various signals to stimulate defense responses. Recent identification and genetic studies of the plant purinoceptor, P2K1 (also known as DORN1), have demonstrated that extracellular ATP is a signal involved in plant stress responses, including wounding, perhaps to evoke plant defense. However, it remains largely unknown how extracellular ATP induces plant defense responses. Here, we demonstrate that extracellular ATP induces plant defense mediated through activation of the intracellular signaling of jasmonate (JA), a well-characterized defense hormone. In Arabidopsis ( Arabidopsis thaliana ) leaves, ATP pretreatment induced resistance against the necrotrophic fungus, Botrytis cinerea The induced resistance was enhanced in the P2K1 receptor overexpression line, but reduced in the receptor mutant, dorn1 - 3 Mining the transcriptome data revealed that ATP induces a set of JA-induced genes. In addition, the P2K1-associated coexpression network contains defense-related genes, including those encoding jasmonate ZIM-domain (JAZ) proteins, which play key roles as repressors of JA signaling. We examined whether extracellular ATP impacts the stability of JAZ1 in Arabidopsis. The results showed that the JAZ1 stability decreased in response to ATP addition in a proteasome-dependent manner. This reduction required intracellular signaling via second messengers-cytosolic calcium, reactive oxygen species, and nitric oxide. Interestingly, the ATP-induced JAZ1 degradation was attenuated in the JA receptor mutant, coi1 , but not in the JA biosynthesis mutant, aos , or upon addition of JA biosynthesis inhibitors. Immunoprecipitation analysis demonstrated that ATP increases the interaction between COI1 and JAZ1, suggesting direct cross talk between extracellular ATP and JA in intracellular signaling events. Taken together, these results suggest that extracellular ATP signaling directly impacts the JA signaling pathway to maximize plant defense responses. © 2018

  19. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure.

    PubMed

    Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J

    1993-12-01

    The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.

  20. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway.

    PubMed

    Werner, Haim; Meisel-Sharon, Shilhav; Bruchim, Ilan

    2018-02-19

    The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.

  1. Summary of a symposium on natriuretic and digitalis-like factors.

    PubMed

    Buckalew, V M; Gonick, H C

    1998-01-01

    An international symposium on natriuretic and digitalis-like factors was convened for the first time since 1992. Topics discussed included structures and biosynthesis of endogenous digitalis-like factors (EDLF), biologic activities, physiology function and role of EDLF in hypertension, and novel natriuretic factors. Progress was reported in determining the exact structure of an isomer of ouabain isolated from bovine hypothalamus. Evidence was presented supporting the existence of a second mammalian EDLF that resembles steroids found in toads (bufodienolides). Support for endogenous synthesis of mammalian EDLF was also presented. Mammalian EDLF were reported to have effects which are different from those possessed by digitalis like steroids derived from plants. New evidence was presented implicating EDLF in various forms of hypertension in humans and animal models. Finally, several unique natriuretic factors that do not inhibit Na, K ATPase and that appear to play a role in mammalian volume regulation were discussed.

  2. Deacylation of Purified Lipopolysaccharides by Cellular and Extracellular Components of a Sterile Rabbit Peritoneal Inflammatory Exudate

    PubMed Central

    Weinrauch, Yvette; Katz, Seth S.; Munford, Robert S.; Elsbach, Peter; Weiss, Jerrold

    1999-01-01

    The extent to which the mammalian host is capable of enzymatic degradation and detoxification of bacterial lipopolysaccharides (LPS) is still unknown. Partial deacylation of LPS by the enzyme acyloxyacyl hydrolase (AOAH) provides such a mechanism, but its participation in the disposal of LPS under physiological conditions has not been established. In this study, deacylation of isolated radiolabeled LPS by both cellular and extracellular components of a sterile inflammatory peritoneal exudate elicited in rabbits was examined ex vivo. AOAH-like activity, tested under artificial conditions (pH 5.4, 0.1% Triton X-100), was evident in all components of the exudate (mononuclear cells [MNC] > polymorphonuclear leukocytes [PMN] > inflammatory [ascitic] fluid [AF]). Under more physiological conditions, in a defined medium containing purified LPS-binding protein, the LPS-deacylating activity of MNC greatly exceeded that of PMN. In AF, MNC (but not PMN) also produced rapid and extensive CD14-dependent LPS deacylation. Under these conditions, almost all MNC-associated LPS underwent deacylation within 1 h, a rate greatly exceeding that previously found in any cell type. The remaining extracellular LPS was more slowly subject to CD14-independent deacylation in AF. Quantitative analysis showed a comparable release of laurate and myristate but no release of 3-hydroxymyristate, consistent with an AOAH-like activity. These findings suggest a major role for CD14+ MNC and a secondary role for AF in the deacylation of cell-free LPS at extravascular inflammatory sites. PMID:10377115

  3. Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system.

    PubMed

    Parker, E; Newby, L J; Sharpe, C C; Rossetti, S; Streets, A J; Harris, P C; O'Hare, M J; Ong, A C M

    2007-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) largely results from mutations in the PKD1 gene leading to hyperproliferation of renal tubular epithelial cells and consequent cyst formation. Rodent models of PKD suggest that the multifunctional hormone insulin-like growth factor-1 (IGF-1) could play a pathogenic role in renal cyst formation. In order to test this possibility, conditionally immortalized renal epithelial cells were prepared from normal individuals and from ADPKD patients with known germline mutations in PKD1. All patient cell lines had a decreased or absence of polycystin-1 but not polycystin-2. These cells had an increased sensitivity to IGF-1 and to cyclic AMP, which required phosphatidylinositol-3 (PI3)-kinase and the mitogen-activated protein kinase, extracellular signal-regulated protein kinase (ERK) for enhanced growth. Inhibition of Ras or Raf abolished the stimulated cell proliferation. Our results suggest that haploinsufficiency of polycystin-1 lowers the activation threshold of the Ras/Raf signalling system leading to growth factor-induced hyperproliferation. Inhibition of Ras or Raf activity may be a therapeutic option for decreasing tubular cell proliferation in ADPKD.

  4. Physiological Fluctuations in Brain Temperature as a Factor Affecting Electrochemical Evaluations of Extracellular Glutamate and Glucose in Behavioral Experiments

    PubMed Central

    2013-01-01

    The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1–4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals. PMID:23448428

  5. Neutrophil extracellular trap formation and extracellular DNA in sputum of stable COPD patients.

    PubMed

    Pedersen, Frauke; Marwitz, Sebastian; Holz, Olaf; Kirsten, Anne; Bahmer, Thomas; Waschki, Benjamin; Magnussen, Helgo; Rabe, Klaus F; Goldmann, Torsten; Uddin, Mohib; Watz, Henrik

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is characterized by neutrophilic airway inflammation. Neutrophil extracellular trap (NET) formation - a meshwork of neutrophil DNA components and neutrophil enzymes are involved in innate immunity and inflammation. Little is known about the presence of these structures in induced sputum from stable COPD patients. Induced sputum samples of 23 COPD patients and 10 healthy controls were collected. Sputum cells were harvested, cultivated and stained for NET components. Extracellular DNA was quantified using a NanoDrop 2000 spectrophotometer. NET formation was markedly upregulated in COPD sputum compared with healthy controls, irrespective of sputum purulence or smoking status. NET formation was associated with significantly higher concentration of extracellular DNA in sputum supernatant (484 ng/μl in COPD versus 268 ng/μl in controls, p = 0.013). Log-transformed extracellular DNA correlated with log-transformed absolute neutrophil numbers in sputum (r = 0.60; p < 0.001) and airway obstruction (r = -0.43; p = 0.013). NET formation associated with higher concentrations of extracellular DNA may be a pathobiological feature of COPD-derived sputum neutrophils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Extracellular DNA in single- and multiple-species unsaturated biofilms.

    PubMed

    Steinberger, R E; Holden, P A

    2005-09-01

    The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.

  7. Basic Components of Vascular Connective Tissue and Extracellular Matrix.

    PubMed

    Halper, Jaroslava

    2018-01-01

    Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.

  8. Exosomes and other extracellular vesicles in host–pathogen interactions

    PubMed Central

    Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L

    2015-01-01

    An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940

  9. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    PubMed

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  10. Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain.

    PubMed Central

    Cohen, B D; Goldstein, D J; Rutledge, L; Vass, W C; Lowy, D R; Schlegel, R; Schiller, J T

    1993-01-01

    The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex. Images PMID:8394451

  11. Mechanisms and functions of extracellular vesicle release in vivo-What we can learn from flies and worms.

    PubMed

    Beer, Katharina B; Wehman, Ann Marie

    2017-03-04

    Cells from bacteria to man release extracellular vesicles (EVs) that contain signaling molecules like proteins, lipids, and nucleic acids. The content, formation, and signaling roles of these conserved vesicles are diverse, but the physiological relevance of EV signaling in vivo is still debated. Studies in classical genetic model organisms like C. elegans and Drosophila have begun to reveal the developmental and behavioral roles for EVs. In this review, we discuss the emerging evidence for the in vivo signaling roles of EVs. Significant effort has also been made to understand the mechanisms behind the formation and release of EVs, specifically of exosomes derived from exocytosis of multivesicular bodies and of microvesicles derived from plasma membrane budding called ectocytosis. In this review, we detail the impact of flies and worms on understanding the proteins and lipids involved in EV biogenesis and highlight the open questions in the field.

  12. Regulation of extracellular matrix vesicles via rapid responses to steroid hormones during endochondral bone formation.

    PubMed

    Asmussen, Niels; Lin, Zhao; McClure, Michael J; Schwartz, Zvi; Boyan, Barbara D

    2017-12-09

    Endochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis. Rapid regulatory mechanisms are also involved, resulting in release of enzymes, factors and micro RNAs stored in extracellular matrisomes called matrix vesicles. Vitamin D metabolites modulate endochondral development via both genomic and rapid membrane-associated signaling pathways. 1α,25-dihydroxyvitamin D3 [1α,25(OH) 2 D 3 ] acts through the vitamin D receptor (VDR) and a membrane associated receptor, protein disulfide isomerase A3 (PDIA3). 24R,25-dihydroxyvitamin D3 [24R,25(OH) 2 D 3 ] affects primarily chondrocytes in the resting zone (RC) of the growth plate, whereas 1α,25(OH) 2 D 3 affects cells in the prehypertrophic and upper hypertrophic cell zones (GC). This includes genomically directing the cells to produce matrix vesicles with zone specific characteristics. In addition, vitamin D metabolites produced by the cells interact directly with the matrix vesicle membrane via rapid signal transduction pathways, modulating their activity in the matrix. The matrix vesicle payload is able to rapidly impact the extracellular matrix via matrix processing enzymes as well as providing a feedback mechanism to the cells themselves via the contained micro RNAs. Copyright © 2017. Published by Elsevier Inc.

  13. Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-β1

    PubMed Central

    Meng, Qingshun; Liu, Jie; Wang, Chuanfang

    2015-01-01

    Purpose The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. Materials and Methods Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl4) three times weekly for 8 weeks. Then CCl4 was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-smooth muscle actin (α-SMA) protein in the liver, transforming growth factor β1 (TGF-β1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-β1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. Results Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-β1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. Conclusion Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-β1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats. PMID:26446639

  14. Extracellular ATP is a mitogen for 3T3, 3T6, and A431 cells and acts synergistically with other growth factors.

    PubMed Central

    Huang, N; Wang, D J; Heppel, L A

    1989-01-01

    Extracellular ATP in concentrations of 5-50 microM displayed very little mitogenic activity by itself but it caused synergistic stimulation of [3H]thymidine incorporation in the presence of phorbol 12-tetradecanoate 13-acetate, epidermal growth factor, platelet-derived growth factor, insulin, adenosine, or 5'-(N-ethyl)carboxamidoadenosine. Cultures of Swiss 3T3, Swiss 3T6, A431, DDT1-MF2, and HFF cells were used. The percent of cell nuclei labeled with [3H]thymidine and cell number were also increased. ADP was equally mitogenic, while UTP and ITP were much less active. The effect of ATP was not due to hydrolysis by ectoenzymes to form adenosine, a known growth factor. Thus, the nonhydrolyzable analogue adenosine 5'-[beta, gamma-imido]triphosphate was mitogenic. In addition, it was found that ATP showed synergism in 3T6 and 3T3 cells when present for only the first hour of an incorporation assay, during which time no significant hydrolysis occurred. Furthermore, prolonged preincubation of cells with ATP reduced the mitogenic response to ATP but not to adenosine; preincubation with adenosine or N6-(R-phenylisopropyl)adenosine had the reverse effect. Finally, the effect of adenosine, but not of ATP, was inhibited by aminophylline. We conclude that extracellular ATP is a mitogen that interacts with P2 purinoceptors on the plasma membrane. PMID:2813367

  15. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-04

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Reichhardt, Courtney; Ferreira, Jose A G; Joubert, Lydia-Marie; Clemons, Karl V; Stevens, David A; Cegelski, Lynette

    2015-11-01

    Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The (13)C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional (15)N and (31)P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression

    NASA Astrophysics Data System (ADS)

    Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  18. Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.

    2015-12-01

    Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly

  19. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    PubMed

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  20. Positional signaling mediated by a receptor-like kinase in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Shen, Ronglai; Schiefelbein, John

    2005-02-18

    The position-dependent specification of root epidermal cells in Arabidopsis provides an elegant paradigm for cell patterning during development. Here, we describe a new gene, SCRAMBLED (SCM), required for cells to appropriately interpret their location within the developing root epidermis. SCM encodes a receptor-like kinase protein with a predicted extracellular domain of six leucine-rich repeats and an intracellular serine-threonine kinase domain. SCM regulates the expression of the GLABRA2, CAPRICE, WEREWOLF, and ENHANCER OF GLABRA3 transcription factor genes that define the cell fates. Further, the SCM gene is expressed throughout the developing root. Therefore, SCM likely enables developing epidermal cells to detect positional cues and establish an appropriate cell-type pattern.

  1. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo

    PubMed Central

    Munks, Michael W.; McKee, Amy S.; MacLeod, Megan K.; Powell, Roger L.; Degen, Jay L.; Reisdorph, Nichole A.; Kappler, John W.

    2010-01-01

    It has been recognized for nearly 80 years that insoluble aluminum salts are good immunologic adjuvants and that they form long-lived nodules in vivo. Nodule formation has long been presumed to be central for adjuvant activity by providing an antigen depot, but the composition and function of these nodules is poorly understood. We show here that aluminum salt nodules formed within hours of injection and contained the clotting protein fibrinogen. Fibrinogen was critical for nodule formation and required processing to insoluble fibrin by thrombin. DNase treatment partially disrupted the nodules, and the nodules contained histone H3 and citrullinated H3, features consistent with extracellular traps. Although neutrophils were not essential for nodule formation, CD11b+ cells were implicated. Vaccination of fibrinogen-deficient mice resulted in normal CD4 T-cell and antibody responses and enhanced CD8 T-cell responses, indicating that nodules are not required for aluminum's adjuvant effect. Moreover, the ability of aluminum salts to retain antigen in the body, the well-known depot effect, was unaffected by the absence of nodules. We conclude that aluminum adjuvants form fibrin-dependent nodules in vivo, that these nodules have properties of extracellular traps, and the nodules are not required for aluminum salts to act as adjuvants. PMID:20876456

  2. Serum Human Epidermal Growth Factor 2 Extracellular Domain as a Predictive Biomarker for Lapatinib Treatment Efficacy in Patients With Advanced Breast Cancer.

    PubMed

    Lee, Chee Khoon; Davies, Lucy; Gebski, Val J; Lord, Sarah J; Di Leo, Angelo; Johnston, Stephen; Geyer, Charles; Cameron, David; Press, Michael F; Ellis, Catherine; Loi, Sherene; Marschner, Ian; Simes, John; de Souza, Paul

    2016-03-20

    We examined the prognostic and predictive value of serum human epidermal growth factor 2 (HER2) extracellular domain (sHER2) in patients with advanced breast cancer treated with lapatinib using data from three randomized trials. We analyzed sHER2 and tissue HER2 (tHER2) data from 1,902 patients (84%) who were randomly assigned to receive lapatinib or control in the trials EGF30001, EGF30008, and EGF100151. Cox regression analyses were performed to correlate both biomarkers with progression-free survival (PFS) and overall survival (OS). Median sHER2 levels were 25.1 and 10.1 ng/mL in tHER2-amplified (tHER-positive) and nonamplified (tHER-negative) populations, respectively (r = 0.42 for sHER2-tHER2 correlation). Lapatinib had significant PFS benefit over control (hazard ratio [HR], 0.855; P = .004), but not OS (HR, 0.941; P = .33). Lapatinib PFS benefit is independently predicted by higher sHER2 values (HR per 10-ng/mL increase in sHER2: lapatinib-containing therapies, 1.009 v nonlapatinib-containing therapies, 1.044; P(interaction) < .001) and by positive tHER2 (HR [lapatinib v nonlapatinib]: tHER2 positive, 0.638 v tHER2 negative, 0.940; P(interaction) = .001). Within the tHER2-positive subpopulation (n = 515), higher sHER2 values still independently predicted lapatinib PFS benefit (HR per 10-ng/mL increase in sHER2: lapatinib-containing therapies, 1.017 v nonlapatinib-containing therapies, 1.041; P(interaction) = .008). In control arms (n = 936), higher sHER2 was associated with worse prognosis in multivariable analyses (PFS HR per 10 ng/mL: PFS, 1.024; P < .001; and OS, 1.018; P < .001). Higher sHER2 predicts greater PFS benefit with lapatinib independent of tHER2 status. High sHER2 is also independently prognostic for worse survival in patients who received nonlapatinib-containing therapies. The predictive role of sHER2 for other anti-HER2 agents requires further research. © 2016 by American Society of Clinical Oncology.

  3. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos Baltazar, Ludmila; Nakayasu, Ernesto S.; Sobreira, Tiago J. P.

    ABSTRACT Histoplasma capsulatumproduces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment ofH. capsulatumcells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bindH. capsulatumheat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. Wemore » identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCEDiverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However

  4. Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody

    PubMed Central

    Wacker, Daniel; Kapoor, Mili; Zhang, Ai; Han, Gye Won; Basu, Shibom; Patel, Nilkanth; Messerschmidt, Marc; Weierstall, Uwe; Liu, Wei; Katritch, Vsevolod; Roth, Bryan L.; Stevens, Raymond C.

    2017-01-01

    Monoclonal antibodies provide an attractive alternative to small-molecule therapies for a wide range of diseases. Given the importance of G protein-coupled receptors (GPCRs) as pharmaceutical targets, there has been an immense interest in developing therapeutic monoclonal antibodies that act on GPCRs. Here we present the 3.0-Å resolution structure of a complex between the human 5-hydroxytryptamine 2B (5-HT2B) receptor and an antibody Fab fragment bound to the extracellular side of the receptor, determined by serial femtosecond crystallography with an X-ray free-electron laser. The antibody binds to a 3D epitope of the receptor that includes all three extracellular loops. The 5-HT2B receptor is captured in a well-defined active-like state, most likely stabilized by the crystal lattice. The structure of the complex sheds light on the mechanism of selectivity in extracellular recognition of GPCRs by monoclonal antibodies. PMID:28716900

  5. FIB-SEM tomography of human skin telocytes and their extracellular vesicles

    PubMed Central

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-01-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. PMID:25823591

  6. Listeriolysin S Is a Streptolysin S-Like Virulence Factor That Targets Exclusively Prokaryotic Cells In Vivo.

    PubMed

    Quereda, Juan J; Nahori, Marie A; Meza-Torres, Jazmín; Sachse, Martin; Titos-Jiménez, Patricia; Gomez-Laguna, Jaime; Dussurget, Olivier; Cossart, Pascale; Pizarro-Cerdá, Javier

    2017-04-04

    Streptolysin S (SLS)-like virulence factors from clinically relevant Gram-positive pathogens have been proposed to behave as potent cytotoxins, playing key roles in tissue infection. Listeriolysin S (LLS) is an SLS-like hemolysin/bacteriocin present among Listeria monocytogenes strains responsible for human listeriosis outbreaks. As LLS cytotoxic activity has been associated with virulence, we investigated the LLS-specific contribution to host tissue infection. Surprisingly, we first show that LLS causes only weak red blood cell (RBC) hemolysis in vitro and neither confers resistance to phagocytic killing nor favors survival of L. monocytogenes within the blood cells or in the extracellular space (in the plasma). We reveal that LLS does not elicit specific immune responses, is not cytotoxic for eukaryotic cells, and does not impact cell infection by L. monocytogenes Using in vitro cell infection systems and a murine intravenous infection model, we actually demonstrate that LLS expression is undetectable during infection of cells and murine inner organs. Importantly, upon intravenous animal inoculation, L. monocytogenes is found in the gastrointestinal system, and only in this environment LLS expression is detected in vivo Finally, we confirm that LLS production is associated with destruction of target bacteria. Our results demonstrate therefore that LLS does not contribute to L. monocytogenes tissue injury and virulence in inner host organs as previously reported. Moreover, we describe that LlsB, a putative posttranslational modification enzyme encoded in the LLS operon, is necessary for murine inner organ colonization. Overall, we demonstrate that LLS is the first SLS-like virulence factor targeting exclusively prokaryotic cells during in vivo infections. IMPORTANCE The most severe human listeriosis outbreaks are caused by L. monocytogenes strains harboring listeriolysin S (LLS), previously described as a cytotoxin that plays a critical role in host inner

  7. [Extracellular matrix--regulation of cancer invasion and metastasis].

    PubMed

    Watanabe, Hideto

    2010-11-01

    Cancer cell invasion comprises steps in the destruction of the basement membrane and migration of cells into the connective tissue. These cells further migrate into lymph ducts and small vessels to reach metastasis. The extracellular matrix (ECM) provides a microenvironment for cells, and its destruction is associated with cancer cell invasion. Among matrix metalloproteinases (MMPs), both MMP-2 and 9 digest type IV collagen, a major component of the basement membrane, and MMP-14/MT1-MMP, a membrane-type MMP, activates MMP-2. Thus, these MMPs play a central role in cancer cell invasion. MMPs also cleave latent forms of growth factors and signaling molecules, releasing and activating them, which influence neo-vascularization and cancer apoptosis. Like proteins, carbohydrates are known to be involved in cancer invasion. Hyaluronan is known to both stimulate and inhibit cancer invasion, depending on its molecular size. Heparanase, which digests heparan sulfate, is known to facilitate cancer invasion and metastasis. In summary, ECM provides a microenvironment that regulates cell behavior and its structure altered by MMPs affects cancer cell invasion.

  8. Molecular Modeling, de novo Design and Synthesis of a Novel, Extracellular Binding Fibroblast Growth Factor Receptor 2 Inhibitor Alofanib (RPT835).

    PubMed

    Tsimafeyeu, Ilya; Daeyaert, Frits; Joos, Jean-Baptiste; Aken, Koen V; Ludes-Meyers, John; Byakhov, Mikhail; Tjulandin, Sergei

    2016-01-01

    Fibroblast growth factor (FGF) receptors (FGFRs) play a key role in tumor growth and angiogenesis. The present report describes our search for an extracellularly binding FGFR inhibitor using a combined molecular modeling and de novo design strategy. Based upon crystal structures of the receptor with its native ligand and knowledge of inhibiting peptides, we have developed a computational protocol that predicts the putative binding of a molecule to the extracellular domains of the receptor. This protocol, or scoring function, was used in combination with the de novo synthesis program 'SYNOPSIS' to generate high scoring and synthetically accessible compounds. Eight compounds belonging to 3 separate chemical classes were synthesized. One of these compounds, alofanib (RPT835), was found to be an effective inhibitor of the FGF/FGFR2 pathway. The preclinical in vitro data support an allosteric inhibition mechanism of RPT835. RPT835 potently inhibited growth of KATO III gastric cancer cells expressing FGFR2, with GI50 value of 10 nmol/L. These results provide strong rationale for the evaluation of compound in advanced cancers.

  9. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    PubMed

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Factors Most Likely to Contribute to Positive Course Evaluations

    ERIC Educational Resources Information Center

    VanMaaren, Victoria G.; Jaquett, Caroline M.; Williams, Robert L.

    2016-01-01

    The purpose of this study was to determine the extent to which students differentially rated ten factors likely to affect their ratings on overall course evaluations. Students (N = 148) in several sections of an undergraduate educational psychology course indicated their preferences among several designated factors. We found remarkable similarity…

  11. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  12. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    PubMed

    Pannkuk, Evan L; Risch, Thomas S; Savary, Brett J

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction.

  13. Isolation and Identification of an Extracellular Subtilisin-Like Serine Protease Secreted by the Bat Pathogen Pseudogymnoascus destructans

    PubMed Central

    Pannkuk, Evan L.; Risch, Thomas S.; Savary, Brett J.

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  14. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor.

    PubMed

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-08-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.

  15. Pathophysiology of neutrophil-mediated extracellular redox reactions.

    PubMed

    Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven

    2016-01-01

    Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.

  16. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles.

    PubMed

    Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang

    2014-10-01

    To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Sea ice microorganisms: environmental constraints and extracellular responses.

    PubMed

    Ewert, Marcela; Deming, Jody W

    2013-03-28

    Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS), which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research.

  18. Sea Ice Microorganisms: Environmental Constraints and Extracellular Responses

    PubMed Central

    Ewert, Marcela; Deming, Jody W.

    2013-01-01

    Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS), which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research. PMID:24832800

  19. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L

    PubMed Central

    Rodríguez, AA; Stella, AM; Storni, MM; Zulpa, G; Zaccaro, MC

    2006-01-01

    Salt stress is one of the most serious factors limiting the productivity of rice, the staple diet in many countries. Gibberellic acid has been reported to reduce NaCl-induced growth inhibition in some plants including rice. Most paddy soils have a natural population of Cyanobacteria, prokaryotic photosynthethic microorganisms, which synthesize and liberate plant growth regulators such as gibberellins that could exert a natural beneficial effect on salt stressed rice plants. The aim of this work was to evaluate the effect of the cyanobacterium Scytonema hofmanni extracellular products on the growth of rice seedlings inhibited by NaCl and to compare it with the effect of the gibberellic acid in the same stress condition. Growth (length and weight of the seedlings) and biochemical parameters (5-aminolevulinate dehydratase activity, total free porphyrin and pigments content) were evaluated. Salt exposure negatively affected all parameters measured, with the exception of chlorophyll. Chlrorophyll concentrations nearly doubled upon exposure to high salt. Gibberellic acid counteracted the effect of salt on the length and dry weight of the shoot, and on carotenoid and chlorophyll b contents. Extracellular products nullified the salt effect on shoot dry weight and carotenoid content; partially counteracted the effect on shoot length (from 54% to 38% decrease), root dry weight (from 59% to 41% decrease) and total free porphyrin (from 31 to 13% decrease); reduced by 35% the salt increase of chlorophyll a; had no effect on root length and chlorophyll b. Gibberellic acid and extracellular products increased 5-aminolevulinate dehydratase activity over the control without salt. When coincident with high salinity, exposure to either EP or GA3, resulted in a reversal of shoot-related responses to salt stress. We propose that Scytonema hofmanni extracellular products may counteract altered hormone homeostasis of rice seedlings under salt stress by producing gibberellin-like plant

  20. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.

    PubMed

    Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique

    2013-10-01

    Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins

    PubMed Central

    Sitar, Tomasz; Popowicz, Grzegorz M.; Siwanowicz, Igor; Huber, Robert; Holak, Tad A.

    2006-01-01

    Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1. PMID:16924115

  2. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin.

    PubMed Central

    Sasaki, T; Fukai, N; Mann, K; Göhring, W; Olsen, B R; Timpl, R

    1998-01-01

    The C-terminal domain NC1 of mouse collagen XVIII (38 kDa) and the shorter mouse and human endostatins (22 kDa) were prepared in recombinant form from transfected mammalian cells. The NC1 domain aggregated non-covalently into a globular trimer which was partially cleaved by endogenous proteolysis into several monomers (25-32 kDa) related to endostatin. Endostatins were obtained in a highly soluble, monomeric form and showed a single N-terminal sequence which, together with other data, indicated a compact folding. Endostatins and NC1 showed a comparable binding activity for the microfibrillar fibulin-1 and fibulin-2, and for heparin. Domain NC1, however, was a distinctly stronger ligand than endostatin for sulfatides and the basement membrane proteins laminin-1 and perlecan. Immunological assays demonstrated endostatin epitopes on several tissue components (22-38 kDa) and in serum (120-300 ng/ml), the latter representing the smaller variants. The data indicated that the NC1 domain consists of an N-terminal association region (approximately 50 residues), a central protease-sensitive hinge region (approximately 70 residues) and a C-terminal stable endostatin domain (approximately 180 residues). They also demonstrated that proteolytic release of endostatin can occur through several pathways, which may lead to a switch from a matrix-associated to a more soluble endocrine form. PMID:9687493

  3. Super elongation complex contains a TFIIF-related subcomplex

    PubMed Central

    Knutson, Bruce A.; Smith, Marissa L.; Walker-Kopp, Nancy; Xu, Xia

    2016-01-01

    ABSTRACT Super elongation complex (SEC) belongs to a family of RNA polymerase II (Pol II) elongation factors that has similar properties as TFIIF, a general transcription factor that increases the transcription elongation rate by reducing pausing. Although SEC has TFIIF-like functional properties, it apparently lacks sequence and structural homology. Using HHpred, we find that SEC contains an evolutionarily related TFIIF-like subcomplex. We show that the SEC subunit ELL interacts with the Pol II Rbp2 subunit, as expected for a TFIIF-like factor. These findings suggest a new model for how SEC functions as a Pol II elongation factor and how it suppresses Pol II pausing. PMID:27223670

  4. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    PubMed

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Digitalis-like and vasoconstrictor effects of endogenous digoxin-like factor(s) from the venom of Bufo marinus toad.

    PubMed

    Bagrov, A Y; Roukoyatkina, N I; Fedorova, O V; Pinaev, A G; Ukhanova, M V

    1993-04-06

    Digitalis glycoside-like properties of the Bufo marinus toad crude venom and one of its constituents, bufalin, were studied in various assay systems. In concentrations 0.3-30 micrograms/ml crude venom increased the contractility of isolated electrically driven rat atria, constricted rat aortic rings, inhibited ouabain-sensitive Na+,K(+)-ATPase in rat erythrocytes and the Na+,K(+)-pump in rat aorta, and cross-reacted with antidigoxin antibody from the dissociation enhanced lanthanide fluoroimmunoassay (DELFIA). These effects were unaffected by adrenoceptor blockers and the 5-HT antagonist, deseril, but were blocked by antidigoxin antibody. Bufalin (10-30 microM) increased myocardial contractility and inhibited Na+,K(+)-ATPase in rat erythrocytes similarly to crude Bufo marinus venom. In rat aorta bufalin showed weak and delayed vasoconstrictor activity which was antagonized by 2 microM phentolamine, and had a biphasic effect on the Na+,K(+)-pump; 0.5-1.0 microM bufalin stimulated the pump, while higher concentrations inhibited its activity. Although the effects of bufalin were blocked by antidigoxin antibody, bufalin showed very low digoxin-like immunoreactivity in the DELFIA. These observations suggest that, in addition to bufalin, Bufo marinus venom contains at least one more digitalis-like steroid with significant intrinsic vasoconstrictor activity which, unlike bufalin, constricts the blood vessels acting directly via inhibition of the sodium pump in the vascular smooth muscle membrane.

  6. Extracellular Bio-imaging of Acetylcholine-stimulated PC12 Cells Using a Calcium and Potassium Multi-ion Image Sensor.

    PubMed

    Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki

    2018-01-01

    In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.

  7. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  8. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides.

    PubMed

    Blaha, Milan; Nemcova, Lucie; Kepkova, Katerina Vodickova; Vodicka, Petr; Prochazka, Radek

    2015-10-06

    The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation. We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR. Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells. The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and

  9. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  10. Characterization of the extracellular bactericidal factors of rat alveolar lining material.

    PubMed Central

    Coonrod, J D; Lester, R L; Hsu, L C

    1984-01-01

    The surfactant fraction (55,000-g pellet) of leukocyte-free rat bronchoalveolar lavage fluid contains factors that rapidly kill and lyse pneumococci. These factors were purified and identified biochemically by using a quantitative bactericidal test to monitor fractionation procedures. 91% of the antipneumococcal activity of rat surfactant was recovered in chloroform after extraction of rat surfactant with chloroform-methanol (Bligh-Dyer procedure). After chromatography on silicic acid with chloroform, acetone, and methanol, all detectable antibacterial activity (approximately 80% of the initial activity) eluted with the neutral lipids in chloroform. When rechromatographed on silicic acid with hexane, hexane-chloroform, and chloroform, the antibacterial activity eluted with FFA. Thin-layer chromatography (TLC) established that the antibacterial activity was confined to the FFA fraction. Gas-liquid chromatography showed that the fatty acid fraction contained a mixture of long-chain FFA (C12 to C22) of which 66.7% were saturated and 32.4% were unsaturated. The quantity of TLC-purified FFA needed to kill 50% of 10(8) pneumococci under standardized conditions (one bactericidal unit) was 10.6 +/- 0.5 micrograms. Purified FFA acted as detergents, causing release of [3H]choline from pneumococcal cell walls and increased bacterial cell membrane permeability, evidenced by rapid unloading of 3-O-[3H]methyl-D-glucose. FFA acting as detergents appear to account for the bactericidal and bacteriolytic activity of rat pulmonary surfactant for pneumococci. PMID:6548228

  11. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation.

    PubMed

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from the circulation to sites of infection where they are responsible for antimicrobial functions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate (PMA), are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling pathway to NETosis.

  12. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.

    PubMed

    Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li

    2015-10-21

    Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.

  13. Enhanced production of extracellular inulinase by the yeast Kluyveromyces marxianus in xylose catabolic state.

    PubMed

    Hoshida, Hisashi; Kidera, Kenta; Takishita, Ryuta; Fujioka, Nobuhisa; Fukagawa, Taiki; Akada, Rinji

    2018-06-01

    The production of extracellular proteins by the thermotolerant yeast Kluyveromyces marxianus, which utilizes various sugars, was investigated using media containing sugars such as glucose, galactose, and xylose. SDS-PAGE analysis of culture supernatants revealed abundant production of an extracellular protein when cells were grown in xylose medium. The N-terminal sequence of the extracellular protein was identical to a part of the inulinase encoded by INU1 in the genome. Inulinase is an enzyme hydrolyzing β-2,1-fructosyl bond in inulin and sucrose and is not required for xylose assimilation. Disruption of INU1 in the strain DMKU 3-1042 lost the production of the extracellular protein and resulted in growth defect in sucrose and inulin media, indicating that the extracellular protein was inulinase (sucrase). In addition, six K. marxianus strains among the 16 strains that were analyzed produced more inulinase in xylose medium than in glucose medium. However, expression analysis indicated that the INU1 promoter activity was lower in the xylose medium than in the glucose medium, suggesting that enhanced production of inulinase is controlled in a post-transcriptional manner. The production of inulinase was also higher in cultures with more agitation, suggesting that oxygen supply affects the production of inulinase. Taken together, these results suggest that both xylose and oxygen supply shift cellular metabolism to enhance the production of extracellular inulinase. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Extracellular Production of Reactive Oxygen Species by Marine Microbiota

    NASA Astrophysics Data System (ADS)

    Schneider, R. J.; Roe, K. L.; Voelker, B. M.; Hansel, C. M.

    2016-02-01

    The reactive oxygen species (ROS) superoxide (O2-) and hydrogen peroxide (H2O2) are important to the cycling of trace metals and carbon in marine systems. Previous studies have shown that biological ROS production in the ocean may be significant. We examined the ability of five common species of diatoms to produce and break down ROS in the presence and absence of light by suspending cells on filters and measuring downstream ROS concentrations using chemiluminescence probes. Results show a wide range of rates (undetectable to 7.3 x 10-16 mol cell-1 hr-1) and suggest that extracellular ROS production occurs through a variety of pathways. H2O2 decay appears to be mediated primarily by active cell processes, while O2- appears to occur through a combination of active and passive cell processes. Extracellular H2O2 production and decay were also determined for twelve species of heterotrophic bacteria using two different methodologies. Measured decay rates were consistent despite methodological differences. By contrast, large variability of production rates was observed could vary significantly even among between replicates of the same species measured using the same methodology. Although production rates cannot be stated with certainty, it is likely that extracellular H2O2 production occurs in most bacterial species.

  15. Extracellular Calcium Has Multiple Targets to Control Cell Proliferation.

    PubMed

    Capiod, Thierry

    2016-01-01

    Calcium channels and the two G-protein coupled receptors sensing extracellular calcium, calcium-sensing receptor (CaSR) and GPRC6a, are the two main means by which extracellular calcium can signal to cells and regulate many cellular processes including cell proliferation, migration and invasion of tumoral cells. Many intracellular signaling pathways are sensitive to cytosolic calcium rises and conversely intracellular signaling pathways can modulate calcium channel expression and activity. Calcium channels are undoubtedly involved in the former while the CaSR and GPRC6a are most likely to interfere with the latter. As for neurotransmitters, calcium ions use plasma membrane channels and GPCR to trigger cytosolic free calcium concentration rises and intracellular signaling and regulatory pathways activation. Calcium sensing GPCR, CaSR and GPRC6a, allow a supplemental degree of control and as for metabotropic receptors, they not only modulate calcium channel expression but they may also control calcium-dependent K+ channels. The multiplicity of intracellular signaling pathways involved, their sensitivity to local and global intracellular calcium increase and to CaSR and GPRC6a stimulation, the presence of membrane signalplex, all this confers the cells the plasticity they need to convert the effects of extracellular calcium into complex physiological responses and therefore determine their fate.

  16. Prediction and Identification of Krüppel-Like Transcription Factors by Machine Learning Method.

    PubMed

    Liao, Zhijun; Wang, Xinrui; Chen, Xingyong; Zou, Quan

    2017-01-01

    The Krüppel-like factors (KLFs) are a family of containing Zn finger(ZF) motif transcription factors with 18 members in human genome, among them, KLF18 is predicted by bioinformatics. KLFs possess various physiological function involving in a number of cancers and other diseases. Here we perform a binary-class classification of KLFs and non-KLFs by machine learning methods. The protein sequences of KLFs and non-KLFs were searched from UniProt and randomly separate them into training dataset(containing positive and negative sequences) and test dataset(containing only negative sequences), after extracting the 188-dimensional(188D) feature vectors we carry out category with four classifiers(GBDT, libSVM, RF, and k-NN). On the human KLFs, we further dig into the evolutionary relationship and motif distribution, and finally we analyze the conserved amino acid residue of three zinc fingers. The classifier model from training dataset were well constructed, and the highest specificity(Sp) was 99.83% from a library for support vector machine(libSVM) and all the correctly classified rates were over 70% for 10-fold cross-validation on test dataset. The 18 human KLFs can be further divided into 7 groups and the zinc finger domains were located at the carboxyl terminus, and many conserved amino acid residues including Cysteine and Histidine, and the span and interval between them were consistent in the three ZF domains. Two classification models for KLFs prediction have been built by novel machine learning methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.

    PubMed

    Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V

    2012-09-01

    Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.

  18. Cognitive Factors Affecting Freeze-like Behavior in Humans.

    PubMed

    Alban, Michael W; Pocknell, Victoria

    2017-01-01

    Contemporary research on survival-related defensive behaviors has identified physiological markers of freeze/flight/fight. Our research focused on cognitive factors associated with freeze-like behavior in humans. Study 1 tested if an explicit decision to freeze is associated with the psychophysiological state of freezing. Heart rate deceleration occurred when participants chose to freeze. Study 2 varied the efficacy of freezing relative to other defense options and found "freeze" was responsive to variations in the perceived effectiveness of alternative actions. Study 3 tested if individual differences in motivational orientation affect preference for a "freeze" option when the efficacy of options is held constant. A trend in the predicted direction suggested that naturally occurring cognitions led loss-avoiders to select "freeze" more often than reward-seekers. In combination, our attention to the cognitive factors affecting freeze-like behavior in humans represents a preliminary step in addressing an important but neglected research area.

  19. Angiopoietin-like protein 2 promotes chondrogenic differentiation during bone growth as a cartilage matrix factor.

    PubMed

    Tanoue, H; Morinaga, J; Yoshizawa, T; Yugami, M; Itoh, H; Nakamura, T; Uehara, Y; Masuda, T; Odagiri, H; Sugizaki, T; Kadomatsu, T; Miyata, K; Endo, M; Terada, K; Ochi, H; Takeda, S; Yamagata, K; Fukuda, T; Mizuta, H; Oike, Y

    2018-01-01

    Chondrocyte differentiation is crucial for long bone growth. Many cartilage extracellular matrix (ECM) proteins reportedly contribute to chondrocyte differentiation, indicating that mechanisms underlying chondrocyte differentiation are likely more complex than previously appreciated. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor normally abundantly produced in mesenchymal lineage cells such as adipocytes and fibroblasts, but its loss contributes to the pathogenesis of lifestyle- or aging-related diseases. However, the function of ANGPTL2 in chondrocytes, which are also differentiated from mesenchymal stem cells, remains unclear. Here, we investigate whether ANGPTL2 is expressed in or functions in chondrocytes. First, we evaluated Angptl2 expression during chondrocyte differentiation using chondrogenic ATDC5 cells and wild-type epiphyseal cartilage of newborn mice. We next assessed ANGPTL2 function in chondrogenic differentiation and associated signaling using Angptl2 knockdown ATDC5 cells and Angptl2 knockout mice. ANGPTL2 is expressed in chondrocytes, particularly those located in resting and proliferative zones, and accumulates in ECM surrounding chondrocytes. Interestingly, long bone growth was retarded in Angptl2 knockout mice from neonatal to adult stages via attenuation of chondrocyte differentiation. Both in vivo and in vitro experiments show that changes in ANGPTL2 expression can also alter p38 mitogen-activated protein kinase (MAPK) activity mediated by integrin α5β1. ANGPTL2 contributes to chondrocyte differentiation and subsequent endochondral ossification through α5β1 integrin and p38 MAPK signaling during bone growth. Our findings provide insight into molecular mechanisms governing communication between chondrocytes and surrounding ECM components in bone growth activities. Copyright © 2017. Published by Elsevier Ltd.

  20. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    NASA Astrophysics Data System (ADS)

    Yu, Run-lan; Liu, Jing; Tan, Jian-xi; Zeng, Wei-min; Shi, Li-juan; Gu, Guo-hua; Qin, Wen-qing; Qiu, Guan-zhou

    2014-04-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  1. Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice

    PubMed Central

    Eichenberger, Ramon M.; Ryan, Stephanie; Jones, Linda; Buitrago, Geraldine; Polster, Ramona; Montes de Oca, Marcela; Zuvelek, Jennifer; Giacomin, Paul R.; Dent, Lindsay A.; Engwerda, Christian R.; Field, Matthew A.; Sotillo, Javier; Loukas, Alex

    2018-01-01

    Gastrointestinal (GI) parasites, hookworms in particular, have evolved to cause minimal harm to their hosts, allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed, hookworms are such potent suppressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs), exosome-like EVs from different helminths have been characterized and their salient roles in parasite–host interactions have been highlighted. Here, we analyze EVs from the rodent parasite Nippostrongylus brasiliensis, which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids, indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins, including proteins frequently present in exosomes (like tetraspanin, enolase, 14-3-3 protein, and heat shock proteins), and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species, many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties, we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6, IL-1β, IFNγ, and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast, high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great

  2. Cloned cytolytic T-effector cells and their malignant variants produce an extracellular matrix degrading trypsin-like serine proteinase.

    PubMed Central

    Simon, M M; Simon, H G; Fruth, U; Epplen, J; Müller-Hermelink, H K; Kramer, M D

    1987-01-01

    This report describes the distribution of a trypsin-like proteinase in defined homogeneous cytolytic T-cell lines (CTLL) and their in vitro and in vivo derived malignant T-lymphoma variants. By means of chromogenic peptide substrates, we found the enzyme to attack preferentially at the carboxy terminus of arginine, in particular when non-polar amino acids were present in the amino terminal neighbouring position. The enzyme was identified by means of various inhibitors as a serine type proteinase having a pH optimum around 8 X 5. Affinity chromatography in connection with molecular sieving resulted in a 200-fold purification and indicated a molecular weight (MW) of about 50,000 for the proteinase. The enzyme was found to be highly expressed in antigen-specific CTLL as well as in their tumorigenic variants. Both intact lymphocytes of all CTLL tested and Triton X-100 lysates or enriched proteinase preparations thereof were able to degrade a high molecular weight protein (casein) and to release high molecular weight split products from the sulphated proteoglycans in subendothelial extracellular matrix. The results are discussed with respect to the invasiveness of normal and malignant T lymphocytes and the proteinase is suggested to be crucially involved in the process of cellular migration in vivo. Images Figure 1 PMID:3546101

  3. Insulin and heparin-binding epidermal growth factor-like growth factor synergistically promote astrocyte survival and proliferation in serum-free medium.

    PubMed

    Jia, Mei; Shi, Zhongfang; Yan, Xu; Xu, Lixin; Dong, Liping; Li, Jiaxin; Wang, Yujiao; Yang, Shaohua; Yuan, Fang

    2018-06-08

    In vitro systems allowing maintenance and experimentation on primary astrocyte cultures have been used for decades. Astrocyte cultures are most maintained in serum-containing medium which has been found to alter the morphology and gene profiles of astrocytes. Here, we reported a new serum-free medium for astrocyte culture, which consisted of DMEM and NB media supplemented with insulin and heparin-binding epidermal growth factor-like growth factor (HB-EGF) (SF-I-H medium). Meanwhile FBS-containing (FBS) medium composed of DMEM medium containing 10% FBS were used for comparison study. Cerebral cortex was harvested from postnatal day 1 Wistar rats and brain cells were isolated and seeded to poly-L-lysine coated culture dishes after 15 min differential velocity adherence. Compared with FBS medium, astrocytes in SF-I-H medium are smaller and exhibited process bearing morphologies. MTT assays showed that cell density and proliferation rate were higher in SF-I-H medium than in FBS medium all the time, and flow cytometry analysis revealed that SF-I-H medium promoted cell mitosis in a manner comparable to FBS medium. Consistently, western blot analysis further revealed that insulin and HB-EGF synergistically activated the PI3K-AKT and MAPK-ERK1/2 signaling cascades as FBS. Astrocytes cultured in SF-I-H medium grow faster than FBS medium. Taken together, our results indicated that SF-I-H medium, in which cell morphology was similar with astrocytes in brain, was more effective for astrocyte survival and proliferation than FBS medium, providing a new cell model to study astrocyte functions without the interference of serum. Copyright © 2018. Published by Elsevier B.V.

  4. Epitope mapping of the alpha-chain of the insulin-like growth factor I receptor using antipeptide antibodies.

    PubMed

    Delafontaine, P; Ku, L; Ververis, J J; Cohen, C; Runge, M S; Alexander, R W

    1994-12-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells (VSMC). The IGF I receptor (IGF IR) is a heterotetramer composed of two cross-linked extracellular alpha-chains and two membrane-spanning beta-chains that contain a tyrosine-kinase domain. It has a high degree of sequence similarity to the insulin receptor (IR), and the putative ligand-specific binding site has been localized to a cysteine-rich region (CRR) of the alpha-chain. To obtain insights into antigenic determinants of the IGF IR, we raised a panel of site-specific polyclonal antibodies against short peptide sequences N-terminal to and within the CRR. Several antibodies raised against linear epitopes within the CRR bound to solubilized and native rat and human IGF IR by ELISA, did not cross-react with IR, but unexpectedly failed to inhibit 125I-IGF I binding. A polyclonal antibody directed against a 48-amino acid synthetic peptide, corresponding to a region of the CRR postulated to be essential for ligand binding, failed to react with either solubilized, reduced or intact IGF IR. Three antibodies specific for the N-terminus of the alpha-chain reacted with solubilized and native IGF IR. One of these, RAB 6, directed against amino acids 38-44 of the IGF IR, inhibited 125I-IGF I binding to rat aortic smooth muscle cells (RASM) and to IGF IR/3T3 cells (overexpressing human IGF IR) by up to 45%. Immunohistochemical analysis revealed strong IGF IR staining in the medial smooth muscle cell layer of rat aorta. These findings are consistent with a model wherein conformational epitopes within the CRR and linear epitopes within the N-terminus of the alpha-chain contribute to the IGF I binding pocket. These antibodies should provide a valuable tool to study structure-function relationships and in vivo regulation of the IGF IR.

  5. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts.

    PubMed

    Liu, Ying; Geng, Yue-Hang; Yang, Hui; Yang, Han; Zhou, Yan-Ting; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2018-05-04

    Our previous work has demonstrated that extracellular ATP is an important pro-invasive factor, and in this study, we tapped into a possible mechanism involved. We discovered that ATP could upregulate both the intracellular expression and secretion of S100A4 in breast cancer cells and fibroblasts. Apart from stimulating breast cancer cell motility via intracellular S100A4, ATP enhanced the ability of breast cancer cells to transform fibroblasts into cancer-associated fibroblast (CAF)-like cells, which in turn secreted S100A4 to further promote cancer cell motility. Both apyrase and niclosamide treatments could inhibit metastasis of inoculated tumors to lung, liver and kidney in mice model, and CAFs from these treated tumors exhibited weakened migration-stimulating capacity for breast cancer cells. Collectively, our data indicate that extracellular ATP promotes the interactions between breast cancer cells and fibroblasts, which work collaboratively via production of S100A4 to exacerbate breast cancer metastasis. Copyright © 2018. Published by Elsevier B.V.

  6. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappa, Germana; College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104; Mercapide, Javier

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that threemore » distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing

  7. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  8. Excretion of extracellular lipids by Streptococcus mutans BHT and FA-1.

    PubMed Central

    Cabacungan, E; Pieringer, R A

    1980-01-01

    Streptococcus mutans BHT and FA-1, when grown to log phase on chemically defined medium containing [14C]glycerol, excreted 15% of the total biosynthesized 14C-lipid into the medium. When grown to early stationary phase, 28 to 33% of the 14C-lipid was found in the medium. The radioactive lipids of these varieties of S. mutans were identified as diacylglycerol, diglucosyl diacylglycerol (DGD), monoglucosyl diacylglycerol, diphosphatidylglycerol, phosphatidylglycerol (PG), and smaller amounts of two other lipids tentatively were identified as amino acyl-PG and glycerol phosphoryl-DGD. All lipids were found as extracellular and intracellular components from cells grown to either log or stationary phase. However, there were some shifts in the relative percentage of these lipids as the cells changed from log to stationary phase. For example, the intracellular lipid content of log-phase S. mutans BHT was composed of 49% PG and 19% DGD, but these percents shifted to 18% PG and 57% DGD when the cells were grown to stationary phase. However, the extracellular lipids of this organism contained 50 to 60% PG and 20% DGD in both log and stationary phases. PMID:7380539

  9. Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner*

    PubMed Central

    Luhtala, Natalie; Aslanian, Aaron; Yates, John R.; Hunter, Tony

    2017-01-01

    Glioblastomas (GBMs) are malignant brain tumors with a median survival of less than 18 months. Redundancy of signaling pathways represented within GBMs contributes to their therapeutic resistance. Exosomes are extracellular nanovesicles released from cells and present in human biofluids that represent a possible biomarker of tumor signaling state that could aid in personalized treatment. Herein, we demonstrate that mouse GBM cell-derived extracellular nanovesicles resembling exosomes from an H-RasV12 myr-Akt mouse model for GBM are enriched for intracellular signaling cascade proteins (GO: 0007242) and Ras protein signal transduction (GO: 0007265), and contain active Ras. Active Ras isolated from human and mouse GBM extracellular nanovesicles lysates using the Ras-binding domain of Raf also coprecipitates with ESCRT (endosomal sorting complex required for transport)-associated exosome proteins Vps4a and Alix. Although we initially hypothesized a role for active Ras protein signaling in exosome biogenesis, we found that GTP binding of K-Ras was dispensable for its packaging within extracellular nanovesicles and for the release of Alix. By contrast, farnesylation of K-Ras was required for its packaging within extracellular nanovesicles, yet expressing a K-Ras farnesylation mutant did not decrease the number of nanovesicles or the amount of Alix protein released per cell. Overall, these results emphasize the primary importance of membrane association in packaging of extracellular nanovesicle factors and indicate that screening nanovesicles within human fluids could provide insight into tissue origin and the wiring of signaling proteins at membranes to predict onset and behavior of cancer and other diseases linked to deregulated membrane signaling states. PMID:27909058

  10. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.

    PubMed

    Zhang, Zhanquan; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2014-06-01

    Pathogenic fungi usually secrete a series of virulence factors to the extracellular environment to facilitate infection. Rab GTPases play a central role in the secretory pathway. To explore the function of Rab/GTPase in filamentous fungi, we knocked out a Rab/GTPase family gene, Bcsas1, in Botrytis cinerea, an aggressive fungal pathogen that infects more than 200 plant species. A detailed analysis was conducted on the virulence and the secretory capability of the mutants. The results indicated that knockout of Bcsas1 inhibited hyphal development and reduced sporulation of B. cinerea on potato dextrose agar plates resulting in reduced virulence on various fruit hosts. Knocking out the Bcsas1 gene led to an accumulation of transport vesicles at the hyphal tip, significantly reduced extracellular protein content, and lowered the activity of polygalacturonase and xylanase in the extracellular medium. However, mutation of Bcsas1 did not affect the expression of genes encoding polygalacturonase and xylanase, suggesting the secretion of these two family enzymes was suppressed in the mutant. Moreover, a comparative analysis of the secretome provided further evidence that the disruption of Bcsas1 in mutant strains significantly depressed the secretion of polysaccharide hydrolases and proteases. The results indicate that Bcsas1, the Rab8/SEC4-like gene, plays a crucial role in development, protein secretion, and virulence of B. cinerea.

  11. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    PubMed Central

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  12. Enhancing aerobic digestion potential of municipal waste-activated sludge through removal of extracellular polymeric substance.

    PubMed

    Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2014-01-01

    A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.

  13. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus).

    PubMed

    Cheng, Mei-Nv; Huang, Zi-Juan; Hua, Qing-Zhu; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Qin, Yong-Hua; Chen, Jian-Ye

    2017-01-01

    Red pitaya ( Hylocereus polyrhizus ) fruit is a high-value, functional food, containing a high level of betalains. Several genes potentially related to betalain biosynthesis, such as cytochrome P450-like ( CytP450-like ), have been identified in pitaya fruit, while their transcriptional regulation remains unclear. In this work, the potential involvement of a WRKY transcription factor, HpWRKY44, in regulating CytP450-like1 expression in pitaya fruit was examined. HpWRKY44, a member of the Group 1 WRKY family, contains two conserved WRKY motifs and is localized in the nucleus. HpWRKY44 also exhibits trans-activation ability. Gene expression analysis showed that the expression of HpCytP450-like1 and HpWRKY44 increased steadily during pitaya fruit coloration, which corresponded with the production of elevated betalain levels in the fruit. HpWRKY44 was also demonstrated to directly bind to and activate the HpCytP450-like1 promoter via the recognition of the W-box element present in the promoter. Collectively, our findings indicate that HpWRKY44 transcriptionally activates HpCytP450-like1 , which perhaps, at least in part, contributes to betalain biosynthesis in pitaya fruit. The information provided in the current study provides novel insights into the regulatory network associated with betalain biosynthesis during pitaya fruit coloration.

  14. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds

    PubMed Central

    Moon, Young-Sun; Choi, Won-Sik; Park, Eun-Sil; Bae, In Kyung; Choi, Sung-Deuk; Paek, Ockjin; Kim, Sheen-Hee; Chun, Hyang Sook; Lee, Sung-Eun

    2016-01-01

    Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B1 production up to a concentration of 1000 μg/mL. Ten piperine-like synthetic compounds were synthesized that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 μg/mL. This synthetic compound was remarkable because the positive control thiabendazole had no inhibitory effect at this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore, the synthetic compound inhibited aflatoxin production by down-regulating these genes. PMID:27537912

  15. Extracellular matrix components direct porcine muscle stem cell behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatinmore » and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.« less

  16. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1991-01-01

    Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.

  17. The extracellular matrix of rat pacinian corpuscles: an analysis of its fine structure.

    PubMed

    Dubový, P; Bednárová, J

    1999-12-01

    The Pacinian corpuscle consists of a sensory axon terminal that is enveloped by two different structures, the inner core and the capsule. Since proteoglycans are extremely water soluble and are extracted by conventional methods for electron microscopy, the current picture of the structural composition of the extracellular matrix in the inner core and the capsule of the Pacinian corpuscle is incomplete. To study the structural composition of the extracellular matrix of the Pacinian corpuscles, cationic dyes (ruthenium red, alcian blue, acridine orange) and tannic acid were applied simultaneously with the aldehyde fixation. The interosseal Pacinian corpuscles of the rat were fixed either in 2% formaldehyde and 1.5% glutaraldehyde, with the addition of one of these cationic dyes or, in Zamboni's fixative, with tannic acid added. The cationic dyes and tannic acid revealed a different structural pattern of proteoglycans in the extracellular matrix in the inner core and in the capsule of the rat Pacinian corpuscles. The inner core surrounding the sensory axon terminal is a compartment containing proteoglycans that were distributed not only in the extracellular matrix but also in the cytoplasm of the lamellae. In addition, this excitable domain was separated from the capsular fluid by a thick layer of proteoglycans on its surface. An enlarged interlamellar space of the capsule contained large amounts of proteoglycans that were removed by digestion with chondroitinase-ABC. Ruthenium red and alcian blue provided only electron dense granules, probably corresponding to collapsed monomeric proteoglycan molecules. Acridine orange and tannic acid preserved proteoglycans very well and made it possible to visualize them as "bottlebrush" structures in the electron microscope. These results show that the inner core and the capsule of rat Pacinian corpuscles have different structural patterns of proteoglycans, which are probably involved in different functions.

  18. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.

  19. Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins.

    PubMed

    Kokoszyńska, Katarzyna; Rychlewski, Leszek; Wyrwicz, Lucjan S

    2010-07-15

    Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death via release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative. Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1. Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification.

  20. Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins

    PubMed Central

    2010-01-01

    Background Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death via release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative. Findings Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1. Conclusions Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification. PMID:20633251

  1. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  2. Efficient Extracellular Expression of Phospholipase D in Escherichia Coli with an Optimized Signal Peptide

    NASA Astrophysics Data System (ADS)

    Yang, Leyun; Xu, Yu; Chen, Yong; Ying, Hanjie

    2018-01-01

    New secretion vectors containing the synthetic signal sequence (OmpA’) was constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli Phospholipase D structural gene (Accession number:NC_018658) fused to various signal sequence were expressed from the Lac promoter in E. coli Rosetta strains by induction with 0.4mM IPTG at 28°C for 48h. SDS-PaGe analysis of expression and subcellular fractions of recombinant constructs revealed the translocation of Phospholipase D (PLD) not only to the medium but also remained in periplasm of E. coli with OmpA’ signal sequence at the N-terminus of PLD. Thus the study on the effects of various surfactants on PLD extracellular production in Escherichia coli in shake flasks revealed that optimal PLD extracellular production could be achieved by adding 0.4% Triton X-100 into the medium. The maximal extracellular PLD production and extracellular enzyme activity were 0.23mg ml-1 and 16U ml-1, respectively. These results demonstrate the possibility of efficient secretory production of recombinant PLD in E. coli should be a potential industrial applications.

  3. Neurodevelopmental effects of insulin-like growth factor signaling

    PubMed Central

    O’Kusky, John; Ye, Ping

    2012-01-01

    Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development. PMID:22710100

  4. Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next-generation sequencing

    PubMed Central

    Lässer, Cecilia; Shelke, Ganesh Vilas; Yeri, Ashish; Kim, Dae-Kyum; Crescitelli, Rossella; Raimondo, Stefania; Sjöstrand, Margareta; Gho, Yong Song; Van Keuren Jensen, Kendall; Lötvall, Jan

    2017-01-01

    ABSTRACT Cells secrete extracellular RNA (exRNA) to their surrounding environment and exRNA has been found in many body fluids such as blood, breast milk and cerebrospinal fluid. However, there are conflicting results regarding the nature of exRNA. Here, we have separated 2 distinct exRNA profiles released by mast cells, here termed high-density (HD) and low-density (LD) exRNA. The exRNA in both fractions was characterized by microarray and next-generation sequencing. Both exRNA fractions contained mRNA and miRNA, and the mRNAs in the LD exRNA correlated closely with the cellular mRNA, whereas the HD mRNA did not. Furthermore, the HD exRNA was enriched in lincRNA, antisense RNA, vault RNA, snoRNA, and snRNA with little or no evidence of full-length 18S and 28S rRNA. The LD exRNA was enriched in mitochondrial rRNA, mitochondrial tRNA, tRNA, piRNA, Y RNA, and full-length 18S and 28S rRNA. The proteomes of the HD and LD exRNA-containing fractions were determined with LC-MS/MS and analyzed with Gene Ontology term finder, which showed that both proteomes were associated with the term extracellular vesicles and electron microscopy suggests that at least a part of the exRNA is associated with exosome-like extracellular vesicles. Additionally, the proteins in the HD fractions tended to be associated with the nucleus and ribosomes, whereas the LD fraction proteome tended to be associated with the mitochondrion. We show that the 2 exRNA signatures released by a single cell type can be separated by floatation on a density gradient. These results show that cells can release multiple types of exRNA with substantial differences in RNA species content. This is important for any future studies determining the nature and function of exRNA released from different cells under different conditions. PMID:27791479

  5. TRALI ASSOCIATED HNA-3a ANTIBODIES RECOGNIZE COMPLEX DETERMINANTS ON CHOLINE TRANSPORTER-LIKE PROTEIN 2 (CTL2)

    PubMed Central

    Bougie, Daniel W; Peterson, Julie A; Kanack, Adam J; Curtis, Brian R; Aster, Richard H

    2014-01-01

    Background HNA-3a specific antibodies can cause severe, sometimes fatal, transfusion related acute lung injury (TRALI) when present in transfused blood. The HNA3-a/b antigens are determined by an R154Q polymorphism in the first of five extracellular loops of the 10-membrane spanning choline transporter-like protein 2 (CTL2) expressed on neutrophils, lymphocytes and other tissues. About 50% of HNA-3a antibodies (Type 1) can be detected using CTL2 Loop 1 peptides containing R154; the remaining 50% (Type 2) fail to recognize this target. Understanding the basis for this difference could guide efforts to develop practical assays to screen blood donors for HNA-3 antibodies. Study design and methods Reactions of HNA-3a antibodies against recombinant versions of human, mouse, and human/mouse (chimeric) CTL2 were characterized using flow cytometry and various solid phase assays. Results Findings made show that, for binding to CTL2, Type 2 HNA-3a antibodies require non-polymorphic amino acid residues in the third, and possibly the second, extracellular loops of CTL2 to be in a configuration comparable to that found naturally in the cell membrane. In contrast, Type 1 antibodies require only peptides from the first extracellular loop that contain R154 for recognition. Conclusion Although Type 1 HNA-3a antibodies can readily be detected in solid phase assays that use a CTL2 peptide containing R154 as a target, development of a practical test to screen blood donors for Type 2 antibodies will pose a serious technical challenge because of the complex nature of the epitope(s) recognized by this antibody sub-group. PMID:24846273

  6. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation.

    PubMed

    Yan, Hong Ji; Casalini, Tommaso; Hulsart-Billström, Gry; Wang, Shujiang; Oommen, Oommen P; Salvalaglio, Matteo; Larsson, Sune; Hilborn, Jöns; Varghese, Oommen P

    2018-04-01

    Synthetic scaffolds that possess an intrinsic capability to protect and sequester sensitive growth factors is a primary requisite for developing successful tissue engineering strategies. Growth factors such as recombinant human bone morphogenetic protein-2 (rhBMP-2) is highly susceptible to premature degradation and to provide a meaningful clinical outcome require high doses that can cause serious side effects. We discovered a unique strategy to stabilize and sequester rhBMP-2 by enhancing its molecular interactions with hyaluronic acid (HA), an extracellular matrix (ECM) component. We found that by tuning the initial protonation state of carboxylic acid residues of HA in a covalently crosslinked hydrogel modulate BMP-2 release at physiological pH by minimizing the electrostatic repulsion and maximizing the Van der Waals interactions. At neutral pH, BMP-2 release is primarily governed by Fickian diffusion, whereas at acidic pH both diffusion and electrostatic interactions between HA and BMP-2 become important as confirmed by molecular dynamics simulations. Our results were also validated in an in vivo rat ectopic model with rhBMP-2 loaded hydrogels, which demonstrated superior bone formation with acidic hydrogel as compared to the neutral counterpart. We believe this study provides new insight on growth factor stabilization and highlights the therapeutic potential of engineered matrices for rhBMP-2 delivery and may help to curtail the adverse side effects associated with the high dose of the growth factor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors

    PubMed Central

    Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier

    2016-01-01

    After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation. PMID:28036084

  8. Extracellular fluid proteins of goldfish brain: evidence for the presence of proteases and esterases.

    PubMed

    Shashoua, V E; Holmquist, B

    1986-09-01

    Preparations of enriched fractions of extracellular fluid (ECF) proteins from goldfish brain were found to contain protease(s) and esterase(s). The N-substituted furanacryloyl (FA) peptides FA-Phe-Gly-Gly and FA-Phe-OMe were used as model substrates for determining protease and esterase activity, respectively, in a spectrophotometric assay. Studies of the profile of substrate specificity and identification of the types of compounds that were effective as inhibitors showed that these ECF enzymes have some distinctive properties. GSH, but not GSSG, and EDTA inhibited the protease(s) without influencing the esterase(s), whereas L-1-tosylamide-2-phenylethylchloromethyl ketone blocked both protease and esterase activities of ECF. Most of the protease and esterase properties of ECF could be bound to concanavalin A-Sepharose affinity chromatographic columns in association with ependymin--a brain extracellular protein. These observations indicate that ECF may contain a metalloprotease(s) and raise the possibility that the ependymins might be a substrate for these ECF enzymes.

  9. FIB-SEM tomography of human skin telocytes and their extracellular vesicles.

    PubMed

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-04-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) - the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Dystroglycan modulates the ability of insulin-like growth factor-1 to promote oligodendrocyte differentiation.

    PubMed

    Galvin, Jason; Eyermann, Christopher; Colognato, Holly

    2010-11-15

    The adhesion receptor dystroglycan positively regulates terminal differentiation of oligodendrocytes, but the mechanism by which this occurs remains unclear. Using primary oligodendrocyte cultures, we identified and examined a connection between dystroglycan and the ability of insulin-like growth factor-1 (IGF-1) to promote oligodendrocyte differentiation. Consistent with previous reports, treatment with exogenous IGF-1 caused an increase in MBP protein that was preceded by activation of PI3K (AKT) and MAPK (ERK) signaling pathways. The extracellular matrix protein laminin was further shown to potentiate the effect of IGF-1 on oligodendrocyte differentiation. Depletion of the laminin receptor dystroglycan using siRNA, however, blocked the ability of IGF-1 to promote oligodendrocyte differentiation of cells grown on laminin, suggesting a role for dystroglycan in IGF-1-mediated differentiation. Indeed, loss of dystroglycan led to a reduction in the ability of IGF-1 to activate MAPK, but not PI3K, signaling pathways. Pharmacological inhibition of MAPK signaling also prevented IGF-1-induced increases in myelin basic protein (MBP), indicating that MAPK signaling was necessary to drive IGF-1-mediated enhancement of oligodendrocyte differentiation. Using immunoprecipitation, we found that dystroglycan, the adaptor protein Grb2, and insulin receptor substrate-1 (IRS-1), were associated in a protein complex. Taken together, our results suggest that the positive regulatory effect of laminin on oligodendrocyte differentiation may be attributed, at least in part, to dystroglycan's ability to promote IGF-1-induced differentiation.

  11. Engineering hydrogels as extracellular matrix mimics

    PubMed Central

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine. PMID:20394538

  12. Extracellular vesicles are independent metabolic units with asparaginase activity

    PubMed Central

    Leonardi, Tommaso; Costa, Ana S. H.; Cossetti, Chiara; Peruzzotti-Jametti, Luca; Bernstock, Joshua D.; Saini, Harpreet K.; Gelati, Maurizio; Vescovi, Angelo Luigi; Bastos, Carlos; Faria, Nuno; Occhipinti, Luigi G.; Enright, Anton J.; Frezza, Christian; Pluchino, Stefano

    2017-01-01

    Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. While it has been shown that cells can traffic metabolic enzymes via EVs much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Both our metabolomics and functional analyses revealed that EVs harbour L-asparaginase activity catalysed by the enzyme Asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC-derived EVs traffic ASRGL1. Our results demonstrate for the first time that NSC EVs function as independent, extracellular metabolic units able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment. PMID:28671681

  13. Neutrophil extracellular traps: double-edged swords of innate immunity.

    PubMed

    Kaplan, Mariana J; Radic, Marko

    2012-09-15

    Spectacular images of neutrophils ejecting nuclear chromatin and bactericidal proteins, in response to microbes, were first reported in 2004. As externalized chromatin could entangle bacteria, these structures were named neutrophil extracellular traps (NETs). Subsequent studies identified microorganisms and sterile conditions that stimulate NETs, as well as additional cell types that release extracellular chromatin. The release of NETs is the most dramatic stage in a cell death process called NETosis. Experimental evidence suggests that NETs participate in pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. Exaggerated NETosis or diminished NET clearance likely increases risk of autoreactivity to NET components. The biological significance of NETs is just beginning to be explored. A more complete integration of NETosis within immunology and pathophysiology will require better understanding of NET properties associated with specific disease states and microbial infections. This may lead to the identification of important therapeutic targets.

  14. The impact of extracellular syntaxin4 on HaCaT keratinocyte behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadono, Nanako; Miyazaki, Takafumi; Okugawa, Yoji

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer A subpopulation of syntaxin4 localizes extracellularly in the keratinocytes. Black-Right-Pointing-Pointer Epimorphin and syntaxin4 confer the resistance to the oxidative stress. Black-Right-Pointing-Pointer Epimorphin suppresses and syntaxin4 accelerates the CCE formation. Black-Right-Pointing-Pointer The antagonistic peptide to syntaxin4 blocks the syntaxin4-dependent CCE formation. -- Abstract: Syntaxin4 belongs to t-SNARE protein family and functions as a vesicular fusion mediator in the plasma membrane in a wide variety of cell types. This protein resembles another family member, epimorphin, a subpopulation of which has been shown to be secreted extracellularly in order to exert signaling functions. Here, we demonstrate the secretion of syntaxin4 viamore » a non-classical pathway and its extracellular functions by using the functionally normal keratinocyte HaCaT. Extracellularly presented syntaxin4 appeared to elicit many cell responses similar to epimorphin with an important exception: it clearly facilitated keratinocyte cornification. The circularized peptide ST4n1 was synthesized from the putative functional core of syntaxin4 (a.a. 103-108), which is equivalent to the previously generated antagonist of epimorphin, and neutralized this contradictory effect. Intriguingly, an epimorphin mutant (EP4M) in which the functional core was replaced by that of syntaxin4 behaved like epimorphin, which was again antagonized by ST4n1. Electrophoresis-based analyses demonstrated the distinct structure of syntaxin4 compared to epimorphin or EP4M. These results revealed, for the first time, the extracellular role of syntaxin4 and shed light on the division of the extracellular effects exerted by epimorphin and syntaxin4 on keratinocyte cornification.« less

  15. Release of ATP from marginal cells in the cochlea of neonatal rats can be induced by changes in extracellular and intracellular ion concentrations.

    PubMed

    Peng, Yating; Chen, Jie; He, Shan; Yang, Jun; Wu, Hao

    2012-01-01

    Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Sprague-Dawley rats aged 1-3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K(+) and intra- and extracellular Ca(2+). Furthermore, changes in the concentration of intracellular Ca(2+) induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K(+) channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A(2).

  16. Release of ATP from Marginal Cells in the Cochlea of Neonatal Rats Can Be Induced by Changes in Extracellular and Intracellular Ion Concentrations

    PubMed Central

    Peng, Yating; Chen, Jie; He, Shan; Yang, Jun; Wu, Hao

    2012-01-01

    Background Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Methods Sprague-Dawley rats aged 1–3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Results Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K+ and intra- and extracellular Ca2+. Furthermore, changes in the concentration of intracellular Ca2+ induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. Conclusion We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K+ channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A2. PMID:23071731

  17. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity.

    PubMed

    Novosyadlyy, Ruslan; Leroith, Derek

    2012-06-01

    Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity.

  18. Impact of Lysosome Status on Extracellular Vesicle Content and Release

    PubMed Central

    Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P.

    2016-01-01

    Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. PMID:27238186

  19. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  20. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria.

    PubMed

    Kikuchi, Yo; Umekage, So

    2018-02-01

    Extracellular nucleic acids of high molecular weight are detected ubiquitously in seawater. Recent studies have indicated that these nucleic acids are, at least in part, derived from active production by some bacteria. The marine bacterium Rhodovulum sulfidophilum is one of those bacteria. Rhodovulumsulfidophilum is a non-sulfur phototrophic marine bacterium that is known to form structured communities of cells called flocs, and to produce extracellular nucleic acids in culture media. Recently, it has been revealed that this bacterium produces gene transfer agent-like particles and that this particle production may be related to the extracellular nucleic acid production mechanism. This review provides a summary of recent physiological and genetic studies of these phenomena and also introduces a new method for extracellular production of artificial and biologically functional RNAs using this bacterium. In addition, artificial RNA production using Escherichia coli, which is related to this topic, will also be described. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Sarcoid-like lesions in Paracoccidioidomycosis: immunological factors*

    PubMed Central

    de Medeiros, Vanessa Lucília Silveira; Arruda, Lúcia

    2013-01-01

    The clinical presentation of paracoccidioidomycosis is spectral. Spontaneous cure, state of latency or active disease with different levels of severity can occur after the hematogenous dissemination. The morphology and number of skin lesions will depend on the interaction of host immunity, which is specific and individual, and fungus virulence. Some individuals have natural good immunity, which added to the low virulence of the fungus maintain the presence of well-marked granulomas with no microorganism and negative serology for a long time, making the diagnosis a challenge. Factors inherent to the fungus, however, may modulate the immune response and modify the clinical picture over the time. We present a sarcoidosis-like clinical presentation and discuss the immunological factors involved. PMID:23539015

  2. Mechanical model for a collagen fibril pair in extracellular matrix.

    PubMed

    Chan, Yue; Cox, Grant M; Haverkamp, Richard G; Hill, James M

    2009-04-01

    In this paper, we model the mechanics of a collagen pair in the connective tissue extracellular matrix that exists in abundance throughout animals, including the human body. This connective tissue comprises repeated units of two main structures, namely collagens as well as axial, parallel and regular anionic glycosaminoglycan between collagens. The collagen fibril can be modeled by Hooke's law whereas anionic glycosaminoglycan behaves more like a rubber-band rod and as such can be better modeled by the worm-like chain model. While both computer simulations and continuum mechanics models have been investigated for the behavior of this connective tissue typically, authors either assume a simple form of the molecular potential energy or entirely ignore the microscopic structure of the connective tissue. Here, we apply basic physical methodologies and simple applied mathematical modeling techniques to describe the collagen pair quantitatively. We found that the growth of fibrils was intimately related to the maximum length of the anionic glycosaminoglycan and the relative displacement of two adjacent fibrils, which in return was closely related to the effectiveness of anionic glycosaminoglycan in transmitting forces between fibrils. These reveal the importance of the anionic glycosaminoglycan in maintaining the structural shape of the connective tissue extracellular matrix and eventually the shape modulus of human tissues. We also found that some macroscopic properties, like the maximum molecular energy and the breaking fraction of the collagen, were also related to the microscopic characteristics of the anionic glycosaminoglycan.

  3. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.

    PubMed

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-03-31

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.

  4. An association between RBMX, a heterogeneous nuclear ribonucleoprotein, and ARTS-1 regulates extracellular TNFR1 release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamik, Barbara; Islam, Aminul; Rouhani, Farshid N.

    The type I, 55-kDa tumor necrosis factor receptor (TNFR1) is released to the extracellular space by two mechanisms, the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains. Both pathways appear to be regulated by an interaction between TNFR1 and ARTS-1 (aminopeptidase regulator of TNFR1 shedding). Here, we sought to identify ARTS-1-interacting proteins that modulate TNFR1 release. Co-immunoprecipitation identified an association between ARTS-1 and RBMX (RNA-binding motif gene, X chromosome), a 43-kDa heterogeneous nuclear ribonucleoprotein. RNA interference attenuated RBMX expression, which reduced both the constitutive release of TNFR1 exosome-like vesicles and the IL-1{beta}-mediated inducible proteolyticmore » cleavage of soluble TNFR1 ectodomains. Reciprocally, over-expression of RBMX increased TNFR1 exosome-like vesicle release and the IL-1{beta}-mediated inducible shedding of TNFR1 ectodomains. This identifies RBMX as an ARTS-1-associated protein that regulates both the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains.« less

  5. Dual peroxidase and colloidal gold-labeling study of angiotensin converting enzyme and angiotensin-like immunoreactivity in the rat subfornical organ.

    PubMed

    Pickel, V M; Chan, J; Ganten, D

    1986-08-01

    The cellular relationships between angiotensin converting enzyme (ACE) (EC 3.4.14.1) and angiotensin-like immunoreactivity (AGLI) were examined in the subfornical organ (SFO). Brains from adult rats were fixed by vascular perfusion with 3.75% acrolein and 2% paraformaldehyde. The region containing the SFO was then sectioned on a vibrating microtome. Partially permeabilized sections were immunocytochemically labeled using the peroxidase-antiperoxidase (PAP) or combined PAP and immunogold methods. Goat antiserum to ACE was localized to both non-neuronal and neuronal cells within the SFO. Intense peroxidase immunoreactivity for ACE was associated with the ventricular and basal surface of ependymal cells, the luminal surface of the vascular endothelium, portions of glial membranes exposed to extracellular spaces, and membranous organelles within neuronal processes. Two antisera raised in rabbits against angiotensin II showed peroxidase immunoreactivity within the extracellular spaces and throughout the cytoplasm of numerous axon terminals and a few perikarya and dendrites in the SFO. Axon terminals and dendrites also showed aggregates of AGLI in smooth membranes and vesicles near the plasmalemma. Gold labeling for AGLI was evident in only 6% of the axon terminals and in a smaller number of dendrites containing peroxidase immunoreactivity for ACE. The low incidence of terminals containing both markers appeared to at least partially reflect limited penetration of the 10 nm gold particles. These results provide the first ultrastructural evidence that ACE is associated with the plasmalemma and membranous organelles strategically located for interaction with precursors of angiotensin II or other peptides within the cerebrospinal fluid, extracellular spaces and neurons of the SFO.

  6. Targeting Extracellular DNA to Deliver IGF-1 to the Injured Heart

    NASA Astrophysics Data System (ADS)

    Khan, Raffay S.; Martinez, Mario D.; Sy, Jay C.; Pendergrass, Karl D.; Che, Pao-Lin; Brown, Milton E.; Cabigas, E. Bernadette; Dasari, Madhuri; Murthy, Niren; Davis, Michael E.

    2014-03-01

    There is a great need for the development of therapeutic strategies that can target biomolecules to damaged myocardium. Necrosis of myocardium during a myocardial infarction (MI) is characterized by extracellular release of DNA, which can serve as a potential target for ischemic tissue. Hoechst, a histological stain that binds to double-stranded DNA can be conjugated to a variety of molecules. Insulin-like growth factor-1 (IGF-1), a small protein/polypeptide with a short circulating-half life is cardioprotective following MI but its clinical use is limited by poor delivery, as intra-myocardial injections have poor retention and chronic systemic presence has adverse side effects. Here, we present a novel delivery vehicle for IGF-1, via its conjugation to Hoechst for targeting infarcted tissue. Using a mouse model of ischemia-reperfusion, we demonstrate that intravenous delivery of Hoechst-IGF-1 results in activation of Akt, a downstream target of IGF-1 and protects from cardiac fibrosis and dysfunction following MI.

  7. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    PubMed

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. © 2014 Wiley Periodicals, Inc.

  8. Anethole dithiolethione, a putative neuroprotectant, increases intracellular and extracellular glutathione levels during starvation of cultured astroglial cells.

    PubMed

    Dringen, R; Hamprecht, B; Drukarch, B

    1998-12-01

    Astroglial cells protect neurons against oxidative damage. The antioxidant glutathione plays a pivotal role in the neuroprotective action of astroglial cells which is impaired following loss of glutathione. Anethole dithiolethione (ADT), a sulfur-containing compound which is used in humans as a secretagogue, increases glutathione levels in cultured astroglial cells under "physiological" conditions and is thought thereby to protect against oxidative damage. Presently, we report the effect of ADT (3-100 microM) on glutathione content of and efflux from rat primary astroglia-rich cultures under "pathological" conditions, i.e., extended deprivation of glucose and amino acids. Although cellular viability was not affected significantly, starvation of these cultures for 24 h in a bicarbonate buffer lacking glucose and amino acids led to a decrease in glutathione and protein content of approximately 43% and 40%, respectively. Although no effect on the protein loss occurred, the presence of ADT during starvation counteracted the starvation-induced loss of intracellular glutathione in a concentration-dependent way. At a concentration of 100 microM ADT even a significant increase in astroglial glutathione content was noted after 24 h of starvation. Alike intracellular glutathione levels, the amount of glutathione found in the buffer was elevated substantially if ADT was present during starvation. This ADT-mediated, apparent increase in glutathione efflux was additive to the stimulatory effect on extracellular glutathione levels of acivicin (100 microM), an inhibitor of extracellular enzymatic glutathione breakdown. However, the ADT-induced elevation of both intra- and extracellular glutathione content during starvation was prevented completely by coincubation with buthionine sulfoximine (10 microM), an inhibitor of glutathione synthesis. These results demonstrate that, most likely through stimulation of glutathione synthesis, ADT enables astroglial cells to maintain higher

  9. The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles.

    PubMed

    Rodrigues, Marcio L; Nakayasu, Ernesto S; Almeida, Igor C; Nimrichter, Leonardo

    2014-01-31

    Several microbial molecules are released to the extracellular space in vesicle-like structures. In pathogenic fungi, these molecules include pigments, polysaccharides, lipids, and proteins, which traverse the cell wall in vesicles that accumulate in the extracellular space. The diverse composition of fungal extracellular vesicles (EV) is indicative of multiple mechanisms of cellular biogenesis, a hypothesis that was supported by EV proteomic studies in a set of Saccharomyces cerevisiae strains with defects in both conventional and unconventional secretory pathways. In the human pathogens Cryptococcus neoformans, Histoplasma capsulatum, and Paracoccidioides brasiliensis, extracellular vesicle proteomics revealed the presence of proteins with both immunological and pathogenic activities. In fact, fungal EV have been demonstrated to interfere with the activity of immune effector cells and to increase fungal pathogenesis. In this review, we discuss the impact of proteomics on the understanding of functions and biogenesis of fungal EV, as well as the potential role of these structures in fungal pathogenesis. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Carrier of Wingless (Cow), a Secreted Heparan Sulfate Proteoglycan, Promotes Extracellular Transport of Wingless

    PubMed Central

    Chang, Yung-Heng; Sun, Yi Henry

    2014-01-01

    Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen. PMID:25360738

  11. Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus-silkworm expression system.

    PubMed

    Muraki, Michiro; Honda, Shinya

    2011-11-01

    To achieve an efficient isolation of human Fas receptor extracellular domain (hFasRECD), a fusion protein of hFasRECD with human IgG1 heavy chain Fc domain containing thrombin cleavage sequence at the junction site was overexpressed using baculovirus-silkworm larvae expression system. The hFasRECD part was separated from the fusion protein by the effective cleavage of the recognition site with bovine thrombin. Protein G column treatment of the reaction mixture and the subsequent cation-exchange chromatography provided purified hFasRECD with a final yield of 13.5mg from 25.0 ml silkworm hemolymph. The functional activity of the product was examined by size-exclusion chromatography analysis. The isolated hFasRECD less strongly interacted with human Fas ligand extracellular domain (hFasLECD) than the Fc domain-bridged counterpart, showing the contribution of antibody-like avidity in the latter case. The purified glycosylated hFasRECD presented several discrete bands in the disulphide-bridge non-reducing SDS-PAGE analysis, and virtually all of the components were considered to participate in the binding to hFasLECD. The attached glycans were susceptible to PNGase F digestion, but mostly resistant to Endo Hf digestion under denaturing conditions. One of the components exhibited a higher susceptibility to PNGase F digestion under non-denaturing conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway.

    PubMed

    Iatsenko, Igor; Kondo, Shu; Mengin-Lecreulx, Dominique; Lemaitre, Bruno

    2016-11-15

    Activation of the innate immune response in Metazoans is initiated through the recognition of microbes by host pattern-recognition receptors. In Drosophila, diaminopimelic acid (DAP)-containing peptidoglycan from Gram-negative bacteria is detected by the transmembrane receptor PGRP-LC and by the intracellular receptor PGRP-LE. Here, we show that PGRP-SD acted upstream of PGRP-LC as an extracellular receptor to enhance peptidoglycan-mediated activation of Imd signaling. Consistent with this, PGRP-SD mutants exhibited impaired activation of the Imd pathway and increased susceptibility to DAP-type bacteria. PGRP-SD enhanced the localization of peptidoglycans to the cell surface and hence promoted signaling. Moreover, PGRP-SD antagonized the action of PGRP-LB, an extracellular negative regulator, to fine-tune the intensity of the immune response. These data reveal that Drosophila PGRP-SD functions as an extracellular receptor similar to mammalian CD14 and demonstrate that, comparable to lipopolysaccharide sensing in mammals, Drosophila relies on both intra- and extracellular receptors for the detection of bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Employing Extracellular Volume Cardiovascular Magnetic Resonance Measures of Myocardial Fibrosis to Foster Novel Therapeutics.

    PubMed

    Schelbert, Erik B; Sabbah, Hani N; Butler, Javed; Gheorghiade, Mihai

    2017-06-01

    Quantifying myocardial fibrosis (MF) with myocardial extracellular volume measures acquired during cardiovascular magnetic resonance promises to transform clinical care by advancing pathophysiologic understanding and fostering novel therapeutics. Extracellular volume quantifies MF by measuring the extracellular compartment depicted by the myocardial uptake of contrast relative to plasma. MF is a key domain of dysfunctional but viable myocardium among others (eg, microvascular dysfunction and cardiomyocyte/mitochondrial dysfunction). Although anatomically distinct, these domains may functionally interact. MF represents pathological remodeling in the heart associated with cardiac dysfunction and adverse outcomes likely mediated by interactions with the microvasculature and the cardiomyocyte. Reversal of MF improves key measures of cardiac dysfunction, so reversal of MF represents a likely mechanism for improved outcomes. Instead of characterizing the myocardium as homogenous tissue and using important yet still generic descriptors, such as thickness (hypertrophy) and function (diastolic or systolic), which lack mechanistic specificity, paradigms of cardiac disease have evolved to conceptualize myocardial disease and patient vulnerability based on the extent of disease involving its various compartments. Specifying myocardial compartmental involvement may then implicate cellular/molecular disease pathways for treatment and targeted pharmaceutical development and above all highlight the role of the cardiac-specific pathology in heart failure among myriad other changes in the heart and beyond. The cardiology community now requires phase 2 and 3 clinical trials to examine strategies for the regression/prevention of MF and eventually biomarkers to identify MF without reliance on cardiovascular magnetic resonance. It seems likely that efficacious antifibrotic therapy will improve outcomes, but definitive data are needed. © 2017 American Heart Association, Inc.

  14. Bacterially produced human B7-1 protein encompassing its complete extracellular domain maintains its costimulatory activity in vitro.

    PubMed

    Shen, W; Wang, Y; Geng, Y; Si, L

    2000-08-01

    To investigate which of the two immunoglobulin (Ig)-like domains, immunoglobulin variable region homologous domain IgV (hB7-1 IgV), or immunoglobulin constant region homologous domain IgC (hB7-1 IgC) on human B7-1 molecule contain the receptor binding sites, and to evaluate if the B7-1 molecule expressed in bacteria has biological activity. PCR was used to amplify three fragments of hB7-1 IgV, hB7-1 IgC and complete extracellular region of human B7-1 containing both the IgV and IgC domains (hB7-1 IgV + IgC). Three recombinants, pQE9-hB7-1 IgV, pQE9-hB7-1 IgC and pQE9-Hb7-1 (IgV + IgC) were generated by cloning the PCR products into a prokaryote expression plasmid (pQE-9) and were introduced into the host stain M15. The relevant target hexahistidine-tagged proteins were identified by SDS-PAGE and Western blotting. With the presence of the first signal imitated by anti-CD3 antibody, T cell activation was observed by exposing purified T lymphocytes to each soluble form of the three bacterially-produced human B7-1 proteins and [3H]-TdR incorporation. Three recombinant proteins of human B7-1, hB7-1 IgV, hB7-1 IgC and hB7-1 (IgV + IgC) were produced and detected in both soluble and inclusive body forms from engineered bacterial cells. With the presence of anti-CD3 antibody, T lymphocytes proliferated when co-stimulated by bacterially produced hB7-1 (IgV + IgC), but not by either hB7-1 IgV or hB7-1 IgC. Functional glycoprotein human B7-1 could be produced in bacterial cells. Both extracellular immunoglobulin-like domains are necessary for B7-1 to react with its counter receptors.

  15. Vibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources.

    PubMed

    McDonough, EmilyKate; Kamp, Heather; Camilli, Andrew

    2016-02-01

    Phosphate is essential for life, being used in many core processes such as signal transduction and synthesis of nucleic acids. The waterborne agent of cholera, Vibrio cholerae, encounters phosphate limitation in both the aquatic environment and human intestinal tract. This bacterium can utilize extracellular DNA (eDNA) as a phosphate source, a phenotype dependent on secreted endo- and exonucleases. However, no transporter of nucleotides has been identified in V. cholerae, suggesting that in order for the organism to utilize the DNA as a phosphate source, it must first separate the phosphate and nucleoside groups before transporting phosphate into the cell. In this study, we investigated the factors required for assimilation of phosphate from eDNA. We identified PhoX, and the previously unknown proteins UshA and CpdB as the major phosphatases that allow phosphate acquisition from eDNA and nucleotides. We demonstrated separable but partially overlapping roles for the three phosphatases and showed that the activity of PhoX and CpdB is induced by phosphate limitation. Thus, this study provides mechanistic insight into how V. cholerae can acquire phosphate from extracellular DNA, which is likely to be an important phosphate source in the environment and during infection. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  16. Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii).

    PubMed

    Liu, Lizhen; Qin, Boqiang; Zhang, Yunlin; Zhu, Guangwei; Gao, Guang; Huang, Qi; Yao, Xin

    2014-08-01

    Preliminary characterization of bound extracellular polymeric substances (bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However, the characterization of bEPS can be affected by extraction methods. Five sets (including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH, pure water and phosphate buffered saline (PBS) containing cationic exchange resins, and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks (peaks T₁ and T₂) present in all extractions were identified as protein-like fluorophores, two (peaks A and C) as humic-like fluorophores, and one (peak E) as a fulvic-like substance. Among these substances, the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also, NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH10.0 was the most appropriate method to extract bEPS from Microcystis. In addition, dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms. Copyright © 2014. Published by Elsevier B.V.

  17. Bioproduction and characterization of extracellular melanin-like pigment from industrially polluted metagenomic library equipped Escherichia coli.

    PubMed

    Amin, Shivani; Rastogi, Rajesh P; Sonani, Ravi R; Ray, Arabinda; Sharma, Rakesh; Madamwar, Datta

    2018-04-15

    To explore the potential genes from the industrially polluted Amlakhadi canal, located in Ankleshwar, Gujarat, India, its community genome was extracted and cloned into E. coli EPI300™-T1 R using a fosmid vector (pCC2 FOS™) generating a library of 3,92,000 clones with average size of 40kb of DNA-insert. From this library, the clone DM1 producing brown colored melanin-like pigment was isolated and characterized. For over expression of the pigment, further sub-cloning of the clone DM1 was done. Sub-clone containing 10kb of the insert was sequenced for gene identification. The amino acids sequence of a protein 4-Hydroxyphenylpyruvate dioxygenase (HPPD), which is know to be involved in melanin biosynthesis was obtained from the gene sequence. The sequence-homology based 3D structure model of HPPD was constructed and analyzed. The physico-chemical nature of pigment was further analysed using 1 H and 13 C NMR, LC-MS, FTIR and UV-visible spectroscopy. The pigment was readily soluble in DMSO with an absorption maximum around 290nm. Based on the genetic and chemical characterization, the compound was confirmed as melanin-like pigment. The present results indicate that the metagenomic library from industrially polluted environment generated a microbial tool for the production of melanin-like pigment. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Cabello-Verrugio, Claudio; Armisén, Ricardo; Varela, Diego; Simon, Felipe

    2015-05-01

    To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism. Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel. Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-β1 and TGF-β2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4. TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-β production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.

  19. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation.

    PubMed

    Yu, S; Geng, Q; Ma, J; Sun, F; Yu, Y; Pan, Q; Hong, A

    2013-10-17

    Osteoblast differentiation is a pivotal event in bone formation. Runt-related transcription factor-2 (Runx2) is an essential factor required for osteoblast differentiation and bone formation. However, the underlying mechanism of Runx2-regulated osteogenic differentiation is still unclear. Here, we explored the corresponding mechanism using the C2C12/Runx2(Dox) subline, which expresses Runx2 in response to doxycycline (Dox). We found that Runx2-induced osteogenic differentiation of C2C12 cells results in a sustained decrease in the expression of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family. Forced expression of HB-EGF or treatment with HB-EGF is capable of reducing the expression of alkaline phosphatase (ALP), a defined marker of early osteoblast differentiation. HB-EGF-mediated inhibition of ALP depends upon activation of the EGFR and the downstream extracellular signal-regulated kinase, c-Jun N-terminal kinase mitogen-activated protein kinase pathways as well as phosphatidylinositol 3-kinase/Akt pathway. Runx2 specifically binds to the Hbegf promoter, suggesting that Hbegf transcription is directly inhibited by Runx2. Runx2 can upregulate miR-1192, which enhances Runx2-induced osteogenic differentiation. Moreover, miR-1192 directly targets Hbegf through translational inhibition, suggesting enhancement of Runx2-induced osteogenic differentiation by miR-1192 through the downregulation of HB-EGF. Taken together, our results suggest that Runx2 induces osteogenic differentiation of C2C12 cells by inactivating HB-EGF-EGFR signaling through the downregulation of HB-EGF via both transcriptional and post-transcriptional mechanisms.

  20. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation

    PubMed Central

    Yu, S; Geng, Q; Ma, J; Sun, F; Yu, Y; Pan, Q; Hong, A

    2013-01-01

    Osteoblast differentiation is a pivotal event in bone formation. Runt-related transcription factor-2 (Runx2) is an essential factor required for osteoblast differentiation and bone formation. However, the underlying mechanism of Runx2-regulated osteogenic differentiation is still unclear. Here, we explored the corresponding mechanism using the C2C12/Runx2Dox subline, which expresses Runx2 in response to doxycycline (Dox). We found that Runx2-induced osteogenic differentiation of C2C12 cells results in a sustained decrease in the expression of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family. Forced expression of HB-EGF or treatment with HB-EGF is capable of reducing the expression of alkaline phosphatase (ALP), a defined marker of early osteoblast differentiation. HB-EGF-mediated inhibition of ALP depends upon activation of the EGFR and the downstream extracellular signal-regulated kinase, c-Jun N-terminal kinase mitogen-activated protein kinase pathways as well as phosphatidylinositol 3-kinase/Akt pathway. Runx2 specifically binds to the Hbegf promoter, suggesting that Hbegf transcription is directly inhibited by Runx2. Runx2 can upregulate miR-1192, which enhances Runx2-induced osteogenic differentiation. Moreover, miR-1192 directly targets Hbegf through translational inhibition, suggesting enhancement of Runx2-induced osteogenic differentiation by miR-1192 through the downregulation of HB-EGF. Taken together, our results suggest that Runx2 induces osteogenic differentiation of C2C12 cells by inactivating HB-EGF-EGFR signaling through the downregulation of HB-EGF via both transcriptional and post-transcriptional mechanisms. PMID:24136232

  1. Efficient Extracellular Expression of Metalloprotease for Z-Aspartame Synthesis.

    PubMed

    Zhu, Fucheng; Liu, Feng; Wu, Bin; He, Bingfang

    2016-12-28

    Metalloprotease PT121 and its mutant Y114S (Tyr114 was substituted to Ser) are effective catalysts for the synthesis of Z-aspartame (Z-APM). This study presents the selection of a suitable signal peptide for improving expression and extracellular secretion of proteases PT121 and Y114S by Escherichia coli. Co-inducers containing IPTG and arabinose were used to promote protease production and cell growth. Under optimal conditions, the expression levels of PT121 and Y114S reached >500 mg/L, and the extracellular activity of PT121/Y114S accounted for 87/82% of the total activity of proteases. Surprisingly, purer protein was obtained in the supernatant, because arabinose reduced cell membrane permeability, avoiding cell lysis. Comparison of Z-APM synthesis and caseinolysis between proteases PT121 and Y114S showed that mutant Y114S presented remarkably higher activity of Z-APM synthesis and considerably lower activity of caseinolysis. The significant difference in substrate specificity renders these enzymes promising biocatalysts.

  2. Chemical Analysis of Cellular and Extracellular Carbohydrates of a Biofilm-Forming Strain Pseudomonas aeruginosa PA14

    PubMed Central

    Coulon, Charlène; Vinogradov, Evgeny; Filloux, Alain; Sadovskaya, Irina

    2010-01-01

    Background Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF) patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A–L) interface in standing liquid cultures. Exopolysaccharides (EPS) are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the “scaffolding” polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A–L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. Principal Findings In the present work we carried out a systematic analysis of cellular and extracellular (EC) carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19) and having the following structure: -4)-α-L-GalNAcA-(1–3)-α-D-QuiNAc-(1–3)- α-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS) and the glycerol-phosphorylated cyclic β-(1,3)-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ∼20% of dry weight) of LPS-like material. Conclusions We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is

  3. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    PubMed Central

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  4. A pivotal role for the Streptococcus iniae extracellular polysaccharide in triggering proinflammatory cytokines transcription and inducing death in rainbow trout.

    PubMed

    Eyngor, Marina; Lublin, Avishay; Shapira, Roni; Hurvitz, Avshalom; Zlotkin, Amir; Tekoah, Yoram; Eldar, Avi

    2010-04-01

    Streptococcus iniae is a major pathogen of fish, causing considerable economic losses in Israel, the United States and the Far East. Containment of mortalities through vaccination was recently compromised due to the emergence of novel vaccine-escape strains that are distinguished from previous strains by their ability to produce large amounts of extracellular polysaccharide (EPS) that is released to the medium. In vitro and in vivo data now indicate that the EPS is a major virulence factor, capable of triggering the proinflammatory cytokine machinery and inducing mortality of fish. Streptococcus iniae EPS might therefore be considered to be responsible for sepsis and death just as lipopolysaccharide is for Gram-negative pathogens.

  5. Prognostic value of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 blood levels in breast cancer.

    PubMed

    Hartog, H; Boezen, H M; de Jong, M M; Schaapveld, M; Wesseling, J; van der Graaf, W T A

    2013-12-01

    High circulating insulin-like growth factor 1 (IGF-1) levels are firmly established as a risk factor for developing breast cancer, especially estrogen positive tumors. The effect of circulating IGF-1 on prognosis once a tumor is established is unknown. The authors explored the effect of IGF-1 blood levels and of it's main binding protein, IGFBP-3, on overall survival and occurrence of second primary breast tumors in breast cancer patients, as well as reproductive and lifestyle factors that could modify this risk. Patients were accrued from six hospitals in the Netherlands between 1998 and 2003. Total IGF-1 and IGFBP-3 were measured in 582 plasma samples. No significant association between IGF-1 and IGFBP-3 plasma levels and overall survival was found. However, in a multivariate Cox regression model including standard prognostic variables high IGF-1 levels were related to worse overall survival in patients receiving endocrine therapy (HR = 1.37, 95% CI: 1.11, 1.69, P 0.004). These data at least indicate that higher IGF-1 levels, and as a consequence most likely IGF-1-induced signaling, are related to a less favorable overall survival in breast cancer patients treated with endocrine therapy. Interventions aimed at reducing circulating levels of IGF-1 in hormone receptor positive breast cancer may improve survival. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cross-talk between GPER and growth factor signaling.

    PubMed

    Lappano, Rosamaria; De Marco, Paola; De Francesco, Ernestina Marianna; Chimento, Adele; Pezzi, Vincenzo; Maggiolini, Marcello

    2013-09-01

    G protein-coupled receptors (GPCRs) and growth factor receptors mediate multiple physio-pathological responses to a diverse array of extracellular stimuli. In this regard, it has been largely demonstrated that GPCRs and growth factor receptors generate a multifaceted signaling network, which triggers relevant biological effects in normal and cancer cells. For instance, some GPCRs transactivate the epidermal growth factor receptor (EGFR), which stimulates diverse transduction pathways leading to gene expression changes, cell migration, survival and proliferation. Moreover, it has been reported that a functional interaction between growth factor receptors and steroid hormones like estrogens is involved in the growth of many types of tumors as well as in the resistance to endocrine therapy. This review highlights recent findings on the cross-talk between a member of the GPCR family, the G protein-coupled estrogen receptor 1 (GPER, formerly known as GPR30) and two main growth factor receptors like EGFR and insulin-like growth factor-I receptor (IGF-IR). The biological implications of the functional interaction between these important mediators of cell responses particularly in cancer are discussed. This article is part of a Special Issue entitled 'CSR 2013'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages.

    PubMed

    Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro

    2002-07-01

    Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.

  8. Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages

    PubMed Central

    Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro

    2002-01-01

    Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1β, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2′,4′-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor κB inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor κB. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides. PMID:12065499

  9. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  10. Sources of extracellular tau and its signaling.

    PubMed

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  11. TM4SF5 promotes metastatic behavior of cells in 3D extracellular matrix gels by reducing dependency on environmental cues

    PubMed Central

    Nam, Seo Hee; Cheong, Jin-Gyu; Jeong, Doyoung; Lee, Seo-Jin; Pan, Cheol-Ho; Jung, Jae Woo; Kim, Hye-Jin; Ryu, Jihye; Kim, Ji Eon; Kim, Somi; Cho, Chang Yun; Kang, Min-Kyung; Lee, Kyung-Min; Lee, Jung Weon

    2017-01-01

    Transmembrane 4 L six family member 5 (TM4SF5) is highly expressed in hepatocellular carcinoma tissues and enhances migration in two-dimensional environments. Here, we investigated how TM4SF5 is involved in diverse pro-metastatic phenotypes in in vivo-like three-dimensional (3D) extracellular matrix gels. TM4SF5-positive cells aggressively formed invasive foci in 3D Matrigel, depending on TM4SF5-mediated signaling activity, cytoskeletal organization, and matrix metallopeptidase (MMP) 2-mediated extracellular remodeling, whereas TM4SF5-null cells did not. The TM4SF5-null cells did, however, form invasive foci in 3D Matrigel following inhibition of Rho-associated protein kinase or addition of collagen I, suggesting that collagen I compensated for TM4SF5 expression. Similarly, TM4SF5-positive cells expressing vascular endothelial-cadherin formed network-like vasculogenic mimicry in 3D Matrigel and collagen I mixture gels, whereas TM4SF5-negative cells in the mixture gels displayed the network structures only upon further treatment with epidermal growth factor. The foci formation also required MMP2-mediated remodeling of the extracellular matrix. Co-cultures exhibited TM4SF5-positive or cancer-associated fibroblasts at the outward edges of TM4SF5-null cell clusters. Compared with TM4SF5-null cells, TM4SF5-positive cells in 3D collagen gels showed a more invasive outgrowth with dramatic invadopodia. These observations suggest that TM4SF5 plays roles in the promotion of diverse metastatic properties with fewer environmental requirements than TM4SF5-negative cells. PMID:29137358

  12. A role for intracellular and extracellular DEK in regulating hematopoiesis.

    PubMed

    Capitano, Maegan L; Broxmeyer, Hal E

    2017-07-01

    Hematopoietic stem/progenitor cell fate decision during hematopoiesis is regulated by intracellular and extracellular signals such as transcription factors, growth factors, and cell-to-cell interactions. In this review, we explore the function of DEK, a nuclear phosphoprotein, on gene regulation. We also examine how DEK is secreted and internalized by cells, and discuss how both endogenous and extracellular DEK regulates hematopoiesis. Finally, we explore what currently is known about the regulation of DEK during inflammation. DEK negatively regulates the proliferation of early myeloid progenitor cells but has a positive effect on the differentiation of mature myeloid cells. Inflammation regulates intracellular DEK concentrations with inflammatory stimuli enhancing DEK expression. Inflammation-induced nuclear factor-kappa B activation is regulated by DEK, resulting in changes in the production of other inflammatory molecules such as IL-8. Inflammatory stimuli in turn regulates DEK secretion by cells of hematopoietic origin. However, how inflammation-induced expression and secretion of DEK regulates hematopoiesis remains unknown. Understanding how DEK regulates hematopoiesis under both homeostatic and inflammatory conditions may lead to a better understanding of the biology of HSCs and HPCs. Furthering our knowledge of the regulation of hematopoiesis will ultimately lead to new therapeutics that may increase the efficacy of hematopoietic stem cell transplantation.

  13. Extracellular enzymes produced by marine eukaryotes, thraustochytrids.

    PubMed

    Taoka, Yousuke; Nagano, Naoki; Okita, Yuji; Izumida, Hitoshi; Sugimoto, Shinichi; Hayashi, Masahiro

    2009-01-01

    Extracellular enzymes produced by six strains of thraustochytrids, Thraustochytrium, Schizochytrium, and Aurantiochytrium, were investigated. These strains produced 5 to 8 kinds of the extracellular enzymes, depending on the species. Only the genus Thraustochytrium produced amylase. When insoluble cellulose was used as substrate, cellulase was not detected in the six strains of thraustochytrids. This study indicates that marine eukaryotes, thraustochytrids, produced a wide variety of extracellular enzymes.

  14. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    NASA Astrophysics Data System (ADS)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  15. Neutrophil extracellular traps in immunity and disease.

    PubMed

    Papayannopoulos, Venizelos

    2018-02-01

    Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.

  16. Synthesis of Human Neutrophil Extracellular Traps Contributes to Angiopoietin-Mediated In Vitro Proinflammatory and Proangiogenic Activities.

    PubMed

    Lavoie, Simon S; Dumas, Elizabeth; Vulesevic, Branka; Neagoe, Paul-Eduard; White, Michel; Sirois, Martin G

    2018-06-01

    Neutrophil extracellular traps (NETs) are composed of nuclear DNA in a web-like structure extruded from neutrophils in response to either bacterial infection or inflammation. We previously reported the expression of angiopoietin Tie2 receptor on human neutrophils and the capacity of both angiopoietins (Ang1 and Ang2) to induce proinflammatory activities, such as synthesis and release of platelet-activating factor, upregulation of β 2 integrin complex (CD11/CD18), and neutrophil chemotaxis. In contrast, only Ang1 but not Ang2 is capable of promoting translational and transcriptional activities in neutrophils. In this article, we addressed whether Ang1 and/or Ang2 could modulate the release of NETs and if they contribute to angiopoietin-mediated proinflammatory activities. We observed that Ang1 and Ang2, alone or combined (10 nM, 3 h), increase NET synthesis and release by ≈2.5-fold as compared with PBS-treated neutrophils. The release of NETs is Tie2 dependent and requires downstream intracellular participation of PI3K, p38, and p42/44 MAPK pathways; reactive oxygen species production; intracellular calcium store depletion; and protein arginine deiminase 4 activation. These isolated NETs induced neutrophil and endothelial cell activation, leading to neutrophil adhesion onto human extracellular matrix and HUVEC and in vitro formation of capillary-like tubes by endothelial cells. Our study reports the capacity of Ang1 and Ang2 to promote the release of NETs and that these NETs contribute to angiopoietin-mediated in vitro proinflammatory and proangiogenic activities. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less

  19. Microbial extracellular enzymes in biogeochemical cycling of ecosystems.

    PubMed

    Luo, Ling; Meng, Han; Gu, Ji-Dong

    2017-07-15

    Extracellular enzymes, primarily produced by microorganisms, affect ecosystem processes because of their essential roles in degradation, transformation and mineralization of organic matter. Extracellular enzymes involved in the cycling of carbon (C), nitrogen (N) and phosphorus (P) have been widely investigated in many different ecosystems, and several enzymes have been recognized as key components in regulating C storage and nutrient cycling. In this review, it was the first time to summarize the specific extracellular enzymes related to C storage and nutrient cycling for better understanding the important role of microbial extracellular enzymes in biogeochemical cycling of ecosystems. Subsequently, ecoenzymatic stoichiometry - the relative ratio of extracellular enzyme, has been reviewed and further provided a new perspective for understanding biogeochemical cycling of ecosystems. Finally, the new insights of using microbial extracellular enzyme in indicating biogeochemical cycling and then protecting ecosystems have been suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Detection of collagen triple helix repeat containing-1 and nuclear factor (erythroid-derived 2)-like 3 in colorectal cancer.

    PubMed

    Palma, Marco; Lopez, Lissett; García, Margarita; de Roja, Nuria; Ruiz, Tamara; García, Julita; Rosell, Elisabet; Vela, Carmen; Rueda, Paloma; Rodriguez, María-Jose

    2012-02-09

    Collagen Triple Helix Repeat Containing-1 (CTHRC1) and Nuclear factor (erythroid-derived 2)-like 3 (NFE2L3) may be useful biomarker candidates for the diagnosis of colorectal cancer (CRC) since they have shown an increase messenger RNA transcripts (mRNA) expression level in adenomas and colorectal tumours when compared to normal tissues. To evaluate CTHRC1 and NFE2L3 as cancer biomarkers, it was generated and characterised several novel specific polyclonal antibodies (PAb), monoclonal antibodies (MAbs) and soluble Fab fragments (sFabs) against recombinant CTHRC1 and NFE2L3 proteins, which were obtained from different sources, including a human antibody library and immunised animals. The antibodies and Fab fragments were tested for recognition of native CTHRC1 and NFE2L3 proteins by immunoblotting analysis and enzyme-linked immunosorbent assay (ELISA) in colorectal cell lines derived from tumour and cancer tissues. Both, antibodies and a Fab fragment showed high specificity since they recognised only their corresponding recombinant antigens, but not a panel of different unrelated- and related proteins.In Western blot analysis of CTHRC1, a monoclonal antibody designated CH21D7 was able to detect a band of the apparent molecular weight of a full-length CTHRC1 in the human colon adenocarcinoma cell line HT29. This result was confirmed by a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with the monoclonal antibodies CH21D7 and CH24G2, detecting CTHRC1 in HT29 and in the colon adenocarcinoma cell line SW620.Similar experiments were performed with PAb, MAbs, and sFab against NFE2L3. The immunoblot analysis showed that the monoclonal antibody 41HF8 recognised NFE2L3 in HT29, and leukocytes. These results were verified by DAS-ELISA assay using the pairs PAb/sFab E5 and MAb 41HF8/sFab E5.Furthermore, an immunoassay for simultaneous detection of the two cancer biomarkers was developed using a Dissociation-Enhanced Lanthanide Fluorescent Immunoassay

  1. Recombinant expression of extracellular domain of mutant Epidermal Growth Factor Receptor in prokaryotic and baculovirus expression systems.

    PubMed

    Vettath, Sunitha Kodengil; Shivashankar, Gaganashree; Menon, Krishnakumar N; Vijayachandran, Lakshmi S

    2018-04-15

    Epidermal Growth Factor Receptor variant III (EGFRvIII) is a tumor specific antigen detected in various tumors including gliomas, breast cancer, lung cancer, head and neck squamous cell carcinoma (HNSCC). Screening of EGFRvIII targeting drug molecules can be accelerated by developing drug screening platforms using recombinantly expressed protein. Choice of expression system is one of the major factors deciding the success of recombinant expression of a protein. In our study, we have tried to express and purify the extracellular domain (ECD) of this highly unstable protein using bacterial and baculovirus expression systems to select the expression system suited for our purpose. Even though the protein was successfully expressed in prokaryotic system, purification could be done only under denaturing conditions. But in the baculovirus expression system, the protein was expressed in soluble form and could be purified under native conditions, with single step of purification. Based on our results, we conclude that insect cells are better choice over E. coli cells for expressing EGFRvIII ECD in soluble form. This study provides insights for other researchers involved in expression of similar unstable membrane proteins, on selecting the best expression system and challenges involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor.

    PubMed

    Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J

    1999-09-15

    We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.

  3. A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space.

    PubMed

    Pérez-González, Rocío; Gauthier, Sebastien A; Kumar, Asok; Saito, Mitsuo; Saito, Mariko; Levy, Efrat

    2017-01-01

    Extracellular vesicles (EV), including exosomes, secreted vesicles of endocytic origin, and microvesicles derived from the plasma membrane, have been widely isolated and characterized from conditioned culture media and bodily fluids. The difficulty in isolating EV from tissues, however, has hindered their study in vivo. Here, we describe a novel method designed to isolate EV and characterize exosomes from the extracellular space of brain tissues. The purification of EV is achieved by gentle dissociation of the tissue to free the brain extracellular space, followed by sequential low-speed centrifugations, filtration, and ultracentrifugations. To further purify EV from other extracellular components, they are separated on a sucrose step gradient. Characterization of the sucrose step gradient fractions by electron microscopy demonstrates that this method yields pure EV preparations free of large vesicles, subcellular organelles, or debris. The level of EV secretion and content are determined by assays for acetylcholinesterase activity and total protein estimation, and exosomal identification and protein content are analyzed by Western blot and immuno-electron microscopy. Additionally, we present here a method to delipidate EV in order to improve the resolution of downstream electrophoretic analysis of EV proteins.

  4. Loss of Sirt3 accelerates arterial thrombosis by increasing formation of neutrophil extracellular traps and plasma tissue factor activity

    PubMed Central

    Gaul, Daniel S; Weber, Julien; van Tits, Lambertus J; Sluka, Susanna; Pasterk, Lisa; Reiner, Martin F; Calatayud, Natacha; Lohmann, Christine; Klingenberg, Roland; Pahla, Jürgen; Vdovenko, Daria; Tanner, Felix C; Camici, Giovanni G; Eriksson, Urs; Auwerx, Johan; Mach, François; Windecker, Stephan; Rodondi, Nicolas; Lüscher, Thomas F; Winnik, Stephan; Matter, Christian M

    2018-01-01

    Abstract Aims Sirtuin 3 (Sirt3) is a mitochondrial, nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that reduces oxidative stress by activation of superoxide dismutase 2 (SOD2). Oxidative stress enhances arterial thrombosis. This study investigated the effects of genetic Sirt3 deletion on arterial thrombosis in mice in an inflammatory setting and assessed the clinical relevance of these findings in patients with ST-elevation myocardial infarction (STEMI). Methods and results Using a laser-induced carotid thrombosis model with lipopolysaccharide (LPS) challenge, in vivo time to thrombotic occlusion in Sirt3−/− mice (n = 6) was reduced by half compared to Sirt3+/+ wild-type (n = 8, P < 0.01) controls. Ex vivo analyses of whole blood using rotational thromboelastometry revealed accelerated clot formation and increased clot stability in Sirt3−/− compared to wild-type blood. rotational thromboelastometry of cell-depleted plasma showed accelerated clotting initiation in Sirt3−/− mice, whereas overall clot formation and firmness remained unaffected. Ex vivo LPS-induced neutrophil extracellular trap formation was increased in Sirt3−/− bone marrow-derived neutrophils. Plasma tissue factor (TF) levels and activity were elevated in Sirt3−/− mice, whereas plasma levels of other coagulation factors and TF expression in arterial walls remained unchanged. SOD2 expression in bone marrow -derived Sirt3−/− neutrophils was reduced. In STEMI patients, transcriptional levels of Sirt3 and its target SOD2 were lower in CD14+ leukocytes compared with healthy donors (n = 10 each, P < 0.01). Conclusions Sirt3 loss-of-function enhances experimental thrombosis in vivo via an increase of neutrophil extracellular traps and elevation of TF suggesting thrombo-protective effects of endogenous Sirt3. Acute coronary thrombosis in STEMI patients is associated with lower expression levels of SIRT3 and SOD2 in CD14+ leukocytes. Therefore

  5. Entamoeba histolytica cathepsin-like enzymes : interactions with the host gut.

    PubMed

    Kissoon-Singh, Vanessa; Mortimer, Leanne; Chadee, Kris

    2011-01-01

    Cysteine proteases of the protozoan parasite Entamoeba histolytica are key virulence factors involved in overcoming host defences. These proteases are cathepsin-like enzymes with a cathepsin-L like structure, but cathepsin-B substrate specificity. In the host intestine, amoeba cysteine proteases cleave colonic mucins and degrade secretory immunoglobulin (Ig) A and IgG rendering them ineffective. They also act on epithelial tight junctions and degrade the extracellular matrix to promote Cell death. They are involved in the destruction of red blood cells and the evasion of neutrophils and macrophages and they activate pro-inflammatory cytokines IL- 1β and IL-18. In short, amoeba cysteine proteases manipulate and destroy host defences to facilitate nutrient acquisition, parasite colonization and/or invasion. Strategies to inhibit the activity of amoeba cysteine proteases could contribute significantly to host protection against E. histolytica.

  6. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection.

    PubMed

    Sturm, A; Chrispeels, M J

    1990-11-01

    We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose.

  7. An Extracellular Serine/Threonine-Rich Protein from Lactobacillus plantarum NCIMB 8826 Is a Novel Aggregation-Promoting Factor with Affinity to Mucin

    PubMed Central

    Hevia, Arancha; Martínez, Noelia; Ladero, Víctor; Álvarez, Miguel A.; Margolles, Abelardo

    2013-01-01

    Autoaggregation in lactic acid bacteria is directly related to the production of certain extracellular proteins, notably, aggregation-promoting factors (APFs). Production of aggregation-promoting factors confers beneficial traits to probiotic-producing strains, contributing to their fitness for the intestinal environment. Furthermore, coaggregation with pathogens has been proposed to be a beneficial mechanism in probiotic lactic acid bacteria. This mechanism would limit attachment of the pathogen to the gut mucosa, favoring its removal by the human immune system. In the present paper, we have characterized a novel aggregation-promoting factor in Lactobacillus plantarum. A mutant with a knockout of the D1 gene showed loss of its autoaggregative phenotype and a decreased ability to bind to mucin, indicating an adhesion role of this protein. In addition, heterologous production of the D1 protein or an internal fragment of the protein, characterized by its abundance in serine/threonine, strongly induced autoaggregation in Lactococcus lactis. This result strongly suggested that this internal fragment is responsible for the bioactivity of D1 as an APF. To our knowledge, this is the first report on a gene coding for an aggregation-promoting factor in Lb. plantarum. PMID:23892754

  8. Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.

    PubMed

    Mino, Hiroyuki; Grill, Warren M

    2002-06-01

    The effects of the stochastic gating properties of sodium channels on the extracellular excitation properties of mammalian nerve fibers was determined by computer simulation. To reduce computation time, a hybrid multicompartment cable model including five central nodes of Ranvier containing stochastic sodium channels and 16 flanking nodes containing detenninistic membrane dynamics was developed. The excitation properties of the hybrid cable model were comparable with those of a full stochastic cable model including 21 nodes of Ranvier containing stochastic sodium channels, indicating the validity of the hybrid cable model. The hybrid cable model was used to investigate whether or not the excitation properties of extracellularly activated fibers were influenced by the stochastic gating of sodium channels, including spike latencies, strength-duration (SD), current-distance (IX), and recruitment properties. The stochastic properties of the sodium channels in the hybrid cable model had the greatest impact when considering the temporal dynamics of nerve fibers, i.e., a large variability in latencies, while they did not influence the SD, IX, or recruitment properties as compared with those of the conventional deterministic cable model. These findings suggest that inclusion of stochastic nodes is not important for model-based design of stimulus waveforms for activation of motor nerve fibers. However, in cases where temporal fine structure is important, for example in sensory neural prostheses in the auditory and visual systems, the stochastic properties of the sodium channels may play a key role in the design of stimulus waveforms.

  9. V ibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources

    PubMed Central

    McDonough, EmilyKate; Kamp, Heather

    2015-01-01

    Summary Phosphate is essential for life, being used in many core processes such as signal transduction and synthesis of nucleic acids. The waterborne agent of cholera, V ibrio cholerae, encounters phosphate limitation in both the aquatic environment and human intestinal tract. This bacterium can utilize extracellular DNA (eDNA) as a phosphate source, a phenotype dependent on secreted endo‐ and exonucleases. However, no transporter of nucleotides has been identified in V . cholerae, suggesting that in order for the organism to utilize the DNA as a phosphate source, it must first separate the phosphate and nucleoside groups before transporting phosphate into the cell. In this study, we investigated the factors required for assimilation of phosphate from eDNA. We identified PhoX, and the previously unknown proteins UshA and CpdB as the major phosphatases that allow phosphate acquisition from eDNA and nucleotides. We demonstrated separable but partially overlapping roles for the three phosphatases and showed that the activity of PhoX and CpdB is induced by phosphate limitation. Thus, this study provides mechanistic insight into how V . cholerae can acquire phosphate from extracellular DNA, which is likely to be an important phosphate source in the environment and during infection. PMID:26175126

  10. Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration.

    PubMed

    Rajapakse, Dinusha; Peterson, Katherine; Mishra, Sanghamitra; Wistow, Graeme

    2017-12-15

    Retinal pigment epithelium (RPE) has been implicated as key source of cholesterol-rich deposits at Bruch's membrane (BrM) and in drusen in aging human eye. We have shown that serum-deprivation of confluent RPE cells is associated with upregulation of cholesterol synthesis and accumulation of unesterified cholesterol (UC). Here we investigate the cellular processes involved in this response. We compared the distribution and localization of UC and esterified cholesterol (EC); the age-related macular degeneration (AMD) associated EFEMP1/Fibulin3 (Fib3); and levels of acyl-coenzyme A (CoA): cholesterol acyltransferases (ACAT) ACAT1, ACAT2 and Apolipoprotein B (ApoB) in ARPE-19 cells cultured in serum-supplemented and serum-free media. The results were compared with distributions of these lipids and proteins in human donor eyes with AMD. Serum deprivation of ARPE-19 was associated with increased formation of FM dye-positive membrane vesicles, many of which co-labeled for UC. Additionally, UC colocalized with Fib3 in distinct granules. By day 5, serum-deprived cells grown on transwells secreted Fib3 basally into the matrix. While mRNA and protein levels of ACTA1 were constant over several days of serum-deprivation, ACAT2 levels increased significantly after serum-deprivation, suggesting increased formation of EC. The lower levels of intracellular EC observed under serum-deprivation were associated with increased formation and secretion of ApoB. The responses to serum-deprivation in RPE-derived cells: accumulation and secretion of lipids, lipoproteins, and Fib3 are very similar to patterns seen in human donor eyes with AMD and suggest that this model mimics processes relevant to disease progression. Published by Elsevier Inc.

  11. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, R K; Bissell, M J

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellularmore » matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.« less

  12. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation

    PubMed Central

    Gosselin, Romain-Daniel; Meylan, Patrick; Decosterd, Isabelle

    2013-01-01

    Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release. PMID:24368897

  13. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  14. Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis.

    PubMed

    Backert, Steffen; Bernegger, Sabine; Skórko-Glonek, Joanna; Wessler, Silja

    2018-03-26

    The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram-negative and Gram-positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell-to-cell junction factors including E-cadherin, occludin, and claudin-8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development. © 2018 John Wiley & Sons Ltd.

  15. Curare-Like Activity of Mono-Quaternary Salts Containing Adamantyl Residue at the Nitrogen Atom

    DTIC Science & Technology

    As shown in previous works, mono-quaternary salts of alkamine esters of benzoic and cinnamic acids types and exhibit a pronounced curare like action...A series of methiodides of alkamine esters of benzoic and cinnamic acids were synthesized, containing at the quaternary nitrogen atom a 1-adamantyl...adamantyl causes a change of the substance’s mechanism of action, this applying both to the benzoic acid derivatives and to the cinnamic acid derivatives

  16. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine Dependent Arrest in the T Cell Signaling Cascade

    PubMed Central

    Kelleher, Raymond J.; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J.; Shenoy, Gautam N.; Peng, Peng; Iyer, Vandana; Fathallah, Anas M.; Berenson, Charles S.; Wallace, Paul K.; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B.

    2015-01-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients’ anti-tumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80nm. The T cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immune suppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T cell function represent a potential therapeutic target for patients with ovarian cancer. PMID:26112921

  17. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS

    PubMed Central

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-01-01

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development. PMID:19279211

  18. Effect of spaceflight on the extracellular matrix of skeletal muscle after a crush injury

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Fritz, V. K.; Burkovskaia, T. E.; Il'ina-Kakueva, E. I.

    1992-01-01

    The organization and composition of the extracellular matrix were studied in the crush-injured gastrocnemius muscle of rats subjected to 0 G. After 14 days of flight on Cosmos 2044, the gastrocnemius muscle was removed and evaluated by histochemical and immunohistochemical techniques from the five injured flight rodents and various earth-based treatment groups. In general, the repair process was similar in all injured muscle samples with regard to the organization of the extracellular matrix and myofibers. Small and large myofibers were present within an expanded extracellular matrix, indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with nonenlarged area of nonmuscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well organized and contained more macrophages and blood vessels in the repair region, indicative of a delayed repair process, but did not demonstrate any chronic inflammation. Myofiber repair did vary in muscles from the different groups, being slowest in the flight animals and most complete in the tail-suspended ones.

  19. Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery

    PubMed Central

    van Dongen, Helena M.; Masoumi, Niala

    2016-01-01

    SUMMARY Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors. PMID:26935137

  20. Abundant extracellular myelin in the meninges of patients with multiple sclerosis.

    PubMed

    Kooi, E-J; van Horssen, J; Witte, M E; Amor, S; Bø, L; Dijkstra, C D; van der Valk, P; Geurts, J J G

    2009-06-01

    In multiple sclerosis (MS) myelin debris has been observed within MS lesions, in cerebrospinal fluid and cervical lymph nodes, but the route of myelin transport out of the brain is unknown. Drainage of interstitial fluid from the brain parenchyma involves the perivascular spaces and leptomeninges, but the presence of myelin debris in these compartments has not been described. To determine whether myelin products are present in the meninges and perivascular spaces of MS patients. Formalin-fixed brain tissue containing meninges from 29 MS patients, 9 non-neurological controls, 6 Alzheimer's disease, 5 stroke, 5 meningitis and 7 leucodystrophy patients was investigated, and immunohistochemically stained for several myelin proteins [proteolipid protein (PLP), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)]. On brain material from MS patients and (non)neurological controls, PLP immunostaining was used to systematically investigate the presence of myelin debris in the meninges, using a semiquantitative scale. Extensive extracellular presence of myelin particles, positive for PLP, MBP, MOG and CNPase in the leptomeninges of MS patients, was observed. Myelin particles were also observed in perivascular spaces of MS patients. Immunohistochemical double-labelling for macrophage and dendritic cell markers and PLP confirmed that the vast majority of myelin particles were located extracellularly. Extracellular myelin particles were virtually absent in meningeal tissue of non-neurological controls, Alzheimer's disease, stroke, meningitis and leucodystrophy cases. In MS leptomeninges and perivascular spaces, abundant extracellular myelin can be found, whereas this is not the case for controls and other neurological disease. This may be relevant for understanding sustained immunogenicity or, alternatively, tolerogenicity in MS.

  1. Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers.

    PubMed

    Li, Junjun; Minami, Itsunari; Yu, Leqian; Tsuji, Kiyotaka; Nakajima, Minako; Qiao, Jing; Suzuki, Masato; Shimono, Ken; Nakatsuji, Norio; Kotera, Hitetoshi; Liu, Li; Chen, Yong

    2016-01-01

    Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) hold high potential for use in drug assessment and myocardial regeneration. To create tissue-like constructs of CMs for extracellular monitoring, we placed aligned fibers (AFs) on the surface of a microelectrode array and then seeded hiPSC-CMs for subsequent monitoring for 14 days. As expected, the CMs organized into anisotropic and matured tissue and the extracellular recordings showed reduced premature beating higher signal amplitude and a higher probability of T-wave detection as compared to the culture without fibers. The CMs on the aligned fibers samples also exhibited anisotropic propagation of the field potential. These results therefore suggest that the hiPSC-CMs cultured on AFs can be used more reliably for cell based assays.

  2. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas.

    PubMed

    Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W

    2012-05-01

    Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.

  3. A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouge, Pierre; Barre, Annick

    2008-02-29

    The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical {alpha}-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution ofmore » electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH{sub 4}{sup +}) and gas (NH{sub 3}) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.« less

  4. A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants.

    PubMed

    Rougé, Pierre; Barre, Annick

    2008-02-29

    The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical alpha-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution of electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH4+) and gas (NH(3)) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.

  5. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    PubMed

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.

  6. OLIgo Mass Profiling (OLIMP) of Extracellular Polysaccharides

    PubMed Central

    Günl, Markus; Gille, Sascha; Pauly, Markus

    2010-01-01

    The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling. An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite. Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)1 (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself2, and is amenable to high-throughput analyses3. While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights

  7. [Low-molecular-weight autoregulatory factors in bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum].

    PubMed

    Loĭko, N G; Kozlova, A N; Osipov, G A; El'-Registan, G I

    2002-01-01

    The haloalkaliphilic, lithoautotrophic, sulfur-oxidizing gram-negative bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum were found to possess a special system for the autoregulation of their growth. The system includes the extracellular autoinducers of anabiosis (the d1 factor) and autolysis (the d2 factor). The principal components of the d1 factor are alkylhydroxybenzenes. The principal components of the d2 factor are free unsaturated fatty acids dominated by oleic acid isomers. Like the respective autoregulators of neutrophilic bacteria, the d1 factor of haloalkaliphilic bacteria presumably controls their growth and transition to a anabiotic state, while the d2 factor controls autolytic processes. Alkylhydroxybenzenes of both microbial and chemical origin were found to influence bacterial respiration. The low-molecular-weight osmoprotectant glycine betaine enhanced the thermostability of trypsin. This suggests that glycine betaine, like the d1 factor, serves as a molecular chaperone.

  8. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice.

    PubMed

    Hu, Ankang; Yuan, Honghua; Wu, Lianlian; Chen, Renjin; Chen, Quangang; Zhang, Tengye; Wang, Zhenzhen; Liu, Peng; Zhu, Xiaorong

    2016-01-15

    The neurotrophic factor insulin-like growth factor (IGF)-1 promotes neurogenesis in the mammalian brain and provides protection against brain injury. However, studies regarding the effects of IGF-1 on cognitive function in aged mice remain limited. We investigated the effects of overexpression of IGF-1 specifically in neural stem cells of the hippocampal dentate gyrus on the recognitive function in 18-month-old transgenic mice. Immunohistocytochemistry and Nissl staining revealed the increased population of BrdU-positive cells as well as the upregulated expression of Nestin and neuronal nuclei (NeuN), respective markers for neural progenitors and neurons, in the hippocampus of the aged IGF-1 transgenic mice versus the wild-type, suggesting that IGF-1 overexpression promotes neurogenesis. In addition, the IGF-1 receptor (IGF-1R), the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) were enhanced in the transgenic mice than in the wild-type. Transgenic mice also showed superior performance in the Morris water maze and step-down memory tests to their wild-type counterparts. Moreover, the learning and memory abilities of transgenic mice were significantly undermined with the blockage of CaMKII and ERK signaling pathway. Accordingly, our findings indicated that IGF-1 may mitigate the aged-associated cognitive decline via promoting neurogenesis in the hippocampus and activating CaMKII and ERK signaling by binding with IGF-1R. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice

    PubMed Central

    2011-01-01

    Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng). Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß), tumor necrosis factor-(TNF)α, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior. PMID:21306618

  10. Current methods for the isolation of extracellular vesicles.

    PubMed

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Mantel, Pierre-Yves; Halleck, Allison E; Trachtenberg, Alexander J; Soria, Cesar E; Oquin, Shanice; Bonebreak, Christina M; Saracoglu, Elif; Skog, Johan; Kuo, Winston Patrick

    2013-10-01

    Extracellular vesicles (EVs), including microvesicles and exosomes, are nano- to micron-sized vesicles, which may deliver bioactive cargos that include lipids, growth factors and their receptors, proteases, signaling molecules, as well as mRNA and non-coding RNA, released from the cell of origin, to target cells. EVs are released by all cell types and likely induced by mechanisms involved in oncogenic transformation, environmental stimulation, cellular activation, oxidative stress, or death. Ongoing studies investigate the molecular mechanisms and mediators of EVs-based intercellular communication at physiological and oncogenic conditions with the hope of using this information as a possible source for explaining physiological processes in addition to using them as therapeutic targets and disease biomarkers in a variety of diseases. A major limitation in this evolving discipline is the hardship and the lack of standardization for already challenging techniques to isolate EVs. Technical advances have been accomplished in the field of isolation with improving knowledge and emerging novel technologies, including ultracentrifugation, microfluidics, magnetic beads and filtration-based isolation methods. In this review, we will discuss the latest advances in methods of isolation methods and production of clinical grade EVs as well as their advantages and disadvantages, and the justification for their support and the challenges that they encounter.

  11. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    NASA Technical Reports Server (NTRS)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  12. Molecular cloning and expression of a unique receptor-like protein-tyrosine-phosphatase in the leucocyte-common-antigen-related phosphate family.

    PubMed Central

    Zhang, W R; Hashimoto, N; Ahmad, F; Ding, W; Goldstein, B J

    1994-01-01

    Protein-tyrosine-phosphatases (PTPases) have been implicated in the regulation of certain tyrosine kinase growth factor receptors in that they dephosphorylate the activated (autophosphorylated) form of the receptors. In order to identify PTPases that potentially act on receptor targets in liver, we used the human leucocyte common antigen-related PTPase (LAR) cDNA [Streuli, Krueger, Hall, Schlossman and Saito (1988) J. Exp. Med. 168, 1523-1530] and isolated two closely related transmembrane PTPase homologues from a rat hepatic cDNA library. Both PTPases had large extracellular domains that contained three immunoglobulin-like repeats and eight type-III fibronectin repeats. Both enzymes had tandem homologous PTPase domains following a single hydrophobic transmembrane domain. One sequence encoded the rat homologue of LAR. The second PTPase, designated LAR-PTP2, had 79 and 90% identity with rat LAR in the respective cytoplasmic PTPase domains, with only 57% sequence similarity in the extracellular domain. The catalytic domains of LAR and LAR-PTP2 prepared by bacterial expression were active in dephosphorylating a variety of phosphotyrosyl substrates but did not hydrolyse phosphoserine or phosphothreonine residues of labelled casein. Both enzymes exhibited rapid turnover numbers of 4-7 s-1 for myelin basic protein and 78-150 s-1 for derivatized lysozyme. LAR and LAR-PTP2 displayed similar PTPase activity towards the simultaneous dephosphorylation of receptors of intact insulin and epidermal growth factor from liver membranes. These data indicate that there is a family of LAR-related PTPases that may regulate the phosphorylation state of receptor tyrosine kinases in liver and other tissues. Images Figure 1 Figure 4 Figure 5 Figure 6 PMID:8068021

  13. Response to Growth Hormone Treatment in a Patient with Insulin-Like Growth Factor 1 Receptor Deletion

    PubMed Central

    Mahmoud, Ranim; Naidu, Ajanta; Risheg, Hiba; Kimonis, Virginia

    2017-01-01

    We report a six-year-old boy who presented with short stature, microcephaly, dysmorphic features, and developmental delay and who was identified with a terminal deletion of 15q26.2q26.3 containing the insulin-like growth factor receptor (IGF1R) gene in addition to a terminal duplication of the 4q35.1q35.2 region. We compare our case with other reports of deletions and mutations affecting the IGF1R gene associated with pre-and postnatal growth restriction. We report the dramatic response to growth hormone therapy in this patient which highlights the importance of identifying patients with IGF1R deletion and treating them early. PMID:28720553

  14. Response to Growth Hormone Treatment in a Patient with Insulin-Like Growth Factor 1 Receptor Deletion.

    PubMed

    Mahmoud, Ranim; Naidu, Ajanta; Risheg, Hiba; Kimonis, Virginia

    2017-12-15

    We report a six-year-old boy who presented with short stature, microcephaly, dysmorphic features, and developmental delay and who was identified with a terminal deletion of 15q26.2q26.3 containing the insulin-like growth factor receptor (IGF1R) gene in addition to a terminal duplication of the 4q35.1q35.2 region. We compare our case with other reports of deletions and mutations affecting the IGF1R gene associated with pre-and postnatal growth restriction. We report the dramatic response to growth hormone therapy in this patient which highlights the importance of identifying patients with IGF1R deletion and treating them early.

  15. A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies

    PubMed Central

    Wang, Chun-Chao; Bajikar, Sameer S.; Jamal, Leen; Atkins, Kristen A.; Janes, Kevin A.

    2014-01-01

    Basal-like breast carcinoma is characterized by poor prognosis and high intratumor heterogeneity. In an immortalized basal-like breast epithelial cell line, we identified two anti-correlated gene-expression programs that arise among single extracellular matrix (ECM)-attached cells during organotypic 3D culture. The first contains multiple TGFβ-related genes including TGFBR3, whereas the second contains JUND and the basal-like marker, KRT5. TGFBR3 and JUND interconnect through four negative-feedback loops to form a circuit that exhibits spontaneous damped oscillations in 3D culture. The TGFBR3–JUND circuit appears conserved in some premalignant lesions that heterogeneously express KRT5. The circuit depends on ECM engagement, as detachment causes a rewiring that is triggered by RPS6 dephosphorylation and maintained by juxtacrine tenascin C, which is critical for intraductal colonization of basal-like breast cancer cells in vivo. Intratumor heterogeneity need not stem from partial differentiation and could instead reflect dynamic toggling of cells between expression states that are not cell autonomous. PMID:24658685

  16. Native-like aggregates of Factor VIII (FVIII) are immunogenic von Willebrand Factor deficient and hemophilia A mice

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Middaugh, C. Russell; Bankert, Richard B.; Balu-Iyer, Sathy V.

    2013-01-01

    The administration of recombinant Factor VIII (FVIII) is the first line therapy for Hemophilia A (HA), but 25–35% of patients develop an inhibitory antibody response. In general, the presence of aggregates contributes to unwanted immunogenic responses against therapeutic proteins. FVIII has been shown to form both native-like and non-native aggregates. Previously, we showed that non-native aggregates of FVIII are less immunogenic compared to the native protein. Here we investigated the effect of native-like aggregates of FVIII on immunogenicity in HA and von Willebrand Factor knockout (vWF−/−) mice. Mice immunized with native-like aggregates showed significantly higher inhibitory antibody titers compared to animals that received native FVIII. Following re-stimulation in vitro with native FVIII, the activation of CD4+ T cells isolated from mice immunized with native-like aggregates is ~4 fold higher than mice immunized with the native protein. Furthermore, this is associated with increases in the secretion of pro-inflammatory cytokines IL-6 and IL-17 in the native-like aggregate treatment group. The results indicate that the native-like aggregates of FVIII are more immunogenic than native FVIII for both the B cell and T cell responses. PMID:22388918

  17. Impact of lysosome status on extracellular vesicle content and release.

    PubMed

    Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P

    2016-12-01

    Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. Copyright © 2016. Published by Elsevier B.V.

  18. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  19. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    PubMed

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  20. [Establishment of multiple regression model for virulence factors of Saccharomyces albicans by random amplified polymorphic DNA bands].

    PubMed

    Liu, Qi; Wu, Youcong; Yuan, Youhua; Bai, Li; Niu, Kun

    2011-12-01

    To research the relationship between the virulence factors of Saccharomyces albicans (S. albicans) and the random amplified polymorphic DNA (RAPD) bands of them, and establish the regression model by multiple regression analysis. Extracellular phospholipase, secreted proteinase, ability to generate germ tubes and adhere to oral mucosal cells of 92 strains of S. albicans were measured in vitro; RAPD-polymerase chain reaction (RAPD-PCR) was used to get their bands. Multiple regression for virulence factors of S. albicans and RAPD-PCR bands was established. The extracellular phospholipase activity was associated with 4 RAPD bands: 350, 450, 650 and 1 300 bp (P < 0.05); secreted proteinase activity of S. albicans was associated with 2 bands: 350 and 1 200 bp (P < 0.05); the ability of germ tube produce was associated with 2 bands: 400 and 550 bp (P < 0.05). Some RAPD bands will reflect the virulence factors of S. albicans indirectly. These bands would contain some important messages for regulation of S. albicans virulence factors.

  1. Metabolic multianalyte microphysiometry reveals extracellular acidosis is an essential mediator of neuronal preconditioning.

    PubMed

    McKenzie, Jennifer R; Palubinsky, Amy M; Brown, Jacquelynn E; McLaughlin, Bethann; Cliffel, David E

    2012-07-18

    Metabolic adaptation to stress is a crucial yet poorly understood phenomenon, particularly in the central nervous system (CNS). The ability to identify essential metabolic events which predict neuronal fate in response to injury is critical to developing predictive markers of outcome, for interpreting CNS spectroscopic imaging, and for providing a richer understanding of the relevance of clinical indices of stress which are routinely collected. In this work, real-time multianalyte microphysiometry was used to dynamically assess multiple markers of aerobic and anaerobic respiration through simultaneous electrochemical measurement of extracellular glucose, lactate, oxygen, and acid. Pure neuronal cultures and mixed cultures of neurons and glia were compared following a 90 min exposure to aglycemia. This stress was cytotoxic to neurons yet resulted in no appreciable increase in cell death in age-matched mixed cultures. The metabolic profile of the cultures was similar in that aglycemia resulted in decreases in extracellular acidification and lactate release in both pure neurons and mixed cultures. However, oxygen consumption was only diminished in the neuron enriched cultures. The differences became more pronounced when cells were returned to glucose-containing media upon which extracellular acidification and oxygen consumption never returned to baseline in cells fated to die. Taken together, these data suggest that lactate release is not predictive of neuronal survival. Moreover, they reveal a previously unappreciated relationship of astrocytes in maintaining oxygen uptake and a correlation between metabolic recovery of neurons and extracellular acidification.

  2. Extracellular Matrix from Periodontal Ligament Cells Could Induce the Differentiation of Induced Pluripotent Stem Cells to Periodontal Ligament Stem Cell-Like Cells.

    PubMed

    Hamano, Sayuri; Tomokiyo, Atsushi; Hasegawa, Daigaku; Yoshida, Shinichiro; Sugii, Hideki; Mitarai, Hiromi; Fujino, Shoko; Wada, Naohisa; Maeda, Hidefumi

    2018-01-15

    The periodontal ligament (PDL) plays an important role in anchoring teeth in the bone socket. Damage to the PDL, such as after severe inflammation, can be treated with a therapeutic strategy that uses stem cells derived from PDL tissue (PDLSCs), a strategy that has received intense scrutiny over the past decade. However, there is an insufficient number of PDLSCs within the PDL for treating such damage. Therefore, we sought to induce the differentiation of induced pluripotent stem (iPS) cells into PDLSCs as an initial step toward PDL therapy. To this end, we first induced iPS cells into neural crest (NC)-like cells. We then captured the p75 neurotrophic receptor-positive cells (iPS-NC cells) and cultured them on an extracellular matrix (ECM) produced by human PDL cells (iPS-NC-PDL cells). These iPS-NC-PDL cells showed reduced expression of embryonic stem cell and NC cell markers as compared with iPS and iPS-NC cells, and enrichment of mesenchymal stem cell markers. The cells also had a higher proliferative capacity, multipotency, and elevated expression of PDL-related markers than iPS-NC cells cultured on fibronectin and laminin (iPS-NC-FL cells) or ECM produced by human skin fibroblast cells (iPS-NC-SF cells). Overall, we present a culture method to produce high number of PDLSC-like cells from iPS cells as a first step toward a strategy for PDL regeneration.

  3. TGF-β1 induces the formation of vascular-like structures in embryoid bodies derived from human embryonic stem cells.

    PubMed

    Wang, Yan; Qian, DE-Jian; Zhong, Wen-Yu; Lu, Jun-Hong; Guo, Xiang-Kai; Cao, Yi-Lin; Liu, Ju

    2014-07-01

    Human embryonic stem cells (ESCs) can differentiate into endothelial cells in response to stimuli from extracellular cytokines. Transforming growth factor (TGF)-β1 signaling is involved in stem cell renewal and vascular development. Previously, human ESCs were isolated from inner cell mass and a stable ESC line was developed. In the present study, the effects of extracellular TGF-β1 were investigated on human ESC-derived embryoid bodies (EB) in suspension. The structures of the EBs were analyzed with light and electron microscopy, while the cellular composition of the EBs was examined via the expression levels of specific markers. Vascular-like tubular structures and cardiomyocyte-like beating cells were observed in the EBs at day 3 and 8, respectively. The frequencies of vascular-like structures and beating cells in the TGF-β1 treated group were significantly higher compared with the control group (84.31 vs. 12.77%; P<0.001; 37.25 vs. 8.51%; P<0.001, respectively). Electron microscopy revealed the presence of lumens and gap junctions in the sections of the tubular structures. Semiquantitative polymerase chain reaction revealed elevated expression levels of CD31 and fetal liver kinase-1 in EBs cultured with TGF-β1. In addition, extensive staining of von Willebrand factor was observed in the vascular-like structures of TGF-β1-treated EBs. Therefore, the results of the present study may aid the understanding of the underlying mechanisms of human ESC differentiation and improve the methods of propagating specific cell types for the clinical therapy of cardiovascular diseases.

  4. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    PubMed

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  5. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon.

    PubMed Central

    Rubinstein, J T; Spelman, F A

    1988-01-01

    The cable model of a passive, unmyelinated fiber in an applied extracellular field is derived. The solution is valid for an arbitrary, time-varying, applied field, which may be determined analytically or numerically. Simple analytical computations are presented. They explain a variety of known phenomena and predict some previously undescribed properties of extracellular electrical stimulation. The polarization of a fiber in an applied field behaves like the output of a spatial high-pass and temporal low-pass filter of the stimulus. High-frequency stimulation results in a more spatially restricted region of fiber excitation, effectively reducing current spread relative to that produced by low-frequency stimulation. Chronaxie measured extracellularly is a function of electrode position relative to the stimulated fiber, and its value may differ substantially from that obtained intracellularly. Frequency dependence of psychophysical threshold obtained by electrical stimulation of the macaque cochlea closely follows the frequency dependence of single-fiber passive response. PMID:3233274

  6. Contextual and sociopsychological factors in predicting habitual cleaning of water storage containers in rural Benin

    NASA Astrophysics Data System (ADS)

    Stocker, Andrea; Mosler, Hans-Joachim

    2015-04-01

    Recontamination of drinking water occurring between water collection at the source and the point of consumption is a current problem in developing countries. The household drinking water storage container is one source of contamination and should therefore be cleaned regularly. First, the present study investigated contextual factors that stimulate or inhibit the development of habitual cleaning of drinking water storage containers with soap and water. Second, based on the Risk, Attitudes, Norms, Abilities, and Self-regulation (RANAS) Model of behavior, the study aimed to determine which sociopsychological factors should be influenced by an intervention to promote habitual cleaning. In a cross-sectional study, 905 households in rural Benin were interviewed by structured face-to-face interviews. A forced-entry regression analysis was used to determine potential contextual factors related to habitual cleaning. Subsequently, a hierarchical regression was conducted with the only relevant contextual factor entered in the first step (R2 = 6.7%) and the sociopsychological factors added in the second step (R2 = 62.5%). Results showed that households using a clay container for drinking water storage had a significantly weaker habit of cleaning their water storage containers with soap and water than did households using other types of containers (β = -0.10). The most important sociopsychological predictors of habitual cleaning were commitment (β = 0.35), forgetting (β = -0.22), and self-efficacy (β = 0.14). The combined investigation of contextual and sociopsychological factors proved beneficial in terms of developing intervention strategies. Possible interventions based on these findings are recommended.

  7. Extracellular Microbial Metabolomics: The State of the Art

    PubMed Central

    Villas-Boas, Silas G.

    2017-01-01

    Microorganisms produce and secrete many primary and secondary metabolites to the surrounding environment during their growth. Therefore, extracellular metabolites provide important information about the changes in microbial metabolism due to different environmental cues. The determination of these metabolites is also comparatively easier than the extraction and analysis of intracellular metabolites as there is no need for cell rupture. Many analytical methods are already available and have been used for the analysis of extracellular metabolites from microorganisms over the last two decades. Here, we review the applications and benefits of extracellular metabolite analysis. We also discuss different sample preparation protocols available in the literature for both types (e.g., metabolites in solution and in gas) of extracellular microbial metabolites. Lastly, we evaluate the authenticity of using extracellular metabolomics data in the metabolic modelling of different industrially important microorganisms. PMID:28829385

  8. Extracellular Microbial Metabolomics: The State of the Art.

    PubMed

    Pinu, Farhana R; Villas-Boas, Silas G

    2017-08-22

    Microorganisms produce and secrete many primary and secondary metabolites to the surrounding environment during their growth. Therefore, extracellular metabolites provide important information about the changes in microbial metabolism due to different environmental cues. The determination of these metabolites is also comparatively easier than the extraction and analysis of intracellular metabolites as there is no need for cell rupture. Many analytical methods are already available and have been used for the analysis of extracellular metabolites from microorganisms over the last two decades. Here, we review the applications and benefits of extracellular metabolite analysis. We also discuss different sample preparation protocols available in the literature for both types (e.g., metabolites in solution and in gas) of extracellular microbial metabolites. Lastly, we evaluate the authenticity of using extracellular metabolomics data in the metabolic modelling of different industrially important microorganisms.

  9. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development.

    PubMed

    Reinhold, Heike; Soyk, Sebastian; Simková, Klára; Hostettler, Carmen; Marafino, John; Mainiero, Samantha; Vaughan, Cara K; Monroe, Jonathan D; Zeeman, Samuel C

    2011-04-01

    Plants contain β-amylase-like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains--also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain's glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic β-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic β-amylases, do not influence their transcription factor function.

  10. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. [Research advances in CKLF-like MARVEL transmembrane domain containing member 5].

    PubMed

    Yuan, Ye-qing; Xiao, Yun-bei; Liu, Zhen-hua; Zhang, Xiao-wei; Xu, Tao; Wang, Xiao-feng

    2012-12-01

    CKLF-like MARVEL transmembrane domain containing member(CMTM)is a novel generic family firstly reported by Peking University Center for Human Disease Genomics. CMTM5 belongs to this family and has exhibited tumor-inhibiting activities. It can encode proteins approaching to the transmembrane 4 superfamily(TM4SF). CMTM5 is broadly expressed in normal adult and fetal human tissues, but is undetectable or down-regulated in most carcinoma cell lines and tissues. Restoration of CMTM5 may inhibit the proliferation, migration, and invasion of carcinoma cells. Although the exact mechanism of its anti-tumor activity remains unclear, CMTM5 may be involved in various signaling pathways governing the occurrence and development of tumors. CMTM5 may be a new target in the gene therapies for tumors, while further studies on CMTM5 and its anti-tumor mechanisms are warranted.

  12. Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms

    PubMed Central

    Phillips, Wiktor S.; Herly, Mikkel; Del Negro, Christopher A.

    2015-01-01

    Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7–43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels. PMID:26655824

  13. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's

  14. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts.

    PubMed

    Fansa, Hisham; Schneider, Wolfgang; Wolf, Gerald; Keilhoff, Gerburg

    2002-07-01

    To overcome the problems of limited donor nerves for nerve reconstruction, we established nerve grafts made from cultured Schwann cells and basal lamina from acellular muscle and used them to bridge a 2-cm defect of the rat sciatic nerve. Due to their basal lamina and to viable Schwann cells, these grafts allow regeneration that is comparable to autologous nerve grafts. In order to enhance regeneration, insulin-like growth factor (IGF-I) was locally applied via osmotic pumps. Autologous nerve grafts with and without IGF-I served as controls. Muscle weight ratio was significantly increased in the autograft group treated with IGF-I compared to the group with no treatment; no effect was evident in the tissue-engineered grafts. Autografts with IGF-I application revealed a significantly increased axon count and an improved g-ratio as indicator for "maturity" of axons compared to autografts without IGF-I. IGF-I application to the engineered grafts resulted in a decreased axon count compared to grafts without IGF-I. The g-ratio, however, revealed no significant difference between the groups. Local administration of IGF-I improves axonal regeneration in regular nerve grafts, but not in tissue-engineered grafts. Seemingly, in these grafts the interactive feedback mechanisms of neuron, glial cell, and extracellular matrix are not established, and IGF-I cannot exert its action as a pleiotrophic signal. Copyright 2002 Wiley Periodicals, Inc.

  15. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis.

    PubMed

    Shiu, Shin Han; Bleecker, Anthony B

    2003-06-01

    Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.

  16. P2X(7) is a scavenger receptor for apoptotic cells in the absence of its ligand, extracellular ATP.

    PubMed

    Gu, Ben J; Saunders, Bernadette M; Petrou, Steven; Wiley, James S

    2011-09-01

    Phagocytosis of apoptotic cells is essential during development and tissue remodeling. Our previous study has shown that the P2X(7) receptor regulates phagocytosis of nonopsonized particles and bacteria. In this study, we demonstrate that P2X(7) also mediates phagocytosis of apoptotic lymphocytes and neuronal cells by human monocyte-derived macrophages under serum-free conditions. ATP inhibited this process to a similar extent as observed with cytochalasin D. P2X(7)-transfected HEK-293 cells acquired the ability to phagocytose apoptotic lymphocytes. Injection of apoptotic thymocytes into the peritoneal cavity of wild-type mice resulted in their phagocytosis by macrophages, but injection of ATP prior to thymocytes markedly decreased this uptake. In contrast, ATP failed to inhibit phagocytosis of apoptotic thymocytes in vivo by P2X(7)-deficient peritoneal macrophages. The surface expression of P2X(7) on phagocytes increased significantly during phagocytosis of either beads or apoptotic cells. A peptide screen library containing 24 biotin-conjugated peptides mimicking the extracellular domain of P2X(7) was used to evaluate the binding profile to beads, bacteria, and apoptotic cells. One peptide showed binding to all particles and cell membrane lipids. Three other cysteine-containing peptides uniquely bound the surface of apoptotic cells but not viable cells, whereas substitution of alanine for cysteine abolished peptide binding. Several thiol-reactive compounds including N-acetyl-L-cysteine abolished phagocytosis of apoptotic SH-SY5Y cells by macrophages. These data suggest that the P2X(7) receptor in its unactivated state acts like a scavenger receptor, and its extracellular disulphide bonds play an important role in direct recognition and engulfment of apoptotic cells.

  17. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    PubMed

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  18. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  19. Size exclusion chromatography for the removal of pigments from extracellular ligninolytic enzyme extracts from decayed wheat straw.

    PubMed

    Shukla, Dharmendra; Patel, Bhavesh; Modi, Hasmukh; Vyas, Bharat Rajiv Manuel

    2011-11-01

    Solid-state fermentation of wheat straw was carried out by a native white rot basidiomycete Daedaleopsis flavida strain 5A. Extract prepared from the 12-day decayed wheat straw contained extracellular ligninolytic enzymes like manganese peroxidase (MnP), manganese-independent peroxidase (MIP), lignin peroxidase (LiP) and laccase along with straw-degraded products and pigments. Sephacryl S-200 size exclusion chromatography in 16/100 column was used for the separation of these ligninolytic enzymes and straw-degraded products and pigments. Recovery of pigment-free ligninolytic enzyme activities as protein was 40% of the total proteins loaded and specific LiP activity increased 34 fold after size exclusion chromatography. Thus accurate estimation of LiP by veratryl alcohol oxidation assay was possible only after the removal of interfering pigments. The reproducibility of size exclusion chromatography is adjudged satisfactory from the consistent results obtained after seven repetitive uses of matrices.

  20. Extraction of extracellular lipids from chemoautotrophic bacteria Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-08-01

    A CO2 sequestering bacterial strain, Serratia sp. ISTD04, that produces a significant amount of extracellular lipids was isolated from marble mine rocks. (14)C labeling analysis revealed that the rate of assimilation of CO2 by the strain is 0.756×10(-9)μmolCO2fixedcell(-1)h(-1). It was found to produce 466mg/l of extracellular lipid which was characterized using (1)H NMR. After transesterification of lipids, the total saturated and unsaturated FAME was found to be 51% and 49% respectively. The major FAME contained in the biodiesel were palmitic acid methyl ester (C16:0), oleic acid methyl ester (C18:1) and 10-nonadecenoic acid methyl ester (C19:1). Biodiesel produced by Serratia sp. ISTD04 is balanced in terms of FAME composition of good quality. It also contained higher proportion of oleic acid (35%) which makes it suitable for utilization in existing engines. Thus, the strain can be harnessed commercially to sequester CO2 into biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  2. A Rhizobium leguminosarum CHDL- (Cadherin-Like-) Lectin Participates in Assembly and Remodeling of the Biofilm Matrix

    PubMed Central

    Vozza, Nicolás F.; Abdian, Patricia L.; Russo, Daniela M.; Mongiardini, Elías J.; Lodeiro, Aníbal R.; Molin, Søren; Zorreguieta, Angeles

    2016-01-01

    In natural environments most bacteria live in multicellular structures called biofilms. These cell aggregates are enclosed in a self-produced polymeric extracellular matrix, which protects the cells, provides mechanical stability and mediates cellular cohesion and adhesion to surfaces. Although important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires the synthesis of the acidic exopolysaccharide and the PrsDE secretion system to develop a mature biofilm. PrsDE is responsible for the secretion of the Rap family of proteins that share one or two Ra/CHDL (cadherin-like-) domains. RapA2 is a calcium-dependent lectin with a cadherin-like β sheet structure that specifically recognizes the exopolysaccharide, either as a capsular polysaccharide (CPS) or in its released form [extracellular polysaccharide (EPS)]. In this study, using gain and loss of function approaches combined with phenotypic and microscopic studies we demonstrated that RapA lectins are involved in biofilm matrix development and cellular cohesion. While the absence of any RapA protein increased the compactness of bacterial aggregates, high levels of RapA1 expanded distances between cells and favored the production of a dense matrix network. Whereas endogenous RapA(s) are predominantly located at one bacterial pole, we found that under overproduction conditions, RapA1 surrounded the cell in a way that was reminiscent of the capsule. Accordingly, polysaccharide analyses showed that the RapA lectins promote CPS formation at the expense of lower EPS production. Besides, polysaccharide analysis suggests that RapA modulates the EPS size profile. Collectively, these results show that the interaction of RapA lectins with the polysaccharide is involved in rhizobial

  3. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection.

    PubMed Central

    Sturm, A; Chrispeels, M J

    1990-01-01

    We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose. PMID:2152110

  4. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater

    PubMed Central

    Obayashi, Yumiko; Wei Bong, Chui; Suzuki, Satoru

    2017-01-01

    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the

  5. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater.

    PubMed

    Obayashi, Yumiko; Wei Bong, Chui; Suzuki, Satoru

    2017-01-01

    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the

  6. Antipsychotic therapeutic drug monitoring: psychiatrists’ attitudes and factors predicting likely future use

    PubMed Central

    Law, Suzanne; Haddad, Peter M.; Chaudhry, Imran B.; Husain, Nusrat; Drake, Richard J.; Flanagan, Robert J.; David, Anthony S.

    2015-01-01

    Background: This study aimed to explore predictive factors for future use of therapeutic drug monitoring (TDM) and to further examine psychiatrists’ current prescribing practices and perspectives regarding antipsychotic TDM using plasma concentrations. Method: A cross-sectional study for consultant psychiatrists using a postal questionnaire was conducted in north-west England. Data were combined with those of a previous London-based study and principal axis factor analysis was conducted to identify predictors of future use of TDM. Results: Most of the 181 participants (82.9%, 95% confidence interval 76.7–87.7%) agreed that ‘if TDM for antipsychotics were readily available, I would use it’. Factor analysis identified five factors from the original 35 items regarding TDM. Four of the factors significantly predicted likely future use of antipsychotic TDM and together explained 40% of the variance in a multivariate linear regression model. Likely future use increased with positive attitudes and expectations, and decreased with potential barriers, negative attitudes and negative expectations. Scientific perspectives of TDM and psychiatrist characteristics were not significant predictors. Conclusion: Most senior psychiatrists indicated that they would use antipsychotic TDM if available. However, psychiatrists’ attitudes and expectations and the potential barriers need to be addressed, in addition to the scientific evidence, before widespread use of antipsychotic TDM is likely in clinical practice. PMID:26301077

  7. Noninfectious virus-like particles produced by Moloney murine leukemia virus-based retrovirus packaging cells deficient in viral envelope become infectious in the presence of lipofection reagents

    PubMed Central

    Sharma, Sanjai; Murai, Fukashi; Miyanohara, Atsushi; Friedmann, Theodore

    1997-01-01

    Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 105 colony-forming units per ml. PMID:9380714

  8. Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers

    PubMed Central

    Minami, Itsunari; Yu, Leqian; Nakajima, Minako; Qiao, Jing; Shimono, Ken; Nakatsuji, Norio; Kotera, Hitetoshi; Chen, Yong

    2016-01-01

    Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) hold high potential for use in drug assessment and myocardial regeneration. To create tissue-like constructs of CMs for extracellular monitoring, we placed aligned fibers (AFs) on the surface of a microelectrode array and then seeded hiPSC-CMs for subsequent monitoring for 14 days. As expected, the CMs organized into anisotropic and matured tissue and the extracellular recordings showed reduced premature beating higher signal amplitude and a higher probability of T-wave detection as compared to the culture without fibers. The CMs on the aligned fibers samples also exhibited anisotropic propagation of the field potential. These results therefore suggest that the hiPSC-CMs cultured on AFs can be used more reliably for cell based assays. PMID:27446217

  9. Extracellular enzyme kinetics scale with resource availability

    EPA Science Inventory

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  10. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    PubMed

    Biggs, Bradley T; Tang, Tao; Krimm, Robin F

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.

  11. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds

    PubMed Central

    Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525

  12. Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila.

    PubMed

    Isaac, R Elwyn; Johnson, Erik C; Audsley, Neil; Shirras, Alan D

    2007-12-01

    Recent studies have firmly established pigment dispersing factor (PDF), a C-terminally amidated octodecapeptide, as a key neurotransmitter regulating rhythmic circadian locomotory behaviours in adult Drosophila melanogaster. The mechanisms by which PDF functions as a circadian peptide transmitter are not fully understood, however; in particular, nothing is known about the role of extracellular peptidases in terminating PDF signalling at synapses. In this study we show that PDF is susceptible to hydrolysis by neprilysin, an endopeptidase that is enriched in synaptic membranes of mammals and insects. Neprilysin cleaves PDF at the internal Ser7-Leu8 peptide bond to generate PDF1-7 and PDF8-18. Neither of these fragments were able to increase intracellular cAMP levels in HEK293 cells cotransfected with the Drosophila PDF receptor cDNA and a firefly luciferase reporter gene, confirming that such cleavage results in PDF inactivation. The Ser7-Leu8 peptide bond was also the principal cleavage site when PDF was incubated with membranes prepared from heads of adult Drosophila. This endopeptidase activity was inhibited by the neprilysin inhibitors phosphoramidon (IC(50,) 0.15 micromol l(-1)) and thiorphan (IC(50,) 1.2 micromol l(-1)). We propose that cleavage by a member of the Drosophila neprilysin family of endopeptidases is the most likely mechanism for inactivating synaptic PDF and that neprilysin might have an important role in regulating PDF signals within circadian neural circuits.

  13. Spitting out the demons: Extracellular vesicles in glioblastoma.

    PubMed

    André-Grégoire, Gwennan; Gavard, Julie

    2017-03-04

    Discovered decades ago, extracellular vesicles (EVs) emerge as dedicated organelles, able to deliver protected, specific cellular cues throughout the organism. While virtually every cell can release EVs, cancer cells co-opted this feature and efficiently unleashed them both in the tumor microenvironment and toward healthy tissues. This might contribute to tumor aggressiveness and spreading. Cancer-derived EVs that contain DNA, mRNA, miRNA, and packed and transmembrane proteins can operate locally or at distance. This review will focus on the high-grade brain tumor (i.e. glioblastoma)-derived EVs, discussing recent reports on i) their phenotype and content, ii) their putative functions, and iii) their clinical potential for improving diagnosis and therapeutics.

  14. Assessment of insulin-like growth factor-1 (IGF-I) level in patients with rheumatic mitral stenosis.

    PubMed

    Deveci, Onur S; Yavuz, Bunyamin; Sen, Omer; Deniz, Ali; Ozkan, Selcuk; Dal, Kursat; Ata, Naim; Baser, Salih; Akin, Kadir O; Kucukazman, Metin; Beyan, Esin; Ertugrul, Derun T

    2015-03-01

    Insulin-like growth factor-1 may serve some regulatory function in the immune system. Rheumatic mitral stenosis is related to autoimmune heart valve damage after streptococcal infection. The aim of this study was to assess the level of insulin-like growth factor-1 and its correlation with the Wilkins score in patients with rheumatic mitral stenosis. A total of 65 patients with rheumatic mitral stenosis and 62 age- and sex-matched control subjects were enrolled in this study. All subjects underwent transthoracic echocardiography. The mitral valve area and Wilkins score were evaluated for all patients. Biochemical parameters and serum insulin-like growth factor-1 levels were measured. Demographic data were similar in the rheumatic mitral stenosis and control groups. The mean mitral valve area was 1.6±0.4 cm2 in the rheumatic mitral stenosis group. The level of insulin-like growth factor-1 was significantly higher in the rheumatic mitral stenosis group than in the control group (104 (55.6-267) versus 79.1 (23.0-244.0) ng/ml; p=0.039). There was a significant moderate positive correlation between insulin-like growth factor-1 and thickening of leaflets score of Wilkins (r=0.541, p<0.001). The present study demonstrated that serum insulin-like growth factor-1 levels were significantly higher in the rheumatic mitral stenosis group compared with control subjects and that insulin-like growth factor-1 level was also correlated with the Wilkins score. It can be suggested that there may be a link between insulin-like growth factor-1 level and immune pathogenesis of rheumatic mitral stenosis.

  15. The Influence of Virus Infection on the Extracellular pH of the Host Cell Detected on Cell Membrane.

    PubMed

    Liu, Hengjun; Maruyama, Hisataka; Masuda, Taisuke; Honda, Ayae; Arai, Fumihito

    2016-01-01

    Influenza virus infection can result in changes in the cellular ion levels at 2-3 h post-infection. More H(+) is produced by glycolysis, and the viral M2 proton channel also plays a role in the capture and release of H(+) during both viral entry and egress. Then the cells might regulate the intracellular pH by increasing the export of H(+) from the intracellular compartment. Increased H(+) export could lead indirectly to increased extracellular acidity. To detect changes in extracellular pH of both virus-infected and uninfected cells, pH sensors were synthesized using polystyrene beads (ϕ1 μm) containing Rhodamine B and Fluorescein isothiocyanate (FITC). The fluorescence intensity of FITC can respond to both pH and temperature. So Rhodamine B was also introduced in the sensor for temperature compensation. Then the pH can be measured after temperature compensation. The sensor was adhered to cell membrane for extracellular pH measurement. The results showed that the multiplication of influenza virus in host cell decreased extracellular pH of the host cell by 0.5-0.6 in 4 h after the virus bound to the cell membrane, compared to that in uninfected cells. Immunostaining revealed the presence of viral PB1 protein in the nucleus of virus-bound cells that exhibited extracellular pH changes, but no PB1 protein are detected in virus-unbound cells where the extracellular pH remained constant.

  16. RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-α in cardiac ischaemia/reperfusion injury.

    PubMed

    Cabrera-Fuentes, H A; Ruiz-Meana, M; Simsekyilmaz, S; Kostin, S; Inserte, J; Saffarzadeh, M; Galuska, S P; Vijayan, V; Barba, I; Barreto, G; Fischer, S; Lochnit, G; Ilinskaya, O N; Baumgart-Vogt, E; Böning, A; Lecour, S; Hausenloy, D J; Liehn, E A; Garcia-Dorado, D; Schlüter, K-D; Preissner, K T

    2014-12-01

    Despite optimal therapy, the morbidity and mortality of patients presenting with an acute myocardial infarction (MI) remain significant, and the initial mechanistic trigger of myocardial "ischaemia/reperfusion (I/R) injury" remains greatly unexplained. Here we show that factors released from the damaged cardiac tissue itself, in particular extracellular RNA (eRNA) and tumour-necrosis-factor α (TNF-α), may dictate I/R injury. In an experimental in vivo mouse model of myocardial I/R as well as in the isolated I/R Langendorff-perfused rat heart, cardiomyocyte death was induced by eRNA and TNF-α. Moreover, TNF-α promoted further eRNA release especially under hypoxia, feeding a vicious cell damaging cycle during I/R with the massive production of oxygen radicals, mitochondrial obstruction, decrease in antioxidant enzymes and decline of cardiomyocyte functions. The administration of RNase1 significantly decreased myocardial infarction in both experimental models. This regimen allowed the reduction in cytokine release, normalisation of antioxidant enzymes as well as preservation of cardiac tissue. Thus, RNase1 administration provides a novel therapeutic regimen to interfere with the adverse eRNA-TNF-α interplay and significantly reduces or prevents the pathological outcome of ischaemic heart disease.

  17. Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury

    PubMed Central

    van der Merwe, Yolandi

    2015-01-01

    Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910

  18. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    PubMed

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  19. Extracellular matrix family proteins that are potential targets of Dd-STATa in Dictyostelium discoideum.

    PubMed

    Shimada, Nao; Nishio, Keiko; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi

    2004-10-01

    Dd-STATa is a functional Dictyostelium homologue of metazoan STAT (signal transducers and activators of transcription) proteins, which is activated by cAMP and is thereby translocated into the nuclei of anterior tip cells of the prestalk region of the slug. By using in situ hybridization analyses, we found that the SLF308 cDNA clone, which contains the ecmF gene that encodes a putative extracellular matrix protein and is expressed in the anterior tip cells, was greatly down-regulated in the Dd-STATa-null mutant. Disruption of the ecmF gene, however, resulted in almost no phenotypic change. The absence of any obvious mutant phenotype in the ecmF-null mutant could be due to a redundancy of similar genes. In fact, a search of the Dictyostelium whole genome database demonstrates the existence of an additional 16 homologues, all of which contain a cellulose-binding module. Among these homologues, four genes show Dd-STATa-dependent expression, while the others are Dd-STATa-independent. We discuss the potential role of Dd-STATa in morphogenesis via its effect on the interaction between cellulose and these extracellular matrix family proteins.

  20. Lectin-Like Bacteriocins from Pseudomonas spp. Utilise D-Rhamnose Containing Lipopolysaccharide as a Cellular Receptor

    PubMed Central

    Josts, Inokentijs; Roszak, Aleksander W.; Waløen, Kai I.; Cogdell, Richard J.; Milner, Joel; Evans, Tom; Kelly, Sharon; Tucker, Nicholas P.; Byron, Olwyn; Smith, Brian; Walker, Daniel

    2014-01-01

    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins. PMID:24516380